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PREFACE

This Memorandum is another expression of RAND's long-term intercst
in aud involvement with reliability assessment of Aiv Torce weapon
systems, past, present, and future. It provides a methodology for
cstiwmating past, currvent, aund near-term future reliability for systems
that can be shown to iwmprove in launch and/or in-flight reiiability
during their development and early operational phases. Tiis method-
ology should be directly useful to persons responsible for specifying,
from actual test results, the appropriate relfability values to be uscd
in targeting and vequirvements studies. It may also Le helpful to those
involved in cost-cfficctiveness evaluations during develeopment and carly
operational periods, in addition to being of intercst to mathematicians,
statisticians, operations rescarchers, and some project or developuent

engincers,




SUMMARY

The relatively brief history of rocket vehicle, and particulariy
ICBM development, has caused a rediscovery of one of the better-known
features of the fly-lix-fly methods of aircraft development--the
systems tend Lo becoue more relieble as one galins experilence and
applies it to design improvement., Since changes in reliability have
important implications for those involved in planning, procurement,
support, and command, a method for asscessing tlils changing reliabiiity
at any given stage or projecting it to ncar-future time periods should
be of considerable usc,

This Memorandum proposes four reliability growth models ox
patterns that can be fitted to actual experience data (i.e., launch
or flight-test results) to discern the gquantitative characteristics
of the growth within relatively well-defined tolerances. This ob-
Jective is achirved by defining appropriate parametric models and
subsequently using maximum l1ikelihood procedures to ohtagin estimateys
of the parvameters, and hence of the reliability. The models are
studied in detall with regard to their ability to meet suflticient
condltions for the existence of maximum likelihood ¢stimators, and
it is shown that only two ¢f them yield maximum }ikelilood estimates
it Cain Le iised under Lhe most penerygl circumstances.,  Numerical
procedures arce developed for obtaining the estimates of the parameters,
further, the varfance-covarfance matrix of the estimates 1s used Lo

congtruct approximate confidence rveglons.
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These models are compared with each other and with alternative

nonparametric and Bayesian approaches, using simulated data to make

the comparisons. These comparisons show that under the conditions

set forth in this study, three of the parametric models are gencrally

superior in their predictive and assessment characteristics to repre-

sentative nonparametric methods, and to an applicable Bayesian pro-

fum Dl

cedure.  However, nonc of these three parametric models is universally

applicabie, since th: desirable guality of minimum bias can Le achieved

only by deciding berorehand whether the system reliability is tending

it E A i T

L closely epnough to the usually unattaivable goal orf 1.0, or perfection,

and choosing the model appropriate to the circumstances.
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1.  JINTRODUCTION

The reliability of a new weapon system is a critical determinant

of its effectiveness, and is thus of vital irterest to thosce in the

Air Force concerned with strategic planning, procurement, system sup-
port, and operational command. The introduction of long-range ballistic
missiles into the Air Force weapons arsenal has accelerated the obso-

lescence of the informal trcatment of weapon svstem reliabiliry

characteristics which proved reasonably satisfactory for manned

aircraft. The shortcomings were recognized before the missile age,

and probably arose from experiences with electronic equipment in the
years following Worlid War II. By the time the first geweration of
ballistic missiles was entering military use, the notion of a mean
time between failures (MIBF) had seen wide usage in assessments of
alert capability and support requirements, particularly for radars
and systems requiring continucus operation. The one-shot' aspect

of ballistic flight has renewed interest in the reliability of inde-

N R

pcendent binomial or Bernoulli trials, but what scems to be a novw

feature of these systems has added another dimension to the problem.

In May of 1964, Space Technology Laboratories (STL, now known as
Systems Division ol Thompson-Ramo-Wooldridge) published the results

of a study done under contract Lo NASA, Reliability Growth of U.S.

Rockets (U) [9]. The study analyzed the flight test results from
ninc separate vocket vehicle programs (including four Air Forcc

ballistic missiles), and showed that cach one enjoyed a substantial

pnrt

reliability growth during its development and carly operational
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stages, I an unclassified portion of their report, they concluded

that

The proporition of successful flights in a program,
is an indication of the vehicle's average reliabilicy
for the program. However, the average reliability of
past flights is not satisfactory for estimating present
reliability or for predicting the reliability of future
flights of vehicles.

If the yeliability is increasing from flight to
flight, the average reliability wili lic somewhere be-
tween the true reliability of the first flipht and the
true reliability of the last flight, where both of the
true reliabilitics are unknown. 1lrescnt and future
reliabilitics could be grossly underxestimated by assuming
the average recliability of the past.®

STL developed such 3 prediction model, and applied it to data

from the flight tests of (among others) the Alr Force's Minuteman

ICBM, using only the carly launches of this system, The projection

st s it

of future reliability made from that analysis correctly predicted,

w..thin narrow limits, the outcome of Minuteman flight tests performed

throughout the following two years. Unfortunately, we cacnot evaluate,

v dhi L

with regard to subsequent performances, most of the other systems
Many of theu tied been rewmoved
from operational service by the time the report was published, and
others followed soon aftexr, The data for those Lhat remained opera-
tirnal are unavailable for this study, Two other Air Force systems
for which we bhave subscquent flight test data show mixed expevience,

For one the STL prediction was excellent, but an cqually good one

could have been genervated by merety omitting the R & D and carly

“Reference 9, pages 4-1, 4-2 (U).




opecrational launches; for the other, subsequent operational result
fell too far from the original prediction to be considered a valid
tion, but the program was sulficiently unusual in other rvespects t
make it unsuitable {for tests of predictive models anywvay,

The purpose of this study 1s to explore the utilization of

various parsmetric reliability growth models in evaluating current

S

a-

o

reliabilities and predicting near-teorm future reliabilities of com-

plex weapon systems that exhibit reliability gyowth during their
development,

The primary emphasis in this study has been on parametric re-
liability growth models rather than on nonparametric ones 1or the

following rcasons:

1. Lower coutfidence bounds associated with nonparamctric
reliability growth models arc very conservative. Since
important decisions are made on the basis of a lower
conficdence bound, unnecessary penalties imposed upon
this quantity cause indefensibly higher costs with
virtually no added capability.

2, Although criticism of parametric methods is generally
hard to refute on a theoretical basis, parametric
tcehnigues are often quite useful iIn praciice.  Use
of a nonparametcic approdach should be contingent upon
finding a satisfactory substitute for parametric
metaods in hand.

3. There is analytical support for the expectation of an
exponential reliability growth characteristic in a
process which is a reasonable facsimile of weapon
development testing [8)]. In addition, there is con-
siderable empirical material indicating that fo1 such
processes, reliability {s genera
at a progressively decreasing rate [7], [8], [9], [10], [

1%, 3 P - 1 - 1
iy picivan Ly, H#ild

We Lhiave not completely ignored other methods of calculating
lower confidence bounds forxr reliability growth models. For instan
the Appendix develops a Bayesian procedure for obtaining confidenc

intervals for the reliability growth at cach stage. The Dayusian

117.

ce,
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procedure takes inte dccount the "exogenous' information with regard

to the system. We lLater comparce the confidence iutervals obtained by

| both the Bayesian approact and another nonparametric method to those

TETTERS TS TV AT IV e

obtainced by the parametric approaci:.

The reliability growth modele consitdered fer this study assume
that the woeapon system's reliability during the k-th stage of testing
is a function of the ultimate rv.iabilicy that would be attained if
the number of stages jis 2ilowed te approach infinity, and one or more
parametars mcdifying the rate of rellwliiaty growth. Specifically,

v2 consider first of all reliability , uwth models of the form

(1) R, =R - oF(k),

wi.ere Rk i.s the weapon system's reliabilicy at the k-th stage of
developrent, R_ is the ultimate system reliability, « > 0 is a pa-
rameter that quantifies the amount of growth occurring belv:en siages
1 ard =, and r{k) is a positive decreasing function of %, character-
izing that growti,. Lloyd aad Lipow {6] discuss one m mbe. of this
class of models and pay specific attentiou Lo the case for widch

F(k) = 1/k. The sccond class of growth models considered is the

expot.ential class; nancly,

() K =1- e ©,

where Rk has the same meaning as in (1), @5 is a paxameccey indicating

the anwunt of reliability growth, O < g, S

1, ] 2 and o, » 0 ls a parameter
measuring tho1ate of reliability growth. This model is developed and

utilized in :9]-




ety 1y

In a sense, a third class of parametyic models can be considered

a generulization ol (1) and (2) and is represented as

(3) R =R -a,

where Rk and Rw have the same meanings as in (1), and ¢ is a real
numbex tnat lies in the open interval (0, 1). ¢ indicates the total
amount of growth, i.e., the growth from stage 1 to stage .

