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PREF-ACE

This Memorandum is another expression of RAND' s long- Leris interest

in and involvement with reliability assessment of Air Foice weaponl

systems, past-, presentL, and future.. It provides a MetLbodo] Ogy fur

estimating past, t.irrelit, arid near-Lkori luture reliability Icr systems

that, can be Shown to improve in I atr(Inba/o ili-f£1igli r'tiabu i ty

dur ing their dove] opmsent and early operational phases. 1'i. S method-

ology shiould he directly useful to persons responsible- icr Specifying,

from actuatl test reISrIts, tire appropriate- re)labilit~y valuecs to be used

ill target~ing uric] rcquiremrernts Studies. It, way also be helpful toths

involved in cOS t--efleeti vencss' ovalnat ionE duin ig de-velupsieritL anid early

oJeUruttonal periods, fri add ition to being of interect; Luontiiia rISn

statistiLctan1s, operationsý rese;archers, airid some pioject or deveiopitwerit

engi neers.



S UMMA RY

The relatively brief history of rocke2t veh1icle, and p-articul)arly

ICh3M development, has caused a rediscovery of One of the better-knownl

features of t.he fly-fHx- fly miethods of aircraft development--the

Sys tows tend to lbecO!Aic more reliatble as one! gains experience and

applieLs it to des ign j.improvement. Since changes9 in reliability have

imtper taut imp)licat ions for ttos e involved in planninitg, procu remc-nt,

support, and command, a metb~od for assessingL this changing reliabilit-y

aL. any given stage or projecting it 10 near-luture time periods should

be Of considerable 11se,

This Memiorandum1 pro7poses four relialtility growth models ox

pat e~rus that can be i t ted~c to actua] experi once data (i.e., launch

or £1I i gut- 1 f.st rc-sultLs) to d iscernt the qutnut itative ebaractcri stics

of thec growt 11 vi th in rel at i vc 1Y we]I I -deL tiend to]eraucc-s .This ob-

jet tive. is achieved by dufiriin;ý appropriate parameLcti c mode is and

bubstiqcitittly uSIJIR maimumitlthiki Iii11hood procedures to obtI~ain es timate11

of the uparI lmetcrS, and hen~jce of lv th utl iabi liLy. The models are

stLudied in 'J'detil with regard tW their ability to meet solt I CiCn

corn] itions fr r Uth e xi!;Lvtwice oi niax i um 11 Rel1 hood estimators , and

i t is shjown thiat ontly two of thctn yield mraximum I ikel ihood estfmao es

thIat a ýILLj t~iCud mttdcl the! to:Jt gune:ral c i rc oms t.an cesi. 1qtIJII I ca I

procedures are deve loped ior oh Lanintt g th hebotimates of the paraBind rs.

Fvi titr, thf2 Vawae-o~Iui' atrb. of the est imates Isj use(d to

(. tist I tl pj x Imia t i toil ideitt: 1( p rv torts-

A
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These models are compared with each other and with alternative

nonparametric and Bayesian approaches, using simulated data to make

the compari sons. These comparisons show that under the condrtionn

Set forth in this study, three of the parametric models are generally

superior in their p)redictive and assessment clarac'teristics to repre-

suntative nonparasetric metlhodb, and to an applicable Bayesian pro-

cedure. lhowever, none of these three ',arametric models is universally

applicable, since th. desirable qua]itv of minimum bias can he achieved

only by deciding beforehand whether the system reliability is tending

closely enough to the usually unattainable goal of 1.0, or perfection,

and choosing thu model appropriate to the circumstances.

a- _

I
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I. INTRODUCTION

The reliability of a new weapon system is a critical deteiminant

of its effectiveness, and is thus of vital interest to those in the

Air 'Force concerned With, st~rategic planining, procurementL, system sup-

port, and operational command. The introduction of long-range ballistic

missiles into the Air Force weapons arsenal has accelerated the obso-

lescence of the informal treatment of weapon system reliability

characteristics which proved reasonably satisfactory for manned

aircraft. The shortcomings were recognized before the missile age,

and probably arose from experiences with electronic equipment in the

years following World War II. By the time the first gei)eration of

ballistic missiles was entering military use, the notion of a mean

time between failures (MTBF) had seen wide usage in assessments of

alert capability and support requirements, particularly for radars

and systems requiring continuous operation. The "'one-shot" aspect

of ballistic flight has renewed interest in the reliability of inde-

pendent binomial or Bernoulli trials, but *what seems to be a new

feature of these systems has added another dimension to the problem.

In May of 1964, Space Technology Laboratories (STL, now known as

Systems I)ivision oi Thompson-Ramo-Wooldridge) published the results

of a study done under contract to NASA, Reliability Growth of U.S.

Rockets (U) [9]. The study analyzed the flight test results from

nine separate rocket vehicle programs (including four Air Force

ballistic missiles), and showed that each one enjoyed a substantial

reliability growth during its development and early cperatiounal

I P:
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stages, in. an unclassified portion of their report, they concluded

that

The proportion of successful flights in a program,
is an indication of thle vehicle's average reliability
for the program. lhowever, tile average reliability of
past flights is not satisfactory for estimating present
reliability or for predicting the reliability of future
flights of vehicles.

If the reliability is increasing from flight to
flight, the average reliability will lie somewhere be-
tween the true reliability of the first flight and the
true reliability of the last flight, where both of the
true reliabilities are unknown. lrescnt and fut ure
reliabilities could bc grossly underestimated by assuming
tthe average reliability of the past. t

STL developed such a prediction model, and applied it to data

from the flight tests of (among others) the Air Force's Miiluteman-

iCBT , using only the early launches of this system. The projection

of future reliability made from that analysis correctly predicted,

w.thin narrow limits, the outcome of Minuteman flight tests performed

tlLroughout the following two years. Unfortunately, we cannot evaluate,

with regard to subsequent performances, most of the other systems

1 z: C r S U s S T L a n at 1L YA zil1 [1l iC- CLov1

from operational service by the time tile report was published, and

others followed soon after. The data for those that remained opera-

tienal are unavailable for this study. Two other Air Force systems

for which we have subsequent flight test data show mixed expueiircnc.•.

For one the STL prediction was excellent, but an equally good one

could have been generated by merely omitting the R & 1) and early

ReReference 9, pages 4-1, 4-2 (tJ).

L .
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operational launches; for (le other, subsequent operational results

fell too far irom the original prediction to be considered a valida-

ti on, but the program was sufficiently' unuIsual in other respectsU to

make it unsuitable for tests of predictive models anyw;ay.

The purpose of this study is to explore the utilization of

various palirametric reliability growth models in evaluating current

reliabilities and predicting near-term future reliabilities of com-

plex w-.eapon systems that exhibit reliability gr(owth during their

acve loplentl-

The primary emphasis in this study has been on parametric re-

liability growth models rather than on nonparametric ones ror the-=

following reasons:

1. Lower confidence bounds associated with nonparametrie
reliability growth models arc very conservative. Since
important decisions are made on the basis of a lower
confidence bound, unnecessary penalties imposed upon

this quantity cause indefensibly higher costs with
virtually no added capability.

2. Although criticism of parametric methods is generally
hard to refute on a theoretical basis, parametric
tcch ... . i, quc ar ý Oft~n qu ite lte, t l Dit.O L Ie"Ci . -Js-

of a nouparnmettie approach should be contingent upon
finding a satisfactory substitute for parametric
metnods in hand.

