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ABSTRACT

This report contains the documentation of a multiple linear
regression program for up to 50 independent variables, written in
FORTRAN IV for the IBM 7030 (STRETCH) computer. The program
incorporates part of the results obtained from an effort to explore
the present limitations of high speed computation in the area of
linear statistical models. DA-MRCA includes options for both
forward and backward automatic ranking of the independent variables
by order of prediction power for the dependent variable. The report
contains the description of these options, along with an outline of
the applicability of the program which includes, in a convenient
form, non-orthogonal analysis of variance. Justifications are given
for extensive checks made on the accuracy of the matrix inversions.
The resulting internal decisions and their effects on the computationai
flow are described in detail. Also, a failure analysis is given in
which causes for failures to obtain acceptable inverses and possible
consequences of corrective measures are discussed.

iii
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FOREWORD

The DA-MRCA' program (Dahlgren Multiple Regression Comprehensive
Analysis) documented in this report is partially based on the TV-MRCA
program (Tennessee Valley Authority Multiple Regression Comprehensive
Analysis) of the Tennessee Valley Authority. The TV-MRCA program
became available to the authors through the SHARE Program Library.
Although much larger in scope and applicability, DA-MRCA still con-
tains some computational details from its nucleus routine, TV-MRCA.

(In order to reflect this fact the initials '"MRCA'" have been retained
for the prescnt program.) TV-MRCA included, for a regression model
containing up to 23 independent variables, the bases for the features
described at the following places of the present report: Paragraph C
of Section VI.2.a.(l); paragraphs A-F of Section VI.2.a.(2) (excluding
all references to ANOVA tables, the final comprehensive analysis, IVOR,
and BIVOR) ; paragraphs A, B, and I of Section VI.2.a.(3); and Section
VI.2.a.(4) (excluding the option for selected input design points).
These features were applicable, in TV-MRCA, to the main ‘run and to hand
selected reruns. The first additions to and revisions of the coding
of the TV-MRCA program were performed by Mr. R. Scanlon, Mr. D. Green,
and Mrs. Julia Gray, members of the former Scientific Programming and
Analysis Branch, Computation Division.

The work reported was done in the Mathematical Statistics Branch,
Operations Resecarch Division, and the Operations Sciences Branch,
Computer Programming Division, with Foundational Research Funds No.
29Y/RO110101/WR-6-7042 ("Computer Programs for Statistical Analyses™).

The flow charts contained in the present documentation were drawn
by Messrs. Thomas B. Yancey and John S. Darling and the report was
typed by Miss Judy D. Merryman.

The work on rhis report was completed on 26 March 1966.

APPROVED FOR RELEASE:

BERNARD SMITH
Technical Director

iv
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I. INTRODUCTION

The need for a capable computer routine to solve extensive
multiple regression problems in the application of statisticnl methods
to naval ordnance research studies and other investigations at the
Naval Weapons Laboratory led to the development of the present
DA-MRCA program. Connected with this development was an effort to
explore the »resent limitations of high speed computation in the area
of linear statistical models. The program incorporates part of the
results obtained from this research. )

DA-MRCA has served, during all stages of its development, in
the solution of actual statistical problems and, also, in research
studies to develop more advanced and/or specialized computer routines
(to be documented) for statistical analyses. After years of additions
to and revisions of the program it is felt that DA-MRCA has reached a
desired format and that its documentation is appropriate at this time.

The DA-MRCA program is written in FORTRAN IV for the IBM 7030
(STRETCH) computer and performs all the usual phases of a multiple
linear regression analysis, that is, an analysis based upon the model

y = Bo + Byxy + Baxa + v+ Byxy + 0 4+ Byxy t e (1-1)
where

y = "dcpendent”" (random) variable

xy = "independent” (non-random) variables, v = 1,...,N

By = regression coefficients, v=1,...,N
B> = a constant

e = "residual", or "error'" term: a random variable with
expectation zero and variance , usually assumed tc be
normally distributed.

The upper limit for the number of independent variables to be included
in the model is N=50. The main results of the analysis (based on a
set of observed x and y values and obtained by the principle of least
squares) are the estimates of the regression coefficients, By, the
constant, R,, and the residual variance, o®, i.e., a prediction
formula for the dependent variable and a measure of its accuracy.
Furthermore, the following features are included in the program:
Computation of predicted values of the dependent variable at selected



B

NWL REPORT NO. 2035

input design points and/or '"synthetic' design points; computation

of prediction standard deviations for the construction of confidence
or tolerance limits at selected input design pointq and/or synthetic
design points; a listing of the prediction errors, e; a bar-chart

and a Chi-square test on the normality of these errors; computation
of the standard deviations of the regression coefficients; printout

of the full inverse of the matrix of the normal equations; computation
of various other pertinent statistics, an analysis-of-variance table,
and a final comprehensive printout. For more details about these
features see Chapter VI. (It should be noted that DA-MRCA is not
capable of handling more than one dependent variable at a time.
Neither can the program obtain weighted least squares solutions nor can
it fit regression models through the origin.)

Since the theoretical aspects of the normal phases of multiple
regression analysis form a well established part of mathematical
statistics (see, for example, Anderson and Bancroft {1952)), these
aspects need not be discussed in this report.

In addition to the "usual" features, the program has three
options for the identification of the significant independent variables.
These options are discussed in more detail in Chapter III. In the
first option, the model is re-evaluated on the basis of a '"hand"
selected subset of N'«<N independent variables. This option can be
used to test the null hypothesis on any specified subset of N-N'
regression coefficients, B,. In the other two options the independent
variables are automatically ranked by order of predicticn power for the
dependent variable. The first of these options employs the "IVOR"
routine ('Independent Variable Ordering by Regression Sums of Squares').
This routine uses a forward or 'build-up" technique to rank the
independent variables in descending order of importance. The second
ranking option employs "BIVOR" ("Backward Independent Variable
Ordering by Regression Sums of Squares"). This routine uses a reverse
ordering technique by which the independent variables are ranked in
ascending order of importance. In Chapter III, it is shown that the
disturbing effects of possibly existing 'compounds' (to be defined)
upon the ranking of the independent variables can be avoided only by
applicaticn of the BIVOR technique. Therefore, the BIVOR option is
recommended whenever feasible. There are, however, situations in
which the IVOR technique has its advantages, as also discussed in
Chapter III.

Essentially all of the "usual' features which were listed
previously are also applied, or can optionally be applied, in the
"reruns" of these three options for the identification of the signif- -
icant independent variables.



NWL REPORT NO. 2035

Also built into the program are extensive checks on the accuracy
of the computations. The elements of the calculated identity matrix
are checked for their deviations from either 1 or 0, and internal
decisions are made with respect to the acceptance of the matrix
inversims according to accuracy requirements imposed by the program
user. The details of these checks are discussed in Sections VI.l.b.
and VI.2.

A preprocessor program for DA-MRCA, MTRAN, has been developed
for possible transformations of observed x and y values if such are
necessary. This program, however, is not described at length in the
present report but is covered in a separate documentation (Herring
11966 |). For a discussion of variable transformations, see Sections
I1.2. and VII.2.a.

The various chapters of this report are directed at different
types of readers., Chapter II is mainly for the reader who wants to
be informed about the possible applications of the program. No
specialized statistical, mathematical or programming knowledge is
required for understanding this chapter, except for Section II.3,
where some knowledge of analysis of variance is necessary. (As in
Chapter II, programming knowledge is not required for reading Chapters
II1 through VII.) Chapter III is written mainly for the analyst
seeking information about the theory, techniques, and use of the
three model re-evaluation options of the program, especially IVOR
and BIVOR. (These two procedures are introduced with this report.)
Chapters IV and V define the terms used and explain the input prepa-
ration for the program, respectively, and are, therefore, essential
for any program user. Chapter VI is written for the analyst who
wants information on the computations and the meaning of the printouts.
Program running time formulae and an example problem are also given in
this chapter. Chapter VII can be of assistance to the program user in
case of a failure to obtain a problem solutinn. Chapter VIII is written
for the programmer and for the programming-oriented analyst. This
chapter contains the FORTRAN IV documentation of DA-MRCA (including
flow charts) and is essential for program changes and/or conversions.

The reader will notice some repetition in reading the report as
a whole. However, the report is intended not only as a complete
description of DA-MRCA, but also as a direct work aid in which case
the program user would generally refer only to a specific chapter or
section at a time. Each section contains all the necessary information,
often given in the form of references to other sections.
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In this chapter the various types of problems to which the
DA-MRCA program can be applied are discussed. Some general state-
ments cbout the applicability are followed by sectious on specific

types of application.

I..1 General Applicability

The DA-MRCA program is applicable to all problems in which
1 preconceived linear mathematical model of the form

Y = 8¢ ¥ epXy t Baxe £ oo+ Byxy F e+ Buxe (II-1)

is to be evaluated on the basis of naN+] given sets of values,

{y; xl,xg,...,xm}, by use of the principle of least squares. Essentially
this evaluation consists of solving for the unknown coefficicnts,

B,(v = 0,1,...,N) and attaching a measure of importance to the

individual variables, x,, thereby characterizing their "prediction

power' for Y. In the narrower sense of multiple linear regression
(n>N+1) the n cbservations, y, of the "dependent" variable (random)

are expressed in the terms of the multiple regression model (I-1),

y:Y*“e:BC‘;

N

2. Bvxv T e,

= l

where the x, are the "independent variables" (v = 1,...,N) and where

e is a random variable with expectation zero and variance o2 {Note
that the regression model (I~1) is obtained by merely adding the random
variable e to the mathematical model (II-1).) Alchough e is usually
assumed to be normally distributed, it does not have to be unless
statistical hypotheses about the 3, are to be tested, or confidence

intervals are to be constructed.

[ ]

The ith set of observations, {y; xl,xp,...,le is defined by

the coordiuates of the dependent variable and the N independent

variables and is called the ith “data point." The numerical data of

a glven regression problcm is comprised of n such data points

(i =1,...,n). The ith set of coordinates of the N independent

variables, {x;,x.,...xq}s, is called the ith "input design point."

In general, there is no restriction concerning the relative position

of the input design points except, naturally, in the case of linear
dependeacies in the matrix of the normal equations. (See Section VII.2.b.)
For cxample, the design points de not have to define a complete

rectangular grid in the N-dimensional space, a situation in which

orihogonal polyromials are often used.
require such (orthogonal) grids.

The application of these does

Pl o el
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The x; values, in the theory of multiple regression, are assumed
to be non-random, that is, they are determined at the will of the
experimenter. However, in a more general interpretation, they may
also be values which have been measured, or observed, without
appreciable error. Sometimes multiple regression is applied in such
a broad sense that the only requirement for a given variable being
used as 2u "independent' variable, is the assumption of a cause-
effect relationship between the variable and the 'dependent' variable,
y. All errors originating from the "independent" variables x, are
then attributed, by definition, to the variability of y, and the x,
are again considered as non-random variables. According to the
definition of the model (I-1), the y values for a given design point
are assumed to be randomly and independently sampled from a distri-
bution (usually normal) with expectation

N
Y = Bo + z Bvxv
\i-:l

. 2
and variance < .

With the above, the general linear multiple regression problem,
to which DA-MRCA is applicable, consists of fitting a least squares
surface of the form (II-1) to n observations y: at n input design
points (not necessarily all distinct), where these points are located
in the N-dimensional spacc defined by the N independent variables.
Specifically, the program serves to identify those independent
variables which explain a significant portion of the variability in
the numerical values of y, or, in other words, which have significant
prediction power for y. One possibility to arrive at this identifi-
cation is by application of the automatic ranking procedures IVOR and/or
BIVOR. IVOR and BIVOR each provide for the ranking of all N independent
variables simultaneously, or for ranking independent variables within
specified groups. A second possibility to identify the significant
independent variables is to apply the option for "hand selecting' a
specified subset of independent variables to be deleted from the
original model, and then test the contribution of these deleted
independent variables to the fit., Also possible is the computation
of statistics necessary for the construction of confidence intervals
for the true response values Y at the input design points and/or
"synthetic'" design points located within the original experimental
space,

By definition, the least squares fit for the model (I-1) reduces
to a "perfect fit" when the number n.,(n.:n) of distinct inpul design
points in the N-dimensional space is equal to N+1. When ny=n(=N+1),
i.e., when there is exactly one value y. at each distinct design point
(the surface being a perfect fit to each individual value y,, i=1,2,...,n),
the fit is called a '"zero-error perfect fit." This 'non-statistical"

Wy s - ST i NIRRT 60 VS o S8 s, va g -— -+
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or "deterministic'" use of multiple regression is also possible with
DA-MRCA, as was implied in the statements about the model (II-1) at
the beginning of this section. The application of the program in
this case is discussed, in more detail, in Section II.4.

The linearity of the mathematical model (II-1) depends only
on the linearity of the unknown parameters, i.e., on that of the B,'s.
The general linear model, consequently, can be conceived to be of
various forms, each of which can be fitted by DA-MRCA. For example,
each xy can be a (non-linear) function of one or more other variables.
Some of the more common equations of linear form are discussed in
Section I1.2. There are also many equations that, although non-linear
in their parameters, can be made linear by an appropriate transformation.
The use of DA-MRCA in fitting this type of equation is also discussed
in the next section (II.2).

In order to solve a regression problem a decision must be made
as to which independent variables should be included in the model and
in which functional form the chosen independent variables should be
included in the model. Helpful in this decision may be theoretical
considerations, previous experience with the variables, a plot of the
data, or some other means. Of particular help can be the use of the
program's ranking methods IVOR and BIVOR. These methods allow the
analyst to start with a possibly very elaborate model (a polynomial,
in general) in which all terms having in reality little or no
prediction power for the dependent variable, y, will automatically
be identified.

The use and application of IVOR and BIVOR are explained in
detail, together with the discussion of the theory of these ranking
procedures, in Section III.2. There it is shown that the BIVOR option
should be used, whenever possible, for the automatic ranking of the N
independent variables.

II.2 Specific Linear Models and Linearization

The most straightforward application of the general linear model
(11-1),

Y = B, + 31x; + Bax;: +ocer ¥ Byxy + e+ Buxy,

occurs when all N variables, x,, represent the first powers of
original observed independent variables. In the example case given
in Section VI.5, where the dependence of y = Ballistic Limit (of
projectile) upon Thickness and Hardness (of target plate) is analyzed,

‘such a straightforward model would include only the two original

independent variables Thickness (x,, say) and Hardness (x., say), end
would, therefore, have the form:
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Y =8 + Bixy + Buxe.

As indicated before, however, the x, can also represent functions of
the form '

% = £ {205 2uys cees 2uys oen ), (11-2)

where these functions do not contain parameters to be estimated and
where the z,, are variables (assumed to be non-random) whose observed
numerical vaiues completely specify the numerical value of xy. The
simplest example of such functions are the polynomial terms x,=2z" of
a single original independent variable, z. A model containing only
these terms would appear as

Y = By + Byz + Bo2z® 4 ccor + Byz¥ + coe + B2V,

that is, as the equation of an Nth degree polynomial in one variable.
More generally, the x, can represent polynomial terms in several
original independent variables, z;. This implies the applicability
of DA-MRCA in the important area of multivariate polynomial fitting
with up to N=50 polynomial terms, including the linear terms. The
data handling in this case is very simple because the numerical values
of the polynomial terms can be automatically generated by the program.
The program user merely specifies which polynomial terms are to be
included in the model and writes as input only the numerical values of
the original independent variables, z,. From these, the values of the
terms of higher than first order are automatically generated and
internally used as input for the generation of the matrix of the normal
equations. As is true for any type of independent variable, x,, the
use of the options for hand selected reruns or for IVOR and/or BIVOR
will provide the analyst with the desired information concerning the
necessary degree of the polynomial needed in the fit. This enables
the program user to maximize the ''goodness of fit", provided that

he starts with a polynomial equation of high enough degree in all
original independent variables. IVOR and BIVOR will automatically
rank the polynomial terms according to their prediction power for y
and thus provide the analyst with a basis for choosing a '"significant
model." To illustrate this with the example of Section VI.5, the
analyst might have assumed that the polynomial in x; = 2, = Thickness
and xp = 2, = Hardness would not have to be of higher than the second
degree in order to predict the Ballistic Limit, y, sufficiently well.
Accordingly, he would enter the program with the model

2 3
Y = Bo + Byzy + Byzp + Ba2l + Bizyz. + Bazl.
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Numerical input would be (besides y) only x;=z, and Xx.=z., whereas
x3=z?, X4=212,, and xgng would be generated by the program. The
application of BIVOR, say, might yield as the ''significant model"

(using the symbols ¥ and by for the estimated parameters):

¥ = b + byzy + by .

Here, it is implied that BIVOR ranked the riables z., z5, and z_as
the least important ones and that their contribution to the fit was
found to be nonsignificant according tc a prechosen significance level,

As indicated before, both IVOR and BIVOR contain an option for
grouping the independent variables such that the ranking process takes
place within only one group at a time. (For more details see Sections
VI.1.d and VI.l.e.) This grouping can be applied to the case of poly-
nomial terms such that terms of equal degree, for example, will be
ranked exclusively among themselves. The reader is referred to Section
VII.2.a for an important application of this feature in connection with
using transformed variables to increase the computational accuracy when
fitting polynomials.

Although polynomial terms are the most frequently occurring type
of functions, f,, in formula (II-2), functions other than polynomials
can as well be represented by the x,. Examples are xy=2zy,sin(zy.),

Xy 2y, 2y, 5 Xy--log 2y, etc. In particular, such functions will occur
when linearization of the given (non-linear) model must be achieved
by transformations.

Although the method of least squares may also be applied to
non-linear models, the normal equations which result are non-linear
in the parameters and generally must be solved by iterative methods.
DA-MRCA is not capable of fitting such equations, but some of the
non-linear equations can be evaluated after performing the appropriate
transformation that leads to the necessary linear form. Suppose, for
example, the analyst wishes to consider the non-linear equation

¥ = Bg(zl)ﬁl

as the model. (The asterisks are used for distinction of the terms
of the non-linear model from those of the linear model.) A simple
transformation to either common or natural logarithms will result in
the linear equation

log Y* = log B+ g, log z,
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which is identical to the general linear model if one lets log Y*-Y of
the linear model, log B* B and log z,=x,. In this case, therefore,
the logarithms of the values of both the dependent and indepe-.dent
variables must be used as input to the program. The resulting least
squares equation can be retransformed into the original’j::m by
substituting the antilog of the estimated ccefficient log B" for

b%¥ in the original equation as expressed in estimated terms:

A

y b
Y* = bzle 1 .

Another example of a non-linear model that can be linearized by a
logarithmic transformation is

* = pF(EN) 1 (BR) "2,
This will lead to
* % %
log Y* = log 8; + (log By)z; + (log B:)z:.

With log Y* = Y, 2z, = x,, 2. = X, in this case, the logarithms of only
the values of the dependent variable have to be used as input.

It should be noted that, whenever a transformation is used to
linearize an equation, it is the sum of squares of deviations on the
transformed variables that is minimized and not the sum of squares on
the original variables. This has consequences in the use of the results
from DA-MRCA: point and interval estimation must be done based on the
calculations for the transformed variables. Only after the predicted
values and/or confidence limits have been computed, will they be
re~-transformed into the original scale of the non-linear model. As
a result one obtains, for example, non- symmetric confidence limits
about the ¥ values.

Often it is necessary to apply a transformation only on the
dependent variable in order to achieve a normal (or near-normal)
distribution for y as is desired in many cases. (The built-in
Chi-square test on the normality of the residuals, e, may give an
indication for the necessity and type of such a transformation. See
Section VI.l.c.) Another reason for transforming y only could be to
stabilize the variance which might be a function of the coordinates,
Xy, of the design points. It is a known fact, however, that in many
cases in which a transformation of the y values is appropriate for
either of these two reasons, it is also necessary for the other one.
In addition to this, experience has shown that when the experimental
data indicates the necessity of a transformation for normalizing the
y values and/or for stabilizing their variance, often this is the
only transformation which also linearizes the functional relationship

between Y and the x's. For example, in the model Y* = BS(BY)*1, the
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observations y* of the dependent variable will*usually ngt be distributed
normally, but the values of y = log y* = log Bg *+ (log By)z, + e often
will be.

Because of the importance of the various transformations it is
repeated here that the preprocessing program MTRAN (''DA-MRCA Trans-
formation", see Herring [19661) is available for use in conjunction
with DA-MRCA. This program can perform the following transformations
on the values of the dependent variable, the independent variable(s),
or on the values of hoth types of variables:

ln (A+x) *)
In [B+ln (C+x) ] *)
Jx

1
— *
D+x )

Sin X

2 sin~ ! /x

sin x

cos X

X *)

E

xoX k)
R,

*) The constants A, B, C, D, E arc to be specified by the
analyst.

%%) This transformation is only for the independent variables.
The purpose is to increase the matrix inversion accuracy., For details
see Section VII.2.a.

10
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II1.3 Non-Orthogonal Analysis of Variance and Covariance

DA-MRCA, being a program for general multiple linear regression,
can naturally also be applied to analysis of variance and covariance
models, in particular to data classifications with incomplete and/or
unbalanced data (non-orthogonal ANOVA). For the general discussion of
the multiple regression treatment of non-orthogonal analysis of variance,
see Brownlee [1960].

As an example of the application of DA-MRCA to non-orthogonal
analysis of variance, a 2x3 crossed classification with qualitative

factors and with unequal (and non-proportional) cell numbers is treated.

The two factors of the example are denoted as & and 5, and the
analysis of variance model is:

The various terms have the following meaning:

YaBg = pth observation in cell "of" of the response variable
(random) , where

p=1,...,Rg8
Q=1,|.|,A
B=1,..-,B

with Rgg being the number of observations in cell "of"
and with A and B being the numbers of levels in factors 7
and &, respectively (A=2 and B=3 in the present example);

Ya8 = expected or true value of the response variable y in
cell "aB";

N = general constant;

a; = constart for level o of factor &;

bg = constant for level B of factor 5;

absg = interaction constant for level combination 28;

eqagp = error term, assumed to be normally lhdépendently‘
- distributed with expectation zero and variance .

In the multiple regression approach to this case of only
qualitative factors the model constants (in the example: ., a2, by,
and absg) become the regression coefficients of auxiliary independent
variables which take on only the values 1 and 0, as will be demonstr .Led

1

. e - e - M ST SR Y VO S Wt o
(W ¢ L L L R e e L o PN - ~




NWL REPORT NO. 2035

below. For the inversion of the matrix of the normal equations, linear
restrictions have to be imposed on the estimates of the various sets of
constants, reducing the number of constants in each set to the number
of degrees of freedom available in each corresponding factorial effect.
For example, there are A main effect constants ag in factor &, but

only A-1 degrees of freedom are available in the main effect of 7.
Since in non-orthogonal analysis of variance for qualitative factors,
the estimates of only the contrasts between model constants are
meaningful rather than the estimates of the constants themselves (see,
for example, Graybill [1961], Chapter 13), the choice of the type of
linear restrictions imposed on the estimates of the model constants is
arbitrary. For the ease of computation, a good choice is to let the
last constant in each set be equal to zero. Applied to the present
example, this means:

a, =Be=a'i>ae=£b;s =0; a=1,...,A; 8=1,...,B.

The model of the example can be written (using the notation for the
estimates which are in reality only to be found later by least
squares):

~

~ ~ ~ ~
YgB = £°*X, * a1%, * byx. ¢ B;xe + ab.,x, *+ ab;.x..

In this equation, x is a dummy variable always taking the value 1 and
the x., i=l,...,5, are the above mentioned auxiliary variables.

Each of the 6 cells then leads to an equation of the above form
for each of the corresponding R;s: observations, giving altogether

2 3
- ‘- RQB M Ro.
.,1

[¢}]

T |

input design points for the multiple regression approach:

$.. -1+ a,°1l-b-l-b-0-ab,'1l+ab.-0
g .21 +a 1 +tb0+b 1+ ab,0+ab. -l
? %1 - a,+1 - b.+0+ b 0+ ab. -0+ ab.. -0
§ .%1+a3.0:b-.1cb.0+ab..0+ ab, .0
. w1+ a,°0r+b.0+b 1. ab,0+aby, 0

»
?

f...31+a+0-b-0+b -0 ab, 0+ ab.. 0
In this example, the numerical values of the auxiliary "{ndependent"

variables associated with the interaction terms, x. and x , can be secen
to be the products of the values of the auxiliary independent variatles
associated with the two appropriate main cffects, x and x , and x  and

12
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X., respectively. This "product rule" applies correspondingly also to

all crossed classification models containing higher order interactions,
which simplifies greatly the input writing for non-orthogonal analysis

of variance and covariance for qualitative factors: only the 1l's and

0's of the auxiliary variables for the main effects need be input. The
numerical values of the interaction variables are generated by the

program as products according to the specifications put on the appropriate
control card. (For details, see Section V.2, Card Type 3.)

With the design matrix thus generated, the least squares procedure

yields the mndel estimates, or "regression coefficients", b, a,, Sl, b.,
ab,,, and ab, . Also, the sum of squares between cells or 'total
regression' sum of squares is given. By the hand re-evaluation option
of DA-MRCA, null-hypotheses concerning the various factorial effects

can be tested. However, it is not recommended to test a null hypothesis
on the main effects 7 or 5 as long as the interaction ¥ is present in
the model. The reason is that the additional regression sum of squares
due to ¥ or 5, or, more specifically, due to the auxiliary variables

X;, or x. and x., associated with & or B, respectively, is dependent

upon the arbitrary restrictions imposed on the model constants as long

as x, and x- are present in the model. (See Scheffe ' 719591, p- 117.)

The additional regression sums of squares due to & or 8 become

independent of the arbitrary restrictions only when the auxiliary
variables x; and x. of the interaction @ are deleted frorm the model.
Therefore, the recommended sequence of testing in the present example

is to first delete simultaneously x; and x. (thereby obtaining the
additional regression sum of squares due to 79, and then, to delete

the independent variables associated with both &% and & or both &8

~ and 5, provided the interaction % is not significant. This type of
procedure will be referred to as testing under "restricted admissibility",
i.e., initially oniy & is "admissible" for testing but 7 and 5 are not.

In order to illustrate the application of DA-MRCA to non-orthogonal
analysis of covariance one werely weuld have to add covariates to the ‘
above ANOVA model of the 2x3 crossed classification exawple. The
covariates become part of the model for all calculatioas and remain part
of it during the testing of any specified null hypothas(s concerntng the
factorial effects. .

Since the DA-MRCA program'cin handle up'co N=50 independent
varfables, 50 {s also the upper liwmit for the numbe:r of degrees of
freedom for factorial effects tu be included in non-orthogonal analysis
of variance models. In non-orthogonal analysis of covariance this
upper limit of the degrees of freedow for factorial effects is reduced
by the number of covarfates included in the sodel.

Since, in general, individusl factorial effects will have more
than one degree of freedom, the automatic ranking procedures IVOR and
BIVOR generllly cannot be applied for the ranking by significance of
factorial effects. In cases of only single-degree-of-freedom quall-
tative effects, however, this application is possible, For testing
under "restrictod admissibility" as discussed before, the single-degree-
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of-freedom effects must be grouped, in DA-MRCA, according to their order
i.e., main effects first, then 2-factor interactions, then 3-factor
interactions, etc. Since the ranking is done within only one group

at a time, this application of BIVOR (or IVOR) guarantees the
restricted admissibility of the effects for testing, although in an
overstrict manner. For example, in a 2x2x2 factorial classification,
the one-degree of freedom effects would be grouped as follows. Group
1t @, B, C; Group 2: 3, &, BZ; Group 3: @3. BIVOR would delete
d first, then rank @B, &, and A, and finally (after deletion of
both the third and second group) rank &, &, and C.

Note: Work is presently in progress on the documcntation of
NOVACOM, a FORTRAN IV program for '"Non-Orthogonal Variance and Covariance
Analysis by Multiple Regression' which is able to automatically rank
multiple-degree-of-freedom factorial effects under restricted admissi-
bility. NOVACOM is based on the ideas that were indicated in this
section and, in addition, on some of the suggestions contained in Abt

 [1965].

I1I1.4 "Non-Statistical" Applications of DA-MRCA

As already mentioned in Section 1 of this chapter, DA-MRCA also
provides for the possibility of "zero-error perfect fits." These
were defined to be "perfect fits" (un.:N+1l) in which there is exactly
one y valuc at each of the n,-n distinct design points. Since in
these cases the "error', or the residual variance, is zero, the
essential element of statistics is absent. Consequently, there is
no possibility to apply statistical tests or to perform interval
estimation.

The least squares method degenerates to the solution of a system
of N+l linear equations of rank N+l, having as a solution the perfect
fit. Such a zero-error perfect fit has one of its many applications as
an interpolation formula. Since IVOR and BIVOR are independent of the
existence of an error term, they both can be applied in the case where
the pre-conce‘ved model (i.e., the model with the N irdependent variables
of the "mafa run") is a zero-error perfect fit. The subsequent independent
variable selections by IVOR or BIVOR will give (least squares) inter-
pelation fits of monotonically changing overall accuracy. From thesc

- the analyst can choose the model which satisfies his accuracy require-

ments with respect to the prediction of the original valuce of the
responsce variable, Y. This technique is sometimes very uscful when a

closed expression of su(f!clent accuracy is to be found for the entries

of a (able of values.

4




NWL REPORT NO, 2035

II1. THE IDENTIFICATION OF SIGNIFICANT INDEPENDENT VARIABLES

II1.1 Testing A Specified Null Hypothesis by the Main Theorem

The testing of a linear hypothesis concerning the contribution
of any specified subset of N-N' independent variables to the regression
sum of squares due to N independent variables is made possible by a
model re-evaluation option of the program. The test is based on what
may be called the Main Theorem of Multiple Regression. The content of
this theorem, see, for example, Anderson and Bancroft 19521, p. 172,
is as follows:

In the general linear model (I-1),

N
y = z B\,x',; + e,
‘.._0
the residuals, e, are assumed to be gormally independently distributed
with expectatlon zero and variance °7. Then, under Hv{Bv = By = oo
= By . = 0}, where {Su_, T . | are the regression

coefficients of the N-N' independent variables whose contribution to
the regression sum of squares is to be tested, the variance ratio

SS...» /ATSS - ASSR. (111-1)
N-N' n=N-1

F.=

is distributed as F with N-N' and n-N-1 degrees of freedom. The terms
in this formula are defined as follows:

ASSR, = "total"™ regression sum of squares (adjusted for the mean);
with N degrees of freedom, due to all N independent
variables;

SS\-q' = ASSR. - ASSR.s - "additional regression sum of squares",
vith N-N' degrees of freedom, due to the specified
subset of N-N' independent variables. where ASSR.e s
- the regression sum of squares (adjusted for the nean)
due to the N' independent variables left in the model
efter deleting the N-N' independent variables whose
contribution to the fit is to be tusted;

n ‘
ATSS = gil(y,~§)g = total sum of squarcs (of y) adjusted for

the mean, with a-1 degrees of frecdom;

n = total numwber of observed y valucs.

15
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When using the model re-evaluation option, the analyst merely
specifies the N-N' independent variables, whose contribution to the
regression sum of squares is to be tested, by indicating the comple-
mentary N' independent variables for which the program will make a
"rerun." The specified set of the N' independent variables in a
particular rerun of this option is called a '"Hand Selection'" of
independent variables in order to distinguish it from a set auto-
matically arrived at in any rerun of IVOR or BIVOR.

The F ratios (III-1l) are computed and listed for all specified
reruns in a "final comprehensive analysis table."
*

I1I.2 Ranking by IVOR and BIVOR

The subroutines IVOR and EIVOR for the automatic ranking of the
independent variables by order of importance are also based on the Main
Theorem. The routines may serve to separate the non-significant
independent variables from the significant ones (or to find a "signifi-
cant model") according to the F ratio (III~1) which is computed at each
step. IVOR and BIVOR are particularly useful when the analyst knows
nothing about the relative imporiance of the N IV's, or when the
program usar wants to confirm earlier results with new sets of input
data.

The ranking of the independent variaoles in IVOR and BIVOR is
done according to their pradiction power for the dependent variable.
This prediction power is measured by the additional regression sum of
squares, SSy.y , (from the Main Theorem} which is due to the iudependent
variables in question. It is possible to use, as ranking criterion, the
additional regression sum of squares, or its complementary value, ASSRy,
since the associated degrees of f{reedom ore equal for each inc :pendent
variable to be ranked. Therefore, th2 F test of the Main Theorem,
within each step, has equal power with respect to degrees of freedom
for each independent variable t» be rarked,

The rankings proceed as follows:

In IVOR, a forward ranking proces-: is executed, which, at the
first step, searches among all N independent variables for the one which
yields the largest value ASSRy = ASSR;. 1lbis is the one independent
variable among the N which, when it is the only one inciuded in the
model, explains the largest portion of the total regression sum of
squares, ASSRy. In the second step, IVOR searches for that pair of
independent variables, consisting of the independent variable ranked
wost impcrtant in the first step, plus one of the remaining N-1
independent variables, which yields the largest value ASSRy¢ = ASSR;.
This is continued through step number N-1, at the end of which the first
N-1 most important independent variables will have been ranked. The
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least important independent variable (Number N) is, thereby, determined
automatically., Obviously, this ranking procedure results in a descending
order of importance of the independent variables.

In BIVOR, a reverse ranking process is executed, which, at the
first step, searches among all N independent variables for the one
which yields the smallest value SSy.n*= SSy.¢n-1y = SS;. This is the
independent variable among the N which, wheun deleted from the model,
gives the smallest additional regression sum of squares. In the second
step, BIVOR searches for that pair of independent variables, consisting
of the independent variable ranked least important in the first step
plus one of the remaining N-1 independont variables, which yields the
smallest value SSy_y* = SSy_(n-2) = SS5. This is continued through
step number N-~1, at the end of which the N-1 least important independent
variables will have been ranked. The most important independent
variable (Number N) is, thereby, determined zutomatically. As can be
seen, the BIVOR ranking procedure results in an ascending order of
importance of the independent variables.

In both IVOR and BIVOR the independert variables can optionally
be grouped such that the ranking process is performed within only one
group at a time. For details and for an application of the grouping
feature as a device to save computing time, see Sections VI.l.d and
VI.l.e; for other applications see Sections II.3 and VII.2.a.

As indicated earlier, the ranking of independent variables by
their prediction power in both IVOR and BIVOR is mainly a means of
identifying those IV's (independent variables) which have a significant
prediction power for the dependent variable. In addition to this, the
rankings give the experimenter an indication of the relative importance
of the IV's, and these rankings sometimes are valuable in their ocwn
right. Geaerally, however, the goal to be achieved with such rankings
is to determine a "significant model" containing a minimum number of
IV's with maximum prediction power for the dependent variable. It is
emphasized that, for this goal, the rankings as dune by IVOR and BIVOR
are not ideal but are feasible snd considered to be adequate. (For a
discussion of the "ideal nethod' see Secticn III.3.)

It is important to note that an independent variable which, by
itself, has a large prediction power for y might not appear to have
such in the ranking by IVOR or BIVOR. This could happen, for example,
for one cf two correlated (possibly highly) independent variables when
both of them individually have considerable prediction power for y.
Both 1IVOR and BIVOR would put the one independent variable of the two
which has the higher (possibly only slightly) prediction power into the
group of important independent variables and might rank the second oue
as being unimportant. Accordingly, this second independent variable
may then appear to have little or no prediction power. It must be
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recalled, however, that the prediction power of an independent
variable, as defined here, is the additional prediction power in
excess of that of the other independent variables already contained
in the model. By itself, the second independent variable may be very
impcrtant, but in combination with the first one it loses all its
significance. Thus the ranking order, as established by IVOR or
BIVOR, must be viewed under the aspect of the strictly prediction-
power-oriented character of the ranking processes.

One might expect that IVOR and BIVOR will yield the same
ranking order of the independent variables. However, this is, in
general, not the case. One reason for this difference is the possible
existence, in the data of a regression problem, of a so-called
"compound" which has been defined in Abt [1965]. 1In brief, a "compound"
is comprised of a set of N<N independent variables plus the dependent
variable when the error variance G- associated with all N independent
variables is smaller, by orders of magnitude, than the error variance
associated with any subset of N-1 independent variables, i.e., after
any single indapendent variable has been excluded from the set of N
independent variables comprising the compound together with y.

The effect of the existence of a compound upon the ranking of
independent variables is such that in the forward procedure (as
executed by IVOR) an independent variable which does not belong to
the compound might be ranked as most important and possibly as
significant, whereas in the reverse procedure (as executed by BIVOR),
this same independent variable might be ranked as least important
and possibly as non-significant. The explanation is that in reverse
ranking (BIVOR) the unity of the compound with its associated small
error variance is preserved, as it should be, until the latest
possible step of the procedure, whereas in forward ranking (IVOR)
this unity could not be reached before the NtR step, and possibly
not until the very last step. A numericdl example in which the
latter actually happens is also given in Abt [1965].

Only when both ranking procedures result in equal, or nearly
equal, orderings will the analyst know that there are no compounds
(or no compounds of any consequence) present among the independent
variables. The only protection against the disturbing effects of
compounds upon the ranking is the application of the BIVOR routine.
It is, therefore, strongly recommended to always use the BIVOR
option for the automatic ranking of independent variables. Moreover,
BIVOR is always an economical choice since a BIVOR ranking is at .
least 4 times faster than a full IVOR ranking. (For computational
details and problem running time formulae, see Chapter VI.)

There are, however, two situations in which IVOR becomes a
desirable option. A less-important third situation is discussed in
Section VII.2.b, where IVOR is shown to be advantageous in finding a .
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"pertfect fit.'" The first situation arises when a large series of
multiple regression problems of equal structure (with the same
independent variables contained in the model for each problem) have
o be processed and when the following two conditions hold true:

{a) the sum of the BIVOR running times would be excessive; (b) one

is only interested in a screening-type investigation as to the first
rew most important independent variables in each problem. For this
situation IVOR has a cut-off option to search only for the first

"IQ" most important variables, where IQ is a control card input
number. (See Card Type 4, Section V.2.) That is, IVOR ceases
ranking after step number IQ and, therefore, does not rank the N-IQ
least important independent variables. Naturally, this application
of the IQ-option of IVOR implies the risk of not detecting the effects
of possibly existing compounds upon the ranking order. However, this
is the price for saving computing time. (For IQ much smaller than N
the running time of IVOR is considerably shorter than that of BIVOR;
see time formulae in Section VI.4.)

The second situation in which IVOR becomes desirable also calls
ior the cut-off option of IVOR., The situation arises when, in a given
problem with many independent variables, the significant IV's are to
e found, but the final model is to be kept to a minimum number of
independent variables in order to obtain small standard deviations
tor interval estimation purposes. In such a situation, the analyst
should apply both BIVOR and IVOR, the latter with an IQ, say, in the
sicinity of what is considered to be the maximum number of independent
-ariables to be included in the final model. If there are no com-
asounds, it is possible that the first IQ most important independent
-ariables (or a subset of them), as ranked by IVOR, account for a
iigher portion of the total regression sum of squares than do the
.orresponding number of the most important independent variables in
3IVOR. However, this evidence can be obtained only by comparing the
‘esults from both IVOR and BIVOR. This fact serves to re-emphasize
.he importance of the BIVOR routine, which should be applied for the
vanking of the independent variables--alone or together with the IQ-
ption of IVOR--whenever the available computer time allows its use.

111.3 Comparison of IVOR and BIVOR with Other Techniques

The rankings of the independent variables as done in IVOR and
“1VOR correspond to '"forward” and "reverse" ranking, respectively,
.. discussed in Abt 71965;. The IVOR ranking proceeds in the same
.eneral forward direction as the "Stepwise Multiple Regression"
technique by Bfroymson [1960]), but is otherwise different from that
¢chnique, as is obvious from reading Sections I11.2 and VI.1l.d.

Only after the DA-MRCA program was comwpleted in its present
[ wm, a paper by Hamaker [1962] came to the attention of the authors
ia which two computational methods are discussed for the successive
taclusion and deletion of independent variables: "forward selection”

+ud "backward elimination"”, respectively, These two methods are
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based on analyses of successive residuals, and, therefore, do not
immediately seem to imply results which could be identical with those
of IVOR and BIVOR, respectively. However, the numerical results of
examples exhibited in the paper certainly suggest this both with
respect to the ranking orders of the independent variables and the
associated additional regression sums of squares. No attempt has been
made to prove the general equality of the results of IVOR and "forward
selection" or of those of BIVOR and '"backward elimination."

As mentioned in Section III.2, IVOR and BIVOR are not ideal but
are considered adequate for the purpose of ranking independent variables
by order of importance and, thereby, finding a '"significant model."

