DAVID TAYLOR MODEL BASIN WASHINGTON, D. C. 20007 # CALCULATIONS ON THE COLLAPSE OF A SPHÉRICAL GAS-FILLED CAVITY IN A COMPRESSIBLE LIQUID by Russel R. Lilliston Distribution of this report is unlimited. August 1966 Report 2223 SP-6-0002 **Best Available Copy** ### DAVID TAYLOR MODEL BASIN WASHINGTON, D. C. 20007 # CALCULATIONS ON THE COLLAPSE OF A SPHÉRICAL GAS-FILLED CAVITY IN A COMPRESSIBLE LIQUID by Russel R. Lilliston Distribution of this report is unlimited. August 1966 Report 2223 SP 6-0002 #### TABLE OF CONTENTS | | Page | |--|------| | ABSTRACT | 1 | | ADMINISTRATIVE INFORMATION | 1 | | INTRODUCTION | 1 | | Purpose | 1 | | Background | 2 | | THEORY | 2 | | Gilmore's Bubble Wall Equation | 2 | | The Integration: Hamming's Method | 5 | | The Eulerian Velocity and Pressure Fields in the Liquid | 7 | | RESULTS | 8 | | DISCUSSION | 9 | | SUMMARY AND CONCLUSIONS | 19 | | FUTURE WORK PLANNED | 20 | | ACKNOWLEDGMENTS | 20 | | APPENDIX A - A PROCEDURE FOR HALVING THE INTERVAL OF INTEGRATION | 21 | | APPENDIX B – JUSTIFICATION FOR THE USE OF HAMMING'S METHOD | 23 | | APPENDIX C - THE COMPUTER PROGRAM FOR IBM 7090 | 25 | | REFERENCES | 36 | #### LIST OF FIGURES | Pa | ge | |---|----| | gure 1 — Spherical Collapse as a Function of Time for a Water Depth of 100 Feet, an Initial Radius of 1 Inch, and an Initial Internal Pressure of 1 Atmosphere | 10 | | gure 2 — Spherical Collapse as a Function of Time for a Water Depth of 1000 Feet, an Initial Radius of 1 Inch, and an Initial Internal Pressure of 1 Atmosphere | 11 | | gure 3 — Spherical Collapse as a Function of Time for a Water Depth of 1000 Feet, an Initial Radius of 1 Inch, and an Initial Internal Pressure of 2 Atmospheres | 12 | | gure 4 — Spherical Collapse as a Function of Time for a Water Depth of 1000 Feet, an Initial Radius of 1 Inch, and an Initial Internal Pressure of 10 Atmospheres | 14 | | gure 5 — Spherical Collapse as a Function of Time for a Water Depth of 10,000 Feet, an Initial Radius of 1 Inch, and an Initial Internal Pressure of 1 Atmosphere | 16 | | gure 6 - Simplified Flow Chart | 27 | | gure 7 — Data Input for Computer Program | 29 | | gure 8 — Data Output for Computer Program | 30 | #### NOTATION | В | A constant which characterizes the adiabatic nature of the liquid medium (for water $B = 3000$ atmospheres) | |-----------------------|---| | C | Isentropic sound speed in the medium as a function of ambien and transient pressures | | c _∞ | Sound speed in the undisturbed liquid medium | | H | Specific enthalpy of the liquid medium | | n | A constant which characterizes the adiabatic nature of the liquid medium (for water, $n = 7$) | | P | Pressure in the liquid at the bubble wall | | P | Pressure of the gas inside the sphere | | P ₀ | Initial pressure of the gas inside the sphere | | $ar{p}$ | Pressure in the liquid outside the bubble wall | | P _∞ | Pressure in the undisturbed liquid medium; ambient pressure | | R | Instantaneous radius of the imploding sphere | | R_{0} | Initial radius of the imploding sphere | | 7 | Standoff (measured from the bubble center); component in the direction of the radial spherical coordinate | | t | Time | | t_R | Time measured at the bubble wall; time measured when the Eulerian position vector $r = R$ | | U | Instantaneous velocity of the bubble wall | | u | Eulerian velocity in the fluid outside the bubble wall | | v | Instantaneous specific volume of the gas inside the bubble | | " 0 | Initial specific volume of the gas inside the bubble | | у | Polytropic gas constant for an adiabatic process | | $ ho_{\infty}$ | Density of the undisturbed liquid medium | #### **ABSTRACT** This paper presents a method for calculating the instantaneous pressure, velocity, acceleration, and radius associated with the collapse of a spherical gas-filled cavity in an infinite compressible liquid. The method is an independent approach which makes use of Hamming's technique to numerically integrate Gilmore's differential equations which describe the collapse. Included is a computer program which will perform the necessary calculations on a IBM 7090/1401 digital computer. Results obtained are in good agreement with those of Hickling and Plesset, whose work was unknown to the present author when he undertook the study. It may be inferred that the peak shock wave pressure is significantly reduced by a decrease in ambient pressure, an increase in internal pressure, and/or a variation of the specific heat ratio by proper selection of the gas. Control of the last two parameters can be investigated as a possible means of protecting glass spheres against sympathetic implosion in multiple sphere buoyancy systems. #### ADMINISTRATIVE INFORMATION This work was funded under Special Projects Office Project Order Number 6-0002. #### INTRODUCTION #### **PURPOSE** Because of the excessive weight-displacement ratios obtained with tough metals such as steel or aluminum, designers are turning toward nonductile materials for use in buoyancy systems for all depth vehicles. Spherical glass shells are among the components for such systems.^{1, 2} In a system which contains a number of buoyancy spheres, it is essential to know the effect that the collapse of one sphere will have on neighboring spheres in order to prevent catastrophic failure. A two-part investigation has been initiated: - 1. The definition of the free-field pressure-time history due to the implosion of a single sphere. - 2. Determination of the loading and response of a sphere to the pressure field generated by the implosion of a neighboring sphere. References are listed on page 36. This report deals with the analytical determination of Part 1, based on the assumptions that the spherical shell has negligible weight and thickness and that it contains air at arbitrary pressure. #### **BACKGROUND** The need for more complete understanding of the hydromechanical problem of cavitation and the gas bubble phenomena of underwater explosions has encouraged more and more detailed investigations into the pulsations of underwater gas bubbles. One of the earliest of these investigations was made by Rayleigh in 1917. A more refined treatment was successfully completed by Herring in 1941. Sometime later (1952), Gilmore took a different approach and postulated equations to describe the growth or collapse of a spherical bubble in a viscous compressible liquid. Gilmore's description is presented in the next section. #### THEORY #### GILMORE'S BUBBLE WALL EQUATION On the basis of the Kirkwood-Bethe hypothesis, 6 Gilmore has derived an equation (w'ich he calls a "second order" approximation) which accurately describes the (nonmigratory) oscillations of a spherical gas-filled cavity in an infinite compressible liquid. If R is the radius of the sphere, H the specific enthalpy of the surrounding liquid, and C the isentropic sound speed in the liquid, then Gilmore's equation is: $$\ddot{R}R\left(1 - \frac{\dot{R}}{C}\right) + \frac{3}{2}\dot{R}^{2}\left(1 - \frac{\dot{R}}{3C}\right) = H\left(1 + \frac{\dot{R}}{C}\right) + \frac{R\dot{H}}{C}\left(1 - \frac{\dot{R}}{C}\right)$$ $$R(0) = R_{0}, \quad \dot{R}(0) = 0$$ [1.1] where $$C = c_{\infty} \left(\frac{P+B}{p_{\infty}+B} \right)^{\frac{n-1}{2n}}$$ [1.2] and $$H = \int_{p_{\infty}}^{p} \left(\frac{P+B}{p_{\infty}+B}\right)^{-1/n} \frac{dp}{\rho_{\infty}} = \frac{n(p_{\infty}+B)}{(n-1)\rho_{\infty}} \left[\left(\frac{P+B}{p_{\infty}+B}\right)^{\frac{n-1}{n}} - 1\right]$$ [1.3] Here c_{∞} , p_{∞} , and ρ_{∞} are respectively sound speed, pressure, and density in the undisturbed liquid. B and n are constants which characterize the adiabatic compression of the liquid (for water, B=3000 atm, n=7). P is the pressure in the liquid at the bubble wall. If viscosity and surface tension are neglected and the pressure p inside the bubble is uniform, then pressure is continuous across the boundary of the sphere, i.e., P=p except at time t=0 when the pressure in the fluid is artificially and discontinuously reduced from $P=p_{\infty}$ to $P=p(0)=p_0$. The gas can be assumed to undergo an adiabatic expansion (or compression). From thermodynamics, for an ideal gas, $$p_0 v_0^{\gamma} = p v^{\gamma} \tag{1.4a}$$ where γ is a constant (the specific heat ratio), v is specific volume, and the subscript 0 refers to some initial state. Since the volume of a sphere is proportional to its radius $$\frac{v_0}{v} = \left(\frac{R_0}{R}\right)^3$$ [1.4b] Elimination of volume between Equation [1.4a] and Equation [1.4b] yields $$P = \begin{cases} p_{\infty} & t = 0 \\ p = p_0 \left(\frac{R_0}{R}\right)^{3\gamma} & t > 0 \end{cases}$$ [1.4c] For air (y = 4/3), the exponent 3y becomes 4. Usually the value of y is taken to be 1.4 for air. This value represents the behavior of air fairly accurately, but since y decreases with increasing pressure, 4/3 represents a rough average. It will be seen later that the use of a constant value of y leads to a deficiency in the model. Combining Equations [1.1], [1.2], [1.3], and [1.4c] and taking n = 7 yields the following ordinary differential equation for R: $$R\ddot{R} \left[1 - \dot{R} \left(\frac{p_{\infty} + B}{p_{0} \left(\frac{R_{0}}{R} \right)^{4} + B} \right)^{3/7} \right] + \frac{7}{6} \left(\frac{p_{\infty} + B}{\rho_{\infty}} \right) \left[1 - \left(\frac{p_{0} \left(\frac{R_{0}}{R} \right)^{4} + B}{\rho_{\infty} + B} \right)^{3/7} \right] + \frac{1}{6} \left(\frac{p_{0} \left(\frac{R_{0}}{R} \right)^{4} + B}{p_{\infty} + B} \right)^{3/7} \right] + \frac{1}{2} \dot{R}^{2}$$ $$+ \frac{\dot{R}}{c_{\infty}} \left(\frac{p_{\infty} + B}{p_{0} \left(