The fourth and final class of parametric models treated here is

given by

-az/k
(4) Rk 5= QI]C ,
where 0 = o) = 1 and o, > 0.

Section LI of this Memvrandum develops the estimation precedures
for reliability growth models, describes the pertinent restrictions,
and develeps the equations that permit the estimation of curreut and
pear-teym reliability, as well as the confidence bounds on the esti-
mates. Section 11I displays the behavior of the two models that
appear most promising for reliability assessment in the prescence of

*
rcliability growth, stresses the shortcomings of each, and shows

*Models 3 and 4 suffer from a number of impovtant shortcouwings,
awmong whicin are (1) computalioual (convergence) difficulties, (2) a
higher vayiability of prediction, and (3) the necessity Lo check for
the conditions which guarantee a unlque maximum (at times, these con-
ditions arc not met). Although analysis programs werce written and

exercised for both these models, the results were sufficiently inferior

to thosc for Models 1 and 2 (and the variatiens thercon) that no
detalled examination of those results has been given here. llowever,
the Appendix does present the analytical developmenis for all four
models.
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some comparisons between the parametric and other methods. Scetion IV
gives the conclusions of the study.

The mathematically sophisticated reader should have no difficulty
in understanding any portion of the discussion that follows. Those
whose background does not include training in probability theory and
statistics may find certain cquations in Sec. IT quite difficulc to
undersitand, but might be well advised to follow the narrative in any
case. Should even this prove tco tedious, the reader may prefer to
turn directly to the somewhat less wmathematically taxing discussion
of the models' experimental behavior in Sec. I1I, and accept the

allegations made there concerning the developments in Sec. IT,
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1T. THE MAXTMUM LIKELTHOOD METHOD FOR ESTIMATING
PARAMETERS OF RELIABILITY GROWTH MODELS

GINFRAL DISCUSSION

The general analysis of rcliability growth wodels for complex
weapon systems proceeds in the following mavner: A test program is

conducted in N stages; at the k-th stage, s, successes are recorded

k
in Iy trials. When the final or N-th stage is completed, we want to
fit to the data a growth curve which then is used to evaluate current

reliabilities and predict ncar-term future reliabilivies.

The general parametric reliability growth function can be written

(5) ko= LR, o

K az.'--.cr;k),

1’ P

vhere Rk and R, have the same meanings as in (1Y, and &y - ab arc
p-parameters determining the growth ¢t weliability from stage to stage.
The vector (Ra, Uys e ap) is constrained to lie ir a c¢onvex reglun
' As a first step in estimating reliability growth, estimates ave
required of the (p + 1) paran~-ters R_, Qs ey QF' This 1s carriced

out in geueral by the method of maximum likelihood, whose estimators

ayc used primarily because of their favorable largu sample preperties,

THE METHOD O)F MAXIMUM LIKELINOOD

At the k-th stage of testing

n -s

e °k k "k
(6) pr{x = sk} = (S ) Ry (1 - Rk) ,
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where pr{x = sk} is the probability of exactly s, Successes in ny
trials. Using (5) and assuming that the test stages are statistically

independent, the likelihood function whose logarithm is to be maximized

is given by

N n s n, -s
k . k E Tk
= Il L e ; - ce 3 k .
£ k=1 (Sk [fklm; O.'lp 3 Cl'p: k)] [1 f(Rm: Q’ly » Q’p, l“-)}

We then require the set of values (ﬁm, &l' ceey &p) which lies
in the region so that 0 < f(Rm, Oys v Qb; k) £ 1 and which maximizes

logC X in this region. To set a unique maximum by the standard tech-
nique of parctial differentiation of loge £ with respect to Rm, oy
Oys -y ap, it is sufficient to demonstrate that logc f£ is a strictly
concave function of these parameters, and that the wmaximum occurs in
the interior of I, 1.e., the maximum occurs in the region 0 <
f(Rm, Ayr oo ab; k) <1, for each k.

A sufficient conditioa that loge I be a strictly concave function

is that the matrix

[ .2 2 2 N
3" log, £ 3" log, £ d }.ose £
12 3K ey ok o

oo
W2 2 2
3" log, £ 0" log, £ . ra log, £
R 2 .
OR Doy 3a; dayde,
2 2 Z
of tor, 3 2 dos, s ol lon s
BRmbp aalaab Zaﬁ

[y




be negative definite, Thus, assuming that loge f is concave,
f(Rm, s o (yp; k) is a differentiable function of (Rm, @)

and that the maximum occurs in the interior of T, then

N
(7) loge I = const. +k2_1 Sy loge f(Rm, s - ap; k)

N
3 Gy e ter T - TR o e s 0T
k=1

N s f ;
i 3 log, & S r Ror o oo o K
(%) —5 = Z TR i)
o‘m k'—'l (\m) Q’ly » ap’ Y
N (n, - s )f R Oy e, O K
k=1 (- ]‘(Roo’ Xpr e Olh; k)]

N s f (R, @, .., a; k)
3 10?,0 £ T k cxj w’ 7] P
() T T ded T
dcr, k=1 f(Rm’ cyl, 3 CYPy k)

where

(10) £ (R, ay, oeey o k) = _op

R o
o)
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and

111 2 , k) = o P .
, (‘l/ fai(hmv al) R ] Qp9 ) an ) J 1

The vector (Rm, oys s qb) for which

-~ Y log -
(12) “"ge‘v’:"b”e‘c:,‘,.h.____aaofes:o
AR, aozl o-p ]
. yields the maximum likelihood cstimators ﬁm, &1, PN &b of the

paramcters Rm, o ., ap’ respectively.

1 3

R E NN S RRRTOH

In gencral, the system of equations (12) can only bkc¢ solved by
iterative methods so that initial estimates R y Oy, e, O are
@®,0 lo po

nceded for the iteration scheme, Often the initial estimates are
obtaincd by the '"least squares' method., That is, we minimize the sum

. squares Y of deviations of the observed success ratios -sk/nk from

their expccted success ratios f(R), Ay qp; k), with respect Lo
a

the parame.er vector (R, o, «.., ). Thus, we have
3] L v

L

N
(13) al‘{ -2 E {Sk/nk - £(Rm, O e ap; k)]fR (Rm, Wy s Q/p; k), 3
oo
k=1

N
‘Y_OE:, , ) S TR
(14) S 2 [5k/nk - f(hw, o, e ap, k)]fa'(Rw, o, s oS kjy,
k=1

1l
-
-
\
il
—
[
-
jaw]
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Among those vector sets for which

oY _ Y = oY
—_— = .z..,_-—--—o.
oR, 3 Bab

“l' ‘he e set R - . 2 t 'S 3 s e .
we find the vector se (Rm,o' oy . xpo) hat is the least squares

estimator of (Rm, s e Qb)A

Iteration schemes are discussed in more detail as we analyze each
proposed model in the Appendix. We discuss in particular the two-
dimensional Newton s Method used to obtain numerical solutions of the
maximum likelihood equations in several of the models.

