

Ó

This document has been approved for public relation and sale; its dietril the implicited.

RECEIVED AUG 1 6 1967 CFSTI

Care St.

FINAL REPORT

OIL CONTAMINATION IN OXYGEN SYSTEMS

Contract NObs-94416 Project No. SF013-08-14, Task 3917

by

John B. Presti

Charles J. DeSimone, Jr.

Materials Engineering and Laboratory Services

GENERAL DYNAMICS Electric Boat Division Groton, Connecticut

Reviewed by:

Bolles, Supervisor

T. V. Bolles, Supervisor Chemical Engineering Group

Approved by:

H. Wallman, Chief Chemistry/Chemical Engineering Section

U413-67-101 June 16, 1967

TABLE OF CONTENTS

	ivord Kniedorn ents	
	ODUCTION	
SUM	MRY .	
I	LITERATURE SURVEY	23.
II	TEST APPARATUS	2-1
111	TEST PROCEDURE	3-1
IV	TEST RESULTS	4-1
V	CONCLUSTONS	5-1

APPENDIX

 1

.

.

. .

•

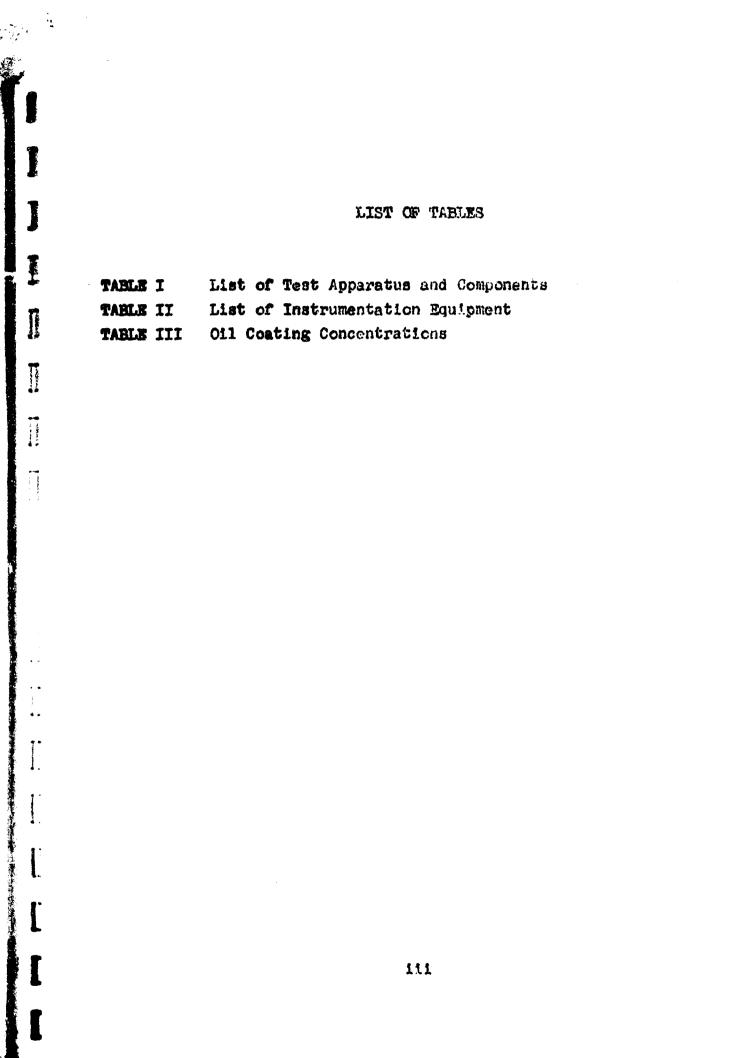
а. .

I

l

I

1


LIST OF FIGURES

۰,

いいうえのなく地理は「「「ない」

,

Figure 1	Diagram of Test Apparatus
Figure 1A	Test Pipe - Layout of Instrumentation
Figure 2	Test Pipe
Figure 3	Test Pipe
Figure 4	Oxygen Supply Piping
Figure 5	Oxygen Supply Piping
Figure 6	Test Pipe with Sparking Device
Figure 7	Modified Test Pipe - Layout of Instrumentation
Figure 8	Modified Test Pipe
Figure 9	Modified Test Pipe
Figure 10	Instrumentation Protes
Figure 11	Test Pipe Components
Figure 12	Instrumentation Block Diagram
Figure 13A	Automatic Remote Control Circuit
Figure 13B	Spark Generator Circuit
Figure 14	Timing Sequence of Events During Test Run
Figure 15	Test Pipe After Explosion
Figure 16	Test Pipe After Explosion
Figure 17	Test Pipe Union After Explosion
Figure 18	Pressure Transducer After Explosion
Figure 19	Pressure Transducer in Pipe After Explosion
Figure 20	Instrumentation Boss After Explosion
Figure 21	Ignition/No Ignition Ranges
Figure 22	Percent Co, vs. Oil Concentration
Figure 23	Maximum Recorded Temperature val Oil Concentration
Figure 24	Maximum Pressure vs. 011 Concentration

FOREWORD

This report covers the work performed under NAVSHIPS Contract No. NObs-94416 (Project No. SF013-08-14, Task 3917). The NAVSEC contract monitor was Mr. Herman Kraut.

The objective of this program was to collect the necessary experimental data on ignition and flame propagation in an cil contaminated oxygen system in order to more exactly define the required level of cleanliness for such systems. The results are to be incorporated into military specifications for oxygen systems to define the required cleanliness.

ACKNOWLEDGEMENTS

The authors wish to express special appreciation to Mr. Warren Goddard, Mochanical Test Engineer, and to Mr. Richard Canale, Instrumentation Engineer, for their concentrated efforts in carrying out the experimental program.

Acknowledgement is also extended to the following people who participated in the test program:

I

Ē

11

F. DeSouza	Supervisor, Mechanical Test
M. Schiller	Senior Instrumentation Engineer
R. Holden	Gas Analysis
A. Desmarais	Chemistry
J. Williams	Chemistry

INTRODUCTION

Under auspices of the Department of the Navy, NAVSEC, a study was undertaken to determine the compression ignition and flame propagation limits of hydrocarbons in a high pressure oxygen system.

Considerable work has been done concerning compression ignition and flame propagation in high pressure air systems, but very little has been done with pressurized oxygen systems. The limited work performed with oxygen did not employ conditions corresponding to the specific systems now in use, namely 3000 psi oxygen with $1/2^n$ monel piping The program reported herein was designed to study that specific area

The study was primarily concerned with the determination of the acceptable levels of oil contamination (2190) on the internal surface of a 1/2" monel pipe below which compression ignition and flame propagation will not occur when pressurized with 3000 psi oxygen. It was also desired to determine that level of oil contamination where, upon ignition, a pressure rise will not exceed 25%.

The first phase of the program consisted of a literature survey to assemble and review all available information from previous studien in the area of compression ignition and flame propagation in high pressure air and oxygen systems. A summary of these earlier studies is presented in Section I.

Mollowing the literature survey a test program was designed and initiated to accomplish the objectives of the contrast. A description of the test apparatus used is presented in Section II, the testing procedure is described in Section III, and the results of the test program are presented in Section IV.

Throughout this report, the term "oil concentration" is used. This refers to the amount of oil scating, expressed as mg/ft², on the inside surface of the test pipe.

SUMMARY

A test program was conducted to determine the ignition limits of eil contamination in 1/2" monel pipe when pressurized with 3000 pci oxygen. The oils investigated were 2190 lubricating oil and Habecol #318 eutting oil. Thin films of these oils were applied to the internal surface of a 4 ft. section of 1/2" monel pipe. The pipe was then rapidly pressurized with 3000 psi oxygen. In addition, tests were made using oil droplets and varying the initial pipe wall temperature.

The test results showed little danger of compression ignitions at oil concentrations below 160 mg./ft² of 2190, or below 110 mg./ft² for Habcool. Concentrations of both oils above 260 mg./ft² will ignite when rapidly pressurized with 3000 psi oxygen. These concentrations must be compared to the present oxygen clean standards of 0.013 mg./ft² maximum allowable hydrocarbon concentration.

The results also showed that ignition will not occur with oil drople's or puddles smaller than $100 \, \text{e}$ in size and that a pressure rise greater than 25% will not occur below oil concentrations of 500 mg. $/\text{ft}^2$.

As a result of this test program, it is recommended that the oxygen clean standards be relaxed to 1.5 mg./ft². The level of oil concentration is a factor of 100 below the lower ignition limits defined by this test program. It is felt that such a safety factor more than compensates for any variation in the lower ignition $\Delta t = 0$ due to effective pipe length, wall temperature, and non-uniformity 30 oil contamination.

I LITERATURE SURVEY

In recent years the phenomenon of compression ignition in pneumatic systems has been extensively studied. Such ignitions are induced in systems contaminated with sufficient quantities of a combustible organic material and exposed to rapid pressurization with an ortifizing gas.

Most of the work was concerned with high pressure air systems contaminated with lubricating oil from air compressors. Facth and White (1) conducted a series of tests in which they investigated the combustion characteristics of 25 mg. samples of various lubricating oils placed at the dead end of a pipe emposed to rapid pressurization with air. They defined the combustion ranges as functions of various parameters including the rate of pressurization, air pressure, length of pipe, and the initial ambient system temperature. The results of these tests quantify the expected trends due to variation in the parameters. Of interest was the fact that the occurrence of combustion was greater, the shorter the length of pipe used down to a length of 1 ft. However, the change in combustion limit was only a mild function of the pipe length.

Wilson⁽²⁾ and co-workers investigated the compression ignition characteristics of lubricating cils evenly coated on the internal surface of a $1 \frac{1}{2}$ diameter test pipe. Using a 15 ft. length of pips, they studied both auto-ignition and flame propagation using 2190 and Callulute lubwicating cils. Wilson defined the lower combustible limit in the mange of 1000 mg./ft² of oil. He also found that used degraded oil was much more reactive than new unused oils - attributing this to breakdown products in the oil. This conclusion was later verified by Eabetakis⁽³⁾. Both Wilson⁽²⁾ and Perice⁽⁴⁾, concerned with this type of ignition caused by degraded oil blow-by from air compressons, recommend proper cleaning and maintenance to prevent dangerous conditions from arising.

Facth⁽¹⁾ did a theoretical analysis of the rapid compression pression in an attempt to predict whether conditions for ignition would exist in a given system. Predictions based on his analysis compared well with his observed experimental data.

Dallinger and McGill⁽⁶⁾, concerned with high pressure air systems aboard submarines, surveyed work done in this field. They reported that an increase in pipe diameter increased the temperatures obtained during a rapid compression, thus lowering the concentration of oil necessary for ignition.

Russian interest in the problem of compression ignition with oxygen is indicated by the work of Gordeyev and coworkers (7). They reported lower explosive limits of 26,000 mg./ft² of oil and lower combustion limits of 190 mg./ft². However, they used oils with Russian designations, making comparison with 2190 difficult, and they falled to report pertinent parameters such as rates of pressurization and pipe diameters.

typications to a

Ţ

The dangers inherent in high pressure air systems, due to compression ignition, lead to questions about parallel phenomenon in high pressure oxygen systems. Baum⁽⁸⁾ and his coworkers investigated 7500 psi oxygen systems, looking at effects of system temperature, vibration, shock, extended storage, contamination, and material compatibility, in regard to ignition, Baum⁽⁸⁾ recommended "absolute" cleanliness from organics, and <u>homogeneous</u> hydrocethon concentrations less that 50 ppm.

In 1961, Kehat⁽⁹⁾ studied lenition and flame propagation at pressure: up to 1500 psi using gaseous orygen. Using a 1/4" test pipe evenly coated with oil, he used a spark and an electric match to induce ignition. Kehat found no significant danger of ignition at concentrations up to 1000 mg./ tt^2 of oil. Also of interest was Kehat i technique of evenly coating a small diameter pipe, 1/2", with oil namely of dissolving the oil in a solvent, carbon tetrachloride, applying the solution to the pipe, and then allowing the solvent to evaporate, leaving a thin film of oil behind.

A summary of the literature survey is presented in Section 4.2.2 and compared with the recommendations of this current test program. ことのであるというないのである

1

Acordination

II TEST APPARATUS

Π

The second

2.1 General Description

The basic test apparatus is illustrated schematically in Figure 1.

The test apparatus basically consisted of a four foot section of 1/2inch, schedule 80, monel pipe plugged at one end. The high pressure oxygen was supplied from a two tank system. One tank (15 ft³ capacity) at 3800 psig was used to supply the second tank (9 ft³) at 3000 psig which, in turn, supplied the test pipe. The instrumentation and control equipment consisted of flame probes, pressure transducers, thermocouples, external strain gauges, a 5000 psi relief valve, a gas sampling bomb, a manually operated ball valve, a quick opening Marotte valve, a check valve and a manually operated vent valve. Photographs of the test pipe, in place for a run, are shown in Figures 2, 3, 4, and 5. A more detailed description of the components is found in Table I.

A four foot length of pipe was selected as the optimum length. This selection is a compromise between the minimum length recommended by Faeth and White and the physical instrumentation requirements necessary to measure flame propagation.

This test apparatus was modified slightly during the test program to accommodate a sparking device. This alteration consisted of removing the pressure transducer (P_1) closest to the dead end and replacing it with the sparking device. This modification is shown in Figure 6.

In addition to the pipe just described, another test pipe was used during the final portion of testing with a minimum of instrumentation located adjacent to the dead end. This second pipe was also a 4 ft. length of 1/2" monel pipe, but it had only two instrumentation taps and a vent line. This test set up is shown schematically in Figure 7. Photographs of this test set up are shown in Figures 8 and 9. As can be seen in the figures a nichrome heating coil was added to the pipe to give the capability of operating at elevated initial temperatures.

TABLE I

LIST OF APPARATUS AND COMPONENTS

Description Component 9 ft3, MTL-C-1511A 3000 psig 02 supply flask 1 15 ft3, MIL-C-2809B 3800 paig 0, supply flask 1 Marotta M.V. 173 1 Solenoid valve Q to 10,000 psig scale 1 Pressure gauge 3/4" 1 Check valve 3/4" pipe, NiCu 3 Nipples 1/2", NiCu 1 Pipe union 1/2", NLCu 1 Pipe cap 1/2" I.P.S. NICu Flame arrestors 1 3/4" monel 1 Pipe tee 4 ft. Sch. 80, 1/2" Monel MIL-T-1368 Ty. 1, Cond. 1 Test pipe 1 5,000 psi relieve pressure Relief valve 1 3/4", manual Ball valve 1 1/h", manual Vent valve 1 See Section 2.2 Gas sampler bomb 1 11 4 Strain gauges 11 3 Pressure transducers 12 Temperature probes 3 Flame probes h

N

"The flame arrestor used in Runs A-1 through A-24, Runs D-1 through D-5, and F-36 was made of stainless steel. For safety considerations, the test pipe was located in a concrete test pit and was surrounded by sand bags. The control and instructure tion read-outs were located in an adjacent test pit.

