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INTRODUCTION

Five papers dealing with practicsl aspects of theoretical work done
at the Applied Physics Laboratory on the subject of the serodynamic char-
acteristice of wings in supersonic flow are presented in this BUMBLEBEE
report. Thess papers, which have appeared as internal memorands of the
Applied Physics Laboratory, represent the combined efforts of APL/JHU
personnel and outeide contributors as noted in the references.

The first paper derives 1ift coefficients and center of pressure
location for fiat plates of polygonal planform from fundamental consid-
erations, using Busemann's conical field method., The other papers utilize
Busemunn's second order approximation formula to determine the aerodynamic
characteristics of certain types of wings having finite thickness, Con-
sequently there will be some overlapping of resulte, but no material is
deleted inasmuch as the two methods are guite different, Attention is
called, howavar, to differences in nomenclature betwsen the first and
the remaining papers, A short discussicn of the sectional properties
of various airfeil shapes and ths optimum type is given at the end of
this report.

It is believed that these papers cover most of the unclassified
engineering work on the effect of wing planforme available at this time,
The work is by no means complete, there being many practical planforms
for which no theory has been developed, particularly in the case of wings
with finite thickness, Accordingly the table on the following page has
been constructed tc indicate the types for which information can be found
in this report, to show where it can be found, and to indicate the miss-
ing data., In this table the Roman numeral rsfers to the paper in this
report as indexed in the Table of Contents, whereas the Arabic numeral
refers to the page on which the expreesion for the particular coefficient
may be found, An X indicates that the exact infermation is not yet kmown,
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¥ Lift is two-dimensional and/or center of pressure is8 at centroid of area.
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I, APPLICATIOR OF BUSEMANN'S CONICAL FIELD METHOD TO PHIR WING3®

by Robert M. Srow

Introductior

In ¢this paper the pressure distridbution, 1lift cocfficient and center
of pressures are determined for several plane wings of polygenal planform
at small angles of attack, by the method of ®conical fields"., The effect
of a dihedral bend is also obtained. Squares and products of perturbation
velocities have been neglected, since the method is based on the Prandtl-
Glanert linearized potential eguation, Modifications due to wing thick-
nees, viscous effects, and interfersnce effect (with a fuselage or with
other wings) are likewiae neglected.

The method of conical fields in supersonic aerodynamics was developed
by Busemann (Ref. 1), who applied it to severa) important problems. Stew-
art (2) hes solved ths problem of a delta wing oy essentially the same
method. A corical field corresponds to a linear homogeneous solution of
the linearized (or Prandtl-Glaueri) potential equation for supersonic

flow:

¥ 2 z@! - (1)

Here M is the Mach number of the main stream, which is moving along the

g - axis, The perturbation velocity components (u, v, w) are also solu-
tions of EHq. (1) and are homogeneous of degree zero, i.e., u, v, and w
are constant along any ray emanating from the origin., The particular
simplicity of conical fields lies in the fact that after a transformation
the perturbation velecity components (u, v, w) are obtained as solutions
of Laplace's equation in two variables, Busemarn credits this transfor-
mation to Chaplygin, (2) who made use of ii in a formally similar problem,
Since the general theory has buen discussed recently by Stewart (2) it is
only needed to. state the principal result in the form in which it will be

* This paper is a revision of CM-265 originally published as an 1nterna1
menorandum of the Applied Physics Laboratory.




2 Aerodynamic Characteristics of Wings at Supersonic Speeds

utilized, Net A be the Mach angle (sin‘"1 1/M), and x, y, # a rectan-
gular coordinate system with the z - axisg pointing downstream, and

V24 y2

p=tan Yy R=—5—  A=tan p

The transformation

1-V1-R¥/AE "e____A AE )

A
1+Vi-RYAE R 'R } (2)

2Ar
|+r2 J

R =

is such that homogeneous functions of degree zero which satisfy Bq. (1)
also satisfy Laplace's equation in the polar coordinates r, @ ).

The evaluation of the streamwise component (w) of perturbation velocity
is of primary importance since the aerodynamic forces on the wing are
determined by w alone. This follows from the linearized Bernoulli

equation,

p=p-pWw ®)

which, like Eq. (1), results fror neglecting squares and products of

perturbation velocities in the corresponding exact equation., In many
problems of this type, including those considered here, w may be deter-

mined without further reference to the components u and v,



Application of Busemann's Conical Field Method to Thin Wings

Characteristic Cones, Bcundary Conditionsg

To illustrate the type of boundary condition needed to determine
the conical field, ccusider the special case of a rectangular wing,
This rectangular wing may be regarded as the result of cutting off the
suds of a two-dimensional airfoil, This operation causss a modification
in the flow (criginally two-dimensional), which may be referred to as
the "{ip effect". 1In this connection, a fundamental distinction should
e made between subsonic flow and supersonic fliow., For subsonic flow
{differential equation of elliptic type) the tip effect dies off asym-
vototically with increasing distance inboard. For supersonic flow (dif-
ferential equation of hyperbolic type) the tip effect falls to zero at
a csrtain finite distance, and the entire effsct iz contained within
a region bounded by real characteristic surfaces. For linearized super-
gonic flow, the domain of influence of any point is bounded by a "Mach
cone®, which is one nappe of a cone opening downstream with semi-vertex
angle eoual to the Mach angle 4 . Figure 1 represents a section by a
plane psrpendicular to the
main stresm. The Mach cones
from the tips of the leading
edge divide this plane into i

three types of regions. Ia -
tha central region (I) the <:\\ 1
m = j , bl m

flow is in all respects the

gsams a8 if the wing were of .
infinite span, because no
point of this central region
lies in the domain of in-

