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SUMMARY

A lirear graph 18 k-arc-—connected 1if it 1s necessary to
remove at least k ares in order to disconnect the graph.
This paper solves the problem of determining the fewest number
of arcs required in a k-arc—connected graph on n nodes by
describing constructions that produce such graphs having '§P /
arcs (for kn even) or E%}l arcs (for kn odd). These
results have application to the practical problem of synthe-

sizing minimum cost, "k-reliable" communication networks.
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MINIMAL k-ARC~CONNECTED GRAPHS

1. INTRODUCTION

In considering the synthesis of reliable communication
networks with respect to link failure, the following question
seems a natural one to raise. Suppose given the complete,
unoriented graph G on n nodes N = {x,y,z,...}, and let
each arc (x,y) of G have assoclated with it a nonnegative
number c¢(x,y), to be thought of as the cost of installing a
communication link between stations x and y. For each
k=1, 2, ¢ee, n=1, find a mininum cost k-arc-connected
spanning subgraph of G. Here the cost of a subgraph H 1s
the su.. of the numbers c¢(x,y) corresponding to arcs of H,

a spanning subgraph of G 1is a subgraph that has the same
node set N as G does, and a k—-arc—connected graph 1s one
in which at least k arcs must be suppressed in order to
disconnect the graph. Thus k might be thought of as the
"reliability level" of the communication network, and the
practical problem is to minimize cost subject to achieving a
stipulated reliabllity level.

For k = 1, the problem becomes that of finding a minimum
cost spanning subtree of G; there are simple methods known
for doing this [2,3]. But for k > 1, the situation seems
to be quite different. llere we need only mention the fact that,
with k =2 and all arc costs 1 or oo, the problem includes
that of determining whether a given graph (the subgraph of unit

cost arcs) contains a Hamiltonian cycle. Even with all arc
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costs unity, an interesting graph—theoretic problem emerges:
to determine the minimum number of arcs required for a k-arc—
connected graph on n nodes. Here, for Ik ) 2, there is

an obvious lower bound for the number of arcs needed, namely
%? (for even kn) or E%Fl (for odd kn), and it is reason—
able to ask if this bound is always achieved. We answer this
affirmatively by describing two constructions that produce
graphs having the minimum number of arcs; one of these
constructions 1is applicable for even k, the other for odd

k.

Similar problems arise if one considers k-coénectedneas
not with respect to arcs but rather with respect to nodes.
Thus, for example, terming a graph k-node—connected* if it is
necessary to remove k or more nodes (together with their
arcs) to disconnect the graph, one can ask for the smallest
number of arcs required in such a graph on n nodes. The
lower bound mentioned above is unchanged, but very little appears
to be known about the problem for nodes (cf. [1], Appendix IV,
Problerm 11). Since a graph that is k-connected with respect
to nodes 1s k—connected with respect to arecs, but not always
conversely, the fact that the lower bound 1s achievable in

the arc problem 1is a weaker assertion thaa the corresponding

one for nodes.

E 3
In the literature on graphs, the phrase 'k—connected
graph" refers to nodes, see [1,4].
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2. CUT SETS OF ARCS

Throughout this and the following sections, a graph is an
unoriented one without 1 or 2—circuits, that 1is, at most one
arc Joins a pair of nodes and all arcs join distinct nodes.

We write G = [N;UU to mean that the graph G has node set -
N and arc set (\. lodes are denoted by x,y,z,..., and arcs
by unordered pairs of nodes, (x,y), (x,z), ¢..

let G = [N;@ be a graph on n nodes, n D 2. A subset
NCA 1s a cut set of arcs in G provided that the graph

G' = [N;3 @ =%] obtained from G /by supressing arcs of X

1s disconnected. A graph G 1§ k-arc-—connected if every cut

set of arcs in G has at leasy k members; here 0 { k < n.
In dealing with k-aro-connectedness, attention can be re-
stricted to cut sets of arcs of the following kind. IlLet X
and X = N =X be a partition of the nodes of G into two
non-empty sets, and let- (X,X) denote the set of arcs in G
that have one end in X, the other end in X. Thus (X,X) 1s
a cut set of arcs in G separating the nodes in X from those
in X. Moreover, given any cut set X'C i, one can determine
XC N so that (X,X) <X by the recursive rule:

(a) select a node x and put x in X;

(b) if x 1s in ¥ and (x,y) 1s in A& =K, then

put y in X.