\frac{R_{0}}{R} \right)^{4} + B} \right)^{3/7} - \frac{\dot{R}}{c_{\infty}} \left(\frac{p_{0} \left(\frac{R_{0}}{R} \right)^{4} + B}{p_{\infty} + B} \right)^{3/7} \right) + \frac{1}{2} \dot{R}^{2} \dot{R}^{2}$$ $$- \frac{\dot{R}}{c_{\infty}} \left(\frac{p_{\infty} + B}{p_{0} \left(\frac{R_{0}}{R} \right)^{4} + B} \right)^{3/7} + \frac{1}{2} \dot{R}^{2} \dot{R}^{2$$ $$R(0) = R_0, \quad \dot{R}(0) = 0$$ Once B, R_0 , p_0 , p_{∞} , and c_{∞} are specified, it is possible to find a numerical solution for R(t), R(t), $\ddot{R}(t)$, and p(t). The initial velocity $\hat{R}(0)$ is taken throughout this paper to be zero. With the help of Equation [1.5], Gilmore has pointed out that near t = 0, there is a small finite jump in velocity during an infinitesimally small interval of time, i.e., $$\dot{R}(0_+) = \frac{p_0 - p_\infty}{\rho_\infty c_\infty}$$ Hickling and Plesset give a good physical explanation of this imp in terms of the initial pressure discontinuity between p_0 and p_{∞} . This velocity jump may lead one to choose $R(0_+) = (p_0 - p_m)/\rho_m c_m$ as the initial condition on the velocity. Since the difference between $(p_0 - p_{\infty})/\rho_{\infty} c_{\infty}$ and zero is small compared to the magnitude of the velocities of interest, the question as to whether to start the solution at $\hat{R}(0) = 0$ or at $\hat{R}(0_+) = (p_0 - p_{\infty})/\rho_{\infty} c_{\infty}$ is somewhat academic. The plots of bubble wall velocity do not show this initial jump because the writer's solution of Gilmore's equation was actually carried out from $t = 0_+$ to avoid an infinite initial acceleration. (One of the terms appearing in the expression for the initial acceleration is the derivative with respect to time of P as given in Equation [1.4c]; this derivative is infinite at t = 0). The approximation $(p_0 - p_{\infty})/\rho_{\infty} c_{\infty} = 0$ was made to simplify the calculations of the initial values of R and R which are tedious even with such an approximation. It should be emphasized that one of the inherent assumptions upon which Equation [1.5] is based is that the cavity remain spherical throughout the collapse and subsequent oscillations. In some bubble collapse experiments, however, the single bubble has occasionally been observed to dissociate into many smaller bubbles at the end of the first collapse. #### THE INTEGRATION: HAMMING'S METHOD An ordinary differential equation of the form $$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0$$ [2.1] can be integrated numerically by one of various finite difference methods. One of these, the Hamming method, which is particularly well suited for the solution of Equation [1.5] can be found in Ralston and Wilf.⁹ It is outlined briefly here: - 1. The x-axis is equally divided into a large number of small intervals. The value of y at the end of the nth interval (i.e., the interval between x_n and x_{n-1}) is denoted by y_n . - 2. Knowing the values of y_i and y_i' at previous intervals x_i up to and including the *n*th (i=n), it is possible to calculate p_{n+1} , a first approximation to the $(n+1)^{*t}$ value of y_{n+1} at x_{n+1} , by means of $$p_{n+1} = y_{n-3} + \frac{4h}{3} (2y'_n - y'_{n-1} + 2y'_{n-2})$$ where h is the width of the interval; p_{n+1} is called the predictor. 8. Since the prediction p_{n+1} is based on the value of a series expansion of y, error due to truncation is incurred. Most of the difference between the true value of y and the estimated value of y is taken into account by the modifier (denoted by m_{n+1}) $$m_{n+1} = p_{n+1} - \frac{112}{121} (p_n - c_n)$$ where c_n is as defined in the next paragraph and the derivative of m_{n+1} is $m'_{n+1} = f(x_{n+1}, m_{n+1})$. 4. The predicted value is compared with a quantity called the corrector $$c_{n+1} = \frac{1}{8} \left[9y_n - y_{n-1} + 3h \left(m'_{n+1} + 2y'_n - v'_{n-1} \right) \right]$$ 5. If the predictor p_{n+1} lies close to c_{n+1} within some specified tolerance, then the final value of y_{n+1} at x_{n+1} is taken as $$y_{n+1} = c_{n+1} + \frac{9}{121} (p_{n+1} - c_{n+1})$$ 6. If the predictor p_{n+1} does not lie close enough to c_{n+1} , then either (1) a new value of p_{n+1} $$p_{n+1} = c_{n+1} + \frac{9}{121} (p_{n+1} - c_{n+1})$$ may be calculated and an interative process carried out or (2) the interval may be halved. This is discussed in more detail in Appendix A. In order to solve Equation [1.5] by the procedure just outlined, it is necessary to reduce the equation to a system of two simultaneous differential equations of the form of Equation [2.1]. This method is mentioned in Hildebrand.¹⁰ Write U for R; then Equation [1.5] can be written $$\dot{R} = U \tag{1.6a}$$ and $$\dot{U} = \left\{ \frac{U^{3}}{2c_{\infty}} \left(\frac{p_{\infty} + B}{p_{0} \left(\frac{R_{0}}{R} \right)^{4} + B} \right)^{3/7} - \frac{3}{2} U^{2} - \frac{4Up_{0}}{\rho_{\infty}c_{\infty}} \left(\frac{R_{0}}{R} \right)^{4} \left[\left(\frac{p_{0} \left(\frac{R_{0}}{R} \right)^{4} + B}{p_{\infty} + B} \right)^{4/7} \right] - \frac{3}{6} \left(\frac{p_{\infty} + B}{\rho_{\infty}} \right) \left[1 - \left(\frac{p_{0} \left(\frac{R_{0}}{R} \right)^{4} + B}{p_{\infty} + B} \right)^{6/7} \right] + \frac{U}{c_{\infty}} \left(\frac{p_{\infty} + B}{p_{0} \left(\frac{R_{0}}{R} \right)^{4} + B} \right)^{3/7} - \frac{U}{c_{\infty}} \left(\frac{p_{0} \left(\frac{R_{0}}{R} \right)^{4} + B}{p_{\infty} + B} \right)^{3/7} \right] \right\} / \left[1 - U \left(\frac{p_{\infty} + B}{p_{0} \left(\frac{R_{0}}{R} \right)^{4} + B} \right)^{3/7} \right] \right\}$$ Hamming's method can be applied simultaneously to Equations [1.6a] and f1.6b] to yield a numerical solution. The justification for use of this particular method is discussed in Appendix B. The function R(t) (from which U(t) and p(t) at the bubble wall can be obtained), determined by Equation [1.6], constitutes one of the boundary conditions necessary to find the Eulerian velocity and pressure fields in the fluid outside the bubble wall. #### THE EULERIAN VELOCITY AND PRESSURE FIELDS IN THE LIQUID In his "second order" approximation, Gilmore uses the Kirkwood-Bethe hypothesis in conjunction with the method of characteristics to determine the (Eulerian) velocity and pressure fields in the liquid. If the standoff r is greater than or equal to the initial radius R_0 , then the velocity u associated with the standoff will not be of the same order of magnitude as the sound speed except for the most severe implosions. Provided the approximation $u^2 << c^2$ is valid, the following set of equations (the expressions derived by Gilmore) are sufficient to determine the velocity and pressure fields u and \overline{p} in the liquid when U and R, the bubble wall velocity and radius, are known functions of time. $$u(r, t) = \frac{y}{c_{\infty} r} + \frac{K_3 y^2}{c_{\infty}^3 r^2} \left(1 - \frac{y}{c_{\infty}^2 r} + \frac{K_3^2 y^4}{2c_{\infty}^8 r^4} \right)$$ [3.1] where y and K_3 are given by $$y = \frac{RU^2}{2} + \frac{R\left(p_0\left(\frac{R_0}{R}\right)^4 - p_\infty\right)}{\rho_\infty} \left(1 - \left(\frac{p_0\left(\frac{R_0}{R}\right)^4 - p_\infty}{2\rho_\infty c_\infty^2}\right)\right)$$ [3.2] $$K_3 = \frac{c_{\infty}^3 R^2 U}{y^2} \left(1 - \frac{U^2}{2c_{\infty}^2} \right) - \frac{c_{\infty}^2 R}{y} \left(1 - \frac{U}{c_{\infty}} \right)$$ [3.3] $$\bar{p}(r, t) = \rho_{\infty} \left(\frac{y}{r} - \frac{u^2}{2} \right) + \frac{\rho_{\infty}}{2c_{\infty}^2} \left(\frac{y}{r} - \frac{u^2}{2} \right)^2$$ [3.4] $$t = t_R + \left(\frac{r - R}{c_\infty}\right) \left(1 - \frac{UR}{c_\infty r}\right)$$ [3.5] Here t_R is the time at which the bubble radius is R and the bubble wall velocity is U. An event which occurs at the bubble wall at time t_R requires finite time $t - t_R$ to propagate from the bubble wall to the point r in the fluid. This time lag is indicated by Equation [3.5]. If the approximation $u^2 << c^2$ is not made, then the numerical integration for u and \bar{p} is more complicated and requires a great deal more time on the computer. Hickling and Plesset⁹ avoid making this approximation. Instead of using values of U and R in Equations [3.1] through [3.5] to find \bar{p} and u at discrete points, they use U and R as coefficients in a differential equation-which determines \bar{p} and u. Then each time U and R are determined