Naturally, the ideal method for determining the '"significant
model'" would be to find the most important IV as in the first step
of IVOR, but then to deviate from IVOR as follows. In the second
step all 4N(N-1) possible pairs of IV's would be included in the model,
and the one with the largest prediction power would be selected as the
most important pair. Correspondingly, in the third step the most
important triple of IV's would be found, etc. Since the most important
pair of IV's would not necessarily contain the most important single
IV found in the first step (and correspondingly for the triple versus
the pair, and so on) a unique ranking would not necessarily result from
this procedure. The significant model, however, would be found at the
step where the F value (IIl1-1) is non-significant for the first time,
and the procedure could be stopped at this point. This "ideal"
technique may be feasible for small values of N, but for larger N,
such as IVOR and BIVOR are capable of handling, the indicated
technique is infeasible with even the largest computer equipment
available at the present time. In order to illustrate this, the
following comparison of estimated minimum computer times (in seconds,
on the IBM 7030 STRETCH) for the "ideal" technique to the actual
running times of BIVOR, according to formula (VI-23) in Section V1.4,

is given.,
N 8 16 32
"ldeal" technique for
finding significant 24 25400 6.9 x 10°
model
BIVOR 6 13 71
Ratio 4 -1950 ~10"

This table shows, for example, that with N:=16 independent
variables in the model, the estimated minimum computer time on the IBM
7030 for the "ideal" technique is 25400 seconds, which is approximately
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1950 times the number of seconds BIVOR would need to rank the 16 IV's.
For N=32, the figure is 6.9 billion seconds, whereas BIVOR needs a mere
71 seconds. The times for the ''ideal" technique are based on the
assumption that all 2"-1 combinations of the IV's are examined.
Naturally, these times would be, on the average, much smaller if the
procedure were stopped after the significant model was found. However,
the analyst could not predict at which step this would happen, and he
probably would have to consider the rimes based on the 2" -1 combinations.
The result would be only the significant model, with no indication as
to the relative importance of either the IV's contained in the
significant model or of those not contained in the significant model.

Nevertheless, when N is sufficiently small, the program user can
apply the "ideal" technique by using the option for hand selections of
independent variables. The nurber of hand selected reruns is restricted,
in one regression problem, to 999. (See Section V.2, Card Type 2,
columns 5-7.) Therefore, N=9 is the upper limit for the number of
independent variables contained in a model which is to be analyzed by
the "ideal" technique: 2°-i = 511. However, the analyst has to
specify each combination of independent variables required by the
"ideal" technique or: a rerun card (see Section V.2, Card Type 10).

In other words, the tecinique cannot be executed automatically by
DA -MRCA .

Gorman and Toman [1966] have recently suggested a modification
of the "ideal" technique by applying fractional factorial plans to
sample the 2"-1 possible combinations of IV's in order to reduce the
computational -effort required for the "ideal" techaique.
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V. DEFINITIONS FOR INPUT, COMPUTATIONS, AND PRINTOUT

In this chapter the definitions of technical terms which are
used in the following chapters are listed alphabetically. (Some of
these terms have already been used in the previous chapters.) This
list of definitions includes such familiar terms as, for example,
"independent variable' and ''data matrix."” However, since such
terms are often used in the literature with varying shades of
meaning, the authors decided to include these in the list because
a clear definition was considered necessary for the present purpose.

In the wording of eacn definitiom all the terms which are
defined elsewhere in the list are marked by a dashed underline. The
definitions are as follows:

A - The symbol used for the matrix of the normal equations.

Accepted Run - A run which oasses &ll 5 tests concerning the feasibility
and accuracy of the solution of the normal equations associated
with the regression model for the given run. The five tests are
those on the determinant, R*®, s, the cyy, and the i,,. For
details see paragraphs B, D, E, F, and H of Section VI.2.a.(2).

Additional Regression Sum of Squares - In the Main Theorem the regression
sum of squares, SSy.s', due to the addition of a specified subset
of N-N' independent variables to the model containing the N'

-------- SoBsnleoceGeee

independent variables.

ASSR - "Adjusted (for the mean) Sum of Squares due to Regression." For
the algebraic formulation of ASSR see Section VI.3.a. The term
is used, in the report, in two applications:

(1) ASSR, = ASSR value due to K independent_varisbles,
(2) ASSR(xz;xa,...) = ASSR value due to the set (x;,xg,...) of
independent variables.

BIVOR - "Backward Independent Variable Qrdering by Regression sums of
squares."” BIVOR is an optional subroutine which ranks the
fodependeut_variables in ascending order of importance according
to their contribution to the total regression sum of squares.
See Section III.2 and Section VI.l.e for further explanation.

Calculated ILdentity Matrix - See definition of "i{dentity matrix.”

Card Type - One of the ten types of cards which constitute the problem

deck. Bach type of card is punched according to the input
explanaction and format givea in Section V.2.

Cyy’ = The element in the (vt1)th row and (v'+1)th column of the inverse,
A1, of the matrix of the normal equations. (v,v' =0,1,2,...,K).

easmecessedeansssanena
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-------------------
-----------------

EeCcnrenee-
L R e e e e Rt

and the dependent variable. With K=N or K=N'<N, a data point is

-----------------

defined for the main run or for any rerun, respectively. The

number of data points (not necessarily all distinct) in a given
regression problem is called n. As can be seen, a data point is

----------

oi the dependent variable. Since several data points can be
based on a common design point, one has nm,, where n, is the
number of distinct input design points in the space defined by
the K independent variables,

Dependent Variable - The response variable, y (random), for which a
numerical value y,, i = 1,2,...,n, is observed at each one of

----------------

--------------------

Design Point - A point specified by its K coordinates in the K-dimensional

rerun, respectively. The symbol used for a design point is
xl,x;»,...,Xv,...,xK io

of K coordinates. With K=N or K=N“N, a distinct design point

number of distinct input design points in a given run with K
independent variables is called nc. In case of a rerun (K-N'<N)
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Eyye - The element in the (v+1)tB row and the (v'+1)th column of the
matrix_of_the _normal _equations. Algebraically,

mr neadad e s s st anen B w e -

n
EVV':: 2xv1XV". (v’\)' = 0,1,2,...,K).
i=1

Eyy, - The element in the (vF1)th row and the (N+2)tR column of the
summation matrix. (v = 0,1,...,N). Algebraicaily,
n
EV, = z x“}'i .
i=1

Eyy =~ The total sum of squares of y, unadjusted for the mean.
Algebraically, n
2
Eyy = Zyy.
i=1

GCIV - "Generated Concomitant Independent Variable." A GCIV is an
EE5§s3§£8&GEE§'SE'§é;21§. A GCIV may also be called a "product
ter T )

Generated Independent Variable - See GCIV.

Hand Selected Rerun -The desired regression computations which are
performed for a model containing a specified subset of NN
independent_variables, where the particular set of N' independent
variables is indicated on a punched card (Catd.Type 10, see
Section V.2) in the problem_deck. '

I. - The symbol used for the calculated identity matrix.

Identity Matrix - The (K+1) x (K+1) matrix, denoted by I,, resulting

from multiplying the inverse of the patrix A _of_the_norepal
equations by the matrix A itself (in this sequence): I,=A"'A,
With K=N or K«NXN, the identity matrix is defined for the
vaiv.tuo or for any reruun, respectively. The identity matrix
is computed in each run in order to check the accuracy of A~!.

For details see Sections VI.l.b and VI.2.a.(2).
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Independent Variable - One of the non-random variables, xv,'in the
linear regression model, whose prediction capacity for the

analysis. See also the definitions of OCIV and GCIV. For
further discussion see Sections II.l and II.2.

per formed for the model containing these N' independent
variables. Independent variable selections may be done

acvee -

c. automatically by IVOR and/or BIVOR. Not every independent

variable selection will necessarily lead to all desired
computations of a rerun.

s ae@eaehen=
PR =iy g

observed or measured value of the depeundent._yariable exists.
With K=N or K=N¥N, an input design point is defined ior the
main_run or for any rerun, respectively. The number of distinct
is called ny. An input design point, as the name suggests, is
part of the data input for the program. However, the actual

- input writing is done, in DA-MRCA, only for the cocrdinates of
the OCIV's, whereas the coordinates of the GCIV's may auto-
matically be computed by the program. '

iyy* - The element in the (v1)th row and (v'+1)th column of the
calculated_identity matriz. (v,v' =0,1,2,...,K).

IV - "Independent Variable" (see definition).

IVOR - "Independent Variable Ordering by Regression sums of squares."
IVOR is an optional subroutine which ranks the independent
vetiables in descending order of importance according to their

contribution to the total_regressicu.guw_of._gquaces. See
Section III.2 and Section VI.l.d for further explanation.

IVS - "Independent Variable Selection” (see definition).

K - The oumber of {gdependeqt_ variableg in a given yun. In the
- w8io.cun, KeN; fu a gerun, KeN'<N, i.e., K equals the number of
. the independent variables contained in the specific ipdependent
variable selection of the given rerun. .

LT L L L R 82 X )
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Leftmost Group - In IVOR and BIVOR, the first gr.:; of independent
yvariables, according to the injut and gencration sequence, as
designated by Card Type 4 and Card Type 5, respectively.

(See Section V.27 "The leftmost group ia IVOR is the first
group of independent variables to be ranked, whereas in BIVOR
the leftmost group is the last group of independent variables

tc be ranked.

-neew
mEwecabacaasanas

B T N

for a given gegressioun problem.

Main Theorem - The theorem cof multiple regression on which all
hypothesis testing and rapking_of _independent _variables are

- = -

based in DA-MRCA. Sece Section III.1 for a full discussion.

Matrix of the Normal Equations - The (K+1) x (K+1) symmetric matrix
by its transpose, X'. For the full algebraic ré}?éséﬁiaiiaﬁ
of A sec Section VI.3.a. With K=N or K=N'<N, the matrix of
the normal equaticns is defin.d for the paip_gug or for any

(n=7000) .

N - The uunber of jrdepeudsnt.vaciables (QQIV!s and GCIVls) contained
in the or:iginal regression model, i.e., in the model of the

weio.tun. (N-50).

N' - The number of indegen@ent vaciables (OCIV's and GCIV's) contained

e swbaatenBaPaevRhessnm anase e e sumns

in the model of a rerun.

ne = The number of disting
specific set of K ind

regression model.

... e

Non-Obvious Linear Dependency - A linear dependency among‘two or
mere rows (columns) of the patcis.ef.tbe.nerwal. equaticos when
the dependency is not obvious in the sense of the "obvious
linear dependency” (see definfition).
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appears to be necessary.

Obvious Linear Dependency - A linear dependency among two or more

rows (columms) of the gattix.of tbe._uctwal.equatious when the
cause for the dependency can immediately be recognized from

OCIV - '"Original Concomitant Independent Variable.”" An OCIV is an
independent _varigble which has physically been observed or
measured for each value of the dependent _varigble. (The
auxiliary variables used for the main effects in the multiple
regression approach to analysis of variance, see Section II.3,
are also considered as OCIV's with respect to the method of
input into the program.) The term OCIV is used to differentiate
this type of independent variable frowm a GCI7. The adjective
“concomitant” stems from the concept of analysis of covariance
to vhich DA-MRCA can also be applied. To distinguish OCIV's
from GCIV's, the OCIV's are sometimes given the symbols z,,
j=1,...,IR, where IR is the number of OCIV's.

Original Independent Variable - See OCIV.

Perfect Fit - The least squares fit in the case where the number of
distioct desigu.peinte input, ny, equals the number of
fodepeudent _variebles in cthe model, plus i: n.=K+l. See also
the definition for "zero error perfect fit" and for "non-zero
error perfect fit."

Powersum - A term sometimes used in the discussion of ?Q;Y:g where it
stands for the sum of the exponents of all OCIV's which are

contained in the GCIV. For example, the powersum of the GCIV

' x?x,:é is 6.

Predicted Value (= Prediction) - The value (?)of the depeudent_vecrisble
as computed by evaluating tw regregcsion iine (luast squares

fit) for a given model at an fgput._desigu.pelos or a gyutbetic
design _point. -

Prediction Brror - The deviation (2) of the fnput value (y) of the

depsudeac_vetisble from the predicted.valus (2) of the dependent
variable for any lgoyt._desigu.pofot in a given gyg.

27
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Prediction Power =- A term used for a characteristic of an individual

R R R I < === i S R I R

IV or the group of IV's. See also Chapter III.

Prediction Standard Deviation for Individual Observations ~ The

point or a gynthetic_design_peipt and is uséa'in tﬁé Eampugation
of confidence limits for individual future observation;
(tolerance limits) of the dependent variable. (See Section VI.3.)

Prediction Standard Deviation for the Prediction Line - The estimate
(sépl) of the standard deviation for the prediction line
(reg

desigun._peint aud is used for the computation of confidence
limits for the prediction line. (See Section VI.3.)

Problem Deck - The deck of punched cards which constitute the program
input for one gegression_problem. The problem deck consists of

cards of Types 1-10, see Section V.1.

Product Term - A synonym for GCIV.

Program Deck - The deck of punched cards containing the input-output
requirements (see Section VIIL.3) and the program instructions
which are coded in FORTRAN IV for the IBM 703C Computer. The

- e e me w ar e

- T e wwoww

—Em e Em oo me e oo -o-

IV's.

Regression Provlem - The totality of all phases of the regression
analysis to be performed on one set of n data_points as

specified by one problem deck. A regression problem might

include, therefore, the main_run and several rerun:, IVOR and

BIVOR, the Chi-square test on normality of residuals in all runs,

and other optional features.

Regression Sum of Squares Adjusted for the Mean = ASSR. See definition
of ASSR.
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fails one of the 5 tests mentioned in the definition of an
accepred run.

Rerun - The desired regression compﬁtations which are performed for
yariables, i.e., the computations performed fo;_;-ssééified
independent variable_selection. A rerun can be specified

automatically or "by hand."

Restricted Admissibility - A term used in connection with the ranking
procedures IVOR and BIVOR. When ranking polynomial terms, or
auxiliary variables in non-orthogonal analysis of variance, it
is sometimes not advisable to consider all unranked IY's at
a given step for ranking at that step. See Sections II.3 and
VII.2.a for more details. Restricted admissibility can be
effected by the grouping of IV's in IVOR and BIVOR, see

Sections VI.l.d and VI.l.e.

designated by_Card_Type 4 and Card Type 5, respectively. (See
Section V.2.) The rightmost group in IVOR is the last group
of independent variables to be ranked, whereas in BIVOR the
rightmost group is the first group of independent variables

to be ranked.

- e w e

P S e

Run - The totality of all desired phases of the regression analysis
to be performed on a model including a specified set of K

-3 - A= R Ry e - e -

Significant Model - A regression model containing all independent
variables which contribute significantly to the fotal_regression

--------------------

SSy.y' - See definition of "additional regression sum of squares.'

29
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Step (of IVOR or BIVOR) - All calculations which lead to the

respectively.

Summation Matrix - The (N+2) x (N+2) symmetric matrix composed of the
rug, the constants, Ey,, of the normal equations (v = 0,1,...,N),
and the sum of squares, Ey,, of the observations of the dependent

variable. For the algebraic representation of the summation

matrix see Section VI.3.a. The summation matrix is defined and
printed only for the main run.

Synthetic Design Point - A point in the K-dimensional space defined by

synthetic design point are specified by the analyst. The
concept is employed in an optional subroutine which computes

- . o e L R R B R T TR o A e i R “ipeigpiuuipypuioiisiy

points.

Total Regression Sum of Squares - A term sometimes used for the ASSR
value of the pain_run, i.e., ASSRy. (The main run contains the

xyy =~ The symbol used for the numerical value (goordinate) of

-

PRI =R I -t --

- an e Y- R R R R T A

no degrees of freedom for the error variance, hence the name,
For further discussion see Section II.4.
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V. INPUT PREPARATION

In this chapter the preparation of input for the DA-MRCA
program is described. The various sections of the chapter give the
problem deck setup (Section V.1), the preparation of the problem deck
(Section V.2), and an example problem deck (Section V.3).

V.l Problem Deck Setup

The problem deck for the general case is listed below by card
type. There are ten card types required for the general case, apd they
are designated in order of input and by card name. For specific cases
more than one punched card of a particular card type may be necessary.
The names of these card types are followed with an "(S)" to denote
the plural possibility. The explanation of each card type and the
instructions for the preparation of the problem deck are given in the
next section.

CARD TYPE 1 PROBLEM IDENTIFICATION CARD

CARD TYPE 2 - PROBLEM CONTROL CARD

CARD TYPE 3 - PRODUCT TERM DESCRIPTION CARD(S) (Optional)*

CARD TYPE 4 - IVOR CONTROL CARD (Optional)*

CARD TYPE 5 - BIVOR CONTROL CARD (Optional)*

CARD TYPE 6 - SELECTED INPUT DESIGN POINT CARD(S) (Optional)*

CARD TYPE 7 - SYNTHETIC DESIGN POINT CARD(S) (Optional)*

CARD TYPE 8 - DATA INPUT CARDS

CARD TYPE 9 - DATA TERMINATION CARD

CARD TYPE 10 - RERUN CARD(S) (Optional)¥*
NOTE: The cards whose names are marked with asterisks (%) control
optional features of the program and are omitted when the corresponding
options are not desired.

The problem deck, as listed above, is stacked behind the
program deck and constitutes the input for one regression problem. The

information contained on the DATA INPUT and DATA TERMINATION CARDS
(Card Types 8 and 9) may be placed on magnetic tape and the remainder
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of the problem deck prepared on cards. Problem decks for additional
regression problems are stacked consecutively behind the program deck.
Each problem deck may contain a different combination of the optional
cards. If a multiple problem case utilizes tape data of the types
previously specified, the tape data must be ordered in the same manner
as it would be presented as parts of the problem decks. Also, for the
case of tape input, the tape identification number must be punched on
the REEL CARD (third card of the program deck) starting in column 18.
No identification number is necessary for card input.

V.2 Preparation of Problem Deck

In this section, instructions for the preparation of the problem
deck are given. These instructions consist of: (a) the columns in
which the punched entries are to be made; (b) the input formats; (c)
the symbolic names of the program variables (when applicable); and (d)
explanations of the punched entries associated with each program variable.

To facilitate the reading of the input instructions for the
program user, who may be unfamiliar with the FORTRAN language, an
explanation of the various format specifications used to describe the
input-output data of DA-MRCA follows. Each format specification con-
tains a letter indicating the type of information which must be input;
also, the format specification contains integers which control the
number of input fields to be used, the number of columns in each field,
and the regulation of the assumed decimal point if the decimal point
is not entered on the input card.

Forma:: Specification A - This specification is of the form Aw,
where A indicates that the input can be alphanumeric (alphabeticel or
numerical) and the w indicates the number of columas in the field. By
writing a repetition number in front of the A, the sawe format speci-
fication can be applied to several successive fields, e.g., 10A8 means
ten eight-column fields of alphanumeric information.

Format Specification I - This specification is of the form lw,
where the I indicates that the input must be an integer and the w
indicates the number of columns in the field. Decimal points are not
permitted and all input entries must be right adjusted, i.e., all
entries are punched in the column or columns furthermost to the right
within the field. :

Format Specification X - This specification is of the form wX,
which means that a field of w columns is to be left blank.

Poggg; Specification E (Exponengial) - This specification is of
the form Ew.d, where the E indicates that the input value describes a
real number of the scientific notation, for example, a number of the

~ form 2.30x10*. (The actual PORTRAN representation is 2.30E+04.) The
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w indicates the number of columns in the field. The d indicates the
number of digits to the right of the assumed decimal point if an actual
decimal point is not punched. A repetition number written in front of
the E applies the same format specification to a corresponding number

of successive fields. In DA-MRCA the E format is used for the input

of the two program variables TOLIl and TOLI2 (Card Type 2 of the problem
deck, see below) and, if specified, for the input of the coordinates of
the OCIV's, the dependent variable, and the coordinates of the synthetic
design points. The exponential part of the input number is generally
of the form Etee; however, other forms, such as Ete, tee and te, are
permissible. Positive exponents can also be expressed as Ee or Eee.
Example: The input values +5879E+03, .5879E+3, +58.79+01 and 5879.-1
would all read as 587.9 if the input format specification E9.4 is used.

Format Specification F - This specification is of the form Fw.d,
where the F indicates that the input value describes a real number
without an exponent notation; the w indicates the number of columns
in the field and the d specifies the number of digits in the fractional
portion of the number. (The d-specification is overridden by a punched
decimal point.) A repetition number written in front of the F applies
the same format specification to a corresponding number of successive
fields. In DA-MRCA the F format is used if specified, for the input
of the coordinates of the OCIV's, the dependent variable, and the
coordinates of the synthetic design points. Example: The input
value of 16897 would be read as 1689.7 if the input format specifi-
cation of F5.1 is used.

The instructions for the input preparation follow below.

CARD TYPE 1 - PROBLEM IDENTIFICATION CARD

Coiven Format Program Varisble Explanation
1-80 10A8 PGLB Regression Problem Identification Card.

. » (Any columns may be used.)

- PROB CONTROL

Column Format Program Variable Explanation
- 1-2 12 IR Enter the number of original concomitant

independent variables (OCIV's) whose
coordinates will be input on DATA INPUT
CARDS (Card Type 8).

3-4 12 ) ] Eanter the number of generated concomitant
independent variables (GCIV's) to be
computed from the IR OCIV's (see Card
Type 3). IR+ IS = N * 50.
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CARD TYPE 2 (Cont'd)

Column Format Program Variable Explanation
5-7 I3 NR Enter the number of hand selected reruns

(see Card Type 10). Punch a 0 if only
automatic reruns are desired as selected
by IVOR and/or BIVOR. 0 < NR = 999.

8-10 I3 MVP Enter the number of synthetic design
points to be read from Card Type 7 -
SYNTHETIC DESIGN POINT CARD(S) - for
which the computations indicated in
column 14 of the present card will be
performed. 0 < MVP < 999.

11-13 13 NDR Enter the number of selected input
design points for which the computations
indicated in column 14 will be performed.
The selected input design points are
denoted on Card Type 6 - SELECTED INPUT
DESIGN POINT CARD(S). O < NDR < 999.

14 Il MVPL 0 = Predictions and prediction standard
deviations for individual observations
will be computed for selected input
design points and/or synthetic design
points for the main run and each hand
selected rerun. (The standard deviations
can be used to construct tolerance limits
for individual observations, see Section
VI.3.b.(2).)

1 = Predictions and prediction standard
deviations for the prediction line will

be computed for selected input design

points and/or synthetic design points

for the main run and each hand selected
rerun. (The standard deviations can be

used to construct confidence limits for

.he prediction line, see Section VI.3.b.(2).)

15 I1 NPE 0 = Predictions and prediction errors
will not be printed and the test for
normality of the prediction errors will
not be performed for hand selected reruns
and IVOR and/or BIVOR reruns.
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Column Format Program Variable

16 I1 NDPO

17 11 TAPE

18 i1 IVORGO
19-20 1I2 NFD

NWL REPORT NO. 2035

Explanation

1 = Predictions and prediction errors

will be printed and the test for normality
of the prediction errors will be performed
for hand selected reruns and IVOR and/or
BIVOR reruns.

0 = The coordinates of the data points
will be printed (in the datd matrix)

in the format 9F13.6 and the predictions
and the prediction errors will be printed
in the format 2F15.6.

1 = The coordinates of the data points
will be printed (in the data matrix)

in the format 7E17.8 and the predictions
and the prediction errors will be printed
in the format 2E15.6.

2 = The coordinates of the data points
will not be printed but the predictions
and the prediction errors will be printed
in the format 2F.5.6.

0 = The coordinates of the OCIV's and
the dependent variable and also the data
termination indicator will be input on
cards.

1 = The above will be input on magnetic
tape. (The tape identification number
must be entered on the REEL CARD of the
program deck starting in column 18.)

IVOR and BIVOR will not be used.
IVOR will be used.

BIVOR will be used.

IVOR and BIVOR will be used.

WN =0
an a8

Enter the number of data fields to be
read from each DATA INPUT CARD (input
record, if tape is used) as indicated
by the input reading format (see columns
41-80) . If no entry is given or if a
zero is entered, seven data fields will
be assumed.
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CARD TYPE 2 (Cont'd)

Column Format Program Variable Explanation
21 I1 IBID 0 = In BIVOR, the identity matrix will

be computed for all reruns and accuracy
checks will be performed on all identity
matrices (see columns 23-40).

1 = In BIVOR, the identity computations
and accuracy checks will be terminated
with the first rerun in which an identity
matrix has been computed which satisfies
the accuracy criteria imposed by the
value of I(1l) (see columns 23-31).

This option is a time-saving device
which may be advantageously applied in
cases with a large number of independent
variables. See also Section V1.2.d.,
paragraph C.

22 - - Leave blank.

23-31 E9.5 TOLIl Enter the value of I(1l). This value
will be used as the accuracy criterion
for controlling the printout of the
identity matrix for the main run and
each rerun. If | i,y <L | 2 I(1), where
L=1 when v=v' and L=0 when wWVv', the
identity matrix will be printed. For
further discussion and for the choice
of I(1) see Section VI.l.b. Notice that,
according to the format specification,
this entry does not have to be right
ad jusied. The same applies to the next
two entries (TOLI2 and FORM).

32-40 E9.5 TOLI2 Enter the value of 1(2), where I(2)2 I(l).
I(2) will be used as the accuracy criterion
which determines acceptance or rejection
of the regression computations for the
main run or any rerun. Lf ;iyy~-l |2 1(2),
the run will be rejected. (NOTB: I(2)
applies only to the elements of the main
diagonal of the identity matrix.) For
further discussion and for the choice
of I(2) see Section VI.l.b.
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CARD TYPE 2 (Cont 'd)

Column Format Program Variable Explanation
41-80 5A8 FORM Enter the format specifications by

which each Card Type 8 - DATA INPUT

CARD (data input record, if tape input

is used) is to be read. These format
specifications do not include the first
two columns of each DATA INPUT CARD

which must be left blank. All coordinates
of a data point may be read in the same
manner by using a simple format speci-
fication such as 7F10.4 (see Card Type

8) . However, if necessary or convenient,
more complex format specifications may

be entered whereby the various
coordinates of a data point may occupy

a varying number of columns. For example,
if a record format of F12.5, 5F10.0,

F8.4 were entered, the dependent variable,
the first five OCIV's, and the sixth OCIV
would constitute the input record and
will be read by these formats, respectively.
(NOTE: The commas must be entered to
separate the individual formats.) If,
in this example, more than six OCIV's
were required to represent a data point,
the additional OCIV's would constitute
another input record and would be read
by the sawe format specifications which
weans, the seventh OCIV would be read
by F12.5, the eighth, ninth, teath,
“aleventh, and twelfth OCIV's would be
read by 5F10.0 and the thirteeath OCIV
by PF8.4, etc. ' ~

1f NFD = O (columns 19-20) the format
7710.4 is assumed and no entry is
ncccnqary‘tn columns 41-80.

This card {s used to input the description of the IS product
terms (GCIV's) which are to be genersted from the values of the IR
original concomitant independent variables (OCIV's). (See colusns 1-4
of Card Type 2.) ‘tn GUCIV's are powers and/or cross-products of the
OCIV's and are generated ss additional independent variables. A
product term description designates the {ndependent variables (OCIV's
or GCIV's) which are to be used as sultiplicative factors in the

.

»
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CARD TYPE 3 (Cont'd)

generation of a GCIV. Any OCIV may be used as a factor in the
generation of any GCIV and any previously generated GCIV may be used
as a factor in the generation of a subsequent GCIV. A product term
description consists of the subscripts of the independent variables
which are to be used as factors in generating the GCIV. The following
example case (IR = 2, IS = 7, N = 9) illustrates the procedure for
writing product term descriptions. (This is the case of the example
problem discussed in Sections V.3 and VI.5.)

v ocIv GCIV Product Term Description
X, z, Not applicable

X3 Z Not applicable

X3 z,2; 12

Xq z? 1

Xs zé 22

Xe 2?23 112 or 13 or 24

X7 z 25 122 or 15 or 23

Xa =% 111 or 14

Xe 'zﬂy 222 or 25

As many as ten factors may be designated for each product
term description and four product term descriptions may be punched
on each card of this Card Typa., 1. no product terms are to be

generated (IS = 0), this card must be omitted from the input deck.

Column Format Progyam Variable ‘ Explanation

The description of the first product
term occupying up to 20 columns is
entered .n coluwmns 1-20 using two
column fields to designate the factors:

1-2 12 t!(l,l) Bdcer the subscript of the indepthddn:-
, variable to be used as the tirst factor
in the product term.
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CARD TYPE 3 (Cont'd)

Column Format Program Variable Explanation
3-4 I2 IN(1,2) Enter the subscript of the independent

variable to be used as the second factor
in the product term.

19-20 1I2 IN(1,10) Enter the subscript of the independent
variable to be used as the tenth factor
in the product term. (The description
of the product term z,z, would be a 1

2

in column 2 and a 2 in column 4.)

The descriptions of the second, third,
and fourth product terms occupying up
to 20 columns each are entered in
columns 21-40, 41-60 and 61-80,
respectively, in the same manner as the
first product term description.

1f more than four product terms are desired (IS > 4), cards in
the same format are added as needed.

CARD TYPE & - IVCR CONTROL CARD (Optional)

The information which is input on this card determines the
conditions under which IVOR wiil consider the independent variables
for vanking. The independent var{ables can be divided into groups
of consecutive independent variables, according to the sequence of
input and generation, whereupon IVOR ranks the variables within these
groups starting with the first group (see IVOR explsnatiun in Section
VI.1.d). The {nput parameters of IVOR are the number of variables to
be ordered, the number of groups into which the variables are to be
divided and the number of variables in each group. 1f RGO = 1 or

3 {see coluymn 18, Cerd Type 2), this card mwust be included in the

d fr
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CARD TYPE & (Cont'd)

Column Format Program Variable Explanation

1-2 I2 Q Enter the number of independent
variables to be ordered by IVOR. If
all N independent variables are to be
ordered, enter 0 or leave blank. Other-
wise

M,
IQ < LN,
j=1
where My is the number of groups and
N, is the number of independent
variables in the jth group.

3-5 I3 MI Enter the number (M) of groups into
which the set of independent variables
is to be divided for ordering within
groups. 1 o My = 25.

6-8 I3 NJ(1) Eater the pumber (N;) of independent
variables in the first group.

9-11 I3 NJ(2) Enter the number (N;) of independent
variables in the second group.

78-80 I3 NJ(25) Enter the number (N;g) of independent
variables in the twenty-fifth group
(if My = 25).

In order to consider all independent variables as one group,
put MI = My = 1 and NJ(1) = N; = IR + IS = N. If only a subset of
the N independent variables is to be considered, specify this by

My

j=1
however, the independent variables excluded will be the rightmost
independent variables according to the input and generation sequence.
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CARD TYPE 5_- BIVOR CONTROL CARD (Optional)

The information which is input on this card indicates the
conditions under which BIVOR will consider the independent variables
for ranking. As for IVOR, the independent variables can be divided
into groups of consecutive independent variables, according to the
sequence of input and generation. (The number of independent
variables in the respective groups of IVOR and BIVOR may be entirely
different.) BIVOR will do the ordering within each group starting with
the last group (see BIVOR explanation in Section VI.l.e). If IVORGO =
2 or 3 (see column 18, Card Type 2), this card must be included in
the input deck. If IVORGO = O or 1, this card must be omitted from
the input deck.

Column Format Program Variable Explanation
1-2 12 MB Enter the number (Mg) of groups into

which the independent variables are
to be divided for ordering within
groups. 1 s My < 25,

3-5 I3 LOT(1) Enter the number (N;) of independent
variables in the first group, which
will be the last group of IV's ordered.
(N, is the number of independent
variables in the qth group.)

6-8 13 LOT(2) Enter the number (N,) of independent
variables in the second group, which
will be the next to last group of IV's
ordered.

75-77 13 LOT(25) Enter the number (N;5) of independent
variables in the twenty-fifth group
(if Mg = 25) which will be the first
group of IV's ordered.

In order to consider all independent variables as one group,
put MB = Mg = 1 and LOT(1l) = N, = IR + IS = N. If only a subset of
the N independent variables is to be considered, specify this by

Mg
& NSN;
q=1
however, the independent variables excluded will be the rightmost
independent variables according to the input and generation sequence.
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CARD TYPE 5 (Cont'd)

NOTE: The program variable "LOT'" is also used in connection
with Card Type 10 - RERUN CARD - where it represents a different input
parameter. The reader who is interested in more details about the
variable LOT is referred to Chapter VIII.

CARD TYPE 6 - SELECTED INPUT DESIGN POINT CARD(S) (Optional)

The input design points for which the predictions and prediction
standard deviations will be computed (see column 14, Card Type 2) are
indicated on this card; these design points are denoted as selected
input design points. Entries made on this card refer to the design
points according to their order of input, i.e., if the computations
are desired for the design point that was input first, a 1 is entered
on this card, if the computations are desired for the design point
that was input third, a 3 is entered on this card, etc. The computations
are performed for the main run and all hand selected reruns. There
nust be exactly NDR entries (see columns 11-13, Card Type 2) on this
card and they must be in numerically ascending order. If NDR = 0,
this card must be omitted from the input deck. NDR < 999,

Column Format Program Variable ‘ Explanation
1-4 14 IKEEPR(1) Enter the number corresponding to the

input order of the first selected
input design point.

5-8 14 IKEEPR(2) Enter the number corresponding to the
input order of the second selected
input design point.

77-80 Is IKEEPR(20) Enter the number corresponding to the
input order of the twentieth selected
input design point,

IKEEPR(i) < IKEEPR(i + 1) for i = 1,2,...,(NDR-1), Additional
cards are used if NDR > 20 and are continued in the same format.
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CARD TYPE 7 - SYNTHETIC DESIGN POINT CARD(S) (Optional)

The synthetic design points for which the predictions and the
prediction standard deviations (see column 14, Card Type 2) will be
computed are specified on this card. A synthetic design point is
specified by coordinates of the IR OCIV's and the IS GCIV's at which
no actual experimentation was performed or no observation was made.
(The coordinaces of the GCIV's are not input on this card because
they are generated from the coordinates of the OCIV's by the instructions
given on Card Type 3.) By employing the feature of synthetic design
points it is possible to obtain predictions and prediction standard
deviations for arbitrarily chosen values of the independent variables.
For example, the feature can advantageously be used for interpolation.
The computations are performed for the main run and all hand selected
reruns. The number of synthetic design points input must equal MVP
(see columns 8-10, Card Type 2). The synthetic coordinates of the IR
OCIV's are input with the same format that is used for the DATA INPUT
CARDS, which is the format entered in columns 41 80 of Card Type 2,
ignoring columns 1 and 23 however, the first field of the format
(starting with column 3 of the first card of Card Type 7) is left
blank since it corresponds to the first field of the DATA INPUT CARDS
which is reserved for observations of the dependent variable. Anything
punched in this field will be ignored by the program.

An explanation of the preparation of this control card is
given below for the assumed format of 7F10.4. If MVP = O, this card
must be omitted from the input deck. MVP < 999,

Column Format Explanation
1-2 2X Leave blank.
3-12 10X Leave blank.

13-22  F10.4 Enter "synthetic" 2z,,, the value-of the first OCIV
for the first synthetic design point.

23-32 Fl0.4 Enter "synthetic" zz,, the value of the second OCIV
for the first synthetic design point.

63-72 F10.4 Enter '"synthetic" zg;, the value of the sixth OCIV
for the first synthetic design point.

Under the assumed format, 7F10.4, which is used here as an

example, and {f 6 < IR < 13, a second card would be needed to complete
the representation of the first synthetic design point. This second

43

vreteprr s, RGPS 5 5 o o3 T I e o crecgere—e v .

o T, YR




DTSR

NWL REPORT NO. 2035

CARD TYPE 7 (Cont'd)

card would be read with the same format (7F10.4) with the exception
that columns 3-12 are used for the synthetic value of the seventh
OCIV (syn z,,;). If IR 2 13, additional cards would be necessary in
order to completely represent the first synthetic design point, and
the same format would be applied. Succeeding synthetic design points
are input on successive cards in a similar manner.

CARD TYPE 8 - DATA INPUT CARDS

These cards are used to input the observed coordinates,
(y; 2y, 235 ++.5 2gr)y,» Of the n data points, where IR is the number
of OCIV's and i = 1,2,...,n. The numerical values are entered on the
cards according to the format which has been specified in columns
41-80 of Card Type 2, ignoring columns 1 and 2. If more than one card
is required to represent each data point, the additional cards (con-
taining OCIV's only) will be read by the same format specification.
An explanation of the preparation of these cards is given below for
the assumed format 7F10.4 for data input.

Column Format Explanation

1-2 2X Leave blank.

3-12 F10.4 Enter y,, the observed coordinate of the dependent
variable for the first data point.

13-22 Fl10.4 Enter z,,, the observed coordinate of the first OCIV
for the first data point.

23-32 Fl10.4 Enter zy,, the observed coordinate of the second OCIV
for the first data point.

63-72 F10.4 Enter zg,, the observed coordinate of the sixth OCIV
for the first data point.

Under the assumed format, 7F10.4, which is used here as ar
example, and if 6 < IR < 13, a second card would be needed to complete
the representation of the first data point. This second card would be
read with the same format (7F10.4) with the exception that columns
3-12 are used for z,,, the observed coordinate of the seventh OCIV of
the first date point. If IR = 13, additional cards would be necessary
in order to completely represent the first data point, and the additional
cards would be written in the same format as the second card. The
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CARD TYPE 8 (Cont'd)

soordinates (y; 2zy, 2z, ..., Zga)y Of the succeeding data points,

where 1 = 2,3,...,n, are input on successive cards in a similar manner.
The GCIV coordinates are generated using the OCIV coordinates which

are input on these cards. The DATA INPUT CARDS and the SYNTHETIC
DESIGN POINT CARD(S) are identical in format; however, the first

field of the DATA INPUT CARDS contains the coordinates of the
dependent variable and the first field of the SYNTHETIC DESIGN POINT
GARD(S) is left blank. Tle program limitation on the number, n, of
data points is: n < 7000.

CARD TYPE 9 - DATA TERMINATION CARD

Column Format Program Variable Explanation
1-2 I2 Ml Enter any non-zero value.

If the information on Card Type 8 is on tape, the information
on Card Type 9 must be on tape and must have a record length given by
the format in columns 41-80 of Card Type 2 (or the assumed format,
7/F10.4) plus 2 columns.

CARD TYPE 10 - RERUN CARD(S) (Optional)

This control card provides the capability of deleting any
~ombination of independent variables (OCIV's or GCIV's) from the
.-iginal model and, thereby, repeating the regression computations
tor a specified independent variable selection of N' < N IV's., If
ill desired phases are executed, this repetition is called a rerun.

i rerun card must be included in the input deck for each rerun that

iv desired and, therefore, NR (see columns 5-7, Card Type 2) rerun
-avds are needed. Each column of a rerun card represents an
tndependent variable (OCIV or GGIV) in the original model for the main
sun. If a1l is entered in the column, the corresponding independent
variable is excluded from the model. If a 0 is entered in the column,
the corresponding independent variable is included in the model. This
card must be omitted from the input deck if NR = 0. NR < 999.

-sdumn Format Program Varjable Explanation
1 11 Lot (1) Enter a zero; this column represents

the constant which must be retained
in the regression model for all runs.
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CARD TYPE 10 (Cont'd)

Column Format Program Variable Explanation
2 11 Lot (2) This column represents the first

independent variable; enter a zero if
it is to be retained in the model or
enter a one if it is to be deleted from
the model.

3 Il Lot (3) This column represents the second
independent variable; enter a zero if it
is to be retained in the model or enter
a one if it is to be deleted from the
model .

51 I1 Lot (51) This column represents the fiftieth (if N=50)
‘ independent variable; enter a zero if
it is to be retained in the model or
enter a one if it is to be deleted from
the model.

Subsequent rerun cards are written in the same format.

V.3 Example Problem Deck

A card layout of the problem deck for the example problem
which is discussed in Section VI.5 is given on the following page.
An explanation for each card of the problem deck is also provided.
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Card Type
1
2

Column

1-80

3-4
5-7
8-10

11-13

14

15

16

17

18

.9-20

21

23-31

32-40

41-80

NWL REPORT NO. 2035

Explanation

Identification of the problem.

IR=2; two OCIV's (2, and 2,) are input.

IS=7; seven GCIV's are to be generated.

NR=1; one hand selected rerun is to be executed.
MVP=3; three synthetic design points are to be input.

NDR==2; two selected input design points will be
specified.

MVPL=1; predictions and prediction standard
deviations for the prediction line will be computed
for the 3 synthetic design points and the 2 selected
input design points for the main run and the hand
selected rerun.

NPE=1; prediction and prediction errors will be
computed and printed and the Chi-square test for
normality of the prediction errors will be
performed for all reruns.