2.2 Instrumentation

I

Ī

Π

Π

THE A

Π

- ----

Instrumentation on the basic test set-up consisted of four flame probes spaced 12 inches apart; three pressure transducers, 18 inclusion apart; four external strain gauges; and three thermocouples, 18 inches apart. The locations of this instrumentation can be seen in the figures presented in the previous section.

In addition to this basic instrumentation, a sparking device was used in an attempt to induce ignitions. The location of this spaceware device can also be seen in the figures presented in the previous section. The outputs of the instrumentation probes were recorded on an oscillograph recorder with a paper speed of 64 inches/sec.

A close-up of a flame probe, a thermocouple, and the sparking deviate is shown in Figure 10; while a photograph of a pressure transduce ; a strain gauge installation and the flame arrestor is shown in Figure 11.

A block diagram of the basic instrumentation is presented in Figure 12, while a schematic of the control circuitry is shown in Figure 13. A detailed list and description of the major instrumentation components is presented in Table II. The time sequence in which all the instrumentation and control circuitry operated is shown in Figure 14.

The instrumentation block diagram (Figure 12) shows the relationship of the control circuitry and the instrumentation probes to the recording device. The flame probes, the pressure transducers, and the strain gauges are energized by the circuitry; signals detected by them are then transmitted to the recorder. The thermocouples, using an ice water bath as a reference, generate voltages indicative of their temperatures and transmit them to the recorder. The spacking

TABLE II

٢

LIST OF INSTRUMENTATION EQUIPMENT

Description

2.

3.

4.

5.

6.

7.

8.

9.

Manufacturer

1. Chromel/alumel thermocouples (400 milliseconds response time)

Chromel wire flame probes -

Pressure transducers -

porcelain base with 300 volt

operating potential (<1.7 millisecond response time)

10,000 lbs/in², air cooled type (.05 millisecond response time)

(1.7 millisecond response time)

3 kc. carrier amplifiers for

Modulators for amplifiers (7 units) (2 milliseconds response time)

Oscillator power supplies

Variable AC Voltage Supply

UV light beam oscillograph

recorder - galvonometer

recorder (15 units)

Thermoelectric, Inc.

.

Electric Boat Division (not commercial)

Norwood, Model 102

Consolidated Electrodynamics Corp. (C.E.C.), Model #124

C.E.C., Model #1-113B

C.B.C., Model #15-605

C.E.C., Model #2-105B

Superior Electric

Underwater Explosion Research

Leeds & Northrup

Baldwin-Lima-Hamilton

- Displacement Transducer (< 1.7 millisecond response time) Division (USN) Potentiometer and Switch
- 10. (Auxilliary temperature measurements)
- 11. 120 OHM Strain Gauges

(2 units)

device discharges the electrical energy stored in its capacitons (Figure 13B) and this event is transmitted to the recorder. The potenticmeter attached to the stem of the Marotta value is energised by the circuitry and transmits the change in position of the value to the recorder. The Marotta value itself is activated by the control circuitry; while time delay relay 1 (TD-1) and (TD-2) are activated by the same circuitry and in turn control parts of this circuitry (Figure 13).

Π

1

Π

 \prod

Π

As seen in Figure 13A, the circuitry is activated by closing switch S-1 which energizes the indicating light plus the flasher and bell to warn personnel in the area that a test is in progress. A test is initiated by closing S_3 which activates relay K_1 and TD-1. Activation of relay K_1 closes contacts K_{1-1} which keeps itself activated without regard to the position of S_3 . Activation of TD-1 closes the contacts TD1-1 which, in turn, activates TD-2, TD-3, and opens the Marotta valve. Activation of TD-2, after a preset period of time, shuts down the circuitry. Activation of TD-3, after a preset period of time, opens contacts TD3-1, closing the Marotta valve.

The circuitry of Figure 13B is activated by the closing of TD3-2, which has been closed by TD-3 of Figure 13A. With the contact TD3-2 closed, TD-5 is activated which in turn closes contacts TD5-1 activating K_2 . K_2 closes contact K_{2-1} which discharges the spark. The 600 χ capacitors are charged by closing switch S₄. Contacts TD3-3 isolate this circuit while TD-3 is activated.

III TEST PROCEDURE

3.1 Preliminary Tests

Before proceeding with ignition tests, it was necessary to verify the proposed oil coating technique.

Preliminary tests were conducted to determine whether the oil coaling technique selected would be satisfactory. This technique consisted of dissolving the oil in a low-boiling, non-combustible solvent Freen TF and then applying the resultant solution to the pipe. Upon evaporation of the Freen, a residual coating of oil was left on the pipe. In evaluating this technique, a sacrificial section of pipe was used. After the coating operation, the pipe was cut into small sections and the amount of oil present on each section was determined by chemical analysis. This analysis consisted of removing the oil from the pipe segments with a low boiling point solvent, then evaporating off the solvent. The amount of oil removed from each segment was then determined gravimetrically.

This same method of evaluation was used to determine the feasibil' of other oil coating techniques as part of the verification. The other oil coating techniques evaluated were: a) applying the oil directly with a circular brush or swab, b) spraying the oil onto the pipe, c) partial removal of a heavy oil coating using a solvent.

3.2 Test Plan

The test plan included the following areas of investigation: 1) The costing of the test pipe with various concentrations of 2190 oil at ambient temperatures and attumpting a compression ignition with 3000 psi oxygen; the oil coatings were increased in small increments in concentrations ranging from 0.08 mg/ft² to 640 mg/ft². 2) Placing droplets of 2190 oil near the dead end of the test pipe

and attempting a compression ignition with 3000 psi oxygen; the size of the oil droplets used ranged from 5 microliters (4.8) to 90 yl. 3) Employing the combination of coating the test pipe with 2190 oil and placing a droplet of the oil near the dead end of the pipe, and attempting a compression ignition with 3000 + oxygen; oil coating concentrations ranged from 12 mg/ft² to 88 mg 102 while the oil droplets ranged in size from 20.42 to 200.42 . 1) contained the test pipe with various concentrations of 2190 oil or of Habee. cutting oil, using an electrical spark to induce ignition in a 3000 psi oxygen atmosphere; the 2190 oil concentrations ranged Car 0.16 mg/ft² to 640 mg/ft², while the Habcool concentrations ranged from 100 mg/ft² to 480 mg/ft². 5) Coating a modified test pipe (minimum instrumentation) with various concentrations of 2190 cli and of Habcool cutting oil, and attempting a compression ignition with 3000 psi oxygen; the 2190 oil concentrations ranged from 30 mg/7t² to 480 mg/ft², while the Habcool concentration ranged from 360 mg/bt to 480 mg/ft^2 .

The 2190 (MIL-L-17331A) lubricating oil was selected to be used during this test program because most of the previour investigations of compression ignition and flame propagation were performed using this lubricating oil. Thus, in order to compare results with the earlier work, 2190 was used in this investigation. Habcool #318 cutting cil was selected as a typical organic cutting oil used in a machine shop with which piping might be contaminated during fabrication in actual practice.

3.3 Testing Procedure

In making a test run the following procedure was used:

- 1. The test pipe was thoroughly cleaned by use of Freon (TF) ringer and a lint-free cloth.
- 2. With the instrumentation probes replaced by plugs, the pipe war filled with an oil/Freen solution of a known concentration.
- 3. The oil/Freen solution was emptied and the remaining Freen allowed to evaporate (15 to 20 minutes was allowed) leaving a thin, uniform oil film.
- 4. The instrumentation probes were replaced into their proper positions.
- 5. The test pipe was placed "on-line", putting the flame arrestor into position within the union.
- 6. The calibration of the instrumentation was checked as well as the electrical control circuitry.
- 7. The position of all hand-operated valves was checked.
- 8. The test area was cleared of all personnel and the test was made.
- 9. After the run was completed, the electrical power was turned off and all valves secured.
- 10. A gas sample was taken for analysis and the test pipe was vented down to ambient pressure.
- 11. The test pipe was disconnected and was visually inspected.
- 12. The test pipe and instrumentation probes were thoroughly cleaned in preparation for the next run.

The gas sample at the conclusion of a test was analyzed for carbon dioxide, hydrogen, carbon monoxide, exygen and nitrogen waing gas chromatography.

No attempt was made to replace the air in the test pipe with pure 0_0 before the rapid pressurization. This initial air is compressed to within 1/4" of the dead end during compression from 10.7 psi to 3000 psi and it was felt that this small amount of nitrogen, in comparison to the amount of oxygen present, would have a negligible effect on the results.

IV TEST RESULTS

4.1 Preliminary Tests

The oil coating tests showed that the selected technique of dissolving the oil in a non-combustible solvent, Freen WF, gave the best results. The oil was evenly coated onto the surface of the pipe and the concentration of oil on the pipe was proportional to the concentration of oil in the Freen. This relationship is shown in Table III. It was also found to be the best technique from an operational point of view - being less prone to technician error and having good reproducibility.

TABLE III

OIL COATING CONCEMTRATIONS

(1/2" Monel Pipe)

Oil Concentration in Freon - PPM	Oil Coating sn Pipe - mg/ft ²	011 Film Thickness - missions
5	0.0125	1.2×10^{-3}
10	0.025	2.4 x 10 ⁻⁵
100	0.25	C-4x 10 ⁻²
1000	2.5	0.24
10,000	24.6	2.4
50,000	123.0	12.0
100,000	246.0	24.0
200,000	492.0	48.0
370,000	736.0	78.0

4.12 Ignition Test Results

The results of the test program are presented in the following sections. The significant data are presented in Section 4.2.1 and Appendix A, while an interpretation and discussion of these data is found in Section 4.2.2.

4.2.1 Data

The parameters measured during each of the test runs are presented to Appendix A. The parameters include: oil concentration, ombient temperature, maximum pressure, rate of pressure rise, include testes have, flame probe saturation, and strain gauge indication. The testes is presented are the maximum temperatures recorded. Due to the ball of and response time of the thermocouples, the actual temperatures enjoying tod are much higher.

It should be noted that at various points throughout the test progent blank runs were made - i.e. runs in which no oil was put into the test pipe. These runs were made to determine the time historian on the various parameters due only to the rapid pressurization of the test pipe with oxygen, and to serve as a check on the instrumentation. The results of all the blank runs were identical, therefore, the results of only one of these runs is presented.

4.2.2 Correlation and Interpretation of Results The first test run with oil contamination resulted in a violent explosion causing extensive damage to the test apparatus. This damage is shown in Figures 15-20. A comparison can be made with the undamaged test pipe shown in previous sections.

As can be seen in the figures a two inch section of the test pipe, at the inlet end, was disintegrated along with part of the coupling; one of the pressure probes was blown out of its fitting; several of the electrical connectors to the instrumentation probes were burned; and the copper "O" ring seals on the two remaining pressure transducers were blown out. In addition, the flame arrestor was disintegrated and the check valve welded closed. It should be noted that for this run the coupling at the inlet end of the test pipe and the flame arrestor were both made of stainless steel.

After the explosion, it was felt that the level of oil contamination: 160 mg/ft², was well into the explosive range and that the testing should be conducted in a much lower range of oil concentration. Subsequent test runs showed, however, that levels of oil contamination higher than 160 mg/ft² can withstand rapid pressurization by pure oxygen without resulting in an explosion. These subsequent tests employed monel and nickel-copper components only, while the initiation run at 160 mg/ft², which resulted in an explosion, had a stainless steel flame arrestor. In an attempt to duplicate the explosive P(n) a stainless steel flame arrestor was put into the system (Run P-BC). In this run, though the test pipe did not rupture, there was an ignition and flame propagation, as opposed to no indications of ignition or flame propagation under the same conditions using a monob flame arrestor (Run F-18).

No completely satisfactory explanation of the explosion is available, but it is significant that no indications of ignition were obtained with the monel flame arrestor, while very definite indications were observed with the stainless steel flame arrestor.

As a result of the explosion in the first run, subsequent tests were conducted (Runs A2-A24, F1-F28, F35) by evenly coating the test pipe with 2190 oil with concentrations of 0.08 mg./ft² up to 160 mg./ft² without any indication of ignition. At oil concentrations between 173 mg/ft² and 266 mg./ft² there were indications of ignition and flame propagation on some instrumentation probes but not on others. At oil concentrations above 266 mg./ft², there were definite indications of ignition and flame propagation. These results can be seen graphically in Figure 21.

On the supposition that it was possible to have sufficient oil in the test pipe to propagate a flame while not having a high enough concentration to cause an auto-ignition, a series of runs were conducted in which it was attempted to induce an ignition. Thus runs (Runs D1-D14, AD1-AD10) were made with small drops of oil placed near the dead end of the test pipe (thus giving a high local concentration of oil). Oil droplets ranging in size from 5χ to 100χ ? were used alone and incombination with a uniform oil film ranging in concentrations from 12 mg./ft² to 88 mg./ft². In Run D-12, the gas analysis after the run revealed the presence of CO₂, indicating combustion of the oil. However, the other instrumentation did not confirm this combustion, and the results could not be duplicated in subsequent tests at similar or more severy conditions (Runs AD-8 and AD-10).

In the test runs with oil droplets of 70_{M} or greater, H_2 was do a in the gas after the test run. It is believed that this H_2 is a product of the thermal decomposition of the oil. However, oil in or lets were used only in an attempt to induce ignitions. This they failed to do, so the appearance of H_2 , though interesting, was not investigated further. However, two things should be noted in this regard: 1) the occurrence of oil droplets, 70_{M} or greater, in a clean oxygen system is highly unlikely and 2) the H_2 appeared in concentrations well below its lower ignition limit.

Having failed to induce ignition using small droplets of oil, an attempt was made to induce ignition by means of an electrical space. A series of runs were made using the sparking device (Runs FI-F28, F35, F36). In those runs in which ignitions were observed, they were of the compression ignition type, and involved oil concentrations above 160 mg./ft². The spark did not initiate any ignitions nor affect flame propagation in any way.

Test runs made in which the pipe was evenly coated with Habcool at 70°F (Runs F29-F34) indicated that the no ignition range was below about 110 mg./ft², while the ignition range was somewhere above 250 mg./ft². Comparison of these results with those obtained for 2190 (Figure 21) show Habcool to be somewhat more reactive.

In an attempt to attain higher temperatures from the rapid compression with pure oxygen, a series of tests were run using a pipe with a minimum of instrumentation located adjacent to the dead end. Because of the minimum amount of instrumentation, it was more difficult to get accurate indications of ignition and flame propagation. However, from the instrumentation available, the following results were obtained:

A. Using 2190 oil at 70°F, tests were run at concentrations of 80 mg./ft² to 480 mg./ft² (Runs C1-C6). No ignition was obtained below 160 mg/ft², while the ignition range was found to be them 200 mg/ft². These results approximate the results shown in Figure 21.