3. There is analytical support for the expectation of an
exponential reliability growth characteristic in a
process which is a reasonable facsimile of weapon
development testing [8]. In addition, there is con-

siderable empirical material indicating that fox such
processCs, reliability is generally ijicreautug, jutd

at a progressively decreasing rate [I], L8], [9], [10], [ll].

We have not completely ignored other methods of calculating

lower confidenice bounds for reliability growth models. For instance,

the Appendix develops a Bayesian procedure for obtaining confidence

intervals for the reliability growtL, at each stage. Thl_ Bayesian

_ __ ____ __ii
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procedure takes jut,t aontitle "exogenous" information with regard

to Lthe system. We IaLer c~ompare the conlfidenc('e intervals obtained by

both thle Bayes;ian approa~k C end another nIonpardmeLric method~ to theseC

obtairiud by rthe para2metric apr~roacU.-

The reliability gr~owth scidel' eons ;Ldered for this Study assume A

thatL the weapon system' s rel iabi] ity ciuring tE i k-i ht stLage ofl tes ting -

is a function oil the ultimatec r:'Jýia')itLy t1hat would be attained if

Lthe number of stages.I cis t,,owed to approach infinity, and one~ or more

parameters mnedifying tile rate of r.] '.kt)growth. Specifically, :ý

w2 consider first of all ret ta!tist y ,:.owth models of the form

(1) Rc eF F(k).,

wieCre ký.k is the weapon system's reliability at the k.-tb stage. of

'ucvclopncnt, R% is Lthe ultimate sy~stem reliability, ce > 0 is a pa-

ramnetei that quantifies thec amount of giowthj occurringý butt-e.n stages

1 and w', and f(k) is a positri- c dacreasing fulnction of Is characte.-.

izing that. growli. Lloyd a~id Lipow [6] discuss onoe in, ýne± of this

cssof mode!ls an.d pay SPeCiticý atten utio t-o tile. cacte for whtich S

F(k) =1/k, Tire second class of growthi models considered is the

expot-ential class, napnely,

witere KR ihas Lire saute ttcatittg as in (1), ay i~s a paxamecer indicating

til~t ariourxl. of ret ta-zbility giowth, <) 2' all a 2 an 0~ -i a parameter

ritasnrlltg tI. i-ite of relAiability growth . mitsnodei -is developed anld

utilized irt ZL9
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In a sense, a third class of parametric models cal be considered

a generIllzation of (1) and (2) and is represented as

(3) P ' R - k

where Rk and R have Lii: same meanings as in (1), and ae is a real

number tilat lies in the open inLerval (0, 1). at indicate.s thie total.

amount of growth, i.e., the growth from stage 1 to stage w.

The fourth and final class of parametric model, treated here is

given by

(4) 21

where 0 s 1- • 1 and a 2 > O.

Section ii of this Neriorandum develops tihe estimation procedures

foi reliability growth models;, describes the pertinent restrictions,

and develops the equations tLCat permit tie estimation ot current and

n•.ar-term reljanilitfy, as well as the confidence bounds on tire esti-

mates. Section Ill displays the behavior of the two models that

appear most ])roiirisiihg for reliability assessment in the presence of

reliability growth, stresses the sirhortcominSt; oe eachl, and shows

Models 3 and 4 suffer from a number of important shortcomings,
among wiiich are (1) cominputational (convergence) ditliculties, (2) a
higher variability of prediction, and (3) tire necessity to chec. for:
the conditions which guarantcc a unlque maximum (at Limes, these coll-
ditions aie not met), Althougih ainalysis programs were writt-en and
exercised for both these mode]!;, the results were sufficicrt ly inferior
to those foy Models I and 2 (and the variations trlereox) that no
detailed examination of tiouc results hais been giveni here. However,
tihe Appendix does piesent the analytical developmentt for all four
1lrrJC e.] rg .
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sOme comparisons betweCe Lie parametric arid other methods. Scction IV t
gives the conclusions of tlie study.

The rtathiematieaily sophisticaLed reader should have nio diificulty _

in understanding any portion of the discussion that follows. Those

whose background does not include training in probability theory and

statistics may find certain equations in Sec. II quite difficulc to

understand, but might be well advised to follow the narrative in any

case. Should even this prove too tedious, the reader may prefer to

turn directly to the somewhat less matLermatically taxing discussion

of thL, models' experimental behavior in Sec. III, ard accept tLhe

allegations made there concerning the dcevlopments iii Sec. II, 4
|I

AiI
4

I-



IT. THlE MAXIMUM- l.IKEI.THOOI) X17T11) FOR E'STIMATING
FARAME'TERS OF RELIABILITY GROW~rh NODEIT,S

GENERAL, DISCUSSION

The getneral anajysis of reliability gr~owLht modelb for: Complex

weapo~n systems proceeds inl the following man)ner: A test. prog;ramj is

coniduct-ed in N st-ages; at- the k,-it stage, s~ successes arc recorded

in n 1 trials. When rthe final or N-tb Stage, is completed, we want to

lit to thI'e data a gr-owth curve whitch then is3 Used to- evailuacle current.

reliabilities and predi!ct- near-terra future reliabilities.

The general parametric reliability growth funct~ioni canl be wri tten

(5) iy al U2, e p

wliere 11, and R. have. rthe same imeanings as inl (1) , nd &l, - - are,

p-paramete-rs detecrmining tihe growt-h cfi eliab~ikj~t from stage to stage.

Tbe Vector (R, a) is const-rained to lie in a convex regivun

P.As a first step in e-stimating reliabilit-y growth, estimates are

required of the (p + 1) paranatýers R., cel , This is carriedI

out- in general by thiF! miethod of maximum like] [fhood, whose estimators

are ased pr~imarily because of their favorabole large sample prepertieu,

THlE MEITHOD OF; NAXINIJM LIKELTIhOOD

At tine k-ti1 stage of testing

(6) prjx 5~ (k Ik - R k)
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where prSx Ski is the probability of exactly Sk successes in nk

trials. Using (5) and assuming that the test stages are statistically

independcttt, the likelihood funlction whIosC logarithm is to be maximized

is given by

S 9 fk (R., c'I. *" , ap; k)][ (. f(R.o, ap; k

We then require the set of values (R_, a, , o) which lies

in the region so that 0 i. f(R., oi 1 , a ; k) < 1 and which maximize6

log CS in this region. To set a unique maximum by the standard tech-

nique of partial differentiation of log £ with respect to R , all
e

a2' " e p), it is sufficient to demonstrate that loge £ is a strictly

concave function of these parameters, and that the maximum occurs in

the interior of [', i.e., the maximum occurs in the region 0 <

f(', alp . p; k) < 1, for each k.

A sufficient condition that log C be a strictly concave iunction

is that the matrix

~#-i

log £ £ loge 1 2 1

}) oe 2loe ., 2!g2 R.R ce
0,

b2 log C 2 log £ 2 lug C.

22_
Slop, eX ;3 log £ X2 log CI

Ib oa ~2 r



be negative definite. Thus, assuming tthat log £ is concave,
e

f(R, . , k) is a differentiable function of (R, all c ap)
pp

and that the maximuo occurs in the interior of r, then

N

(7) log0  =const. + sk log f(Ri, ai ., a ; k)

k=1

N

4 i (nk - k logo " - f(R, al. , a' ; k)]

k=l

N 'kfR (R, a1 . , •p; k)

Ss log, £ z
I [k= (I, a, *., a ; kc)

I p

N - kf (f , 1, a., a, k)

E L [I R

k=1 [ O - [(It , , a; k)]

3 ioge £ N sk[(R a, -.. ,, a; I,

S k=1 f(%,• al' .. , a ; k)

N (nk - sk)fa. (Ro c~ 1, ... , ap;k)

k--l [i f , *1. . ., a ;p k •

where

K f(=[O, ao' a ; k)

(10) f ( , " ;I

w



and11

b i(R., a ,a k)

II
The vector (R aM, * ' , ap) for which t

6 log £ ~log £ log I

0i
(12) c cg " l-e• leo

3p

yields the maxcimum likelihood estiwators R, al, ... , a of tire
p

parameters R , a1. . . . a cp, respectively.