Lct us set Rco = o, for the remainder of this discussion. The

maximum likelihood estimators o , % o, o of @, «a R
L? 1 » Q’L o 1’ ’ pl

respectively, are jointly normally distributed when the samj le size

m = 2: §=1 T is large, provided the following conditions are satisfied:

3 log, 8
(1; ES ﬂ*ga*———J =0, i=0,1, ..., p, where
k i
/nk\‘r Slt".

g = K‘gk/li_f(ao) al) DR Q’p; k)

[1 - f((Yor Q'lt"": ap; k)

~
N
N
=t
1
H.
oF BN
r—
—
N
\

i’jaoﬁ 11"'! P:k""]-n 2)"';N'
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1 83 £((Yo) Q’lv rety Up; k)
) 5

is bounded f all possible
du du e, ed or P ’

values of oyr &g, ooy Gb’ i, j, t =0, 1, ..., p, and

at each stage k.

e} loge £
) — =0, i=0,1, ..., p. That is to
dayy =
oy Ty

Assuming that conditioms (1)-(4) hold, the maximum likelihood estimators

have the approximate joint normal density with mecans a s o ab and

1 H

variance-coveriance matrix

[~ 2 -
a, S op
2
%1 91 e ®1p
L
2
Ty 9y, op
" i _
where,
/2 2
P} logo 5\ 3 loge £ 37 log. ¢
-k - - ‘ e - - ———
aaﬁ ) aabaul Baobap
1'1 - N
2
. o} 10gc L 3 loge ky
" E 2 " M\ oap :
2o 1% 2
a1 > i
o} og £ H
- E ”_d__ H
da :
L \ P

ot alslip e s
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For a further discussion of the large sample properties of maximum
likelihood estimators, the reader may refer to Cramér {3, pp. 497-506]
and Kendall [5, pp. 1-49].

At this point we note thact in some of the simulation studies of
Sec. III, condition (5) is violated. This explains the deviation
irom asymptotic normality whiich is observed there,

We now derive an approximate 100T-percent lower confidence limit
for Rk-—Lhu predicated reliability at the k-th stage of testing. To
accomplish this objective we need to obtain an approximate cxpressiog
for Var ﬁk‘ In the first place, ﬁk = f(&o, &1, v, &b; k), where we
assume that f(ab’ aps e Qs k) is at least twice differentiable in

p

cach of rhe variables (ao, aps e Qb): and whose second derivatives
are bounded for all possible values of (ao, wps ot Qb) at each stage
k. We thoen may approximate Var ﬁk in terms of ZE by expanding ﬁk in

a Taylor series about (Qb’ L IEIRERE ub) anc ignoring terms of orderxr

greater than one. Thus,

P
. 2 . .
(1s) var R_= E 10‘1 var &, + 2 E fo'ifa- cov (o, , Q'j) )

vhere

1
av]
L}
=
”~
2
L
[ SN
~
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and Var &i and cov (&i, &j) are the elements of E

Using rhe theory developed in this secction, we develop in the
Appendix the parameter estimators, cxaminc concavity problems, and
obtain lower confidence limits for the four models described in this

Appendix.
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IIL, EHAVIOR OF THE FSTIMATING MODELS

DESIRABLE CHARACTERISTICS

Before examining the behavior of some of the esiimating models,
it will be helpful to describe the characteristics that would be de-
sirable in such a model. Clearly, we would like our model to come as
close as possible to the "right' answer. A mathematician or statis-
tician would describe this trait for an analogous (but not identical)
situation as requiring minimum variance and minimum bias, where the
variance expressces quantitatively the variability of prediction, and
the bias expresses the difference between the correct answer and the
average of a number of predictions. For our purposes, the squaie
root of the variance--the standard deviation--is probably more useful,
préeserving as it does the physical units of the original measurement.

Mathematical considerations also suggest that we should like to
arrive at our estimate by the method of maximum likelihcod because of
the favorable large-sample properties of such estimates (mentiocned
previously in Sec. IT), as well as their inherent efficiency in esti-
mation. Then too, we should like to be able to make specific confi-
dence statements~--for example, we are 90-percent coniident that the
true reliability is no less than some specified awount; two eclements
contributing to a dircct confidence calculation are the asymptlotic
norwality of maximum likelihood estimates, as well as the variance-
covariance matrix generated in the course of the maximum likelihood
solution.

We would like our estimate to be relatively insensitive to thrce

anvirvonmental features over which we may have little, or no, coutrol.

LMD s 4

psni
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First, by necessity, the decision to ailocate a particular trial to

one stege of testing or anotliar may be quite avbitrary (the configura-~
tion may change very slightly from one trial to the next, obviating any
attempi to populate a given stage with bomogercous iPtems). We should
thus like to have arbitrary grouping be of litiLle consequence to the
resulting escimates. Secound, the form of the actual undevlying growth
curve should have as little effect as practical. In other words, the
estimate should not be sensitive to whether a given level of rcliability
wa. reached by vigorous early growth, followed by a tapering off to a
virtually constant value, orx by a slow, sustained g..owth process.
Third, the estimacting model should be able to do its job whether the
predicted veliability is Ln the region of 0.5, or n.ar 1.0, or anywhere
clse, in the reliability spectrum.

Since estimates will be reached through extensive computations, it
is desirable that these be reasonably compatible with modern ¢ amputing
methods, that is, with Jdigital computation. Thus, a good model should
result in a compunting algerithm, or woutine, thai Ls uniikely to tead
to ¢ifflcultics such as spurious roots, divisions by zero, logarithms
of zero, and other s.wmbling blocks, or to result in instabilities, or
divergences, if iterative methods must bhe used. Likewlse, couvergence
to the proper answer should L. rcasonably prompt, wiita no excessive
“hunting.”

Finolly, the estimating model should boar somz strong resemblance
to physlcal reality, and must be compatible with the mathematical
interpretation of reliability. For exanple, the parameters of the

model (h.e,, the quautities for which we wili make numcrleai cstimates)

g e s i s oAt o (9 i o




might be such things as the Lnitial reliability, uitimate reliability,

E initiel growth rate, cte., and any numerical quantity denoting relia- :

bility must take on values nelther less than zcro, nor more than one.

ETALVATION MELIIDOLOCY

G L

Few of the foregoing qualities can be implemented Ly straightfovward

f
V
3

analytical efforts, because of the excessive complexiitics iavolved. For

Vit

‘ this reason we chose to study the behavior and "optimization' of the

G

reliability growth models through Monte Carlo, or simulation methods.

i The most-used procedure was to simulate, on a digital compurter, a test
program of 72 tn=ials with a given underlying growth characteristic,
usually expouential., Ir. mest casns, the first 12 trial results were

then combined to forw the firet "wcage," the next 12 to form the second

" "

stage, and so on, giving uix groups of 12 trials apiece, with the

resulce puached opn a siagle IBM card. This process was repcated, elther

99 times for rough comparigjons, or 999 times for more deitalled ones.

These data card decks werc then analyzed with differeat reliability
growth models, and the 99 (or 999) rcsulting predictions of reliabiliLy

in the next {i.e., seventh) stage of testing were usced as indicators

j of estimating abili . The usual mecasuces of quality were the standard
]

deviation of the estimates, and the bias, the difference between the :
§ average of Lhe estimates and the "corrcet" answer from the underlying

growth churacteristic used Lo simulate the data. Another thing conrsildered

: was the disrribution of the estlmaies, the Normal or Gaussian boelng

W

exXpecteu,

it

Thz most substantial devi. tons from the foregoing procedure were

i

made wnern studying the effect of grouping, or dividing the 72 trials

FPEN——————
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inio stages. Ip this case, the identical 72 individual trials were

divided inte four groups of 18 trials apiecce, siv groups of 12 trials,

and eight groups of 9 trials, as shown in Table 1.

Table 1

EFFEcT OF VARIED GROUPING IN 999 PROGRAMS OF 72 TRIALS

Number of Trials | Reliability of Stage Nt+1 Prediction Standard
Groups Per Group Mean Estimate Actual BlLas Deviation
4 1a 0.771 0.838 -0.067 L0451
6 12 0.793 0.830 -C.037 -0494
8 9 0.807 0.825 -0.018 .0512
72 1 0.808 0.812 -0.004 .G730 1

Dl sedectind

The fivst three lines of Table 1 show: the number of groups and

trials per group just mentioned; the actual reliability and the average

of 999 predictions for the N+lst stage; the differcnce (bias) between

the latter tuo, and the standard deviation of the 999 predictions with 1

* - 4
the gencralized model, Rk =R_ - of(k), and with F{k) = c(l k>/‘.