- B. Using 2190 oil heated to 125°F, tests were run at concentrations ranging from 160 mg/ft² to 480 mg/ft² (Runs 07-011). Indication of ignition were seen at the lower concentration of 160 mg/ft² indicating that the level of oil contamination necessary for ignition and flame propagation are somewhat lower at 125°F then at 70°F.
- C. Using Habcool cutting oil at 70°F, tests were run at concentrations ranging from 160 mg/ft² to 480 mg/ft² (Runs C12-C16). Definite ignitions were obtained above 200 mg/ft², while the non-ignitite range is somewhere below 160 mg/ft². The non-ignition and ignition ranges are about the same as those found with the regular test pipe.
- D. Using Habcool oil at 125°F, tests were run at concentrations ranging from 160 mg/ft² to 480 mg/ft² (Nuns C17-C21). The results from these tests were not distinguishable from those at 70°F.

A more quantitative correlation can be made by plotting the resultant % CO_2 , the maximum recorded temperature, and maximum pressure obtained as functions of level of oil concentration. Such plots are shown in Figures 22, 23 and 24. It can be seen that these results match the non-ignition, transient, and ignition ranges earlier defined more qualitatively.

The carbon dioxide found was considerably loss than would be dictated with 100% combustion of the oil. This is, however, consistent with the fact that carbon deposits and residual cil were found in the best pipe after ignitions, indicating considerably less than complete combustion.

It is possible to compare these results with those obtained by each or investigators. Kehat reports little danger of ignition in oxygen

4.-5

systems up to 1500 psig at concentrations up to 1000 mg/ $2t^2$. The compares to our lower ignition limit of 160 mg/ $2t^2$ at 3000 pst. Kehat used a pure compound, n-hexadecine, for his work, while common work was performed with a commercial lubricating oil, 2200. Comparison of the properties of n-hexadecine and 2190 - 0.8. molecular weights, auto-ignition temperature - and considering bills to be differences in the oxygen pressures used reveal our results to be in reasonable agreement with Kehat.

It is also possible to compare our results with the results of Wilson et al. Wilson reports the lower ignition limit in high pressure air systems at 3000 psig of 2190 oil to be 1000 mg/rt². By extrapolating these results to pure oxygen at 3000 psig, a lower ignition limit would be approximately 200 mg./ft². This is is good agreement with the current results.

A summary comparison of the current results and those obtained by earlier investigators is presented in the following chart:

Investigator	<u>Test Gas</u>	Test Apparatus	011 Used	Lower Ignition bladi
Kehat	0 ₂ , 1500 psi	1/2" pipe	^C 12 ^H 26	1.000 mp/st ²
Wilson	Air, 3000 ps1	1-1/2" pipe	2190	1000 m3/10 ²
Gordeyev	°₂	-	-	190 mg/ft ²
Fresti	0 ₂ , 3000 psi	1/2" pipe	21.90	160 mg/f(²
Baum	0 ₂ , 1500 psi	(50 ppm homogene recommended low	ous mixture er limit)	-

V CONCLUSIONS AND RECOMMENDATIONS

From the test results obtained the following conclusions can be drawn for 3000 psi oxygen systems:

- Compression ignition and flame propagation will not coour below oil concentrations of 160 mg/ft² at oil temperatures below 125°F in a 1/2", schedule 80, monel pipe.
- 2. Compression ignitions will not occur with oil droplets or puddles smaller than $100 \ \mu k$ in size.
- 3. Habcool cutting oil was found to be somewhat more reactive than 2190.
- 4. Present oxygen clean standards (as specified by Shipyard Steadard Practice 1.9 Rev. F, Oxygen and Nitrogen Systems, paragraph 3.2.3.1d) which require oil film concentrations of 0.013 mg/ft² or less, are much too rigorous and can be relaxed. The oil film concentration of 0.013 mg/ft² corresponds to obtaining a concentration of 5 ppm in a Freen rinse, while 160 mg/ft² corresponds to 65,000 ppm in Freen.

It is recommended that the allowable oil film concentration specified by the above Shipyard Standard Fractice be set at 500 ppm oil concentration in a freen rinse. This concentration allows a cafety factor of 100 over the values at which oil ignitions begin to occur.

It is felt that such a safety factor more than adequately alloud for any variation in the lower ignition limit due to variations in effective pipe lengths below 4 feet which might be found in an actual pressurized oxygen system.

.

Π

 \prod

 \prod

Π

T

1

1. 2. 2.

5. To obtain pressure rises greater than 25% requires oil concentrations greater than 500 mg./ft². This can be seen from Figure 24.

BIBLICORAPHY

- (1) Faeth, G. M. and White, D. F., "Ignition of Hydraulic Fluids by Repid Compression"; Journal of the American Society c." Naval Engineers, Vol. 73 No. 3, August, 1961.
- Wilson, M. P., DeSouza, F., and Presti, J. B.; "Final Report on Oil-Air Explosion Hazards in High Pressure Air Systems". Report No. 0411-61-166, General Dynamics Corp., Electric Bout Division, November, 1961.
- (3) Zabetakis, N. G.,; "Flammability Characteristics of Combustible Gases and Vapors"; Bureau of Mines, Bulletin 627, 1965.
- (4) Perlee, H. B., and Zabetakis, M. G.; "Compressor and Related Explosions"; Bureau of Mines Information Circular 8187; 1963.
- (5) Faeth, G. N.; "Spontaneous Ignition During Charging Process in Pneumatic and Hydraulic Systems"; Final Report for USN Ec-Ships Contract No. NObs 78674, Index No. S-ROO1-0301; October 1963.
- (6) Dallinger, J. F., and McGill, J. E.; "Submarine High Pressure Air Systems"; presented at Annual Meeting of the Society of Naval Architects and Marine Engineers; New York, November, 1962.
- (7) Gordeyev, V. Ye., Komos, V. F., and Troshin, Ya. K.; "On Detonation Combustion of Reterogeneous Systems"; Foreign Technology Division, Translation, FTD-TT-65-1106, December, 1965.
- (8) Baum, J. V., Goobish, B., and Trainer, T. M.; "An Evaluation of High Pressure Oxygen Systems"; WP-AFB Technical Documentary Report No. AMRL-TDR-62-102; September, 1962.

(9) Rehat, E.; "Hasard Levels of Hydrocarbon Films in Systems in taining Liquid and Gaseous Oxygen"; paper presented at Cryogenic Engineering Conference; August, 1961.

I

Π

 \prod

 \prod

Ī

ł

1

- (10) Walde, R. A.; "The Relationship of the Chemical Structure concuting Oils to Their Oxygen Compatibility", Air Products and Chemicals, Inc.; Allentown, Pennsylvania.
- (11) Kuchta, J. M. and Cato, R. J.; "Ignition Characteristics of" Fuels and Lubricants"; Technical Report AFAPL-TR-65-18; March, 1965.
- (12) Kuchta, J. M., et al; "Ignition Characteristics of Fuels and Lubricants"; Technical Report AFAPL-IR-66-21; March, 1956.

APPENDICES

(

and the second second second second second

.

•.

٠,

5

1 7 7													ÇX()	PSS Been		1 .3er
A Property of the second se			AMBI- ENT		MA		i PRES			X TIM	Ē		RATE OF IRRSSURF RISE INSIDE PIPE	MAXIMIA	(?? 4.) (?))P. 1: 1900
	RUN NO.	CONC. (mg/ft ²)	180 P. (°?)		P.	,	1	P2			P3		(psig/see)	Anna an		
	BLANK	0]5190]	70	3000	i.n	1.00	3000	in	100	3000	1.M	100	36000	260 15 100	1.00	
.0/6	A1	160	70	>3000	iB	, 9 0	>3000	in	90	>3000	in	9 0	30300 >	2000 1a 000	25000	170
10/21	A-2	0.03	70	3000	<u>in</u>	100	3000	in	100	3000	in	100	23000	200 in 200	240 :	ುಂ
.0/24	A-3	0.16	70			•							•	sans ac que	6.2	
.0/24	A=4	0.32	70	1			a construction of the second s						•	isaas as Rus I	₿+£	
.0/25	A~5	0.64	70				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						an a	SAMA AS RON	1-2	
0/26	A-6	1.60	70									· · ·		AN RUE	<u>A.</u> .9	
0/26	A-7	2.13	70			1								enne as rim	Est 2	
0/26	A-8	2.67	70			1								CAME AS INK	A ∞‼	
0/27	A=9	3.20	70			3								avas es cana	2-2	
.0/27	A-10	4.00	70											SAME AS INN	a-2	
0/27	A 3.2	5.25	70			i								SAMS AC SUE	A-3	
0/28	A-12	7.82	70											sin s as run	<u>Left</u>	
0/28	A-13	10.3	'70			į								MAMS 40 RUE	6-52	
0/28	A-24	12.,8	70			1								sims i s Rus	1. - - - - - - - - - -	
0/31	. 1	20.0	70	1 • •		ţ				1				JANE AT RUN	$A \sim C$	
0/31	A-26	24.6	70			1	1							sami ah ana	K ⊷?:	
p./1	A-3.7	35.6	70	- - 		I	1 1 1							sa-r as run	je de je	
1/2	1	45.7	70	L · · · ·		;								BARR AT HUN	A- 0	i
1/2	A-19	55.2	70	•		1								eane as run	A-2	
ב/ב י	1	64.0	70			1								BARKS ICT BURG		e k f
1/14	}	72.3	70	2900	in	1.39	2700	ia	139	2700	in	139	28000	223 (n. 670)		10 ÷
1/15	A+22	80.0	70	2960	in	12:1	2800	1n	1.51	2000 R	3.0		4 •	e Space III. L	• ‹	<u>;</u> 1
	I	1	1	1		1	1A					4 8 9	act AV	ailable	Cop	У

1969

9,44

 $\sim 2^{-1}$

4.62

1902 F 1902 F	2010 - 14 1000 - 14 1000 - 14	101 74 74	11 (Banda & DEG 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		149 149	tuane 22 Boto 16 Gose	OH TIME	PER- CENT
، در این		•		3.			×3 5.	C02
2010 - 211 - 111 - 1	a tur	<u>a</u>	Altoria (genera)	159 25 000	1.10 1.1.200	and a second sec		0
a the second	• *	3		!			78 78	
st room.	, * • • •		C 1 12 190	150 12 1/ 3	 2 RC (H) 190	a gene form	-	0
				i } {				
k N								
		:						
j j		;	:			Ì		
•		•						
)			* 1			
• •		i i						
•			:			* 7 •		
			1 1		1 1 2	• •		
		8 8 1		1 1 1	1			
					€ # *			
	1 	1 - 4	•	t í	* • •			
,		1 *		1 4 1	•	1 		
				с 8 #	:			
		- - - -		•	i			
		i.		1	;			
			}					
	• • •	1 1		-	• 1 •			
		ŧ	•		; ; ;			
•			•		1			ł
🤹 🕤 🖓 🕹	76	•.	141 in 139	156 in 139	145 to 139			0
2	;	and where	ere de thi					0

 $\gamma \sim 1$ ي معروف الم • 1

• •							1	10 Cala	an an Anna Anna Anna An amhrachtean Anna
	RUN	CONC.	AMBI- ENT		FRESSURE MA	RAEL OF ERESSURE RIBE INSIDE		1.3.00% (* 1.) 121 3.11 2. (* 2.)	
DATE	NO.			P _?	P2	¹ ² 3	PIPE (psig/sec)	2.	A CARLEND AND AND AND AND AND AND AND AND AND A
		[2190]							
11/15	A23	87.2	70	3000 in 143	2800 in 143	2760 in 143	27000	240 in 153	165 1.5 195
11/15	A-24	94.1	70	2940 in 141	2800 in 141	2740 in 141	23000	225 in 1.60	150 16 (0
2		(ml)							
11/3	D-1.	5	70	3000 in 133	2800 in 133	2760 in 133	28500	250 in 165	t Alfo fo Mila
11/4	D- 2	10	70					SAMU AN ROW	
11/4	D-3	15	70					BANG AS RUD	£\$
11/7	Dulf	20	70					BARS IN RUM	4- 2
11/7	D5	5	70				1	lanne int leten	<u>3</u> 92
18/18	D-6	30	70	2900 in 105	2800 in 105	2720 in 105	37020	210 in 235-	
11/18	D=7	40	70	2901 in 104	2800 in 109	2760 In 109	35000	225 in 1.80	136 40 N
11/21	D8	50	70	29]i) in 101	2840 in 101	2760 (n 10).	38500	235 in 195	350 2110
1/21	D-9	60	70	29:5 in 104	2880 in 104	2760 (n 104	36500	215 in 175	150 J. Os
11/22	D1.0	70	70	2920 in 105	2840 in 105	2720 In 105	36500	215 (n 155	1.50 11 50
11/22	D-11	80	70	2940 in 105	27 20 in 1 05	2710 in 105	3 300 0	225 in 190	1. 89 (t. 199
1/23	D-12	90	70	3100 10 97	2760 in 97	2650 in 97	42000	29 5 i n 285	200 L 535
1/8	D-13	10	125					same as hun	Av.2
1/9	D-14	10 (Mabcool)	125					BANE AF BUN	A-2
1/9	AD-1	12.3+ 10,11	125					SALCE LEE RICE	A-2
n/10	AD-2	24.6+ 10,1,9	125					SAME AN RUN	A~ 2
11/10	AD3	35 .64 \$لار 10	1.25					sami as Rusi	K-2
				}	4	305	t Availa	ble Cor	•

A state of the sta

6 (* 1 * 6 2. 1:302		MONCHEORI CUMERLE STRAP.	67.71 h	Plan XNDI	PER-					
ling Name of the state of the state	t tik tot og terreterererererererererererererererere	(°9') 	8 <u>1</u>	and the second s	3	1	F .1	F ₂ F	P.	CEN CO 2
	r -	2 2 2 2 2 2 2 2 3		1 1 -						
	1 800 to 230	70	;	841 at 50	3		1		-	0
	1 1901 52 91 1	70	lande des stats E	No in the	153 te 143	aha tera ha . 1		-		0
	367 (E. 20)) 214 30 262	31 L in 233	 Jph 3h 2h子	1899 án 1.33	-			0
		i ;			1 4 5 5 7 7 7 7 7					
		•								
, , , , ,										
	209 (LL 20	- 19	349 in 205	153 in 103	153 5 0 205	144 10 105	-	-	_	0
	109 to 18			1) k (m 5.09		t t	1		-	0
a 10 - İ	105 14 20	70	350 in 303				•		-	0
a 136	119 to <u>18</u>	70	150 in 10%	150 in 205	153 i: 204	250 to 101	•	- +	_	0
: (4)	305 as: 23	"O	250 1A 205	450 in 205	145 20 105	350 to 105	-		0.99	0 ()
ا ا (۵) -	95 in 30	70	153 15 205	193 in 105	153 in 115	3.50 10 3.05	-			0
175	165 to 126	70	153 15 97	153 in 97	156 in 97	3210 151 27	-	-	1.07	6.5
ļ		12.5	4 7 8 9 1 1 1 1		1				1.19	(H2
		3.25								
		125		2				7		
		125								
		72:5			*					
		و.ه.			and the second se	Best Av				