NDPO=1; the coordinates of the data points will be
printed in the format 7E17.8 and the predictions
and the prediction errors will be printed in the
format 2E15.6.

TAPE=U; DATA INPUT and DATA TERMINATION are on
cards.

IVORGO=3; both IVOR and BIVOR will be used.

NFD=3; thero are three data ficlds on each DATA
INPUT CARD.

IBID=0; the identity matrices will be computed for
all BIVOR recruns and the accuracy checks will be
performed on all identity matrices from BIVOR reruns.

I(1)=.1E-3=.0001 = accuracy criterion for printout
of identity matrices,

I(2)=.156-1=.015 = accuracy criterion for rejection/
acceptance of runs.

FORM=3710.0; input format by which each DATA INPUT
CARD is to be read {s three ten-column fields in
the F format starting with column 3.
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Card Type Column Explanation
3 1-20 IN(1,1)=1, IN(1,2)=2; the first GCIV (third
(first card) independeunt variable) is z,z, = Xs.

21-40 IN(2,1)=1, IN(2,2)=1; the second GCIV (fourth
independent variable) is z;z; = z? = X4

41-60 IN(3,1)=2, IN(3,2)=2; the third GCIV (fifth
independent variable) is z;2; = zg = Xsg . K

61-80 IN(4,1)=1, IN(4,2)=1, IN(4,3)=2; the fourth

GCIV (sixth independent variable) is _?
212,23 = z?zz = X, —
3 1-20 IN(S5,1)=1, IN(5,2)=2, IN(5,3)=2; the fifth
(second card) GCIV (seventh independent variable) is

212222 = 2,22 = Xo.

21-40 IN(6,1)=1, IN(6,2)=1, IN(6,3)=1; the sixth
GCIV (eighth independent variable) is
21212, = 2] = Xa.

41-60 IN(7,1)=2, IN(7,2)=2, IN(7,3)=2; the seventh
GCIV (ninth independent variable) is
2320222 = zg = Xy

4 1-2 IQ=4; IVOR will terminate after four indepenZent
variables have been ordered.

3-5 MI=2; the independent variables are to be divided
into two groups for ordering by IVOR.

6-8 NJ(1)=?; the first two independent variables
(x, ,xz) ere to be considered as the first group.

9-11 NJ(2)=7; the next seven independent variables
(X3 ,%X4 %X X9 4Xa ,Xp) are to be considered as
the second group. ‘

5 1-2 MB=3; the independent variables are to be divided
into three groups for ordering by BIVOR,

3-5 LOT(1)=2; the first two independent variables

(x,,x2) are to be considered as the first group
in BIVOR.
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Card Type Column
5 6-8
9-11
6 V<4
5-8
7 13-22
(first card)
23-32
7 13-22
(second card)
23-32
7 13-22
(third card)
23-32
8 - 3-12
(first card)
13-22
23-32

8
(second card thru
twentieth card)

NWL REPORT NO. 2035

Explanation

LOT(2)=3; the next three independent variables
(x5,X4,X5) are to be considered as the second
group.

LOT(3)=4; the next four independent variables
(xg yX7 ,Xa ,X9) are to be considered as the third
group.

IKBEPR(1)=4; the fourth input design point
(according to order of input) is to be used as

a selected input design point for the calculations
specified in column 14, Card Type 2.

IKEEPR(2)=13; the thirteenth input design point
(according to order of input) is to be used as a
selected input design point for the calculaticns
specified in column 14, Card Type 2.

The value of the first OCIV for the first

synthetic design point is entered (syn z,;, = .240).
The value of the second OCIV for the first
synthetic design point is entered (syn z3, = 350).
The value of the first OCIV for the second
synthetic design point is entered (syn 2,3 = .250).

The value of the secund OCIV for the second
synthetic design point is entered (syn z;; = 400)

The value of the first OCIV for the third

synthetic design point is entered (sva z,, = ,260).
The value of the second OCIV for the third
synthetic design point is entered (syn .. = 450).

The observed coordinate of the dependent variable
for the first data point is entered (y, = 927).

The observed coordinate of the first OCIV for the
first data point is entered (z,; =« .253).

The observed coordinate of the second OCIV for the
first data point is entered (z,, = 317).

These cards are written in the same format as the
preceding card.
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Column

9

10

1-2

10
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Explanation

A non-zero value is entered for the purpose of
indicating termination of data.

Lot (1)=0; the constant term must always be
retained in the model.

Lot (2)=0; the first independent variable (x,)
is included in the model for this rerun.

Lot (3)=1; the second independent variable (xkj
is excluded from the model for this rerun.

Lot (4)=1; the third independent variable (x.) is
excluded from the model for this rerun.

Lot (5)=0; the fourth independent variable (x.)
is included in the model for this rerun.

Lot (6)=1; the fifth independent variable (x:)
is excluded from the modzl for this rerun.

Lot (7)=1; the sixth independent variable (x-)
is excluded from the model for this rerun.

Lot (8)=1; the seventh independent variable (x-)
is excluded from the model for this rerun.

Lot (9)=0; the efghth independent variable (x:)
is included in the model for this rerun.

Lot (10)=1; the ninth independent variable (x;)
is excluded from the model for this rerun.
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VI. COMPUTATION AND PRINTOUT

VI.1 Some Basic Computaticnal Features

In this section some basic computational features will be
discussed which merit being set aside from the description of the
computational details given in Section VI.2. The discussion of
these features may also provide a better umderstanding of the
DA-MRCA program as a whole.

VI.1l.a Matrix Inversion

‘ The inverse of the matrix of the normal equations and
the solution vector are obtained, in any given run, by the Gaussian
elimination method with the largest element as pivot. In the following,
the algorithm is outlined for the interested reader who prefers a
discussion in general algebraic terms rather than interpreting those
parts of the program listing (Section VIII.4) which represent this
inversion: procedure. he proof for the validity of the algorithm is
omitted since it appears to be beyond the scope and intent of the
present report. A proof 1is given, for example, in Cohen 11959). The
inversion subroutine was adopted without change from the nucleus '
program (TV-MRCA) of DA-MRCA.

The algorithm is described in terms of the main run,
that is, as applied tc the (N+1) x (N+1) matrix of the normal
equations augmented by the right-hand vector of the N+l elements Ey,.
However, the algorithm is identically applied also to all reruns with
N'<N independent variables contained in the model. :

The procedure (as discussed for the main run) consists
of N+1 cycles, after each of which all (N+1)(N+2) elements involved
will have changed. The clements of the matrix of the ith cycle are
denoted by the superscript i attached to the elements Eyy and Ey,:
Eyyt, iEvy. By definition, i=0 indicates the original elemen'
"Eyyt = Eyyr, “Eyy = Eyy; v,v' = 0,1,...,N. At the end of cycle
number N+1, the elements equal those of the inverse matrix A™' and
of the regression coefficients, respectively: ”*1Evv'= cyy' and
N*1Eyy, = by. The algorithm is as follows:

lst Cycle (i=1)

(1) The square matrix A of the normal equations with rank
N+1 is searched for the element with largest absolute value, which is
found on the main diagonal. This element is called the pivot element
and is denoted by CEM. Row p is called the pivot row; this row cannot
be used as the pivot row in any one of the remaining N cycles.

All subsequent steps (Nos. (2) - (5)) of the lst cycle
are exactly like steps (2) - (5) of the ith cycle as described below.
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ith Cycle

(1) The square matrix of rank (N+1)=-(i-1) = N+2-i,
obtained from the matrix at the end of cycle Nu. i-1 by deleting all
i=1 rows and columns corresponding to the pivot elements used previously,
is searched for the element with largest absolute value, which is found
on the main diagonal. This element is the pivot element of the ith cycle

and is denoted by 1"11'1”, The corresponding row cannot be used as the
pivot row in any one of the remaining N+l-i cycles.
(2)
i 1=1g% .,
EpV'=——"LV—- ’ for \)' = O,l’oos’N’
1"‘1E
PP
with
1'-J'Ep\,l if v'#p
i—lEtv' =
1 if v'=p
(3)
i=1
ig = Epv
pY Py
Epp
(4)
-k -
Eyyt = tmig¥, - 1 1Evyiﬁpw

v=0,1,...,p~1,ptl,...,N
for
\)'= O’I’OOO’N

with =1Ey e if v'#p

0 if v'=p

g _ 1= _ielp
Eyy = ° "Eyy = " "Eyp Epy

for V = o’l’l.o’p.l’p+l,°0°Nv

(N+1) th cvcle

The computations are as in (1) = (5) of the ith cycle
with i=N+1, The results are;
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Cyy
. for v,»' = 0,1,2,...,N.
N 1EVy = by

The deterwinant, /\, of the matrix A equals the product of the N+1
pivot elements of the N+l cycles:

VI.1.,b. Checks on the Accuracy of the Ihverse Matrix

VI.1.b.(1) Introductory Remarks

The accuracy of the inverse, A”*, of the matrix of
the normal equations of a given run with K(N) independent variables,
which is obtained in NDA-MRCA by the modified Gaussian elimination
process as described in the previous section, depends upon the natural
limitation of the computer accuracy. For example, in the IBM 7030, 13
digit accuracy is present when single precision is used as in DA-MRCA.
The limited computer accuracy causes the propagation of errors. Some
contributing factors to the amount of these errors, as contained in the
elements of A™', are:

(a) the rank of the matrix A;

(b) the underlying type of regression problem (for
example, polynomial regression vs. ordinary linear regression with
original independent variables only);

(c) the ranges of the values of the independent
variables (for example, |xy | > 1 vs. |xy | < 1);

(d) the relative position of the ny distinct input
design points.

In general (an exception is discussed in Section
VI.1.b.(3)), the only practical way to check on the amount of the
propagated errors contained in the elements of the inverse At is
to calculate the product

I. = A”'a, (VI-1)

that is, to form a ''calculated identity matrix'", I., and to compare
it with the exact identity (or unit) matrix, I. This is done in the
present program for each run (in BIVOR, however, only when specified,
see column 21 of Card Type 2, Section V.2). The checks on I,, as
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described further below, not only serve to reject unacceptably
inaccurate inverses but also to identify cases in which the matrix

of the normal equations contains "obvious'" or '"mon-obvious'" linear
dependencies. These topics are further discussed, along with corrective
measures to be taken in such rejection cases, in Chapter VII,

When I, is calculated according to (VI-1), it is
possible that the errors contained in the elements of A™' are drastically
magnified such that the off-diagonal elements of I, are far from zero.
This may even be true under the (unrealistic) assumption that the
elements of A™* are obtained without computational errors, except for
the truncation errors due to the natural limitation of the computer
accuracy, i.e., 13-digit accuracy as present on the IBM 7030 with
single precision. In fact, the derivations in Section VI.1.b.(2)
below are based on this assumptlon that the elements of A"’ are free
from error, except truncation error. The main diagonal elements of
I. (which should all be 1) are the only elements of I, which will
never be affected by this type of magnifying process. Therefore, the
accuracy check on I, is restricted, in DA-MRCA, to the main diagonal.
If the largest deviation from 1 in the main diagonal of I, exceeds the
input value of I(2) specified by the program user, the inverse is
automatically rejected by the program as being unacceptably inaccurate.
(The deviations from zero of the off-diagonal elements of I, are also
checked, but only for the purpose of deciding whether or not the
matrix I, is to be printed for visual inspection.)

The justification for the above statements is given
in the next section and is based on the regression model (I-l) as
used in DA-MRCA. If the model

N
y=y 1+t ZB(xy = Xy) e, (VI-=2)
v=1

i.e., the "adjusted" regression model, were used, the elements (Ey,,
say) of the matrix of the normal equations would also be adjusted for
the averages, e.g., Eyyr = Eyye - EyoEqy , and a different situation
(not necessarily an improved one) wguld arise with respect tothe error
magnifying process when calculating an identity matrix. See the
remarks in Section VII.2.a concerning the effects of the transformation
(VII-1), v = X=X
Ry

VI.1.b.(2) Justification for the Rejection Criterion

°

In this section a justification is given for the
rejection criterion (as described before) which involves only the main
diagonal elements of I, = A"*A, The justification is ,8lven under the
simplifying assumption that the elements, cyy , of A" are free from
error, except truncation error. It will be shown that even these
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truncation errors in the cyy are sometimes sufficient to cause large
deviations from zero in the off-diagonal elements of I,. Naturally,
these deviations are even larger when the cyyt also contain propagated
errors, as is almost always the case in reality.

All errors will be derived in terms of their
approximate "orders of magnitude." For this purpose the following
definition is introduced:

Definition: The 'order of magnitude" of a number, z, is
defined, for the derivations of this section, to be the
nearest power of ten to which z can be rounded. The symbo'
"' is used to indicate that the number or algebraic term
located to the right of the symbol is the order of magnitude
of the term located to the left of the symbol. The symbol
"' is also applied to matrices, and its meaning shall then
be that the matrix to the right of the symbol is the matrix
of the orders of magnitude of the corresponding elements of
the matrix to the left of the svmbol.

For example, for z = 677232:
z = 677232 2 .7 x 10° = 1 x 10° = 10%
Another example is:

2z = =0.0434 = -0.4 x 107 &= «,1 x 107 = -107%,

The approximate orders of magnitude of the truncation
errors contained in the elements of A™' and of the errors in the elements
of I, will be derived for the case of the main run, that is, for A being
of rank (N+1) x (N+1). Naturally, the results are similarly valid for
the matrix A of any rerun with N'<N independent variables.

n
With Eyye = 2 xyyxysy, the matrix A of the normal
equations for the main runis: 1=
. .
Eos Eor Eoz °** Boy °°° 3;17

Elo E11 E12 s00 EIV' cv e EIN

an E31 Ea2 oo Eav. c oo EEN
. . ¢ .

A ° 13 ° o L4 (vlns)

[ ° ¢ L) [

n

Eyo Eyy Eyg °*° Eyye °*° Eyy
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The elements of A™' will be expressed folluwing Cramer's Rule. This
may be done because the specific characteristics of the inversion
process of DA-MRCA and the associated error propagation are unimportant
for the purpose of the present derivation. To repeat, the only

purpose is to show the magnifying process of the truucation errors
contained in A”! which can take place when I, = A"'A is formed.

To arrive at the justification desired, it will
further be necessary to make use of a known result from the theory
of determinants: The determinant of order k,

dy; di2 dyy
day, da> day

b= | . . : ,
dyy dya diy

can bc xpressed in the following form:

ki
D= I (% dygdapdsy "' dya), (V1-4)

where the summation extends over all k! members which result from the
k! possible permutations of the subscripts a#Bfv# ... #x, each subscript
taking one of the values 1, 2, 3, ..., k.

Applying (VI-4) to the elements cyy¢ of A"' and
recalling that Byy» = Byey, one has from (VI-3) according to Cramer's
Rule: ’ o

N! h

va'='t L (01,811 Bany o= Byay ** Blvar)1yayBvar)tyay ** Bundd

with . | o "VI°5)
t’ = 0’1.2, vlot’ (v..l)'(v.+l)' ey Ni ‘»"1,. H)

vhere _

(et | | | | A
A.Dct(” -} b (a°'°“"n“a see "" cee "':.v vee Bn.) »
‘with | ) (VI-6)

i" 0.1.2, (AR X u; 1,*‘,. [
| /

The sum in (VI-5) consists of an even number (N!) of members with
alternating signs. Accordingly, the truncation error of this sum (or
that of cyy* A) should have an approximate order of magnitude equal to
that of the truncation error of ths adbsolutely largest one of the N!
members. However, the largest member cannot generally be defined, but
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an upper bound for it can be determined by the application of Schwartz's
inequality. This upper bound equals

N
U = ﬂ EJJ \/Evav‘v' . (VI"7)
§=0
j#v, V!

It will be demonstrated later that i* is not unrealistic to use this
upper bound for the largest of the N! members in cyy A because the use
of U and of the value

N
j=0
J#v,v!

both lead to the same approximate results. But U' is indeed one of the
N! members in the sum of (VI-5).

In order to illustrate the derivation of formulae
(VI-7) and (VI-8), the term cyy A is evaluated for the example case of
v=2, v'=3, and N=3: For this example, in none of the members in the
sum (VI-5) is there an E-term having as its first subscript v=2 or as
its second subscript v'=3. Disregarding the signs, the 6 members of the
sum are:

1. EpoBy1Eaz, 2. EgoByzE5y, 3. Eg1E 0Ea2y 4. EgyEy2Eaq,

5. Eg2By1Ez0, 6. Eo2By0Ea, .

The first of these mcmbers is the one which was generally denoted as U'
in (VI-8). Recalling that

or shorter,
EVV R Xy Xy,

Schwartz's inequality shows that
Byy =Zxypxy < VI xP T x¥ = /EWIE,,.

Therefore, and according to (VI-7), the value U = EqoB,,/EzzEas is also
an upper bound for U' = EgoEy Eagz. (As indicated before for the general
case, both values 800811833 and 80031,¢§33!33 will lead to the same
results with respect to the approximate orders of magnitude of the
truncation error of cgy.) To show the validity of the upper bound U for
one more member of the six, take the fourth: BEy,E,3E55. Here one has
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«‘d
W

LI}

2 —
1 &

N 3}
M
x

- — - — 2 < -
EQIEIQEQQ Z XpX) & X1Xp & XaXg - /L XSZ Xy 2 X

2. .2 fos o5
LXo Xy VZXp 2X3 = EgoEyy/Eg2Eas .

Continuing the main derivation, the truncation error
of cyy will be called 5(cyy) and expressed as 10 "c,y, where the exponent
H (> 0) is left unspecified for the time being. Therefore, replacing
the sum in (VI-5) by the term (VI-7) (which substitution, according to
the argument used, is possible only under the simultaneous multiplication
of both sides of (VI-5) with 10™") one gets:

- ~ M

Here, it is sufficient to replace A by its approximate order of

magnitude. This can be set equal to the order of magnitude of the
product of the main diagonal elewents of 4,

N
MEy,,
=0

which is the largest mwembcr in the sum of the (N+1)! members in (VI-6).
In doing so, therefore, one actually replaces 4 by an upper bound which

results in a lower bound for the order of magnitude of the truncation
error of cyy ¢

1w

Uewd = TEE " (v1-10)

However, if the lower'boundi of the truncation errors are able to cause
the large deviations in the off-diagonal elements of I, (as will be
showm), these deviations are in rcallty even larger for the true trun-
cation errors in the ¢
The elesent i,,» of I, = A"!A is obtained as
N |
flyy* = L c'v"v"' . ’ (VI‘ll)
- w0 '

Defining

Cyyt = Cyyn *+ E(cyya)
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where cyyx is the true value of the inverse element (i.e., a value free
from truncation error and any other error) and where &(cyyx) is the
truncation error of cyy% as defined before, one has from (VI-11):

N

ivv' = z {Evv* + G(va*) }EV*V’
v =0

[ x

1+ I {6(cyyk) Byky if v'=v
ﬁ wk=0

N
0+ I {6(cyyk) JBykye if v'#v

\ vk=(

This leads to the definition of the error of i,y caused by the
truncation error of cyye:

N

6(1yyd = I {8(cyy®) JEywyr . (VI-12)
we=0

(Notice that this derivation implied the assumption of no additional
truncation errors being introduced when forming iyy .)

Inserting (VI-10) into (VI-12) one has:

N 10~"
iy & L-—d@ _Eay . (VI-13)
=0 VEyyEywyw

At this point it is necessary te introduce another approximation.

Since only orders of magnitude are considered, it appears sufficient
to put, in general,

n
!yy! - Xy 1 XvYy [ n ;yiv’ . (VI’{‘)
, =

Substituting these orders of magnitude in (VI-13), one gets

N iv' - - iy’
§(lyyd & I -p—l07" = (N+)107"-p—  (VI-15}
wea() v v : .
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Ar identical result is obtained when the term (VI-8),
U', rather than (VI-7), U, is used to replace the sum in (VI-S). Ir
this case one has, instead of (VI-10), for the truncation error of cyy:

. - 107"E
»)_e(cvg.) T_...__V'.!. .
EyvEyy’

This leads to the error of i,y , corresponding to (VI-13):

N
S'(iyy) ¢ = 107" EvkyEvdy

=0 EyvEyieva

Usirg again the approximation {VI-14), one has #(iyy) = 6(iyy9, which
was to be shown.

Fipally, using (VI-15), the matrix &(I_) of the
approximate orders cf magnitude of the errors in I, caused by the
truncation errors 5(cyy9 only, is obtained:

1 X] i'? . i\; . ivi' “ e i'\
L o Bn R R
A A A T
N R N
i@ EQ i:@ *-;: ig‘;
. . ] i *
R R
. - - ——— ne .-;l . 1 s & ’::_ s x ':- X Kv >-
‘-"(Ic) ("* l) lp Xy Xy Xy TRy Ry -7 e B a oy (VI 16)
. - )'L ’ » .
lﬂl\i‘&;‘ .;.-f"v‘ PR 1 .;:-x-ﬁ
xvi Xt Ry Xy Xy*
1 ;l -3 ;v ‘-"J' i
. :—u g.. ——— g v :—t - :.» » 8
Xy Xy Xy Xy Xy
L_. —
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The formulation (VI-16) shows the following: (a) the orders of
magnitude of the errors in the main diagonal ciements of I, (caused
only by truncation errors in the cyy) are approximately (N+1)10™"

and are, therefore, independent of the numerical values of the
independent variables; (b) the orders of magnitude of the errors in
the off-diagonal elements of I, are approximately the orders of
magnitude of the ratios, multiplied by (N+1)10™", of the averages of
the independent variables as given in the matrix and are, therefore,
dependent upon the numerical values of these independent variables;
(c) the approximate orders of magnitude of the errors of the off-diagonal
elements of I, are reciprocal with respect to the main diagonal (apart
from the factor (N+1)107¥), viz.,

§(iyyd = (NH1)107% 2¥ versus §(iw) = (N+1)107" 2L |
v

Xy Xy?

According to these findings, an off-diagonal element of
I. can appear to be so much in error that it is not even in the vicinity
of zero. This is particularly likely to happen when one deals with
polynomials. For example, in a polynomial in one independent variable
X, the term

can be rather large when Ix | > 1 and the exponent v is sufficiently
large.

If the order of magnitude of X, is called 10", then
the error of igy is, for example, according to (VI-15):

5(igy) = (N+1)107"%x, &~ (N+1)107"*",

If M is approximately equal to H, the apparent deviation of igy from
zero can be considerable, and it is obvious that this deviation can be
large even if the matrix inversion was perfectly accurate within the
natural limitations of the computer accuracy.

The following simple example was actually computed
with DA=MRCA in order to illustrate what has been shown theoretically.
The numbers displayed are taken from the program output. There is only
one independent variable in the example, and its 5 distinct numerical
values were chosen exttremely large in order to emphasize the effect.
The x values are as follows (written in the exponential format):
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.39062500E+14
.26435638E+15
.75493321E+15
.39721133Er16
.10000000E+17

The matrix A is accordingly:

,‘ .50000000E+01 .15030465E+17 |
b | -15U30465E+17 116419028+33

From this, DA-MRCA computed A™':
- i'.32685427a-oo - .42199048E-16 |
) '_—.421990485:-16 140378388 -31 |

and, finally:
.10000000E+01 .64000000E+02 |
I, =A"1A =

-.78886091E-30  .10000000E+0L

The deviation of iy, from zero is 64, that is, the apparent error of

ig; bhas an order of magnitude 10°. According to (VI-15), the error of

igy; should have an approximate order of magnitude equal to that of

(N+1) x 107"%,. The average of the 5 levels of x; = x is X = .30060931E+16.
Therefore, the error of igl should have an approximate order of magnitude
of 2¢(107")(.3)10%*® = 10*°"". With H=14 for the IBM 7030 (single precision),
the apparent order of magnitude of the error of ig; equals the one theoreti-
caliy predicted: &(io,) & 10'®7'* = 10°., Equally interesting is the
dpparent order of magnitude of the error of i, = -.78886091E-30 which is

1073° if one neglects the negative sign. According to (VI-15), the
approximate order of magnitude of the deviation of i,, from zero should

be that of 2(10™") @ which is 107"107'® = 107%° with H=14. This
approximation, therefore, is almost as good as the one for §(ig;).

Finally, the errors in the main diagonal elements of I, should have

orders of magnitude equal tc that of 2(107*) which cannot be observed
since only 8 digits are printed by the program. Obviously, in this

case, the good agreement between the predicted and apparent orders of
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!

magnitude of the errors in I. is due to the small rank of the matrix A.
It can be assumed that propagation errors are practically absent when a
matrix of rank 2, as in this example, is inverted. In this case, there-
fore, the apparent errors in the elements of I. should essentially be
the magnified truncation errors of the cyy, the approximate orders of
magnitude of which are given by (VI-16).

It should be noted that the errors of the off-diagonal
elements of I, wight appear to be large not only when the x values are
very large (and of equal sign) as in the above example, but also ﬁﬁen
the x valucs are very small (and of equal sign). If the latter is . the
case, the deviations from zero of the elements in the lower half of I
will be very large.

The only way to guarantee that the errors of all
elements of I, will be of equal order of magnitude (i.e., (N+1). x 107")
would be to apply a standardizing transformation to the x values, such
as v = 27X yhich is discussed in Section VII.2 .a. With R, = max(x) -
min(x),» *this transformation results in average valucs of the independent
variables which have an approximate order of magnitude 1, and this, as
can be seen from (VI-16), leads to the wniformity of the orders of
magnitude of the errors in 3ll element: of I.. Ouly in this case,
therefore, would it make sense to check the accuracy of all elements of
I., or, preferably, of all elements of the residual marrix I.-I. For
this situation a measure like the Euclidean norm could be used to
check the accuracy of I.-I and, thereby, the accuracy of the inverse
matrix.

s

However, as is shown in Section VII.2.a, the trans-
can be very undesirable for tre program user in certain
situations.. “It is essentially for this reason that in DA-MRCA the
accuracy checks on the identity matrix are restricted to its main-
diagonal. Since all (N+1)? elements of A™! are involved in this check,
it is felt that by this-check the program user is sufficiently protected
from inaccurate or fictitious inverses. . -

X=X

In connection with the results of the present section,
the reader is referred to an example case of a 5th order polynomial
which is also given in Section VII.2.a. In this example, the off-
diagonal elements of I. deviate from zero- to a much larger extenc than
indicated by (VI-16), which is in accordance with the as.umptions leading
to (VI-16). The deviations practically vanis}l, when the x values are
"coded," i.e., when the transformation v = X2¥ is applied,

X

VI.1.b.(3) The Choice of I(i) and I(2)

Restating from Section VI.l.b.(l), the program
rejects an inverse as unacceptably inaccurate when the largest deviation
from 1 in the main diagonal of I, exceeds a value, I{2), specificd by
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the program user. As to the choice of I(2), extensive studies have
been made by the authors. One method which was applied to find a
dirrct relation between the maximum deviation of the i,, from 1 and
the accuracy of the inverse, was the computation of perfect fit
regression cases. In these cases the regression sum of squares, as
computed by using the elements of the inverse, via the regression
cocfficients:

N
ASSRy = T byE,, - % E?,,
v=0

can be compared with its hand-computed equivalent. (This is the
exceptional case, mentioned in Section VI.l.b.(l), in which the
accuracy of the inverse can independently be checked.) The results
from the calculated example cases confirmed the experience gained by
the authors in many problems previously solved with DA-MRCA: The
chosen value of I(2) should lie between 0.001 and 0.01, depending

upon the rank of A. With this choice the analyst can be confident
that inaccurate or fictitious inverses will be rejected by the program
and that, in general, sufficiently accurate inverses will not be

re jected.

Since the analyst might sometimes wish to visually
inspect the whole calculated identity matrix, DA-MRCA provides for the
possibility of printing it. The decision of whether or not to print
I. is made by the program: only when none of the elements of I,-I is
in error by more than a value, I(l), specified by the program user,
will I, not be printed. The reason for this device is twofold:

(a) If I, is not printed, the user knows at once that
all errors are smaller than I(1l).

(b) If the user is not interested in the inspection
of I,, he can possibly choose I(1l) so large (but not larger than I(2))
that in most cases I, will, in fact, not be printed, whereby printout
and printing tiwe of the whole regression problem will be reduced. If
he chooses I(l) = I(2), he will get a printout of I, only in rejection
cases.

Occasionally the program user wants every identity
matrix printed. He can achieve this by putting I(1) = 0. Otherwise,
the choice of the value of I(l) must be left to the user. For the
purpose of acquainting the user with the program, concerning the
behavior of I,, the experience of the authors showed that a value of
I(1) in the vicinity of 10~* should be chosen.
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Vi.l.c Chi-Square Test on Normality of Residuals

Significance tests based on the main theorem of multiple
regression (Section III.1) and the construction of confidence intervals
require normality of the distribution of the residuals e in the model
(I-1). The only way to test the hypothesis of normallty is to examine
the distribution of the "estimated" residuals, e, = y, - ¥,,i=1,

This is done in the present program by the Chi-square test. One should,
however, remember that the F test (III-1) of the main theorem is rather
robust with respect to the form of the distribution of the residuals.
Therefore, unless striking evidence of non-normality is shown by either
the bar chart of the frequency distribution of the €1 or the computed
Chi-square value, or both, the analyst would not be too concerned about
the hypothesis testing aspects. For interval estimation, however,
normality as demonstrated by the &; is essential.

Both the bar chart and the Chi-square value (if it can
be computed) should, therefore, be considered merely as aids to determine
whether a transformation of the observed values of the dependent variable,
y, would be necessary or helpful to achieve normality or approximate
normality of the residuals. Also, the possible significance of the
computed Chi-square value should not be taken too literally. The
Chi-square test for normality is only an approximation, and the number
of degrees of freedom, m-K-3, obtained by subtracting the number, Kt2,
of parameters estimated (K+1 regression coefficients |lus the standard
deviation in case of a model containing K IV's) from m-l, where m is
the final number of intervals, certainly is a safe lower limit.

The fixed number of 30 initial intervals into which the
observed range of the residuals is partitioned also deserves some
discussion. As outlined in more detail in Section VI.2.a.(3), the
Chi-square subroutine automatically arrives at a new partitioning of
the range into m-30 intervals by combining subsets of the 30 initial
intervals into m new intervals such that cach one of the m has an
expected number of more than 5 observations. The initial number of
30 {ntervals was chosen as a compromise tn avoid the
extremes of: (1) having, in most runs, few expe:ted residuols (little
more than five) in each of the final m fntervals, and (2) having, in
most runs, too small a number m such that the degrces of freedom of
Chi-square, m=-K-3, would be non-positive. -

VI.l.d__IVOR

In this section the basic steps of the computational
procedure of IVOR (“Independent Variable Ordering by Regression sums of
squares™) are explained. The principles of this ranking method and its
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applications, along with those of BIVOR, were already discussed in
Section III.2; whereas the computational details in the subroutine
IVOR (including the relevant checks for the acceptability of a rerun

and internal decisions based on these checks) are given in Section VI.2.c.

The N independent variables (OCIV's and GCIV's, or OCIV's
only) in the preconceived model of a regression problem are optionally
divided into My consecutive groups according to the IV innut sequence,
with Ny independent variables in the respective groups, j = 1,...,M[.
The primary purpose of the grouping option is to allow the possibility
of ranking IV's under "restricted admissibility." (This type of ranking
has several applications as discussed in Sections II.3 and VII.2.a.)
Another use of the grouping feature is as a device to save computing
time; see the remarks at the end of this section (VI.1.d). Not all
N IV's in a given regression problem need be included in the grouping.
If the total number,

My
Z N: 1Y
j=1

of the independent variables in the My groups is less than N, the last
(or rightmost)
he
N - LN]
i=1

independent variables are excluded from the IVOR ordering. If the user
does not want to use the grouping at all, he should put all IV's in one
group, i.e., let My = 1 and N, = N. (See input preparation for Card
Type 4, Section V. i )

IVOR starts the ordering within the first (or leftmost)
group of N, IV's and, after having completed the ordering within that
group, proceeds to the second group and further to the right until the
ordering i{s completed within all My groups. :

, For the present description only, the IV's of group J,
§ < 1,...,My, are denoted by x'*', h = 1,...,N.. With this notation,
the firsc N, steps of IVOR are: : -

First Step. Each of the N, IV's of the first group
(x:'; h = 1,....!,5 is included in the model, one at a time, as the

only independent variable f{n the model. For each 1V the ASSR value.
(Regression Sum of Squares Adjusted for cthe m2an) is computed. Among
these Ny ASSR values the maximum is found and the independent variable
whose inclusion in the model led to the wmaximum is denoted as x{}}.
Accordingly, x¢}) is considered as the st anor:nnc IV in the firse
group.
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Second Step. Each of the N,-1 IV's of the first group
which have not yet been ranked (xg ; h=1,...,N0 but £ (1)) is
included in thr model, one at a time, together ‘with xt1], the IV
ranked most importaut in the first step That is, in the second
step, the model always contains two IV's, of which ome is xélg
Then the N;-1 ASSR values due to the N;-1 sets of two IV's are
computed and the maximum is found. The independent variable which,
in union with xflg, led to this maximum ASSR value is denoted as
xf%{ and is considered as the second most important IV in the first
group.

Third Step. Each of bhe N,-2 IV's of the first group
which have not yet bzen ranked (xh )s h =1, .,N; but £ (1) and (2))
is included in the model, one at a time, together with x §) and x é).
Then the N; -2 ASSR values due to the N,-2 sets of three IV's are
computed and the maximum is found. The independent variable which
together with xf%? and xéag, led to this maximum is denoted as xf§§

and considered as the third most important IV in the first group.

Step 4 to Step N, . The grocedure is continued,
corresponding to steps 1-3, until x N 1) is found in Step N;-1. In
step Ny, the remaining IV in the first group is, naturally, considered
to be the least important one and is denoted as x ﬁl).

The remaining steps of IVOR are as follows:

Step N;+1. Each of the N; IV's of the second group
(x§3); h = 1,...,“3, 1s included in the model, one at a time, together
with all N; IV's of the first group. Then the N3 ASSR values are
computed, each one due to N,;+1 IV's. Among these N3 ASSR values the
maximum is found and the independent variable of the second group
whose inclusion in the model led to this maximum, is denoted as x{3].
This IV is considered as the most important independent variable in
the second group.

Steps (N;+2) to (N +N3) follow correspondingly.

The procedure is continued with the third group, fourth
group, etc., until all independent varisbles in all groups have been
ranked.

The procedure thus described may be called the "standard"
IVOR procedure. However, since the aumber of matrix inversions and
relevant computations performed by the "standard" IVOR routine mey
result in excessive computer time, an input parsmeter, IQ (columns 1
and 2, Card Type &), is availadle for possible use in limiting the
number of IV's to be ordared by IVOR. If IQ > 0, only the IQ most
important independent variables will be found, f{.s., ordered dy IVOR
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under this option, and the N-IQ least important IV's will not be
ordered at all. IQ must fulfill the inequality

M
IQ << Z Nj’
3=1

but can otherwise be chosen freely, such that, for example, the
ordering may cease after some IV's of a given group and all IV's in
the previous group(s) have been ordered. For example, with

where Njyxyy 7 3, say, IVOR will first order the 3§1N3

independent variables in the first j* groups as described above. Then
it will find, among all Ny#,; IV's of group j*+1, the three most
important ones in the usual manner and cease ordering. The last
Ny%,3-3 IV's in group j*+1 and all IV's in the subsequent groups will
be left unordered.

Two remarks should be made with respect to the grouping
feature in the IVOR procedure.

The first concerns its use as a means to rank IV's under
restricted admissibility. Namely, the sequence in which the IV's,
especially GCIV's, are input to the program is critical when the
grouping option is exercised for this purpose. Since the allocation
of the IV's to the various groups is performed according to the input
sequence, it is necessary to input first all those IV's which would be
admissible for ranking at the first step of IVOR and, therefore, would
define the first group. In general, these would be the OCIV's, that is,
IV's with a powersum of 1. In general, all IV's with a powersum of 2
would follow next, that is, all GCIV's representing terms of second
order; etc. In other words, the GCIV's would have to be specified in
the sequence indicated in the cxample given for Card Type 3 (see
Section V.2).

The sccond remark concerns the use of the grouping feature
as another device (aiong with the IQ feature) to save computing time.
One such time saving effect is achieved by specifying

M,

LN, <N,
3=1
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provided the user is willing to save time by not ranking the

M,
N - Z N:
j=1

rightmost IV's, Also, the user can group the IV's by some preconceived
scale of importance which, in case of GCIV's being present, may or may
not be the grouping required for ranking under restricted admissibility.
Computing time is saved because the IVOR ordering always takes place
within only one group at a time, which leads to fewer matrix inversions
and relevant computations than would be necessary when the IV's were not
grouped. Again, the user has to specify the input order of IV's such
that this grouping by preconceived importance is possible. When choosing
time saving devices in IVOR, the user should clearly distinguish between
the consequences of using IQ and the grouping feature.

The program user should be aware that whenever he applies
the grouping feature (with My > 1), IVOR will give a ranking of
independent variables, by prediction power for the dependent variable,
within only the designated groups of IV's. This ranking may be called
“"sub-ranking'", in contrast to the ranking when all IV's are considered
to be in one group (My = 1). (See also the discussion of the rankxng
results for the example problem in Sectiom VI.5.)

Vi.l.e BIVOR

The computational procedure of BIVOR ("Backward Independent
Variable Ordering by Regression sums of squares') is based on principles
similar to those of IVOR which were discussed in the last section. In
the present section, therefore, the essential steps of BIVOR are given
while reference is often made to Section VI.l.d.

The optional grouping of IV's is done in the same manner
as in IVOR; however, the numbey My, of groups in BIVOR and the numbers,
Ny, of IV's in the groups (q=1,...,My) may be different from My and the
N. of IVOR, respectively, when both options, IVOR and BIVOR, are
exercised. Also in BIVOR, the

M,
L N,
q=1

N-

rightmost IV's may be excluded from the ordering. As to the use of the
grouping feature in BIVOR, see the remarks at the end of the present
section. _
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For the following description it will be assumed that

My
LN, =N,
q=1

which does not affect the general validity of the description. BIVOR
starts the ordering within the last (or rightmost) group of NM W's
and, after having completed the ordering within that group, proceeds
to the next to last group and further to the left until the ordering
is completed within all Mg groups. In more detail, the first NMazNM
steps of BIVOR are as follows. (For clarity and for the rest of the
present section only, the subscript "B" (for BIVOR) will be elimirated
from all terms such that Mg becomes M and Nu, becomes Ny.)

First step. All

independent variables are included in the model and the corresponding
matrix of the normal equations is inverted. Then the Ny additional
regression sums of squares, SSy_({n-1) = S$8,, Wwhich are due to each of
the Ny IV's contained in the last group, are computed. Their values
are obtained by computing [b$1232/cfl), (see Hader and Grandage [1958
p. 126), where the bv ) are the regression coefficients of the Ny, IV's
in the last group, and the csv) are the corresponding main diagonal
elements of the inverse matrix. Of these N, SS, values the minimum is
found and the IV whose deletion led to it is denoted as xilg Accordingly,
this independent variable is ranked as the least important one in the
last group. Notice that this IV which was ranked first, as the least
important one, received the subscript "(1)." 1In IVOR it was the mast
important IV which received the subscript ''(1)." This convention is
correspondingly applied in the following steps of BIVOR.

S S . The IV found least important in the first
step, xglg, is deleted from the model and the matrix of the normal
equations corresponding to the N-1 IV's remaining in the model is
inverted.

In order to find the minimum of the Ny-1 values
SSn-(n=2) = SSg, due to the least important IV found in the first
step plus any one of the Ny-1 IV's not yet ranked in the last group,
the following relation is used. By the add{tivtty roperty of ndd tional
regression sums Cf squares one has SS; = 381 + §833)?, where 88 is due
to the least impor:tant IV in the last group, x{%3], and $8{3’ is the
additional regression sum of squares (after xi;} is dele:ed from the
model) due to any one of the Ny-1 IV's not yet ranked in the last sroup.
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Since ss‘l) is a constant in the search for the minimum of SS,, only
the Ny-1 SS§ values need be searched for the minimum. These values
are obtained in the program by computing the terms [b{2’J?/c{3’, where
the bv ) are the regression coefficients (at the second step) of the
Ny-1 IV's and the cy3’ are the corresponding main diagonal elements

of the inverse matrix. Of these Ny-1 values the minimum is found and
the IV whose deletion led to it is denoted as x{zg Accordingly, this
IV is ranked as the next-to-least important one in the last group.