The
fourth line of the table shows a comporison with arnalysis by the ex-

pk

ponential model, Rk =1 - ge ¥, where cach individual trial consti-
tutes a stage of testing. Recauve of practical limitations on the
function ¥(¥), the gencralizcd model canrot be extended to analyze
viore than about 12 stages, The solutica for the estimates of the
paramecters of tue exponential moder suffcers convergence difficulties

with more than one tyfal pexr stage,

For purposes cf faciiitating recognitiosn, Model % will henccforth
be referred to as the "gennralized” model, alluding to the wide range
of choices for F(k), while Model 2 will be called the “exponential®
nodel for what should be an obvious reason.
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b

Two major conclusions can be drawn from the table: (1) arbitrary
grouping makes relatively little difterence in the avevage prediction,
though more numerous groups with fewer trials give slightly higher

{(and in this case less biased) results; and (2) more numerous groups

*

result in a moderately higher variability of predictina. This raises
the question of how large a standard dcviation one should reasonabl;,
expect under the circumstances. While the answer to that is not easily
found, we can get at least some idea from a somewhat different case for
vhich the exu:l answer is well known.

If, instead of 72 trials with progressively increasing reliability,
we had n trials with a constant relisbilivy of p (called Berunoulli or

Biceniial trials), the standard deviation of p, the estimate of p, is

Oa = _B_g___*l - p)_
P I ’

which for our case (p = 0.83, n = 72) gives ¢ = 0.044. Clearly, we
arc not in as faverablce a position as this since the reliability is

vy PAPPoIE]

~ ~ — st
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near 0.044, as for cxample the one for N = 4 groups. Later, we will
sce fuither reason for caution in this regard.

Another way of looking at the effect of grouping is Lo exsmine a
particular scries of 72 trials (one of the 999 examined praviously), as

in Table 2. In this instance (which is not necessarily representative)

*Thc standaxd deviation for 72 trials is a cunsequence of the model
used for analysis (the expouential) rather thau the grouping, or lack
of grouping. The cexponential model used to analyze data grouped in
six stages gave ncearly identical results to the 72 stages, indicating
complex insensitivity, but with the computational problems noted carlier,
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Table 2

EFFECT OF VARIED GROUPING ON ONE PROGRAM OF 72 TRIALS

Reiiability Estimates
Number Next Stage | Ultimate,
of Groups RN+1 Rw
2 0.7122 1.0+
3 0.7480 1.0+
4 0.7820 0.935
6 0.7748 0.8915
8 0.7481 0.8114
9 0.7566 0.8090
12 0.7178 0.7393
72 0.780 -=

increased numbers of groups (more than 2 and 3*) result in generally
lower esimtates, but once again only slightly so. In summary, the simu-
lations show that arbitrary grouping of triais has relatively littcle
effect on the resulting predictions. As we will see a little later,
systemalic grouping can have somewhat larger and worthwhile effects.

We have just seen an example in which the maximum likelihood esti-
mate given by the gencralized model for Rm, the ultimate reliability,
was larger than 1.0, a result that is iacompatible with the unathe-
matical restrictions. Tortunately, the likelihood function for this
model is always concave downward, so that the so-called '"constrained

1t

maximum,' where Rm is required to be less than or equal to 1.0, wust

occur on the boundary whenever the uncongtrained case gives R above

1.0, Xaowing this, we cav simply set B = 1.0 in thesc cases, and
0o

recalculate the maximum likelihood estimate G.

Figure 1 illustrates the three things that happen when this “liwmi-
tating' process is mplemented. The plot shows the ranked values from
The exclusion of the two and three-group cases was made because

these both resulted in estimates for Ry, the ultimate reliability, in
excess o1 1.0, a topic that will be addressced next.

i
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the estimate of RN+1) values from 99 test programs of 72 trials each,
where both the underlying growth and the analysis followed the general-
ized growth madel with F(k) = T%E . (This type of plot, on normal
probability papei, is frequently used to show the relationship of test
r2sults to the Normal distribution.) The solid dots are the ranked
predictions where Rw is not restricted, and show the expected normality
(the straight line). The open dots show the results where Llimiting has
been implemented, indicating that: (1) the results are no longer no.mal,
thus complicating confidence calculations; (2) the average result has
been biased downward by raducing the high estimates while not affecting
the low ones; and (3) the standard deviation, a measurc of the vari-
ability of prediction, has been reduced.

The first of these c¢ffects is clearly detrimental, since 1t counter=~
acts one of the desirable features cof maximum likelihood estimation.
The sccend is beneficial in this instance; without limiting, the
estimates are blased high. llowever this is not always the case, as
we shall) sce. The third effect, the reduction in standard deviaticn,
Ls geuerally desirable, but we note that the effect occurs enlirely
bacause of the reduced estimates at the higher end of the spectrum,
thus glving risc to the other two noted features. It should be evident
that when the estimate of Rm is above 1.0, onc might be well-advised
to choose a different F(k) or a different model, rather than to follow

the procedure mentioned earlier.

One should not get the fmpression that the model will be chosen
to fit the data or chlosen after the data have been examined. The form
of the model is not changed. We change only one of the parameters so
the model meets physical constraints, i.e., 0 < Rp = 1.0. Later in
this scction, one such change will be discussed in detail.
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Before making some dirvect comparisons belween estimating models,

one additional refinement applicable to the generalized model will be

discussed. In a reliability research study for NASA, Barlow and

Scheuer 1] suggested a method for obtaining maximum likelihood esti-

mates for past or current (but not future) stages of testing in the

L

presence of veliability growth. One feature of their procedure is a

regrouping process, whereby in a scries of testing stages, adjacecat

stages are combined wherever the success ratic (successes divided by

trials) in the later stage is lower than In the earlier stage. The

process is continued until all such "reversals'" are eliminated. This

process is of substantial benefit to the quality of estimates made

with the gencralized model. : :
Figure 2 iLs a bar chart intended to illustrate both the incidence

and che size of the benefits achieved when this process was applied

to the data from 99 test programs with underlying hyperbolic reliability

growth before using the generalized model. In each case, the data
originally consisted of six stages, each having 12 trials. Several

of the 99 programs had no reversals, and thus still had six stages

after processing. The leftmost bar in Fig. 2 shows that the standard

deviation remained unchanged for these programs. The next bar shows
that thosc programs that had one reversal enjoyed a slight reduclion

in g, from 0.03% to 0.036 (the shaded arca); the remainder of the
chart shows how programs with two, three, and four reversals fared.
Clearly, before the process was applied, the programs with more rever-
sals had a higher variability of prediction than those with fewer or

uo reversals, but regrouping according ro the Barlow-Scheuer procedure




i

Hyperbolic data
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Standard deviation
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Final number of stages
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removed this disadvantage. Although the reasons for expecting benefits
by applying this regrouping process are intuitive in this casc, and
based on generally empirical observations concerning the behavior of
maximum likelihood estimators, the fact remains that the process usually
improves estimates wheve reversals of success ratio are present.

Since the purpose of the Barlow-Scheuer effort is reliability
assessment in the presence of reliability growth, one might reasonably
ask why we did not use their general method rather than just one feature
of it. There are basically four rcasons why we chose to take a new
approach.

1. Application of the trinomial model regquires assigument of
failures to "inhereunt”" or "assignable cause' categories,
something which is often simply impossible.

2. Siages should either be Lomogeneous or end with an assign-
able causc failure, both hard to satisfy.

3. There is no way to extrapolale to the N+lst stage.

4. The confidence bound is inadequate, penalized too much
by ecarly test results.

Of these, only the latter two are critical, since relaxation of the
first two is possible within thce framework of the methodology. Further,
the third may be less important late in a test program, provided growth
has substantially abated.

The reader should now have sufficient background to appreciate
the performance differences between the twos principal candidate models,
the exponential and the generalized hyperbolic. These models were
used to analyze data generated from three substantially different
growth curves, cach having a reliability in the seventh (i.e., next)

stage of 0.8 to 0.85. The first growlh curve was cxponential with
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slow but persistent growth, the second a wodified hyperbecliic, and the
third a hyperboiic growth, vigorous, but short-lived. Once again,

six stages of 1Z trials aplece were nsed for the generali.ed model

with limiting of Rm and regrouping to eliminate reversals; the ungrouped
data (72 stages) for the same trials were used with the exponential
model. The form function, ¥(k), used with the generalized wodel was
e(lnk)/é, which is a desirable compromise lLetween functicns giving
excessive bias and those giving excessive variability. Table 3 shows

the resulits, giving comparisons of bias and standard deviation for

the tue models applied to the three differen! growth curves,

Table 3

EXPONENTIAL AND GENERALIZED MODELS COMPARED
(Estimates Based on 72 Trials)

Bias Deviation

———

Underlying Growth
Characteristic Exponenitial | Generalized | Exponential | Gencralized

R, = 1.0 - ae P° 0 -0.03 0.0603 0.0403 _
) ' (0.0726)% (0.04943°%
Rk = Rw gy +0.015 -0.015 (.0648 0.0445
Rk =R - a/k +0.04 -0.01 0.0574 0.0401
max. difference
between cases 0.04 0.02 0.0074 0.004¢4

%999 programs .