おおかかい かけがい かいかい かいかい アイ・コント かいかい アイ・コント しょう かいかい しょうしん しょう しょうせい しょう 御神学 御子子 たんき たんきょう しょうしょう しょうしん いいろう しょうしん しょうしょう

RED DOLLARS

Oxygen freesweitenstend aller

	RUN	CONC.	Ambi Ent Teap.		4 FRESSURE I. sig in x msco)		DATE OF PRESSURE RIEI INSIDE	SANCER ERTER 1999. 1
DATE	NO.	(mg/ft ²)	(⁰ F)	^P 1	P_2	²² 3	PXPS (psig/sec)	
		[2190]	ad Alap (Alaphan Sector) - 2014a	and a service of the	and and a second s	ali of a star star for a star star star star star star star s	er vinder en son en ser en son en El ser en son	Tr Almandal (1972) (1976) (2019) (1970) (197
11/10	AD~`i	45.7+ 10 <i>,4l</i>	125					SAME AN RUL A-D
11/14	AD-5	64.0+ 20,1	125					CAMD AS THAT AND
1 1./28	AD~6	55.2+ 70 мl	70				;;20:10	: 2003: 209 MAL 1, 21 1
I 11/29	AD7	64.0+ 80,41	70				36000	sang ng gut ng
11/29	AD-8	72.2+ 90 ml	70				38000	8-83) 18 R W/ A-9
11./30	AD9	80.0+ 100.4k	70	2920 in 109	2840 un 1.09	2720 in 109	37000	210 in 307 (123 (198))
, * 11/30	AD~10	87.2+ 100 AA	70	2880 in 1.05	2760 in 166	2720 in 106	30000	430 AN 250 155 B 14
8						- 		ť
3/30	F1	0.16	70				38000	GAME AS TURNE
3/30	¥=2	1.60	70				<u>38000</u>	SALEA AS BUT A-2
3/31	F-3	7.81	70				38000	SAME AR DUST A-R
3/31	F =4	15.2	70				38000	same as the hop
3/31	r- 5	24.6	70				35000	SCES AS NUM A C
4/3	F =6	35.6	70				38000	AND AS TUN 4-2
4/3	F -37	45.8	7C				38000	STAL AS TUN A
4/3	F-8	55.2	7 0				32000	SANCE AN INC. A-
14/14	F- 9	64.0	70				00035	SNIE DE EUR A
4/4	F~1.0	72.3	70				38000	SATAR AS RUL AN
4/4	F11	0. CS	70				38000	SAMA IN LOT A C
4/4 •••••	F-12	87.2	<i>7</i> 0	A			38000	31 : 31 - M. 1997 - Ar

Acres

• Les and Frank Star 2 and

a la state

wou late: 33,000 poi/see FLACE PROBE STRALE GARGE X SINCH**TION** IN X 2663 (Ash/in in X **esec**) TRUCATION TIME DE 5 19, IN 1 PURC MARCELL (masec) PER-د مرسود مرس ا -----CENT 55. 2 7 3 1 I FS C02 83 8. $\mathbb{Z}_{l_{i}}$: Ъ 1250 125 0 70 Ũ 1.4%52 0 $\mathbb{P}(\mathbf{0})$ 1.34H2 10 7C 1.0%H2 1.50 in 109 150 in 109 150 in 109 155 15 10/ 100 20 20 20 0 5 1 LN2 1 LC5 Ch 125 -70153 Ja 106 150 in 106 150 in 106 245 in 106 95 in 20 5 5 90 50 0 **

B

and the second second second

د. مرجوعات

.....

					19 - 1923 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 19		J.:	Sond Herbard.	u de Bryanne (de la se
	RUN	CONC. 2	AMBY- ENT TEM?,		M PRESSURE LI Big in X msec		RATE OF PRESSURE RISE INSIDE	244X3150/1	2480000 (1913) (1913)
) TE		(mg/ft ²)	(F)	P_1	P2	р 3	PIPE (psig/sec	2'C 2	52
4/5	F-13	107	70				33000	SAME AS RUN	Ang have
6/6	F-14	120	70				38000	SAME AS RUN	A-2
6	F-15	133	'70				38000	SAME AS RUN	A-2
4/7	F-16	147	70	3000 i.m 200	3000 in 100	3000 in 100	38000	200 an 200	280 Sec. 625
7	F-17	147	70				38000	SAME AS TUD	
17	F-18	160	70				38000	SAME AS NUT	8-2
10	T-19	133+ 10#£	70	3000 in 100	3000 in 100	3000 in 300	58000	200 in 100	210 20 20
10	F-20	373	70	er.	2930 in 124	2680 In 121	制-900	207 in 589	235 20 65
112	F-21	173	70		k+	2800 in 100	35000	204 41 500	1. 1440 - Arton Maria
1/12	F- 22	266	70		3060 in 200	3000 in 102	38000	205 in 502	910 às 1 33 -
13	F-2 3	266	70	×-4	293.0 in 103	2680 1n 108		606 in 500	235 1. 1 1
:/1b.	F-24	373	70	ter .	2880 in 23	2660 in 28	1 1	549 in 200	623 5
1.8	F~25	1+80	50	 #	2960 in 98	2680 in 98	ł l	290 in 550	ANT IN 197
119	F-26	640	10	<i>å</i> .	4000 in 79	3720 in 79	144-00C	670 in 1.32	713 1 16
720	F- 27	640	70		4320 in 87	3660 in 89	100000	1034 in 140	
24	F- 28	640	70	· •	1:320 in 91	4120 in 92	53000	e.	125 to 100
15	¥=35	સંપ	70		3760 in 88	3680 in 217	66500	1194 in 207	
16	F-36	160	70	2940 in 140	2760 in 140		28500	245 in 277	har 10 190 .
	IRABCOO	. 1							
-	F- 29	1.50	70			30%0 in 1.90		363 in 245	195 L. M. 1
/27 28	F-30 F-31	160 320	70 70			2520 in 1.21			190-17 1
	F-32	320	70	÷,	1	_			201 in 3 8
/28	F-33	480	70		3120 in 113			h7 10 510	(na 250)
3	F-34	107	70					1	87 10 221, 3
•				Ŕ I	SUON IN THE	2950 in 110	37000 20	00 in)	L) 180 - 1
	1 8 - 1	•				•	•		_

.

ee a Charles gebact

•

177 - X 1.	(*	NEBILI		ét. I		11. 11. 1. 1			11080	1	;	er ng Kalu			2406	irde Inteol Massa	I THE	F	er-
-	<u>т</u> З		6 6	 1_]	••• - 1400 - 180 € - 18 ⁴ 6	8	7		8 3		* o <u>t</u> es *.	34		2		F 3	1-	02 02
	3.20 km 200	d a g an a ta di s an a ta ∕}	160	~ 1.	1.01	. 35	1 mag and 1	192	2/0	5.12	100	1.50	tr.		37) 	G		e 2	0
6 3	120 in 000		165	1	1.70	3,04	1	::53	1.60	<u>472</u>	373	3.55		. : *		560	559	402	(0.1C
3.13	200 ir. 8 0 9		170	• :	1:21	3.£	1. ì	atā.	180	.¦₽	318	249	••••			. 1	ŀ61.	540.	C
読み	0115 in 80	t^{\prime}	165	•	300	160	. 11	3,089	150	in	150		•	623	ال ال ال ال ا		~	•	O
\$-2	273 Ar 3802	13	1						1						i			385	
k_{13}	300 in 578)			4			1			i			1 1		i i	468	
300	433 in 800	7.1	122	in		F											1	1	<0.10
330	294 in 1000	i	150			1			1						1		892	1	0.45
168	650 12 272		1 390	in	80	285	j. 1	246	275	in	245	250	1 m	શાક		-30	117	140	2.00
** Q	745 in 370		290	in	85	275	iu	7 3	260	<u>i</u> .1	73	250	11;	370		85	67	1.72	2.50
160	934 ir 310	•	295	in	92	290	12	250	21.0	ir)2	200	ា	92	09	S3	247.	254	-
2.37	800 in 280	14 N	355	ln	219	235	i.1	21 8	235	in	51_{\odot}	230	in	314		2	1.47	517	3.40
320	3.60 in 420	7.	145	in	140	150	1a	140	1.40	in	<u>ik</u> c	230	i7	1 50		258	352	470	0.16
1.14	217 in 144	71	200	in	112	170	in	186	180	. in	3.86	195	ir	.60	97	1000	1 53	74,	0
•	127 : n 20	51	1			140			1			1.			1	-	-		0
L	261 : 690		180	in	125	150	in	125	160) <u>1</u> 2	125	160	e de r	125	72		325	500	0
290	180 1. 850	76	· .70	in	300	165	14	1.33	160) i z	200	1.55	in	123	ଟ୍ଡ	200	320	460	0.57
125	327 0 n 45	Υ,	465	in	:5	300	in	35	1.38	ic ti	n 35	260) in	- 56	24	33	36	36	1.9
150	115 : 30	*	30	iz	3 a y	150	in in	105	140	: ir	1.05	150 P) in	109	5			-	0

•

an antifation of

· -

F								a.	ې چې د	
Ī							Oxy ge	n kenanter		
II II	RUN CONC. ATE NO. (mg/ft ²)		AMBI- ENT		RESSURE IN X 5 in x msec)	THE	RATE OF PRESSURE RISE INSIDE PITS	38 44 (13 9) - 1		
FATE		TEMP. (°T)	Pl	P ₂	°3	(psig/sec)	T ₁			
		[2190]			and and the second s					
/8	C-1	80.0	70	3160 in 108	1 00 - 1		38600			
5/9 5/9	C-2	160	70	3000 in 102	.		38500			
3/9	C-3	240	70	3160 in 97			42500			
[/9	C=4	320	70	2960 in 104	-	-	16000		•	
5/9	C≈5	400	70	3050 in 118			46000	• •		
i/9	c- 6	480	70	3240 in 96	19 4		45000	9 9 1 1		
5/10	C⊷7	160	325	30 x in 100	-	р н ж.	42500			
5/10	c- 8	240	125	3200 in 97	-	-	44900	caù-		
· 5/10	C9	320	125	3070 in 94		-	60000			
5/10	C-10	400	125	3100 in 90		•	66000	• •		
<u>/11</u>	C~11	480	155	3190 in 72			10000	58		
		[HABCODI]	1							
-5/11	C~12	160	70	2910 in 88			65000	2 2 8 8		
5/11	C-13	240	70	2880 1n 87		-	47500			
5/11	C~14	320	70	2960 in 76	۹.,		52000			
5/12	C-15	հնն	70	2910 in 73			4 3560			
.5/12	C-1 6	480	70	2910 in 15	~~	-	53500			
-5/12	C-17	160	1.85	2800 in 81		-	N8000	Ru	107	
5 /12	c-1 8	240	123	2830 s.a. 49		-	51000	92	312	
5/12	C 49	320	125	28.10 in 80		-	52000	38	207	
5/12	C-20	400	125	3090 in 76	-	-	38000	<u>'91</u> .	115	
5/12	C~21	480	125	2900 in 67		-	50000	gh.	1:5	
k					A					