at a single point, another differential equation must be solved to find \bar{p} and u. Each solution of this second differential equation gives \bar{p} and u as a function of distance from the bubble at one specific instant in time (i.e., that instant in time at which the bubble radius is that value of R(t) used in this second differential equation). #### **RESULTS** The integration of Equation [1.6] (the equation which determines bubble radius and bubble wall velocity and acceleration) has been coded in FORTRAN for a 7090/1401 computer according to the procedure outlined. The program and some sample input and output are given in Appendix C. Plots from computer output of R, u, \dot{U} , and p (the bubble radius, bubble wall velocity and acceleration, and pressure at the bubble wall, respectively) as functions of time can be found among Figures 1 through 5 for various ambient and internal pressures. Equations [3.1] through [3.5] (those equations which determine the Eulerian velocity and pressure fields in the fluid outside the bubble wall) have been incorporated into the program. From computer output, plots of u and p (Eulerian velocity an ressure) were obtained and are found with the corresponding plots of R, U, U, and p (Figures 1 through 4). #### **DISCUSSION** Dynamically, the air inside the bubble behaves in a peculiar fashion which is quite evident in the more violent implosions (those at great depths). During the greater part of the collapse, the air offers insignificant resistance to the inrushing water. Just before the
instant of minimum radius, however, the air violently arrests further decrease in volume, behaving very much like a rigid sphere. This is borne out especially by the curves for bubble wall acceleration. At the instant of minimum radius, the water in the immediate vicinity of the bubble "sees" a rigid sphere, but that water a little further from the wall continues to rush in since the water is compressible. The result is a spherical shock wave propagating from the wall out into the fluid. Comparisons among Figures 1 through 5 lead to the following observations: - 1. As the depth at which the implosion occurs becomes greater, the peak pressure increases, the rise time decreases, and the collapse time decreases. - 2. Increasing the initial internal pressure of the gas inside the sphere has roughly the same effect as decreasing the depth of implosion. Specifically, the peak pressure can be effectively attenuated by increasing the initial internal pressure. Comparison between Figures 2e and 3e, for example, shows that the peak pressure pulse from an implosion at 1000 ft of water is reduced by almost 40 percent when the initial internal pressure is increased from 1 to 2 atm. - 3. As the pressure peak propagates away from the cavity wall, it suffers an attenuation proportional to 1/r. - 4. Comparison between Figures 1, 2, and 5 indicates that for constant initial internal pressure and radius, the collapse time varies approximately inversely with the square root of the depth at which the implosion occurs. It should be noted that the present theory does not account for the effect of migration. The model presented here is excellent for a ratio of initial internal pressure to ambient pressure which is less than perhaps one-tenth. 3 5 SMOVE Figure 2 - Spherical Collapse as a Function of Time for a Water Depth of 1000 Feet, an Initial Radius of 1 Inch, and an Initial Internal Pressure of 1 Atmosphere × PRESSURE AT THE BUBBLE WALL Figure 8 - Spherical Collapse as a Function of Time for a Water Depth of 1000 Feet, an Initial Radius of 1 Inch, and an Initial Internal Pressure of 2 Atmospheres Figure 3a - Bubble Radius Figure 3b - Bubble Wall Velocity Figure 3c - Bubble Wall Acceleration Figure 4 - Spherical Collapse as a Function of Time for a Water Depth of 1000 Feet, an Initial Radius of 1 Inch, and an initial Internal Pressure of 10 Atmospheres Figure 4a - Bubble Radius Figure 4b - Bubble Wall Velocity Figure 4d - Pressure at the Bubble Wall Figure 4f = (Eulerian) Velocity Figure 5 — Spherical Collapse as a Function of Time for a Water Depth of 10,000 Feet, an Initial Radius of 1 Inch, and an Initial Internal Pressure of 1 Atmosphere Figure 5a - Bubble Radius Figure 5b - Bubble Wall Velocity Figure 5c - Bubble Wall Acceleration Figure 5d - Pressure at the Bubble Wall STANDOFF 1.25 IN. STANDOFF 2.50 IN. STANDOFF 2.50 IN. TIME IN MILLISECONDS Figure Sf — (Eulerian) Velocity As stated earlier, the "well behaved" spherical collapse of the model occasionally may not conform to the behavior of a real bubble in its final stage of implosion. At very high ratios of ambient to initial internal pressure, the possible dissociation of the cavity into numerous smaller bubbles represents a departure from the behavior of the model. At the standoff of interest $(r > R_0)$, however, the field variables (pressure and Eulerian velocity) are thought not to deviate significantly from values obtained using the model. All the results mentioned so far may be extended to cases for spheres of any radius. Suppose that at depth λ a solution exists for a sphere with initial radius R_0 and initial internal pressure p_0 . The radius, velocity, acceleration, and pressure are known functions of time at the bubble wall or at some standoff in the fluid. If the initial radius is multiplied by λ = constant, then pressure and velocity will remain the same if radius, time, and standoff are multiplied by λ and acceleration divided by λ . After the writer's program was completed, it was discovered that Hickling and Plesset had solved the free-field implosion problem numerically in a similar but more elaborate manner without making the approximation $u^2 \ll c^2$. Their program requires 20 min of computer time for each case compared to only 2 min for the program presented here. They report two cases; the first $(p_0 = 10^{-3} \text{ atm}, p_\infty = 1 \text{ atm})$ was solved by the program presented here, but the second $(p_0 = 10^{-4} \text{ atm}, p_\infty = 1 \text{ atm})$ is too violent an implosion for the writer's program to be applicable because the approximation $u^2 \ll c^2$ may not be valid. (Note that this second case reported by Hickling and Plesset represents such a violent implosion that it has little in common with the type of implosion expected in a buoyancy sphere system even as deep as 30,000 feet of water). In an attempt to verify the soundness of his approach, the writer used the initial conditions of Hickling and Plesset's first case ($p_0 = 10^{-3}$ atm, $p_\infty = 1$ atm) as input in his program. Very little discrepancy (less than 2 percent) can be found in the bubble radius and bubble wall velocity even though the Hickling and Plesset results are based on a value of $\gamma = 1.4$ and the writer's are based on a value of $\gamma = 4/3$. It can be seen from the differential (Equation [1.5]) that a small change in γ has little effect on the radius-time curve. However, a marked difference appeared between the results of the two programs when the peak pressures inside and outside the bubble were compared. The Hickling and Plesset results showed peak pressures which were about twice those obtained in this study. This discrepancy can be readily resolved by noting the different values of γ used. The results of both programs indicate that a minimum radius $R_{\rm MIN}=0.0170$ will be obtained when a sphere of initial radius $R_0=1$ and initial internal pressure $p_0=10^{-3}$ atmospheres is imploded at the ambient pressure $p_\infty=1$ atm. The pressure at the boundary, by Equation [1.4c], is $$p = p_0 \left(\frac{R_0}{R}\right)^{3\gamma}$$ When y = 1.4 $$p_{\text{MAX}} = p_0 \left(\frac{1}{.0170}\right)^{4.2}$$ [4.1] and when y = 4/3 $$p_{\text{MAX}} = p_0 \left(\frac{1}{.0170}\right)^{4.0} \tag{4.2}$$ By dividing Equation [4.1] by Equation [4.2], p_{MAX}^{\bullet} is $(1/.0170)^{\cdot 2}$ or 3.25 times p_{MAX} . Had a value of $\gamma=1.4$ been used in the writer's program, the peak pressure at the bubble wall would have compared well with that obtained by Hickling and Plesset. A similar statement is true for those peak pressures in the fluid outside the bubble wall, because the peak pressure varies inversely as the distance from the center of the bubble (i.e. as 1/r). This verifies the validity of the writer's program and the assumption $u^2 << c^2$ for the range of interest $(p_{\infty} \le 1000 \text{ atm}, p_0 \le 1 \text{ atm})$. The verification against the work of Hickling and Plesset shows that small variations in γ , the specific heat ratio, can lead to large variations in the peak pressure associated with a collapse. Such behavior suggests that the present equation of state, the ideal gas law, is a deficient description of the gas inside the cavity and that the use of a more elaborate equation of state (e.g., the Beattie-Bridgeman¹¹ equation of state) would give more accurate results. Use of the