The generalized model shows advantages in three important quali- g

ties. The standard deviation, a direct measure of the variability of
the estimate, is consistently lower than that for the exponential model,

regardless of tl-c type of data being analyzed. Also, the sensitivity
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to the type of data is lower, as indicated by the final line of entrics.
(Tue spread of deviations is morec than proportionately larger for the
exponential.) Finally, the net bias is routinely negative (i.e., low,
or conservative estimaztes) by contrast with the potentially large posi-
tive bias of the exponential model when nsed to analyze vigorous growth
data.

Two potential drawbacksz of the generalized model are also evident.
For exponentially genevrated data, it is blased where the exponential
model is not, and there arve valid theoretical reasous (though ne demon-
strable evidence) to expect exponential data to be morxre common than
other kinds. Also, the standard deviation is once agaln suspiciously
low, though not as much so as the figures would imndicate. The 99 pro-
gram runs used here for analysis had somewhat less variability (in terms
of the number of successes in each stage) than would normally be ex-
pected. The figures iLn parentheses are for a 999 program set of data,
which were more representative, and which contfirm the superiority of
the generali :ed model at a somewhat more realistic level of standard
deviation.

A graphical representation offers another means of comparison.

Figure 3 shows the 999 predictions from both the exponential and

. generaliized models plotted according to wean rankings on normal proba-

bility paper. The lover standard devistion (smaller slope) for the
generalized model is quite evident. The bias of the generallized model
stands out even more clearly; in approximstely nine cases out of ten,

the generalized model gives a numerical value below the exponential

[IRE T R HA T
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wodel, and in only one case of the 999 did the value ewcied U 90. The
.
deviation from a normal distribution is also quite evidenti.

A specific (aud quite unrenresencative) casmple from the 999
program run may serve to dramatize tle concesn with a "realistice"
standard deviation, aud to pinpoi-t ths potentially serious short-
coming ol this particulayr version of the generalired model. The solid
line in Fig. 4 shows the underlying growth characteristic (reliability
versus stage of testing) used to simu.ale the 999 test programs.  The
solid dots show what was probab.; the most nuusual of the 999 resultis,
with experience in the f£irst threc stages considerably below the ex-
pected guccess vatio, and in the last three sLages cousiderably above
the expected. The dashed line shows how the generalized medel fits
a gzrowth curve to these data, giving a prediction for stage 7 which
is quite close to the "correct'" amsver. The dotted line shuws how
the exponential model interprets these Jdeta, giving 2 much higher
prediction. In spite of the fact that the prediction the exponential
model made is substantially further from the true reliability, it
gnould be evident that this higher prediction is eminently more reasson-
able in view of the cxpericnce data itself. In fact, the generalized

(1-%) /4

model with the ¢ functicn is simply unable to cope with growth

that approaches a reliability of 1.0 at anything more thap a slow
pace. Il a function with somwewhat more downward goncavity is used

I-k . .
(for exawple, « ), the effe:t is less pronounced.

*In cach case, a beta distribution with the appropriat« wean aud
variance represented the distribution of results far bettepr then the
normal. The bheta is especially guod for the exponential resulits, aud
the confidence interval for that wodel was thus calculated accordingly.
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Fig.4-— A particular example from the 999 programs
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The shortcomings of the generalized model {n analyzing data from
a population whose rellability is approaching 1.0 led to the search
for another model to deal with thils lmportant case. To avcid (at least
for the time being) introducing a third estimated parameter, the
generalized model was modified in a simple way that wouid achleve
somewhat the same purpose without much extra analytical complication.

Brlefly, the reliabllicy growth equation ls as follows:

K, = R - cre(L~k) /ZJ,

where the coefficient N is initially set to an integer between 4 and
8 (usually 6 in our exeminations), and both R°° and o are estimated.
It ﬁm turns out to be 1.0 or less, the estimate is accepted., Other-
wise, N is reduced by 1.0, and the process is repeated until ﬁw drops
to 1.0 or below; however, if Rm remains in excess of 1.0 when N = 1,
then the previously described limiting process i8 introduced, such

that

-k

.
4
3
L]
o
]
43
¢}

{8 used to solve Yor the single parameter &.

The characteristics of this zdaptive model can be appreciated
best by comparing them with the expouential model, as in Fig. 5, which
shows the ranked predictions fou beoth models when used te
same 999 test programs as before. This time the superiority of the
adaptive model over the exponential model is achieved without the

drawbacks (negative bias and extreme ncnnormality) that characterize

z

T




(071> Py Juun 1= AQ N X8pY] ‘9 = N Yilm Butpoig) M}M dx3 -0 - Py =Ry :jepow 3al;Copy — ¢ Bl

v

(9025 Ay1}iqoGoid {DWIOU ) 3UDs UDIYY
666 B66 66 86 $6 06 8 oL/ 09 05 O 0L OC cl S z I ¢0 7O 10

7 770
4 \
/

‘ £/0° = o i|olusuodxy A
T _ \\\

W, 7
M U_L \+\
7 L7 860" = o :jopow aaldopy

)%

Aj1j1gol|al Jo aynwlis]

]lﬁn!'l_lJ lllllllll ﬁlgﬁv\“ I:1|jllﬁ|lnjllllnl,.ll11

L , O~P

T et i et L \ — . ok diaie bk ; y ML s i o i R i .




T

the generalized wmodel. This time the result for each wodel is closely

_33_

approximated by a beta distribution with matching first and second

moments.

In spite of an apparent superiority to the exponential model,
adaptive model docs have shortcomings.

model the inability to make a beliecvable estimate for the case previously

Tt shares with the generalized

described in Fig. 4. (Indeced no other growth function was found that

would mae an estimate as high as that for the exponential model.)

Since that case is anything but typical, it is probably more important

to note that the adaptive model also shares a defect of the exponential;

it overestimates reliabilities wherever the asymptotic reliability is

substantially below 1.0, Thus none of the models described here are

universally applicable. Onc must have some notion regarding the asymp-

totic reliability Lf bias is to be avoided (Table 4).

Table 4

EFFECT OF ASYMPTOTIC RELIABILITY ON BIAS FOR THREE MODELS

Asymptotic

Reliabilily | Gencralized

Adaptive

Exponenttal

R =1.0 Biased low

Rw = 0.9 No bias
R =0.7 No bias
[-=]

-

No bias
Slightly high
Very high

No bias
Slightly high
Very high

If we are either unwilling or unable to decide vwhether

the asynmp-

totic reliability is near 1.0, then it becomes nccessary to introduce

a three-paramecter model, which cstimates the three physical

istics: wultimate (asywmptotic) reliability, starting rellability (alter-

character-

natively, amoun. of growth), and a measure of the rate of growth.

the
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Develcping such a model, however, is much more complex than developing

the two-parameter models, aud will not be attempted here.

SOME ADDITIONAL COMPARISONS

Since nonparamelric methods have a strong appeal for use in relia-
bility assessment, our description of the proposed parametric (i.e.,
assuning an underlying model) methods would be incomplete without a
comparison to some pertinent competitors from the nonparametric ficld.
The two or these to be used are the method of Barlcw and Scheuer [1],
and an extension (des:sribed at the end of Scc. II) to a method suggest-
ed by Fox [4], involving Bayes' theorem. The latter method was eval-
uated for the convenlionar situation where no growth is assumed, and
for a sccond case where a rather accurate representation of Lhe growth
between stages was superimposed on the process.

Table 5 stows the results of the calculations applied to the series
of 99 cases (with exponential growth), which we previously noted had
somewhat less than the expected variance in outcomes. The table shows
that for prediction, the adaptive model gives lower variability than
any of the nonpavamc¢tric mathods used, and less bias than either of
the Bayes approaches. While the Barlow-5cheuer result is actually
closer on the average (albeit more variable), it should be noted “hat
this is actually the same result used Lo assess Stage N (the Barlow-
Scheuer method does not include prediction) and is a lucky accident.