In general, trhe system of equations (12) can only be solved by

iterative methods so that initial estimates R ,o, U . . .. .  arc

needed for the iteration scheme. Often the initial estimates are

obtained by the "least squares" method . That is, we minimize the sum j
.1 squares T of deviajtions of the observed Success ratios s k/k from I
the ir expected success ratios f(R,,, al,' , a 1); k) , with rcsprcL to I
the pararne ar vector (RO, a, .,' a.). Thus, we have

NI

(13) -2 [sk/nk a f(R a, 1 " a ; k)]f (RK . . .. k), IEkl k y e

a __ = - E [k] n - I l " "c' )] R , . ... , aI; k), -i

k=l

NI

(14 IS. /i n - i(R,' a1 , ... Ice, a; k]jf (_, c, a1 .. , k)

i 1, 2, .. , p.

I_

I:



Among those vector sets for which

0,i

we find the vector set (Ro, 0 o o that is the least squares

estimator of (R., •1 .. , a).

Iteration schemes are discussed in more detail as we analyze each

proposed model in the Appendix. We discuss in particular the two-

dimensional Newton s Method used to obtain numerical solutions of the

maximum likelihood equations In several of the models-

Let us set R = a¢, for tile remainder oi this discussion. Tile

maximum likelihood estimators a 1' , ., of a0, 1' '" ap

respectively, are jointly normally distributed when the saml le size

I N r is large, provided the following conditions are satisfied:
k I

(1) Sk =0, 1 =0,1,..., p, where5kL aoi J

/nt06, F a, . a;k k I

''~ ~~~ s4sa a ~

jp
\21

1, 0 , 1, .., p, k 1. , 2, . ., .

H-.
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%k)

(3) _I'is bounded for all possible!

M 6 CG ie 6 a a c

- "o n o f cy ,la , t = 0 , 1 ., p , a n d

at each stage k.

(4) lo 0, i 0, ,. p. That Is to

1 ( ='r&-1

say, the derivative of log £ vanishes at its maximum
CA

Assuming that conditions (1)-(4) hold, the maximum likelihood estimators

havc: the approximate joint normal density with means cy, I ... and

variance-covariance matrix

Fc 2 a- 
|

Oo o 0]. •.op

2
ColO . . O

2
C, (-, o -

.
) C-

where,

\ •/ A 2 l o g _ _ _ _

2ElogK 2_)

L(2 L(-j
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For a further discussion of tile large sample properties of maximum

likelihood estimators, the reader may refer to Cramdr [3, pp. 497-506]

and Kendall [5, pp. 1-49].

At this point we note that in Some of the simulation studies of
ff

Sec. III, condition (5) is violated. This explains the deviation

from asymptotic normality which is observed there.

We now derive an approximate 1OOT-percCnt lower confidence limit

for R--the predicated reliability at the k-th stage of testing. To

accomplish this objective we need to obtain an approximate expression

for Var In the first place, Rk f(&o i' a k), where we

assume that f(•oa •l, ", a; k) is at least twice differentiable in

each of the variables (a, o, a a. ): and whose second derivatives

are bounded for all possible values of (a 0 , a1 , ... , ao ) at each stage
p

k. We than may approximate Var Bk- in terms of4 by expanding t f

a Taylor series about (ao , il .. ' p and ignoring terms of order

greater than one. Thus,

IA
p(15) Vat R f', Var i+ 2 f• faj coy (Gi, l,),

(i =oi o Q'<j•
i0 oýi cj~p

Iwhlere

-5=i L-i . . "

F'.i

f £ 1f(, a1. . . . ora; k )IIf ( ,, ;

I
I5

I
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and Var &i and coy (&.i &.) are the elements of

Using the theory developed in this section, we develop in the

Appendix the parameter estimators, examine concavity problems, and

obtain lower confidence limits for the four models described in this I

Appendix.

L

FF

'3

1•
Ii;I:

I[
-V
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Iii, BEHAVIOR OF THE FSTIMATING MODELS

DESIRABLE CHARACTERISTICS

Before examining the behavior of some of the estimating models,

it will be helpful to describe tile characteristic that would be ce-

sirable in such a model. Clearly, we would like our model to come as

close as possible to the "right" answer. A mathematician or statis-

tician would describe this trait for an analogous (but not identical)

situation as requiring minimum variance and minimum bias, where the

variance expresses quantitatively the variability of prediction, and

the bias expresses the difference between the correct answer and the - -

average of a number of predictions. For our purposes, the square

root of the variance--the standard deviation--is probably more useful,

preserving as it does the physical units of the original measurement.

Mathematical considerations also suggest that we should like to

arrive at our estimate by the method of maximum likelihood because of

the favorable large-sample propert ies of such estimates (mentioned

previously in Sec. IT), as well as their inherent efficienicy in esti-

mation. Then too, we should like to be able to make specific confi-

dence statements--for example, we are 90-percent confidetit that the.

truc reliability is no less than some specified at,;ount; two elements

contributing to a direct confidence calculation are the asymptotic

normality of maximum likelihood estimates, as well a- thu variance-

covariance matrix generated in the course of the maximum likelilhood

solution.

We would like our estimate to be relatively insensitive to three

environmental features over wLich we may have little, or no, control.
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First, by necessity, th- decision to ailocate a particular trial to

one stege of testing or anocrh-r may be quite arbitrary (tthe configura-

tion may change very slightly from one trial to the next, obviating any

attempt to populate a given stage with homogereout items). We should

thus like to have arbitrary grouping be of lit L1 e cofsequencc to the.

resulting estimates. Second, the form of the actual underlying growth

curve should have as little effect as practical. In other words, the

estimate should not be sensitive to whether a given level of reliability

wa.ý reached by vigorous early prowth, followed 6- a tapering off to a

virtually constant value, or by a slow, sustained g.owth process.

Third, the estimating model should be able to do its job whether the

predtcted reliability is in the region of 0.5, or n,.ar 1.0, or anywhere

else, in the reliability spectrum.

Since estimates will be reached through extensive computations, it. A

is desirable that these be reasonably compatible with modern ( )mputing

methods, that is, with digital computati.on. Thus, a good model -hould

resulIt in a ccmp Lting -Igorc thm, or rouLine, Lild Lb -iltLkuly it, lead

to difficulties such as spurious roots, divisions by zero, logarithms

of zero, and oiher a, rmbling blocks, or to result in instabilities, or

divergences, iff iterative methods mltie used. Likewisec, convergence2t

to tihe proper answer should L reasonably prompt, wiL, no excessive

Finally, the estimating model should bear sores: strong resemblance

to physical reality, and must be compilible with tihe mathematicaL

itnterpretatlion of reltLability. Fot exanp t e, the parameter's of the

model (i.e., the quantities for which we wi i make numerical estima tea)
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might be such thi.ngs as the initial reliability, ultimate reliability,

initrial grewth rate , etc. , and any numerical quantity denoting relia-

bility must take on hatuos ,aither less than zero, nor more than one.