Beattie-Bridgeman equation could be made to investigate the differences in behavior of the collapse for different gases. (representing different values of γ). Variations of the kind of gas inside the cavity along with variations in its initial internal pressure may be used to control the characteristics of the pressure pulse emitted when a glass buoyancy sphere collapses. Such control might ultimately be used to reduce the distances between glass spheres in buoyancy sphere systems without increased risk of sympathetic implosions. #### SUMMARY AND CONCLUSIONS - 1. A program to integrate Gilmore's equations describing the collapse of a opherical gas filled cavity has been written (see Appendix C). The program is general enough to be used in the study of such phenomena as cavitation and underwater explosion gas bubble pulses, provided behavior is adiabatic. - 2. Parameters from the program for various ambient and initial internal pressures have been plotted (see Figures 1 through 5). - 8. The pressure shock wave associated with the implosion may be controllable in two different ways: - a. Proper variation of the initial internal pressure of the gas inside the sphere. - b. Proper variation of the specific heat ratio γ by changing the kind of gas inside the sphere. These two effects should not be overlooked as possible means of protecting glass buoyancy spheres from sympathetic implosions. #### **FUTURE WORK PLANNED** - 1. An experimental verification will be carried out to determine how good Gilmore's model is. - 2. The velocity and pressure curves can be used to synthesize analytical functions to describe the free-field implosion. This information will then form a foundation for the analysis of the effects of a single implosion in a system of buoyancy spheres. Such an analysis has, in fact, been started. - 3. The present computer program is now being altered by replacing the ideal gas law by the Beattie-. idgeman equation of state. #### **ACKNOWLEDGMENTS** Appreciation is expressed to Dr. W. W. Murray, who proposed that this work be undertaken, and to Mr. S. Zilliacus for valuable discussions during preparation of the paper. Thanks are also due Dr. W. W. Murray, Dr. W. J. Sette, and Dr. H. M. Schauer for their helpful comments. #### APPENDIX A #### A PROCEDURE FOR HALVING THE INTERVAL OF INTEGRATION The description of Hamming's method pointed out that if the predictor does not lie close enough to the corrector, then one alternative is to halve the
interval. According to Ralston and Wilf, a suitable set of interpolation formulas for Hamming's method is: $$y_{n-1/2} = \frac{1}{256} (80y_n + 135y_{n-1} + 40y_{n-2} + y_{n-3}) + \frac{h}{256} (-15y'_n + 90y'_{n-1} + 15y'_{n-2})$$ $$y_{n-3/2} = \frac{1}{256} (12y_n + 135y_{n-1} + 108y_{n-2} + y_{n-3}) + \frac{h}{256} (-3y_n' - 54y_{n-1}' + 27y_{n-2}')$$ where λ is the original step size. In the particular program which was written for the solution of Equation [1.5], the following procedure was adopted: - 1. If p_{n+1} was not close enough to c_{n+1} then an iteration was carried out. - 2. If, after the first iteration, the value of p_{n+1} was still not close enough to c_{n+1} , then the interval was halved and the entire integration process at that step was carried out from the beginning using the new half interval. As the radius of the bubble approaches its minimum, the radius and wall velocity become more and more difficult to predict, that is, it becomes more and more likely that p_{n+1} will not fall within the desired limits of c_{n+1} . With the above procedure, more coordinates will be calculated near the minimum where the functions are changing most rapidly than are calculated in regions of small slopes. #### APPENDIX B #### JUSTIFICATION FOR THE USE OF HAMMING'S METHOD The choice between an elaborate procedure like Hamming's method and some other iterative routine to integrate the equations is easy to make if it is based on economy of computer time. When an iterative technique is used to converge on the correct value of the dependent variable at each step, the finite difference form of the differential equation may have to be evaluated many times because the initial prediction of the dependent variable is not likely to be very accurate. In the case of Equations [1.5], it is desirable to avoid the evaluation of the finite difference equation as often as possible because it involves so many calculations. Hamming's method, on the other hand, makes a much more accurate initial prediction of the dependent variable at each step simply because more information about past values is utilized in making such predictions. Consequently, Hamming's method yields a more rapid convergence because the finite difference form of the equation has to be evaluated only once or twice at each step to obtain an accurate value of the dependent variable there. One disadvantage in using this technique is that it is not self-starting. Values of R, U, and N in at least four equally spaced intervals near t=0 are required. Such values may be computed by expressing R(t) in a Taylor Series in t about zero and using Equations [1.5] to evaluate the coefficients. This approach for solving differential equations can be found in any elementary text on the subject, for instance, Coddington. Because of the difficulty of differentiating Equation [1.5], Herring's equation $$R \frac{d^{2}R}{dt^{2}} + \frac{3}{2} \left(\frac{dR}{dt}\right)^{2} - \frac{2}{c_{\infty}} \left(\frac{dR}{dt}\right)^{3} - \frac{2R}{c_{\infty}} \left(\frac{dR}{dt}\right) \left(\frac{d^{2}R}{dt^{2}}\right)$$ $$= \frac{p(t) - p_{\infty}}{\rho_{\infty}} + \frac{R}{\rho_{\infty}c_{\infty}} \frac{dp(t)}{dt} \left(1 - \frac{dR}{c_{\infty}}\right)$$ [5.1] rather than Equation [1.5] was used to find the first four values of R, U, and \dot{U} . This equation has also been derived by Gilmore and called the "first order approximation." As mentioned in the discussion under Equation [1.5], to find the initial acceleration of the bubble wall, Equation [5.1] should be evaluated at t=0, rather than at t=0 in order to avoid an infinite initial acceleration. It can be seen from Equation [1.4c] that Equation [5.1] evaluated at t = 0 contains the infinite term $\frac{dP}{dt}\Big|_{t=0}$. The result is $$\left. \frac{d^2R}{dt^2} \right|_{t=0_+} = \frac{p_0 - p_\infty}{\rho_\infty c_\infty}$$ in agreement with acoustic theory. #### **APPENDIX C** #### THE COMPUTER PROGRAM FOR IBM 7090 The following is a list of FORTRAN IV symbols used in the program. | FORTRAN Symbol | Corresponding
Symbol Used
in Discussion | Explanation | |---|---|---| | A . | R | Instantaneous radius of the imploding sphere. | | В | В | A constant which characterizes the adiabatic nature of the liquid medium (for water, $B = 3000$ atm) | | BDYP | P | Pressure in the liquid at the bubble wall | | ВØ | R_{0} | Initial radius of the imploding sphere | | BØD | - | A dimensioned variable name under which the $B\phi$, the unitial radius is read in | | B2, B3, B4, B5, B6 | - | Coefficients of the Taylor Series expansion of R about $t = 0$ | | C | c _∞ | Sound speed in the undisturbed liquid medium | | D | $ ho_{\infty}$ | Density of the undisturbed liquid medium (for water, $\rho_{\infty} = 2$ slugs/cu ft) | | DU | Ù | Instantaneous acceleration of the bubble wall | | H | - | Depth at which the implosion takes place | | HD | - | A dimensioned variable name under which H, the depth of implosion, is read in | | PA | - | Atmospheric pressure (14.7 psi) | | PL | P _∞ | Pressure in the undisturbed liquid medium | | PØ | <i>P</i> ₀ | Initial pressure of the gas inside the sphere | | PØD | - | A dimensioned variable name under which $P\emptyset$, the initial internal pressure, is read in | | R and T | t_R | Time measured at the bubble wall | | S | λ | The step size, or size of the interval over which the integration is to be performed | | STF1, STF2,
STF(I) (I = 1, 2, 3) | | The five standoffs for which Eulerian velocities and pressures are calculated; note STF(1) = STF3, etc. | | STFD1,
STFD2, STFD(I)
(I = 1, 2, 3) | | Dimensioned variable names under which the above five standoffs are read in | ~= | FORTRAN Symbol | Corresponding
Symbol Used
in Discussion | Explanation | |--|---|---| | STFPC1, STFCP2,
STFPC(I)
I = 1, 2, 8 | 7 | Five instantaneous pressures evaluated at the standoffs STF1, STF2, STF3, STF4 and STF5, respectively; note: STFPC(1) = STFPC3 etc. | | STFUC1, STFUC2,
STFUC(I)
I = 1, 2, 8 | u | Five instantaneous Eulerian velocities evaluated at the standoffs STF1, STF2, STF3, STF4, and STF5, respectively | | T and R | t _R | Time measured at the bubble wall | | TSTF1, TSTF2,
TSTF(I)