In assessing reliability of the most recent stage, the adaptive
method shows a clear superiority in both wmeasurces. The Barlow-Scheucr
results ave biased high, largely the result of the substantial number

of cases where 11 or 12 successes occurred wn the sixth stage, giving




Table 5

A COMPARLSON OF LVALUATIONS FOR 99 CASES

Prediction Assessment Lower 95% -
of R(N+1) of R(N) Bound for R(N)
] a ] )
Method u g u o} il e X Condi tions
Adaptive 0.8353 | 0.0513] 0.7898 { 0.0595] 0.64535| 0.0690| 3 Nommal Dist.
0.0514 ] 0.00667] 1 Beta Dist.
Barlow-Scheuer 0.8276 ] 0.0776] 0.8276 10,0776 0.529 0.05371 0
Bayes 0.8399 1 0.1117| 0.7763 [ 0.1035] 0.6305] 0.0869|11 With Growth
0.7974 § 0.1126) 0.7363 ]| G.1107 0.6565] 0.0948] 8 Without Growth

"Correct" 0.83 -- AJ 0.789 -- -- --

8Number of lower bounds exceceding actual value. Note that while the lower
bounds for the adaptive model have no rigid mathematical validity, they still
give worthwhile, if conservative, resvlts. This conservatism is typical of
both the generalized and exponential models as well, indicating that the esti-
mated variance is substantially larger than the actual in the vast majority
of cases cxamined.

estimates of 0.9167 or 1.0. The Bayes method is biased very low if no

growth is assumed, z2nd is stil

[

slighily ilow when a virtually exact
representation of the growth is supplied. The adaptive method gives
unbiased results, on the average, and with much less variability.
Comparing the lower bounds for the 90-percent confidence interval
shows how the adaptive method avoids the excesses of the other two.
ihe Barlow-sScheuer results arce excessively conservative. None of the
99 estimates were above the actual, where 5 might normally be antici-
pated for a valid lower bound. (In a later run ¢f 999 cases, there
were still none, where 50 should be expected.) The Bayes results are

too optimistic, cven though the mean resule without growth is almost
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identical to the adaptive results. The adaptive method gives results
that are only slightly conservative, and should thus logically be

preferred over the other two.




-37-

1V. CONCLUSI1ONS

On the basis of substantial and independent previous examination
of the general topic (primavily Refs., 7, 8, 9, 10, aand 11} the following
conclusions can be drawn:

1. Progressive growth in the reliability of certain types of
large weapon systems appcars tu be characteristic of their
development.

2. Although parametric models require more assumptions con-
cerning the reliability growth of a system, physical and
engineering considerations often provide empirical and
intuicive justification for a characteristic model.

Building on this foundation, the more recent research reported
here permits the following extensions:

3. A simple parametric growth model appears to have advantages
over other available approaches for assessing reliability.

4. Not all of the parametric models considered are usecful, or
even feasible, because of mathematical difficulties re-
stricting the choice of parametric form.

5. Parametric growth modeling, in general, permits extrapo- )
lation of previous results to predict near-term future
reliabilivies. 1In addition, the large samplc normality
properties of maximum likelihood estimation yield a simple
but effective method of calculating lower confidence
bounds on reliability for any stawxe, past, present, or
future.

NI

6. A given parametric model may ylield, in some cases, maximum
likelihood estimares that lie outside the allowable range
for determining probabilities. Under these circumstances
an "adaptive" model has been developed that yields mathe-
matically as well as physically reasonable results.

7. The models suggested and studied here appcar to be rela-
tively insensitive t¢ several cxtraneous and usually
uncontrolled factors such as (1) grouping jnte stages, and
(2) the actua) form of the underlying growth characteristic.

8. The numerical wmethods of solution used here are iterative,
but converge rapidly to the appropriate solution. These
methods arc casily implemented on modern digital cemuters.
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9. Suitable models are available not only for data that yield
reliabilities approaching 1.0, but also for data that yield
reliabilities converging to values considerably less than
unity. The differences appear to be small (by what seem
to be reasonable standards) but probably deserving
of attention.
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Appendix

ANALYSIS OF RELIABILITY GROWIN MODELS

MODEL 1
This model is covered extensively in Lloyd and Lipow [6] for the

case F(k) = 1/k. We treat the move general casc here in which

(16) LR, o, k) = R_ - oF(X).

The function

N n
(17) logc L= E loga (s ) + 8y logC [ROo - @) ]
k=1 k

+ (nk - sk) logc {1 - Rm + aF(k)]}

is concave in (v, Rm), since

o lug X 5, (n, - s)
(18) 2 - = - { k T k k } >
3R Z

k=1 U[R, - a'F(k)]2 (v -k, + alKk)]Z

N
3 log I s, F(k) (n, - s, )F(k)
(19) ¢ =§‘5 k S - kK~ %k 2)‘,
(fkm - eF(k)1T (1 - v+ al(k)] }

and

i}

2 2
o IOgC iy N skF (k) (nk - sk)Fz(k)
(20) — = - E + = 0

3
du p _[Rw S E S T AN [ B S S
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and the matrix

3" Jog ¢ 2,
o 1ok T2 ok
oRz ok 3o
(21)
7

15 negative definite for N> 1. If N = 1, we have bu: one stage, and
rellabidlivy growth cannot be asscssed.

Thug, the maximum likellihood estimatoyvs in the vegion 0 < oF (V) <
km <l tor k=1, ..., Narec found {; the usual Jdifferentiation tech-

niguck;

"' ]‘

o ]u";u iy — by, "By )
(22) — - ;7" Z n. =0,
o Yol e T crl( ) pm s R @ (k)

aud

E N O
d lug, § —_ 5| )(l') (n, = u YF(k)
(23 .i_._.:..%-. - 2 \) A v K -
o=

o m(l) "‘"‘lm 1 - 1-£w t b (k)

Yulluwing Lleyd and Lipow's development, 1list appioximations to ll_m

and O, which we label l' and &, nrc the: glven ne
[ 7] 3] B
N N‘
1] %’1 M ?"1 "k
T L uk/l'(ll.) - .
Pl H
(2h) & = o S— =3

o 1 ?{ N
"():. l/!(k))()_, RO IR
N lres ] real
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%
E rnd
g I
. L “;‘1‘ F{k) /K Zh: /F(L") 3 s-l
3 : AT\ 7= tk) /K ; Bk' L] - kJ
3 (25) i - =1 fe=1 K kel ,

=0 e (YAl
al 2 1/1?(1-:J) Y, F(k)) - N
= k] k=l

where ﬂ:-E:inl HP/N' Using the inftial values, ve can then itcrate

on these Lo obtain the approximate maximum likel [hoot estimators,

The estimating cquatious are;

J r‘
N ﬁk - 1 ul 3
; (l(l) ?Xk "kl,-(k)" - R(u’ul, 1 .5_4 A_""y ‘.']‘-._( k) - Ql11 1 E "—'Ak ) 3
Zk.l o =i e k1t
ard 5
- - ",:’:
N f N N : :
R k n r—— ~ - ( §- o
G E A e a 2 , X_l_ T % %ﬁ;l ! ' e
S T ' “k,u ) K, u - E o
k=1 k=1 k=l H : E T
where
] - [ .
(28) Ak.” ] ;F;(‘k—- (Rw'll - Ofu)(k)> (] - Rm'u 4 (Xu"(k.)) .

In the muJority of casen we examined, the least wguares cotiwates
km and o were better fiial approxinations Lo ﬁw atd & In e scnse
that they converged mure vapldly with wuceessive applicationa of (26)
and (27) . Thus we preuent the least squarcs estlmates of K, and o

* *
for the sake ol completencsy; denollog theuse Ly BR,osud o we obtuin,

with the atd ol (13) and (14),
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f
i[M=

) N N N L
RO 22 s /ny -(E Fooll Y F(k)sk/nk)
&

* =1 k=1 k=1
(29) R R 5 -
N Y PR - (Z F(k)
k=1 k=1
and
N N N
. 2 T {Z s./n ) - N S F(k)s, /n,
- k=1 \Wk=1 k=1
(50} o = . = .
9 ,
NY FU) -{Y FOo
k=1 k=1

A third and more general approach of solving (22) and (23) is
an zpplication of Newtoen's method in two dimensions. For the sake of
completences we now present this wmethod in general cerms,

suppose that F(x, y) and G(x, y) are, at least once, differentiable
functions in the variables ® and y. We then wicsh Lo solve, jteratively,

the eqgaations

(31) F{x, y) = 0

and

(32) G(x, y) = .