L'/ALUATION MEM.IODOLOCY

Fcw of the foregoing quL lti.es can be implemented b1 ytroighttereard

analytical efforts, because of the excessive complexiLi13 involved. For

this reason we chose to 3tudy tile behavior and "optimization" of the

reliability growth models through Monte Carlo, or simulation methods.

The most-used procedure was to simulite, on a digital computer, a test

program of 72 t'-ials with a given underlying growth characteristic,

usually CxpOucntial. Ir. inost cases, the first 12 trial results were

then combineo to fon,, tile fir,'t ":cage," the next 12 to form the second

"stage," and so on, giving !iA groups of 12 trials apiece, with the

ramsucc puached on a single IBM card. ThLis process was repeated, either

99 times for rough compari.oonp, or 999 times for mote detailed ones.

These data card duccs were then analyzed with different reliability

growth models, and the 99 (or 999) risulting prediýtions of reliability

in the next (i.e. , seventh) stage of testing were used as indicators

of estimating abilit. The usual measuc:es ot quality were the standard

deviation of the estimat~es, and the bias, the difference betweenL the

avutage of tihe estimates and the "correct" answer from the underlying

growth characteri.stic used to simulate- tte data. Another thing conriJered

was the dis,ribution of the estimates, the Normal or Gaussian beinr-

exfpec Lou..

Thc mt sL substantial deviL cons from the foregoing procedure were

made wItr studying the effect of gropttirig, or dividing the 72 triala
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t ,,rages. Io this case, the identical 72 individual trials wore

divided into fout groups of 18 trials apiece, six groups of 12 trials,

and eight groups of 9 trials, as shown in Table 1.

Table 1

EFFEC0T OF VARIED GROUPING IN 999 PROGRi$S OF 72 TRIALS

Number of Trials Reltability of Stage N+I Prediction Standard
iGrnu,,s Per Group Mean EstLimate Actual Bias Deviatl~on !=

4 10 0.771 0.838 -0.067 .0451

6 12 0.793 0.830 -0.037 .0494
87 9 0.807 0.825 -0.018 .0512

72 1 0.808 0.812 -0.004 .0730

The first three lines of Table I show: the number of groups and

tr-ials per group just mentioned; the actual reliability and the average

of 999 predictions for the N+Lst stage; the difference (bias) between

the latter two, and the standard deviation of thc 999 predictions with

the generalized model,* R = - (k) , and with F(k) (l-k)/4 The

fourth line of the table shows a compnrison with analysis by the ex-

ponential model, - where each individua] trial consti- -

tutes a stage of testing. Jiecaue.e of piacLical limitations on the

function I'(k.), the generalized model cannot be extended to analyze

v•orC than about 12 stages. The soluticn for the estimates of tlhe

parameters ol tL.c exponential modc! z.lefurs convergence difficulLies

- wi t hi !nnretho I 0.1 nn t rial peur _La~c

For purposes; ef facilitating recogniti-,n, Model ) will hencCforth
be referred to as t;,e "gentalised" model, alluding to the wide range
of choices for F(k), while Model 2 will be called the "exponential"
n:odel for what should bc an obvious -eason.
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Two major conclusions can be drawn from the table: (1) arbitrary

grouping makes relatively little diIference in the average prediction,

though more numerous groups with fewer trials give slightly higher

(and in this case less biased) results; and (2) more numerous groups

result in a modera tely higher variabil I ty of predictio'n. Tllis raises

the question of how large a standard d:viation one should reasonably

expect under the crtrcumstances. While the answer to that is not easily

found, we can get at least some idea from a soiiewhat different case for

which the ext :! answer is well known-

If, instead of /2 tri.als with progressively increasing reliability,

we liad n trials with a constant: reliability of p (called Bernoulli or

Binocnial trials), the standard dcviati.on of , the estimate of p, is

which for our ease (p = 0.83, n = 72) gives a = 0.044. Clearly, we

ace not in as favorable a position as this since the reliability is

vairyingiý'so "wc L.,O ,.d ...- vicw with, ,•Xtccim-• "11~ci ,' t V4,e'' ,

near 0.044, as for example tLhe one for N -- 4 groups. Later, we will

see fut.lher reason for caution in this regard.

Another way of looking at thie effect of grouping is to examine a

particular series of 72 trials (one of the 999 examined previously), as

in Table 2. In this instance (which is not necessarily representative)

The standard deviation for 72 lriaJs is a consequence of the model
used for analysis (thie exponential) raLlier than the groupinig, or lack
of grouping. The exponential model used to analyze data g.-ouped in
six stages gave- nearly identical results to the 72 stages, indicating=
complex insensitivity, brt with the computational problems noted earlier,

_-



-20-

Table 2

EFFECT OF VARIED GROUPING ON ONE PROGRAM OF 72 TRIALS

Reliability Estimates

Number Next Stage Ultimate,
! ~~~~of Groups PN€ o

2 0.7122 1.0+ 1

3 0.7480 .0+
4 0.7820 0.995
6 0.7748 0.8915
8 0.7481 0.8114
9 0.7566 0 .8090

12 0.7i78  0.7393
72 0.,780 0 -09

increased numbers of groups (more than 2 and 3*) result in generally

lower esimtates, but once again only slightly so. In summary, the fimu-

lations show that arbitrary grouping of trials has relatively little

effect on the resulting predictions. As we will see a little later,

systematic grouping can have somewhat larger and worthwhile effects.

We have just suen an example in which the maximum likeJihood csLi-

mate given by the generalized model for R., the ultimate reliability,

was larger than 1.0, a result "iat is incompatible with tie isathe- 1 _1
matical restrictions. Fortunately, the likelihood function for this

model is always concave downward, so that the so-called ''constrained

maximurn," where R is required to be less than oi. equal to 1.0, mustOD

occur on the boundary whenever the unconstrained case gives Rd above

"1.0. Knowing ti' i, wc cci simply set iý 1.0 in tliusc cases, andw!
recalculate the maximum likelihood cstimate .

Figure 1 illustrates the three things taL Iiajpeii when this "litrii-

tating" process is %uiplemented. The il ot shows the ranked values from

The excluso•n of the two and tlhree-group cases was made because
these both resulted in estimates for P4, the ultimate reliability, in
excess 01 ].u, a topic that will be) addressed next.
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the estimate of values from 99 test programs of 72 triala each,

where both the underlying growth and the analysis followed the general-

ized growth model with F(k) - l+k (This type of plot, on normal

probability paper, is frequently used to show the relationship of test-

results to tile Normal distribution.) The solid dots are the ranked

predictions where R is not restricted, and show the expected normality

(the straight line) . The open dots show the results where limiting has

been implemented, indicating that: (1) the results are no longer noemal,

thus complicating confidence calculations; (2) the average result has

been biased downward by reducing the hibh estimatec 9h1le not affecting

the low ones; and (3) the standard deviation, a measure of the vari-

ability of prediction, has been reduced.

The first of these effects is clearly detrimental, since it counter-

acts one of the desirable features of maximum likelihood estimatLorn.

The second is beneficial in this instance; without limiting, the

estimates are biased high. However this is not always the case, as

we shall sce. The third effect, the reduction in standard deviation,

is generally desirable, but we note that the effect occurs entirely

because of the reduced estimates at the higher end of the spectrum,

thus giviag rise to the other two noted features. It should be evident

that when the estimate of R is above 1.0, one might be wel]-advised

to choose a different F(k) or a different model, rather than to follow

the procedure mentioned earlier.