I = 1, 2, 8 | t | The time for each of the five pressures and velocities evaluated at each of the five standoffs, respectively | | U . | U | Instantaneous velocity of the bubble wall | | Y | y | A constant used in the expression for the Eulerian velocity (see Equations [3.1] and [3.2]) | | YK | K ₃ | A constant used in the expression for the Eulerian velocity (see Equations [3.1] and [3.3]) | | AP4, AP5 | p_n, p_{n+1} | Predicted values of the radius, AP 5 is the predicted value being tested at the $(n + 1)$ th interval, and AP4 is the previous predicted value of R which was cloest to the actual value of R at the n th interval | | А4МН, А8МН | y _{n-1/2} , y _{n-3/2} | When R at the $(n + 1)$ th interval is being predicted
and the half interval routine is required, then these
are the interpolated values of R between the n th
and $(n - 1)$ th interval and between the $(n - 1)$ th
and $(n - 2)$ th interval, respectively | | CØD | m_{n+1}, m'_{n+1} | Modifier for U , also derivative of the modifier for R | | C4, C5 | c_n, c_{n+1} | Correctors for U ; C5 is the corrector being tested at the $(n + 1)$ th interval and C4 is the corrector at the previous interval | | DØD | m _{n+1} | Modifier for R | | DCØD | m_{n+1} | Derivative of the modifier for U | | D4, D5 | c_n, c_{n+1} | Correctors for R (see C4, C5) | | UP4, UP5 | p_n, p_{n+1} | Predicted values of the velocity (see AP4, AP5) | | U4MH, U3MH | $y_{n-1/2}, y_{n-3/2}$ | Half interval values of velocity (see A4MH, A3MH) | #### THE COMPUTER PROGRAM The simplified flow chart is shown in Figure 6. Figure 6 - Simplified Flow Chart #### **DATA INPUT** The first data card is read according to the format (I2) and must have a number no greater than 50 in the first two columns (see Figure 7). This number should equal the number of data cards to follow. Each of the following data cards should contain the initial information for a single collapse. Eight pieces of information are placed on each card; the card is divided equally into eight parts, 10 spaces each. Information is read in according to the format (8F10.4). The first two pieces of information are the depth of collapse in feet of water and the initial bubble radius in inches, respectively. The next five divisions are set off for five values of standoff in inches from the bubble center at which a pressure and (Eulerian) velocity time history are desired. The last division is reserved for the initial internal pressure inside the bubble in pounds per square inch. The first eight pieces of information, corresponding to one collapse, will require no more than 2 min of running time. Each additional card, i.e., each additional collapse, requires no more than 1 min. #### DATA OUTPUT For each data card, the computer will print 2000 lines of cutput. The first 1000 lines of numbers are printed under headings TIME, RADIUS, VELOCITY, ACCELERATION, BDYP, TSTF1, STFPC1, STFUC1, TSTF2, STFPC2, S1FUC2 (see Figure 8). The first five quantities refer to the bubble wall; BDYP is the internal pressure inside the bubble (absolute pressure, not overpressure). Each line refers to the state of the motion at one instant in
time. STFPC1 and STFUC1 are the overpressure (pressure above ambient pressure) and (Eulerian) velocity as functions of the time TSTF1 for the first standoff given in the data. Similarly for STFPC2, STFUC2, and TSTF2. The next 1000 lines give similar information for the third, fourth, and fifth standoffs specified. The headings are TSTF3, STFPC3, STFUC3, TSTF4, STFPC4, STFUC4, TSTF5, STFPC5, STFUC5. All time is given in milliseconds, the radius in inches, all velocities in inches per second, the acceleration in inches per second per second, and all pressures in pounds per square inch. | 1 | 5.5 |------------|---|---|---|---|-----------|---|-----|-----|---|---|---|---|-----|-----|-----|-----|-----|---|---|---|--------|---|-----|---|---|---|---|---|---|---|--------|----------|---|----------|----------|----|---|---|------------|-----|-----|-----|---|---|---|-----|-----|-----|-----|-----|---|---|---|----------------|---|-----|---|---|-----|-----|-----|---|---|---|---|---|---|------------|---|---|---|---|---------|---| • | | | | ŧ | • |) (| | • | • | | • | • | • (| H |) (| • | 1 | • | • | • | 8 | • | • | • | 1 | • | ı | • | ŧ | | ŧ | ŧ | | • | • | • | ŧ | • | ŧ | 0 | • | • | • | • | • | • | 1 |) (| • | • | | • | • | ı | ŧ | • | 8 (|) (|) (| | | • | • | | • | | | | • | • | • | 1 | | 1. | ; | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 |) 1 | 1 | 1 | 1 | 1 | 2
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 : | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 2 | Ž | 2 | 2 : | 2 : | 2 2 | ? 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | | 3 3 | 3 | 1 | 3 | 3 | 3 | 3 | 3 : | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 : | 3 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 : | 3 : | 3 3 | 3 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ; | | 4 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 4 | 14 | 4 | * | 4 | 4 | 4 - | 4 | 14 | 14 | 1 | 4 | , | 14 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 14 | 14 | 14 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | 5 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 ! | 5 | 5 | 5 | 5 | 5 | 5 ! | 5 | 5 9 | : | 5 ! | 5 ! | 5 ! | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 ! | ; | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | ż | 5 | 5 | 1 | | 6 6 | • | • | 6 | 6 | ı | ŧ | 6 (| 6 | 6 | 6 | f | ŧ | 6 1 | 6 (| 6 (| • | • | ŧ | 6 | • | ı | 6 | 6 | E | • | 6 | 6 | • | • | 6 | 6 | • | | 6 | 6 | • | ŧ | • | ŧ | 6 | 6 (| 6 | 6 | 6 | 6 | • | 6 (| 6 (| • | • | ŧ | • | 6 | ŧ | • | • | • | 6 | 6 (| 6 (| • | • | • | • | 6 | • | • | • | ŧ | i | ı | ŧ | • | 1 | | 7 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 1 | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 1 | 1 | 7 | 1 7 | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 7 | 1 1 | 1 | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 1 | | 8 8 | 8 | 8 | 8 | • | ŧ | 1 | 1 | | Ì | • | 8 | | | 1 | 1 | 1 | 1 | ŧ | | 1 | 1 | ı | 8 | 1 | | | • | | 8 | 8 | 1 | 1 | | • | ı | ŧ. | 8 | ŧ | 1 | 1 | 1 | 8 | 8 | 8 | 8 | 8 (| 1 | 1 | | 8 | 1 | 8 | 1 | 1 | 8 | ŧ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 1 | 8 | 1 | ŧ | ŧ | ŧ | 1 | 1 | 1 | | J 9 | 9 | 9 | 9 | ; | \$ | • | 9 1 | 3 | 3 | 9 | 3 | 9 | 9 9 | 7 1 | 9 | 1 | 9 | 3 | 9 | 9 | 9 | 9 | 9 : | 9 | 9 | 9 | 3 | 9 | 3 | 3 | g
× | 9 | 9 | \$
30 | \$
** | \$ | 9 | 9 | 9 1 | 3 : | 3 : | 9 : | 3 | 9 | 3 | 3 9 | 9 9 | 9 9 | 9 | 9 | 9 | 9 | 9 | 9
** | 5 | 9 | 9 | 9 | 9 9 | | 1 | 9 | 9 | 9 | 3 | 9 | 9 | 9 × | 9 | 9 | 9 | 9 | 5
70 | 1 | | 1000.0
MPLOSION
DEPTH
(FEET) | 1.0 1.25 INITIAL FIRST STANDOFF (INCHES) | 2.50 5.00 SECOND THIRD STANDOFF (INCHES) | 7.00 10. FOURTH STANDOFF (INCHES) | TH INITIAL OFF INTERNAL | |--|--|---|-----------------------------------|---------------------------------------| | | | | 11111 111111 | | | 1 11111111 | 1111 111111111 111111 | 1111111111111111111111 | 11111111111 | 111111 1111111 | | 2222222222 | 2222222222222222 2222 | 222 222222222222222 | 22222222222222 | 22222222222222 | | 33333 3333: | 33333 333333333 33333 | 3333 333333333 33333 | 3333 333333333 | 333333333 33 33 | | 144444444 | 444444444444444444 | ******* | 4444444444444 | 4444444 44444 | | 5555555555 | 5555555555555555 | 55555 5555555 555555 | 55555555555555 | 5555555555555 | | | | | | | | 1111111111 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 111111111111111111111 | ,,, ,,,,,,,,,,, | 111111111 11111 | | | | • | | | | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | # # # # # # # # # # # # # # # # # # # | 237333333400444444444 | 2 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Figure 7 - Data Input for Computer Program | • | 23 | .130636 02 | 0435£ 02 | 19796E 02 | RUINEE OF | 26474E 02 | • | • | 20 309090 | | 420306 02 | 6036E 02 | 9200E 02 | 2350E 02 | 5486E 02 | \$6532E 02 | 20 3095 | 64567E 02 | 67525E 02 | 70440E 82 | 73309E 02 | 761326 02 | 20 20 DE | 0400F 02 | A 902F 82 | 80485E 02 | 941E 02 | P4366E 02 | 6724E 02 | • | o i | 6 d | 105436 03 | | | 1262E 03 | # 1 T | 7366 | 040E 03 | 9696 | 90 | • • |) iii | | | • | 0