Tte set ¥ = N — X thus defined can not be emoty, since X
is a cut set of arcs; it is also clear that (X,%) .. Thus

1t suffices to consider cut sets of the form (X,X), and we

shall do this.
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3. THE CASE k EVEN

We give a simple construction which furnishes an induc—

tive proof on n, for fixed even k, that there are k-—arc—
connected graphs on n nodes having %? arcs.
Iemma 3.1 below will be used in the construction. Call

a set of arcs of G 1independent if no two arcs of the set

have a node in common. The degree of a node x in G 1is the

number of arcs on X.

Lemma 3.1. If each node of a graph G has degree at

least k, then any arc of G 1s contained in a set of [EEI]

independent arcs.

Here [551] denotes the biggest integer in 551. A

proof can be made by induction on n, the number of nodes in
G. The conclusion is obviously valid for n = 2,3. Assume
the validity of the lemma for all graphs containing fewer than
n nodes and consider G with n ) 4 nodes, each having
degree > k. Select an arc (x,y) arbitrarily in G, then
suppress nodes x,y, and their arcs, to obtain G'. Now G’
has n — 2 nodes, each having degree ) k — 2. By the in-—
duction assumption, &' contalns [Eig] independent arcs.
The are (x,y) of &, together with these, gives a set of
F%?q independent arcs of G.

The conclusion of Lemma 3.1 1s very weal, but suffices
for our purposes in this section. 1In treating odd k, a
strengthened form of lLemma 3.1 will be used. The version

given here has the advantage that the construction implicit
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in i1ts proof 1s extremely simple: any maximal set of indepen-—

dent arcs will do.

Theorem 3.2. Let n be a positive integer and k an
even integer satisfying 2 { k { n. Then there is a graph on

n nodes that is k-arc—connected and has -%? arcs.

Iet k=2p. If n=k + 1, the complete graph on n
nodes serves. We now proceed by induction on n, holding k
fixed. Thus let G be a k-arc-—connected graph on n nodes
having np ares. Then each node of G has degree k and hence

by Lemma 3.1 G contains p 1independent arcs, say
(3.1) (21,9105 (x535)5 «ees (xp7,)-

Now let G' be the graph on n + 1 nodes obtained from G
by deleting the arcs (3.1), then adding node 2z and the arcs

(3.2) (z,xl), cees (z,xp), (z,yl), ceey (z,yp).

The graph G' has np + 2p — p = (n + 1)p arcs. We assert
that G' 1s k-arc—connected. For suppose not, and let (X,X)
be a cut set of arcs in G' containing k — 1 or fewer arcs.
We may suppose 2z 1is in X. If X consists of the single
node 2z, then (X,X) has k members. Thus X contains a
node of G. The cut (X,X) in G' then produces a cut
(Y,Y) in @, by taking Y '= X = i,;z"f. But the number of arcs
in (Y,¥) 1s less than or equal to the number in (X,X),
since to each arc (xi, yi) of the deleted set (3.1) that

is also in (Y,¥), there corresponds at least one of the added
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arcs (3.2), either (z,xi) or (z,yi), which 18 in (X,X).
Thus (Y,¥) has at most k—1 members, contradicting the fact

that G is k-arc—~connected. This proves Theorem 3.2.

4, THE CASE k ODD

For the éase of odd k, say k = 2p + 1, the analogue
of the above construction can fail. The difficulty comes in
attempting to make the transition from odd n to even n + 1.
Here one would start with a k-arc—connected graph G having
5%;l arcs, so that some node of G has degree k + 1, all
others have degree k. Lemma 3.1 can be used to select p + 1
independent arcs, one of which 1s on the node Xy of degree
k + 1. If it could be shown that the graph G' c¢btalned
from G by deleting the 1independent arcs
(xl,yl), ety (xp+1, yp+1), then adding node 2z and the arcs
(z,x2), ...(z,xp+1), (z,yl), — (z,yp+1), were k—arc—
connected, a proof for odd k would be obtained. But this is
false, as the following example for k = 3 shows. lLet G be

the graph of Pig. 5.1 below} G has the minimum number of arcs

Y1 X5 u

Fig. §.1.
and it can be checked that G 1is 3-arc—connected. ILet
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(xl,yl), (xe,ye) be the candidates for elimination. One
then obtains the graph G' of Pig. 4.2, which s only 2—arc—

connected,

¥y z X5 u

! N

Fig. 4.2.

Fortunately, the troublesome feature exhibited by the
preceding example can be avoided by employing a construction
that adds two nodes to the graph at each step, instead of one.
For this we first need to strengthen Lemma 3.1.

In Lemmas 4.1 and 4.2, k may be either even or odd,
although we use them only for odd k.