Step 3 to Step Ny. The procedure is continued, corresponding
to the first two steps, until fo)-l) is found in Step Ny-1l. In Step
Ny, the remaining IV in the last group is, naturally, considered to be
the most important one and is denoted as x N")

The remaining N-Ny steps of BIVOR are as follows:

Step Ny+1. All N-N, IV's are included in the model and the
corresponding matrix of the normal equations is inverted. The minimum
of the additional regression sums of squares, SSy.(n-ny-1) = SSi, «tl?
is found by searchxng for the minimum of the values
[b{"* 1) T2 /ci¥n*1) | “Here, the byN“+1) are the regression coefficients
(at Step N"+1) of each of the Nu., IV's of Group M-1 and the c{y**1’
are the corresponding main diagonal elements of the inverse matrix.

The IV whnse deletion (from Group M-1) led to the minimum is denoted
as x21) }) and is ranked as the least important one in Group M-l.

Steps (Nu+2) to (NutNu.,) follow correspondingl:.

The procedure is continued through the rema‘ning M-2 groups
until all independent variables in all groups have been ranked.

The additional regression sums of squares as computed in
BIVOR dessrve some more discussion. The quantity

2
by _
Cyvy

equals the familiar numerator in the F statistic to test the hypothesis
Bv = 0 in 2 modal containing, say, N' IV's:

F = .‘2"_./ , (V1-17)
Cv

In other words, the quantities bslcvv used in BIVOR to find the least
important IV in a given group at a given step (with a model containing
N' IV's), are equal to the quantities used to test, in the familiar
manner and one at a time, the significance of the N' regression
coefficients. MHowever, because of the correlations that generally
exist amons all the N' IV's, one would not obtain a meaningful ordering
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of IV's if the F values (VI-17) of the IV's were computed and ranked
according to their magnitudes. Therefore, at a given step of BIVOR,

the least significant of these quantities is selected and the corresponding
IV is deleted from the model, whereupon at the next step, again the
smallest of the bﬁ/cvv quantities is found and again the courresponding

IV is deleted from the model, and so on. This process then leads to

the BIVOR ranking of independent variables by prediction power for the
dependent variable, as described.

Because of the possible existence of compounds (see
Section III.2) the minimum values of the by/c,, quantities can vary
considerably from one step of BIVOR to the next. In fact, once a
significant model has been found based on the BIVOR ordering and on
the main theorem F value, (III1-1), independent variables ranked as
"more important" could very well have bj/cyy values which are much
smaller than the one corresponding, for example, to the "least
important" IV of the significant model. This would appear as if less
significant IV'swere ranked as being more important than the more
significant IV's. However, this conclusion is wrong, and the right
conclusion should be that a compound is present.

As in IVOR, the grouping feature in BIVOR can be used as
a means to rank IV's under restricted admissibility. This grouping is
done in much the same way as was discussed in the last section (VI.l.d)
and has the same possible consequences with respect to 'subranking" as
were mentioned there.

In BIVOR, the grouping option is, besides its application
te ranking under restricted admissibility, the only device available
to save computing time. The fact that not all N IV's of the precon-
ceived model need be included in the grouping makes the time saving
possible. With

M
“ Ny <N
q=1
the last

M
N - LN,
q=1

independent variables will be excluded from the BIVOR ordering.
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VI.2 Computational Details

In this section the computational details of DA-MRCA are
described for one regression problem. The intention is not to give a
description of tle details contained in the flow charts (Section VIIIL.2)
or in the prog.am listing (Section VIII.4), but rather to describe the

more impoitan’ computations and Jdecisions made by the program, inasmuch
as they are not discussed in previous sections. Also, justifications

are giv:in for some of these details where considered to be helpful in
understaading the pregrar. Along with the description, all possible
statements ar~? gquotea wWuich may result from computational decisions and
appear das pri-~tout. Whenever mention is made that the "program stops",
this refers tc the one regression problem being procéssed, if not
otherwise stated. In this case, should there be more than one regression
problem tc be processed by DA-MRCA, the program would go to the next
.problem )

Generally, the order in which the computational details are
described is the order in which they are performed by the program. In
~ some places this order is not kept for the purpose of a better under-
"standing of the description. '

References to subroutine names are not made since in some
insta .es the same type of computation is executed, at different places,
by Aifferent subroutines. The. interested reader is referred to the flow
chacts in Section VIII.2.

The computation and use of the "Apalysis of Variance Tables"

and of the "Final Comprehensive Analysis Table" are not discussed in
this section. This is done only in Section VI.3.b.

VI.2.a Main Run

In this section the computational details of the main run
are given. However, most of these computations are correspondingly
performed for any rerun. (See Sections VI.2.b - VI.2.d.)

VIi.,2.a.(l) 1Initial Ogerations

The operations described in this section are performed
only once per regression problem, i.e., they are pertormed for the main
run but are uot repeated if reruns are included in the raegression
problem.

: A. 1f the total number, IR+IS=N, of independent

variabjes input is 0 or ~ 51, the piogram stops and the statement
"CARD TYPE 2 IS INCORRECT" is printed. Otherwise (0 <~ N < 51) the

prigeam continues.
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B. If the aumber, n, of data potnt* 1nput is £ 1
r > 7000, the program stops and the statement "TOO FEW OR TOO MANY
DATA POINTS" is printed. Otherwise (1 < n ¥ 7000) the program continues.
C. The summation matrix is computed. However, only
the elements of the main diagenal and those above the main diagonal
are actually computed. Since the summation matrix is symmetrical, the
. elements below the main diagonal are maryly copied from those above the
diagonal.

VI.Z.a.(Z) Matrix Inversion_and Accuracy Checké

The operatlons described in the following pa’agraphs
A - 1 are perforncd for the main run and, in general, for amy rerun.
The computations are expressed in terms of K independent variables
contained in the model, where K=N defines the main run and K=N' <N
defines a rerun with N' IV's contained in the model.

_A. The'inverse of the (K+1)x(Kt+1) matrix A, i.e.,
the inverse, A"*, of the matrix of the normal equations, is computed.
(The computational procedures iunvolved in the matrix inversion; -the
computation of the determinant and the solution 6f -the. normal equatxons
are explained in detail in Sectlon VI 1 a. ) '

B. The determinant. vt A is tebtﬂd and if -found to be
non-positive, the statement ”MATRIX FAILED TO INVERT' is printed. “For
this case, and in the main run only, the averages of the N IV's and of
the dependent variable are computed and printed and the program goes -
to reruns (if any). Also, if the determinant is non-positive for the
main run, there will be no-final compréeéhiensive analysis for.any type. of
reruns (HAND selected, IVOR, or BIVOR), and the folloWlng statement is
made at the end of the printout of the regression problem: - "NO FINAL
COMPREHENS IVE PRINTOUT SINCE MATRIX FOR MAIN RUN COULD NOT BE INVERTED."
- In case of a hand selected rerun, the program goes to the next hand -
selected rerun (if any). In case of an IVOR or BIVOR rerun, see :
Sections VI.2.c or VI.2.d, respectively. - If the determinant is positive, -
its value is printed, along with the inverse matrix and the solution to
the normal equations (regression coefficients).

- C. The following values are computed:

(a) The crror sum of squares,

K
SSE = E,.., - ¥ byEy,
=0
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n
(where E,y = 2 y; and Ey, = £ xy,y;, with xo, = 1);
i=1 i=1
1 (b) The total sum of squares adjusted for the
mean, ATSS = E,, - 3 E5,

(c) The regression sum of squares (due to K
independent variables) adjusted for the mean,

ASSR, = l';1)15: 1 g2
K = V\)y‘rl Oy:
v=0

(d) The square of the correlation coefficient,
i.e., thn coefflciunt of determination,

R® = ASSR,

——— — ——

ATSS

D. R2 is tested and 1f found to be negative, the
sratement "SQUARE OF CORRELATION COEFFICIENT IS NEGATIVE" is printed.
For this case, and in the main run: -only, the operations concerning the
averages and the firal comprehen51ve analySLS are performed as
descrlbed ‘in. paragraph B above. - In case of a hand selected rerun,
the program goes to the next one (if any). In case of IVOR or BIVOR,
see Section VI.2.c or VI.2.d, respectively. - - If R®>= 0, the correlation
coefficient (R) is compuLed and pristed.

v E. The resxdual variance (s°) is computed by
dividing SSE by n-K-1. The residual variance is then tested and if
found to be negative, the statement '"VARIANCE IS NEGATIVE" is printed.
For thi: case, and in the main run only, the operations concerning the
averages and the final comprehensive analysis are performed as described
in par<:-aph B above. -~ In case of a hand selected rerun, the program
goes to the next one (if any). In case of IVOR or BIVOR, see Section

~ VI.2.c or VI.2 d, respectively. - If s® is found to be non-negative,

the square root of the residual variance (s) is computed and printed.

" (If the quantity n-K-1=0, s is set equal to zero and the F value of

the ANOVA table is printed as all nines. This is the case of the
"zero error perfect fit.")

F. The elements of the main diagonal of the inverse
matrix (the cy,) are tested. The first element found to be negative
(if any) results in the statement "AN ELEMENT OF THE MAIN DIAGONAL OF
THE INVERSE MATRIX IS NEGATIVE." For this case, and in the main run
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only, the operations con-erning the averages and the final comprehensive
analysis are performned as described in paragraph B above. 1In case of

a hand selected rer m, the |rogram goes to the next one (if any). In
case of IVOR or BIVUR, see Section VI.2.c or VI.2.d, respectively. -

If there are no negative elements on the main diagonal, the standard
deviations of the regression coefficients are computed:

/ O{by] = s /eyy, where v = 0,1,...,K.

G. The elements of the calculated identity matrix
(1.), the i,y (v,v' = 0,1,...,K) are obtained by forming the product
of the inverse matrix (A”!) and the matrix of the normal equations (A),
in this order. The identity matrix is used for checking the accuracy
of the inversion process. The specifics of this use and their justi-
fications are discussed in Section VI.l.b.

H. The absolute values of the deviations from 1 of
the main diagonal elements of I, are tested against I(1l). The first
deviation found to be = I(l) (if any) is tested to determine if it is
also > I(2). If it is, the identity matrix is printed with the state-~
ment '"'DEVIATION OF A MAIN DIAGONAL ELEMENT IN THE IDENTITY MATRIX
LARGER THAN I(2) = .... RUN REJECTED." 1In the blank the input value
of I(2) is printed. In this case the program goes directly to the
operations described in Section VI.2.a.(3). If the first deviation
which is = I(l) is not 2 I(2), the testing is continued on the
remaining diagonal elements. If any of the deviations of the main
diagonal elements are > I(l) but none of these deviations is = I(2),
the identity matrix is printed with the statement "DEVIATION OF A
MAIN DIAGONAL ELEMENT IN THE IDENTITY MATRIX LARGER THAN I(1l) = ....
BUT LESS THAN I(2) = .... RUN ACCEPTED." 1In the blanks the input
values of I(l) and I(2) are printed.

I. If all deviations (absolute) of the main
diagonal elements are < I(l), the absolute values of the off-diagonal
elements are tested. The first time that an off-diagonal elemant
(absolute) is ™ I(1l), the identity matrix is printed with the statement
"DEVIATIONS OF ALL MAIN DIAGONAL ELEMENTS IN THE IDENTITY MATRIX SMALLER
THAN I(l)=.... DEVIATION OF AN OFF -DIAGONAL ELEMENT LARGER THAN I(l).
RUN ACCEPTED." 1If all off-diagonal elements also have absolute values
. I(l), the identity matrix is not printed, but the statement "DEVIATIONS
OF ALL ELEMENTS OF THE IDENTITY MATRIX SMALLER THAN I(l) = .... RUN
ACCEPTED" is printed.
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VI1.2.a.(3) Predicted Values, Prediction Errors,
Normality Test, and Averages

The following operations A - I are always performed
for the main run and are optionally performed for reruns. As in the
last section, the operations are expressed in terms of K independent
variables contained in the model.

A. The n predicted values (the ¥,) are computed by
evaluating the obtained regression equation for each of the n input
design points.

B. The prediction errors, é, = Y. - Y., are computed
for each input design point by subtracting the predicted valuc from the
observed value of the dependent variable. The normality test described
later in this section is performed on these predictiocon errors. Some
general aspects of the test are discussed in Section VI.l.c.

C. The sum of squares of the prediction errors,

n
z (Y1 - Y')Ga
i=1

is computed. This sum of squares should equal the error sum of squares,
SSE, given in Section VI,2.a.(2), paragraph C, and is identified, when
printed, as the "CHECK ERROR SUM OF SQUARES." The check error sum of
squares is computed as an additional check on the computational accuracy.
Since the values e, = y. - ¥, are already computed, this check is
inexpensive. However, no sensing is built into the program to compare
the two error sums of squares.

D. The maximum and minimum of the n prediction errors
are found and the range (= the maximum prediction error minus the
minimum prediction error) is computed. The range is then divided by
30 to give the common length (D) of the 3C intervals used in the
prediction error frequency distribution. The upper bounds of each of
the 30 intervals are computed by adding D, 2D, 3D, . ., 30D, respectively,
to the minimum prediction error. Thereby, the maximum prediction error
becomes the upper bound of the last interval.

Each prediction error is then assigned to its
proper interval, i.e., to the interval with the smallest upper bound
which is not exceeded by the prediction error. A count is then made
of the number (£}) of prediction errors observed in cuch of the 30
intervals. The f' are used in the bar chart of the printout, see
the following paragraph (E).

E. The quantity % - (Kt3) is computed and checked.
If this quantity is '~ 0, the bar chart is printed, aiong with the
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statement "CHI SQUARE COULD NOT BE COMPUTED." For this case, and in
the main run only, the program goes to the operations described in
paragraph I below. - In case of a hand selected rerun, the program
goes to the operations described in Section VI.2.a.(4), should the
option for selected and/or synthetic design points be exercised. -
This check is a joint consequence of (1), the restriction that @,,

the expected number of observations in an interval, should be greater
than 5 and (2), the definition of the degrees of freedom for the
Chi-square statistic as the number of intervals, for which ¢J > 5,
minus K+3. The circumflex on @, is used to express the fact that
these expected frequencies are based on the estimates of the mean and
the standard deviation of the distribution of tine prediction errors.
If the quantity I - (K+3) is < 0, the degrees of freedom for Chi-square
could never be >"0 and further computations would be meaningless. The
restriction on @ and the degrees of freedom for Chi-square are more
fully discussed in the following paragraph F.

F. If the quantity % - (K+3) is > 0, an attempt
is made to compute the Chi-square statistic. The expected frequency
distribution is formed. This distribution gives the number of
prediction errors that would be expected in each of the 30 intervals
if the sample of n prediction errors was actually from a normal
distribution having a mean and standard deviation equal to those of
the observed prediction errors. Since the expected frequency in each
interval is computed by a system subroutine which uses the standardized
normal distribution function, the 30 upper bounds must be standardized
by dividing each upper bound by s. (The average of the observed
prediction errors is zero and, consequently, is not subtracted in
standardizing the upper bound.) The expected frequency in each of the
30 intervals is obtained by multiplying the number of data points, n,
by the probability, obtained from the standard normal tables, that an
observation will be in a given interval. The expected frequencies in
each of the 30 intervals are then examined and, if necessary, some of
the intervals are combined in order that each of the resulting m
intervals has an expected frequency of more than 5. If, for example,
the expected frequency in the first of the 30 intervals is < 5, the
frequency is added to that of the next interval. This procedure is
continued until the first time a new interval results which does have
an expected frequency of more than 5. Succeeding intervals are
similarly tested and, if necessary, combined. If the last interval,
or intervals, does not have an expected frequency of more than 5, it
is combined with the last interval which did have a frequency of more
than 5. In this way m "new" intervals are formed, each of which has
an expected frequency, @,, greater than 5.

G. The number (f,) of observed prediction errors

is counted for each of the m intervals and the contribution to
Chi-square is computed for each interval. The contribution for the
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jth interval is

A g2
%‘(fj'tpj)3
Py
where f, and &5 are as defined above. These contributions to Chi-square
are then printed for each of the m intervals, along with the observed
and expected number of observations in that interval.

H. The quantity m-K-3 is computed. If m-K-3 = 0,
the statement "CHI SQUARE COULD NOT BE COMPUIED" is printed. In this
case the program continues as described in paragraph E above.

If m-K-3 > 0, the Chi-square statistic is computed
by summing the individual contributions over the m intervals.

I. Only in the main run are the averages of the N
independent variables and of the dependent variable computed and
printed.

VI.2.a.(4) Predicted Values and Prediction Standard
Deviations at Selected Input and/or Synthetic Design
Points '

, If the ren (main run or hand selected rerun) passed
all tests in paragraphs B, D, E, and F of Section VI.2.a.(2), and if
selected input and/or synthetic design points are present (see columns
8-13, Card Type 2, Section V.2) = the coordinates of the OCIV's of these
points are printed and the corresponding predicted values and prediction
standard deviations for either individual observations or for the
prediction-line are computed and printed. If the run did not pass the
four tests mentioned above, predicted values and prediction standard
deviations cannot be obtained for either selected input or synthetic
design points, : )

VI.2.b Hand Selected Reruns

In order to execute a hand selected rerun (if any are
specified) the program deletes the proper rows and columns from the
summation matrix according to the specified independent variable
selection of K = N' < N IV's. The operations described in Section
VI.2.a.(2) are then performed for this IVS (with the exceptions
mentioned there). If NPE=l, (column 15, Card Type 2), the operations
of paragraph A - H of Sectfzn VI.2.a.(3) are also performed for this
Ivs.,

Predictions and predictior standard deviations for
selected input and/or synthetic design points are computed only when
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the option is exercised and when the hand selected IVS passed all
tests described in paragraphs B, D, E, and F of Section VI.2.a.(2).

Vi.2.c_1IVOR

In this section the computational details which are
performed to arrive at an IVOR ordering of independent variables are
described. (The IVOR ordering is explained in Section VI.l.d.)

If

ZNJ = N,
j=1

only the first N-1 steps of IVOR are performed since the main run has
already been performed. There is no possibility in IVOR to call, in
each IVOR rerun, for predictions and prediction standard deviations at
selected input and/or synthetic design points. As indicated before, if
the main run fails any of the tests performed on the determinant, R3,
s®, and the cyv 's (as described in paragraphs B, D, E, and F of

Section VI.2.a.(2)), there will be no IVOR Final Comprehensive Analysis.

At any given step of IVOR (where '"step" is as defined in
Section VI.1.d) the following operations are performed:

A. The established IVOR model of the preceding step is
augmented by one independent variable at a time. There may be leflt,
say, H IV's not yet ordered within the group in which IVOR is presently
operating. Each of the H IV's is added, one at a time, to the IVOR
model of the preceding step by deleting one less row and column from
the summation matrix than in the previous step. Each of the H corre-
sponding matrices of the normal equations (A) is then inverted and its
determinant computed.

B. The procedure to decide whether or not to accept any
of the H independent variable selections for further consideration at
this step depends upon whether the main run was accepted or rejected.
("Acceptance' is defined as passing all 5 tests described in paragraphs
B, D, E, F, and H of Section VI.2.a.(2). "Rejection" is defined as
failing one or more of these tests.)

(B.a) If the main run was accepted: The determinant
is checked for each of the H IVS's and if found to be non-positive,
this IVS is excluded from further consideration at this step. For
all IVS's with non-positive determinants the statement '"MATRIX FAILED
TO INVERT, IVS ......" is printed, where the blank is filled by the
identification of the IVS. For all IVS's whose determinant is found
to be positive the ASSR value is computed. Should all H determinants
be non-positive the statement "NO VALID ASSR'S WERE COMPUTED" is
printed and the IVOR ordering is terminated.
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(B.b) If the main run was rejected R® and s® are
computed for each one of the H IVS's. R® and s® are then tested to
determine if either of them is negative, and the determinant is tested
to determine if it is non- rositive If a failure occurs, the statements
concerning the determinant, R®, and s® as given in paragraphs B, D, and
E of Section VI.2.a.(2) are printed along with the IVS identification.
These IVS's are excluded from further consideration at this step. Then
the operations described in paragraphs F, G, H, and I of Section VI.2.a.(2)
are performed for each one of the H or the remaining IVS's. If for a
given IVS an element of the main diagonal of the inverse matrix is found
to be negative, the appropriate statement is printed and this IVS is
excluded from further consideration at this step. If an IVS has to be
excluded from further consideration because an element of the main
diagonal of the identity matrix has an absolute deviation from 1
greater than I(2), the appropriate statement is printed together with
the identification of the IVS. (The other possible statements concerning
the elements of the identity matrix are printed only when the IVS is
later chosen as the established IVOR model of this step.) If none of
the K IVS's could be accepted, IVOR stops and prints ''NO VALID ASSR'S
WERE COMPUTED."

C. If, in either case of paragraph B (above), only one
IVS of the H considered led to a valid ASSR value, this IVS represents
the established IVOR model at this step. In other words, the individual
IV whose inclusion led to the only valid ASSR value is ordered as the
independent variable with the maximum contribution to the "total"
regression sum of squares at this step. For this IVS, all pertinent
printouts are given. Also computed and printed for this IVS, provided
the option is exercised for reruns, are the predicted values, the
prediction errors and the normality test as described in Section VI.2.a.(3).
IVOR then goes to the next step (if there is any).

D. If more than one IVS in paragraph B (above) led to a
valid ASSR value, these values are compared among themselves as follows,
The valid ASSR value corresponding to the IVS with the leftmost v
added to the model of the preceding step is denoted as ASSR 1) Then
for each of the remaining valid ASSR values (the Assr‘!’ 's, say) the
following quantities are computed: :

é_s_§R( L3 ASSR'( 1)
ASSR'Y)

(D.a) Lf none of the quantities A, exceeds the fixed
value .5 x 10™%, all of the ASSR's are considered to be equal and a
"perfect fit" Is considered to have been reached. (When a perfect
fict is being reached, each IV contributes the same additional regression
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sum of squares towards the ASSR value of this perfect fit.) The left-
most IV is then defined as the most important IV ordered at this step,
and a complete printout (as discussed in paragraph C above) is given
for the corresponding IVS, along with the statement "PERFECT FIT,

IVS = ....." The IVOR subroutine then stops completely.

(D.b) If one or more of the quantities A, exceeds
the value .5 x 10”°, the maximum ASSR value is found and the IV which
led to the maximum is considered as the most important IV at this
step. A complete printout (as in paragraph C above) is given for the
corresponding IVS, and the IVOR subroutine goes to the next step (if
there is any).

Vi.2.d_BIVOR

In this section the computational details which are
performed to arrive at a BIVOR ordering of independent variables are
described. (The BIVOR ordering is explained in Section VI.l.e.)

M,y Me
If Z N, <N, BIVOR deletes the last (N - T N;)
q=1 q=1

independent variables from the model of the main run by deleting the
corresponding rows and columns from the summation matrix. BIVOR then

Y,
starts the ordering by inverting the matrix with T N, iadependent

. - q.l
variables contained in the wodel.

There is nc possibility in BIVOR to cal., in cach BIVOR
rerun, for predictions and prediction standard devistions at selected
input and/or synthetic design poiuts. As indicated before, if the main
run failed any of the tests performed on the determinant, R?®, s?, and
the cyy 's (as described in paragrephs B, D, E, and F of Section
VI.2.a.(2)), there will be no BIVOR Final Comprehensive Analysis.

The operations at any given step of BIVOR (uhnfc ”stcp"

is as defined in Section VI.l.e) are dependent upon whether or not the
preceding step led to an accepted BIVOR rerum.
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A. If the main run was rejected and all preceding
steps of BIVOR (if any) led to rejected reruns, the operations are
as follow:

(A.a) From the BIVOR model (which wes rejected) of
the preceding step the rightmost IV is deleted by deleting the corre-
spoading row and column from the matrix of the normal equations (A)
of the preceding step. Then the elements of the inverse matrix A”!,
the determinant of A, R®, and s® are computed. These values are
subjected to the respective tests described in paragraphs B, D, E,
and F of Section VI.2.a.(2). If the new IVS fails any of these tests,
again the rightmost IV is deleted from the modei for the next step
and the checks are repeated for the new model. - If the new IVS
passes all &4 tests, the operations of the next paragraph (A.b) are
cerformed.

(A.b) The identity matrix,I. = A"'A, is computed for
the present step's IVS (which passed the four checks wentioned in the
last paragraph). Then the checks as described in paragraphs H and I,
Section VI.2.a.(2), are performed on tue elements of I.,. The first
time a main diagonal element of I, has an absolute deviation from 1
which is greater than I(2), the IVS of the present step will be
rejected. However, in this case this IVS wil) be given a complete
printout, including the predicted values, prediction evrors and
normality test (Section VI.2.a.(3)). The reason for this treatment
is that the value of I(2) is, after all, an optional input value
chosen by the program user and that the IVS rejected on che grounds
of I1(2) may ba marginal in its accuracy but essentially acceptable.
8y having the printout for this run, the analyst is given additional
information as to the possibility of reconsidering the regression
problem with some of the input parameters changed. There is, in this
case, a certain danger of wisinterpretation of the printout. Although
at each individual BIVOR rerun the statement is printed that this run
is rejected, ir could appear, from the final comprehensive analysis
(Lf this is printed), as if the series oi deletivns from the right was
a genuine BIVOR ordering of independent variables. This will occur
most likely when the value of I(2) was chosen too small. -~ Alse ia
this case (of the BIVOR 1VS failing only the I  test) the subroutine

goes to the next step by deleting the righ:nos: IV from the nudel

1If the IVS of the present stcp is accepted, the operations
of the next paragraph arie performed. .

, (A.;) Ii the IVS of thc present step was accepted, l.e..‘
passed all five checks described in paragraphs (A.2) and (A.D) above,
the additional regression sums of squares (= bv,Cyg) are computed for
all i/'s not yet ordered in the griup in which BIVOR is presently
opecating. 1f there #2re wore than one of these additional reg ession
sums of squares, the minimum is found and the IV which lud to it is
ranked as the least important one at this step. Sirce the accepted
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IVS of this step reprusents the first accepted rerun of BIVOR, it is
given the complete printout, including predictions, prediction errors,
and the normality test. BIVOR then goes to the next step (if any), as
described for this case in the next paragraph (B).

B. If the maip run and/or the IVS of any previous step
has been accepted, BIVOR go:s to the next step by computing the
additional regression sums of squares for all IV's which have not
vet been ordered in the group in which BIVOR is presently operating.
The values are compared and the IV which led to the minimum additional
regression sum of squares is deleted from the wmodel. The matrix A of
this new IVS is inverted and the determinant, R®, s?, and I, are
computed and the corresponding tests are performed as described in
paragraphs B, D, E, F, H, and I of Section VI.2.a.(2). (If the option
described in paragraph C below is chosen, the tests on the elements of
I. are terminated with that rerun in which all absolute deviations of
the matrix elements are < I(1) for the first time.) - This BIVOR rerun
is given a full printout, including the predicted values, prediction
errors, and normality test if this option is exercised for reruns. The
BIVOR ordering is terminated when an IVS arrived at contains only one
independent variable.

C. If the option to discontinue the identity matrix
checks in BIVOR is used (i.e., IBID : | on Card lype 2), then the
identity matrix is printed for the first BIVOR rerun in which the
absolute values of all deviations are < I(1l), together with the state-
ment “DEVIATIONS OF ALL ELEMENTS OF THE IDENTITY MATRIX SMALLER THAN
IC1) = .... RWL ACCEPTED. NO IDENTITY MATRIX CHECKS WILL BE MADE ON
SUBSEQUENT BIVOR RUNS." Accordingly, for ensuing roruns in a BIVOR
.equence rhe identity matrix is not computed and no checking is done.
The purpose of this cption in BIVOR i: to save computer time. Since
each subsequent BIVOR IVS contains only a subset of the independent
variables cointained in the model of the rerun in which the checking
ceased, the assumption is made that, in the great majority of cases,
in ai! sudsequent BIVOR runs all absolute deviations of the elements
of the identity matrix would be - I(1).

- VlQ} Prtntoui

In this section the general formulation ~f the printout is
given, supplemented by comments when considereu necessary for clari-
fication. (Tie comments are contained in Section VI.3.0.)

¥l.).a Pormulation of Printout
This section contains the algebraic formulation 6( the

printout of DA-MRCA. The printout for one regression problew is
divided into four parts:
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(1) Basic Infor.aation

(2) Main Body

(3) Analysis of Variance Tables

(4) Final Comprehensive Analysis Tal:le.

The "Basic Information” part is printed cnly once per regression problem
and contains

(A) a printout of the problem parameters input or Card
Type: 1 - 6,

(B) the data matiix, and
(C) rthe summation matrix.
The second part, the "Mein Body' printuut, concains
{A) all intormat.ion pertaining to the matrix inversio:,
(B) wvarious statistics

(C) predicted values, prediction errors, normality test,
and averages, and

(D) proedicted values and prediction standard deviations
at selccted input and/or synthetic design points (optional).

The main body is printed for the main run and for each rerun, except for
specific options which are not cailed or cannot be called for a rerun.

The thicd part contains the "Analysis of Variance Tables' for the main run
ard tor all reruns The "Final Comprehensive Analvsis Table" is printed

as tne fourth and last part and cortains information for hand selected
reruns and (v IVOR and/or BIVOR, should any of these options be exercised.
Ail wording which is shown in capital letter. is actually printcd by

the program; ali cerments or general formulations printed in lower case
lette s ad put j parentheses are either not printed at all by the

prograr or not printed in this form.

The comments on the prirtout formulation are given in the
next section (VIL3.b).
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VI.3.b Comments on Printout

The comments in this section refer to the algebraic
formulation of the printout as giver in the previous section. The
page numbers referenced are the page numbers of that printout. In
some instances the possible use of the printed information is discussed
inasmuch as this has not been doue before.

VI1.3.b.(1) Basic Information

A, Problem Parameters (page 87). The page is
headed by the problem identification as given on Card Type 1. This
identification is repeated, &at the beginning of certain features,
throughout the program output for ease in identifying the printout
of a given regression problem when several problems have been run
consecutively. Page 87 contains information given on input Card Types
2, 3, 4, 5, and 6, and identifies the problem parameters chosen for the
regression problem. The columns occupied by the program variables in
this printout do not all agree with those speciiied in the input speci-
fication, Section V.2. For clarity of reading, the entries are spaced
across this page. The spaces filled by X's indicate digits are to be
printed. In the Card Type 3 line, the individual product term
descriptions are separated by slants. Zeros are printed in the spaces
which are not needed to represent the procduct terms.

B. Data Matrix (page 88). The data matrix printout
is optional (see column 16, Card Type 2) and can be either in the
format 9F13.6 or 7E17.8, whichever is specified on Card Type 2. The
data matrix is printed, if at all, tor the main rua only.

Each row of the data matrix is identified bty its
"data pocint number" (i = 1,2,3,...,n) and consists of the N+l coordinates
of the N independent variables and the dependent variable.

The coordinates of the OCIV's are listed in the
same order as punched on Card Type 8. If generated independent
variables (GCIV's) are used, they follow the OCIV's, and their coordi-
nates are listed in the same order as generated accerding to Card Type 3.

The data matrix is printed only once per regression
problem (i.e., for the main run) but can easily be obtained for any
rerun by deleting the column, or columns, that correspond te the inde-
pendent variable(s) which are deleted in the rerun.

C. Summaticn Matrix (page 88). The summation
matrix is printed only once per regression problem; its dimensions are

N+2 by N+2. The (N+1)x(N+1l) matrix cousisting of the first N+l rows
and columns of the summation matrix is the matrix of the ccefficients
of the normal equations for the main run, or the matrix A, Both the
matrix A and the summation matrix are symmetrical.
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The suumation matrix (and the matrix A) of any
rerun can easily be obtained by deleting the row(s) and column(s), which
correspond to the independent variable(s) to be deleted, from the
summation matrix of the main run.

VI.3.E.(2) Maip Body

The formulation of che printout of the main body is
done in terms of K independent variables contained in the model.
Accordingly, with K = N or K = N' < N this formulation is valid for
the main run or any rerun, respectively, Wherever applicable, the K
independent variables contained in the model are consecutively renumbered
from 1 to K. It, for example, the first two inlependent variables of
the main run are not included in a rerun, then the third IV of the main
run becomes 1V Number 1 of the rerun.

For reruns the main body is headed ''INDEPENDENT
VARIABLE SELECTION ( ) 0 ---eeee- " In the parencheses ''HAND,"
or "IVOR," or '"BIVOR," whichever applies, is printed. I or the main
run there is no identification printed at this place. The IVS is
specifically identified by a series of N+*1 0's and l's, of which the
first is always a 0. These N+1 digits represent the cons*tant (the
first 0) and the N independent variables, respectively, corresponding
to their order of input. If a specific independent variable is con-
tained in the IVS, a 0 is printed in the place corresponding to this
IV; if it is not contained in the IVS, a 1 is printed. Thus, when IV
Number v (. = 1,...,N) is contained in the IVS, digit number *1 from
the lefr in this identification will be a 0. Because the constant
(IV Number 0) is always contained in an IVS, the first digit is
always printed as a 0. The IV's not contained in an IVS (which are,
accordingly, represented by 1's), are often referred to as ''deleted”

IV's, that is, as IV's "deleted from the model.” - The IVS identifi-
cation 1s repeated at varicus other places of the printout, when
appropriate.

A. Matrix Inversion (pages 89 and 90). The MATRIX

INVERSION EVALUATION TIME includes the time required to invert the
matrix, compute the determinant and solve the set of the normal
equations. The main run is numbered O, the first rerun 1, the second
rerun 2, etc. The printouts of the matrix inversion evaluation time
and of other running times were originally included for a time study
which resulted in the time formulae given in Section VI.4. The running
time printouts have been left in the program as a convenience for the
user.
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The DETERMINANT of the matrix A may be printed
in the F format or the E format depending upon the magnitude of the
value of tue determinant. If the determipant is negative or equal to
zero the statement '"MATRIX FAILED TO INVERT" is printed. (See Section
VIi.2.a.(2).)

, The elements of A™', i.e., of the INVERSE OF
MATRIX A, are denoted as cyy (v = 0,1,...,K; v' = 0,1,...,K). The
inverse matrix should be <ymmetrical, i.e., cyy = cyy, but is sometimes

not because of computational inaccuracies. Its dimensions are (K+1) by
(K+1).

For further statements concerning the failure of
the matrix inversion see paragraphs D, E, and F of Section VI.2.a.(2).

The SOLUTION TO SIMULTANEOUS EQUATIONS is the

vector of the K+l regression coefficients by, v = 0,1,...,K, with
K
bV = Z Cyy* EV‘}"
v=0

The elements of the calculated IDENTITY MATRIX
(1.) are obtained by multiplying the inverse matrix A by the matrix A,
i.e., I, = AT'A. The dimensions of I, are K+l by K+1.

For possible printouts regarding the magnitude of
the elements of the cclculated identity matrix see paragraphs H and I
of Section VI.2.a.(2) and Section VI.2.d. When the statement '"DEVIATIONS
OF ALL ELEMENTS OF THE IDENTITY MATRIX SMALLER THAN I(1l) = ..... RUN
ACCEPTED" is made, the identity matrix is not printed.

B. Various Statistics (page 90) . The STANDARD
DEVIATION OF (regression) COEFFICIENTS,

Qb1 = s Jeyy,

are always consecutively numbered as described at the beginning of this

section (VI.3.b.(2)). No. 1l is always the standard deviation of bg.

In the main run, the standard deviation identified by the number 3, for

example, is the standard deviation of the second regression coefficient,
b.. In a rerun, the standard deviation numbered 2, for example, may be

the standard deviation of the regression coefficient of IV No. 3 if IV's
No. 1 and No. 2 (in the original model) have been deleted for this IVS.

The 5 other statistics are denoted elsewhere in

the printout formulation and at various places of the report, as
follows:
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RESIDUAL OR ERROR SUM OF SQUARES = SSE
TOTAL SUM OF SQUARES ADJ'JSTED FOR THE MEAN = ATSS

REGRESSION SUM OF SQUARES (due to K IV's) ADJUSTED FOR THE
MEAN = ASSR,

CORRELATION COEFFICIENT = R
SQUARE ROOT OF FESIDUAL VARIANCE = s

Notice that, besides SSE, ASSR,, and R, also
the standard deviation, s, is redefined in each run (with K independent
variables contained in the model) and is the basis, in that run, for
the computation of the standard deviations of the regression coefficients,
the normality test and the prediction standard deviations at selected
input and/or synthetic design points.

C. Predicted Values, Prediction Errors, Normality
Test, and Averages (pages 91 and 92). For each of the n input design
points the PREDICTED VALUE (Y,) is printed, and similarly the PREDICTION
ERROR (&,) as obtained by subtracting the predicted value from the
actual observation of y. The number of the input design point
is also printed and is referred to, in the heading of this printout, as
ITEM NUMBER.

The CHECK ERROR SUM OF SQUARES,

K
[y, - T byxy J°,
1 v=0

h™Ms

i

should equal the Residual or Error Sum of Squares (SSE). Any
-discrepancy between the two is an indication of computer inaccuracy.
(See paragraph C of Section VI.2.a.(3).)

The printout format for the predicted values and
for the prediction errors is affected by the value of NDPO (column 16,
Card Type 2). If NDOPO#1, these values are printed in the format 2F15.6;
if NDPO=1, they are printed in the format 2E15.6.

The features of the PREDICTION ERROR FREQUENCY
DISTRIBUTION are explained in detail in paragraphs D and E of Section
VI.2.a.(3). The bar chart gives a graphical representation of the
distribution of the prediction errors. Each prediction error is
represented by an X. Should the number of prediction errors in any
interval be greater than 60 (thereby exceeding the space provided for
the X's), an asterisk is printed at the end of the 60 X's. For the
purpose of easier reading, the bar chart is printed to the right of a
column of "I"s, one '"I'" for each of the 30 intervals.
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Th2 entries for the CHI-square contribution, the
OBServed FRequencies and the EXPecteD FRequencies are discussed, together
with the establishing of the m new intervals, in paragraphs F and G of
Section VI.2.a.(3). In paragraphs E and H of that section the checks
are discussed which lead to t he possible printout '"CHISQUARE COULD NOT
BE COMPUTED."

The AVERAGES OF INDEPENDENT VARIABLES AND
DEPENDENT VARIABLE are printed conly once per regression problem and
are numbered, accordingly, from 1 to N+1l, such that the average of the
dependent variable is numbered N+1.

D. Predictions at Selected Input and/or Synthetic
Design Points (page 93). Predicted values and standard deviations at
selected input design points and/or synthetic design points aie
optionally computed and printed for the main run and hand selected
reruns only (see Card Type 2, columns 8-13). They cannot be obtained
for IVOR or BIVOR reruns.

The coordinates of the OCIV's for the SELECTED
INPUT DESIGN POINTS and/or the SYNTHETIC DESIGN POINTS are printed for
ease in identifying which points were selected and/or specified,
respectively. In the general formulation, the selected input design

points are renumbered 1, ..... s Qs sevon s Q; whereas the synthetic
design points are consecutively numbered Q+1, ...., q', ...., Q'.
The coordinates are renumbered 1', 2', ... in order to indicate that

these are the coordinates of the OZIV's contained in the IVS of the
run.

For each of the design points, selected or
synthetic, the PREDICTED VALUE, ¥(,), and the PREDICTION STANDARD
DEVIATION FOR THR PREDICTION LINE, s(,), or the "REDICTION STANDARD
DEVIATION FOR INDIVIDUAL OBSERVATIONS, s(,), a.e printed. The index
"(p)" refers to the number ("(g)" or "(q')'") of the point in
the set of the OCIV coordinates printed previously and is given under
the heading ITEM NUMBER.

Either s¢,) or s(,), but not both, can be
obtained in a given problem. (See Card Type 2, column 14.) Should,
however, both standard deviations be desired, the one that is not
printed can obviously be obtained as follows:

If s¢;, is printed: s/.; =‘/(s(p))2 + §°

If sy, is printed: s(;, = /(ssp))e A
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(Note: The standard deviations s(,) and s(,), as given in the printout
formulation, are actually computed by the program in the 'adjusted"
form, i.e., for example,

K K
s(p) =8 \[2* T Zeyy (xy(p) = %) (xwip) = R,
v=1l v=1
where n
Xy = g Boy = Z xyy.)
i=1

The standard deviations will be useful if one
wants to construct (1-a)% confidence limits, Ll—aﬂp), for the prediction
line, i.e.,

Li-q,(p) = 2oy S(p)t1-g, n-x-1>

or (1-)% "tolerance" limits, Ly.q(py, for individual future observations,
i.e.,

A 1
a—a.(p)= Y(p) X s(p)tl-g’n-x-i'

The synthetic design point feature can also be
useful just for obtaining the predicted values of the regression
equation for design points other than those originally input. In
other words, the feature can be advantageously applied for interpolation.

At the end of the "Main Body," the computer time
required to perform all of the calculations for this run is printed:
"RUN (umber) TOOK ....... SECONDS." The main run is identified as run
0, the first rerun as run 1, etc.