ele la

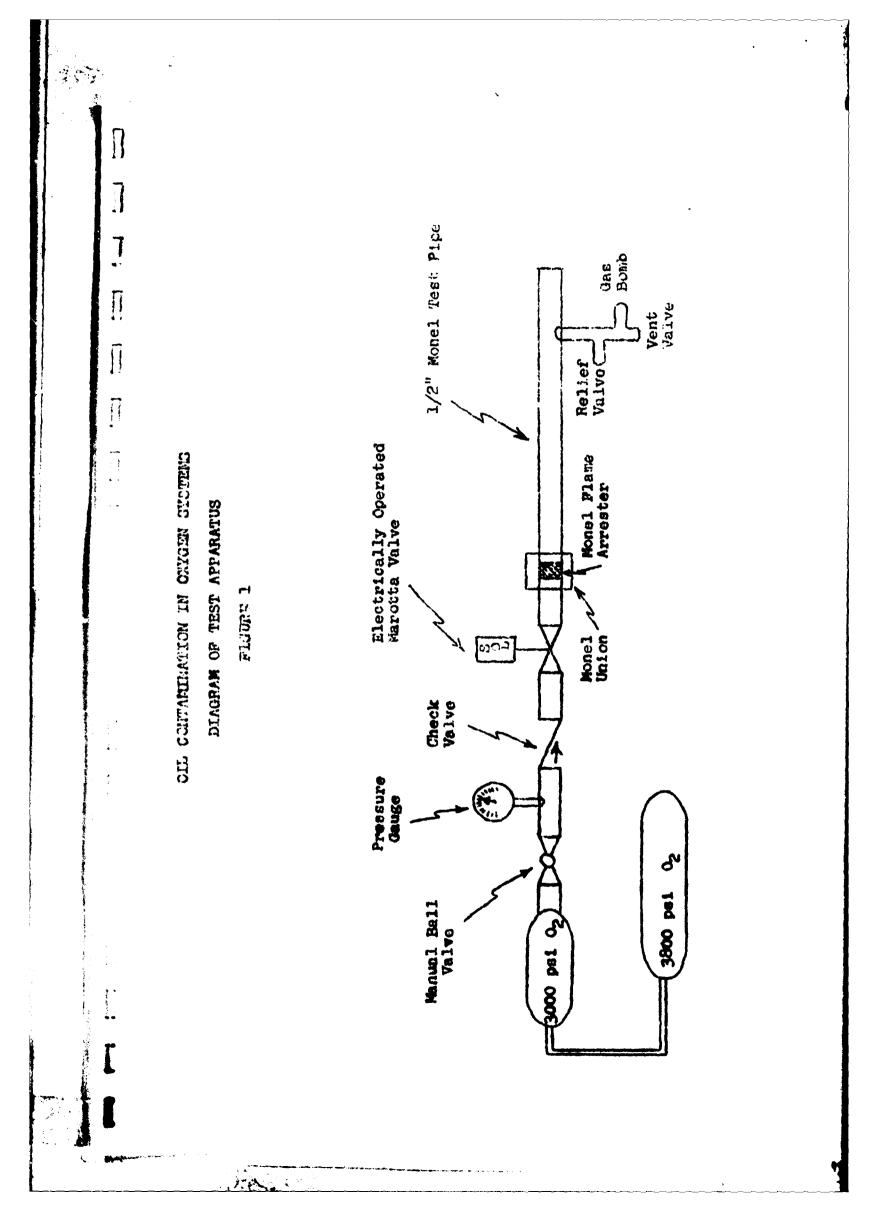
1409 1238 - 24.5

. . tes 30 090 to selfa a

PER- CENT				羽					G NE of the	DE Versilie)	S) Og
CENT CO 2		F	S.,		23	2		•		1 3	•
	1							t •		с. с. д	
0 .			• • • •		1	160 in 558			1		
0		105	hờ án		1 <u>10</u> 4 33 ≇	26.0 10 207	, déta , contrar	:			
53.0		97	60 in	2	1.58 - 97	155 Ia 55	stress Mµ. €				
0.32	79	23 4	05 I.E		39 C. S.	150 (a. 16)	a state i se st O f	1 1	1		
0.68	3	448	ડુંદ કુંદ્ર	0	alle in 3	210 11 253	10 12 226	- 		ļ	
1.97	3	95	70 12	i i	dig m g	245 i.: 190	10 an 55	,	2 2		
0.23	16	100	£2 (1)	s. [自動する。	No in root	tio a juar	e setter	1 1 1	10	i
0.23	64	√/	<u>.</u>		340 24 9.	265 14 97	0.0 is 97			-] /	
0.45	70	9: 	5	1	170 24 5-	JWD 14 SH	143 Co. A		5	11.2	
0.77	38	90	(4) a.) }	170 m fr	230	11 Ma 40	- 	· · ·	.28	
5-52	9		20.94 2		230 (p. 14	265	$(1)^{-1} \in \frac{\pi}{2}$	Čt	•	3 3 2	
		Ì									
0.12		ea	75 tu		17) in St	200 34 20	915 - 4 88		· · ·		
0.50	89	67	50		55 m 57	160 1 1	220 · a 25%		1 -		i
1.32		76	5) n		255 N B	820 11 20	265 (10 106		· ·		
0.46	26	73	ธราม		249 sn 73	135 73	190 11 73		- / /		1
1.85	30	75	50 a.e.		160 Ja 73	170 14 3	170 11 95	İ	•		
0			15 12 -		35 in 81	1		94	1.2 ¹ 1	120	.
0.23	49	1	50 1e		140 00 72			50	£ 3h	134	2
0.38	38		35 in 1		120 18 80	1	Ş	95	893.	11.5	.
1.09	9		20 in 1		- 55 in 60	210 in (6	į	97		12	,
1		1			272 228 670 -				120		
1.58	14:	07	50 (n.)	ŀ	~	175 in (7	210 in 67	703	158	123	

, A NEW STREET

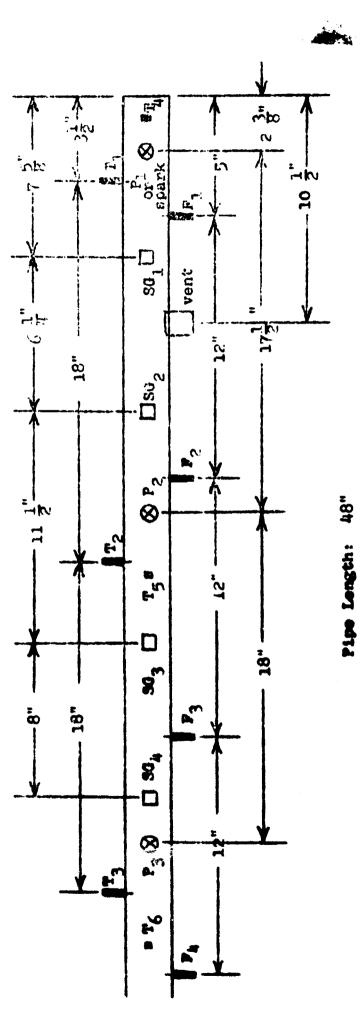
) 1998

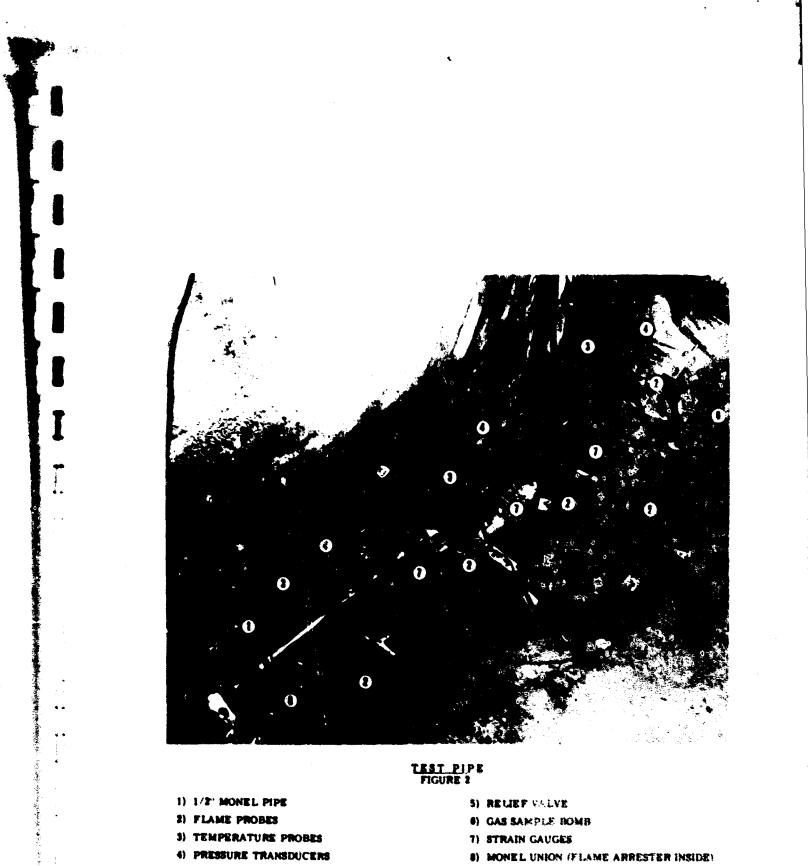

いると言いたろ

1

A. 199

Ser was a p


 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

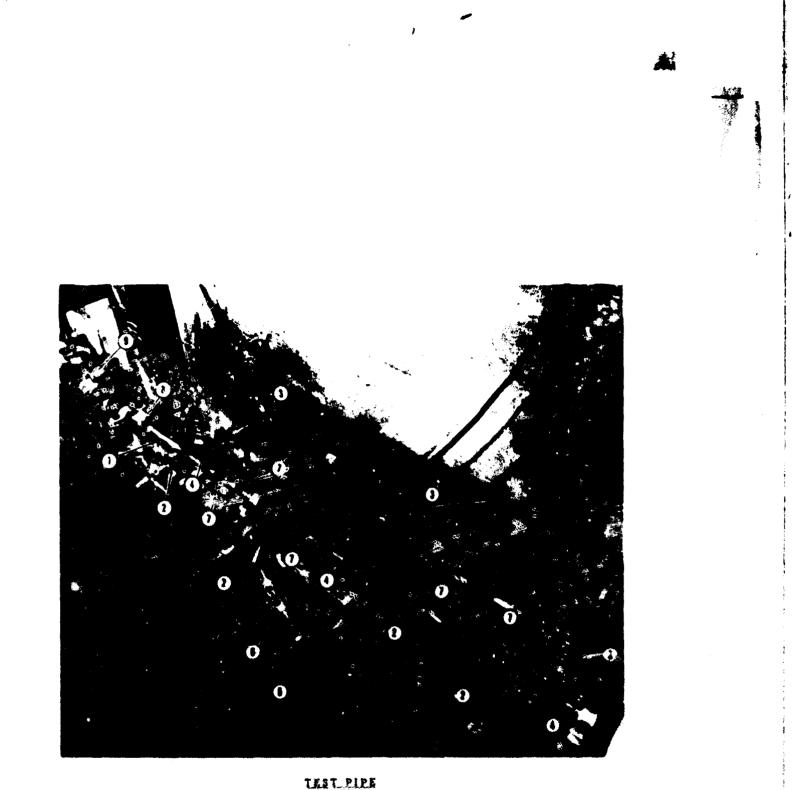

CACIFY SOLF NO PRAY THE HURLEN I SOLFNOLAND STATE SOLF.

AL MIULLA

- T Thersocouple
- P Flame Probe
- P Pressure Transducer
 - 3G Strain Gauge

Contraction of the second second

- 1) 1/2" MONEL PIPE
- 2) FLAME PROBES


•

1.1.1.1.1 1

- 3) TEMPERATURE PROBES
- 4) PRESSURE TRANSDUCERS

المالي الدينية سيري بابار واستمرا سنوا سنوا المتعادية

- 5) RELIEF VALVE
- () GAS SAMPLE BOMB
- 7) STRAIN GAUGES
- 8) MONEL UNION (FLAME ARRESTER INSIDE)

TEST_PIPE

- 1) 1 2" MONEL PIPE
- 2) FLAME PROBES
- 3) TEMPERATURE PROBES
- 4) PRESSURE TRANSDUCERS

- 5) RELIEF VALVE
- 6) GAS SAMPLE BOMB
- 7) ETRAIN GAUGES
- B) MY VEL UNION
- 9) MAROTTA VALVE

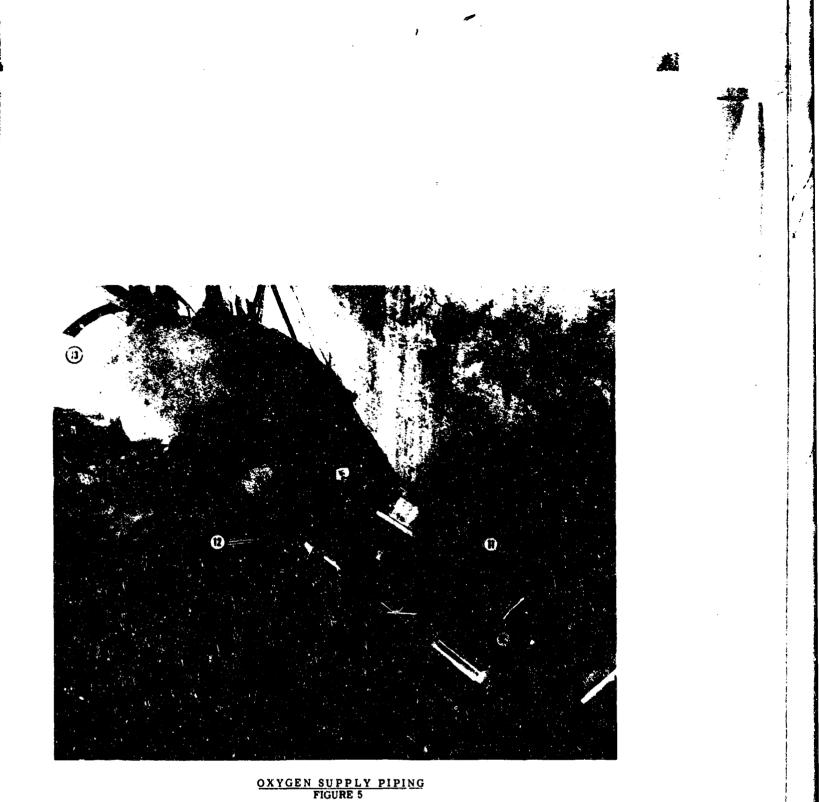
1. 2. 6

1

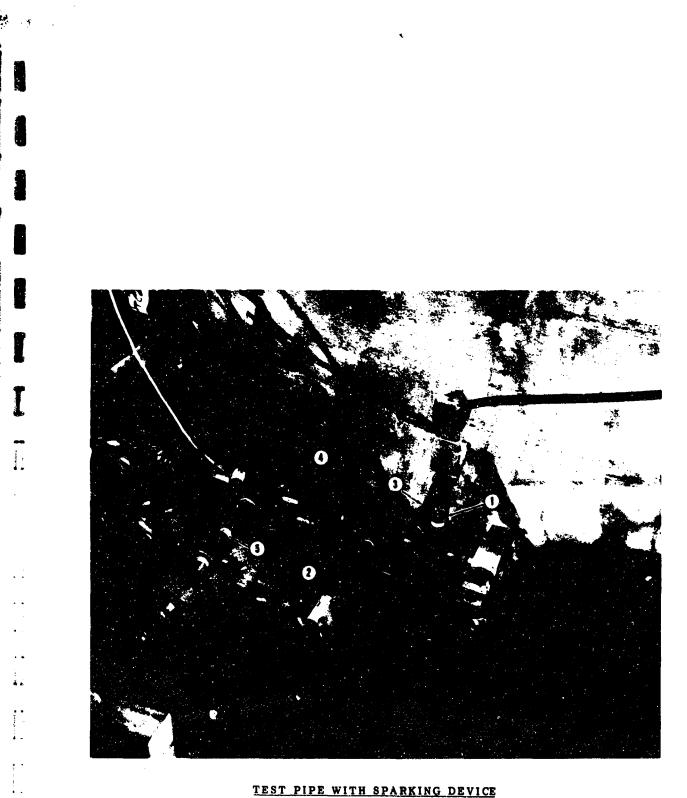
I

Ţ

Ĩ


l

f


for a second second second

OXYGEN SUPPLY PIPING FIGURE 4

- 9) MAROTTA VALVE
- 10) CHECK VALVE
- 11) PRESSURE GAUGE
- 12) HAND OPERATED BALL VALVE

- 10) CHECK VALVE
- 11) PRESSURE GAUGE
- 12) HAND OPERATED BALL VALVE
- 13) 3000 PSI OXYGEN SUPPLY TANK

TEST PIPE WITH SPARKING DEVICE FIGURE 6

- 1) SPARKING DEVICE
- 2) FLAME PROBE
- 3) TEMPERATURE PROBE
- 4) STRAIN GAUGE
- 5) VENT LINE

1.1.1.1

San and the second of

ŝ

÷

۰.

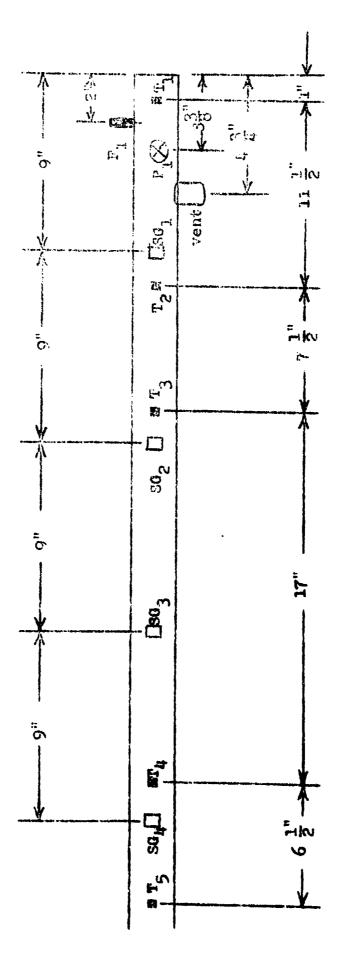
j • •

1.

