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Abstract 

Y 2 
An algorithm Is proposed for minimizing certain nice C 

functions f on E  assuming only a computational knowledge of 

f and 7f.  It Is shown that the algorithm provides global 

convergence at a rate which is eventually superlinear and possibly 

quadratic.  The algorithm is purely algebraic and does not require 

the minimization of any functions of one variable. 

Numerical computation on specific problems with as many as 

six Independent variables has shown that the method compares very 

favorably with the best of the other known methods. The method is 

compared with the Fletcher and Powell method for a simple two 

dimensional test problem and for a six dimensional problem arising 

in control theory. 
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This note proposes an algorithm for minimizing certain nice 

2 
C  functions f on E  assuming only a computational knowledge 

of f and Vf.  It Is shown that the algorithm provides global 

convergence at a rate which Is eventually superllnear and possibly 

quadratic.  The algorithm Is purely algebraic and does not require 

the minimization of any functions of one variable. 

In the following, let  6 and r be positive numbers with 

6 < %.    Let f be a real-valued function defined on E , x0 be 
n 

an arbitrary point of E , and I. be the 1  column of the 

n x n Identity matrix, I. Let S denote the level set of f 

at x , viz.: S « |x e E : f(x) f.f(x0)|. Assume that for some 

2 * 
open convex set S containing S, f e C (S). Let H(x) denote 

the Hessian of f at x. Assume that for all u e E  and for all 
n 

x E S, there exists a constant w > 0 such that  [u,H(x)u] ^ w||u|| . 

An algorithm for minimizing f(x)  consists of performing the 

following computations for k « 0,1,2,...: 

k        th 
1. Compute the n * n matrix Q(x ) whose j  column Is 

vf(xk+ekii)-vf(x
k) 

ek 

where eo ■ r and 

0k - rll^x
1""1) || for k - 1,2,3  

In which (j) Is defined as follows: 
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(a)    If    k ■ 0,    or if    Q(x )    is singular,  or if 

[Vf(xk),Q"1(xk)Vf(xk)]  < 0, 

set    (j)(xk) - Vf(xk). 

(b)    Otherwise,  set    (Kxk) • Q"1(xk)Vf(xk) 

2.     Consider the function 

, k    v      f(x
k)-f(xk-v(l)(xk)) 

Y * g(x  ,Y) ■ -*—i—t "r    u   , 
Y[Vf(xk),0(xK)] 

k k If    g(x  ,1)   <  6,    choose    y,     so that     5 <^ g(x  ,Y. ) £ 1-6; 

otherwise  set    y^ * !• 

3.     Set    x        ■ x    - Yi^Cx  ). 

Theorem: Under the assumptionp stated above, 

1) the sequence    {x ]    converges to a point    z   minimizing   ft 

2) there exists a number   N    such that if   k > N   then    y^ = lj 

2)    the rate of convergence of    {x } is superlinear. 

Before proving this theorem we shall first establish 2 lemmas. 

Lemma 1.  If the sequence |e, }  of the above theorem converges to 0, 

then {||Q(x )-H(X )![} ■* 0 and for some K, there exists a positive number, 

üj'  such that for all k ^K and any h E E ,  [h,Q(x )h] 1 wf||h|| . 

Proof.  The existence of H(x)  Implies that given e > 0 there 

exists 6 > 0 such that for all h e E , ||h|| < 6, we have the validity 

of the inequality  || Vf (x+h)-Vf (x)-H(x)h|| < e||h||.  For large k we have 

that  II ^J II < a» ! 1 J 1 n» and therefore 

ana 
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Vf(xk+9,I.)-Vf(xk) . . 
II *J HjCx^H   <  e,    (1 1j   < n),    where    Hj (xK) 

denotes the jth column of    H(xk).    Thus    (|| Q(xk)-H(xk) ||1 -► 0. 

To complete the proof observe that because    ^—1—* v is bounded 
l|h||2 

k k 
below and Q(x ) Is eventually close to H(x ),  it follows that 

^ '^ ,.'   *     is also eventually bounded below. 
Ilhll2 

Lemma 2.    Assume    A    and    B    are square matrices satisfying 

(A-B)A~1 Ij   < 1.    Then    B-1    exists and 

lA^-B"1!!  !   llA-BlhllA^H2   '   (1-||A-B||   HA^H)-1. 