VI.3.b.(3) Analysis of Variance Tables

For each run (main run or rerun) an analysis of
variance table (page 94) is printed. The essential statistics of the
run are given in analysis of variance form, including, at the bottom,
the estimated regression equation for that run. The terms contained
in these tables are taken from the results of the computations
previously performed. The definitions of the terms are given in the
"Various Statistics'" part of the Main Body, see paragraph B of Section
VI.3.b.(2). The two mean squares ("MS") and the F value are computed
specifically for this table.

It must be emphasized that each analysis of variance
table has its own error term based on n-K-1 degrees of freedom. The
two blank rows, each headed by the word '"REGRESSION," are available
for convenience in case thc user wishes to calculate (by hand) a main
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theorem F value (III-1) for testing a specific hypothesis. For an
example of this see the corresponding printout of the Example Problem,
Section VI.S5.

The subscripts of the independent variables in the
regression equation are the original numbers of the IV's as input for
the main run. (This is different from the Main Body in which the K
IV's in the IVS are renumbered from 1 to K.) For example, if IV
Number v is not included in the IVS, the term with X(v) is not present
in this printout of the regression equation.

VI.3.b.(4) Final Comprehensive Analysis Table

The Final Comprehensive Analysis Table (page 95) gives
the F values (III-1) of the main theorem FOR REGRESSION ON DELETED
VARIABLES for each rerun, together with the COEFFICIENT OF DETERMINATION,
the NUMBER ('NO." = DF = DEGREES OF FREEDOM) OF DELETED VARIABLES and
the identification of the INDEPENDENT VARIABLE SELECTION. Although
implied by the application of the main theorem, it is emphasized that
all F values are based on the error term of the main run with n-N-1
degrees of freedom. The table is also a very convenient means to
show the order in which the independent variables are ranked by IVOR
and/or BIVOR if thuse options are exercised. There is a certain
danger of misinterpretation of the BIVOR final comprehensive analysis
when a BIVOR independent variable selection is rejected only on the
grounds of failing the identity matrix checks. In this case the right-
most IV is deleted from the model, which might appear as a genuine
BIVOR ordering of this independent variable if one judges from the
final comprehensive analysis table only. For more details see para-
graph (A.b) of Section VI1.2.d.

Should th» Final Comprehensive Analysis not be
printed (but reruns are present), the statement '"NO FINAL COMPREHENS IVE
PRINTOUT SINCE MATRIX FOR MAIN RUN COULD NOT BE INVERTED" is given.

VI.4 Running Time Formulae

The formulae of this section give the approximate times (in
seconds) which are required by the IBM 7030 STRETCH computer tv cxecute
the various parts and options of the DA-MRCA program. In these formulac
the time, T (in seconds), is expressed in terms of the input parameters
N, N', IQ, and n, where

N = number of IV's contained in the model of the main run,
N' = number of IV's contained in the mudel of any (hand selected)

rerun,
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IQ = number of IV's to be ordered by IVOR, and

number of data points input.

=]
I

The formulae are based upon the results of a time study in which
a series of regression problems was actually computed by the program.
In this study, each regression problem represented a unique combination
of the values of, at the most, three of the input parameters N, N', IQ,
and n; and from each problem the time(s) required for the computations
were recorded. The ranges of the four parameters were taken, in the
time study, as they are iikely to occur in actual regression problems.
N and N' were varied over the full range, that is, up to the capacity
of the program which is N=50 independent variables. IQ took the values
2, 4, 8, and 16; and the numbers of data points, n, were 60, 120, 240,
and 480.

Then DA-MRCA was used to fit polynomials in N, N', IQ, n (as
applicable) to the responses, T, i.e., to the actual running times
observed. (In terms of the present report, T was the "dependent"
variable and N, N', I3, and n were the '"OCIV's.") As a matter of
fact, both IVOR and BIVOR were employed to evaluate the most efficient
polynomials for the prediction of the running times.

The coefficients in i{nese polynomials (i.e., the "regression"
coefficients) were rounded such that the formulae give, in general, a
safe upper limit for the running times.

Little is known about extrapolation with respect to n, the number
of data points. However, since 4 points have been used within the range
of the study (0 - n - 480), thus allowing a 3rd order polynomial in n
to be fitted, some extrapolation should be permissible.

The formulae are as follows:
a. Time (in seconds) for the main run, excluding the option

for predicted values and prediction standard Jeviations at
selected input and/or synthetic design points:

nN r Sn 1
= S g - 20 Vi-1
B 2 1000 1000J ( 8

b. Time (in seconds) for one hand selected rerun with N' IV's
contained in the model, excluding the options for (1) predicted
values, predictfon errors, and the normality test, and (2) pre-
dicted values and prediction standard ‘deviations at selected
input and/or synthetic design points:

e
Ty = '7'%6)6’ (VI-19)

(T = 17 seconds for N' = 49)
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c¢. Time (in seconds) for the option for predicted values,
prediction errors, and the normality test for one hand selected
* rerun:

T, = 9.7 ON! (VI-20)
1000

d. Time (in seconds) for the Final Comprehensive Analysis
computations for M hand selected reruns:

T4 = 1—24- (VI—Z]-)

e. Time (in seconds) for one IVOR sequence in which only the
first IQ most important IV's out of N are ordered, including

the computations for the IVOR Final Comprehensive Analysis and
excluding the main run and the option for predicted values,
prediction errors, and the normality test:
8(IQ)>N

1000 (VI-22)

(Tg = 1002 seconds for IQ=N=50)

f. Time (in seconds) for one BIVOR sequence in which all N
IV's are ordered, including the computations for the BIVOR
Final Comprehensive Analysis and excluding the main run and the
option for predicted values, prediction errors, and the normality
test: 5 4 N3

Tz = 1000 (VI-23)

Tg = 2 +

{(T; = 255 seconds for N=50)

g. Time (in seconds) for the option for predicted values,
prediction errors, and the normality test in one IVOR sequence
in which only the first IQ most important IV's out of N are
ordered:

T, = (IQ+1) [1 + 9-3%3-5%&11 ] (VI-24)

h. Time (in seconds) for the option for predicted values,
prediction errors, and the normality test in one BIVOR sequence:

T. = (N+1) [1 + 0.35n (N+1) 1

1000 (VI-25)

m Some discussion of these formulae seems to be appropriate.

T,, T., and T. each contain a constant term which, although of
lesser importance, was not considered small enough to be neglected.

In T, the term T%%ﬁ should probably be subtracted from 8 only if
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n is smaller than 500 and be disregarded othe:wise. (T, as given in
(VI-18) has its maximum at n=800.) Since the polynomial was fitted
only for the range 0 < n < 480, this rule seems to give some safe
margin for extrapolation beyond n=480, and the formula would read,
for these larger values of n, as:

N
= + A
T, =2 1000 -

For obvious reasons, only T,, Ts, T,, and T depend upon n,
the number of data points input, while the other 4 time formulae do
not contain n. For T,, Tz, and T:, the maximum numerical values are
given, in order to indicate the speed of the program with respect to
reruns.

The comparison of Tg and Tg shows that a full IVOR sequence (with
IQ=N) takes approximately 4 times the time of a full BIVOR sequence.
Naturally, T; is strictly valid only for IQ < 16; however, it can be

assumed that it is approximately valid also for the whale range, i.e.,
IQ < 50.

T, and T: were obtained without the grouping of IV's in IVOR and
BIVOR. This m2ans that, if grouping is applied in these options, the
running times will be less than given by T; and/or T:.

Obviously, T. and T. are identical for IQ=N.

No formulae have been evaluated for the option to compute
predicted values and prediction standard deviations at selected input
and/or synthetic design points.

The actual running times of the various parts of the example
problem in Section VI.5 may serve us examples of the application of
the formulae. In the example problem, the parameters take the
following values:

N =9
N' = 3 (in M=l hand selected rerun)
Q=4
n =20

This gives the following times:

B 20)(€9) o _ (5)(20) 4 _
T, =2+ AR 18 - Q0] - 3.2

(The actual time for "RUN 0", including predicted values and
prediction standard deviations, was 4.03 seconds.)
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b. 2
T, = 420G _ 906
1000
R (V) IEI)1E) NP,
&= 1000 '

(Tz + T4 = 0.10, but "RUN 1" included predicted values and
prediction standard deviations and actually took 2.10 seconds.)

d.

T, = 3 = 0.50
e. 2
T. = 2 + $82047)€Q9) _ 5 5
1000
f- gz)ggSl
= + = 0.46
Te = 1000 4
8- T, = a1y )+ £2:390(200(0+1) 4 g 5
i 1000
h.
Ta = (9+l) [1 + £00351‘()(2)81L9+1)] = 10.70

This gives a total of

8
T T, = 29.68 seconds.
j=1

The actual "TOTAL PROBLEM RUNNING TIME' was 29 seconds. The latter
time included the predicted values and prediction standsrd deviations
at 2 selected input design points and 3 synthetic design points in the
main run and in the only hand selected rerun, which seems to compensate
for the time saving in IVOR and BIVOR due to the grouping fcature as
applied here but not considered in the time formulae.

VI.5 Example Problem

The example regression problem contained in this section is
given in order to illustrate the various capabilities of the DA-MRCA
program and to exhibit a sample of the program output.

The data of the example problem, as listed in the table below,
was taken from Duncan [1959], p. 697. This was done in preference to
fabrication of artificial variables and data, and the example was
selected as a representation of a typical regressfon problem.
(Naturally, no attempt is made tv find a practical solution to any
aspect of the general ballistic problem.)
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There are n=20 data points in the problem. Each one consists
of (a) the coordinate of the dependent variable, y = ""Ballistic Limit",
which is a measure in ft./sec. of the projectile velocity required to
penetrate armor plate; (b) the coordinate of the first OCIV, x, =
thickness of plate in inches; and (c) the coordinate of the second
OCIV x, = Brinnell hardness number of the plate material.

y X4 X
Ballistic Limit Thickness in Brinnell
in Feet/Sec. Inches Hardness No.

927 .253 317

978 .258 321
1,028 .259 341

906 247 350
1,159 .256 352
1,055 .246 363
1,335 257 365
1,392 .262 375
1,362 .255 373
1,374 .258 391
1,393 .253 407
1,401 .252 426
1,436 . 4 .246 432
1,327 .250 469

950 242 275

998 .243 302
1,144 239 331
1,080 242 355
1,276 L2484 385
1,062 234 426

The fnput preparvation for the example problem, based on this
data, {s exemplified in Section V.3,

The GCIV's generated are x;xg. X,, x¥, x¥x., x;x¥, x7, and xi.
Both ranking options, IVOR and BIVOR, are exercised. There are My-2
groups of IV's specified in IVOR: the two OCIV's x, and x., are in the
first group and the 7 GCIV's are in the sccond group. Only IQ=4 IV's
are to be ranked. Under the restriction due to grouping, these 4 IV's
will include the two 7CIV's of the first group (to be ranked among
themselves) and the two most important GCIV's of the second group. In
BIVOR, there are M.-3 groups: the two OCIV's are in the first group,
the three GCIV's of second order are in the second group, and the four
GCIV's of third order are in the third group. For the other specifi-
cations see Section V.3.
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Pertinent comments in handwriting are added to the computer
printout exhibited. Due to space limitations the printout is not
complete, some printout having been deleted. Whenever this applies,
an appropriate comment is made.

The two IVOR analysis of variance tables exhibited are used to
show the type of hypothesis testing which can be conveniently achieved
with these tables. The example null hypothesis is that fitting x,
(plate thickness) in addition to x, (Brinnell hardness) does not
significantly reduce the error sum of squares. This hypothesis is
rejected at the 0.05 level of significance, which implies that
including x; in the model in addition to x; does improve the fit
significantly.

On the page where the final comprehensive analysis table is
printed some interpretation is given of the rankings of the IV's
resulting from IVOR and BIVOR. The IVS column is re'cated in hand-
writing in order to clearly identify the IV'sc additionallv included
(symbol "0") and deleted (symbol "1") in consecntiv steps of IVOR
and BIVOR, respectively.

If the analyst wants to deterwinze a "significant wodel" from each
of these rankings, he may choose a s:gnificance level for the F value
("for regression on deleted variables') and determine the model
accordingly. The analyst must be aware that such a model may depend
upon the grouping of the IV's. For example, in the IVOR ranking of
the present example, any significant model including any IV of the
second group must necessarily also include the two OCiV's. It could
be imagined that without grsupiag, one of the two OCIV's might not
have been considered part of the significant model.

With P=0.05, say, as the chosen significance level, the
"significant models" from the two rankings are Jdetermined as follows,
The last and first siguificant F value in IVOR and BIVOR, respectively,
is F, = 3.384 with 7 and 10 degrees of freedom. (The tablal F value
for 7 and 10 degrees of trecdom at the 0.05 significance tevei is 3.14.)
This leads to a "significant model” {rom IVOR which includes x5, x,, and

x%x:. with an associated cocfficient of determinatfion (R} cqual to 0.76.

The "significant model' frow BIVOR includes x., x., and x;x., with R? =
0.75. Thus the two "significant wodels" diffur only in thelr least
important IV's, which might be due to the differcent groupings used in
IVOR and BIVOR. (Bevause of the grouping in BIVOR, xix. had ¢ be
deleted in vne of the first four steps.)

For a comparisun of the actual times usca by DA-MRCA to compute

(and print) the various parts of the problem, with the tiwes predicted
by the formulac given in Scction V014, see the end of that scction.
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VII. FAILURE ANALYSIS

This chapter is concerned with failures which may occur in the
use of the DA-MRCA program. In this context, a ''failure' is defined
in a very broad sense: It is meant to include all cases in which the
user receives an output from the program which is principally different
from what he expected to receive and what he was justified, from his
own good judgment, to expect.

VII.1 Classification of Failures

The program user probably will encounter cdases in which the
desired results of the regression analysis cannot be obtained in
specific runs. The program will indicate this failure (a) by stating,
in some form, that the inverse of the matrix of the normal! equations
could not be obtained, or (b) by making a statement that the calculated
identity matrix failed the accuracy check on the main-diagonal element
deviations from 1. (For details about the statements, see Section VI.2.)
Sometimes an inverse is obtained by the program although the user knows
that the matrix is singular. This type of failure, however, should
always become obvious by the accuracy checks on the identity matrix.

In this chapter the above indicated failures and their causes,
as far as they are known to the authors, are analyzed and some
corrective measures are discussed which the user might apply in order
to obtain the desired problem solution. It can generally be stated
that the failures are caused by inherent computer inaccuracies. The
only exception is when no inverse is obtained because there are unknown
linear dependencies among the rows or columns of the matrix of the
normal equations.

The chart given on the following page represents a classification
of possible failures and their causes. The chart should be self- '
explanatory; the causes as indicated in the appropriate boxes are defined
and discussed, along with some corrective measures, in Section VII.2.

The authors do not claim that the list of causes is complete; however,
all causes known to the authors are given.

In the main area of failures, where the matrix is expected to
invert and the calculated identity matrix is expected to pass the
accuracy checks (first two rows of the chart), the analyst will be
unable to readily identify the cause(s) of the program failure since
he cannot be certain that theoretically there is a solution. However,
by following the suggested corrective measures to be discussed, he
may be able to btain a solution and thereby to identify the cause(s)
of the original failure.
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The user of the program might ask why he should encounter the
case in which the matrix is not expected to invert (last row of the
chart) when in fact theoretically there is no solution but the program

yields an inverse.

(Such an inverse, however, will be identified as

fictitious by the inaccurate identity matrix.) This case may indeed
occur, for example, in the main run, when the analyst specifies a
series of feasible independent variable selections (by hand) from an
original set of N independent variables where N is larger than or
equal to the number, ny, of distinct input design points.

It is important to note that obtaining an inverse in such a
situation constitutes, from the analyst's point of view, a failure

with respect to what should be expected from the program.

The event

of obtaining this kind of fictitious inverse, therefore, has its
proper place in the failure chart.

Failure Chart¥*

Matrix inverts but
identity matrix
fails accuracy
check

Matrix does not
invert

Analyst expects
the matrix to
invert and the
identity matrix
to pass accuracy
check (since
there are no
obvious linear
dependencies)

Theoretically
there is a
solution

Cause of failure:

Limited computer accuracy

Theoretically
there is
no solution

Cause of fzilure:

Cause of fajilure:

Non-obvious

linear dependencies
plus

truncation errors

Non-obvious
linear dependencie:

Analyst does

not expect the
matrix to invert
(since there are
obvious linear
dependencies)

Theoretically
there is
no solution

Cause of failure:
truncation errors

P

* For the definitions of the
remaining sections of this

L g ——

terms used in the Failure Chart see the
chapter.
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VII.Z2 wiscussion of Failure Lauses, Some Corrective Measures,
and Exanples

In this scction the three tailure causes, 1L e., limited computer
accuracy, linear dependencics, and truncation crrors, will be discussed
and some corrective measures and examples be given.

VII.2.a Liwited Computer Accuracy

As is well known, no computer, large as it may be, is an
"ideal computer,' that is, a computer with absolute accuracy. The
inaccuracy of the IBM 7030, for example, with its error in the four-
reenth decimal digit (when using single precision as done in the
present program), is large enough to effect the matrix inversion
calculations to the extent that the inverses of large matrices might
be worthless. Without presenting the details of the error propagation
as present in the modified Gaussian elimination method used in the
program, it can be stated that most errors are introduced by the
subtraction of large numbers from other large numbers where these
numbers differ only in the last few digits. These digits may well be
hevond the last accurate one, i.e., beyond the thirteenth digit at
the start of the calculations. One consequence of this may be, for
example, the appearance of one or more negative ¢lements in the main
diaponal of the inverse, lcading to the program state@ment that an
inverze could not be obtained. Another consequence could be that,
although the inverse can be obtained, the calculated identity matrix,
I.. deviates from the true identity matrix such that the accuracy
checks on the main diagonal elements of L. fail. This "limited
computer accuracy' will cause failures most often in polyneorial
rogression with high order terms contained in the model. At this
point it must be recalled that the criterion by which the program
accepts or rejects a run is dependent upen the analyst's choice.
That is, the prugram user chuoses the valuc of I(2) which will be the
critical value not to be exceeded by the deviation (from 1) of any main
diagonal vlement of the calculated identity metrix. (See Section VI.1.b.)

As & corrective measure to overcome the faflures caused

by the limited computer accuracy the following transfermation of the
independent variables s sometimes sufficient:

x°x . (ViL-1)

This transformation, which is often also rcferred to as "coding" of
the x's, is essentially a standardization, with centralization effccted
by thc subtraction of the average, x, from the original obscrvation, x,

i29
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and with |v |< 1 effected through division by the range R, = Xp4y - Xgypn-
The transformation will be applied only to the "original" independent
variables (OCIV's), and in polynomial regression, all higher orde? and
cross-product terms (GCIV's) will be generated from the v variables.

(As can easily be seen, if the GCIV's were also transformed, the matrix
of the normal equations would have characteristics similar to those of

a Hilbert matrix.) The transformation has the effect of keeping close
to zero those elements in the matrix of the normal equations which, in
polynomial regression, are sums of odd powers of the v values e ~ 0,
for example), or those elements which, in general multiple regression,
are proportional to the covariance of twc uncorrelated independent
variables (Zv,;va ~ 0, for example). The other elements of the matrix,
for instance, the sums of the even powers in polynomial regression, are
kept small by the transformation because of Iv |< 1. The transformation,
then, results in sufficiently large contrasts among the matrix elements
of now smaller absolute value such that the subtractions mentionéd
before can be done with much higher accuracy.

It should be noted that the adjustment for the average
x value as achieved in the v transformation leads to a much higher
computational accuracy than can be achieved by starting with the
regression model (VI-2) in which the independent variables are
adjusted for their average values.

In case of polynomial regression the v transformation can
become problematic to the program user who needs or wants prediction
equations in the original x space. Only under a rather severe
restriction (to be defined) will the regression sum of squares (ASSR)
due to a group of indecpendent variables in the v space be equal to the
regression sum of squares due to the corresponding group of independent
variables in the x space. Before defining the restriction, a very
simple example is given in order to illustrate the situation. This
example contains only one "original" independent variable, x. Imagine
first that only its squared term (x®) is included in the regression
model. The regression sum of squares adjusted for the mean, ASSR,
due to x° is:

AsSR(x®) = 224N
T (x®-x?)?

Applying the v transformation to x, one gets for the corresponding
regressior sum of squares due to v°:

§> va(y-i)lz
T (v? _va)a

ASSR(V®) =
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><l

X=

Since v = -Ef- ASSR(v®) can be rewritten as

ASSR(v?) = LZ (xR (y;_Z___,?__) r_.

T [(x-%)% = (x-R)°]?
Now it can be shown that
ASSR(x®) # ASSR(v?).

For this it is sufficient to show that the two denominators are not
proportional to each other. Indeed, one has o

—_ 272
T (x*-x%)2 = £ x* - LE—E—l-,

(2P, 4
n

Z((x-%2 - &R)P =z1x*-

where & is not identically zero:

+

= 4nk [ (D)® + 2%x° ~x°] t O,

Imagine next that only the linear terms, x or v, are
included in the two models. It is easy to show that the two regression
sums of squares are now equal:

ASSR(x) = [Z (x-0)(y-» P
T (x-%)2

(Z (v-D (y-» P
T (v-¥)?

ASSR(V) =

Since v=0, one has

R [Z (xRN _ pssr(x).

ASSR(v) = : :
R? T (x-X)~

Finally, the two regression sums of squares are again equal
when both the linear and quadratic torms are included in the models:

ASSR(x,x?) = ASSR(v,v?).

The algebraic proof for this is omitted because of its length.
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More generally, it can oe demonstrated that the respective
regression sums of squares in the X and v spacc are equal only when the
polynomial regression models of order k, say, also include all terms
of lower order than k:

ASSR(x,x%,...,x* " ,x") = ASSR(v,v®,...,v" *,v).

This condition is generally also valid for polyncmial regression models
in more than one original independent variable. For example, in a

case of two original independent variables, x; and x,;, and a model which
is tc include the cross-product term (X%, or v,vz), one has to include
also the linear terms (x, and %3, or v; and vz, respectively) in order
to have the regression sums of squares equal in the x and the v space:

ASSR(XI s X2 ,XIXQ) = ASSR(\“L s Ve , Vy Vg) .

This leads to the following conclusion. When the program user finds,
for accuracy purposes, a neced to apply the transformation (VII-1) and
when he wants to keep, with respect tc the regression sums of squares,
the relations between corresponding terms of the two polynomial
regression models undisturbed by the transformation, he must follow
this Restriction: A polynomial regression mode! must contain all
polynomial terms (including the linear terms) which can be separated
as factors from the highest order terms contained in the model.

The program user can easily adhere to this restriction
when linear hypotheses are to bhe tested by the option for hand selected
reruns. When the user wants to automatically rank the transformed
polynomial terms by IVOR or BIVOR, he can adhere to the restriction by
application of the grouping feature as available in both routines.

For this the polynomial terms should be grouped according to their
powersum which is defined to be the sum of all exponents of the

original independent variables contained in a term. For example, in

a polynomial of second degree in two (transformed) independent variables
v, and vy, there would be two groups in IVOR and in BIVOR: v, and vp
would form the first group with a powersum of 1 in each term, and v?,

v vz, and vi would form the second group with a powersum of 2 in each
term. Since the ranking begins in the first group in IVOR and in the
last group in BIVOR, it can be seen that the above restriction is
followed. It is, however, obvious that the restriction is being
followed in an overstrict fashion: When in BIVOR, for example, vg

and v,vy; have been found to be the least important terms in the last
(second) group, v? is ranked automatically as the next least important
term. In reality, at this step both v5 and v, should be "admissible"
for the determination of which term contributes less to the regression
sum of squares when contained in the model. Note: In NOVACOM (see
Section II.3) a BIVOR type ranking procedure can optionally be pecrformed
such that at each step all those polynomial terms become "admissible"
for ranking which cannot be separated as factors from other terms con-
talined in the model. Therefore, the terms become admissible in the
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desiied fashion, that is, according to the above restriction tc be
followed when the accuracy transformation

v = XX

R,

is applied and when the models in the x and in the v space are to
correspond to each other.

When the program user adkeres to the restriction, he will
in fact have a rodel (for example, a significant model) which corresponds,
term by term, to the model in the original space. If it is desired
and feasible, the program user can then retransform the values of the
estimated regression coefficients into the values which the corresponding
coefficients have in the original space, Naturally, the retransformation
is very simple when product terms are not included i1n the model. In
this case the regression co~fficients of the original space are cbtained
by dividing the regressi.,u . efficients of the transformed space by the
respective ranges R. In general, however, one would make use of the
model obtained in the transformed space by transforming the coordinates
of any design po.nt of the original space for which one wants to compute
the predicted vaiue of tha dependent variable and/or confidence limits.

Although the transformation (VII-1),

x-

v = ==
R,

?

seems to be the most effective one to increase the accuracy, division

by a constont or subtraction of a constant sometimes is satisfactory.
Division by a constant, that is the transformation v' = x, avoids the
disadvantages which are characteristic of the transformation (VII-1):

The retransformation of the model consists merely of dividing the
regression coefficient obtained in the transformed space by E. In
polynomial regression the retransformation consists of dividing the
obtained regression coefficient of a polynomial term by the corresponding
product of the E values used in the transformation of the original
independent variables. For example, the regression coefficient obtained

for the term
X, Xn e
E, \Es

is retransformed by dividing by E,E3.

The effect of the = transformation, with respect to
accuracy, is similar to that of the division by Ry in the v transformation:
If the value of E is properly chosen, the absolute values of the trans-
formed data can be made to lie betweep O and 1. This can sometimes be
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achieved by choosing the proper power of ten for E, in which case the
transformation can easily be executed by hand. However, this trans-
formation is of little value if all or most of the untransformed OCIV
coordinates are of equal sign. In this case the other simple trans-
formation, i.e., the subtraction of a constant such that centralization
is achieved, is sometimes sufficient. The ccnstant G in this trans-
formation, v'" = x<G, should be conveniently chosen close to the
average of the x values, i.e., G should be a "working average." If
it is appropriate to chcose G as a whole number, this transformation
also can easily be performed by hand. The transformation x-G has,
however, the same type of side-effects with respect to the retrans-
formation of a polynomial model as were shown to exist for the

:on XX
transformation D ot

The transformations

v = §ﬁ§ and v' = % (but not v'" = x-G)

can automatically be applied to the coordinates of the OCIV's by the
preprocessor program MIRAN, as was mentioned ’n Section II.2. The
output of MIRAN may be on cards or tape #nd represents the data input
for DA-MRCA, i.e., the information usually puncted on Card Type 8.

The following numerical example is_given in order to
illustrate the effects of the transformation X¥;X. The problem con-
tains one original independent variable x withﬁ'9 distinct levels.

In the x space a polynomial of 5th degree was the highest that could be
fitted by DA-MRCA, whereas, after applicacion of the v transformation,
a polynomial of 8th degree covld be obtained. (Naturally in this
example, this is the zero error perfect fit.) The printout shown is

a reproduction of a part of the original printout of DA-MRCA for this
example. The 9 data points are given below, where also the transformed

(coded) x values are shown. .

y X v = 5&%
9.5 47.30 -,45861017
0.6 47 .4y -,45276825

43.7 54.65 -,20603285

49.9 54.83 -,19984729

48.2 61.90 +.04310804
65.5 64.20 +,1221458".
96.4 68.43 +.26750067

128.5 70.63 +.34310804

149.1 76.40 +.,5413098,
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VI1I.2.b Linear Dependencies

Linear dependencies among all or some of the rows

(columns) of t}. catvix of the normal equations of a given run will
cause this matrix to be singular and, therefore, fail to invert.
Sometimes a fictitious inverse will be computed by the program because
of the presence of truncaticn errors, see Section VII.2.c below. In
some cases the analyst will be able to infer, from visual ianspection
of the number and the relative position of the n, distinct input

' design points, as given in the design matrix, that linear dependencies
are present. These will be referred to as "obvious" linear depend-
encies. They occur, for example, when the analyst includes as many
or more iandependent variables in the regression model of a given run
as there are distinct design points. For a discussion of some obvious
linear dependencies see the end of this section.

In general, the linear dependencies will be '"non-obvious"
and, therefore, unknown to the analyst from visually inspecting the
design matrix. It is in this sense that the linear dependencies are
discussed here as a cause for a failure. The algebraic parts of the
discussion are preseuted in terms of the main run; however, all
conclusions are naturally equally vaiid for any rerun.

The matrix A of the normali equations of the main run can
be expressed in terms of the design matrix X as follows:

A = X'X,

with

where %o :l. JSince
cank {A] = rank {X],

w X must be of rank N*1 in order that A i{s a non-singular matrix, assuming
that ny X N+i. By definition, X i{s of rank N+l when no linear dependencies
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exist among its N+1 columns. In other words, as soon as the coordinates
{X1, Xg, *++y Xy, *+«, Xy}, of the ny distinct input design points
satisfy the identity

N
Tayxy, =0 {i=1,...,ny} (VII-2)

v=0

with at least two coefficients, a,, being different from zero, the rank
of X is smaller than N+l and, thereby, A is singular. In a geometrical
intecpretation, the identity

N

Zayxyy, 0 {i}

v=0

means that all n, distinct design points are located on a hyperplane
in the N-dimensional space defined by the N independent variables.
(This hyperplane could have, at the most, N-1 dimensions.) Except

for the cases of "obvious" linear dependencies, the analyst will not
be able to determine, without further analysis, whether or not

the ny distinct input design points are located on a plane in the
N-dimensional space. Should he want to determine this by analytical
means, he would have to calculate the value of the determinant of the
matrix consisting of any N+1 rows of X which represent distinct design
poincs. This can be 2 considerable effort. In the present program,
therefore, the detection of this general case of ‘'non-obvious" linear
dependencies is left to the built-in checks for the possibility of
obtaining an inverse and to the checks on the accuracy of the calculated
identity matrix. When “non-obvious" linear dependencies are present
for a given independent variable selection and when a fictitious
inverse is obtained, the main diagonal elements of the calculated
identity matrix will deviate rather drastically from 1 and the run
will clearly be rejected.

The only adequate corrective measure in the case of
non-obvious linear dependencies is to delete one independent variable
and to try to fit the reduced regression wodel. As discussed in
Section VI.2.d, this deletion is performwed autosatically in the BIVOR
option. IVOR, by nature, has an advantage over BIVOR in the handling
of non-obvious linear dependencies and the identification of perfect
fits. Since in BIVOR, indiscriminantly, the rightmost independent
variable is deleted after a run was rejected, this deletion does not
necessarily eliminate the unwanted non-obvious linear dependency. In
fact, there could be many such deletions of rightwost IV's before a
perfect fit is reached by BIVOR. IVOR, in contrast, will select, at
each step, only those independent variables for possible inclusion into
the model whose inclusion will not introduce linear dependencies. By
this technique IVOR is capable of alvays finding the perfect fit with
the saximum number of independent variables contained in the model.
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Another remark regarding linear dependencies concerns
the situation in which functions of the original independent variables
are added to the model, as is the case, for example, in polynomial
regression. Namely, it is wrong to assume that functional terms can
always be added when there are no (non-obvious) linear dependencies
caused by the original independent variables. The following simple
example from polyuomial regression may serve to illustrate this and

the concept of the "mon-obvious'" linear dependency in general.

Example. Given the following ny=4 design points in the
plane of the two original independent variables x, and x;,

xll-l 0| +2 | +3

|
1

Ty e

the regression model to be fitted is, say:

Xa +1

Y =8, ¢ S1x1 + Boxp t E‘axi’

which with 4 distinct design points should lead to a '"zero error
perfect fit." The inclusion of the term x3 appears to be feasible,

but it nevertheless leads to a non-obvious linear dependency: the

4 points {x,, xa, x5} are located on a plane in the 3-dimensional

space. As can easily be verified, the 4 points satisfy the identity

of form (VII-2), i.e., the 4 points are on a plane having this equation:

2+ 2% + xy - x5 =0,

It is, therefore, not possible to include x{ in the regression model
vwhen x; and x, are included.

In the following, some 'obvious' linear dependencies are
discussed, two of which are derived from the general case, f.e., by
specifying the coefficients, ay, in the identity

N
z 8yXyy * 0.
v=(

All these cases can readily be identified from the design matrix X
without further analysis. As has been the case previously in this
section, the discussion of the obvious linear dependencies also will

be presented in terms of the main run, i.e., for N independent variables.

140




NWL REPCRT NO. 2035

Some ''obvious'' linear dependencies:

(1) In the identity (VII-2),

N
Zavax -:-0, 1= 1,2,.--,nN,
v=0

all coefficients ay, except ag and ayx are zero:

_ a
Xykg = = 33} = constant.

This means that the coordinate xyx; 1s equal for all ny distinct
design polnts. A'' independent variables, Xyx, satisfying this
condition must be deleted from the model.

(2) In the identity (VII-2), all coefficients except
ay* and ay#*x are zero:

aykXyk, + a,dkXykk, = 0,

or

Xy¥* ay e
1 I = constant.
Xy dedey ay»

This is the case of proportionality for all ny coordinates xys; and
Xydky . One independent variable out of each pair xyw, Xywn satisfying
this condition must be deleted from the model.

(3) ny s N, This is the case of trying to fit too many
independent variables for the number, r.,, of distinct input design
points available. It will be met mostly in situations where functions
of the original independent variables have been included in the regression
model, as is the case in polynomial regression. The identity (VII-2)
is automatically fulfilled by the ny < N design points since all n,
points are necessarily located on a "plane" in the N-dimensional space
defined by the N independent variables. At least N-n,+1 independent
variable(s) wust be deleted from the model in order to arrive at a
solution.

’4) This case applies only when functions xy = £, (z,,
23, ++sy 25,...) Of the original independent variables, z,, are
included in the model, as is the case, for example, in polynomial
regression. It {s related to case (3) (ny < N) and defined as follows.
Let the number of distinct values (coordinates) of the original
independent variable z; be L,. The set of all functional terms xy = f,
of the model which contain z; can be divided into groups such that a
group consists of all those terms fy which contain one or more other
varisbles zya (J*#j), all in an identical functional form. (The terms
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fy in one of these groups need not contain any variable other than 2z,.)
Let the maximum number of terms fy in any group be M,. Then an obvious
linear dependency exists if L, < M,.

As a complex and probably unrealistic example. intended
to illustrate the above definition, imagine that the model includes
the following set of 9 terms all of which contain 2,(z; # zy% # Zjux):

zy*x sin(z,), z.*x sin(2z;), z,» sin(3z,)}; cos(z,), cos(2z,);

4
2wk cos(2yzyk); 27k cos(z,z,%); Ziwk cos(z,z,#%); zyar cos(zyz,4).

The first three terms contain z,» in an identical functional form,
namely as a multiplier. The next two terms do not contain any other
variable than z,; and the last four terms each contain z,»* in a
different functional form. This makes 6 groups with 3, 2, 1, 1, 1,
1 terms, respectively. Therefore, M, equals 3. Should the number
L, of distinct values of z, be smaller than or equal to 3, the
inclusion of the first of the above groups (with 3 terms) in the
wodel would lead to an obvious linear dependency.

In this case of L, < M, the identity (VII-Z) is again
automatically fulfilled since the total number ny of distinct design
points will be located on a '"plane" in the N-dimensional space defined
by the N independent variables, as can readily be verified. For each
original independent variable z, for which L, < M, is true, at least
as many terms containing z; per group must be deleted from the model
such that, at the most, L,~1 terms per group will remain. in the above
example, deletion of z« sin(3z,), say, would eliminate the obvious
linear dependency if L, is assumed to be exactly 3.

VIl.2.,c Truncation Errors

Truncation errors arz, naturally, present in all computations

performed. As indicated before, these errors become particularly
fmportant in one situation, i.e., when the matrix is singular (obvious
or non-obvious linear dependencies being present) and, consequently,

an inverse does not exist. In this situation the truncation errors
sometimes lead to a fictitious inverse which, however, in all cases
should be identified as such by the failure of the calculated identity
matrix to pass the accuracy checks. This fictitious inverse is usually
caused by an element of the main diagonal of the inverse which
theoretically has the value zero but actually equals a small positive
quantity stemming from a truncation error. One can, in fact, construct
very simple cases with singular satrices for which the computer will
obtain fictitious inverses.

142

L " -



MWL REPORT NO. 203>

There is no possibility whatsoever to avoid the "failures"
which are caused by these errors when one deals with singular matrices.
The analyst has to rely entirely upon the accuracy check on the calcu-
lated identity matrix in order to be protected from this type of a
fictitious problem solution. In the experience of the authors no
actual case occurred in which the inverse of a matrix known to be
singular passed thc identity matrix checks.
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VIII., FORTRAN IV DOCUMENTATION OF DA -MRCA

In previous chapters of this report, references to problem
variables have, in most instances, been made in terms of the general
macthematical notation used. However, in the programming and coding
phases of the DA-MRCA program, it has been necessary tec redefine some
of these .ariables in an acceptable FORTRAN IV variable notation. In
addi.ion, other variables have required initial definition due to the
storage allocation conventions of the FORTRAN IV language.

Some of thess FORTRAN variables have been defined in previous
chapters of this rceport. For example, variable descriptions are
provide: in Chapter V (INPUT PREPARATION) . However, if the reader has
the desire or need to study and understand the FORTRAN formulation of
the program, additional information is required to associate the
mathematical concepts with the FORTRAN IV documentation.

This chapter, therefore, presents the FORTRAN IV documentdtion

of the DA-MRCA program in the form of a glossary of program variables,
flow charts, conversion notes, and a complete listing of the program.

VIII.)l Description of Program Variables

In this section are defined the program variables which are
contained, (a) in COMMON storage, (b) in the MAIN PROGRAM, and (c) in
program subroutines.

Input variableé, indices of DO-loops, most variables defined in
DATA statements, and most arguments in subroutines are not defined here.

 VIII.l.a Variables in COMMON Storage

A -« an array containing the matrix (A) of the normal eQuations; _
subroutine GAUSS changes this matrix to its inverse.

AKP - an arrayv into which the array A is saved before subroutine
GAUSS is called.

AVV - an array which containe averages of the independent variables
and the dependent variable.

AW - an array which contains averages of independent variables in
subroutine PREVAR and which contains the various regression

sums of squares adjusted for the mean in subroutines IVPR and
BIVPR.
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B - an array containing the constants, Ey,, of the normal eguations;
subroutine GAUSS changes this vecter to corntain the solution
of the normal equations (i.e., the regression coefficients).

BB - an array which is used to save the constants, Ey,, of the
normal equations.

BSDEV

an array which contains the standard deviations of the
regression coefficients.

DETERM - the determinant of A.

ERRGR - a variable which is ugsed as an error return from subroutines
ABT and GAUSS and which controls printout in subroutine REDUCM.

IBIDS - a variable which is used in conjunction with IBID to control
the computaticn and checking of the identity matrix.

ICASE -~ a ccunter for the number of inverse matrices which are printed.

ISKIP - if the main run was rejected for any reason, ISKIP=2; other-
wise ISKIP=1.

ITYTAL - initially set equal to the rank of the matrix of the normal
equations, A, for the main run, this value is later used,
in IVPR and BIVYR, as the upper limit on the number of
independent variables at various steps of these gubroutines.

JLIM - a variable which is set equal to IR+l, the number of OCIV's
given as input, plus 1.

KMUM - a variable which indicates step size in the looping used to
- read the data input.

KNUM - a variable which is used by subroutine RDIT as the number of
data fields per record and by subroutine BIVYR to indicate to
subroutine CASSR that CASSR is being called from BIVgR.

M - the tétal number of data points (= n in previous chapters).

M1 - a variable which indicates when the data termination card has
been read.

Mé - a variable which is used to control page headings in
subroutine CMPR.

N - the number of independent variables present in the model at
any step.