U | 2496E 03 | | 123036 03 | 2324E 03 | | 22356 03 | |----------------|---------------------|--------------|-------------|--------------|------------------|-------------|-------------|------------|-----------|------------|-------------|----------------|----------------|------------------|-----------------|-----------------|----------------|----------------|----------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|----------------|------------------|----------------|--------------|-----------|-----------|--------------|------------|------------|--------------|--------------|--------------|------------|------------|--------------|-------------|----------|--------------|--------------|-----------|--------------|----------|------------|--------------|------------|-----------|-------------------| | ì | 374.00 | 63 -6.13 | 11 -0 - 11 | -1-1-11 | 63 -0-23 | 12 -0- 20 | 62 -9.26 | : | - | 07 - 0 70 | 03 -0.42 | | 03 -0.49 | 63 -0-8 2 | | | 03 -0.61 | 03 -0.64 | 03 -0.67 | 03 -0.70 | 03 -0.73 | 97 - 0 - 76 | | | | | | • | 02 -0.76 | 05 -0.70 | - | i e | | 07 -0-10 | 11-1- 2 | 02 -0.11 | = : | 0.00 | • | 11.0- 20 | 2: | | 70 | 2 -0.1 | 2 -0.1 | | | | | | • | 1.6-1 | | | ŧ | STFPCE | -0.12601 | -0.12598E | -0.125696 | -0 . 1 2 5 7 3 C | -0.125516 | -0.125216 | -0.12466 | : | -0.12396 | 7 | -0.12277E | -0.1220SE | -0.121335 | -0.12050E | -0-119616 | -0-11064E | -0.11761E | -0.11650E | - | -0-11407E | -0.112746 | -0.100646 | | -0-10666 | 2 | -0.103136 | -0.10124E | -0.992616 | -0.97194E | • | -0.927846 | -0.879896 | -0.45440E | -0.827686 | -0.80328E | -0.771576 | -0.713496 | -0.67844 | -0.64494E | -0.610136 | -0-536436 | : 2 | -0.45695E | -0.41490E | -0.37124E | 0.32 | • | 4 P | : : | : ^: | -0.14821# | • | | SHIP THE COMPS | 151F2 | 1 0-02509 | 8 0.031474 | 8 0.037950 | 8 0.044428 | 8 0.050908 | 8 0.087392 | 8 0.063876 | 0.070364 | 3 0.076653 | 2 | 3 0.089840 | 986986-0 8 | 3 6.102635 | 3 0.139336 | • | 3 0.122346 | 3 0.128653 | 3 0 - 1 35 363 | 3 0.141875 | • | 0012400 | 0-16142 | 7007 | 007141700 | 9 0.167529 | 9 0.194060 | 3 0.200594 | 3 0.237130 | 3 0.213669 | 202 | .22675 | 0.233300 | _ | 9 0.252953 | 9 0.259509 | 9 0.266067 | 0.279192 | 9 0.285758 | 1 0.202327 | | 31204 | 0 | 9 0.325209 | 3 0.331793 | 3637 | 3 0 . 344969 | 2126 | • | | 1 0.377051 | 3 | | | | STFUCI | -0.866568 7 | -0.22191E 2 | -0.35671E C | -0.49112E C | -0.62534E 0 | -0.75902E 3 | ÷ | = | | -0.12876E 0 | -0.1417EE 0 | -0.15472E 0 | -0.16755E O | -0.18028E U | : | -0.20539E 0 | -0.21775E 0 | -C.22997E C | 4 20 SE | . 25397£ | -0.265738 C | 286726 | 29394E | | .32176 | | -0.34271E 0 | w | . 36271E | 372336 | .381676 | -0.3904.4 | -40797E | .41612E | .42394E | .43142E | -0.44528F 0 | 45165 | | 0.46316E | 72966 0 | 477145 0 | 48086E | | .48676 | . 46891E | - 4903CE | • | 01656 | .49075E | | 0 U/1 A 0 0 0 0 1 | | Ē | STFPC1 | 0.25194E 03 | 0 | -0.25176E 03 | 0.25146c 03 | • | .25058E 0. | .249956 | .24921E 0 | .24835E 0 | .24737E | J.24627E 03 | 0.24505E 03 | 0.24370E 03 | 0.24223E 03 | 0.24064E 03 | 0.23891E 03 | 0.23736E 03 | 0.23507E 03 | 0.23295E 33 | 0.2306FE 03 | 5.22829E 03 | 0.221056 03 | 2021E | 0.21721E 33 | 0.214366 03 | 0.21074E 03 | 0.2C725E 33 | 3 | .1997&E | 9574E | 9153E | -0-182466 03 | 7773E 0 | 7271E 0 | 6747E | 6201E | 0.150356 03 | 4415E | • | 30956 | 3-116616 33 | 10000 | • | 0 | 4166E | 31976 | 3858E | 9 376 19 | 0.354636 02 | 14866 0 | • | 3.13060E 32 | | SECOND THE | 18721 | | 3.010638 | 3 0.317112 - | - 0.023588 - | n | - 036546 - | • | -15650. | ,
N | - 165591 - | - 0.068963 - | 0.075477 | - 446180.0 | - 674880.0 B | 8 | - 410103 | • | - 164411-7 | 0.121002 - | 0.127514 | | 7.147367 | C. 153589 - | 0.140114 | 2-166641 | 73171 - | • | 3.186237 - | 0.192774 - | 0.199314 | | 0.212400 | 0.225496 - |
0.232049 | 38603 | 09150 | 1.258282 | 64847 - | 0.271415 - | 277985 | 1.201134 | 0.297712 | 0.304293 - | 0.310676 - | 3.317462 | 0.324051 | C.330642 | 30337630 | 1.150432 | 0.357333 - | | - 163637 | | E | 400 | 0.14700E 0 | U | G.14716E 73 | 0.147368 93 | 3 | 4 801E 3 | 7979 | 300001 | • | | 0.151086 03 | 0.151958 01 | U-15292E 03 | 0.15398E 03 | 0.155138 03 | 0.15639E 0] | 0.15774E 03 | 0-15923E C3 | 9077E C | | • | | O 3BE O | 172695 0 | 17515E 0 | 7776E | 0-18052E 03 | 0.183435 03 | 8656E 0 | . 1 8985E | .193346 | 0.2009AF 01 | 205088 0 | | -21412E | 3000 | G.22979F 03 | | ., | 0.24849E 33 | | | 3.27932E 33 | .20830E 0 | | 807E | | . 33030E 0 | | | | 0. 36561E 03 | | CHI/MEC/MECH | ACCELERATION | -3.32668E C7 | C | -:- 32 | -0. 32 977E | -6.32 | -C. 32963E | -0. 32570E | 308220 | 326116 | 32644E | 3 -5.32687E CT | 1 -0.32738E 07 | 3 -0.32798E C7 | 3 ->- 32866E -> | 1 -C. 32943E C7 | 3 -2-33:286 07 | 1 -0.33121E 07 | 1 -1.33223E .7 | 7 | 3 | 10 33574E 07 | | | -6.341456 | 7. 34 3.3E | 1 -0.3447CE C7 | 1 -: - 34641E 07 | 1 -3-34817E 37 | 34 59BE | . 35182E | 369050 | 10 3424 07 | 362620° | ~ | 2. 36.314E | η, | | | ÷ | F . | | , | ı | -0-37433E C7 | ÷ | -: . 3719:E | | 36.626 | 70 387816 07 | 2. 35113E | 1000 | 34327E C7 | | | VELOCITY | é | • | ĭ | 959 | 386 | 0 | 2 | 300 | × | 7 | • | -0.23203E C1 | 3236 0 | . 27 | -0.29575E C3 | -0.317u9£ 03 | -0.33649E .J | -0.35994E 03 | .301476 0 | 707 | D 367484.0- | | 490336 0 | -51234E 2 | 9.534 | -0.55673E 03 | 2 | • | -0.62413€ 03 | : | D-66965E | -0.715666 31 | 3.73884E 0 | ~ | -0.78556E 03 | -0.809148 03 | -0.85658F J3 | 600 | 43E c | -0.92849E G3 | - | 2 | -0.10253E 04 | •101• | .10737E 3 | 39.40 | 0-112 | 1000 | | 2 | | -0.12374E 34 | | | RADIOS | 1.0000 | | 0.99973 | | | 0.69839 | *8466.0 | | ***** | ٠ | 0.99318 | 0.99175 | 9.000.0 | 0.98847 | 0.98643 | 0.98465 | .98252 | | .97787 | • | 0.97265 | | | | .03715 | | .94994 | .44612 | -94216 | | | 0.52483 | | _ | | 0.000.0 | | | | | 99499 | | | | • | . 03113 | | 70010 | ٠, | .79373 | **** | 0/00/00 | | | 711 | ÷ | | 0.012030 | 0.010101 | 0.025876 | 0.632308 | *10000 | ***** | 20110 | 2280. | 0.064691 | 0.071160 | 0.077429 | .04409 | 0.090567 | 0.00000 | | 0.109974 | 0.1116443 | 0.122913 | 205621-0 | 142320 | 0.148789 | 0.195254 | • | 0.168194 | • | ٠ | | 246+61. | 0.200541 | - 0 | | .226418 | | 9.239356 | ٠. | .256763 | .265232 | 0-271701 | 204639 | | | | • | .316985 | 484884 | | 0.342861 | 0.349332 | A. 188700 | **/666 | Figure 8 - Data Output for Computer Program ... 1 1 ٠, ١ ... Figure 8 (Continued) #### **COMPUTER PROGRAM** RU 1 - EFN SOURCE STATEMENT - IFN(S) - C PROGRAMMER R. LILLISTON, CODE 745, EXT 3357 ``` C D=CENSITY IN SLUGS/CU.FT.H=DEPTH IN FT.PD=INITIAL INTERNAL PRESSURE C IN LBS/SQ.IN.80=INITIAL RADIUS IN INCHES.C=SPEED OF SOUNDIN MEDIUM IN .C IN/SEC.PA=ATMOSPHERIC PRESSURE IN LUS/SQ.IN.STF=STANDOFF IN INCHES C AND TIME IS IN MILLISECONDS INITIAL VALUES REAC(5.101)MM 101 FORMAT(12) DIMENSION TSTF(3.1GUC).STFPC(3.1GUG).STFUC(3.1GUG).STF(3) DIMENSION A(1007).U(1030).DU(1007) DIMENSION HC(57).60D(57).STFD1(50).STFD2(50).STFD(3.50).POD(50) REAC(5.99)(HD(J).BOD(J).STFD1(J).STFD2(J).(STFD(I.J).I=1.3). 1POD(J).J=1.MM) 99 FORMAT(8F10.4) 001 J=1.WM.1 H=HD(J) E0=800(J) STF1=STFD1(J) STF2=STF02(J) DG 9 1=1.3 9 STF([)=STFD([.J) PC=POD(J) C VALUES OF CONSTANTS FOR THE LIQUID - WATER 0=2.0 2=4.41E4 C=6.0E4 PA=14.7 PL=0+h+32.2/144.0+PA C FEACING WRITE(6.88)80, H.PO, STF1, STF2, (STF(1),1=1.3) 88 FORMAT(1H1/1H3////42X,44H GILMORES SECOND ORDER APPROXIMATION FOR 1 THE///45X.14HIMPLOSION OF A.F4.1.19H INCH RADIUS SPHERE///45X.14H 2 AT A DEPTH OF.F8.1.14H FEET OF WATER///33X.51HWHEN THE INITIAL IN STERNAL PRESSURE IN THE SPHERE IS.F5.1.5H PS1A///47X.33H AND THE ST 4ANDOFFS ARE. IN INCHES///48X.1CHSTANDOFF 1.F21.2///48X.10HSTANDOFF 5 2.F21.2///48x,10HSTANDOFF 3.F21.2///48x,10HSTANDOFF 4.F21.2/// 648X.1CHSTANDOFF 5.F21.2) C CALCULATE INITIAL VALUES OF THE RADIUS AND VELOCITY 82=(2.073664)+(PO-PL)/(80+D+2.0) B3=4.0+B2++2/(3.0+C)-(2.7648E4)+P0+B2/(B0+D+C) B4=3.9*B2*B3/C-4.0*(B2*#2)/(3.6*B0)+(2.9736E4)*(-P0*B3/(B0*D*C) 1-PL#82/(3.3*0*80**2)+4.3*PU*(82**2)/(3.3*80*0*C**2)) B5=2.64(B24+3)/(C#B0)-2.94B2+B3/B0+1.84(B34+2)/C+3.24B2+/14/C 1+(2.0736)*(-2.0*PL*83/(D*80*+2)-8.0*PO*84/(80*C*D) 2+24.J#PUPB3*82/(BD*D*C**2)) B6=1/6.?*(92*#2)#B3/(15.J*C*B0)+4.S*B4*B3/C+1.9*B2#B5/(3.0*C) 1-11-2482443/(9.;480442)-2-9483442/(2-2480)-9-4482484/(3-0480) 2+(2.)73664)*(1.2*PO*83**2/(UO*D*C**2)+6.4*PO*82*U4/(3.0*80*D*C**2) 3-2.0 *P0*85/(3.3*80*D*C)-PL*83/(1:.0*D*80**3) 4-0.2#PL#82##2/(C#80##3)-4.0#PL#84/(30.6#D#80##2)) R=0.3 S=(1.44E-4)*SQRT(U)*PU**(1.0/3.0)*BO/PL**(5.0/6.0) WRITE(6,100) C HEADINGS 100 FURMAT(123H1 TIME RADIUS VELOCITY ACCELERATION BOYP ``` ``` SOURCE STATEMENT - IFN(S) RU 1 - EFN TSTFI STFPC1 STFUCI TSTF2 STFPC2 SIFU 2C21 DC66 I=1.4.1 A(1)=80+62*R##2+63#R##3+R##2#64#R##2+R##2#85#R##3+R##3#86*R##3 U(1)=2..#82*R+3.0*83*R**2+4.0*R*84*R**2+5.0*R**2*85*R**2+ 16.0 #R## 3#86#R##2 ECYP=PO#80##4/A(1)##4 DU([]=((U([)**3)*(((PL+8)/(HDYP+B))**(3.6/7.:))/(2.6*C) 1-3.: #U([)##2/2.0-7.0#(PL+B)/(6.0#D)#(2.0736E4)#(1.0 2-((UDYP+8)/(PL+B))##(6.0/7.0)+U(1)/C#((PL+B)/(BDYP+B))##(3.6/7.0) 3-U(1)/C*((8CYP+8)/(PL+8))**(3.C/7.0)) 4-4.C #U(1)#BDYP/(D#C)#(2+0736E4)#(((BDYP+B)/(PL+B))##(4.0/7.0* 5-U(1)/C*(PL+8)/(8DYP+8)))/(A(1)-A(1)*U(1)/C*((PL+8)/(8DYP 6+8))**(3.6/7.0)) Y=A(1)*U(1)**2/2.C+(2.0736E4)*A(1)*(80YP-PL)/D*(1.3- 1(2.J736E4)*(BDYP-PL)/(2.J*D*C**2)) YK=U([])+(A([])+2)+(C++3)+(1.0-U([])++2/(2.0+C++2))/Y++2 1-A(1)*(C**2)*(1.6-U(1)/C)/Y C4STFU=Y#C/STF14YK*Y**2/(C**3*STF1**2)*(C**2-Y/STF1 1+(YK##2/C##3)*(Y##4/C##3)/(2.G#STF1##4)) STFUC1=C4STFU/C##2 STFPC1=0*(Y/STF1-STFUC1**2/2.0)/(2.5736E4) 1+D+((Y/STF1-STFUC1##2/2.0)##2)/(2.0+(C##2)#(2.0736E4)) TSTF1=((STF1-A(I))/C)*(1.C-U(I)*A(I)/(C*STF1))+R C4STFU=Y*C/STF2+YK*Y**2/(C**3*STF2**2)*(C**2-Y/STF2 1+(YK**2/C**3)*(Y**4/C**3)/(2.4*STF2**4)) STFUC2=C4STFU/C**2 STFPC2=D*(Y/STF2-STFUC2**2/2.0)/(2.0736E4) 1+C*((Y/STF2-STFUC2**2/2.4)**2)/(2.0*(C**2)*(2.0736E4)) TSTF2=((STF2-A(1))/C)+(1.0-U(1)+A(1)/(C*STF2))+R DO 759 KK=1.3 C4STFU=Y#C/STF(KK)+YK#Y##2/(C##3#STF(KK)##2)#(C##2-Y/STF(KK) 1+(YK##2/C##3)#(Y##4/C##3)/(2.u#STF(KK)##4)) STFUC(KK.1)=C4STFU/C##2 STFPC(KK,1)=C+(Y/STF(KK)-STFUC(KK,1)++2/2.0)/(2.0736E4) 1+C#((Y/STF(KK)-STFUC(KK+1)##2/2+0)##2)/(2+0#(C##2)#(2+0736E4)) 709 TSTF(KK.1)=((STF(KK)-A(1))/C)*(1.0-U(1)*A(1)/(C*STF(KK)))+R R=R#1.1F3 TSTF1=TSTF1+1.0E3 TSTF2=TSTF2#1.0F3 wRITE(6,113)R,A(1),U(1),DU(1),BOYP,TSTF1,STFPC1,STFUC1,TSTF2, 1STFPC2.STFUC2 110 FORMAT(F11.6, F8.5.2E13.5, E12.5.2(F9.6.2E13.5)) R=R#1.0E-3 TSTF1=TSTF1#1.0E-3 TSTF2=TSTF2#1.7E-3 66 R=R+S TER C INITIAL VALUES FOR PREDICTORS AND CORRECTORS UP4=U(4) AP4=A(4) C4=U(4) D4=A(4) N=4 C USING THE FOUR CALCULATED INITIAL VALUES ABOVE, BEGIN INTEGRATION ``` D0669 I=5.1000.1 ``` SOURCE STATEMENT - IFN(S) RU 1 EFN W=W+1 250 L=3 700 UP5=U(1-4)+4.0*S*(2.6*DU(1-1)-DU(1-2)+2.6*DU(1-3))/3.0 AP5=A(1-4)+4.0+S+(2.0+U(1-1)-U(1-2)+2.0+U(1-3))/3.7 230 COD=UP5-112.0*(UP4-C4)/121.0 DOC=AP5-112.0*(AP4-D4)/121.0 DCOD=((COD++3)+(((PL+B)/(PD+(BO/DOD)++4+B))++(3.0/7.0))/(4.0+C) 1-3...