Proof.     Set    C ■ B-A,    and compute that 

A-^B"1 A^-U+C)"1!!   -   HA^d-ECA+OA"1]"1) 

llA^d-tl+CA"1]'1) 

By hypotheses     ||CA     ||   < 1,    whence: 

[I+CA-1]"1 »  I - CA-1 +  (CA-1)2 -   ...     - AB"1. 

Thus     11A"■'"-B"1 ||   <_ || A"1 || IJCCA^d-CA"^...)) 

<   HcllllA^l^d-IICA^II)-1. 

We now turn to the proof of the theorem. 
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Proof of Theorem. 

We show first that the set S Is bounded. If not, there Is an 

unbounded sequence say {z } in S. Take u e S. Then by Taylor's 

theorem and the fact that H(x)  Is bounded below by u) on S we get 

f(zk) >f(u)+ ||zk-u ||[(||2k-u||) j- ||Vf(u)||],  showing that 

I, 

f(z ) ^ f(x0)  for large k;  thus S must be bounded. 

Clearly, by definition of <Kxk), Vf(xk) f  0 implies 

k    k 
[Vf(x ),<J)(x )] > 0. Arguing as in [1] p. 148, after we observe that 

$    is bounded on S, we conclude that |[Vf(x ),(Kx )]} -»-0. 

Let  {x } be a subsequence of  {x } with the property that 

fxn+1-xn} -* o.  By Lemma 1,  [7f (x11) ,Q(xn)Vf (x11) ] >_ || yf(xn) H^'  for 

all n sufficiently large.  Take M so that ||Q(xn) || <.M, n « 1,2,... , 

Then  (7f(xn),Q"1(xn)7f(xn)] - [ Vf (x") ,*(xn) ] ^ M"^'11 Vf (xn) 112,  showing 

that  {Vf(x )} -> 0.  If z is any cluster point of  {x11}, clearly 

Vf(z) » 0.  Because f(x) - f(2) 1 b||x-z | |2w,  it follows that z  is 

r  k i 
the unique minimizer of f; moreover, since  |f(x )}  is strictly 

decreasing, both |f(x )} and  |f(x )} converge downward to f(z).  Thus 

if z'  is any cluster point of  {x }, fCz') = f(z), which implies that 

r ki k 
z' = z.  Consequently,  {x } -»■ z.  This implies that  <|)(x ) •*• 0. 

We now turn to the proof of 2). In what follows the superscripts 

k on x  will often be omitted.  By Taylor's theorem we may write: 

R(x Y) . i . tH(Ohth] 
gU.y;  i  2[Vf(x),h] 

11 «^ ..i m—~m*mm»mm»m^e*m 
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where h = yQ (x)Vf(x), and g lies "between" x and x + h. 

Set  H (£) - Q(x) + H (C) - Q(x), then we calculate that: 

c/x vW 1 . X . vf(H(g)-Q(x))Q'
1(x)7f(x).Q~1(x)Vf(x)] 

1 2[7f(x)»Q i(x)Vf(x)] 

As above we have that 

[u,Q"1(x)u]   > UJ'M^IIU112 

whence: 

|i-i-g(x..)i^iiH<^wil"2. 
200* 

Since    {|| C -x   ||} ■*■ 0,    we have by uniform continuity on    S    that 

{|| H (C )-Q(x ) ||} •> 0.    Thus eventually    y^    can be taken always to be unity. 

To conclude the proof we write: 

xk+1 - z - xk - z - YkQ"1(xk)Vf(xk) 

- xk - z - YkQ"1(xk)Q(xk)(xk-z) + Y^'^HK (xk)(xk-z)-7f(xk)] 

+ YkQ"1(xk)[Q(xk)-H(xk)](xk-z). 

Since     |H (xk)(xk-z)-7f(xk)|   < e||xk-z ||,    whenever    || xk-z ||     is 

sufficiently small, we get  that 

||xk+1-z ||   <   jl-Yj ||xk-z|| + ^llQ'^xSllx^z Ij 

+ Ykl|Q"1(xk)|| ||Q(xk)-H(xk)||  ||xk-z 



■I 

T-^^^.A»*«*^.'!»-^.. <*■;•.^^■--■■•i> Kmif imm WMMMBBllimt )»B**^ tJ-r;«»»««^ ■   . 

-6- 

Choose    k    sufficiently large so that    Yk " 1    and     || Q(x )-H(x ) ||   < e. 

Then    ||x     "zll i"~r  ||x -zH ,    showing the superlinear convergence. 

Remarks. 