One should not get the impression that the model will be chosen

to fit the data or chosen after the data have been examined. The form
of the model is not changed. We change only one of the parameters so

the model meets physical constraints, i.e., 0 < R., < 1.0. Later in
this section, one such change will be discussed in detail.
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Before making ame direct comparisons betweenl estimating models,

one additional refinement applicable to the generalized model wi I I be

discussed. In a reliability research study for NASA, Barlow and

Scheucer L] suggested a method for obtaining maximum Likelihood esti-

mates for past or current (utt not future) stages of testing in the

preoence of reliability growth. One feature of their procedure is a

regrouping process, whereby in a series of testing stages, adjacent

stages are combined wherever the success ratio (successes divided by

triaals) in the later stage is lower than in the earlier stage. T1e

process is continued until all such "reversals" are eliminated. This

process is of substantial benefit to the quality of estimates made

with the generalized model.

Figure 2 is a bar chart intended to illustrate both the incidence

and the size of the benefits achieved when this process was applied

to the data from 99 test programs with underlying hyperbolic reliability

growth before using the generalized model. In each case, the data

originally consisted of six stages, each having 12 trials. Several

of the 99 programs had no reversals, and thus still had six stages

after processing. The leftmost bar in Fig. 2 shows that the standard

deviation remained unchanged for these piograms. The next bar shows

that those programs that had one reversal en p,,yud a l'igh t reductsiong

in q, from 0.039 to 0.036 (the shaded area); the remainder of the

charLt shows how programs with two, three, and four reversals fared.

Ulcarly, before the process war applied, the progiajti with more rever-

sals had a higher variability of predictLion than these withI tewer or

t[o revcrsalt., but regrouping according to the Barlow-Schieuer procedure
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remioved this disadvantage. Although the reasons for expecting benefits

by applying this regrouping process are intuitive in this case, and

based on generally empirical observations concerning the behavior of

maximum likelihood estimators, the fact remains that the process usually

improves estimates where reversals of success ratio are present. - -

Since the purpose of the Barlow-Scheuer elfort is reliability

assessment in the presence of reliability growth, One might reasonably

ask why we did not use their general method rather thal just one feature

of it. There are basically four reasons why we chose to take a new

appro-ach.

1. Application of the trtnomial model requires assignonent of
failjres to "inherent" or "assignable caase" categories,
something which is often simply impossible.

2. Stages should either be h.omogeneous or end with an assign-
able cause failure, both hard to satisfy.

3. There is no way to extrapolate to the N41lst stage.

4. Tie confidence bound is inadequate, penalized too much
by early test results.

Of these, onl.y the latter two are critical, since relaxation of the

lirst two is possible within the framework of the LLtLhodology. Futther,

the third may be less important late in a test program, provided growth

has substantially abated.

The reader should now have sufficient background to appreciate

the performance differences between the two prinucipal candidate models,

the exponential and the generalized hyperbolic. These models were

used to analyze data generated from three substantially different

growth curves, each having a reliability in thre seventh (i.e., next)

stage of 0.8 to 0,85. The li.rst growth curve was expoeiential with

-- -
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slow but persistent growth, the second a modified hyperbolic, and the

third a hyperbolic growth, vigorous, but. short-lived. Once again,

six stages of 12 trials apiece were itsed for the generali-ed model

with limiting of R and regroniping to eliminate reversals; ctie ungrouped
a,

data (72 stages) for the same trials were used with the exponential

model. The form function, F(k), used with the generalized model was

(l-k)f/4
e- , which is a desirable compromise between functions giving

excessive bias and those giving excessive variability. Table 3 shows

the results, giving comparisons of bias and standard deviation for

the two models applied to the three different growth curves.

Table 3

EXPONENTIAL AND GENERALIZED MODELS COMPARED
(Estimates Based on 72 Trials)

7 Bias Deviation

Underlying Growth I
Characteristic Exponential Generalized Exponential Generalized

Rk = 1.0 - ye -k 0 -0.03 0.0603 0.0403
2 (O.0726)a (0-0494)

'k ý K- 1-- +0.015 -0.015 0.0648 0.0445

Rk i R- a/k +0.04 -0.01 0.0574 0.0401

max. difference
between cases 0.04 0.02 0.0074 0.0044

a 9 9 9 programs.

The generalized model shows advantages in three important quali-

ties. The standard deviation, a direct measure of the variability of

tile estimate, is consistently lower than that for the exponential model,

regardless of tLie type of data being analyzed. Also, the sensitivity

.1

I
!
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to the type of data is lower, as indicated by the final line of entries.

(Toe spread of deviations is more than proportionately larger for the

exponential.) Finally, tLhe net bias is routinely negative (i.e., low,

or conservative estimates) by contrast with the potentially large posi-

Live bias of the exponential model when used to analyze vigorous growth

da La.

Tw~o potential drawbacks of the generaltzed model are also evidentL.

ior exponentially generated data, it is biased where the exponential

model Ls not, and there are valid theoretical reasons (though no demon-

strable evidence) to expect exponential data to be more comion than

other kinds. ALso, the standard deviation is once again suspiciously

low, though not as much so as the figures would indicate. The 99 pro-

gram runs used here for analysis had sontewhat less variability (in telms

of the number of successes in each stage) than would normally be ex-

pected, The figures in parentheses are for a 999 program set of data,

which were more representative, and which contirm the superiority of

the generali_'ed model at a somewhat more realistic level of staindard

deviation.

A graphical representation offers another means of comparison.

Figure 3 shows the 999 predictions from both the exponential and

* generalized models plotted according to mean rankings on normal proba-

bility paper. The lower standard deviation (smaller slope) for the

generalized model is quite evident. The bias of the generalized model

stands out even more clearly; in approximately nine cases out of ten,

the generalized model gives a numerical value below the exponential
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mode]. and in a3nly one. case, of the 999 0 id the ýa 1u ',t' vaezuId U 90. ThIe

deviýatLion f rom a noxnal1 distLribu tion i S al SO II otte evident.

A specific (aind quite, nnrenresenuati ;e.) ecAimp le fruit tEl 999

program run may serve, to dlramuatize t~ccu wi rh a "realistiLc

Standard deviation, and] to ptrnpu .I tlw' ,u.tenti~iLLy serious short -

corin~g of thiLs particuLar. version of the- g 1r-rled modelt. Th1ie sol id

line in Fig. 4 shows the underly~ing growth characteristic (reiiabilitya

versus stageý of testing) Used tO Sbijlluýie theU 999 test programs. IIIe

sol id dots show what was proball< Lthe mest unu1Lsu~al of tue 999 resuIlts,

with1 exper'.ence in1- t[Ie first three stages consi-derably below the ex-

pu~cted ruccess ratio, and i~n thie lust three stages considerably above

the expected. T1he dashed Ii ne shiows how the generalized model fits

a g-rowthi curve to these data, gi-ving a prediction for Stage 7 which

is quite Close to the "correct" ans'vcer. T7ue dotte-d line shtýws how

the exponential model interprets these Jr ta, giving a! much higher

p~redict ion. In spi~te uf the iac t that- the predic toion the exponential

I miodel made is substanatialy further from thec true reliability, it

shoulId be evident that thils higher predic tian is etninent~ly more reosorw

ableL inl view Of the experie~nce data i tselfi. in fact , he general z(d

model withl thle C functien is Simpl y unableLocpwih6wh

thal, approaches a reliability of 1.0 at anyth-ing more t bani a slow

IPace. If a function with) somewhpt 'tore downjward ,;onmeovity i., used

1I'(fur exau'j']e, e 0), tteCILert is less pronounced.