*COD**2/2.0-7.0*(PL+B)/(6.0*D)*(2.6736E4)*(1.0 2-((PG*(80/000)**4+8)/(PL+8))**(6.5/7.0)+C00/C*((PL 3+8)/(PD*(80/DDD)**4+8))**(3.0/7.0)-CDD/C*((PD*(80/DDD)**4+8)/(PL 4+B))##(3.G/7.0)) 5-4.3*COD*PO*(80/00D)**4/(D*C)*(2.0736E4)*(((PO*(80/00D)**4 6+8)/(PL+6))**(4.6/7.6)-COD/C*(PL+8)/(PO*(80/00D)**4+8)))/(DOD 7-COD*COD/C*((PL+B)/(PO*(BO/UUD)**4+8))**(3.0/7.0)) C5=(9.2*U(1-1)-U(1-3)+3.2*S*(CCOD+2.0*DU(1-1)-DU(1-2)))/8.0 D5=(9.0#A(I-1)-A(I-3)+3.0#$#(CDD+2.0#U(I-1)-U(I-2!))/8.0 Q=ABS(UP5-C5) IF(G-1.0)210.211.260 C FALF INTERVAL PROCEDURE 400 S=S/2.C A4MH=(8;.0#A(I-1)+135.0#A(T-2)+4G.C#A(I-3)+A(I-4))/256.0 4+S*(-15.0*U(I-1)+90.C*U(I-2)+15.0*U(I-3))/128.0 A3MH=(12.04A(I-1)+135.0#A(I-2)+1^8.0#A(I-3)+A(I-4))/256.0 4+S*(-3.:*U(I-1)-54.0*U(I-2)+27.0*U(I-3))/128.0 U4MH=(80.00+U(I-1)+135.0+U(I-2)+40.0+U(I-3)+U(I-4))/256.0 4+5#(-15.0*DU(I-1)+90.0#DU(I-2)+15.0*DU(I-3))/128.0 U3MH=(12.0#U(I-1)+135.0#U(I-2)+108.4#U(I-3)+U(I-4))/256.0 4+5+(-3. · #DU(I-1)-54.c+DU(I-2)+27.0+DU(I-3))/128.0 HMEA=(4-1)A (S-I)A=(E-I)A A(1-2)=A4MH U(1-4)=U3MH U(1-3)=U(1-2) U(1-2)=U4MH BCYP=PO#(80/A(1-4))##4 DU(I-4)=(\{U(I-4)##3\}#(\{(PL+B)/(BDYP+B)\}##(3.0/7.0)\}/(2.0#C) 1-3.9 #U(1-4)##2/2.0-7.C#(PL+B)/(6.0#D)#(2.0736E4)#(1.0 2-((BDYP+B)/(PL+B))+#(6.0/7.0)+U(I-4)/C#((PL+B)/(BDYP 3+8))++(3.0/7.0)-U(1-4)/C+((UDYP+8)/(PL+8))++(3.0/7.0)) 4-4-0+U(1-4)+BDYP/(D+C)+(2-0736E4)+((!GCYP+B)/(PL 5+8))++(4.0/7.0)-U(1-4)/C+(PL+8)/(8DYP+8)))/(A(1-4) 6-A([-4)#U([-4)/C#((PL+B)/(BDYP+B))##(3.0/7.0)) DU(1-3)=DU(1-2) ECYP=PO#(80/A(1-2))##4 OU(1-2)=((U(1-2)**3)*(((PL+B)/(BDYP+B))**(3.0/7.0))/(2.0*C) 1-3.1#U(1-2)##2/2.0-7.6#(PL+B)/(6.2#D)#(2.9736E4)#(1.3 2-((BDYP+B)/(FL+B))**(6.3/7.5)+U(1-2)/C*((PL+B)/(BDYP 3+E)) ##(3.0/7.0)-U(I-2)/C#((BDYP+B)/(PL+B))##(3.0/7.0)) 4-4.: #U(1-2)#BDYP/(D+C)#(2.0736E4)#((BDYP+B)/(PL 5+8))**(4.3/7.3)-U(1-2)/C*(PL+8)/(BDYP+8)))/(A(1-2) 6-A(1-2)#U(1-2)/C#((PL+B)/(BDYP+6))##(3.0/7.0)) L=L+1 1F(L-10)700.700.71 C SET UP FOR ITERATION ``` 260 UP5=C5+9.C4(UP5-C5)//21.0 AP5=D5+9.04(AP5-D5)/121.0 ``` RU 1 L=L+1 IF(L-2)230.400.400 C CALCULATION OF FINAL VALUES 210 U(1)=C5+9.0*(UP5-C5)/121.0 500 A(I)=D5+4.0*(AP5-D5)/121.0 BCYP=P0*80*#4/A(1)*#4 DU(1)=((U(1)**3)*(((PL+H)/(BDYP+B))**(3.0/7.0))/[2.0*C) 1-3.1#U(1)##2/2.0-7.0#(PL+B)/(6.4+D)#(2.07/36E4)#(1.0 2-((BDYP+B)/(PL+B))**(6.0/7.0)+U(1)/C*((PL+B)/(BDYP+B)***(3.0/7.0) 3-U(1)/C*((BDYP+B)/(PL+B))**(3.0/7.0)) 4-4._#U(1)#BDYP/(D#C)#(2.;736E4)#(((BDYP+B)/(PL+B))##(4.0/7.0) 5-U(1)/C*(PL+B)/(BDYP+B)))/(A(1)-A(1)*U(1)/C*((PL+B)/(BDYP 6+E)) ##(3.0/7.0)) Y=A(1)*U(1)**2/2.0+(2.0736E4)*A(1)*(BDYP-PL)/D*(1.0+ 1(2.)736E4)*(BDYP-PL)/(2.0*D*C**2)) YK=U(1)*(A(1)*+2)*(C*+3)*(1.G-U(1)**2/(2.0*C*+2))/Y**2 1-A([)*(C**2)*(1.0-U(I)/C)/Y C4STFU=Y*C/STF1+YK*Y**2/(C**3*STF1**2)*(C**2-Y/STF1 1+(YK**2/C**3)*(Y**4/C**3)/(2.G*STF1**4)) STFUC1=C4STFU/C+#2 STFPC1=D+(Y/STF1-STFUC1++2/2.0)/(2.0736E4) 1+C+({Y/STF1-STFUC1++2/2.0}++2]/(2.C+(C++2)+(2.0736E4)) TSTF1=((STF1-A(1))/C)*(1.0-U(1)*A(1)/(C*STF1))+T
C4STFU=Y+C/STF2+YK+Y++2/(C++3+STF2++2)+(C++2-Y/STF2 1+(YK##2/C##3)#(Y##4/C##3)/(2+U#STF2##4)) STFUC2=C4STFU/C##2 STFPC2=0*(Y/STF2-STFUC2**2/2.6)/(2.0736E4) 1+C+((Y/STF2-STFUC2++2/2.0)++2)/(2.0+(C++2)+(2.0736E4)) TSTF2=((STF2-A(1))/C)*(1.G~U(1)*A(1)/(C*STF2))+T DO 738 KK=1.3 C4STFU=Y#C/STF(KK)+YK#Y##2/(C##3#STF(KK)##2)#(C##2-Y/STF(KK) 1+(YK##2/C##3)#(Y##4/C##3)/(2.G#STF(KK)##4)) STFUC(KK,1)=C4STFU/C**2 STFPC(KK.1)=D+(Y/STF(KK)-STFUC(KK.1)++2/2.0)/(2.0736E4) 1+D#((Y/STF(KK)-STFUC(KK.1)##2/2.0)##2)/(2.0#(C##2)#(2.0736E4)) 708 TSTF(KK.I)=((STF(KK)-A(I))/C)+(1.0-U(I)+A(I)/(C+STF(KK)))+T T=T#1.0E3 ISTF1=TSTF1+1.0F3 TSTF2=TSTF2*1.0E3 wRITE(6,169)T.A(I),U(I),DU(I).BDYP.TSTF1.STFPC1.STFUC1.TSTF2. 1STFPC2.STFUC2 169 FORMAT(F11.6.F8.5.2E13.5.E12.5.2(F9.6.2E13.5)) T=T#1.08-3 TSTF1=TSTF1+1.0E-3 TSTF2=TSTF2+1.0E-3 RELOCATE CERTAIN QUANTITIES FOR THE NEXT STEP OF THE INTEGRATION C4=C5 D4=D5 UP4=UP5 AP4=AP5 IF(A(I)-A(I-1))669,669,240 240 IF(U(1))7J.669,669 669 T=T+5 GO TO 7' 71 WRITE(6,75) 75 FORMAT(57HTHE PROCESS IS NOT CONVERGING QUICKLY ENOUGH AT SOME STE ``` SOURCE STATEMENT - IFN(S) - EFN ``` IP) 70 IF(M-1000)7.223.223 223 WRITE(6,224) 224 FORMAT(91H 1000 VALUES HAVE BLEN CALCULATED BUT THESE VALUES DO NO IT COMPLETE THE ENTIRE FIRST PERIOD) 7 WRITE(6,137) 107 FURMAT(120H1 TSTF3 STFPC3 STFUC3 TSTF4 1 STFPC4 STFUC4 TSTF5 STEPCS STFUC5 DO 715 I=1.3 DO 715 N=1.1000 715 TSTF(I.N) = (STF(I.N) +1.0E3 WRITE(6.701)((TSTF(1,N),STFPC(1,N),STFUC(1,N),1=1,3),N=1,1009) 701 FORMAT(3(F10.6,2E15.6)) 1 CONTINUE 222 STOP END ``` #### REFERENCES - 1. Krenzke, M. et. al, "Potential Hull Structures for Rescue and Search Vehicles of the Deep-Submergence Systems Project," David Taylor Model Basin Report 1985 (Mar 1965). - 2. Krenzke, M. and Charles, R., "The Elastic Buckling Strength of Spherical Glass Shells," David Taylor Model Basin Report 1759 (Sep 1963). - 3. Rayleigh, J.W.S., "On the Pressure Developed in a Liquid during the Collapse of a Spherical Cavity," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, London Sixth Series, No. 200 (Aug 1917). - 4. Herring, "Theory of the Pulsations of the Gas Bubble Produced by an Underwater Explosion," Office of Scientific Research and Development Report 236 (Oct 1941). - 5. Gilmore, F.R., "The Growth or Collapse of a Spherical Bubble in a Viscous Compressible Liquid," California Institute of Technology Report 26-4 (Apr 1952). - 6. Kirkwood, J.G. and Bethe, H.A., "The Pressure Wave Produced by an Underwater Explosion," Office of Scientific Research and Development Report 588 (1942). - 7. Hickling, R. and Plesset, M.S., "The Collapse of a Spherical Cavity in a Compressible Liquid," California Institute of Technology Report 85-24 (Mar 1963). - 8. Schmid, J., "Cinematographic Investigation of Single Bubble Cavitation," (German), Acustica, Vol. 9 (1959). - 9. Ralston, A. and Wilf, H.S., "Mathematical Methods for Digital Computers," John Wiley and Sons, Inc., New York (1960). - 10. Hildebrand, F.B., "Introduction to Numerical Analysis," McGraw-Hill Book Company, Inc., New York (1956). - 11. Otto, J., "Handbook of Experimental Physics," (German), Academic Publishing Company, Ltd., Vol. 8, Leipzig (1929). - 12. Coddington, E.A., "An Introduction to Ordinary Differential Equations," Prentice-Hall. Inc., New York (1961). #### INITIAL DISTRIBUTION | Copie | · · | |-------|---| | 5 | DSSP | | 1 | CHBUWEPS, SP-001 | | 3 | CHNAVMAT
1 MAT 0331 | | 5 | NAVSHIPSYSCOM 3 Tech Info Br (Code 2021) 1 Advanced Ship Devel Sec (Code 03411) 1 Sub Br (Code 525) | | | NAVSEC 2 Sci & Res Sec (Code 6442) 1 Prelim Des Br (Code 6420) 2 Prelim Des Sec (Code 6421) 1 Ship Protec (Code 6423) 1 Hull Arrgt, Struc, & Preserv (Code 6633) 1 Boiler & Heat Exchange Br (Code 6651) 1 Mat & Chemistry Br (Code 6634) 1 Polymer, Fiber & Packing Sec (Code 6634C) | | 2 | CHONR 1 Struc Mech Br (Code 439) 1 Undersea Programs (Code 466) | | 4 | CNO 1 Tech Anal & Adv Gr (Op 07T) 1 Plans, Programs & Req Bi (Op 311) 1 Sub Program Br (Op 713) 1 Tech Support Br (Op 725) | | 20 | DDC | | 1 | CO & DIR, USNMEL | | 1 | CDR, USNOL (Dept W) | | 1 | USNASL, Brooklyn (Code 9360) | | 1 | DIR, USNRL (Code 2027) | | 1 | CO & DIR, USNUSL | | 1 | CO & DIR, USNEL | | 1 | CDR, USNOTS, China Lake | | 1 | CDR, USNOTS, Pasadena | CO, USNUOS #### Copies - 2 NAVSHIPYD PTSMH - 2 NAVSHIPYD MARE - 1 NAVSHIPYD CHASN - 1 SUPSHIP, Groton - 1 EB Div, Gen Dyn Corp - 1 SUPSHIP, Newport News - 1 NNSB & DD Co - 1 SUPSHIP, Pascagoula - l Ingalls Shipbidg Corp - SUPSHIP, Camden - New York Shipbldg Corp - DIR, EEF R&E, Attn: Tech Lib - 1 CO, USNROTC & NAVADMINU, MIT - 1 O in C, PGSCOL, Webb - 1 DIR, APL, Univ of Washington, Seattle - 1 NAS, Attn: Comm on Undersea Warfare - 1 WHOI - 1 Mr. J. Mayor - 1 Dr. R. Dehart, SWRI #### UNCLASSIFIED | HTROL DATA - RAD | | |--|---| | | ham the amoult sense to also although | | | hen the overell report is classified) EPORT SECURITY C LASSIFICATION | | | Inclassified | | | | | | | | F A SPHERICAL GAS-F | ILLED CAVITY IN A | | | | | | | | | | | 78. TOTAL NO. OF PAGES | 76. NO. OF REPS | | 41 | 12 | | Se. ORIGINATOR'S REPORT | NUMBER(S) | | 2228 | | | Sb. OTHER REPORT NO(5) (| Any other numbers that may be seeigned | | 1 | | | | | | 12. SPONSORING MILITARY | ACTIVITY | | Deep Submergence Sy