--

ī

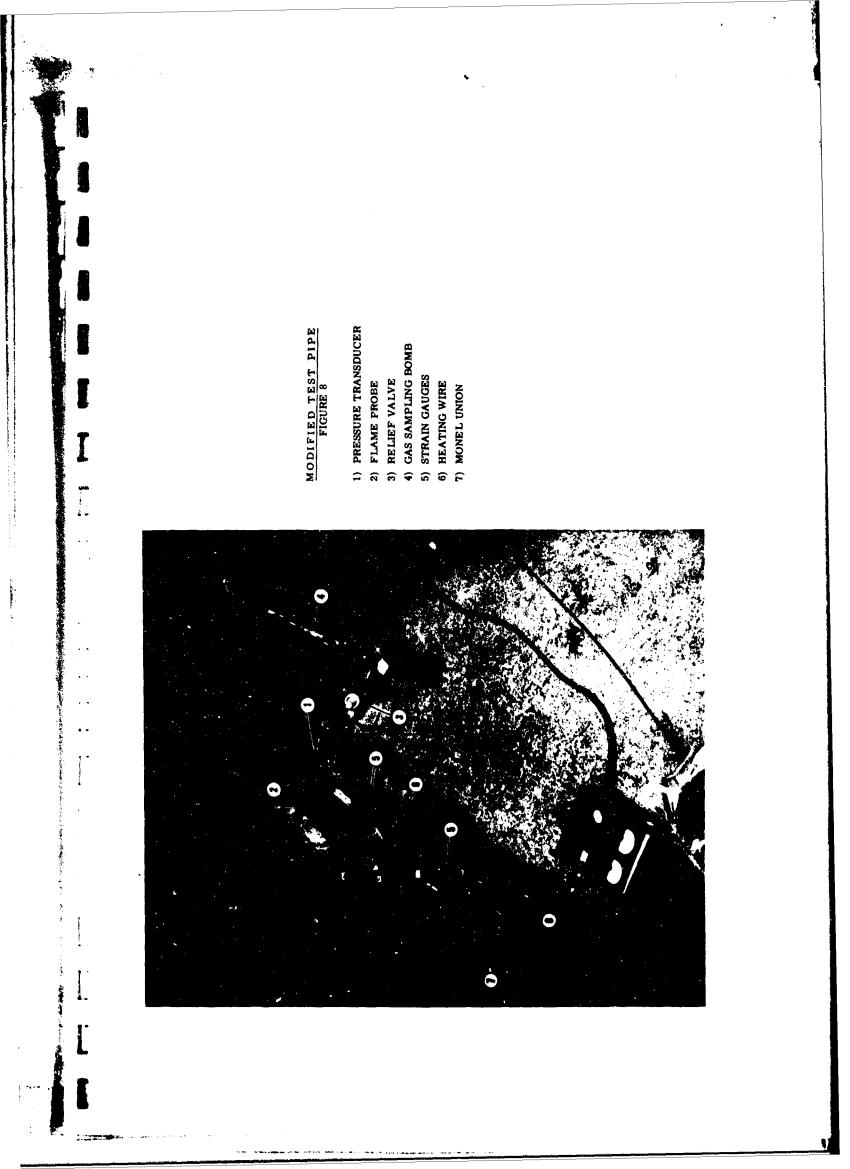
I

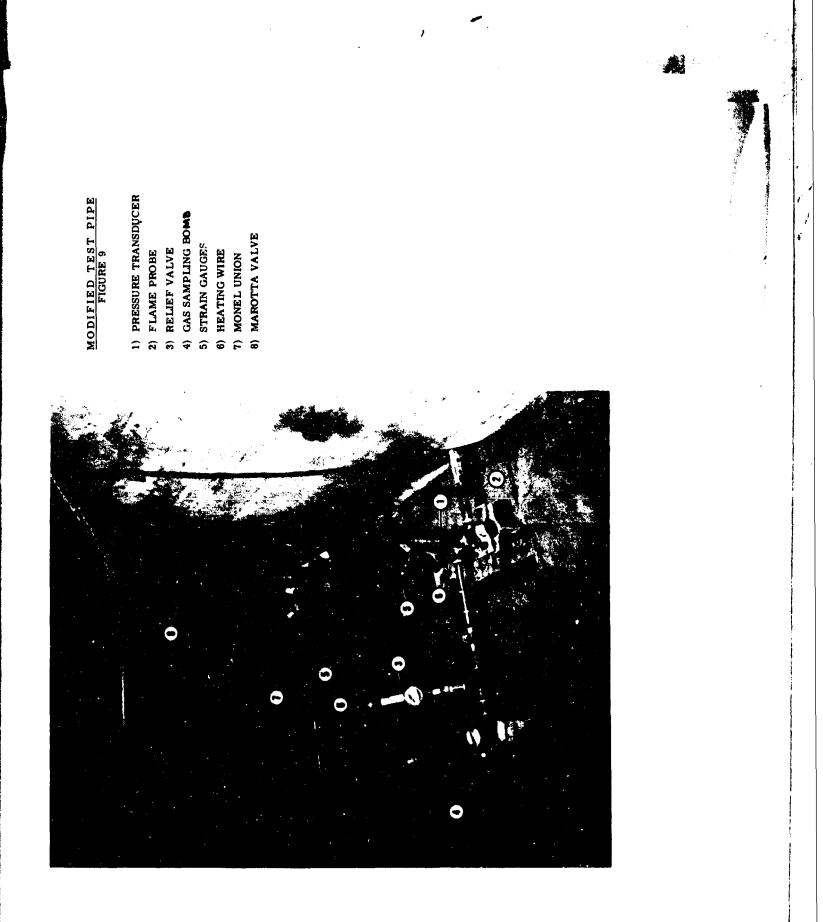

A MARKET THE WAR A MANAGEMENT OF THE SHE IS THE STATE

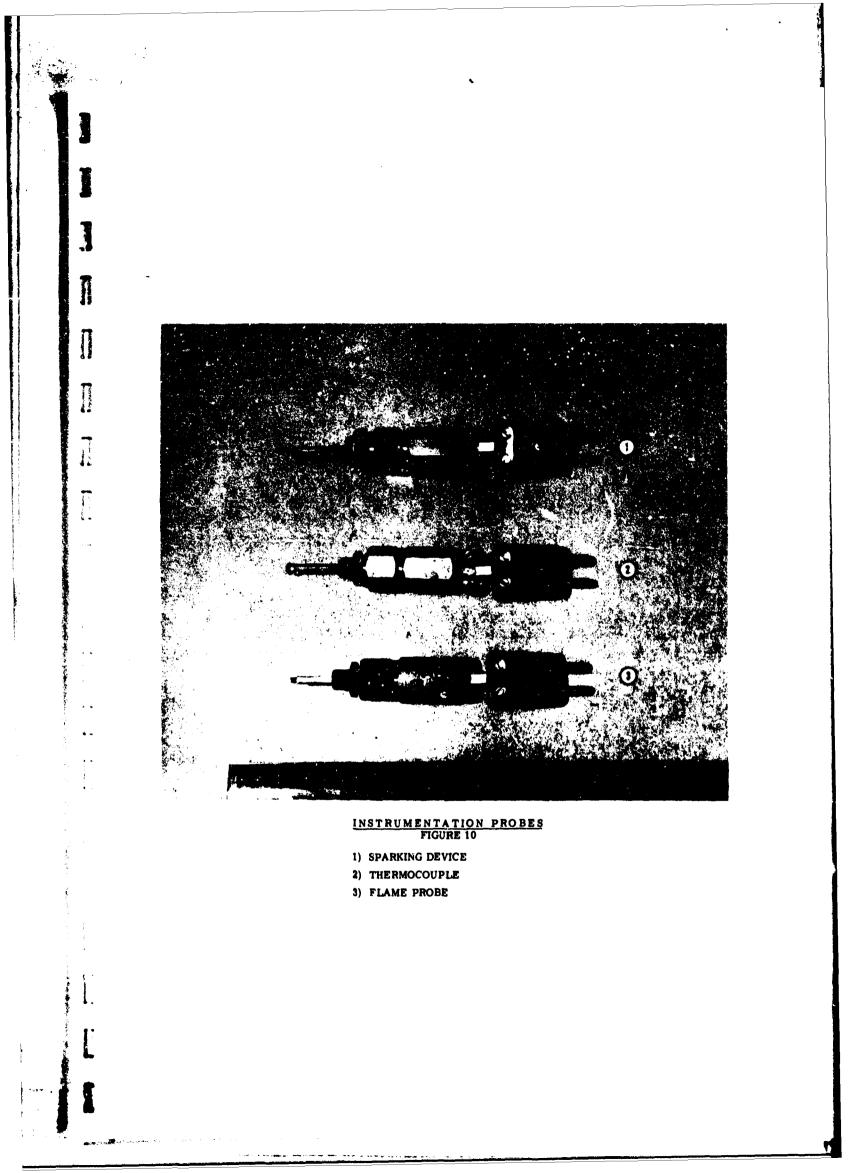
ENTRY THE TRATE THEY A PARTICULAR THOMAN AND AND THEY AND THE

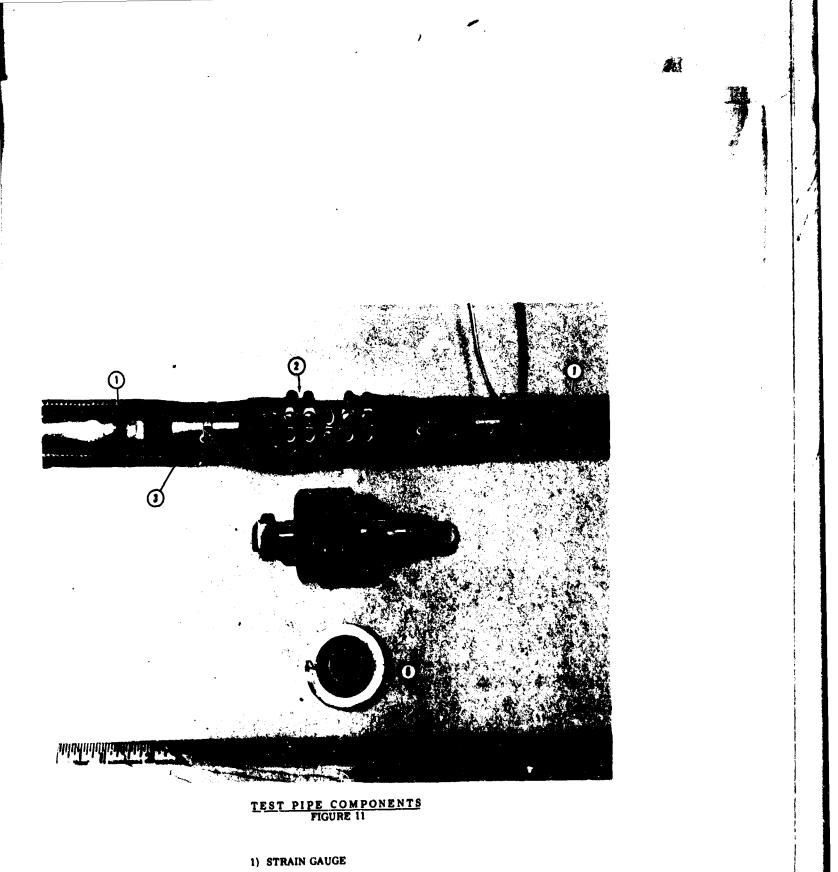
PIGURE 7

- T Theracocouple
- E Flane Probe
- P Prussure Transducer
 - Sü Strein Gauge

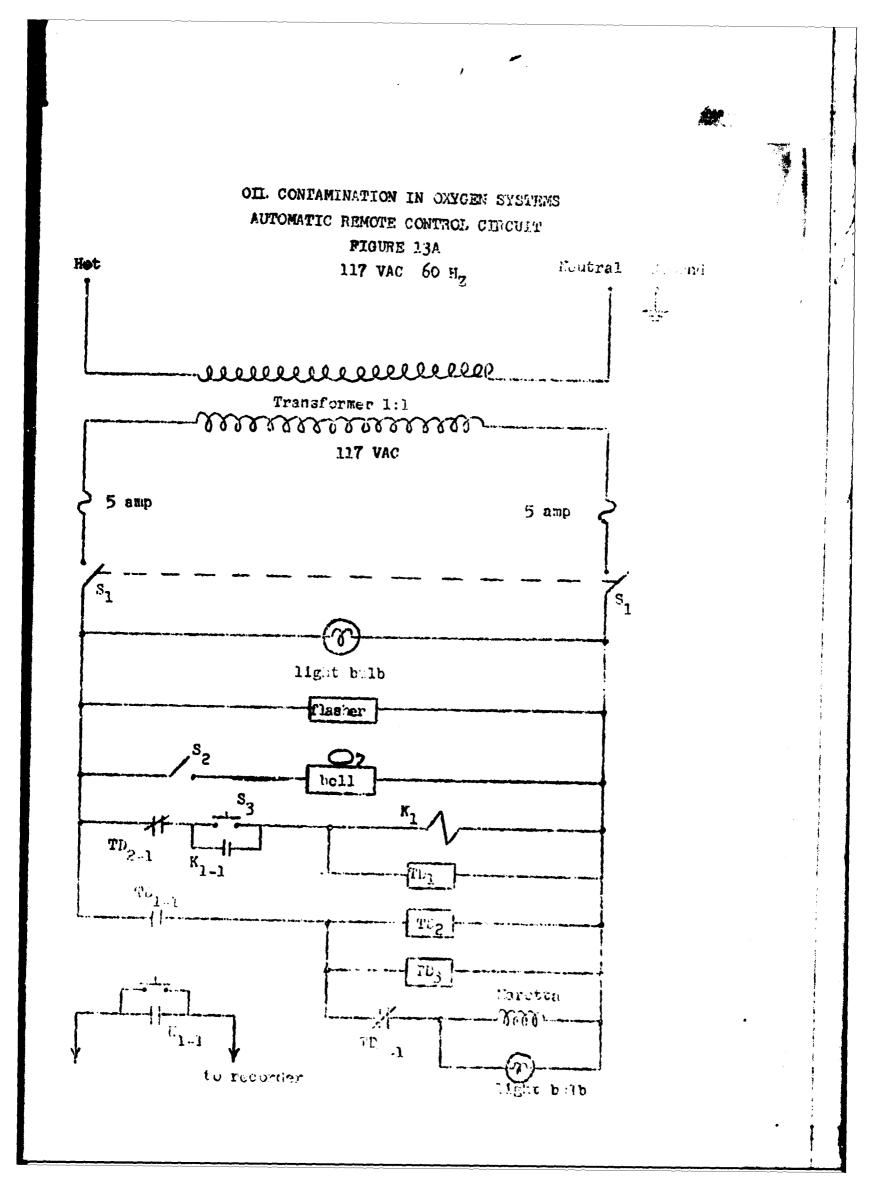

>

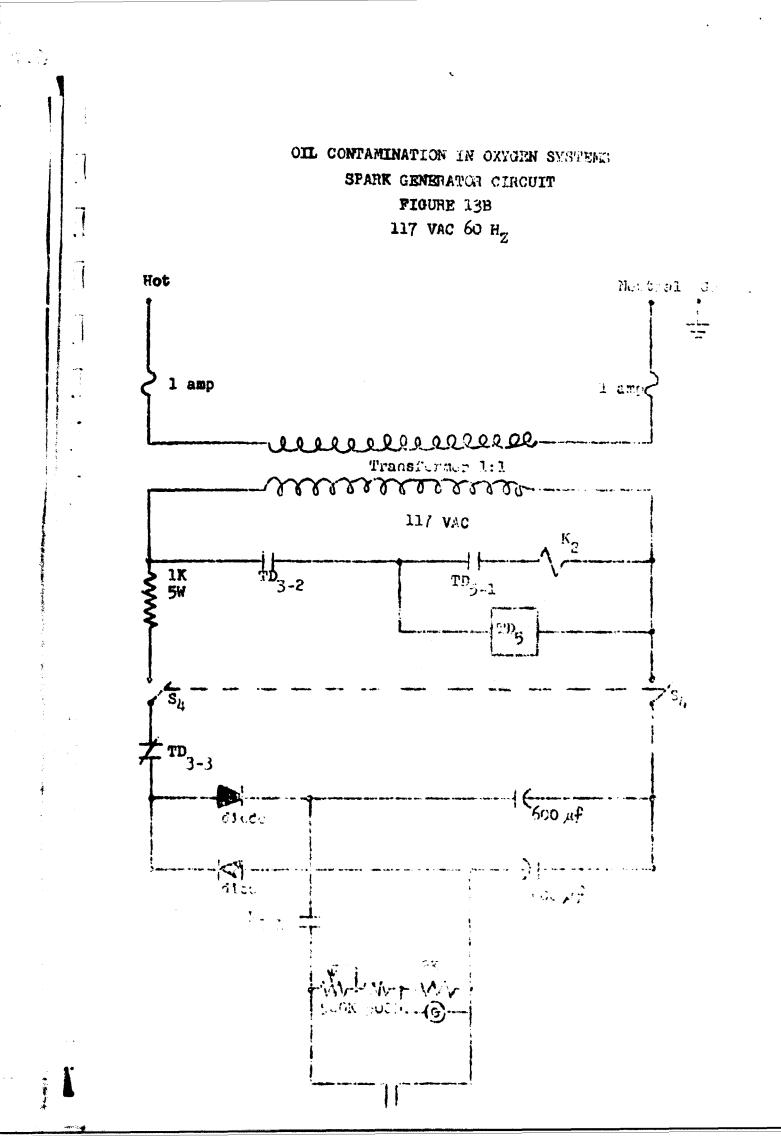



;

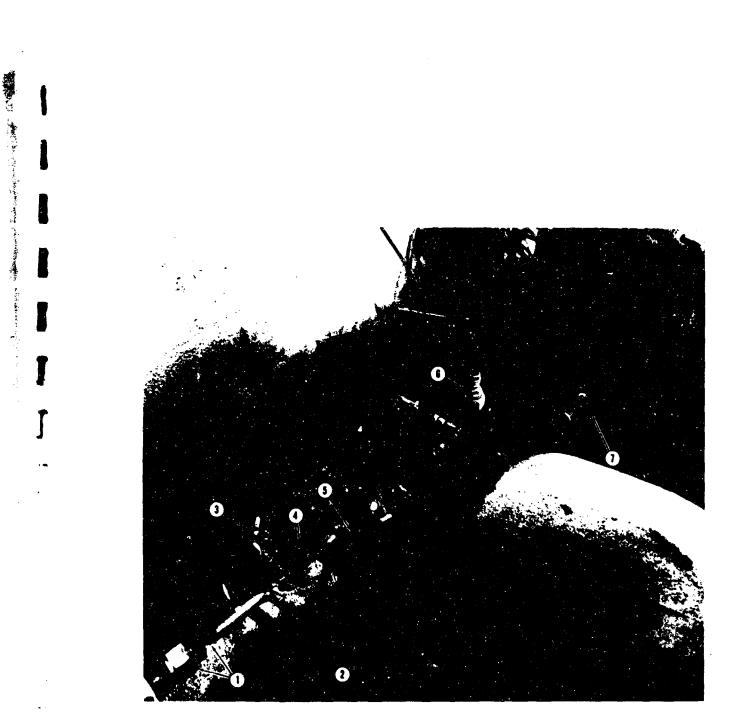

Pipe Length: 45 1"

1.1

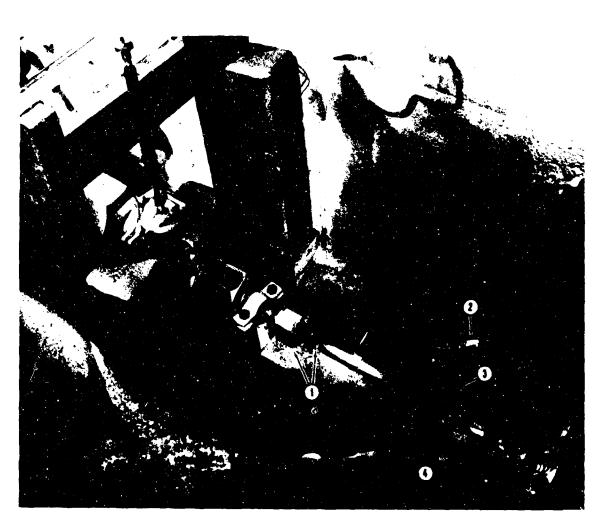



- 2) TERMINAL FOR STRAIN GAUGES
- 3) HEATING COIL
- 4) PRESSURE TRANSDUCER
- 5) FLAME ARRESTOR

ς. 靜 $\left[\right]$ Conérator Modulator Csoillograph Transducer Lisplacement Attenuator Calibration Amplifier Π Concrol Board Masuer Π Abbreviations: [t ; 11. n**n.** 1 <u>____</u> 5 JEC. · any INSTRUMENTATION BLOCK DIAGRAM - PIGURE 12 Channel Ultra-Recordс. в. с. 18 vioiet Osc. • OIL CONTAMEMATION IN UXYGEN SYSTEMS . C.R.C. 3KC Carrier System Amp. ちまう小学のないですうう C. R. C. í l Spark Gen. & . Att. Network Jupelte C. Auto Netwo 21 Att. Metwork Network Cal. & Att. Network Network 301. B i Pener Atte Cal. . wrotta Valve Preserv couples • Thermo-Strain Device Trans. Displ. Trans. Spark Oagec L

