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SUMMARY 

A linear graph Is k-arc-connected If It Is necessary to 

remove at least k arcs In order to disconnect the graph. 

This paper solves the problem of determining the fewest number 

of arcs required In a k-arc-connected graph on n nodes by 

describing constructions that produce such graphs having 3r 

arcs (for kn even) or ^ arcs (for kn odd). These 

results have application to the practical problem of synthe- 

sizing minimum cost, 'k-rellable" communication networks. 
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MINIMAL k-ARC^CONNECTED GRAPHS 

1.  INTRODUCTION 

In considering the synthesis of reliable communication 

networks with respect to link failure, the following question 

seems a natural one to raise. Suppose given the complete, 

unorlented graph G on n nodes N = |x,ytz,...jj and let 

each arc (x,y) of G have associated with It a nonnegative 

number c(x,y), to be thought of as the cost of Installing a 

communication link between stations x and y.  For each 

k = 1, 2, .,,, n—1, find a minimum cost k-^arc-connected 

spanning subgraph of G. Here the cost of a subgraph H is 

the sw of the numbers c(x,y)  corresponding to arcs of H, 

a spanning subgraph of Q is a subgraph that has the same 

node set N as 0 does, and a k-arc-connected graph is one 

in which at least k arcs must be suppressed in order to 

disconnect the graph. Thus k might be thought of as the 

"reliability level" of the communication network, and the 

practical problem is to minimize cost subject to achieving a 

stipulated reliability level. 

For k = 1, the problem becomes that of finding a minimum 

cost spanning subtree of G; there are simple methods known 

for doing this [2,3] • But for k > 1, the situation seems 

to be quite different. Here we need only mention the fact that, 

with k = 2 and all arc costs 1 or oo, the problem includes 

that of determining whether a given graph (the subgraph of unit 

cost arcs) contains a Hamlltonlan cycle. Even with all arc 
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costs unity, an Interesting graph—theoretic problem emerges: 

to determine the ■ini«« number of arcs required for a k-arc- 

connected graph on n nodes. Here, for k ^2,    there Is 

an obvious lower bound for the number of arcs needed, namely 

^jr (for even kn) or ^^ (for odd kn), and It Is reason- 

able to ask If this bound Is always achieved. We answer this 

affirmatively by describing two constructions that produce 

graphs having the minimum number of arcs; one of these 

constructions Is applicable for even k, the other for odd 

k. 

Similar problems arise If one considers k-oonneotedness 

not with respect to arcs but rather with respect to nodes. 

Thus, for example, terming a graph k-node-connected# if It is 

necessary to remove k or more nodes (together with their 

arcs) to disconnect the graph, one can ask for the smallest 

number of arcs required in such a graph on n nodes. The 

lower bound mentioned above is unchanged, but very little appears 

to be known about the problem for nodes (cf. [l], Appendix IV, 

Problem 11). Since a graph that Is k-connected with respect 

to nodes Is k-connected with respect to arcs, but not always 

conversely, the fact that the lower bound Is achievable in 

the arc problem is a weaker assertion thai the corresponding 

one for nodes. 

 1  
In the literature on graphs,  the phrase   'k-connected 

graph" refers to nodes, see   [l,4j. 
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2^    CUT SETS OP ARCS 

Throughout this and the following sections, a graph is an 

unorlented one without 1 or 2—circuits,  that Is, at most one 

arc Joins a pair of nodes and all arcs Join distinct nodes. 

We write    G =  CN;C\| to mean that the graph    G    has node set 

N   and arc set   (X.    Nodes are denoted by    x,y,z,..., and arcs 

by unordered pairs of nodes,   (x,y),   (x,2),   ...   . 

Let    G = [N;C*]    be a graph on   n   nodes, n ^ 2. A subset 

Xca,   is a cut set of arcs in    G    provided that the graph 

G1  =  QNI C( -9(|    obtained from    G/by supresslng arcs of  X 

Is disconnected.    A graph    G    lyK-aro-connected if every cut 

set of arcs In   G has at least/ k   members; here    0 ^ k < n. 

In dealing with   k-aro-connectedness, attention can be re- 

stricted to cut sets of arcs of the following kind.    Let    X 

and   !? = N - X   be a partition of the nodes of    G    into two 

non-empty sets, and let    (X,7)    denote the set of arcs in    G 

that have one end in X,  the other end In   IT.    Thus    (X,X)    is 

a cut set of arcs in   G    separating the nodes in    X   from those 

In   7.    Moreover, given any cut set  X^ 6 *    one can determine 

XON    so that    (X,Y) C-X   by the recursive rule: 

(a) select a node    x    and put    x    In    X; 

(b) if    x    Is in    X    and    (x,y)    is In   a-X,  then 

put    y    in    X. 