Suppose Lhat A and ¥, @v fuctial gu te the solutio Ihen, the

n-th {teration to the svluticn 3 given as

Ml Bk L W,
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,. aF(x, y¥) OF(x, y) (x :
(33) *n - o1 _ DX Ay lN(hn-l’ )n-l)
Yy Y1 (%, ¥) 36(x, ¥) ECTUPRE A
3x oy X=X 1
y=yn-—1
i matrix notation. Individually, then,
| [rex, v 200 y). AL ) s, )
G4 %y = X0 T TeF () 800k, y)  8F0x, ¥) BC(k, v ’
3x oy oy ax _] X=x_ |
Y= h-1
and
g F(x GO
_ oo, 0 BRI ps, ) 200N
G3) v, =y [aux,'y‘\. aG(x, y) | 3F(x, y) 3t(x, ¥
ax oy oy ax X=Xk
YV

The large sample 2 by

PR R F AR TR T IO IR AT

- N
2 variance-covariance matrix for ROD and
is

-

. _} -1
(52 luzgc I (S" logC .12\
- - - I -—
2 R ¢
"—A f)!"'.m \ a{ma} /

- \ >/
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The second partial derivatives of 1oge £ with respect to ﬁm and &
are given by (18), (19). and (20).

s ~ . . . 1
Since R°° and g arc approximitely distributed normally with means

Rm and g, vespectively, and the variance-covariance matrix given

previously, an approximate 1007-percent lower confidence limit for
Rk (the predicted reliability at the k-th stage of testing) is given

by

(36) zk Rk - zl_T VVar rz.k

~

) = .2 ~ ] ~
=R, -2 Jv-dr R+ F7(k) Var ¥ - 2F(k) cov (R, &,

where var Rm, Var & and cov (Rm, @) arec the elements from the matrix

zt, and z]_'r is obtained from

,

Z .
] fl“T 2%
—— C de =1 - 1.
V2T .

-0

Since theorectical valucs will not be available in practice, the waximum
likelihood estimates ﬁm and @ ar-  shstituted in these equations Lo
obtain numerical results, which appear in Sce. ITI,

As trequently happens with data analyses, (Z21) may vield a maximum
likelihood estimate of R that {5 greater than unity. It tbis stould

occur, R is sct equ 1 to one and the function to be maximized is:
w

N n g N
(37) L= 1 (‘k>l—l - al"(k)] k [ul"(k)] Kok
kel \"Kk/* -
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N N
loge L = const. + Sk loge (1 - off(k)] + E (ﬂk - sk) loge o,
k=1 k=1
N . N .
(38) ?_1og £ skf(k) _25 - ak) '
dor [1 - orl‘(k)] v o
ko= k=1,

The maximum likelihood estimate is that o such that

s F(k)

N
(n, - s.)
39 E E kK.
39 G- (0] aF (k)] " & 0

k=1

To i erate on a solution for &, we let ah be the n-th iteration;

then using Newton's method, we find

(40) & = ksl e h-arao)
141 n ‘ ] N N c,! 2(!:) 1

W 2. ¢ + z —— >

o k=1 k=1 [1 - an]‘(k)]

n

MONCT.__&

This model is utilized in Reliability Growth of U.S. Rockets (U)

[9]; the wmodel is aot ciassificd. Tu this case,

(41) 1(Km, @, oy, k) =1 - o
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That is, % is assumed to be unity in this case (which, depending
ow
upon the particular application, may or may nct be a reasonable

assumption). The likelihood f{unction is then

N n,. -x.Ks o, kn, -s
(42) £ =1 k 1 - ¢ 2 k(_ye 2 kk.
L=l Sk 1 1

It is not difficult to show that logg £ is a concave function in
oy and oy insuring that the maximum is unique. We foliow the approach
“

in [9], assuming the maximum occurs in the region § < ) <e . We

now solve the equations

-0 K
N ; . M
“3) o 1oge by -—Z nk<l 5,/ T e )

day B -52k =0,
k=1 all - &.e
1 1
and
-,k
2 log = N kn_[&.c 2 (1 - s /n )]
44 e =z: k1% Kk,
+ ad,w At i’ - &2 k\ :
“ (= L~ e
k=1 al(‘ /
Solution in terms of &l and &? is accompliehed by repeated use of

cquations (34) and (355.
The large sample 2 by 2 variance-covariancce matrix for 6’1 and

o, is
2
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I
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Q
-
1
=
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i
a0
f
=
Pl

o~
o/
N
!.3
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EEI e

where;

I ety b D

. -, K
82 log T N S| /n (1 - 2ale 2 )
(45) — = E ny -1

~a. k\ 2
o 0‘JL k=1 Q.- ae )
l
2 N ks e-azk
o log £ k
— € e ,
Qo Q. :E: -a. k\2
172 k=l G ~ alc 2 >

and

N ""zk
(4H) —
E S ————— — .
] 2 o 2, jz
8% k=1 (

Expauding Rk iu a Taylor series in oy and o, up to and including
terms of the filrst order, a special case of (15), we approximate the
variance of Kk for cach k by the following expression, wivich appears
in [9]:

~2a2kr y 9
[: &a ¢ "1 O 4 kT Ve oy / L e o ”» )
(47) Vvar Rk 3 LVJI o) + o Var o, 4 Zalk cov Rap, uz)]

YR S TROPORRY ey
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While large-sample theory vields asymptotic normality of ﬂk’
simulation results indicate that for the number of trials which might
reasonably be expected in a development program, the beta distrilution
provides a better (in many cases, nearly perfect) approximation. If
it is assumed that the paramcters of the beta distribution are P and

Q. by the method of moments, we find that

(L - R
k k-
48 = R --11,
“8) Pk k Var R
k
and
R (L - R
gt k
(49) 4, = (1 - Rk; — -1
Var Rk

Thus a 100rv-percent lower confidence limit for Rk is given by L _ .

aly

where L, iu the solution to the equation

k

1. : .

k,T F(pk + qk) DK—L qk—l

- dx =1 - 7

(50) d/~ T(p \q y (1 x) X T
D

(

This developuent is found in [9].
Ii the maximum likelihood estimate of o5 is negative, g is set

equal to zcro and

(51) Rl’ = (1 - al),
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in which there is no vreliability growth. The corresponding estimation
problem is then not very interesting or enlightening and can be done
without difficulty.

If the maximum likelihood ecstimate of ¢, causes R, to become

1 k

negative, we then puat oy = 1. Thus,

(52) R =1-e ° |

and the function we maximize is

n n ~o,k\s -0l K\ -)
(53) £= 1 (:‘)(x-c z)k(e 2) <
k=1 Nk

&
|
-
x
It
ot

Thus,

a 108c £ - Skt' oy
55 T —_— e o k(n - 5 -
(55) o, 2.4 &, 2_, oy K
k=L {1 - ¢

The maximum likelihood c¢stimator &7 is then that value of @, such that

L

o~

..a,l,(

N
(56) Z —> Z ko, - 5,) =0,
k=

k=1
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or
N S N
“k
(57) &?k - ; l\(nk - Sk) = 0.
k=1 \le © -1 k=1
E Again using Newton's method to iterate on a solution tor &7, we
have the following: if &7 n-1 is the (n - 1)st iteratiown for &2, then
— -
N Sy N
" c - g
2. TE E l\(nk “l{)
k=1 (%2,0-1 ) KA
58 R = g + = —
(%) “2,n %2 . n-1 Q. n—lk
N ks e 77
2 T3 i¥:
k=1, ((. 2,u-1 1) J
MODEL 3
This is one of the two wodels introduced here. We assume in
3

this case that
(59) f(R_, o, k) =R_-a,

11\ \ . .
for the region 0 < ¢ < R_ < 1, for k=1, ..., N; thus for the
region 0 < o < Rw < 1,

Yrom (8) and (9) we have

A loo c .i 3 __N_ {(n - & )
- Ce 7 -~ k - [ K _ =g
(60) -—————-—a - = _—_—k\ - —-—-—'——————1 . v : )
[ k=1 (l'\w -« ) k=1 (1 - ]'\w x
~ N k-1
D log . & N ks c.fk 1 —~ k{n s, Yo
o M gdl Sl
o+ Y % |14 ’
ao{ k=1 (Rw - a‘l) k=1 (] - R(a + « )

ot ve s VRIS 1L+ oS et oot BBt 100 <8 6 ottt
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The problem that arises hers and that is brought out more clearly when
we apply this model to actual reliability prediciions is that we Lave
no guarantee (60) and (61) will have urizque solutions thereby enhancing
the difficulty in obtaining the maximum likelihood estimates, This is
Lecause loge £ 13 not necessarily a concuave functiion of R_and a.