NN - the number of independent variables present in the model (at

any step), plus 2.
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a variable which is used to index the last row and/or last
column of the summation matrix S containing the constants,
Eyy, of the normal equations.

the rank of the matrix of the normal equations at any step.

a variable which saves the rank of the matrix of the normal
equations for the main run.

a variable which saves the main run value of the variable NN.
a variable equal to the main run value of the variable NNN.

this variable (EQUIVALENCED to IDG# in subroutines ABT,
IDENTM, and PRINTM) is used to indicate the acceptance or
rejection of the identity matrix.

a variable which controls the predicted value and Chi-square
computations.

the reciprocal of the number of observations M.

this variable value equals the main run regression sum of
squares adjusted for the mean. If the main run does not

pass the four checks on the determinant of A, R*, s, and

the cyy (see paragraphs B, D, E, and F of Section VI.2.a.(2)),
this value is negative indicating that no final comprehensive
i1s to be printed.

the summation matrix; the first N+1 rows and N+l columns
represent the matrix of the normal equations; the (N+2)th
row and column are the constants, Ey, (v = 0,1,...,N), and
Eyy, of the normal equations.

the square root of the residual variance.

this variable indicates whether a rerun 1s a hand selected
rerun, an IVPR rerun, or a BIVYR rerun, for printout purposes.

an array which contains the coordinates for each data point.

an array which is used in subroutine PREVAR to contain the
coordinates of the selected input or synthetic design points
adjusted for the averages of the corresponding input coordinates.

an array containing the prediction standard deviations.

an array containing the predicted values.
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VIII.l.,b Variables in the MAIN PROGRAM

the actual logical tape number of the tape containing the
coordinates of the data points.,

a variable which is set equal to IR+l, The coordinates of

the first IR independent variables, modified by the independent
variable selection, are printed to identify the selected input

and/or synthetic design points.

counter for the selected input and/or synthetic design points.,

an index used in the coding to reverse the order of input
items in the LYT array.

saves the main run value of N,
the time which is computed by the various timing subroutines,

used only as a required argument to the E¢F function,

VIII,l,c Variables in Program Subroutines

(1) Variables in Subroutine ABT*

the regression sum of squares adjusted for the mean.
the total sum of squares adjusted for the mean,

an array whose jth element contains a contribution to the
Chi-square statistic if the jth interval is the last of a
group of intervals having a total of more than 5 expected
prediction errors., Otherwise CHI(J) = -1.0.

The Chi-square statistic,

an array whose gth element contains summed expected prediction
errors if the j h interval was the last of a group of intervals
having a total of more than 5 expected prediction errors.
Otherwise, the contents of CMPFR(J) are meaningless.

the correlation coefficient,

the square of the correlation coefficient (i.e., the coefficient
of determination).

*Note - T. Herring, who coded the program DA-MRCA, named this subroutine
for a co-author of the report,
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the interval size in the Chi-square computations,
the range of the prediction errors.
the main run value of the error sum of squares.

an array which contains the upper bounds of the 30 intervals,
into which the range of the prediction errors is divided.

the sum of squares of the prediction errors; the check
error sum of squares,

the minimum prediction error.
the maximum prediction error.

an array which contains the symbols for the prediction error
frequency distribution bar chart.

a floating point representation of the rank of the matrix
of the normal equations.

the F ratio for regression on deleted varilables.
the degrees of freedom of Chi-square.

the number of symbols which are to be printed on a line in
the prediction error frequency distribution bar chart.

an array which contains the frequencies of occurrence of
prediction errors in the intervals delimited by the ESTEP .
array.

an array whose jth element contains the summed observed
frequencies of prediction errors for a group of intervals

1f the jth interval was the last of a group of intervals
containing a total of more than 5 expected prediction errors,
Otherwise, the contents of IPBF(J) are meanimgless.

the element number of the maximum prediction error.

the element number of the minimum prediction error.

the number of independent variables for the main run.

the number of data points winus the main run value of NNN,
i.e., the degrees of freedom of the error variance.

the number of independent variables which have been deleted
from the model.
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the residual variance.

the residual, er error, sum of squares.

the unadjusted regression sum of squares.,

the time, in seconds, for the execution of subroutine GAUSS.

(2) Variables in Subroutine BIV@R

the maximum ASSR value,
the minimum ASSR value.
a dummy argument to subroutine CASSR,

the LYT array index of that independent variable which is to
be deleted from the model,

a variable value which ensures that the identity matrix will
be checked only until an inverse is found whose associated
identity matrix element deviations are all smaller than I(1).
a variable value which is used to define the L@T array index
of the leftmost independent variable of a group of independent
variables.

the index of the maximum ASSR value in the AW array.

the index of the minimum ASSR value in the AW array.

a variable used to index the regression coefficients and
inverse matrix diagonal elements which are due to independent

variables for which ASSR values are to be computed.

the index of the L@T array element which element is to be set
equal to 1 if the matrix inversion is not accepted.

a counter of the ASSR values which are computed at each step.

a variable which indicates the failure of the matrix inversion
in subroutine CASSR.

an array which holds the L¢T array indices of the independent
variables for which ASSR values are computed.

a variable which indicates whether or not a matrix inversion
is the first accepted inversion in subroutine BIVgR,
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a variable value equal to the number of independent variables
in a group in the grouping feature for independent variables.

(3) Variables in Subroutine CASSR

the regression sum of squares adjusted for the mean.
the total sum of squares adjusted for the mean.,
the square of the correlation coefficient,

a floating point representation of the rank of the matrix of
the normal equations.

the residual variance.
the residual, or error, sum of squares.
the unadjusted regression sum of squares.

(4) Variables in Subroutine CHISQ

the actual number of prediction errors in a group of intervals
in the search for a group of intervals having more than 5
expected prediction errors.

the computed (expected) number of prediction errors in a group
of intervals in the search for a group of intervals having
more than 5 expected prediction errors,

the program looks ahead each time it finds a group of intervals
having more than 5 expected prediction errors to determine
whether or not more than 5 expected prediction errors remain;
if not, then the remaining frequencies are associated with

the preceding group and FgMRE is the resulting difference
between the observed frequency and the expected frequency.

the total number of (observed) prediction errors which have
contributed to the Chi-square statistic,

the interval index of the interval which was the last of a

group of intervals containing more than 5 expected prediction
errors,

a variable which counts the number of groups of intervals
having more than 5 expected prediction errors.

the area under the normal frequency function from == to the
Jupper bound of any of the various intervals into which the
range of prediction errors is divided.
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the area under the normal frequency function from - to the
upper bound of the last interval which was the last of a
group of intervals containing more than 5 expected prediction
errors,

the remaining number of expected prediction errcrs.

(5) Variables in Subroutine CMPR

a floating point representation of the total number of data
points.

the error sum of squares,
the F value for regression in the analysils of variance tables.

the number of independent variables in the present model,
plus 1,

an index for elements in arrays which elements are used to
define the variable output formats.

the number of independent variables in the present model,
plus 2 .

a variable used in the computation of index values for arrays
which are used to complete the definition of the variable
formats for the printing of the regression equation.

a variable used to control the printing of page headings.

an integer representation of the error degrees of freedom.

the error degrees of freedom.

a floating point representation of the number of independent
variables in the model; the degrees of freedom for regression.

the mean square for regression.

(6) Variables in Subroutine FIX

an array which contains a BCD representation of the first
NNNSAV (see Section VIII,l.a) elemants of the LYT array and
BCD zeroes for the remaining elements.
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(7) Variables in Subroutine GAUSS

the maximum element, of those elements searched, in the
matrix of the normal equations at each step of the inversion
process.

the column number of the maximum of those elements in
unpivoted rows.

a variable which indicates when no pivot element could be
found at a step of the inversion process.

an array containing the row and column numbers of those
elements which are used as pivot elements.

an array which indicates those rows of A which have served
as pivot rows,

the row number of the pivot element.
a variable set equal to the value of the pivot eiement.

a temporary storage location used to interchange rows and
columns.

a variable which is equal to the successive elements of the
A matrix which are in the same column as the pivot element.

(8) Varigbles in Subroutine IDENTM
the identity matrix.

a variable which is used to compute the individual elements
of the identity matrix.

(9) Yarisbles ig Subpoutipe IVPR
the maximum ASSR value.
the minisum ASSR value,
s varisble which indicates the case of a perfect fit.

the LIT array index of that independent varisble which is to
be included in the model.

a variable which is used to define the LYT array index of

the leftmost independent variable of a group of independent
varisbles.
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the index of the maximum ASSR value in the AW array,
the index of the minimum ASSR value in the AW array.
a counter of the ASSR values which are computed at each step.

a variable which indicates that a non=-valid ASSR value was
computed by the CASSR subroutine,

a counter of the number of independent variables which have
been "actively'" ordered, i.e., ordered in a group of IV's as
long as there is more than one IV left in the group.

an array which holds the L@T array indices of the independent
variables for which ASSR values are computed.

a variable which is used to determine when to cease "actively"
ordering independent variables in a specified group of
independent variables, i.e., when there is only one independent
variable left in the group.

a tolerance which is used to establish equality of ASSR
values and hence the perfzct fit.

(10) Variables in Subroutine MAXMIN

The variables used by this subroutine have been

amply defined by any one of its calling subroutines, and, therefore,
these variables will nui be further defined here.

JJJ

AIDENT
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(11) Variables in Subroutine PREVAR

an index which is used to delete independent variables from
the X array.

N N
equals ¢ Toevwt (Xyggy =Xy Mxot,: = Xvr)
] v'a]

which is used in the computation of prediction standard
deviations. ’

(12) Varisbles fn Subreucige PRINTN

the identity matrix.

(13) Vgriavles in Subroutine RDISK

a variable which {s always 1 wore than the number of records
read from tape or disk logical unit 10.
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the number (record number) of a data point which is to be
used as a selected input design point in prediction standard
deviation calculations.

the number of records which must be read in order to position
the storage device so that the IWHICHth data point can be
read with the next READ statement.

a variable which is used to skip records.

(14) Variables in Subroutine RDIT

the number of an independent variable which is to be used as
a factor in a product term, plus 1.

the Y array index of the last variable on each card of input.
the Y array index of a product term.

if a data point requires more than one card or record to
contain the coordinates of the OCIV's, then MZ is used as
a dummy variable in reading those cards or records after
the first card or record.

an array which contains the coordinates of the dependent

variable and those of the OCIV's &s they are read and which
later contains also the coordinates of the GCIV's.

(15) Variables in Subroutine REDUCM

These variables are described in Jection VIII.l.a

and, therefore, will not be further described here.
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VI111.2 Flow Charts

a. DA-MRCA SUBROUTINE FLOW CHART

MAIN PROGRAM

I . |
[SETCLK | | PREVAR |
- , IVLT ] C Bin

I ] \ J
rgr_;:g YULE WARMIN Tcn 3

]

C’;Liﬁ |
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b.  MAIN PROGRAM

L START ]

[ REWIND_TAPES )

SET CLOCK: SET IV IDENT- ]PROGRAM ENDS IF AN EOF
IFICATION 'fO HAND . PRINY  IcarD 5 PRESENT INSTEAD
PROGRAM IDENTIFICATION. OF THE PROBLEM IDENTIFIC
ATION CARD.

TREAD PROGRAM IDENT IFICAT
ION CARD. READ PROBLEM
CONTROL CARD COMPUTE
TOTAL NUMBER OF INDEPEN
DENT_VARIABLES : W,

C___SET NPED 70 -

{TO0 MANY OR TOO FEW Tved
yes no

PRINT "CARD TYPE 2 15 ] IF NFD : O, MAKE UP PROPER
NCORRECT FORMAT FOR READING DATA

UNPUT _cARDS.

I8I0S : i "ADD | TO THE
INPUT VALUES OF NR, IBIO)

AND TIVORGO. ISKIP : 1.

™ RSSMQ :-50 ]
4
i I1s:02 ]
no yes
EAD PROOUCT TERW DE-
SCRIPTION CARDS. ADD | T
EACH VALUE READ. N

USING TIVORGO AS A BASIS
[ron ACTTION, READ THE
IVOR AND/OR BIVOR
CONTR0L_CASDS IF PRESENT!

'F PRECICTED VALUES AND
'srmmno DEVIATIONS ARE
DESIRED FOR SELECTED
INPUT DESIGN POINTS READ
SELECTED INPUT DESIGN:
fpom CARD(S). OTHMERWISE
CONTINUE,

-

J] U VALUEY
STANDARD DEVIATIONS ARE
’DESIRED FOR SYNTHET':
OES!GN POINTS, REWIND
DISX UNIT H, CALL ROIT
READ SYNTHETIC DESION
POINY CARDI® aND TO
COMPUTE PRODUCT TERMS
IF NEEDED. STORE THE
RESULTING SYNTMETIC
OESIGN POINTS ON DiSK

UNIT 4. OYHERWISE CON'T
Wﬁ—;g—f‘—m‘:;t
i

]
OR THE SUMMATION

MATRIX,
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CALL RDIT TO READ ODATA
INPUT CARDS (OR DATA
TERMINATION CARD) AND TOl
COMPUTE PRODUCT TERMS.
ROIT ALSO COUNTS THE
INUMBER _OF DATA _POINTS.

WAS THE LAST CARD A

DATA _TERMINATION SAR 2
yes

E:o FEW OR TOO MANY
D

DISK 0.

STORE THIS D

ATA POINT ON!

ATA POINTS ?
yes

|

1S 0 NSION (N+2)-(N+

PRINT "TOO FEW OR TOC
MANY DATA POINTS"

—

| RETURN }

3
STORE ist (N+1) ROWS AND
COLUMNS OF THE SUMMAT
MATRIX INTO A _AND _AKP.

INT THE SUMMATIO
MATRIX .

STORE THE st (N+1) ;
ELEMENTS OF THE (N+2)th

COLUMN OF THE SUMMATION
MATRIX INTO ARRAYS B AND B8 |

r NR: NR - | ]

IF THIS 15 THE
ND IF IBID

RUNS

MAIN RUN

AND BIVOR WILL BE CALLED
: 2, THEN SET

MADE, ON SUBSEQUENT BI
IF_APPLICABLE.

S:
10S =t

| &E}ﬁm

[ 78 TWiS A MAIN RUN © |

I'—T’Thf's"'l_rm

"o yes

AVERAGES OF THE INDEPENS
DENT VARIABLES AND
DEPENDENT VARIABLE.

yes

ISkIp + 2

N EL
ATA) TOLT2?

MAIN DIAGONAL OF

Tno

®

’35 asb

WM"‘“"‘QW- e e WW

|
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L 15K

WAS AN ERROR FOUND BY
UBROUTINE__ABT 2

no

L MVP +NDR = 0 ? ]

Ino yu[

[ PRINT PAGE HEADINGS ]

yes

L NDR = O 2 ]

no

PRINT HEADING FOR SELECT{

ED INPUT_DESIGN_ POINTS

vALL THE ROISX SuB-
ROUTINE TO READ 8 PRINT
SELECTED INPUT DESIGN
POINTS FROM DISK IO AND
TO COMPUTE PREDICTED
VALUES AND PREDICTION

STANDARD DEVIATIONS.

yes

—

MVP = 0? J

lno
PRINT HEADING FOR
SYNTHETIC DESIGN POINTS.

[READ SYNTHETIC DESIGN
POINTS FROM DISK Il AND
FOR EACH SUCH DESIGN
POINT CALL SUBROUTINE
PREVAR TO PRINT THE
DESIGN POINT AND TO
COMPUTE PREDICTION
VALUES AND PREDICTION

TANDAR VIATIONS.

yes

S THE COUNT OF THE TOTAL
UMBER OF PREDICTED VALU

AND DEVIATIONS : O 2

no

THE RUNNING COUNT.
PREDICTED VALUE, AND

SELECTED INPUT AND/OR
SYNTHETIC DESIGN POINT:.

STANDARD DEVIATION OF THE

yes

TIMING FOR THIS

U
COMPLETE
RUN.

iCALL SUBROUTIN

I
TO COMPLETE TIMING FOR
THIS RUN.
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o0 ® ®

i

I'A_T THIS POINT N, NN, NNN] |~ VALUE OF IVORGO ]
ARE REDEFINED. T [2_Ja 3

N RESET CLOCK AND PRINT

CALL SUBROUTINE REDUCM HEADING FOR IVOR PRIN

TO DELETE ROWS AND '

COLUMNS OF THE SUMMATION

MATRIX AND STORE THE E’;T Ty IDENTIFICATION TO
IVOR'

RESULT IN A AND AKP

REDUCM ALSO PRINTS PAGE
WRITE HEADING FOR IVOR
ANALYSIS OF VARIANCE
TABLES ON BCD TAPE 9.

CALL IVOR TO ORDER

HEADINGS.

INOEPENDENT VARIABLES
ACCORDING TO CECREASING
POWER OF PREDICTION.

CALL SUBROUTINE TIME TO
COMPLETE TIMING FOR THE
IVOR COMPUTATIONS.

[FRINT TVOR EXECUTION TIME]

VALUE _OF IVORGO

R E 4
R LOCK AN [
HEADING FOR BIVOR PRINT-
ouTS.
[SET IV, IDENT FICATION
|"8xver"”,

WRITE HEADING FOR BIVOR
ANALYSIS OF VARIANCE
TABLES ON _BCD TAPE 9.

LL v
INDEPENDENT VARIABLES
ACCORDING TO INCREASING
POWER _OF PREDICTION,

ALL SUBROUTIN
COMPLETE TIMING FOR THE
MPUTA

FROM_ BCD TAPE I3 & PRINT.

(ALL INTERVAL TIMER )
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c. SUBROUTINE ABT

START

[ caLL INTERVAL TIMER]

UPON RETURN FROM GAUSS,

B CONTAINS THE SOLUTION
VECTOR X, ACONTAINS A™',

CALL SUBROUTINE GAUSS TO
INVERT THE MATRIX A AND
SOLVE THE SET OF SIMULTANEOUS
NORMAL EQUATIONS: AX=8B.

!

CALL INTERVAL TIMER (INTVL)
AGAIN TO COMPLETE TIMING OF
MATRIX INVERSION.

PRINT MATRIX INVERSION TIME.

WAS AN ERROR DETECTED IN
THE GAUSS SUBROUTINE ?

no

DETERMINANT £ O ?

no

yes

yes

PRINT DETERMINANT, A~' , AND
SOLUTION TO SIMULTANEOUS
NORMAL EQUATIONS.

PRINT "MATRIX FAILED TO INVERT"

i

COMPUTE UNADJUSTED REGRESSION
SUM OF SQUARES (SSR).

|

COMPUTE ERROR SUM OF SQUARES(SSE).

COMPUTE TOTAL SUM OF SQUARES
ADJUSTED FOR THE MEAN (ATSS).

COMPUTE REGRESSION SUMS OF SQUARES
ADJUSTED FOR THE MEAN (ASSR).
ASSR = ATSS - SSE.

|

COMPUTE THE SQUARE OF THE
CORRELATION COEFFICIENT {CORSQ).

1

CORSQ 20°?

J ves

COMPUTE THE CORRELATION

COEFFICIENT (COR)

ERROR =1.0

RETURN TO
CALLING PROGRAM

PRINT"THE SQUARE OF THE CORRELATION
COEFFICIENT 1S NEGATIVE
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S TRETTC RN, XN T




T

NWL REPORT NO. 2035

COMPUTE THE RESIDUAL
VARIANCE (SDEVSQ) .

i

RESIDUAL 'VARIANCE NEGATIVE ?

no

COMPUTE THE SQUARE ROOT
OF THE RESIDUAL VARIANCE
(SDEV).

yes

mem"vwmce IS NEGATIVE",

?

IS ANELEMENT OF THE MAIN
DIAGONAL OF A-' NEGATIVE ?

NO

COMPUTE THE STANDARD
DEVIATIONS OF THE REGRESSION
EQUATION COEFFICIENTS.

VALUE OF 1BIDS

yes

PRINT "AN ELEMENT OF THE MAIN

DIAGONAL OF THE INVERSE
MATRIX IS NEGATIVE."

SUBROUTINE IDENTM SETS
IDGO TO AN INTEGER WHICH
INDICATES HOW "G@@D" THE
IDENTITY MATRIX IS.

e o = of

CALL IDENTM TO COMPUTE AND
CHECK THZ IDENTITY MATRIX

CALL PRINTM TO PRINT THE
RESULTS OF THE IDENTITY
MATRIX CHECKS.

1068 )1 ?

yes no

VALUE OF LBIDS
voje 3

PRINT “NO IDENTITY MATRIX
CHECKS WiLL BE MADE ON
SUBSEQUENT BIVOR RUNS.'

Lo TR & amnindhecaadaidi A

PRINT THE FOLLOWING STATISTICS:
STANDARD DEVIATION OF COEFFICENTS,
AESIOUAL OF ERROR SUM OF SQUARES,
TOTAL SUM OF SQUARES ADJUSTED FOR
THE MEAN,

REGRESSION SUM OF SQUARES ADJUSTED
FOR THE MEAN,

CORRELATION COEFFICIENT {R), AND
SQUARE ROOT OF RESIOUAL VARIANCE .

CALL SUBROUTINE CMWPR TO PUT
ANALYSIS OF WARIANCE TABLES ON

0CO TAPE 9. b
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7

[rs THIS TME MAIN RUN ? ]
no yes
lcALL SUBROUTINE FIX TO OBTAIN SAVE THE MAIN RUN VALUES
A BCO REPRESENTATION OF THE OF ASSR AND SSE INTO RSSMO
LOT ARRAY WHICH REPRESENTATION AND ESSO RESPECTIVELY,

HAS BLANKS FOR THOSE ELEMENTS

OF 1LLOT WHICH DO NOT CORRESPUND OTE THE DEGREES OF
TO INDEPENDENT VARIABLES IN Cows
THIS PROBLEM, i.e. COMPUTE LIT. FREEOOM OF EAROR VARIANCE

(NRI) AND SAVE THE NUMBER

OF INDEPENDENT VARIABLES N
[ RSSMO NEGATIVE ? THE MAIN RUN_ INTO WA
] yes no I
STORE PAGE MEADING, DEGREES
PUTE T NUNBER OF DELETED OF FREEDOM OF ERROR VARIANCE
1S RSSMO+1.0 NEGATIVE ? 0 AND TABLE HEADING FOR THE
yes no FOR REGRESSION ON DELETED TAPE 13 :

VARIABLES (FQUT), .
PRINT “NO FINAL COMPREMENSVE |
PRINTOUT SINCE MATRIX FOR MAIN STORE THE MAIN RUN VALUE OF
RUN COULD NOT BE INVERTED ", THE SQUARE OF THE CORREL ATION |

STORE THE SQUARE OF THE FEICIENT

CORAELATION COEFFICIENT, NRZ, ggﬁ: aac:nn m:::«m

ARSSMO = -1.0 FOUT,AND LIT ON BCD TAPE 13, “MAIN RUN"

|

NCED= O ?

ne yes

REWIND DISK LOGICAL UNIT 10
CONTAINING THE WPUT DATA POINTS
INCLUDNG PROOUCT TEAMS

READ THE DATA POINTS FROM DiSK
LOGICAL UNIT 10 AND COMPUTE THE
PREDICTED WALUES, PREDICTION
ERNOPS, AND THE SUM OF THE SOUARES
OF THE PREDICTION ERROARS,

CALL SUBROUTINE MAXMIN TO
COMPUTE TME MAXNSUM AND
MINTMUM OF THE PREDICTION ERRORS

COMPUTE THE RANGE OF THE
PREDICTION ERRORS (ERANGE ).

COMPUTE TUE WTERWAL SIZE (EDELTAS

COMPUTE THE UPPER BOUNDS OF THE
30 NTERVALS AND 2ERO THE

5 5
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® ®

COMPUTFE THF FRFEQUENCY OF
OCCURRENCE OF THE PREDICTION
ERRQORS IN THE VARIOUS INTERVALS
FOR ALL DATA POINTS AND STORE

THESE FREQUENCIES IN THE
[FREQ ARRAY

CALL SURROUTINE CHISQ TO
ATTEMPT TO COMPUTE THE
CHI-SQUARE STATISTIC

Bl

NOPG =1 ? J
no yes

PRINT ITEM NUMBERS,
PREDICTED VALUES, AND

PREDICTION ERRORS IN THE

PRINT PREDICTED VALUES, AND
PREDICTION ERRORS IN THE "E
FORMAT FOR THE"M" DATA POINTS

“F" FORMAT FOR THE "M"
DATA POINTS.

PRINT THECK ERROR SUM OF
SQUARES AND HEADING FOR THE

PREDIZTION ERROR FREQUENCY
DISTRIBUTION. PRINT ERANGE
IN Te% "E" FORMAT.

PRINT CHECK ERROR SUM OF
SQUARES AND READING FOR
THE PREDICTION ERROR

FREQUENCY DISTRIBUTION,
PRINT ERANGE IN THE "F"FORMAT

i

PRINT PREDICTION ERROR
FREQUENCY DISTRIBUTION WiTH
FREQUENCIES, MISTOGRAM, ALSO
CHI-SQUARE CONTRIBUTIONS,

AND OBSERVED AND EXPECTED
FREQUENCIES IN THOSE INTERVALS

CONTRIBUTING TO THE CHI—-SQUARE
STATISTIC

ERROR = 0.0

PETURN TO CALLING
PROGRAM
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d. SUBROUTINE IVOR

START

IQsc0?

no yes

SET THE NUMBER OF
INDEPENDENT VARIABLES
TO BE ACTIVELY ORDERED
(1Q) TO 1 LESS THAN THE
NUMBER OF INDEPENDENT
VARIABLES.

SET THE COUNT OF THE
NUMBER OF INDEP, VARIABLES
WHICH HAVE BEEN ACTIVELY
ORDERED TO ZERO, i. e,
KGUNT = 0.

16¢2=
M4 =0

WAS THE MAIN RUN ACCEPTED,
i.e.ISKP=z1 ?

no yes

PRINT HEADING FOR THE IVOR
FINAL COMPREMENSIVE ON

8CD TAPE 13,

SET ALL LOT ARRAY ELEMENTS
CORRESPONDING TO INDEP.
VARIABLES 101},

Wrin=9

=20

injay

COMPUTE THE STARTING LOT KASSR COUNTS TME NUMBER OF
ARRAY INDEX OF THE 1ST INDEP. VALIO ASSRS AT EACH STEP OF
VARIABLE OF THE 1TH. GROUP EACH omOuP

(ISTART) AND THE L AST NOEX 4

avrovaLy. '
peud
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J=ISTARY
L= ISTAR

HAS THE INDEP. VARIABLE

IMPLIED BY "J" BEEN INCLUDED
IN THE MODEL ?

l yes

lﬂ = NUM+1! |

lno

INCLUDE THE INCEP. VARIABLE
IN THE MODEL B SETTING

WERE VALID ASSRS
COMPUTED ?

no yes

PRINT"NO VALID ASSRS
WERE COMPUTED ",

RETURN

MORE THEN ONE

VALID ASSR ?
yes

no

IXMAX =1

CHECK THE ASSR VALUES TO
DETERMINE IF THEY ARE EQUAL
WITHIN A SPECIFIED TOLERANCE.

ALL ASSR VALUES EQUAL ?

no

yes

LaT (3Y = 0.
J=1TOTAL ?
no ves CALL SUBROUTINE REDUCM TO
Tz 41 FORM THE SUMMATION MATRIX
N AS INDICATED BY LOT ARRAY.

CALL SUBROUTINE CASSR TO
INVERT THE SUMMATION

TO INCREASE KASSR BY 1.

MATRIX, TO TEST THE INVERSION
AND, FOR ACCEPTABLE INVERSIONS,

TO COMPUTE THE ASSR VALUE FOR
THE (J-1)™™ INDEP. VARIABLE AND

WAS THIS INVERSION ACCEPTABLE ?

no

yes

2035

LAT(KASSR)=J

LET ()=

1602 = 2
IXMAX = |

AT THIS POINT, INDEPENDENT
VARIABLE (IMAX-1) HAS
SEEN ORDERED.

COMPUTE IXMAX,

COMPUTE THE LAT ARRAY INDEX
OF THE MAXIMUM ASSR; i.e.

TR Lt I ——— . .

IMAX = LAT (IXMAX ).

o > e - v o - o

LOT (Ivax)= 0

SELECTION.

CALL SUBROUTINES REDUCM AND
ABY TO GIVE FULL PRINTOUT FOR
THIS INDEPENDENT VARIABLE

®
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KBUNT = KBUNT + |
1Q=KQUNT ?
no ‘yes
[ 1622 = 1602 + 2

VALUE OF IGP2
412 (3 1

PRINT"PERFECT FIT.IVS= XXX XXX1

IN THE Z'™NGROUP BEEN
INCLUDED ?

HAVE ALL BUT ONE OF THE IV!

RETURN yes

I=MI7?
no yes

lRETURN '

ENSURE THAT ALL INDEP
VARIABLES (1V'S) ARE
INCLUDED FOR ALL GROUPS
UP TO,AND INCLUDING , THE
™ group.

CALL SUBROUTINES REOUCM
AND ABT TO GIVE FULL PRINT]
=QUT FOR THE INCLUSION OF
THE LAST ORDERED IV OF
THE I'® GROUP.

KQUNT = XQUNT & |

XGUNT=1Q ?
yes no

T=mt?
ves no

no

2035

RETURN
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e. SUBROUTINE BIV@R

START

NOBS = |

SAVE THE INPUT VALUE OF
NPED INTO NTAPE AND SET
NPED=1 SO THAT CHI-SQUARE
AND PREDICTED VALUES wiLL
ALWAYS BE DONE FOR THE
FIRST ACCEPTED RUN OF BIVOR,

SET KNUM= - TO INDICATE TO
THE CASSR SUBROUTINE THAT
CASSR 1S BEING CALLED BY THE
BIVOR SUBROUTINE.

SET M4 10 ZERO_ASSIGN A _
STATEMENT NUMBER TO“ISEE
WHICH WILL CAUSE BIVOR T0
CONTINUE SEARCHING FOR AN
| ACCEPTED NVERSION. ISEE S35,

WAS THE MAIN RUN ACCEPTED;
e ISw1® =) ?

no ‘ ves

PRINT MEADING FOR THE BIVOR
FINAL COMPREWENS!''E ON BCD
TAPE 13,

SET "HE ENTINE LOT ARRAY
€QuaL YO 2ERO

COMOLTE TUE TOTAL NUMBES OF
NOEPENDENT VARIABLES Wity
ASE TIAE ARSI ALISRAONG
TOTHE INBUT VALJESR OF Twr Posy
“WRT VALUES OF T NG AMRav

ﬂmcvt ANY PrMANNG
VARUBLES FAOM TME MODEL AY

SETT™G TvE CORPESOONTING
VALUTS ») D Y ARRAY =1

1=0

leley
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@

{

COMPUTE THE STARTING INDEX OF
THE 1ST INDEP. VARIABLE OF THE
I th. GROUP (ISTART) AND THE
LAST INDEX (ITOTAL).

SET NQQ = TO THE NUMBER OF
iNDEP. VARIABLES IN THE Ith.
GROUP OF INDEP. VARIABLES.

1|

K=0

K=K¢|

!

STATEMENT NUMBER VALUE OF ISEE

55i

CALL REDUCM TO FORM THE
SUMMAT.ON MATRIX AS INDICATED
BY THE LOT ARRAY,

: CALL CASSR 1O INVERT THE

SUMSIATION MATPIX AND TEST YHE

INVERSION.

[ was THIS INvERSION ACCEPTED ?_|
o yes

DELETE THE RIGHTMOST OF THE
UNDELETED INDEP. VARIADLES.

500

COMPUTE REGRESSION SUMS OF
SQUARES ADJUSTED FOR THE
MEAN (ASSRS ) FOR ALL
UNDELETED INDEP. VARIABLES IN
THE Ith. GROUP.

COMPUTE [MAX=THE LOT ARRAY
INDEX OF THAT INDEP. VARIABLE
WHICH CALUSED THE MINIMUM ASSR
VALUE.

1B1D:1 OR THIS RUN REJECTED ?_]

IBIDS =3 CAUSES THE PRINTOUT

yes

no

"NO IDENTITY MATRIX CHECKS WILL
BE MADE ON SUBSEQUENT BIVOR

"= =73 |RUNS"IN SUBROUTINE ABT.

18108 =3
18I0 =1

VALUE OF N@BS
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o © 0 ®
WAS THE SUMMATION MATRIX AT

THIS STEP = TO THE SUMMATION
MATRIX OF THE MAIN RUN ?

no yes

CALL SUBROUTINES REDUCM
AND ABT TO GIVE FULL

PRINTOUT FOR THIS FIRST
ACCEPTED INVERSION,

IF IBIDS HAS BEEN SET=3
THEN SET IBIDS = 2.

RESTORE NPED TO!TS
INPUT VALUE

HAS THE NUMBER CF INDEP.
VARIABLES _EFT IN THE MODEL
BEEN REDUCED TO1 ?

yes no
[ RETURN | [ Lot {Imax) =1 ]
NOBS = 2
NPED =NTAPE

CALL SUBROUTINES ABT AND
REDUCM TO GIVE FULL PRINT-
OUT FOR THIS REDUCED MODEL. .

IF 1B81DS =3, THEN SET 1BIDS=2.

HAS THE NUMBER OF INDEP.
VARIABLES LEFT IN THIS MODEL
BEEN REDUCED TO 1 ?

yes no

RETURN ASSIGN A STATMENT NUMBER
VALUE OF 300 TO ISEE.

DOES k= THE NUMBER OF
| NDEPENDENT VARIABLES
IN THE Ith. GROUP ?

no yes

I=amp ?
no ]no

RETURN
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VIII.3 Programming and Conversion Notes

a. Language - DA-MRCA is coded for the IBM 7030 computer
(STRETCH) entirely in FORTRAN IV. FORMAT and DATA statements assume
eight characters per word.

b. INPUT-OUTPUT Requirements - Three BCD tapes are required
in addition to the system printer output tape. These BCD tapes have
logical unit numbers of 5, 9, and 13 where 5 is the number for the
tape unit containing the coordinates of the OCIV's and of the dependent
variable when this data is on a separate tape; 9 is the number for the
tape unit containing the analysis of variance tables which are computed
in the program; and 13 is the number for the tape unit which contains
the final comprehensive analysis table.

Two disk (or binary tape) logical units are required.
Disk logical unit 10 is used to store the coordinates of the data
points, and disk logical unit 11 is used to store the coordinates
of the OCIV's for the synthetic design points.

The input-output requirements are described for the
STRETCH in the I@D subprogram. The program listing contains a listing
of this subprogram.

c¢. Storage Requirements - CPMMUN storage requires 25461
locations. The subprograms, excluding library functions and subroutines,
require 4511 locations on the STRETCH but may require more or less on
other machines.

d. Library Subroutines and Bullt-in Functions -

ABS - the absolute value function.

EgF - returns a value of .TRUE. if an end of file has been read,
.FALSE. otherwise.

FLJAT - converts an integer to a floating point number.
FREQ(T) - the normal distribution fumnction which gives
1 T
7 j' exp [-y®/2] dy.
-

INTVL - measures the interval, in seconds, between the current entry
into INTVL and the exit from the immediately preceding TIME,
INTVL, or SETIT subroutine.

KLOK - the time in hours/minutes/seconds since the last CALL SETCLK.

170

LT T L T e e A e A T R R D T T eI e TR e




NWL REPORT NO. 2035

MING - chooses the smallest of its fixed point arguments.

SETCLK -~ used at the beginning of a portion of a program to be timed
by the KL@K subroutine.

SETEJF - this function is necessary in order to use EQF; it causes
EGF to be set to .TRUE. and termination of execution of the
READ statement when an end of file has been reached.

SETIT - see INTVL and TIME.

TIME - measures the usable elapsed time, in seconds, between the

exit from SETIT and the current entry into TIME.
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VIII.4 Program Listing

SUBTYPE,F100
2100+ SREADER
3100.$PRINTER
1) 10D+ TAPE ¢ ¢ ¢ ¢EVEN, ¢ SAVE
REEL ,PUL
90 JODWTAPE s 4 9¢ECCo o
REEL ¢NUL SO
10100+D18Ke¢0¢704
1110D+s0D1SKeee100
130 JODTAPE 49 0¢ECCo o
REEL sNMAS1D
END
SUBTYPE +FORTRANILMAP PEIN MRCA0000
DA-MRCA MULTIPLE REGRESSION COMPREMENSIVE ANALYSIS MRCAQ010
COMMON A (S5],%]1)BSDEV(S1)¢0(2601)sYY(T7000)¢X(S52)eX0(S1)) MRCAQ020
COMMON AVV(S2)YSDEV(ITO00)+AW(S]1) ¢sRECMsNDRIMVPL ¢ NNNSAV ¢NNNLOT (51 IMRCA0O030
COMMON NNL sDETERM NOBS+TOLI1+TOLI2 «ERRORNPED ITOTAL ¢« NeNDPO, ICASEMRCA0040
COMMON RSSMO, ISKIPoNJ(25)eMaFIRM(7) KNUMGKMUMMB o M] «NQ(25)410Q MRCAQOSN

COMMON NNXA s NNSAV (SOEVAKP (51 ¢51)¢BB(82)15(52¢52).PGL3I(10) MRQCAD060
COMMON IN(49410)sIRISeMIJLIMNNMy TAPE MRCAOQOTO
COMMON SELECT.I1810,1B1DS MRCADOED
MRCAQO9C
ODIMENSION EYY(T000)LET(13)¢IKEEPR(999)FORM(S) MRCAOL1 00
MRCAOL10
EQUIVALENCE (B(1602) ¢ IKEEPR(]1))e(YSDEVIEYY ) e {ICASE « |RUN) MRCAQLl20
EQUIVALENCE(LOT (LI DILETILI ) (FORM{ ) )eFIRAM(I2)) MRCAQ130
EQUIVALENCE INNXAJNENLIM) MRCAQl40
MRCAQISC
INTEGER TAPE MRCAQI1I60
MRCAQDL 70
LOGICAL EOF MRCADBC
MRCAQ190
DATA LIMOB(7000) FIRMF (BM(]12 YeSEVENIBHNTIF10e4) JCPARENLIINI) MRCAD200
DATA HANDS(BMHIMAND) o IVORS(SMIIVOR) )«BIVORSIBH(BIVOR) ) MQCAO210
MRCAD220
CALL SETEOF MRCAD0ZIAC
REWIND S MRCAQ240
REWIND 9 MRCAQ2%0
REWIND 1) MRCAQZ60
FIAM(1 )uF IRNF MRCAD270
S40) CALL SETCLK MRCAD280
CALL SETITY MRCAO290
SELECT=MANDS MRCADI00
mand MRCADIIO
PRINT 2066 MRCA0I20
2064 FORMAY (4OM2DA=MRCA +4¢ OQUTPUT FRON PROGRAM VERSION 2/ 1/066) MRCA0JIIO
AEAD 593.PGLS MRCADISO
895 FORMAT (10A8) MRCADISO
PRINT 504 .PGLE MRCASISO
READ S79.: 1R I SINRBVP {NDR VL (NPE ¢ NDPO o TAPE ¢ IVORGO A FO 1810, TOL L IMRCACITD
1¢TOLI2FORM MRCAQJ82
879 FORMAT (21203130811 ¢12e11¢1X2E903:8A8) MRCAQISO
PRINT 978 MRCAQSOD
978 FORMAT(1I8MOIR (S NR MVP NDR MYBPL NP NDPO TAPE [VORGO NFD (810 MRCAQS10
1 TOLI roL12 FORM = INPUT DATA DESCRIPTION =CARD TYPE 2) MRCADS20
PRINT 976,1R, 1S NR,MYP NDR RYPL (NPE NDPO o TAPE 4 | VORGO NFD IB 1D+ TOL IMRCAQS 2D
11eTOLI2FORM MRCAQNAD
Q76 FORMAY (1M00 J2e 1Mo 23t 1Ko II)02(INa112e¢2(0%0l1)eBXel iR I2oINI10IMRCADSSD
Ie2(IXeEDeI N 2K eBALY MRCAQS60
Ne[RelS MRCADLTO
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NPED=1 MRCAQA80
NMNNEN4+ | MRCAQA9Q)0

I TOTAL =NNN MRCAOS00Q
IFC(N=1 )8 (N=50))1107¢11074107 MRCAO0S10
NSAV=EN MRCAO0S20

1F (NFD 299929993000 MRCA0S230
FIRM(2)=SEVEN MRCAOSA0
KNUM=T? MRCAOSS0

KM M= MRCA0S60

GO TO 3001 MRCAQS70
FIRM(7 )sCPAREN MRCAQ580
KNUM=NF D MRCAQ590
KMyuM=NFD-] MRCAQ600
ICASEsO MRCAQG610
NRsNR+ | MRCAD620
INDXs R+ ] MRCAQ630
1B1D0S=1 MRCAQG640
I1BID=1B1De] MRCAQ650
IVORGO=1VORGO+] MRCAQDB60
IF(TAPE 841048 MRCAQ670
1APE =2 MRCAQ680

GO T0 11 MRCAQ690

8 IAPE=sS MRCAQ700
1SK 1P} MRCAO710
TAPE=2 MRCAO720
RSSMO=-5,0 MRCAQ730
NNNSAVED MRCAQ740
IFL1IS)YE3413012 MRCAQ750

A ime IR+ MRCAQ740
LiMeuL ™ MRCAQ770
NNz IMe ] MRCAQO780

GO TO 16 MRCAD 790

12 READ 9241 IN(KsL) ol 22 e10)eKe]01S) MRCACBOO
92 FORMMAT(6D12) MRCANBLIO
PRINT 29+ L{INIKL)sLm]l ¢10)sK8101S) MRCA0820

29 FORMAT (35M0PRODUCT TERM DESCRIPTIONS <CARD TYPE 3/1M /(IXe10]1341H/MRCACBIO
1101201 /7:1013¢1M70101301H2)) MRCAOB4O
AlmelRe] MRCAQES0
LiMa LimelsS MR AQB60
NNe| [Me]) MRCAQ870