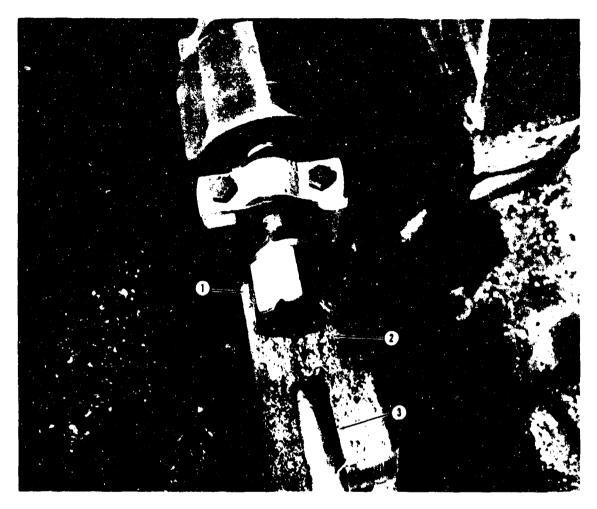

.

۰.


4 Percenta & 7 **م** ج 2.4 2.6 when should well-when the shear of the state of the 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.9 2.2 CEC 18 Chanaci Ruserder at Charles Diacharge ARTOMATIC Zone TIME (SECONDE) 1. 1 . U. L. L. L. Spail. Power to Rquipment Bell and Flather -Parurta Guarts to Close Marovia Starts to Open Marutta Closed -Parctus Open Low Prenn Pateon 0 I arreal L'EON

TEST PIPE AFTER EXPLOSION FIGURE 15

- 1) BURNED UNION AND TEST PIPE FITTING
- 2) CHARRED, BENT FLAME PROBE
- 3) BENT THERMOCOUPLE CONNECTOR
- 4) MELTED, EMPTY PRESSURE TRANSDUCER BOSS
- 5) DISPLACED STRAIN GAUGE TERMINALS
- 6) DISPLACED COPPER O-RING ON PRESSURE TRANSDUCER
- 7) RELIEF VALVE


.

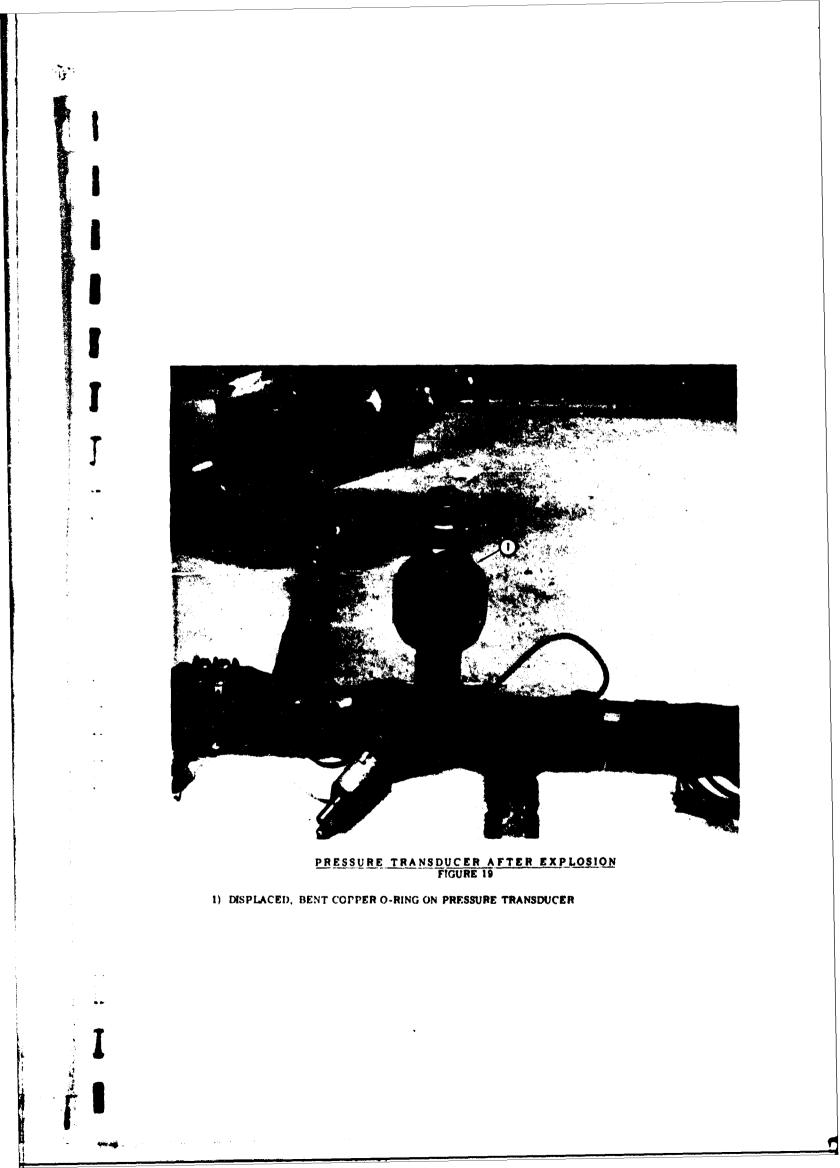
Å

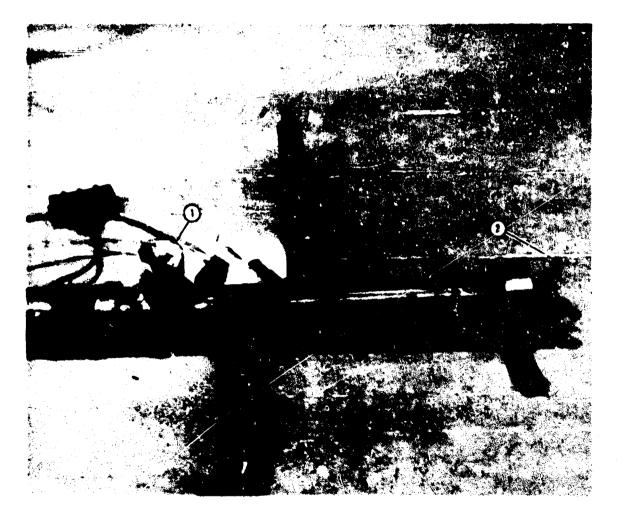
TEST PIPE AFTER EXPLOSION FIGURE 16

- 1) MELTED UNION AND TEST PIPE FITTING
- 2) BROKEN THERMOCOUPLE
- 3) MELTED, EMPTY PRESSURE BOSS
- 4) DISPLACED STRAIN GAUGE TERMINAL