ellchM case , a be~ to is t r tu t ion with thev app Iupriý Iatomean andO
variance represent~ed the d~ist ribution of tesults jar Iettet) thenlt the
niormal . The beta is especijally geuod lox- the expotent tal result-sq and

tihe. runt ideI1c inter.-val for- tinat model WaW; titus: cal culated actor ding) ýy.
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Fig.4--A particular example from the 999 programs
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The shortcomings of the generalized model in analyzing data from

a population whose reliability is approaching 1.0 led to the search

for another model, to deal wi.th this importarut case. To avoid (at least

for the time being) introducing a third estimated parameter, the J

generalized model was modified in a simple way that wouid achieve

somewhat the same purpose without much extra analytical complication.t

Briefly, the reliability growth equation is as follows:

R.K=•R -a e(L-k) /N

where the coefficienu N is initially set Lo an integer between 4 and

8 (usually 6 in our exeminations), and both R and o' are estimated.

If R turns Out to be 1.0 or less, the estimate is accepted. Other-

wise, N is reduced by 1.0, and the process is repeated until R drops

to 1.0 or below; however, if R remaint, it excess of 1.0 when N = 1,

then the previously described limiting process is introduced, such

that

1-k

is used to solve for the single parameter a.

The characte:ristics of this cdapttve model can be appreciated

best by comparing them with the exponential model, as in Fig. 5, which
,shows the ran•ked ,predict-.o,!t- f,-.•: br,!Iodel wheun used to a~ly: he

same 999 test- programs as before. This time the superiority of the

adaptive model over the exponential model is achieved] without the

drawbacks (negative bias and extreme ncnnormality) that clharacterize
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the generalized model. This time the result for each model is closely

approximated by a beta distribution with matching first and second

moments.

In spite of an apparent suFeriority to the exponential model, the

adaptive model, does have shortcomings. It shares with the generalized

model the inability to sake a believable estimate for the case previously

described to Fig. 4. (Indeed no other growth function was ioun.l that

would muae an estimate as high as that for the exponential model.)

Since that case is anythLing but typical, it is probably more important

to note that the adaptive model also shares a defect of the exponential;

it overestimates reliabilities wherever the asymptotic reliability is

substantially below 1.0. Thus none of the models described here are

universally applicable. One must have some notion regarding the asymp-

totir reliability if bias is to be avoided (Table 4).

Table 4

EFFECT OF ASYMPTOTIC RELIABILITY ON BIAS FOR 1TIREE MODELS

Asymptoti 11
Reliability Generalized Adaptive Exponential

R = 1.0 Biased low No bias No bias

R -- 0.9 No bias Slightly high Slightly high

R = 0.7 NoVery high Very high

If we are eiLher unwilling or unable to decide w'hether the anynip-

totic reliability is% neor 1.0, then it becomes necessary to introduce

a three-parameter model, which estimates the three physical character-

I istics: ultimate (asymptotic) reliability, starting reliability (alter-

nanatively, armiun- of growthl), and a measure of the rate of growth•.

I : .. ..
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Developing such a model, however, is much more complex than developing

the two-parameter models, arid will not be attempted here. ]
SOME ADDITIONAL COMPARISONS

Since nonparnmetric methods have a strong appeal for use in relia-

bility assessment, our description of the proposed parametric (i.e.,

assu•miLng an underlying model) methods would be incomplete without a

comparison to some pertinent competitors from the nonparametric field.

The two of these to be used are the merhod of Barlew and Scheuer [1],

and an extension (described at the end of Sec. II) to a method suggest-

ed by Fox [4], involving Bayes' theorem. The latter method was eval-

uared for thCe conventional situation where no growth is assumed, and

for a second case where a rather accurate representation of the growth

between stages was superimposed on the process.

Table 5 shows tie results of the calculations applied to the series

of 99 cases (with exponential growth) , which we previously noted had

sumewhiat less tihan the expected variance in outcomes. The table shows

that for prediction, the adaptive model gives lower variability than

any of the nonparametric mathods used, and less bias than either of

the Baycs approaches. While the Barlow-Scheuer resuLt is actually

closer on the average (albeit more variable), it shrauld be noted 'that

this is actually the same result used to assess Stage N (tire Barlow-

Scheuer tiiethod does not includc prediction) and is a lucky accident.

IIn assessing reliability of the most recent stage, th, adaptive

method shows a clear superiority ill bothL measures. Tire Batlow-Schicuer

results are biased high, largely the result of thie substantial number

of cases where 11 or 12 successes occurrud •in tihe sixth stage, giving

I
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Table 5

A COafPARISON OF EVALUATIONS FOR 99 CASES

II
Prediction Assessmenit Lower 95% -

of R(N+L) of R(N) Bound f3r R(N)

Method iu U a a1 o x Conditions

Adaptive 0.8353 0.0513 0.7898 0.0595 0.6635 0.0690 3 Normal Dist .
0.6514 0.0667 1 Beta Dist.

Barlow-Scheuer 0.8276 0.0776 0.8276 0.0776 0.529 0.0537 0

Bayes 0.8399 0o1117 0.7763 0.1036 0.6905 0.0869 11 With Growth
0.7974 0.1126 0,7363 0.1107 0.6565 0.0948 8 Without Growth

"Correct" 0.83 0.789 ...... 5

aNumber of lower bounds exceeding actual value. NoLe that while the lower

bounds for the adaptive model have no rigid mathematical validity, they still
give worthlwhile, if conservative, results. This conservatism is typical of
both the generalized and exponential models as well, indicating that the esti-
mated variance is substantially larger than the actual in the vast majority
of cases examined.

esti:iates of 0.9167 or 1..0 The Bayes method is biased very low if no

growth is assu.mcd, and is aztll 5li6htly jow wilch a virtually exact

representation of the growth is supplied. The adaptive method gives

unbiased results, on the average, and with much less variability.

Comparing the lower bounds Jur the 90-percent confidence interval

shows how the adaptive method avoid.2 tihe exce.5Ses of the other two.

"The Barlow-6cheuer results are excessively conservative. None of the

99 ettimates were above the actual, where 5 migh!t normally be antici-

pated fou a valid lower bound. (In a later run ci 999 cases, there

were still nonei, where 50 slhould be expected.) The Bayes results aie

too optimistic, even though the mean result without growth is almobt
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identical to the adaptive results. The adaptive method gives results

that are only slightly conservative, and should thus logically be

preferred over the other two.

I
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IV. CONCLUSIONS

On the basis of substantial and independent previous examination

of the general topic (primnarily Refs. 7, 8, 9, 10, and 11) the following

conclusioas can be drawn:

I. Progressive growth in the reliability of certain types of
large weapon systems appears to be characteristic of their
development.

2. Although parametric models require more assumiptions con-
cerning the reliability growth, of a system, physical and
engineering considerations often provide empirical and
intuitive justification for a characteristic model.

Building on this foundation, the more recent research reported

here permits the following extensions:

3. A simple parametric growth model appears to have advantages
over other available approaches for assessing reliability.

4. Not all of the parametric models considered are useful, or
even feasible, because of mathematical difficulties re-
stricting the cho [ce of parametric form.