The set    7 =* N - X    thus defined can not be eraoty,  since   X 

Is a cut set of arcs;  It is also clear that     (X,^) _^'    T*1118 

It suffices to consider cut sets of the form (X^T), and we 

shall do this. 
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3. THE CASE k EVEN 

We give a simple construction which furnishes an Induc- 

tive proof on n, for fixed even k, that there are k-arc— 

kn connected graphs on n nodes having -ij- arcs. 

3.1 below will be used In the construction. Call 

a set of arcs of G Independent  If no two arcs of the set 

have a node In common. The degree of a node x In G Is the 

number of arcs on x. 

Lemma 3 • 1 • If each node of a graph Q has degree at 

least k,  then any arc of G Is contained In a set of y^-l 

independent arcs. 

Here  [^M denotes the biggest Integer in ^. A 

proof can be made by Induction on n, the number of nodes In 

0. The conclusion is obviously valid for n » 2,3. Assume 

the validity of the lemma for all graphs containing fewer than 

n nodes and consider ß with n ^ ^ nodes, each having 

degree ]> k. Select an arc (x,y) arbitrarily In G, then 

suppress nodes x,y, and their arcs, to obtain Q1. Now G' 

has n — 2 nodes, each having degree ^ k — 2. By the Irv- 

duction assumption, G' contains |~5~l Independent arcs. 

The arc (x,y) of G, together with these« gives a set of 

independent arcs of G. 

The conclusion of Lemma 3.1 Is very weak, but suffices 

for our purposes in this section. In treating odd k, a 

strengthened form of Lemma 3.1 will be used. The version 

given here has the advantage that the construction implicit 

M 
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In Its proof Is extremely simple:    any maximal set of Indepen- 

dent arcs will do. 

Theore» 3.2.    Let    n   be a poeitive Integer and   k   an 

even Integer satisfying    2 ^ k < n.    Then there is a graph on 
kn n   nodes that is k-are—connected and has    —T»-   arcs. 

Let    k ■ 2p.    If    n « k + 1, the complete graph on    n 

nodes  serves.    We now proceed by Induction on    n, holding    k 

fixed,    ttius let   Q    be a k-arc-connected graph on    n    nodes 

having    np    arcs.    Then each node of    G    has degree    k    and hence 

by Lemma 3»1    G    contains    p    independent arcs, say 

(3.1) (3C]L,y1),   (x2,y2),  ...,   (xp,yp). 

Now let    G1    be the graph on    n + 1    nodes obtained from    G 

by deleting the arcs    (3.l)# then adding node    z    and the arcs 

(3-2) (ZIXJ),   ...,  (ztXp),  (z^),   ...,  (z#yp). 

The graph    0'    has    np -f 2p - p = (n + l)p arcs.    We assert 

that    G1    is k-arc-connected.    For suppose not, and let (X,30 

be a cut set of arcs in    G'  containing    k — 1    or fewer arcs. 

We may suppose    z    is in    X.    If    X    consists of the single 

node    z, then    (X,7)    has    k   members.    Thus    X    contains a 

node of    Q.    The cut    (X,Y)    in   01    then produces a cut 

(Y,Y)    in    G, by taking    Y"= X - jZ1.    But the number of arcs 

in    (Y,Y)    is less than or equal to the number In    (X,X), 

since to each arc    (x^,  yi)    of the deleted set    (3.1)  that 

is also in    (Y,7), there corresponds at least one of the added 



: t 

P-2371 
6 

arcs (5.2), either (z^) or (z,y1), which Is In (Xf7). 

Thus (Y,Y) has at most k-1 members, contradicting the fact 

that Q Is k-arc-connected. This proves Theorem 5-2. 

4.  THE CASE k ODD 

For the case of odd k, say k » 2p + 1, the analogue 

of the above construction can fall. The difficulty comes In 

attempting to make the transition from odd n to even n + 1. 

Here one would start with a k-arc-connected graph 0 having 

i£^i arcs, so that some node of G has degree k + 1, all 

others have degree k. Lemma J.l can be used to select p + 1 

independent arcs, one of which Is on the node x1 of degree 

k + 1.  If It could be shown that the graph G1 obtained 

from 0 by deleting the independent arcs 

(3C1,y1), ..., (x +1, yp+1)> 
then adding node z and the arcs 

(ztx2),   ...(z,xp+1), (z,y1), ..., (z»yp+1), were k-arc- 

connected, a proof for odd k would be obtained. But this is 

false, as the following example for k = 3 shows. Let G be 

the graph of Pig. h.l  below; G has the minimum number of arcs 

y2 « ^ 

Pig. 4.1. 

and it can be checked that    G    is >-Arc-connected. Let 
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(x1,y1), (x2,y2)  be the candidates for elimination.  One 

then obtains the graph G' of Pig. 4,2, which la only 2-arc- 

connected. 

Pig. 4.2. 

Fortunately, the troublesome feature exhibited by the 

preceding example can be avoided by employing a construction 

that adds two nodes to the graph at each step. Instead of one 

For this we first need to strengthen Lemma 3.1, 

In Lemmas 4.1 and 4.2, k may be either even or odd, 

although we use them only for odd k. 