1. Q(x ) can be any sequence of n * n matrices with the 

k    k 
property that  || Q(x )-H(x ) || -> 0.  The hypothesis that H(x) 

is bounded below by u on S can be replaced by the hypothesis 

that S is bounded and f has a unique point z where the 

gradient vanishes and H(x) is bounded below by ui on some 

k 
neighborhood of z.  Indeed it is sufficient that H(x ) be 

bounded below on any infinite subsequence of {x }. 

3 
2. If f e C  on S then by the application of Kantorovich's [2] 

theorem, the ultimate rate of convergence is actually quadratic. 
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Nuroerlcal Results 

The method of this paper has been used on some dozen test 

problems. For comparison, the method of Fletcher and Powell [3] and 

in some cases the method of steepest descent have also been tried on 

the same problems.  In all cases the method of steepest descent 

converged very much more slowly than the other two methods. 

Table 1 shows the results when the faster two methods were tried 

on a simple test problem of Fletcher and Powell [3] (originally given 

by Rosenbruck) 

2 2 2 
f(x1,x2) « (x2-x1) + .01(l-x1) . 

The number of steps required by the Fletcher and Powell method was 

about the same as for the method of this paper. It is hard to compare 

the time required by the two methods, particularly because of the fact 

that in the Fletcher and Powell method, it is easy to waste a lot of 

time obtaining a more accurate minimum than is really essential in the 

direction the method specifies. However, the method of Fletcher and Powell 

does  specify that the function be minimized in this direction, and one needs 

to have some reasonable criteria satisfied for the approximate minimum. 

The "number of function and gradient evaluations" column in Table 1 is 

not absolutely accurate because the number of function evaluations 

required is not exactly the same as the number of gradient evaluations 

required. However, the numbers in tie columns are approximately 

correct. In fhe case of the Fletcher and Powell method, if a less 

stringent minimization requirement were used, it is possible that the 
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number of functional evaluations could be cut  somewhat. 

Figure 1  shows the results when all three methods were tried on 

a six dimensional problem In control theory.    The problem consists of 

minimizing the function    w(A)    where    X    is a 6-dimenslonal vector. 

The vector    x(A)    Is defined as 

x(A)  -   /    B(T)G(A,T)di 

where 

B(T) 

0 

(-4 sin T + 3T) 

(4 cos T - 3) 

2(cos T - 1) 

2 sin T 

2(l-cos T) 0 

-2 sin T 0 

-sin T 

T    is constant,  and the 3-component vector 

G(A,T)   «  < 

IU-B(T) if     || A-B(T) II   >  1 

If    ||A-B(T) II  <_ 1. 

x  is a fixed 6-dimensional vector, and the scalar y 

Then 

T 
/ ||G(A,T) ||dT 
0 

w(A) - [A.x(X)-x0] - y. 



■■'I 

-9- 

In Figure 1 each dot represents a single step In the Iterative 

process. The crosses each represent ten  steps In the method of steepest 

descent.  In all cases the same final results were obtained. Notice 

that the Fletcher and Powell method starts out faster than the present 

method but that the ultimate convergence is more rapid for this new 

method.  Such behavior seems to occur quite often. 

c 
) 

/ 
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Teble 1 fCXj.Xj) -  (x2-xj)2 + .OKl-Xj)2 

Iteration 
Number 

Fletcher and Powell Method Our Method 

Number of function and 
gradient evaluations carred out 

f(x1,x2) Number of  function and 
gradient evaluations carried out f(xl,x2) 

.242 .242 

4 MIHO'1 .490X10"1 

11 .385X10'1 .380X10'1 

12 ^SS-IO-1 .334X10"1 

17 .187X10'1 .252X10'1 

9 .179X10"1 .214X10'1 

12 .144X10"1 .158XIO"1 

13 .lllxlO-1 .129X10'1 

12 .8e6»10'2 .939xl0"2 

11 .686»10"2 .688xl0"2 

10 .596xl0"2 .450xl0"2 

14 .357><10"2 .329xl0"2 

11 .222''10'2 .186xl0"2 

8 .202«10_2 .125xl0"2 

13 .690«10'3 .642xl0"3 

8 .523«10"3 .281xl0"3 

9 .245xl0'3 .959x10"* 

10 .312»10'5 .215x10"* 

4 .167X10'5 3 .221xl0"5 

8 .759xl0'8 3 .435»10"7 

20 4 .107xl0'9 3 .241xl0'10 

21 5 .156xl0"15 3 .171xl0"16 

T '»"«l-.f« 
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