5. Parametric growth modeling, in general, permits extrapo-
lation of previous results to predict near-term future
reliabilities. In addition, the large sample normality
properties of maximum likelihood estimation yield a simple
but effective method of calculating lower confidence -

bounds on reliability for any stae,, past, present, or
future.

6. A given parametric model may yield, in some cases, maximum
likelihood estimates that lie outside the allowable range
for determining probabilities. Under these circumstances
an "adaptive" model has been developed that yields mathe-
matically as well as physically reasonable results.

7, The models suggested and studied ho re appear to be rila-
tively insensitive to several extraneous and usually
uncontrolled factors such as (1) grouping into stages, and
(2) the actual form of the underlying growth characteristic.

8. The numerical methods of solution used here are iterative.
but converge rapidly to the appropriate solution. These
methods are easily implemented on modern digital co---uters.
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9. Suitable models are available not only for data that yield
reliabilities approaching 1.0, but also for data that yield
reliabilities converging to values considerably less than
unity. The differences appear to be small (by what seem
to be reasonable standards) but probably deserving
of attention.

!a



Appendix

ANALYSIS OF RELIABILITY GROWTH_ MODELS

NODEL 1

This imdel is covered extensively in Lloyd and lipow [6] for the

case F(k) 1/k. We treat the more general case here in which

(16) f(R, c, k) R, - u(k).

The function

(17) loge £ = o Sk) +klog [PR - (k)I
k=l k

+ (nk s k log [1 - R 4 uF (k)]

is concave in (,y, R ) since

-2 N
ju (nk - s )- i •

(18) AE2 --
2R2
O k=l [ (k)][ [1- +

lg £ skF'(k) (nk -k F(k)

ORc -j [R. - F(k) [1 - YI k)

and

2 Nk 2 2
F lk) )v~k (k))

( 2 0 ) 2 - i " "(e2k- -[C }E - r1; ( k)}"' 1: P. -V L,a I I.•" .. .
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(28)th :. kc i (-m,,,'z ii jcto -~~n H m 1(ky It -i Ci (k)

W1--tj fl 1 ( j a il ( 1)
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N F2 N (
k-i~~ k)Fk

and

N N

) * \k= / k) = /\S /

= ~N F F(k) -(kF(k))

A third and inureý general apr-roach of sovii;(22) and (23) IS

an Lppli at tori of New ton so meirod in two0 dimlensis ons For the sake I?

COrlrj1CL.-OI&Lf wc now prenenL t his inc [hod in ioneral terms.

boppose that. F(X , y) and G(X, y) are , aL 1vasL once, jitfuxientLLIble

[uric tjoiu ii the v;.l af~lcs Y. arid y .We [Lieui %,ii L- o oilve, iturixiively,

(32) x,)

n-LIl itet~aL tor Lu [hc SouJIiicr I.L g~v'r1 W5
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Fxy)- -Yx))

(33) (;) y~, )[

Yn [ jI - n-

in MaLriX notation. IndividUally, then,

(34) x~ ~x1 . - by~,y G~,y Fx~j~~,y

[ x 6 - 6Y ax j = n-x1
y =v

adud

(35) =n __ __ -I 6~

Y ay ;)x Jx=x1

Thu largu s~lmp1 e 2 by 2 variamce*-civriorjce matrix [or R. and

is

1r log 08

- ~ / 2 ug
I - c---I
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The second partial derivatives of log S with respect to R and &
e

are given by (18), (1.9), and (20).

Since R and & arc approximLtely distributed normally with means

R and c, respectively, and the variance-covariance matrix given

previously, an approximate lOUT-percent lower confidence limit for

Rk (the predicted reliability at the k-th stage of testing) is given

by

(36) = 1 -z ]--T r7
"

7 7 k

"=Rk z Var R+ (k) Var 2F(k) cov ,)

where Var R Var & and cov (R ,') are the elements from the matrix

and z is obtained from

r l -'r 2

1 * -z /2 d? = I -

r I
Since theoreLical values will not be available in practice, the maximum

like] ihoad estimaLes k. sP l 3 a al- hst ituted in these equat ions to

obtain numerical results, which appear in Sec. III.

As irvqucntly happens with data analyses, (21) may yield a maximurm'

likelihood esti.matc of Ri tihat is gre ter than uaity. It i. : sI-ould

occurf, R, is sLL equ I to one and the funetiou to be b mmaximizcd is:

N (Ilk\F (ul `(k)

(3?) - " - (. 'kk)
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log £ constklo [1 - afck)] + sk log aY,

k=l krl

I -

(.8) logZ N SkF(k) (Nn k k
S..•I[i - F-(k)] tt n a k

k=I k=])

The maximum likelihood estimate is that ae such that

N k F(k) nk - k

-E &F 2
-i E - =0

k=I k=1

To i eratc on a solutoion for &, we let be the n-th iteration,

then usiug New ton's method, we find

N N, S -k)

-. L (n~ - - - [ - a vk ]
Sk=] k=l

(40) a+1 = % n i r------
NN N ck.2(,\ -

S " k=l k -• k [I

MOcIii, 2

This model is utilized in Rd iahil ity Growth of U.S. Rockutb (U)

[9]; tLh model is not coassified. lii lthis

-2k

(41) I(R , a' a2' k) 1 e - ac -aik-I

IF
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That is, P is assumed to be unity in this case (whici,, depending

upon the particular application, may or may not be a reasonable

assumption). The likelihood function is then

= ;j /nk\ aQ k[lak eti ]nkak
k (42) £ = /l -\'-- \k/L "l

74

It is not difficult to show that log S is a concave function in

F iV- Yal and a 2 , insuring that the maximum is unique. We follow the approach

in [9], assiming the maximum occurs in the region 0 < a1, < e We

now solve the equations

k
SlogS N \ i-sn n-

(43) 0a1  k- k & k•2k = 0,k~l <:i - 2 k"° )

I and

1i . logZ £ j knk 7.c 2  (1 - S/k
::(44) 02l-2k .

I - k,:,1, - al.• )
22

Solution in terms of a1 and is accomplic-ed by repcat-ed use of

equations (34) anC (35)

The large sample 2 by 2 variance-covariance matrix for i anl

2

'Li
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2 1 (
1 0L2

where:

2 l og x S /n11 2 , e 1k)
(45) 2 - -k- k k)2

CY, 'Y l k=1 [ le 2

62 log N ks k-ok

a a I a 
- a 2 k ) 2

and i

2 N 2 - 2 k

logS k sle

k=1 / -C 2 ke 2

ExpanLding R. it1 a Taylor series in oz and a 2 up to and including

terms of the first order, a special, case of (15), we approximate the

variance of R for each k by the following exlression, which appears

in r R2L

(4)Var R{ 6 2 Var 4 2ry k coy 2)P 1 1'1
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While large-sample theory yields asymptotic normality of R,

simulation results indicate that for the number of trials which might

reasonably be expected in a development program, the beta distriLution

provides a better (in many cases, nearly perfect) approximation. ii

it is assumed that the parameters of the beta distribution are p and

q by the method of moments, we find that

(48) Pk R k[ r RkrJ

and

(49) G RJ= (1 - Rk ) -

Thus a lOUT-percent lower confidence limit for R is given by L,
k

where Lk it th_ solution to the equationI

•k,-T F(p k + qk)P pk-qk

(J50)k (l x) d 1 -r

k

Ti0  development is found in [9].

Tf the maiximum likelihood estimate of oa. is negative: , is set

equal to zero and

(51) Itk = (1 - ,
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in whic th tere is no rel iabi] i ty growt.h. The corresponding estimation

problem is then not v-ry interesting or enlightening and can be done

without difficulty.