I^wma 4.1.  If each node of a graph G on n nodes has 

degree at least k,  then G contains at least mln ([jj] ,k) 

Independent arcs. 

Let ^ C Ct be a maximum set of Independent arcs In 

G ~  [N;0p, I.e., one of maximum cardinality. Say that x In 

N Is covered In ">> If x Is the end of some member of ^ 

uncovered otherwise.  If G contains at most one uncovered 

node, then %   has  [jj] members. Suppose that G has at 

least two uncovered nodes, and let u1, u2 be two such.  Since 

n\ is a maxlnum Independent set, each node x that neighbors 
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an uncovered node must be covered. Let t^ have degree 

kl 2 lc» i « 1,2, and separate the ki neighbors of 1^ Into 

two types:  (a) those Joined together In pairs by arcs of J*^ 

(b) those not so Joined. Let x be a neighbor of u1 of 

type (a), and let y be the neighbor of u1 for which (x,y) 

Is In ^ Then x cannot neighbor u2, for otherwise the set 

X* of arcs obtained from rlifl by deleting (x,y) and adding 

the arcs (u,, y), (x, Ug) Is Independent and contains more 

members than 'M, a contradiction. Hence If ra.  Is the number 

of arcs of 7>V that Join type  (a) neighbors of u^, 1 * 1,2, 

then lK  contains at least m, + nu + max^^-ßnu, kg-Sm«) i ^ 

members. Thus, In any event, M has at least mln( [5], k) 

members, proving Lemma 4.1. 

We need one other preliminary lemma before proceeding to 

the proof of Theorem 4.3. 

Lemma 4.2. If each node of a graph 0 on n nodes has 

degree at least ^ ^> jy, then Q l£ k-arc-connected. Hence 

for such k,n there are k-arc—connected graphs on n nodes 

having [^rM arcs. 

To prove Lenana 4.2, let (X,^) be a cut In 0. Let X 

have h members. We have 1 ^ h and may assume h ^ ft. 

Hence by hypothesis, 1 <[ h ^ k.  It follows that 

(k-h)(h-l) 2 0» and hence 

(4.1) kh - h(h-l) ^ k. 
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But the number of arcs In (X,X) Is greater than or equal to 

the left hand side of (4.1), since each node of X has degree 

at least k, and hsnce at least k - h + 1 arcs Joining it to 

members of 7. This proves the first part of the lemma. To 

prove the second part, we need only establish the existence of 

graphs on n nodes having ^ arcs (for kn even) or  g 

arcs (for kn odd), with each node having degree ^ k. This 

can be accomplished In various ways. For example, the con- 

struction of the preceding section does this for even k, and 

an entirely analogous construction works for odd k. 

Theorem 4.5. Let n be a positive integer and k an 

odd integer satisfying 3 <[ k < n. Then there is a graph on 

n nodes that is k-arc-connected and has   ^   arcs. 

It follows from Lemraa 4.2 that for n in the range 

k + 1 <^ n <[ 2k, Theorem 4.3 is valid. The construction 

described below increases n by two at each step.  If n ^ 2k 

is even,we may start the induction at 2k in order to reach 

n; if n > 2k is odd, we may start at 2k — 1. We now describe 

the Inductive step. 

Suppose n ^ 2k — 1 and let G be a k-arc-connected 

graph on n nodes having the minimum number of arcs. By 

Lemma 4.1, G contains at least k — 1 Independent arcs, say 

(4.2)        U^y^, ..., (xp,yp), (u^), ..., (up,vp). 

Here k = 2p + 1. Now form 01 by deleting the arcs (^.2), 

then adding two nodes z,w together with the arcs 



P-2371 
10 

(^•3) (z,x1)f ...» (z,xpj, (zjy^, ..., (zfyp), 

(^.^) (WJUJ), ..., (w,up), (w,v1), ..., U,vp), 

(^.5)        (z,w). 

Observe that G' has k more arcs than 0 does, so that the 

arc count has gone up appropriately. The proof that G'  is 

k-arc-connected Is similar to that given in the proof of 

Theorem 3»2. Let (X,Y) be a cut set of arcs in 0' and 

suppose, contrary to what we wish to show, that (X,?) has 

k—1 or fewer members. If both nodes z and w are on one 

side of this cut, say z and w are in X, then X must 

surely contain nodes of G.  As before, the cut (Y,Y) in 

Q Induced by taking Y ■ X — 'ZjW- can have at most k — 1 

members, a contradiction.  If z and w are on opposite 

sides of the cut, say z is in X, w in Y,  then both X 

and ^ contain nodes of G, since z and w each have degree 

k in G'.  Again the cut (Y,7) induced in G by defining 

Y « X — 1 2:, Y = Y - w , has no more arcs than does (X,50, 

and we have a contradiction.  This completes the proof of 

Theorem 4.3. 
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