00 20 KXzl ,418 MEICA0BRD
00 20 Ls1410 MRCAQBI0

20 INIKJL ) INIKLY®] VRCAQ900
18 GO TOt(21+22422:22)41VORGO MRCAQ910
C READ I1vOR GROUPING VALUES MRCAO920
22 READ 10041QM1«INJIL)elnleM]) MRCAD930
100 FORMAT(12:2613) MRCAQ940
PRINTY [ 41QeMIsINJII)eln] M) MRCAO950

1| FORMAT(SIMOIO M)l NJtlielele2rs0eeM] «CARD TYPE /1% ¢12¢2Xe12¢2XMRCACT60
1¢2%13) MRCAQ9TC
GO TOI221421:¢221:23)41VORGO . MRCAQ980

€ READ BiVOR GROUPING VALUES MRCAQ990
23 READ 100.,MB,(LOTLI)elelemB) MRCA 1000
00 90 =) .mM8 ) MRCAL 010
T TRPY] MRCA1020

99 NQ( 1) OT (MMM) MRCAL1030
PRINT 01 .M8,(LOTL])ele] MB) MRCA1040
101 FORMAT (411OMB LOT(1)e1%1420000eMD =CARD TYPE S/1X012:2X¢2'31J)MRCAL080
21 IF(NDR)26:26.40 MRCAL 060
40 READ 41+ (IKEEPR(I)el=] «NDR) MRCAL1070
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41 FORMAT (2014)

PRINT 4114 (IKEEPR(1)s]31¢NDR)
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MRCA1080
MRCA1090

411 FORMAT (SIHONUMBERS OF SELECTED INPUT DESIGN POINTS ~CARD TYPE 6/(2MRCA1100

26 IF(MVP)25,25,466

1018

)

466 REWIND 11

0O 79 Kz1 MVP

(o]
C READ IN POINTS FOR VARIANCE OF PREDICTIONJ.COMPUTE PRODUCT TERMS,

79 WRITE(11)(X(])el=m2,
35 PRINT 594,PGLB
594 FORMAT (1M1 410AB)Y

C INITIALIZE SUMS TO ZERO

CAL

NNS
NNL
Do
0o

L ROIT

AVaNN
NN

2 1=) NN
2 J=l NN

2 S{14J)=20.0
C READ INPUT DATA

5

59

5006
3506

5008

$007
8

v

REWIND 10
TAPE= 1 APE
M=20

CALL RDIT

1F(M])31.55,31

LIM)

WRITE(10)(X(I)eI=24NN)
IF (NOPO)S50084500645008

PRINT SS506sMs(X(1)elx2.NN)
FORMAT (1H [442XeOF1346/7(TX9F13,6))

GO T0 7

1F (NDPO=1)7+500747

PRINT 6eMolX(T)ela2iNN)

FORMAT (1M ¢ 1442XeTE1Te8/(7X07E178))
DO 3 I=24NN

C GENERATE TRIANGULAR SUMMATION MATRIX

3

3

2097
2096

2098
15

SilelN)=Stlel)eX(])
0O 3 J=]l«NN

S(le)eS{lad)+XIT)NX(J)

GO TO0 S

PRINT S594.PGLB

IF((M=2)%(LIMOB=M))2097:2095:2095

PRINT 2096
FORMAT (34M]1TO0 FEW OR TOQ MANY DATA POINTS
GO TO 3400

PRINT 1S

FORMAT (1 THOSUMMATION MATRIX)

S(lel)am

RECM=] +0/8(141)
C FORM SYMMETRICAL NORMAL MATRIX A

00 9 I=1.NNN

LOT(1)=0

00 9 Js]¢NNN

AlleJ)nS(tled)
AtJel)=S(Led)

C FORM MATRIX WHICH SAVES A

9

AKP (14J)2S(14¢J)
AKP (Je1)uS(1ed)

CONT INUE

D0 33 s}l NNN

33 PRINT 16¢tA(TeJ)eJu] ¢NNN)S(]NN)

PRINT 16¢(S(JeNN)sJo]«NN)
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MRCAL1I10
MRCA1120
MRCA1130

MRCA1140
MRCA1150

MRCA1160
MRCA]1170
MRCA1180
MRCA11390
MRCAiZ00
MRCA1210
MRCA1220
MRCA1230
MRCA1240
MRCA1250
MRCA1260
MRCA1270
MRCA1280
MRCA1290
MRCA]1300
MRCA1310Q
MRCA1320
MRCA133¢C
MRCA1340Q
MRCA1350
MRCA1360
MRCA1370
MRCA1380
MRCA1390
MRCA1400
MRCA1410
MRCA1420
MRCA1430
MRCA1440
MRCA1450
MRCA1460
MRCA1470
MRCA1480
MRCA1490
MRCA1590
MRCA1S510
MRCA1520
MRCA]1530
MRCA}18a40
MRCA15%0
MRCA1560
MRCA|1570
MRCA580
MRCA1590
MRCA1600
MRCALG10
MRCA1620
MRCAL1630
MRCA1640
MRCA1650
MRCA1660
MRCAL1670
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16 FORMAT (1HOsTE17e8/(1Xs7E1781))
DO 679 1=14NNN
B1)=S(1sNN)
¢ SAVE CONSTANTS
679 BB(11=8(1)
C INVERT A AND SOLVE NORMAL EQUATIONS
96 NR=NR-1
1F (NNNSAV)S00,4501 4500
501 IF((1VORGO-3)#%(1VORGO=-4),500.:502.500
302 IF(1S1DEQe2)1B1IDS23
500 KOUNT=0
CALL ABT
IF(1BIDS+EGe3)IBIDS=1
2050 IF(ERROR) 221456604833
833 IF (NNNSAV)2008,2008483
2228 1SXIP=2
GO TO 660
C 1SKIP=2 MEANS NO FINAL COMPREHENS!VE
' 5660 IF(NNNSAV)S60.6600¢39
660 DO 60 I=24NN
C COMPUTE THE AVERAGES OF EACH VARIABLE
60 AVV(I)=S(1¢1)/5(141)
IF(NOBS<EQe4)ISKIP=2
NPED=NPE

PRINT 61 +(1¢AVVII+1)el=loNNN)

61 FORMAT (STHCAVERAGES OF INDEPENDENT VARIABLES

1EZ(6L134E1768)))
IF(ERROR)394¢39483

3% IF(NDR+MVP)B3483+62
62 PRINT 594,.PGLB
IFINNNSAV)IG61] 461142023
2023 PRINT S760¢SELECTs(LOT(1)eln]1NNNSAY)

5762 FORMAT (32HO INDEPENDENY VARIABLE SELECTION +AB841XeS111)

611 IF(NDR)S3463.44
44 PRINT 64
£4 FORMAT (32HOSELECTED INPUT DESIGN POINTSsee)

C QCISK READS DATA FROM DISK(OR BINARY TAPE)FOR USE AS SELECTED DATA
C INPUT OBSERVATIONS AND CALLS PREVAR TO COMPUTE PREDICTED VALUES AND
C PREDICTION STANDARD DEVIATIONS,

CALL RDISK(KOUNT, INDX)

&3 IF(MVP)720247202446

46 REWIND 11

45 PRINT 43

43 FORMAT (27THOSYNTHETIC DESIGN POINTSeee)
D0 80 K=l MVP

(4}

READ(11)(X(]1)oelm24L1IM)
80 CALL PREVAR(KOUNT  INDX)
7222 IF(KOUNT)I83483,47201
7251 1F(MyPL )J30224202243022
2N22 PRINT 824 (KeYY(K)sYSDEVIK)eKu]l+KOUNT)

NWL REPORT NO. 2035

MRCA1680
MRCA1690
MRCA1700
MRCA1710
MRCAL720
MRCA1730
MRCA17490
MRCA1750
MRCA1760
MRCA1770
MRCA1780
MRCA1790
MRCA1800
MRCA1810
MRCA1820
MRCA1B30
MRCA1840
MRCA1850
MRCA1860
MRCAL1870
MRCA1880
MRCA1890
MRCA1900
MRCA19i0
MRCA1920

AND DEPENDENT VARIABLMRCA1930

MRCA1940
MRCA195¢C
MRCA1960
MRCA1970
MRCA1980
MRCA1990
MRCA2000
MRCA2010
MRCAZ2020
MRCA2030
MRCA2040
MRCA2050
MRCA2060
MRCA2070
MRCA208C
MRCA2090
MRCA2100
MRCAZ110
MRCAZ]20

READ IN POINTS FOR STANDARD DEVIATION OF PREDICTION«COMPUTE AND WRITE.MRCA2130

MRCA2140
MRCAZ150
MRCA2160
MRCA2170
MRCAZ18C

82 FORMAT (90HOITEM NUMBER PREDICTED VALUE'AND PREDICTION STANDARD DEVMRCA2150

1IATION FOR INDIVIDUAL OBSERVATIONS/(3(1%5:2€E17¢8)))

GO TO 82
3722 PRINT 86 (KaYYIK) s YSDEV(IK) oKu] +KOUNT)

MRCA2200
MRCA2210
MRCA2220

86 FORMAT (36HIITEM NUMBERPREDICTED VALUEJAND PREDICTION STANDARD DEVMRCA2230

11ATION FOR THE PREDICTION LINE/¢ J(18:2E1708)))

33 IF(NR)1074103484
C RESET MATRIX DIMENSIONS

84 CALL TIMEIXYIT)

175

2 n ST RTINS woas - - Wy I W g o~ o S g S
g g v PGP : e " >

MRCA2240
MRCA2250
MRCA2260
MRCA2270

L e oo, WIp—_—



NWL REPORT NO. 2035

4009 FORMAT (AHARUN4I5+¢SH TOOKF13.8:94 SECONDSs)
PRINT 40094 IRUNWIXYIT

CALL
N=NSAV
NNzNNSAYV
NNN=2NEN

SETIT

C FORM NEW MATRIX A WITH SMALLER DIMENS[ONS

701

85

107
507

103

127
128

2066

0C 701
LOT(1)=1

I=1 481

READ 85+ (LOT(L)eLml +NNN)

FORMAT (S5111)
NNNSAVzNNN

ERROR=0,9

CALL REDUCM

NNzN+2
GO TO 96
PRINT 507

FORMAT (29HOCARD TYPE 2 1S INCORRECT, )

GO TO Se00Q

CALL TIME (XYIT)
PRINT 4009¢IRUNXYIT
GO TO(1264127¢127¢127)¢1VORGO

NNNSAV =NEN

GO TO(1264¢128¢129:128)+1VORGO

CALL SETIT

PRINT 2066

FORMAT (1H2/6%H B E G I N
ILATIONS)
SELECT=1VORS
WRITE(9,2068)

2768 FORMAT (1H2+119X/TIH08 E G I N

2093

129

CALL IVOR

CALL TIME(XIT)
PRINY 2093¢XI1T
FORMAT (2IMLIVOR EXECUTION TIME (F11¢5.99 SECONDS,)
GO TO(12641264126¢129)1VORGO

CALL SETIT
PRINT 2067

IR1 ANCE TABL E S.e9X)

1 VOR ANALY SIS OF

v

! VOR REGRESSION CALCUY

A

2067 FORMAT(1H2/67™ B € G I N B I VOR REGRESSION CaAaLC

IVL AT ONS)
SELECT=B]VORS
WRITE(9,20689)

2069 FORMAT(IH2:1tORX/TIN08 E G I N B | VOR ANALYSLIS OF v

2098
126

2062
2081

2063

2065

1AR 1 ANCE
CALL BIVOR

TABLE SsaTx)

CALL TIME(XIT)
PRINT 2098¢X1T
FORMAT (22MLBIVOR EXECUTION TIME +F11.8.9 SECONDS.)
CALL INTVL(XIT)

END FILE ®

REWIND 9

END FILE 13

REWIND 13

READ19,2081LET

FORMAT (1 5A8)

IF(EOF (XY1T))GO TO 2089
PRINT 2061 ..LE7

GO TO 2062

REVIND 9

o

e ST S
. . -
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MRCA2280
MRCA2290
MRCA2300
MRCA2310
MRCA2320
MRCA2330
MRCA2340
MRCA2350
MRCA2360
MRCA2370
MRCA2380
MRCA2390
MRCA2400
MRCA2410
MRCA2420
MRCA 2430
MRCA2440
MRCA2450
MRCA2460
MRCA2470
MRCA2480
MRCA2490
MRCA2500
MRCA2%10
MRCA2520
MRCA2530
MRCA2%40
MRCA2%50
MRCA2%60
MRCA2%70
NRCA2580
NRCA2590
MRCA2600
MRCA2610
MRCA2620
MRCA2630
MRCA2640
RRCA26%0
MRCA2660
MRCA2670
MRCA2680
MACA2690
NRCA2700
NRCA2T10
MRCA2T20
NRCA2730
MRCA2740
MRCA2780
NRCA2760
NRCA2770
MACA2780
aRNCA2T90
NRCAZ800
WRCA2810
MRCA2820
NRCAZ030
MRCAROSSO
MRCA20950
NRCA2000

MRCaA2070
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2094 READ(1342061)LET MRCAZ880
IF(EOF (XYIT))IGO TO 2092 MRCA2890

2091 PRINT 2061] ¢LET MRCA2900
GO TO 209s MRCA2910

2092 REWIND 13 MRCA2920
CALL INTWLIX]IT) MRCA2930
PRINT 4008¢XIT MRCA2940

4008 FORMAT (24MLCOMPRENENSIVE PRINTOUTSF13e9¢9H SECONDS ) MRCA2950
2010 CALL KLOK(XIT) MRCA2960
PRINT 2013¢X17T MRCA2970

2013 FORMAT (44NATOTAL PROBLEM RUNNING TIME (HRSe/MING/SECe I=A8) MRCA2980
GO TO %401 MRCA2990

221 STOP MRCA3000
%400 RETURN MRCA3010
END MRCA3020

T SUBTYPE ; FORTRANLMAP (PR IN ABT00000
SUBROUT INE ABT ABT 0010
COMMON A(S]¢5]1)eBSDEVIS]I)IBI2801eYYIT00L)eX(52)eXD(51) ABT 0020

COMMON AVV(S2)¢YSDEV{IT7000)¢AW(S] ) sRECM,NOR . MVPL ¢ NNNSAV(NNN,LOT (51 )ABT 0030

COMMON NNL s DETERM NOBS s TOLRS « TOLCES ERRORINPED [ TOTAL s NeNDPO, [CASEABT 0040
COMMON RSSMOGISKIPINJI(251eMAFIRM(T) o KNUMIKMUMMB ML 4NQ(25)010 ABT 0050

COMMON NNXA «NNSAV  SDEVIAKP (5] +¢51)+BB(82)¢S(52¢52)PGLB(10) ABT 0060
COMMCN IN(49410)eIReISML I IM NN MINTAPE ABYT 0070
COMMCN SELECT«181D41B1DS ABT 0080
DIMENS ION ESTER(JI0)ITREG(I] ) «FGRAPH IS )+ 10BF (30)+CMPFR(I0) ABY 0090
DIMENSICN CH] (3D) ABTY 0100
CIMERNSION EYY(T7000) ABT 0110
DIMENSION LIT(52) ABT 0120
EQUIVALENCE ¢t 1DGO«NOBS) ABT 0130
EQUIVALENCE(LITt])B(1396)) ABT 0140
EQUIVALENCE (ESTEP (1 )+B(201))+(IFREG(]1)B(231)) ABT 0150
EQUIVALENCE (FGRAPM{]1)1.B126211)+t108F(1):8(327)) ABTY 01690
EGUIVALENCE(CMPFR (] )¢3(25T71)4CH1LL1)eBLIBY)) ABT 0170
EIAVIVALENCE LEYV o YSDEV) ABT 0180
DATA RLANK (BM ) ABY 0196
DATA XXX {AWHX ) ABTY Q200
DATA 222t8ne ) ABT 0210
T3] CALL INTVLIXIT) ABY 0220
CaLL GAUSS . ABY 0230
CaLL INTVLIXIT) ABT 02a0
PRINT 98T 1CASE..x1T ABT 0230
Q8T FOQMAT(IONOMATRIX INVERSION (16.21M s+oEVALUATION TINE 0.F|J.8.9%A87 o2eC
1 SECONDSe) ABY 0270
748 IF(ERNROR)106.9980100 ABT 0280
998 IF(DETERMNM ) 1061004999 ABT 0290
999 PRINT IS.0tTEAM ABT 0300
A% FOAIMAT LI INODETERNM INANTE 451 S) ABT 0310
t PRINT &4 INVEASE AND SOLUTION TO SIMULTANEOUS EQUATIONS ABT QJ20
PRINT 1? adtT 0330
17 FORMAT (SOMOINVERSE OF WMATRIX A AND SOLUTION TO SIMATANEOUS EOUATIABTY 0340
10NS) ABY 0J9%0
D0 97 | & ) JNNN ABT 080
87 PRINT 10«tAt eJ)o el NNN) BILY ABT 0370
16 FORMAT (TEL 7.0) ABT 0380
$30e0, ABT 03%0
00 20 11NN ADT 06000
27 $8NedSRBIINIBB(1)Y ABT 0010
SSEaSINML NN, ) ~SSR ABT 0820
ATSSeS INNL oML ) =S {1 o NNLISISILNNL) /STl )Y AT 04830
ASSNeATSS~-S8E ABT 28480
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CORSQ=ASSR/ATSS ABT
IF(CORSQ)109:22¢23 ABT
23 COR=SQRT(CORSQ) ABT
FNa2NNN ABT
IF(SI{1e1)eEQsFNIGO TO 3} ABT
SDEVSQ=SSE/(S(14¢1 )=FN) ABT
IF(SDEVSQ)108424424 AB?
31 SDEVS0=x0.0 ABTY
24 SDEVaSCRT(SDEVSQ) ABT
D0 21 =] oNNN ABT
1IF(A(141))996:997.997 ABT
997 BSDEV (] )=SDEV#SORT(A(l41)) ABT
21 CONTINUE ABT
GO TO(1%041%11150)41B10S ABT
180 CALL IDENTM ABT
CALL PRINTM ABT
IF(]DG0GTe1)GO TO 5] ABT
GO TO(1%1.1814+:%2)4181DS ABT
152 PRINT 1%23 ABT
153 FORMAT (65HONO IDENTITY MATRIX CHECKS WILL BE MADE ON SUBSEQUENT BlABT
1 VOR RUNSe) ABT
151 PRINT S84 (1+B8SDEV(I)elnl NNN) ABT
58 FORMAT ( (3SHOSTANDARD DEVIATION OF COEFPFIC!ZNTS 1/(8L15¢E17.8))) ABT
C THE G FORMAT 1S USED TO PRINT THE MAXIMUN NUMELR GF S1¢NIFICANT DIGITSABT
C IN THE GIVEN NUMBER OF COLUMNS, AST
1078 PRINT 574,SSE ABTY
874 FORMAT (1H0s G184384 RESIDUAL 02 TRNOR SUM OF SQUARES.) ABT
1075 PRINT S7%,ATSS AT
B78 FORMAT (I1H « G18.:484 TOTAL SUR OF SQUARES AQJUSTED FOR THE MEANLABT
) ABY
1076 PRINT S76,ASSR ABT
%76 FORMAT (1H ¢ G18:301 REGRESSIDN SUR OF SQUARES ADJWSTED FOR THE ABY
I NEAN. ) FY-} 1
1077 PRINT S77,C0R ABT
877 FORMAT (1IN « G18.:300 CORRELATION SOEFEICIENT (R)4) ABY
1578 PRINT ST8,SDEV ABT
878 FORMAY (IM o GIBISK SGUARE ROOT OF RESICUAL VARIANCE,) AR
CALL CHMPRIASSRSSE NN COM B PGB LET MNSAY NG ) ADT
1P (NNNSAV)IZ2083.2086,2083 ABY
2084 RASSMO=ASSR AT
ESSIs SSE ABY
NI wit=NNN o ABY
NRO « N ADY
WRITE(13,209))10GL0 . ap?
2003 FORMAT (1M] 1048+ 39X) aDY
WRITE (13:208%)0} apY
2008 FORMAT (140, 30DENASES OF FOECCOM OF FTANOR YARIANCE » (14:78Y) ADY
WRITE 113:.20088) Abt
2088 FORMAT (10 TPHCOEPPICIENT OF  NO (DF) OF * FOR REGADT
1RESSION ON INDEPENDENY ¢8I X/71N DAMDETEMNINAT ION OELETED vasY
2481A8.€S OCLETED valiaABLES VARIABLE SELECTION: ISR/ 120X ABT
WRITEL13.2090)1C0R8C AT
209C FORMAT ({1M0FQaTe N « MAIN HUNDIX) AT
60 t0 3¢ aBtY
2983 CALL "ix ARTY
12 (R3SMO)  56,2006.2000 - ASY
2786 MRZ2eNDO N apY
FOUT: (RSSMD-ASSR)S(PFLOATINR] ) HZ/TESSOLOAY (NRDR)) ARTY
IF (M) Q0 )P OUTPPPIPIPP 9 ; 990G AQY
WRITEI13:.2000)1CONLQ MR FPOUTLIT aBY
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0450
0460
0470
0480
0490
0500
081¢
0529
08230
0%40
0550
0560
0570
0%80
05990
0600
0610
0620
0630
640
0650
0660
080
G680
0690
0roc
6710
07ed
4730
o740
o7%0
0760
0T
orae
9rec
080C
-] B ¥+
w820
0830
0840
08%0
casl
0870
o8ad
0890
0900
0910
o920
0930
0940
09%0
0960
1kl ]
0980
0990

1010
1020
1o
1030
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2289

Se
55

36

B

,
-

39

2%
28

7282

727
728
T 299

29

e
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FORMAT (1H +FQeTei3Xe12¢22XF1463¢7Xe32A1)
GO TO 89

IF(RSSMO+10)55:59.99

WRITE(13,2093)PGLB

WRITE (134356)

ABT
ABT
ABT
ABT

ABT

CORMAT ( 1HO80MHNO FINAL COMPREMENSIVE PRINTOUT SINCE MATRIX FOR MAJAGT

IN RUN COULD NOT BE INVERTED ,39X)
RSSMOs~1.0
IF(NPED)99¢8660499

TOMPUTE PRECICTION ERROR

REwWIND 10

£ES2 = 0.0

DO 26 K=l M

READ (10)1IX(1)e1lm2 NNSAV)
1F (NNNSAV)29,2947280

NNw =2

DO 7299 1s2,1TOTAL
ITLOT(1)1)1044T72747299
X(NNW)IeX(])

NNW sNNW -+ |

CONT INUF

YYix)z8¢t1)

D0 3C [22.NNN
YY(K)}2YYIK)eX(1)9B (1)
EYYIK)I3X(NNSAV)=YY (K]}
£€2s ES2 + EVYVIK)IREYY(IK)
TONT INUE

QEWIND 10

I IOMPYUTE QANGE OF ERRORS

CALL MAXMIN(MIEYYEYYULEYYL ¢ IXMAX e IXMIN)

COFTZRMINE &ND PLOT OISTRIBUTION OF ERMORS, PERYORR CHI SQUARE TEST
T ir PQSSIBLE

£

ty
)
3
td

233a

2042
24 )
594

2518
Torer
2311
wu26

201Y
2916

v e T e . hagtal 2 il

ERANGE = EVYU=-EYYL

EDELYTA = ERANGE 3040

FERYEP 1) « EvYL + EDE' TA

IFREDIYY & J,.0

0O 2303 11s2:430

I1"QEG (1) ©

ESTERPILi} o ESYER{l1«] )eCDELTA

ESYEP AT )e EYYY

IFREQL I ) D

OC 2004 tlepem

Jue (Evvill)=EvrvL 1 /800 TA

IFQEQ LI+ ) e | FREQLIJIe] )#+)

I®REQ (I )0 IFREQII0 IS IFREQ LY

Call UHISUIMESTEP G IFREQ St ¢11:3DEVIOF CHIsCHMISUNG OBF CNIFR)
1 INOPO=) 1502030275028

SR INT %94 .B0LA

FORWAT (1] 4§ 0A8)

IF (NNRAVIRO01442013.2018

BRINY ST60+SELECT» (LOTILIO) L 100 ¢NMNNSAY)
FORMAT (IZ2M0 INODEPENDENT VARIABLE SELECTION +ABIX 911
PRINY %828 (X VVIK) EYPIK)sKa] W)

FORMAY ( {QOMII TEN NUMSER PREDICTED VALUE AND PRECICTION EIRROR )/
F4311%.,2F18.:06)))

PRINT 5928.E82

ORINTY %04 ,.,8CLD

1F (NNNSAY 1201 7:2016.2017

PRINY AT7600:SELECTHILOTILIO) L 100 JNNNSAY)

R INTY 2008 .E0ANGE
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ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
aABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABY
ABY
ABY
AT
ABT
ABT
ABY
ABY
ABTY
ADY
ABY
ABY
ABY
ARY
apy
ABT
ABTY
ADY
ADY
ABY
AT
ABY
ABY
abY
ABY
ADTY
ABTY
ABY
aSY

1040
1080
1060
1070
1080
1090
1100
1110
1120
1130
1149
1150
1160
1170
1180
1190
12¢¢C
1210
1220
1230
1240
12%0
1260
1270
1280
1290
1300
1310
1320
1330
1340
13%0
1360
1370
1380
1390
1400
1410
1420
ie30
1040
145¢
1080
1470
1ap~
1490
1900
%10
1820
150
1540
1850
1960
1870
19580
1990
1600
1610
1820
1630
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20355 FORMAT( AOHOPREDICTION ERROR FREQUENLY DISTRIBUTION
1 9H RANGE = F1S5.4, /
228H UPPER BOUND FREQUENCY 2X4¢

3 FHBAR CHART 461X «3HCHI ¢IX¢6HOBS FR«3IXTHEXPD FR)

2038

593728

2021
2020
2008

DO 2032 11 = 1430

IFGRPHx IFREQ 1L

IFGRPH xMINC (68, IFGRPH)

IF ([FGROH)2024 202642024

DO 02T 1FGa | ¢ IFGRPH

FGRAPH! (FG) XXX

IFGRPH= [FEAPH +1

1F t IFGPPH-66)12033:20344+20308

FGRAPH (651n222

GO TO 202358

CO 2027 IFG =]lFGRPH6%

FGRAPH(I1FG ; aBLANY

IF(NDPO=1)20284:2030,2028

IF(CHI (1111204042041 204

PRINT ZO29«ESTEPII11.IFREQUIT ) FGRAPH

GO TO 2C32

PRINT 2029+ESTEP({1)14IFREQCI1 )} +FGRAPHCHI(II)IOBF (11} CMPFR(I1)
FORMAT (2XaF 158 e2X e IS 46X e IHI16BAL 01 XeF8e301X3]15:2XeFGe3)
G0TO 2n32

IF(CHLI (11)12042:2043.2042

PRINT 2031 .SSTEP(11)1FREQ(11)FOGRAPM

GO TO 2032

PRINT 2031 ¢ESTEP(I1)+IFREQ(I]I}¢FGRAPHCHILIII)IVIOBF(I]).CRPFR(11)
FORMATI2XeE1TeBe2XeI5¢6XeTHTI 16BA 01X cFBeI0IX0IBe2XeFGe3)
CONT INUE

IF(iDF 12048.2048,2049

PRINT 2080

FORMAT (1X 431 HCHISQUARE COULD NCT BE COMPUTED)

GO TO %6840

PRINT 2039¢CHISUM, [DF

FORMAT (12H CHISQUARE = F1%5,3,224 DEGREES OF FREEDOM = 58 )
GO TO 36860

PRINT 594 ,PGLB

IFINNNSAVIZ2019¢2018,201%

PRINT S760¢SELECTo(LOT(LIOG)+L1Qn1 NNNSAY)

PRINT 78+ (KeYYI(K)IEYY(K) oKr]l M)

FORMAT ( (49O I TEM NUMBER PREDICTED VALUE AND PREDICTION ERROR )/

1(ICIB12E1566)))

PRINT 5528¢E82

FORMAT (27HCCHECK ERROR SUM OF SQUARES /1H +G618)

PRINT 594,PGLE

IF (NNNSAV)20214202042021

PRINT S7T604SELECT(LOTILIQ) LIGu] ¢NNNSAVY)

PRINT 2006 ¢ERANGE

FORMAT ( 4A0HOPREDICTION ERROR FREQUENCY DISTRIBUTION /

1 9H RANGE = E15¢64 /
228H UPPER BOUND FREQUENCY 22X
3 OHBAR CHART 61X eINHCHI ¢ IXs6HOBS FRIX ¢ THEXPD FR)

104
504

- 4 505

'\

GO TO 2038

PRINT 504

FORMAT (36HOA RERUN CARD 1S MADE UP [NCORRECTLY)
ERROR==~],0

GO TO 3661

PRINT 505

FORMAT (2B5HOMATRIX FPAILED TO IMVERT,)

GO T0 83
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ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
BT
ABT
ABT
ABT
ART
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ADT
ABT
ABT
ABT
ART
ART
ABT
ABT
ABT
ABT
ABT
ABT
ABT
ABT
AT

ABT

1640
16%90
1660
1670
1860
169¢C
1700
1710
§720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
18%0
1860
1876
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220

2230
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506 FORMAT (22HOVARIANCE 1S NEGATIVES)

GO TO 83
109 PRINT 503

303 FORMAT (SSHOTHE SQUARE QOF THE CORRELATION COEFFICIENT

GO TO 83
996 PRINT 99%

ABT 2240
ABT 2250
ABT 2260
ABT 2270

[S NEGAT[VE.)ABT 2280

ABT 2290
ABT 2300

995 FORMAT (67THCAN ELEMENT OF THE MAIN DIAGONAL OF THE INVERSE MATRIX I1ABT 2310

1S NEGATIVEs)
B3 ERROR=140

GO T0 3661

S660 ERRORz2060
S661 RETURN

END

SUBTYPE+FORTRANLMARPPBIN

SUBROUTINE BlVOR

BIVOR-BACKWARD 1VOR=INDEPENDENT VARIABLE SELECTION SUBROUTINE FOR THE

ORDERING OF INDEPENDENT VARIABLES ACCORDING TO MAGNITUDES OF

REGRESSION SUMS OF SQUARES,

COMMON A (%51 +51)+BSDEVIZ1)eB(2801)eYY(T7000)eX(52)eXD(51)

COMMON AVV(52) 4 YSDEV(T7000)+AW{S]) ¢ RECMeNDR s MVPL ¢NNNSAV NNN+LOT (51 )B8IVOR060
COMMON NNL 4DETERM NIBS+FOLRS s TOLCES+ERROR ¢NPED+ ITOTAL « NoeNDPO, ICASEBIVOROTO

ABT 2320
ABT 2330
ABT 2340
ABT 2350
ABT 2360
ABT 2370
B81VORO00
B8IvORO10
BIvomozo
B8I1VORO30
B81VOROQaQ
BIVOROSO

COMMON RESMO, [SKIP NJ(25) MaFIRM(7) o KNUMKMUMMBM] ¢ NQ(25) 410 81VOROBO
COMMON NNXA JNNSAV s SDEVAKP (51 ¢31)¢8B(52)¢5(52¢52)«PGLB(10) ®1VORN90
COMMON IN(4941034IRaIS ML ¢ JLIMINN M{NTAPE BIVOR100
COMMON SELECTIBIDIBIDS BIVOR11O
DIMENSION LAT(S1) BIVOR120
EQUIVALENCE (LAT «XD) B8IVOR130
EQUIVALENCE (NIBS+ 1DGO) BIVOR140
Ma COUPLED WITH THE VARIABLE LL(IN CMPR) CONTROLS THE PRINTING OF BIVOR150
ANALYSIS OF VARIANCE TABLES. 81VOR160
NOBS=1 BIVOR1IT0
SAVE NPED BIVOR180
NTAPE=NPED 81VOR190
KNUM= =~ | B1VORz00
KNUMz=1 LETS CASSR KNOW THAT BIVOR(INSTEAD OF JVOR)|!S BEING USED, 81VOR210
NPED=1 B8IVOR220
ASSIGN 551 TO ISEE BIVOR230
Maz0 BIVOR240
GO TO(1422)4ISKIP BIVOR250
1 WRITE(13+103) B8lVOR260
103 FORMAT (S6HO%## B8 | VO R F I NAL COMPREMHKWENSTI VE #2BIVOR270
1084X/120X) B1VOR280
22 DO 101 131451 BIVOR290
101 LOT(1)=0 BIVOR200
ITOTAL =1 BIVOR310
DO 102 1=)4MB BIVOR320
102 ITOTAL®ITOTAL+NG(]) 81VOR330
ISTART=aITOTAL+} BL1VORIA0
IF(ISTART=51)10641074107 8I1VORISO
106 DO 105 [=]START+S) BIVOR230
105 LOT (1)Y= BI1VOR1IT0
107 DO 200 1=f.M8 B81VOR3BY0
1DUMEO 81VOR3I90
ITOTAL=ISTART=} B1VOR40U
ISTARTsISTART=NQ(]) 8I1VORA10
NOQ=NQ (] ) 81 voRa20
JSAVE= | TOTAL 81VORe30
JAOTe[START=] 81voRaap
DO 800 X=} NGO 81vOoRas)
181
" —— —




351

501

ur
Q
(o]

301

300
20a
400

424
402

190
324
$25

09

526

202
299%
600
200
220
221

GO TO ISEE
ERROR=1 ,0

CALL REDUCHM

CALL CASSR{IDUMKGO)
GO TO(S00¢501) KGO
LOT (JSAVE ) =]
JEAVE=USAVE=~]

GO TO 600

AOT=ISTART=-1

KASSR=0

DO 2300 J=]STARTITOTAL
IF(LOT(J))1301¢3014300

JAOTaJLOT+1

KASSRaKASSK+1
AW(KASSR)=B(JAOT)# (B (JLOT)/ZA(INOT ¢ AOT})
LAT(KASSR)sJ

CONT INVE

IF (KASSR=112214400+404

IXMINS]}

GO TO 402

CALL MAXMIN(KASSRIAWIAMAX AMING TXMAX . IXMINY
IMAXSLAT({IXMIN)

IF{IBIDeNEs2sORs 1DGONEL} )GO TO 100
I810S=3

181D=1
GO TO(524¢526)NOBS

IF (NNN=NNNSAV)525,526.92%

ERROR=20,0

CALL REDUCM

CALL ABT

IF(1BIDS+EQe3)IBIDS=2

NPED=NTARE

IF (NNN=2)220,220+526

LOT(IMAX )l

NOBS=2

NPEDsNTAPE

ERROR=040

CALL REDUCM

CALL ABT

IF(IBIDS.EQe3)IDIDS=2

TF ENNN=2)22042204599

ASSIGN 500 TO ISEE

CONTINUVE

CONTINUE

RETURN

srop

END
SUBTYPEFORTRANLMAPPBIN

SUBROUT [NE CASSR(KASSRKGO)

COMMON A(51¢51)¢BSDEV(S1)¢8(2601)¢YY(7000)¢X(S2)XD(S1)

NWL REPORT NO. 2035

BI1VOR460
51VOR470
BIVOReS8O
8] VOR490
BIVORS00
B8IVORS10
B1VORS20
B8i1VOR323Q
B1VORS540
81VORSSO
81 VORS560
BIVORSTO
81vOoRS80
BIVORS59%
81VOR600
81VOR610Q
BIVOR620
B81VOR&30
B1VOR64A0
B81VOR650
B1VOR&E6D
B1VOR&70
B1VOR&BO
BIVOR690

B81VOR700
BIVOk710Q

8IvVOR720
B8I1VOR730
BIVOR740
BIVORT7S0Q
BI1VOR760
B8IVOR770
BIVOR780
B8IVORT9S0
B8IVORB0O
B8IVORSB10
81VORB20
81voR830
B1VOR84D
B1VvORASO
B1VORB&0
B81VOR370
81vORa8o
81VvORAE90
B81VOR900
BIVOR910
BIVOR920
CASSR0Q0
CASSRO1¢
CASSRO20

COMMON AVV(52)¢YSOEV(T000)cAW(S]) RECMINOR IMVPL (NNNSAYV ¢NNN,LOT (51 )CASSRO30
COMMON NNL s DETERM (NOBS « TOLRS « TOLCES +ERROR ¢ NPED . I TOTAL «NeNOPO ICASECASSROAQ

COMMON RSSMO, ISKIP I NJ(25) e MasFIRM(7) e KNUMoKMUM MBoM] ¢NQ(2%5)0+1Q

COMMON NNXA sNNSAV SDEVsAKP (5131 ):88(S52)¢8(52:52)¢PGLB(10)

COMMON IN{QD¢J0)eIReIS ML o JLIMINN,MINTAPE
COMMON SELECT.1BID.IBIDS

DIMENSION EYY(7C00)

EQUIVALENCE (EYYYSDEV)

EQUIVALENCE (10604 NOBS)
EQUIVALENCE (TOL 12+ TOLCES)

L&z

CASSROS0
CASSRO60
CASSRO70
CASSR080
CASSRO090
CASSR100
CASSRI10
CASSR120



745
998

37

a¢

O
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F NNN 2 NNN

CALL GAUSS

[F(FRACK )1 06,9984106
IOETERM)I106¢106457

SSR2Ce0

DO 20 1m1 NNN

SSRaSSR+B(1)#BB(1)

SSEaS (NNL ¢ MNL ) =SSR

ATSSES (NNLoNML )~ ( (S{EoNNL3RE#2)/S5(L 1))

ASSREATSS~SSE

C MAIN RUN !5 UNSUCCESSFUL e

580

23

24

21
999

579

(2]

GO TO(S579:%80)4ISKIP
CORSQ=ASSR/ATSS
1F(CORSQ)109423423
SDEVSQ=SSE/Z(S(14¢]1 )~FNNN)
IF(SDEVSQ)I1084¢24424

CO 21 I=1NNN
IF(ACI1))996.21.421

CONT INUE

CALL IDENTM

GO TO(S5T9¢579:579417)141060
KASSR2KASSR+1

AW (KASSR)sASSR

‘ASSR - REGRESSION SUM OF SQUARES ADJUSTED FOR THE MEAN

C KGOr] MEANS VALID ASSR WAS COMPUTED =2 INVALID ASSR

17
18

19

KGO=]

GO 70 221
IF(IKNUM$1)19418419

IF (NNNEQsNNNSAV)IGO TO 19
CALL REDUCM

CALL ABT

KGO=2

GO TO 221

PRINT 2009,TOLI2

IN THE MAIN PROGRAM,ISK!P=] IF MAIN RUN S SUCCESSFUL =2

CASSR130
CASSR140
CASSR1%0
CASSR160
CASSR170
CASSR180
CASSR190
CASSR200
CASSR210
CASSR220
CASSR230
CASSR240
CASSR250
CASSR260
CASSR270
CASSR280
CASSR290
CASSR300
CASSR310
CASSR320
CASSR330
CASSR340
CASSR350
CASSR360
CASSR370
CASSR2380
CASSR390
CASSRA00
CASSR410
CASSRA20
CASSR430
CASSR440
CASSRAS0
CASSR460
CASSRa70

2009 FORMAT (79HODEVIATION OF A MAIN DIAGONAL ELEMENT IN THE IDENTITY MACASSR480

104
110

9% L
995

106
508

108
506

109
503
a3
2089

221

1 TRIX LARGER THAN 1(2)s ¢GP:15H sRUN REJECTED)

GO TO 83
PRINT 110
FORMAT (32H IVS CONTAINED NEGATIVE ELEMENT)
GO TO €3
PRINT 995

CASSRe9O
CASSRS500
CASSRS10
CASSR520
CASSRS30
CASSRS540

FORMAT (67THOAN ELEMENT OF THE MAIN DIAGONAL OF THE INVERSE MATRIX I1CASSRSSQ

15 NEGATIVE.)

GO0 Y0 83

PRINT 505

FORMAT (2SHOMATRIX FAILED TO INVERT)
GO TO B2

PRINT 506

FORMAT (22HOVARIANCE 1S NEGATIVE,)

GO 710 83

PRINT 503

CASSRS60
CASSRSTO
CASSRS80
CASSR390
CASSR600
CASSR610
CASSR6&20
CASSR630
CASSR6A0

FORMAT (SSHOTHE SQUARE OF THE CORRELATION COEFFICIENT IS NEGATIVE.)CASSR650

PRINT 20894 (LOT (1) ¢Im] +NNNSAV)
FORMAT (&M 1VSa +5111)

KGO=2

RETURN

END
SUBTYPE+FORTRANLMAPPBIN

SUBROUTINE CHISQ(N.ESTEPR,IFREG.0OB 'SDEVIIDF CHI s CHISUM IOBFR,

183

CASSR660
CASSR6TO
CASSR680
CASSR690
CASSR700
CH1 50000
CHISQO10
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1CMPFR) CHISQ020
THIS SUBROUTINE FITS A NORMAL CURVE WlTH MEAN O AND STANDARD DEVIAT]ONCHISGQ30
SOEV TO THE DATA IN IFREQ WHERE THE UPPER BOUND OF EACH INTERVAL IS INCM]ISQ040

THE CORRESPONDING ENTRY [N ESTEPs, N 1S THE NUMBER OF [NDEPENDENT CH15Q050
VARIABLES. 0B IS THE NUMBER OF OBSERVATIONS. CHISQ060
THE ROUTINE GROUPS THE DATA SO THAT THERE ARE AT LEAST S COMPUTED CMI SQ070

VALUES IN EACH INTERVAL AND THEN COMPUTES THE CHISQUARE STATISTIC TO CMHISQO80
GIVE AN EST'MATION OF THE GOODNESS OF FITs ON EXIT FROM THE ROUTINE CH1SQ090

IOF CONTAINS THE NUMBER OF DEGREES OF FREEDOMs CHISUM THE CHISQUARE CHISQ100
VALUEs AND CHE(J) CONTAINS A ~1 IF THE JUTH INTERVAL WAS NOT THE LAST CMI3Q110

OF A GROUP OTHERWISE IT CONTAINS (0BSERVED FREQUENCY~-THEORETJCAL CHISQ120
FREQUENCY ) ##2 /THEORET |CAL FREQUENCYs |IF THERE IS AN INSUFFICIENT CH] SQ1 30
NUMBER OF OBSERVATIONS THE FIT IS NOT ATTEMPTED AND ALL OQUTPUT VALUES CHISQl140
ANE SET TO ~]1 EXCEPT FOR IDF WHICH WILL BE =(N+3), CHISQ15%50
108F (J) CONTAINS ON EXIT THE OBSERVED FREQUENCY IF THE JTH INTERVAL CHISQ160
WAS THE LLAST OF ;A GROUP, OTHERWISE ITS CONTENTS ARE MEANINGLESS. CHISQ170
LIKEWISE CMPFR(J) CONTAINS THE THEORETICAL FREQUENCY, CHISQ180
ODIMENSION ESTERP(30)+IFREQ(30)«SHI{30) CHIS5Q190
ODIMENSION 10BFR(30)+CMPFR(30) CHI SQ200
FOT=20.0 CHISQ210
KOUNT=0Q CHISQ220
CHISUM=0,0 CHISQ230
PROBO=20,0 CH1SQ@240
FO=Q40 CHISQ250
IF(OB/Se0=FLOAT(N)=3,0)141¢3 CHI SQ260

1 JJ=1 CH1SQ270
CHISUM=z2=1,0 CHI SQ280
CHI(30)m=1,40 CHISQ290

GO TO 14e CHISQ300

3 00 10 J=s1 4630 CHISQ319Q
IF(JeNE30)GO TO 11 CHISQ320
PROBN=] ,0 CH15Q330

GO T0 2 CH1SQ340

11 PROBN=FREQ(ESTERP(J)/SDEV) CHISQ350
2 FOCsOB# (PROBN-PROBO) CH1SQ360
FO=FLOAT(IFREQ(J))IS+FO CH15Q370
IF(FOC=540)4:4:5 CH1SQ380

4 CHI(J)==1,0 CH1SQ3%0
G0 TO 10 CHI SQ400

S FOTaFOT+FOQ CHISQ410
REMAIN=OB#{]1,0=-PROBO) CH]1S5Q420
IF(OB®(1e0=PROBN)=5,0}8060¢7 CH]SQAa30

6 FO=F0+(0B=-FOT) CH]SQ4a0
FOMRE =F O~REMAIN CHISQ4e50

CHI (30 )=FOMRE #F OMRE /REMAIN CH1I SQ460
108FR(30)=PFQ CH1SQa70
CMPER (30 )wREMAIN CH15Q480

CHI SUM=CHI SUM+CHI (30) CHI SQe9Q
KOUNT = KOUNT +1 CH15Q05%00

JJds J CHISQ5%10

GO TO 12 CH1S0S82C

T OIF(J=3019:8,9 CH[SQ53¢C

8 FOCeREMAIN CH | SQY%eC

9 CHI(J)s(FO=FOC)#82/FOC CH1SG55¢
CHISUMs CHISUM « CHItY) CH15Q56¢
10B8FR(J)eFO CHISGET¢
CMPFR(J)elFOC Cr1SQ88(
KOUNT= XOUNT + | CH1 SQS9¢

0 = 0,0 CHISQ60!
£R0B0 = PROBN CHISQs1L

184




12
14
16
17

67

88

M
(8]
Qo

201
62
63

56
70
21
as
22

23

84

52

51

53

CONT INUE

GO T0C 17

IFtO0J=-29)144148417

DO 16 JrJdJe29

CHI(J) = =140

IDF = KOUNT « N «~ 3

RETURN

END
SUBTYPEFORTRANLMAP PBIN

NWL REPORT NO.