If the maximum, likelihood estimate of ca causes Rk to become

negative, we then put a1y = 1. Thus

(52) Rk I

and the function we maximize is

"S (Ilk (v
(53) £- kk

N N

(54) log Z = coast. + sk - e 2 k )k k

Thus

(55) i-k(

�� k-I ( k~l

The waximum likelihood es timatour i, s theu that value of a'2 such that

N -&2 k

(56) - - N s 0,Z ]-nk - 4

-1 h_
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*1 or

I N N

(57) k (n7 s k.

> k k) 'tk I

Again using Newton!':; mCe thud to iterateo on a solution for we.

*have thec' tollowing: if a2 , i aS the (ri 1)st- itorai~ioin icex t'hen

I N sN
r ___ - )' (n~

k=1,n',.l k=

2,n-1
N e

111OM], 3

This is one of the two models introducedI here. We assume in

this case- that

k

(59) f (R, ay, k) ii R

ortlhe region1 C < U'C1 < 1 fur 1, 1 , N; thus for the

reiu < ce a Xt < 1.

iron (8) and (9) we. havce

- ,
(60) kN-1

k1 I k=l 1 - + )

N4 k-1i ~ s 1c,i

(61.) 0. --

or V.=2st 4
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The problem that arises lierr and thiat Vi r u h u oe ce ry we

we apply this model to act-ual rc] abI l-ey predict iour is that we have

no guarantee (60) and (61) Will hadvez uiL--Lqu solution(IS thereby enhanc ing
I he dif fi culty in obtain ing thw maximuum likelihoodl esýt jiates. This is

because log £is not niecessarily a cn i~v unction cof R and cy,

To demonstrate tjis6, the second part~ial. deri-vat iv-es Wi di respc~ct

to log C are:

2

G 2a )- 
-- 

-

(63) -----------

2 N. g 
N k-}I

3- -4 C,3 k.J-

and iit toT Iods tint outi -crt aodtin urn~ ii ~]qi oimm

by outvrigE th ej qiiau- ons -= 0, and '7-L- 0, a~rc vicioted



Reducing (64), we see that

2 log £ z

2

if and only if

(65) Xd kysk[k-)R+ ]

k=l

>s k k 2, (k -)(I - R - .j.

We demonstrate this, by obtaining the second partial derivatives

2 logs £ 62 log £ 2 log £

2

N

(66) logc £ const. + - s (JInc,

k k

k-U

2 0' Fk
lokg - k:")o]

2•/ k]

( 6 7 ) _ 'S k / l 4•-

ýj ce k= _l1
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2 N 2/k(68) E (f -sk)c 2

logg 11 s-
k k k

and

A

log . N s 2,k

2 (nk Sk) 0lee
(E9) k~l k2(1 -(69)

Analogous to the discussion of Model 3, we can state 'che followitig

result. If a ad a2 are so restricted that A

2 k " k) ! i !
(70) s -Ic

k I

2

- deL 1.2 Cl c, i-
sufficient conditions guaranteeing a unique maximum by solving

j loge 3 log I.

are violated.

I
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CONFIDENCE INTERVALS FOR MODELS 3 AND 4

We -an rewrite Model 3 in the alternative form

(71) R - k

where -log U Thus, by the invariance principle of maximum

C_

likelihood restimailtors tekhsaeo esig sg~vnb•-

A -

where a= -lroiag e &. -rp n loe (15),ne imt o

(72)e Var H• Vo r ( H• +)n Vear" are~ obkiedK coy (heualanr

predicted reliability at the k-tb stage of testing) is gi}ven by

( k3 1 k 1.- T2rIl

A 2ý-4k
1 z VarK Ck Var ~21,, cov (1R\,),

where Var R, ccv (K )and Var are obtained in the usual wanner

Zn 7 is tile sulut. ion of the equation

1-7

z2/2
1 J e dz = I -

Thu' development of tile lower confidence limit for Model 4 is

completely analogous with a dilferent value of Var I For Model 4

Si !'_



Iii
2c(V/k 2 212

(74) Var- = e IVar 1F Var - --- (Ii

ALTERNATIVE BAYESIAN PROCEDURE FOR
OBT0INING LOWER CON' LDENCE INTERVALS

The test data arc divided into N stages by some predetermined

critcrion such as design change. Since flight test data are of the

go, no-go variety, the probability that exactly xI successes are

recorded in n1 trials at Stage I is

We shall assume that R 'as a beta density with parametfrs a and I

S111

as its prior probability density function (pdf). That is,

1-a+ b1 )a1 I
(7) -5) )f(b1) (1 - R1 b 0 R 1I

(76) f,2(Rl) a,)'(

0, elsewhere.

If we have no previous information regarding the systeLr's relia-

bility at Stage 1, we must choose the parameters al atnd b] subjectively.

We shall use the method Fox [4] describes. First of all, we let R be

our subjective estimatc of R If we agree that our subjective esti-

mate should be our most likely estimate we then set

(77) R a -l
a1 4b3 -2

=

i
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assuming that (77) is not the uniform prior density on (0, 1). (11

(77) is taken as the uniforn prior density the modification to be

made is discussed at the end of the subsection.) We then ask ,what

the odds are that the true value of R will lie inl the interval

(RI - k&1, R + kR where k is predetermined? II we set these

odds at x to y, we can express this mathematically as

R'h +kl\
i^ ^ f 1 2 (R 1 ) dR1

(78) IA A R dI V
i 1Kl-kRI12

I x

where v This is Fox's equation [4, Eq. (1.6), p. 3]. From

(77) and (78), with the aid of the tables in [4], we can now determine

a and b

To obtain a Bayesitau lower confidence interval for R after we

have completed Stage 1, we note thaL the posterior pdl of R1 , given

x., is defined by

I(a, I b, + n.) l.+-x,-i b-(n•-x.i-i
(79) J J 1 J *

F [(a1 'I Xl)F(bI - (n1 -X ,

Thus, a (3 - ai) 100-percent level Bayesian lower confidence interval

for R is given by

(80) / f1 3( x) d(i I-,

where is so chosen that (80) holds,
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Following the method of derivation for Stage 1, we can now

obtain a (1 - 0, 100-percenft level Bayesian low'ýr confi-dcnce

interval. for R in an analogous manner. We use the data in 'Stage 1,
2

however, to requiro that tile Most- likely est ima!te for R2is given by

(81) R2
a2  b -2 a1 + b + n -2

2 2 1 1 1

Thus, by this method we obtain successive Bayesian est~imates of

reliability growth at Chchi stage and their associated lower conli-

Jence bounds. The-re appears to be no way in vhich we can usc the

Bayesian approach to ob)tai n a lower confidenco bound at the (N 4- 1),n

stage (i~e., for the predicted reliability at Stage N4 4 1 of our

tes ting program).

The proc~edure duscribed above, needs slight miodificai-ion if we

assume cuniform density for R1  (In thi.; case, we Faesýume total

ignorance of the system's reliability prior to Sta~e 1. That is,

any one va lue of P1 i s Ir likly to occur any cthcr valuceorr

to Starting th10 tesc program.) In this instance we k~now that

a, b 1, which in turn yields

F(n1 + 2) 1

(2 1 3 l 1 I 1 ) -XI+1) lF-(n1  x1 +l H1) ( 1

We then proceed as bcforc to obtain corniidence intervals at StLage 1

and thie succeedingS stages for which dat.a arc available.
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