TEST PIPE AFTER EXPLOSION FIGURE 17

1) MELTED UNION

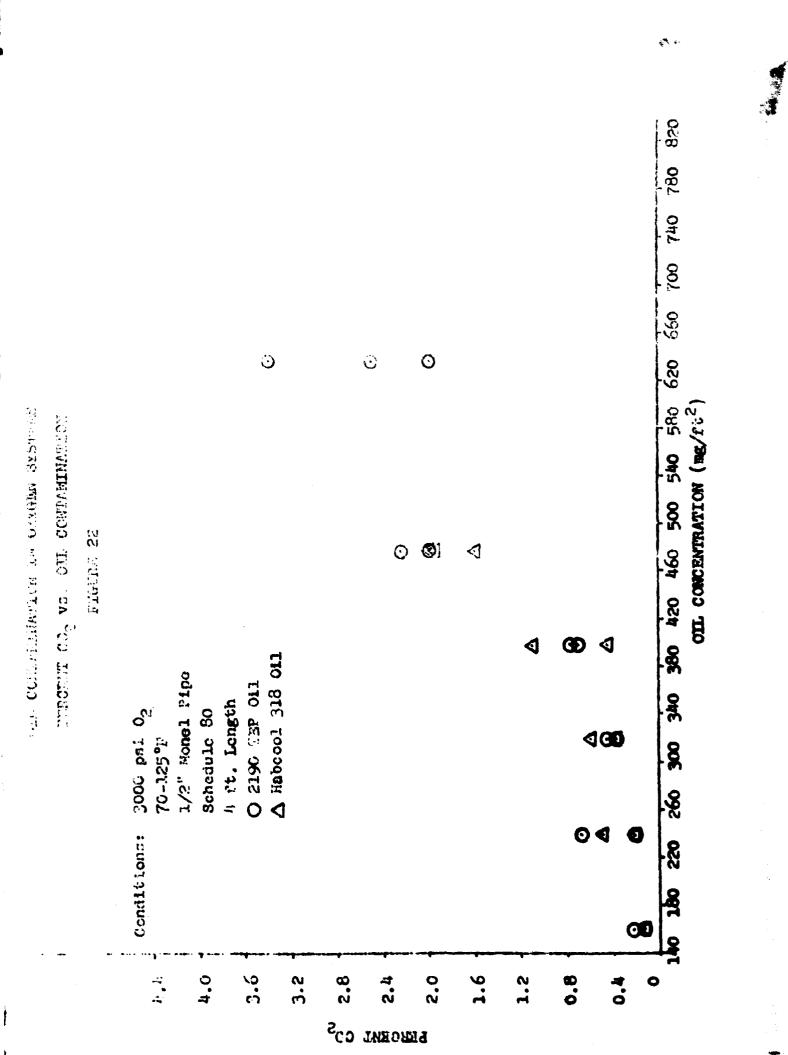

- 2) MELTED TEST PIPE FITTING FRAGMENTS
- 3) TEST PIPE



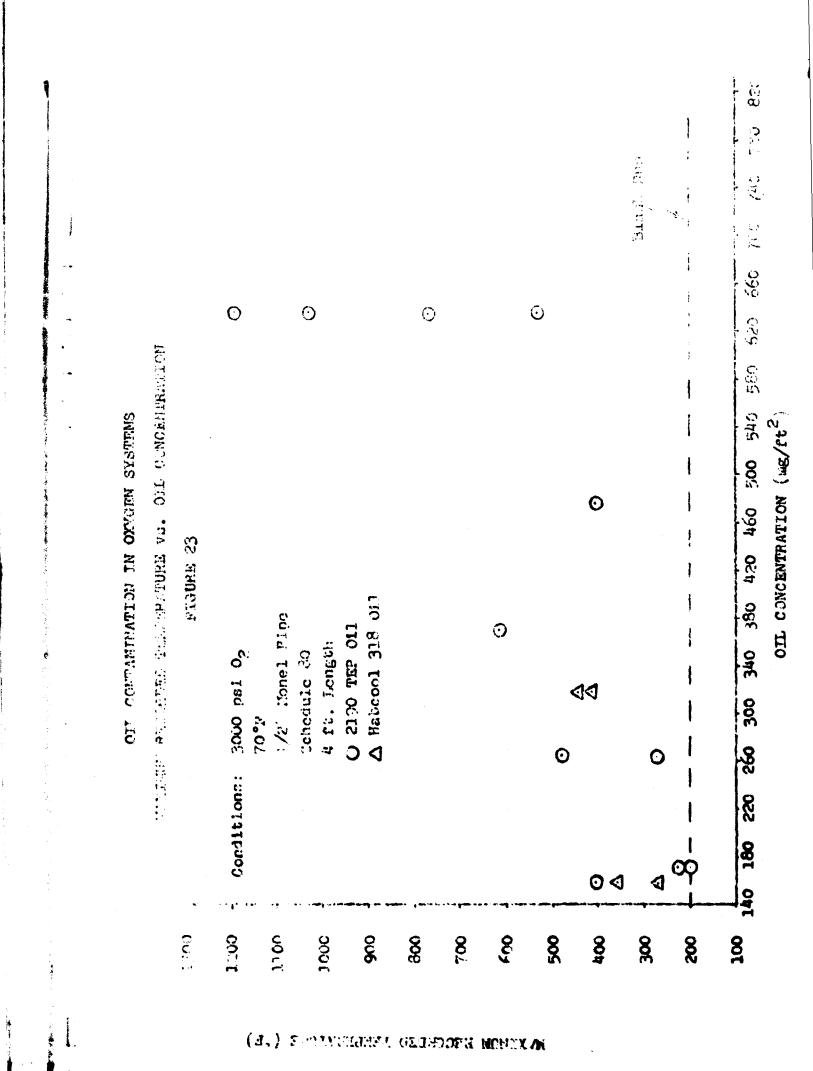
1

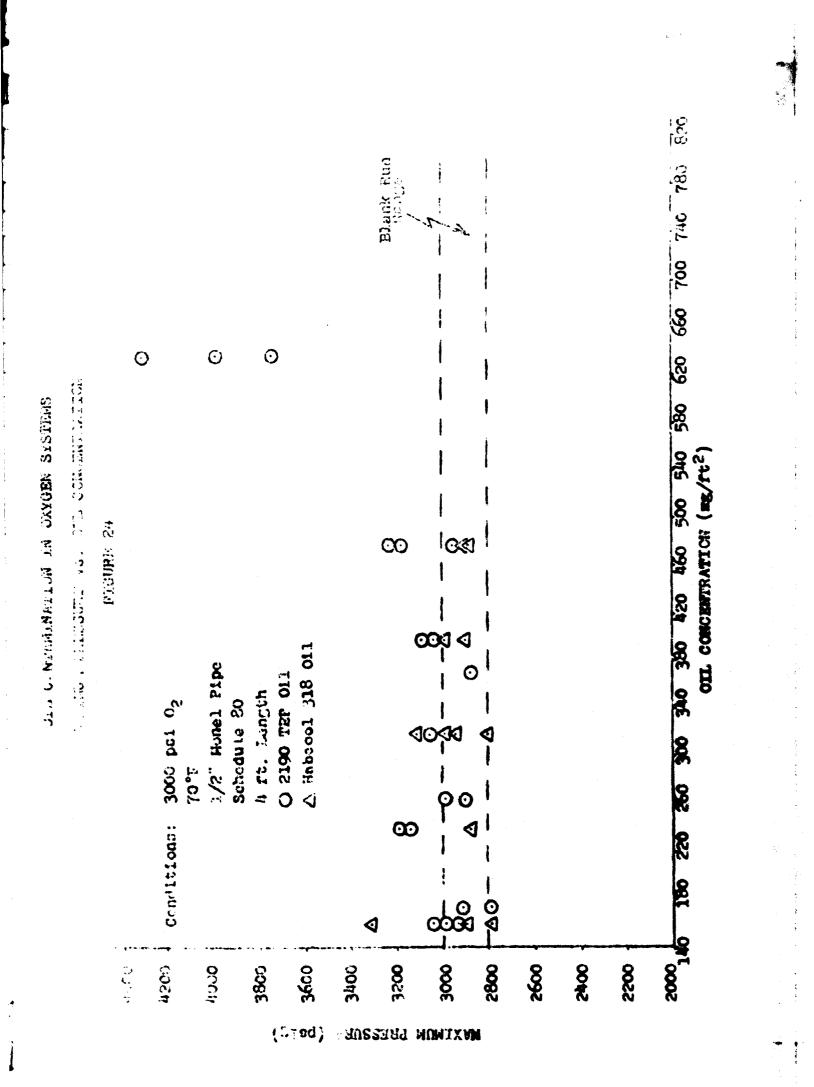
PRESSURE TRANSDUCER AFTER EXPLOSION FIGURE 18

1) PRESSURE TRANSDUCER FITTING



• ↓


INSTRUMENTATION BOSS AFTER EXPLOSION FIGURE 20


MELTED PRESSURE TRANSDUCER BOSS
MELTED TEST PIPS FITTING

		Conditions: 3000 psi 0 ₂ 70°F 2/2" Monel Pipe Schedule 30 2150 TEP 011	Ignition Range	400 500 011 Ouguentireation	(mg/ft)-/ 39.0 %8.3 Oll Flim Thickners (microns)
SUDVEL NOTHEREY CALANTEREY	FIGURE 21		Transition Range Rang	005 002	19.5 29.3
			No Ignition Ran ge	. 100	0 9.75

-

Security Classification							
	INT CONTROL DATA - R&D and indexing ennotetion must be entered when the overall report is classified)						
Bestern Point Poad Bestern Point Poad Groton, Connestiont Centration	- · · · · · · · · · · · · · · · · · · ·						
CII CONCERNICTION 3.04 (NUT DESCRIPTIVE NOTES (Type of report and inclusive of Placi Peoper (July M AUTHOR(S) (Lest name, frist name, initial) PEOCL, JOHN B. DERLICOR, MEPLEN Jee (Po	12(00) (2 ()) () () () () () () () ()						
JUNE 1 7	76 TOTAL NO OF PAGES 75 NO OF REFS						
A SUNTHACT OF GRANT NO STORE TEALS	9. ORIGINATOR'S REPORT NUMBER(S)						
- PROJECY NO	413-(7-101						
**** %0. 3717	96 OTHER REPORT NO(5) (Any other numbers that may be ession this report)						
DAVAILABILITY LIMITATION NOTICES	Sent is unlimited Margarenny 55666 Commod Department of the Navy Sector, D. C.						
Sutting cil evenly coated 2000 psi () were determin 2000 psi () were determin	TO 1 Arienting ell and Absocl #31 on a 1/2 sonel pipe exposed to ed. Hitle danger of ignition or below oil ogneentrations of 1/0 mg/f e (0 mg/ft will ignite in a pare C						
	Bost Arctitable Copy						

•

Security Classification

WHELA ... IFTERD

		LI	NK A	LI	NK D	LIN	IK C
KEY WORDS		ROLE		ROLE	WT	ROLE	IK C
		1	1		1	1	<u>† </u>
• . • • • •					1	1	l
Compression Tenisten			į	[
Catygen Systems			ļ	[
Clausing Presedures			1	1			
		i	1				
		4					
		Í					
		1			1		
						i I	
		l l		1	ł		
INSTR	UCTIONS		1				
ORIGINATING AC LIVITY Ensey the name and address		by security	Classific	ation	ine star	fard states	men*-
the contractor subcontractor, grantee, Department of De-	Buch as:				-		
nse activity or other organization (corporate author) issuing a report.	(1)	"Qualified	requester	s may ob	tain copi	es of this	l I
R. REPORT SECORTY CLASSIFICATION: Enter the over-		report from	-		At		
I security (assification of the report. Indicate whether	(2)	"Foreign a report by D				ition of th	i e
Restricted Data" is included. Marking is to be in accord-	(3)	"U. S. Gov			10 C 1 C 1		òf
GROUP: Automatic downgrading is specified in DoD Di-		this report	disectly f	rom DDC			
ctive 5200.10 and Armed Forces Industrial Manual. Enter		users shall	request t	hrough			••
e group number. Also, when applicable, show that optional arkings have been used for Group 3 and Group 4 as author-				<u></u>			- • "
'ed.	(4)	"U. S. mili report direc	tary agen tly from 1	DDC. Ot	obtein co her qualif	opies of the field uners	his
REPORT TITLE. Enter the complete report title in all	j –	shall reque			40000		
apital letters. Titles in all cases should be unclassified. a meaningful title cannot be selected without classifica-							"
on, show title classification in all capitals in parenthesis	(5)	"All distrit	ution of t	his repor	t is cont	rolled. Qu	ad-
amediately following the title.		ified DDC u	IBers Bhal	I reques	through		
DESCRIPTIVE NOTES Is appropriate unter the type of port, e.g., interim, progress, summary, annual, or final.							
ive the inclusive dates when a specific reporting period is	Services	pepartmen	been furn tof Comm	ushad tu herce, foi	the Offic sale to (e of Tech the public	nical Indi
overed.	cate this	fact and er	iter the pi	ice, if ki	10 WIL		
AUTHOR(5): Enter the name(s) of author(s) as shown on the report. Enter last name, first name, middle initial.		PLEMENT	ARY NOT	ES: Use	for addit	ional expl	lena-
military, show rank and branch of service. The name of	tory note						_
e principal a thor is an absolute minimum requirement	the depai	NSORING M	iect offic	ACTIVI e or labo	TY: Ent	er the nam onsoring (ne of Date
REPORT DATE. Enter the date of the report as day, with, year, or month, year. If more than one date appears	Ing for) 1	he research	and deve	lopment,	Include	address.	
the report, use date of publication.	13. ABS	TRACT: E	nter an ab	stract gi	ving a br	ief and fa	ctuel
TOPAL NUMBER OF PAGES. The fittal page count	st may al	of the docu so appear e	ment India	cative of	the repor	t, even th	ough
ould follow normal pagination procedures in my enter the industry of pages containing information.	port. If a	id-litional a	pace is re	quired, a	continue	tion shee	t she
NUMBER OF REFERENCES Enter the 'otal number of	be strach						
ferences cited in the report.	t is the second	highly desi aified. Es	rable that	the abst	ract of cl	lassified (report:
E. CONTRACT OR GRANT NUMBER. If appropriate, enter	en indica	tion of the i	nilitary s	curity c	lessificat	tion of the	in-
e applicable number of the contract or grant under which e report was written.		in the pars			1. T		
, Ac. & Bd. PROJECT NUMBER. Enter the appropriate	Ther aver, the	e is no limi auggested i	tailon on ength in i	the lengt from 140	h of the e to 224 -	abstrect.	How-
litery department identification, such as project number,		WORDS: K	-				10
oproject number, system numbers, task number, ctc.	or short p	hrases that	character	ize a rep	ort and w	aav be use	nd an
ORIGINATOR'S REPORT NUMBER(S): Enter the offi- al report number by which the document will be identified	Inviex enh	ries for cata so that no s	loging th	e report.	Kev wor	de must b	
d controlled by the originating activity. This number must	fiers, suc	h as equips	ent mode.	i designa	tion. trad	le neme, n	ailitar
onque to this report.	project co	de name, ge will be foll	eographic	location.	may be	used as k	ev.
OTHER REPORT NUMBER(S): If the report has been signed any other report numbers (either by the originator)	text. The	susignmen	t of links,	rules, a	nd weigh	ts is optic	mal.
by the sponsor), also enter this number(s).					-	• - · ·	
AVAILABILITY/LIMITATION NOTICES. Enter any time							
ations on further dissemination of the report, other than those				S. Garage			

]

]

]

]

]

].

J

Best Available Copy