SUBROUT INE CMPR(RSSM(ESSsIRINICORRBIPGLBILOT ¢ NHNNSAV ¥4

DIMENSION B(51)+JU(52)4PGLB(10)+LOT(51)
COMMON DUM (25458) « SELECT

DIMENSION LIT(52)

DIMENS]ION FORM

OATA(FORM{1)418149)(BH(SHOY =
1E2Ce1443¢8HH X(o12¢a8BHIHMHY ) ' 8M
DATA(BCDA(I oIl 44)(1HL s 1HR41H3 4 1HS)
DATA(BCOB(1)s12144)(1M0e2HE642HIT2H 8)
DATA(BCDC ([ )c1=514Q)(2HBB2H5B8:2M29¢1H1)
DATA(FORM2(1)elxle B)(BH(AX '8H
18HX (4 J2e1He8H)I1IX) o o8MH ¢+ BHX)
DATA BLANK (&M )

DATA L(9)

IF(M4)B8+87.88

LL=1

Ma=1

Ra IR

AN=N

RSQUOT=RSSM/R

OMRasAN~R=] ¢

NOMR=0OMR

IF(OMREQ40201G0 TO 200
ESQUOT=ESS/7OMR

FQUOT=RSQUOT/ESQUOT

G0 TO 201

ESQUOT =040

FQUOT 29999999999 ,9999

IRCT=IR+1

IF (NNNSAV)I8,63:64

LL=22

KalRCT+]

DO 56 [=2.K

J(l)=]1=-]

WRITE (Lol )PGLBIBLANK

WRITE (Le3J)

WRITE (L.«86)

WRITE (Le8)IRIRSSMIRIQUOTFQUOT ¢ BLANK
0O 23 1I=142

WRITE (Le¢S)

WRITE (Le&)INOMRIESSESQUOT BLANK
WRITE (L+T7)CORRIBLANK

DO 27 I=14]JRCT o

LASTa]+3

IF(LAST=IRCT )S1+51.952

LAST=IRCT

IWeLAST=1+]

IF(1=1)53:53¢54

FORM (3 )=sBCDA(IW=])

FORM (3)=8CDB(IW)

185

8-
1 8HX)

'BH(2H+

)

(9)¢BCDA(4)+BCOB(4)+BCDC (4 ) FORM2(8)
EQUIVALENCE(DUM(4048)LIT(1))e(DUM(4100)eJ(1))
+SHE20e14,

1BH(3H + ¢
)

+E2:8H0016¢2H

2035

CH15Q620
CHIS5G630
CHISQ640
CHISQ650
CHISQ660
CHISQ670
CHISQ%80
CHISQ690
CMPROOOO
CMPROO10
CMPRO020
CMPRO030
CMPRO0O40
CMPROOS50
CMPROOGO

+8HCMPROO70

CMPRO0BO
CMPROO9G
CMPRO100
CMPRO110
+CMPRO120
CMPRQO130
CMPRO140
CMPRD 150
CMPRO160
CMPRO170
CMPRO180O
CMPRO190
CMPRO200
CMPROZ210
CMPROR220
CMPRO< 30
CMPROZ31
CMPRO240O
CMPRG250
CMPR0O2S1
CMPROZS2
CNPRO253
CMPRO25e
CMPRO270
CMPRO280
CMPRO290
CMPRO30C
CMPRO310
CMPRO320
CMPRO330
CMPROJ40
CMPRO3SO
CMPRO360
CMPROIT70
CMPROJS0
CMPRO390
CMPRO400
CHPROS10
CMPRO420
CHMPRO430
CMPRO44D
CHMERO4SO
CMPRO&O
CNPROSGT0




=1

27
38
P

100
101
&85
&6

&7
80

CWEYITMEdWN -

o ®

WRITE(LFORM )8 (1) (B(K) JIK
GO YO 27
FORM2(2)=aBCDA(1VW)
FORM2 (7 )=BCDC(IVW)

YRITE (L FORM2) (BIK)sJI(K
CONTINUE

RETURN

1=0

CALL FIX

DO 101 UKm] ¢ NMNNSAYV
IF(LOT(JUK))101+1004108
I=l+l

J(l)=UK=1

CONT INUE

GO TO (65¢88)¢LL

WRITE (L+1)PGLBBLANK
60 TO 80

DO 67 1=146

WRITE (L+2)

WRITE (L ¢8)SELECTLIT
WRITE (L+83)

LL=3=LL

@0 T0 85

FORMAT (1H] ¢+ 10AB+39X/119X.A1)

FORMAT (1H +119X)
FORMAT (GHOMAIN RUN.111IX)

YeKu2oLAST)

YoKn] oL LAST)
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CMPROA8D
CMPRO490
CMPROS00
CMPROS10
CMPROS20
CMPROSJ30
CMPROS40
CMPROS550
CMPROSE0
CMPROS70
CMPROS80
CMPROS90
CMPRO600
CMPRO610
CMPROS20
CMPRO630
CMPRO640
CMPRO6S50
CMPROG6D
CMPROST70
CMPROGBC
CMPRO690
CMPRO700
CMPROT1O0
CMPRO720
CMPROT30

FORMAT (114 REGRESSION.20XeI5¢1XeF2000G¢1XeF2060941XeF20009:20X0Al1 3CMPRO740

FORMAT (1 1HOREGRESSION, 109X)

FORMAT (6HOERROR ¢ 25X ¢ IS¢ 1XeF2Ce09¢1XeF20.09¢41XeAL)
FORMAT (12HOCORRELATION4XeF10+49¢93X0AL)
FORMAT (32HO INDEPENDENT VARIABLE SELECTION

FORMAT (100X 45H 18X)

ECRMAT (1HO 133X 2HDF 4 1 IX12HSS e 19X 1 2HMS o S 9X o 1HF ¢ 30X)

END
SUBTYPE+FORTRANLMAP(PBIN
SUBROUTINE FIX

COMMON A (5]1¢51)¢BSDEV(51)4B(2601)4YYL7000)eX(82)4XD(S]1)
COMMON AVV(S2).YSDEV(T000)¢AW(S5]1) sRECMiNDRIMVYPL s NNNSAY ¢ NNNLOT (51 )F I X
COMMOI: NNL ¢ DETERM ¢NOBS s TOLRS ¢« TOLCES+ERROR«NPED ¢ ITOTAL + NeNDPO, ICASEF I X
COMMON RSSMO ISKIP(NJ(25) 1 MO FIRM(7) KNUMKIUM,MB eM] oNQ(25)¢10Q
COMMON NNXA JNNSAV SDEVIAKP (1 ¢511BB(52)4S(52452) PGLB(10)

ODIMENSION LIT(52)
EQUIVALENCE(LIT(1148(1396))

CATA KZERO{IHO)sKONE(I1M] ) ¢ KBLANK(IMH )

DO 3 12] «NNNSAV

IF(LOT(1))2¢201

LIT(])=KONE

GO 10 2

LIT(1)sKZERD

CONT INUE

DO 4 I=NNSAV,5%2

LIT(])=KBLANK

RETURN

END
SUBTYRPEFORTRANLMAPIPBIN

SUBROUT INE GAUSS

COMMON A(S1¢SU)oIPIVOT(S1)148(31481)evY(7000)eX(S2)XD(S1)

CMPRO7S50
CMPRO760
CMPRC770
CMPRO780
CMPRO 790
CMPROBOO
CMPROB10
Fix 000

FIXx 010
FiX 020

¢AB I XeB2A1427X)

030

040
FiIX 050
FIiX 060
Fix 070
Fix 080
Fix 090
Fix 100
FIx 110
Fix 120
Fix 130
Fix 140
Fix 150
Fix 160
Fix 170
Fix 180
Fix 190
SAUSS000
GAUSSO10
GAusSsS020

COMMON AVVIS2)¢YSDEVITO00) s AW (8] ) «RECHNDR s MVPL o NNNSAY ¢ NNNLOT {31 )GAUSS0D0
COMMON NNL ¢ DETERM ¢NOBS ¢ TOLRS s YOLCES ¢ ERROR(NPED ¢ 1 TOTAL + Vo NDPO, 1CASEGAUSS040

COMMON RSSMOISKIPNJ(2T)MAFIRM(T) JKNUIMKMIN,MBM] s NOI2S) 010

GAUSS0S0

186
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10
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85
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150
1CS

106

110

130
140
150
160
170
200
ato
2720
230
250
260
270
310
320

330
340
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COMMGON NNXA ¢NNSAY ¢ SDEVIAKP (51451 ) 4BB(S2)45(52+¢52)-:PGLB(10)
COMMON IN(49410) ¢RI ISIMIJJLIMNNIZINTAPE

COMMON SELECT«IBID,.IBIDS

DIMENSION INDEX(5142) -

EQUIVALENCE (NJNNN)
EQUIVALENCE (YY(1)+sINDEX (1)}
EQUIVALENCE (IROW,JROW), (ICOLUM,JCOLUM), (AMAX, T+ SWAP)

INITIALIZATION

ERROR=C,0
Maj
DETERM=1,0
DO 20 J=14N

IPIVOT (J)=0
DO S85C I=14N
1G0=1

SEARCH FOR PIVOT ELEMENT

AMAX=0.0
DO 105 J=1.N
IF (IPIVOT(U)=1) 604 105 60

DO 10C K=14N

IF (IPIVOT(K)~1) BO.+1004:899

IF (ABS(AMAX)-ABS(A(JWK))) 85 1094 100
IROw=J

1COLUM=K

AMAX=A{JsXK)

160=2

CONTINUE

CIONTINUE

GO TO(106411C)01G0

DETERM=0,0

60 TO 740

IPIVOT(ICOLUM)= IPIVOT(ICOLUM) 4+
IF (A(ICOLUM,ICOLUM))I120:899¢13)

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL

IF (IROW-ICOLUM) 140, 260+ 140
DETERM==DETERM

00 200 L=1eN

SWAPaA({ [ROW.L )
A(IROW L )sA(ICOLUML)
ALICOLUM L )=SWAP

DO 250 L=te M

SWAP=8 (|ROWL)

B(IROW.L )eB(ICOLUM,L)
BLICOLUML )aSWAP
INDEX([+1)=]ROW
INDEX (1 ¢2)81COLUM

Pl1VOT =ALICOLUM, JCOLUM)Y
DETERM=DETERM#PIVOT

DIVIDE PIVOT ROW BY PIVOT ELEMENT

A(ICOLUMICOLUM)=T 40
DO 350 L=1eN
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GAUSS060
GAUSS0O70
GAUSS080
GAUSS090

GAUSS100
GAUSSI10
GAUSS120
GAUSS130
GAUSS140
GAUSS1S0
GAUSS160
GAUS3170
6GAUSS180
GAUSS190
GAUSS200
GAUSS210
GAUSS220
GAUSS230
GAUSS240
GAUSS250
GAUSS260
GAUSS270
GAUSS280
GAUSS290
GAUSS300
GAUSS310
GAUSS320
GAUSS330
GAUSS340
GAUSS3S0
GAUSS3K0
GAUSS370
GAUSS380
GAUSS390
GAUSS400
GAUSS410
GAUSSaz2Q
GAUSS43C
GAUSSe4C
GAUSSa SO
GAUSSa60Q
GAUSS470
GAUSS480
GAUSS490
GAUSSS00
GAUSSS10
GAUSSS20
GAUSSS30
GAUS<Sa0
GAUS55%0
GAUSS560
GAUSSS70
GAUSSS80
GAUSSS590
GAUSS600
GAUSS610
GAUSS620
GAUSS630
GAUSS840
GAUSSH630




350

360
370

OO0

380
390
400
420
430
450
460
800
550

600
610
820
830
640
650
660
470
700
708
710
740
899

ACICOLUMGL ) =A(ICOLUM,L)/PIVOT

DO 370 L=1M
BOICOLUML Y=B(ICOLUM,L)/PIVOT

REDUCE NON-PIVOT ROWS

DO %30 Lis1.N
IF(L1-1COLUM)

TsA(L1s1COLUM)
A(LL+TCOLUM)=0,40

DO A4S0 L=1N
A(LLaL)=A(LT¢LI=A(ICOLUM L )*T
D0 %00 L=ieM
B(L1L)=B(LIL)=BIICOLUM(L)*T
CONT INVE

400, 850, 400

INTERCHANGE COLUMNS

DO 710
LeN+1 -1
IP (INDEX(Lei1)=INDEX(Ls2)) 830,
JROW= INDEX(Le1)
JCOLUMI INDEX (L. e2)
DO 705 K=1 4N
SWAPSA (K. JROW)
ALKy JROW)InA (K¢ JCOLUM)
A(K¢JCOLUM) aSWAP
CONT INUE
CONT INUE
RETURN
ERROR=1 4,0
RETURN
END

SUBTYPE sFORTRANLMAPPBIN
SUBROUT INE 10ENTM

I=1 N
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COMMON A(S51¢51)e0SDEV(S8]1)+812601)4YY(T7000)eX(32)eXD(S])
COMMON AVV(S2)¢YSDEV(T000)¢AW (5] ) sRECMINDRMVPL NNNSAV ¢NNNLOT (81 ) IDENTMQ]

COMMON NNL  DETERM NOSS.TOLIi+TOLI2

COMMON RSSMO.ISKIPINJ(2F)sMAFIRM(T) JKNUMIXKMUMMB o M] «NQ(25)410
COMMON NNXA NNSAV¢SDEVIAKP(S]+51)¢881(52)¢5152:52).P6LBL10)

OIMENSION AJTOENT(5].+81)
EQUIVALENCE (1060 .NOBS)
EQUIVALENCE(AIDENT(1)eYY(}))
00 3 =] NNN

DO & Kuji NNN

SUM=0,0

DO 8 Jm) sNNN
SUMBSUMSA ([ ¢ J)IRAKP(J4K)
AJDENT (14K )uSUM

CONT INVUE

CONTINVE

10G0=}

00 7 lejireiN

GO TO(16417)41DGO
IF(ADS(AIDENT(10¢1)=120)=TOLI1)7:0:8
1060=2

IPCABS (ATOENT (1 el )=100)=TOLI2)7¢10010
CONT INUE

GO T0(20+220)¢10G0
00 13 Ilsl4N
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GAUSS660

GAUSS670
GAUSS680
GAUSS690
GAUSS700
GAUSSTLI0
GAUSS720
GAUSS730
GAUSS740
GAUSS 750
GAUSS760
GAUSST770
GAUSS780
GAUSS790
GAUSS800
GAUSS810
GAUSS820
GAUSS830
GAUSS840
GAUSS850
GAUSS860
GAUSSS70
GAUS5880
GAUSS890
GAUSS900
GAUSS910
GAUSS920
GAUSS930
GAUSS940
GAUSS95%0
GAUSS960
GAUSS970
GAUSS980
1DENTMO0
1DENTMQ1
I0ENTMQ2

sERRORNPED + ITOTAL I NeNDPQ, 1 CASEIDENTMO4

10ENTMQS
I1DENTMO6
JOENTMO?
{DENTMQOS
IDENTMO9
IDENTM O
JOENTM} )
IDENTMY 2
10ENTM]1 D
1DENTM] A
JOENTM S
JOENTM1 6
JOENTM1?
10ENTM1 8
10ENTN O
10ENTMN20
10ENTN2]
JOENTMR22
IOENTHM2]
J1OENTM24
JOENTMRS
IDENTMRe
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Kml4; IDENTM™M27?
DO 13 J=K  NNN 1DENTM28
1F1ARS (AIDENT (1 eJ))=TOLI1)14013,18 IDENTMZ9
1IF(ABS(AIDENT(Ue1))=-TOLI1)313415¢15 IOENTMI0

3 ZONTINUE IDENTMI])

GO TO 220 IDENTM32
1060=a IDENTMI2

GO TO 220 1DENTMIS

GO TO(184220)410GO IDENTMIS
1060=3 IDENTM36
RETURN IDENTM2T7

END IDENTM 3R

T SUBTYPEFORTRANLMAP,,PBIN I1VOR 000
SUBROUT INE 1VOR IVOR 010

C IVOR = INDEPENDENT VARIABLE SELECTION SUBROUTINE FOR THE ORDERING OF [VOR 020
C INDEPENDENT VARIABLES ACCORDING TO MAGNITUDES OF REZGRESSINN {VOR 030
c SUMS OF SQUARES, 1VOR 040
COMMON A(S!.51)BSOEV(S1)sB(2601)aYYIT000)eX(52)+XD(51) I1vOR 050

COMMON AVV(S2) ¢ YSDEVITO00)sAW{S]) sRECMeNOR +MVPL ¢ NNNSAVINNN.LOT(S]1)IVOR 060
COMMON NN ¢ DETERM (NOBS : TOLRS « TOLCES+ERROR « NPED+ ITOTAL ¢ NoNDPO, ICASEIVCR 070
COMMON RSEMO ISKIPsNI(2B J MAFIRMIT) oXNUMGKMUMMB M) s Q1255410 IVCR C&¢

Wy

COMMON NNXA NNSAV SDEVIAKP (5] +51)¢BB(52)¢S(82:52)PG5LI10) IVOR 230
COMMON IN(A49410)e1R4ISeMI s IMINNIMINTAPE IVOR (0C
COMMON SELECT.IBIDIBIDS IVOR 1.2
DIMENSION LAT(S1) IVOR 122
EQUIVALENCE (LAT XD} IVOR 132

DATA TOLSS(+SE=8) IVOR 14
IF(1Q)500:5004%0) tVOR 15¢C

300 1QeNNSAV-] [VOR 16¢C
801 XOUNT=0 1voR 172
1602s1 1VvOR 180

C SEE NOTE IN BIVOR ON THE USE OF Ma, IVOR 199
M40 fvoR 20¢

G0 TO(1+2)018SKIP IVOR 21¢

1 WRITE(13.103) IVOR 220

103 FORMAT (S6MO* e 1 VOR FINAL COMPREMENSII VE %0VOR cJ0
1:64%/120X) 1VOR 24Q

2 DO 101 12,8} 1VOR 2%0

101 LOT(1)m} | VOR 260
{TOTAL =} IVOR 270
LOT(]1)s0 JVvOR 280

00 200 =] ym} IVOR 290
I1STARTe I TOTAL L tvoa 300
1TOTAL= ] TOTALS NJ(I) 1voR 3190

201 NUMe2 IVOR J20
KASSRsO 1VOR 1330

C KASSR COUNTS THE NUMBER OF ASSR~-S COMPUTED 1VOR 349
00 300 JUsISTART.ITOTAL tvoR 1890
IPLOT(J))I010307.30) 1voR 360

301 LOT(J4)=0 IVOR 270

C [N [VORERRORe] 0 MEANS THAT REDUCH wWiLL NOT PRINT I0ENTIFICATION 1 VvOR J80
C AND JVS.,ERAOReD,0 MEANS PRINT, 1voR 390
CANORe ] 0 IYOR 400

302 CALL REDUCH 1VOR 410

3 CALL CASSRIKASSR«XGO) IVOR 420

3C8 XKASSRsKASSR IvoRr 430
GO T0(303:¢3041.:xG0O IVOR &40

303 LAT(KASSR)ey 1VOR 6350
304 LOT(V)=} 1VYOR 460
GO0 TO 300 1vOR 470
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307
300

202
203
210
2n

2929

204
AQ0

852
208
200
229
227
228

4’8
11

221

220

NUMsNUM+ |

CONT INUE
IF(KASSR)22142274204
IFINJIT)-NUM)221 02034201
IF(1-M1)21002200221

DO 211 L=24+1TOTAL

LOT(L)=O
ERROR=0,0

CALL REDUCM

CALL ABT

KOUNT=eKOUNT+ |
IF(10-KOUNT 122142204200
IF(KASSR=1)221:400+401
IXMAX=]L

GO TO 402

DO 229 Jx2.KASSR

IF(ABS((AW(]1)-AW(J ))/Z7AW(]1))-TOLSS)229:229+404

CONT INUE
1602=2
IXMAX =]
GO TO &32

£ A S
CALL MaxmIN{K

IVAXaLAT( I XMAX
LOT (IMAX) =0
ERRUR=0 40
CALL REDUCM
CALL ABT
KOUNTsKOUNT 4+ }
IF{JQ=KOUNT 1221 43024208
1602%1602+2
GO TO(20214084220:408).:1602
CONT INUE
RETURN
PRINT 228
FORMAT (JCHANO VALID ASSRS WERE COMPYTED, )
GO 10 220
PQINT 411 4(LOT (I )slnl NNNSAY)
FORMAT (: BHAPERFECT FlT.IVSe +Si11)
GO Y0 220
STYO®R
END
SUBTYPE FORTRANLMAP P IN
SUBROUT INE MAXMIN(NoAJAMAXJAMIN, I XRARIXMIN)
CIMENSION AIN)
ARAXeA(])
AdiNsAMLX
I XMAXe}
IXMiNeg
1P IN.EQ.11GO TO 220
DO ) le2yN
IFP(A(])GEsAmAXIGO TO 2
IFLAL1)+GCTaANINIGO TO )
I XM iNe]
AMINSAL])
GO T0 1
AMAX=A(])
I XMAXSe }
CONT INUE
RE TUN
END
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I VOR 480
JVOR 490
1VOR 500
IVOR 510
IVOR 235
'VOR S3Q
1V IR 5S40
1voR =50
IVER S4D
VAR R0
TVER BB
IVOR Sy
IvaR £a0
P¥YOR 610
eal? 620
i vVOR 630
JVOR 640
IVOR 650
IVER 660
IVOR &7¢
1 VOR 680
IVOR 690
1VvOR 700
IVvOR 710
1voR 120
IVOR 732
1VOR 744G
IVOR 75¢
IVOR 76¢
{VOR 7?72
IVOR 782
1VOR T9Q
JVOR 800
IVvVOR 812
[VOR 820
IVOR 83¢
[VOR B0
tvOR 8%0
{VOR 860
{voR 872
{VvOR @88¢
MAXMINOC
MAXM] NG |
MA XML NO 2
MAXM I NO D
MA XM ] NOe
MAXM]INOS
MA XM NOS
MA XM} NO
MAXMI NGB
mA XM NGOG
RAXMINIO
MARMING
MAXM N2
nNAXMING D
MAXMINGS
NAXNINIS
MAXRINGS
MAXMIN]Y?
MAXMINIS



652

631

ASe
6%3
632

79
468

&5
a8

1066

%4

81
LRR]
82

ad
104
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SUBTYPNE W FORTRANJLMAPPBIN
SUBROUT INE PREVAR(FOUNT .« INDX )

COMMON A (5] 4S1}sBSODEVIS])eB(26C1)eYYITOCO) eX(52)¢XD(51

203y

PREVAROQ
PREVARQI
PREVARQZ

COMMON AVY(%52) ¢ YSDEV(TCO0)sAWI(S]) 4RECMINDRMVPL JNNNSA VY NMNLOT (5] )PREVARD ]
COMMON NRY ¢ DETEQM NCRS«TOLRS o TOLCESI1ERRORINFEDITCTAL yNeNCPO. ICASEPRE VARG

COMMON RSSMC, ISKIP(NJ(25) MR FIRM(7) KNUMKMUMMB (M 4NGL25) 41T
COMMON ANINXA NNSAV SDEVAKP (51451 ) ¢BB(52)4S(52¢521PGLI(1Q)

COMMON IN(89410)sIRISIM]I ¢ JLIM{NN M NTARE
COMMON SELECT,IBID,!IR]IDS
DIMENSION XX (51)
FQUIVALENCE (XX (] )eB(1549))
KOUNT2XKOUNT + 1
IF (NNNSAV )650,664650
JJJ=}
DO 652 JJx2 «NNXA
IFLOT (LU 174465 4652
JIIJIUe]
X(JoJ)Y 2 IJ)
AW(JII =AWV IL)
IFLUU-INOX ) A58 :658,652
NI PNE
1 S JISNNEES §ISND)
CONT INUE
PRINT 70XOUNT o (XX(])a1x24J)
FCHMAT (2% tel1301H)s 9(IXELI2¢0)7(3X¢F(I1XsE12e¢6)))
DO 468 ! 22 NNN
XO(1)=sxtil=-Awl(l)
GQ TO 1066
DO 68 |22 NNN
XxXDtt) = X(l)=-AVvV(])
PRINT ?2¢xOUNTIXI] 1alm2,eINDX)
YYIKQUNT)aB (] )
DO &7 =2y NNN
YYIKQUNT ) YY (KOUNT )oXt])®BL(])
TEM xXx =C4C
0O 81 la22:NNN
DO B1 Jwe NNN
TEMXXe TEMNEXs A . J}oXDt1)IOXD(J)
1P imyD 1B 2.811.812
YSOEVIKQUNT }=5DEVESORTY L] 4 UeRECHS TEMXX )
60 YO &0
YSOEVIXOUNT )« SCEVESORT (RECH TEMNX )
RE TURN :
STOP
END

SUBTYPE FORTRAN L RAP PB N
SUBROUT INE PRINTM

PRZVARQS
FREVANCS
PQEVARYY
PREVARD:
DRE YA~ 55
PREVARIS
OQCvaAnll
PREVAR] S
PREVARL3
PREVAR] S
PREVARLS
PREVAK ]G
PREVAR ™
PREVAR R
PREVAR ] ©
pPREVAR.C
PREVAR?Z]
PREVAK?
PREVARZ]
PREVARZS
PRE vaAS 2SS
RREVANZS
ORE vaATZ 2™
OQE VAR 2~
DREVAS
PREVAL C
PRE VAR 3]
ORL VAW
PRE VAL ¢
PHIE WA Sh
PR yaAu I
PRE VAN e
BRE gL
PR VAL
PREF val 'y
PR vana
oRT valae |
[- 1Y T X ¥3
PQY vALa
bREVACas
PRINT™ OO
PQININE

COMMON A(S1.8])BSOEVIBL 1BL26011sYYITO00IeNINZ)eND(SY) PRINTNQ?
COMMON AVVISZ)eYSDEVITO0O I sAWIS |} ¢RECH.NOR MYPL « NMNSAY ¢ NNNWLOT (S 1PRNTMD
COMMON N + DETERM  NCBSeTOLI 1. TOLI2 +ERQONY XTI ITOTAL IN(NDPO, ICASEPR{NTY(

COMMON RSESMC ISKIPNJI2B ) NAFIQAM{T) KNMKIPIM, M8 W] «N0(25101C PRiNIeC
COMMON MNXANNSAY .SOEVIAKP (5] 81 34881821:5(32:821.86L3010) DRINTN &
OIMENSION AJOENT (51 .51) PRINTYD S
CQUIVALENCE ( |DGO.NCBS) DR M V2o
COUIVALENCEIAIDENT L)YV (L)) ORIN"YED
GO TO(1e2e2:¢2)+1060 PRINT™ )
2 PRINTY ) PRINTMG |
3 FC ~AT(IOMOIDENTITY MATRIX) PRpNTML 2
00 4 (s] NNN PRINTN Y
6 PRINT S (AJDENT (| ¢X)oXe] ¢ NNN) oQINTM
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S FORMAT (IHO«TELI74B/(IXeTE1T7e81) PRINTMLIS
GO TO(1474849)410GO PRINTMIS
1 PRINT 8.7 11 PRINT™M17
6 FORMAT (7OHODEVIATIONS CF ALL ELEMENTS OF THE IDENTITY MATRIX SMALLPRINTM1S8
1FR THAN 1({1)x +GP115H RUN ACCEPTED,! PRINTML9
GQ T0O 220 CIINTM2Y
7 PRINT 10«TOLIITOL1IR2 PRINTMZ]

10 FORMAT (78HONEVIATION QF A MAIN DIAGONAL ELEMENT IN THE IDENTITY MAPRINTM22
ITRIX LARGER THAN [(1)s +G9s 21H BUT LESS THAN [ (2)x 469¢15H +RUNPRINTM23

2 ACCEFTED,) PRINTM24
GO TO 220 PRINTM2S
8 PRINT 11+T0LI1 PRINTM25

11 FORMAT (8aMODEVIATIONS OF ALL MAIN DIAGONAL ELEMENTS IN THE IDENTITPRINTM27
1Y MATRIX SMALLER THAN J(1)= ¢G9/68H CEVIATION OF AN OFF-D]AGONAL EPRINTMZ28

2LEMENT LARGER THAN 1(1J)sRUN ACCEPTEDs) PRINTM29
GO TO 22C PRINTM30

G PRINT 12.T0L12 PRINTM31t
12 FORMAT (7SHODEVIATION OF A MAIN DIAGONAL ELEMENT IN THE IDENTITY MAPRINTM32
1TRIX LARGER THAN l(2)% +G9¢15%4 ¢RUN REJECTED.) PRINTM33
220 RETURN PRINTM34
END PRINTM3S
SUBTYPEFORTRANLMAPPBIN RD1ISK 00
SUBROUTINE RDISK(KOUNT s INDX) RDISK 01
COMMON A (S1.5])¢BSDEV(S]1)eB(2601)sYY(7000)eX{(82)eXD(S1) RDISK 02
COMMON AVV(SE2) 4 YSDEVIT0C0)+sAW(S]) ¢ RECMINDR e MYPL ¢ NNNSAV ¢NNNLOT(S1 IRDISK 03
COMMON NNL s DETERM{NOBS ¢+ TOLRS s TOLCES+ERRORINPED « ITOTAL «NeNOPOQO,y ICASERDISK 04
COMMON RSSMO, ISKIPsNUI2F ) oMAFIRM(7) s KNUMKMUM MB M1 s NQ(25)+10Q RDISK 05
COMMON NNXA JNNSAVY ¢ SDEVIAKP (514151 )+1BB(52)4S(52452)+PGLB(1)) RDISK 06
COMMON [IN(49410)4IRsISeM] ¢ JLIMINNIMyNTAPE ROISK 07
COMMON SELECT.IBID.I1BIDS RDISK 08
DIMENSION IKEEPR(999) ROISK Q9
EQUIVALENCE (B(1802)+.IKEEPR(1)) RD1S.. 10
REWIND 10 ROISK 11
[START=1 RDISK 12

DO 1 I=]+NOR ROISK 13
IwHICH= IKEEPR(1) RDISK 14
NUMBER=IWHICH=]ISTART ROISK 15

IF (NUMBER)2+344 RDISK 16

4 DO 11 J=1 NUMBER ROISK 17
11 READ (10) SKIP ROISK 18
3 READ(IC) (X (K)eK22¢NNSAV) RDISK 19
CALL PREVAR(KOUNT « INDX) ROISK 20 -
ISTART=IWHICH+1 RDISK 21

1 CONTINUE RDISK 22
GO TO0 5 ROISK 23

2 STORP RDI SK 24
5 RETURN RDISK 23
END ROISK 26
SUBTYPEFORTRANJI.MAP (PBIN ROIT 00
SUBROUTINE RDIT ROIT o1
RDOIT-A PROGRAM TO READ TAPE OR CARDS AND COMPUTE HIGMER ORDER ROIT 02
PRODUCT TERMS OF THE DATA, ROIT 03
COMMON A(S1+51).BSDEVISI)I«BI2601)¢YYLITO00)eXIS2)¢XD(S]) RDIT 0Oa

COMMON AVV(52)¢YSDEV(TO000) AW (31 ) RECM NOR‘MVPL ¢ NNNSAV NNN,LOT (S1)RDIT 05
COMMON NNL ¢« DETERM ¢NOBS+ TOLRS s TOLCESI1ERROR(NPED s ITOTAL ¢yNeNDPO, ICASERDIT 06

COMMON RSSMO, ISKIP NJ(25)sMAFIRM(7) ¢ KNUMKMUM,MB+M] «NQ(25),410Q ROI!IT 07
COMMON NNXA ¢NNSAV ¢SODEVIAKP(S1 +819)¢BB(52)45(52452)¢PGL3(10) ROIT 08
COMMON IN(49410)3IReISeMIJLIMINNI My TAPE RDIT 09
COMMON SELECT.«IBID.1B10S ROIT 10

OIMENSION Y (52)
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91

203

200
98

219
594

5760

EQUIVALENCE (Y (1) +8B(53))
EQUIVALENCE (LIMJNNXA)
EQUIVALENCE (XNUM(NUM) ¢ (KMUM ¢ MM )
INTEGER TAPE

DO 33 J=1lJLIMNUM

Jlz J+MUM

IF(AIM=U1)11e10410

Jis A IM

IF (J=1)848,.9
READ(TAPEWFIRM IM] s (Y{J2)¢J2=JeJ1)
IF(M]1)2433e¢2
READ(TAPE ¢FIRMIMZ s (Y 1J2)eJ2xJ04 U1 )
CONTINUE

X(NN)=Y (1)

Y(1)=1,

M=M4+ |

IF(1S320042000100

DO 8 Kz14lS

KKs ]R+K 4+

Y{(KK )=,

DO &% L=1,410

INDEX=IN(K L)
Y{KK)=Y (KK)#Y (INDEX)

DO 6 Jz2.L1IM
X{Jy=Y (J)
RETURN
END
SUBTYPE FORTRANLMAP4PBIN
SUBROUT INE REDUCM

COMMON A (%145 )sBSDEV (51 )eBI2601)¢YY(TO00)e¢X{52)eXD(51)

o
WL

REPOK

™ Ve
T,

i

RDIT 11
ROIT 12
RDOIT 12
RDIT 14
RDIT 15
ROIT 16
ROIT 17
RDIT 18
RDIT 19
RDOIT 20
RCO1T 21
ROiT 22
RDIT 23
RDIT 2e
ROIT 25
RDIT 26
ROIT 27
RDI!IT 28
RDIT 29
ROIT 30
RD1IT 3t
RDIT 32
ROITY 33
RDIT 3a
RDIT 35
RDIT 36
REDUCMQO
REDUCMQ L
REDUCMp2

COMMON AVV(52)sYSDEV(T000)+AW(S] ) ¢sRECMoNDRIMVPL s NNNSA Vo NNNLLOT (S] YREDUCMO3
COMMON NNU (DETERM(NOBS+TOLRS+TOLCES+ERROR «NFED W ITOTAL s NeNDRPO4 ICASEREDUCMO
COMMON RSSMOISKIPINJ{25) sMAIFIRM(T7) e KNUMIKMUM MB+MI s NQ(25)41Q
COMMON NNXAJNNSAV ¢ SOEVAKP (51451 ) ¢8B(S52)4S(52452)+PGLB(10)

COMMON IN(AG410)0IRISIM]I JJLIMNNyMINTARE

COMMON SELECT«1B1D,:1BIDS
EQUIVALENCE (L. [ +NNN)

LI=0

DO 95 I=1,41TOTA|
IF(LOT(1))95+91 9%
Li=L1+1

BILII=S(14NNL)
BB(LI)=SC(IeNNL)

JsL1-1

DO 200 Lz 1.1TOTAL
IF(LOT (L))20042034200
JrJd+}

AKP( JeL1)mS{1eL)
AKP{LIsJ)eS(IeL)

Al JeL1)=S(T0L)
AlLT4J)=S(1eL)
CONTINUE

CONT INUE

Ne|, l=1
IF(ERROR)219.:2194+220
PRINT 594 ,PGLB
FORMAT (1H] +10A8)

PRINT S760+SELECT4(1.OT{1)e1m] sNNNSAY)
FORMAT ( 32HO INDEPENDENT VARIABLE SELECTION

1CASE=]CASE+!
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1ABWIXaSLI1)

REDUCMODS
REQUIMOL
QEDUCMC?
REDUCMQOA
REDUCMOD 3
REDUCM10Q
REDUCM]
<Eoueil o
REDUCM13
REDUCM14a
REDUCM 1S
REDUCM1 6
REDUCM1 7
REDUCM1 B
REDUCM]9
REDUCMZ20
REDUCMZ1
REDUCM22
REDUCM22
QEDUCM?24
REDUCM2%
REDUCM26
REDUCMZ?
REDUCM?28
REDUCMZ9
REDUCMIO
REDUCM3L
REDUCM3Z
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220 RETURN REDUCMI3
END REDUCM34
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