Washington, D.C. | stems Project Office | | <u> </u> | | | the instantaneous press | ure, velocity, acceleration, | | herical gas-filled cavity which makes use of Har which describe the collar form the nocessary calcagreement with those of a undertook the study. ressure is significantly ire, and/or a variation of two parameters can be in the study of the study of the study. | in an infinite compressible mming's technique to numeriapse. culations on a IBM 7090/1401 Hickling and Plesset, whose reduced by a decrease in f the specific heat ratio by investigated as a possible | | | TA SPHERICAL GAS-F 7. TOTAL NO. OF PAGES 41 2228 25. OTHER REPORT NO(3) (12. SPONSORING MILITARY (Deep Submergence Sy Washington, D.C. the instantaneous press herical gas-filled cavity which makes use of Har which describe the collar form the pagesary calcagreement with those of e undertook the study. The pages of the collar form page | DD .5084. 1473 UNCLASSIFIED UNCLASSIFIED | 4. | | LIN | KA | LIN | K B | LIN | KC | |--|------------------|------|----|------|-----|------|----| | | KEY WORDS | ROLE | WT | ROLE | wT | ROLE | WT | | Bubble Collaps
Buoyancy Spher
Bubble Pressur
Bubble Radius
Bubble Wall Ve
Bubble Wall Ac
Numerical Solut | e
e
locity | | | | | | , | | | | | | | | | | #### INSTRUCTIONS - ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report. - 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations. - 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized. - 3. REPORT TITLE: Enter the complete report title
in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title. - DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered. - 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement. - REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication. - 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information. - 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report. - 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. - 85, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc. - 9a. OZIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report. - 95. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s). - 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as: - (1) "Qualified requesters may obtain copies of this report from DDC." - (2) "Foreign announcement and dissemination of this report by DDC is not authorized." - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through - (5) "All distribution of this report is controlled. Qualified DDC users shall request through If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known - 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes. - 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address. - 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached. It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS). (S). (C), or (U). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words. 14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, reles, and weights is optional. ## UNCLASSIFIED Faylor Medel Besin. Report 2223. CULATIONS ON THE COLLAPSE OF A SPHERICAL LLED CAVITY IN A COMPRESSIBLE LIQUID, by Z. Lilliston. Aug 1966. iv, 37p. graphs, refs. , whose work was unknown to the present author when he paper presents a method for calculating the instantaneous culations on a IBM 7090/1401 digital computer. Results e, velocity, ecceleration, and radius associated with the s of a spherical gas-filled cavity in an infinite compresled is a computer program which will perform the neces-'s differential equations which describe the collapse. The method is an independent approach which ise of Hamming's technique to numerically integrate l are in good agreement with those of Hickling and ok the study. 1. Bubbles-Collapse-2. Bubbles -- Collapse --Pressure Mathematical analysis 8. Bubbles -- Collapse --Programming Collapse-Shock pressure 5. Compressible liquids --4. Spherical cavities- 6. Differential equations... Spherical cavities... Collapse 7. Digital computers--IBM 7090,1401-Applications 1. Lilliston, Russel R. Numerical solutions UNCLASSIFIED Devid Teylor Model Basin. Report 2223. CALCULATIONS ON THE COLLAPSE OF A SPHERICAL GAS-FILLED CAVITY IN A COMPRESSIBLE LIQUID, by Russel R. Lilliston. Aug 1966. iv. 37p. graphs, refe. This paper presents a method for calculating the instantaneous pressure, velocity, acceleration, and radius associated with the collapse of a spherical gas-filled cavity in an infinite compres-Gilmore's differential equations which describe the collapse. sible liquid. The method is an independent approach which makes use of Hamming's technique to numerically integrate Plesset, whose work was unknown to the present author when he sary calculations on a IBM 7090/1401 digital computer. Results Included is a computer program which will perform the necesobtained are in good agreement with those of Hickling and undertook the study. ## Bubbles-Collaps 2. Bubbles-Collapse-1. Bubbles Pressure Mathematical analysis 3. Bubbles-Collapse-Programming Collapse-Shock pressure 5. Compressible liquids--Spherical cavities--4. Spherical cavities- 7. D gital computers-IBM 6. Differential equations-7090, 1401-- Applications Nus erical solutions Collapse I. Lilliston, Russel R. # David Taylor Model Basin. Report 2223. CALCULATIONS ON THE COLLAPSE OF A SPHERICAL GAS-FILLED CAVITY IN A COMPRESSIBLE LIQUID, by Russel R. Lilliston. Aug 1968. iv, 37p. graphs, refs. Mathematical analysis 1. Bubbles .. Collapse .. 2. Bubbles Collapser This paper presents a method for calculating the instantaneous pressure, velocity, acceleration, and radius associated with the collapse of a spherical gas-filled cavity in an infinite compres-Gilmore's differential equations which describe the collapse. sible liquid. The method is an independent approach which makes use of Hamming's technique to numerically integrate Collapse-Shock pressure 4. Spherical cavities- 3. Bubbles..Collapse.. Programming 5. Compressible liquids .. Spherical cavitios ... Collapse 6. Differential equations-7. Digital computers--IBM 7090. 1401-Applications Numerical solutions I. Lilliston, Russel R. sary calculations on a IBM 7090.71401 digital computer. Results Plesset, whose work was unknown to the present author when he Included is a computer program which will perform the necesobtained are in good agreement with those of Hickling and undertook the study. ## 1. Bubbles-Collapse-Pressure Mathematical analysis 2. Bubbles -- Collapse --3. Bubbles--Collapse- UNCLASSIFIED Collapse-Shock pressure 5. Compressible liquida-4. Spherical cavities-Spherical cavities-Programming 6. Differential equations-7. Digital computers-IBM 7090 1401-Applications 1. Lilliston, Russel R. Numerical solutions Collapse The state of s UNCLASSIFIED ULATIONS ON THE COLLAPSE OF A SPHERICAL LED CAVITY IN A COMPRESSIBLE LIQUID, by t. Lilliston. Aug 1966. iv, 37p. graphs, refs. or Model Basin. Report 2223. aper prosents a method for calculating the instantaneous ulations on a IBM 7090/1401 digital computer. Results whose work was unknown to the present author when he velocity, acceleration, and radius associated with the d is a computer program which will perform the necesof a spherical gas-filled cavity in an infinite compresdifferential equations which describe the collapse. iid. The method is an independent approach which e of Hamming's technique to numerically integrate are in good agreement with those of Hickling and the study. nay be inferred that the peak shock wave pressure is signifly reduced by a decrease in ambient pressure, an increase small pressure, and/or a variation of the specific heat ratio oper selection of the gas. Control of the last two paramcan be investigated as a possible means of protecting spheres against sympathetic implosion in multiple sphere nocy systems. may be inferred that the peak shock wave pressure is signifly reduced by a decrease is ambient pressure, an increase ternal pressure, and/or a variation of the specific heat ratio oper selection of the gas. Control of the last two paramcan be investigated as a possible means of protecting spheres against sympathetic implosion in multiple sphere ancy systems. It may be inferred that the peak shock wave pressure is significantly reduced by a decrease in ambient pressure, an increase in internal pressure, and/or a variation of the specific heat ratio by proper selection of the gas. Control of the last two parameters can be investigated as a possible means of protecting glass spheres against sympathetic implosion in multiple sphere buoyancy systems. It may be inferred that the peak shock wave pressure is significantly reduced by a decrease in ambient pressure, an increase in internal pressure, and/or a variation of the specific heat ratio by proper selection of the gas. Control of the last two parameters can be investigated as a possible means of protecting glass spheres against sympathetic implosion in multiple sphere buoyancy systems.