Lemma 4.1. If each node of a graph G on n nodes has

degree at least k, then G contains at least min ([§],k)

independent arcs.

Let MC A be a maximum set of independent arcs in
G = [N;d], t.e., one of maximum cardinality. Zay that x in
N i1s covered in M 1if x 1s the end of some member of °m,
uncovered otherwise. If G contains at most one uncovered

node, then M has g- members. Suppose that G has at

least two uncovered nodes, and let Uy, Uy be two such. Since

. 1is a maximum independent set, each node x that neighbors
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an uncovered node must be covered. lLet u, have degree
ky 2k, 1 = 1,2, and separate the k, neighbors of u, into
two types: (a) those jJoined together in pairs by arcs of M,
(b) those not 8o joined. Let x be a neighbor of wu, of
type (a), and let y be the neighbor of wu, for which (x,y)
is in ‘M. Then x cannot neighbor u,, for otherwise the set
N of arcs obtained from ‘M by deleting (x,y) and adding
the arcs (“1’ y), (x, u2) is independent and contains more
members than ‘M, a contradiction. Hence if m, 1s the number
of arcs of M that join type (a) neighbors of u, 1 =1,2,
then “M contains at least my + m, + max(k;—2m,, ky=2my) 2 k
members. Thus, in any event, M has at least min([g], k)
members, proving Lemma 4.1.

We need one other preliminary lemma before proceeding to

the proof of Theorem 4.3.

ILemma 4.2. If each node of a graph G on n nodes has

degree at least k 2 %, then G is k-arc—connected. Hence

for such k,n there are k-arc—connected graphs on n nodes

having [ ] arcs.

To prove Lemma 4.2, let (X,X) be a cut in G. Let X
have h members. We have 1 { h and may assume h ¢ 7.
Hence by hypothesis, 1 ( h { k. It follows that
(k=h)(h=1) > O, and hence

(4.1) kh — h(h=1) > k.
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But the number of arcs in (X,X) 1s greater than or equal to
the left hand side of (U4.1), since each node of X has degree
at least k, and hznce at least k —h + 1 arcs Jjoining it to
members of X. This proves the first part of the lemma. To

prove the second part, we need only establish the existence of
graphs on n nodes having %? arcs (for kn even) or 5%;1
arcs (for %n odd), with each node having degree > k. This
can be accomplished in various ways. For example, the con-

struction of the preceding section does this for even ¥k, and

an entirely analogous construction works for odd k.

Theorem 4.3. let n be a positive integer and k an

odd integer satisfying 3 { k { n. Then there is a graph on

n nodes that 18 k-arc-—connected and has [lc_anI_I_] arcs.

It follows from Lemma 4.2 that for n in the range
Xk + 1 { n { 2k, Theorem 4.3 is valid. The construction
described below increases n by two at each step. If n > 2k
is even,we may start the induction at 2k 1n order to reach
n; 1f n > 2k 18 odd, we may start at 2k - 1. We now describe
the inductive step.

Suppose n » 2k — 1 and let G be a k—arc—connected
graph on n nodes having the minimum number of arcs. By

Iemma 4.1, G contains at least % — 1 1independent arcs, say

(”.2) (Xl,yl), eeey (X :.Vp): (ul'vl)’ ey (u :Vp)'

p P

ilere k = 2p + 1. Now form G' by deleting the arcs (4.2),

then adding two nodes z,w together with the arcs
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(h.}) (zsxl); ) (z:xpj: (Z:Yl): veey, (Z,Yp),
(4.4) (w,ul), oKD (w,up), (w,vl), cees (w,vp),
(4.5) (z,w).

Observe that G' has k more arcs than G does, so that the
arc count has gone up appropriately. The proof that G' 1s
k—-arc—connected is similar to that given in the proof of
Theorem 3.2. let (X,X) be a cut set of arcs in G' and
suppose, contrary to what we wish to show, that (X,X) has
k=1 or fewer members. If both nodes z and w are on one
gside of this cut, say z and w are Iin X, then X must
surely contain nodes of G. As before, the cut (Y,Y) in

G 1induced by taking Y = X -iz,w} can have at most k - 1
members, a contradiction. If z and w are on opposite
sides of the cut, say 2z 18 in X, w in X, then both X
and X contain nodes of G, since z and w each have degree
k in G'. Again the cut (VY,Y) induced in G by defining
Y =X —-{z?, ¥=X- ;w;, has no more arcs than does (X,X),
and we have a contradiction. This completes the proof of

Theorem 4.3.
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