To demonstrate this, the second partial derivatives with respaect

to log [ are:
Be

N N "
o log ¢ S, 3 in Sk}
(62) I ) D R e 1 B
~n" T — - fe h e
Ohm fes=] (“m o kel Y foe Ty J
7
3" log, &
63 - =
(63) AR _Ba '
and
az logc I Rl oo (n,_ - jk) Sy
(64) T E k(k =~ 1)g "t W "
da” et -k +a) R o)
N 2 N y
oy ) k-1 : k-1 s
- et I YO by —1 -1,
v Tk (n k)f 4 i 13 1 T ck)
= ] > Y 4 . WL “ X
k=] ) d k] J

and 1ii foljowss that surf{icient conditions guarantecing a unique naximum,

0 log = o leg €
- . P . ;"—‘ﬁ—-" - = v 1
Ly sulving e cqual.ions =0, and =————~ = G, 4r¢ viclated
ok 1%,
o
wher
8" log f
w—__.T_m > Q
N &
o1 4
I3

P A

10 Dt
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Feducing (64), we see that

if and only if

E“ ke sy k
(65) — [(k - l)Rm + Q‘-]

N

> ..J—
k=1 (1 - va-r

We demounstrate this, by obtaining the second partial devivatives

- l(a’k-2<nk - s

ork)

2 2
3 logC £ 32 log £ 3" log, £
s — and --
BR2 8Q‘BR°J St
@x
; )
—
A = Q - /1(
(66) 1og(__ § = const. + S . SP_QOSC o) - oy <
k=1
N o /K
+ E (nk - 8y) logc (1 - e ),
k=1
Y -,k
> loge Ky 9 (nk sk)c )
67 - 2 B 'j_, s oy ~a,/k\2
oq) k=1 1 e

)
k } 1 - -
5 [(:c - 1)(1 Rm) o
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-a,/k
32 loge iy N (nk - sk)c Z
68 ety
(66) dey oy -Q/?/k 2’
i k=1 k{1l -~ Q/le ’
and
/
- -,k
d log f N (n, -~ sk)a e 2
(69) [ . k 1
a 2 2/ ’Gé/k 2
) k=l k51 - ope

Analogous to the discussion of Model 3, we can state the following

result, 1L o and o, are so restricted that

) -2x,/k
‘ N I (nk - e-k)e A
(70 > t e ( -a?/k>2 .
k=1 J R r_le
o, /k ] a/k |?

B ~ - .
Z (n 5, )Q/}an/k ; (n Sic /k ,
\1 T c ) k(‘ ) u1 )

sufficient conditions guaranteeing a unique maximum by solving

) 108(: By P loge I

Bal 602

are violated.

|

|wi m
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CONFIDENCE INTERVALS FOR MODELS 3 AND 4

0PI e

We zan rewrite Model 3 in the alternative form

= - - Bk
(71> Rk ROD c )
where B = -loge ¢« Thus, by the invariance principle of maximum
likelihkood estimalors
. . -k

where é = -1oge «. By (15),

-

. ~ 2 -2pKk ~ -t ~e
(72) Var Rk Var R_+ k'e B var B - Z2ke B cov (R_. §).

Thus, an approximate 1007-percent lowey confidence limit for Rk (the

predicted reliability at the k-th stage of testing) is given hy

(/J) ,e,k = Il( - /4]_1_ ‘ Var )\_k

- ~

=R, - Zl—'— JVar R_+ RZC-ZBk Var 'é - ch“Bk cov (f{m, B),

~ A~ o, ”
where Var B, cov (R §) and Var B are obtained in the usual manner

and Zy is the solution of the equation
=T

The development of the lower confidence limit for Model &4 is

completely analogous with a different value of Var ﬁk' For Model 4




~2a2/k o 20,

- ar v & &= vay &, - ——
(74) Var ¥, = e Var &, °t var @, cov (ay,

k )

%

ALTERNATIVE BAYESIAN PROCEDURE FOR
OBTATNING LOWER CONFIDENCE INTERVALS

The test data are divided into N stages by some predetermined
¢riterion such as design change. Since {light test data are of the
go, no-go variety, the probability that exactly % successes are
recorded in n, trials at Stage 1 is

111 Xl nl-xl
(75) fllxxliﬂl) = X Ry (1 - Rl) s x, =0, 1, ..., 0y,

We shall assume that Rl has a beta density with parameters a) and bl

as its prior probability density function (pdf). That is,

[(a; + b)) a-1 b,-1
F(ar) 1 A-r) ", 0=k sl

, 1
(76) flz\Rl)

0, clscwhere.

If we have no previous information regarding the system's relia-

bility at Stage 1, we must choose the parameters a; and b] subjectively.

We shall use the method Fox [47] describes. First of all, we let R1 be

our subjective estimatc of Rl. If we agreec that our subjective esti-

mate should be our most likely estimate we then sct

(77) R =,\—1A—’

il
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assuming that (77) is not the uniform prior density on (0, 1). (If
(773 is taken as the uniform prior density the modification to be
made is discussed at the end of the subsection.) We then ask what

the odds are that the truc value of Rl will li« in the interval

(R, -~ kk,, R, + kR.), where k is predetermined? 1 we set thesc
1 1

1 1

odds at x to y, we can express this mathematically as

(78} [ A le(Rl) de = v,
R

where v = This is Fox's equation [4, Eq. (1.6), p. 3]. From
q q J

X+y'
(77) and (78), with the aid of the tables in [4], we can now determine
ay and bl.

To obtain a Baycsiau lower confidence interval for Rl aiter we

have completed Stage 1, we note that the posterior pdf of Rl’ given
X,, is defined by
T'(a, + b, +1n.) a4, -1 ﬁ_+(n.~x.)—1

U ~ . 1 1 ) ] 1 A 1
(79) £.(k |x) = K (1 - k)

13V71171 F(‘ " )Y(B b - ox 1 1

| 1 1 L

Thus, a (1 - al) - 100-percent level Bayesian lower confidence interval

for R] is given by

1
(80) f £3Q %) iy = o,
51

where §1 is s0 chosen that (80) holds.

i) m
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Following the method of derivation for Stage 1, we can now

obtain a (1 ~ oz)- 100-percent level Bayesian lowar confidence

interval for R2 in an analogous manner. We use the data in Stage

however, to reguire that the most likely estimate for R2 is given by
i, -1 i, +x, -1
(81) R, = — > —1 -
a, +b, -2 a, +b, +n, - 2

Thus, by this method we obtain successive Bayesian estimates of
reliability growth at cach stage and their associated lower confi-

dence bounds. ‘There appears to be no way in which we can use the

Bayesian approach to obtain a lower confidence bound at the (N 4 1)th

stage (i.e., for the predicted reliability at Stage N 4 1 of our

testing program) .

The procedure described above needs slight modificaiion if we

assume ¢ uniform density for Rl. (In this case, we acsume total

ignorance of the system's reliebility prior to Stage 1. That is,
any one value of Rl is ag likely to cccur as any cther valuc prior

to starting the test program.) In this instance we know that

a; = b1 = 1, which in turn yields
T{n, + 2) X n,-x
(82) £, R x) = L R -yt Y
1301 T(xl + l)I'(nl - %y + 1) 1 1

We then procced as beforce to obtain conryidence intervals at Stage 1

and the succeeding stages for which data are available.
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