L
b1t

fluence of any point removed Lo et !
in the mental process of ob- I Conical Field

taining the rectangular wing
from an airfoii of ianfinite
gpan, On the other hand ths
perturbation velocity compon-
ents are zero in the exterior

IO Free Stream

region (III), because no FIG. |
point of this region lies in FLOW FOR RECTANGULAR WING,

TO STRE
any point on the rectangular AM

wing. The requirement of con-

tinuity leads to boundary con-

ditions which must be satisfied by the perturbation velocity components
u, v and v on the boundary of each conical transition region (II). On
the boundary between reglons (II) and (III), u, v and w must vanish,

Or. the boundary between regions {I) and (II), u, v and w take on the
(constant, two-dimensional) valuee of region (I).

Similar statements apply also to the example of a swept-back lead-
ing edge (Fig. 2). The two lines forming the leading edge are, of course,
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4 Aerodynamic Characteristice of Wings at Supersonic Speeds

finite in the actual case, bub
the effect of their finiteness
will be confined by character-
istic conss passing through

the points at which the leading
edgs changes direction., The
possibility of treating mors
gsneral polygzonal wings by

this method follows from these
remarks, XFor the polygons that
may be treated by this method,
there are isolated regions of
uniform flow (identical with
the flow for an infinite wing
at a certain sngle of yaw) sepn-
arated by rezions of transition
in the Mach ccnes which stary
from each vertex of the polyzon
and opan downstream, It is
convenient in the following
discussion to refer to these -

Plodlorm for dafinition

of symbols.

Section by plons perpandiculor to streom

1, Flow some os for Infinite spoiv alrfoll ot ongle of yow 24,
I, Flow some as for Inflnite spon oirfoll ot ongie of yew Ti/2-§,

i id
special Mach cones simply as e e
Wthe Mach cones® or “the Mach F15. 2
" .
cons ™, FLOW FOR

SWEPT-BAGK LEADING EDGE
Boundary conditions must

also be given over that part of

the wing which lles inaside the

Mach cone, The velocity component normal %o the wing must have the ssme
valus as on the rest of the wing, because ¢f the condition that there
be no flow through the wing. The bourndary condition for w is that the
normal derivetive of w be zero on the wing, This follows from the re-
gquirement of irrotationality (implicit in the use of the potential ®),

s that SW _ dv

dy LF
and the condition that v is constant on the wing. The fact that the wing
does not lie exactly in the plane y = 0 is neglected; this has no effact
on the first order perturbation, This simpiification is made throughout,
so that the angle ¢f attack snters only in the boundary valunes and not in
the position of the boundaries.

Rectangular Wing

The problem of a plane rectangular wing was succesefully solved
by Busemann (1), by esecentially the method employed here, Schlichting
(4) had proviously considered the same problem by a difterent method,
and obtained o false result because of an analytical error. When this
error is corrected, Schlichting's method becomes consistent with the
conical field method, not only for rectangular winge, but also for the
raked wings considered in the next section. (Baked wings were not treated
by either of these authors, but their methcds are eaeily extended to this

case,)

o b p—— -
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Application of Busemann's Conlcal Field Method to Thin Wings

Attenticn may be confined to one end of the wing, The origin of
coordinates iz tekea at the end of the leading edge. The positive x -
axis 1s directed spanwise away from the wing. The y -~ axis is normal
to the wing; the direction of the positive y ~ axis may be regarded as
"upward®, The positive * - axiz is in the direction of flow (the co-
ordinstes being such that the wing is considered to be at rest with the
air flowing past it). The velocity of the_incident flow is W , the
angle of attackel , and the Mach angle M4 = sin-1 1/M. For a wing of
infinite span, the usual two-dimensional theory* gives

W= W ian u = wy
above the wing and

W= -~ Wy,

below the wing. In terms of the pclar varisbles R and @ , the bound-
ary conditions for wr are:

W= W, for -'!T<q»<--é- R=A

These boundary conditions of course apply equally well in the (4, @)
plane, replecing the circle R = A by the circle r = 1, 7o find w, 1t

is only necessary to solve Laplace's equation in the polar coordinates

r and ¢ with the above boundary conditions, The solution may be con-
structed by the usual methods from the particalar solutions r® sin e?.
From the first boundary condition it is seen that S must be half of an
odd integer. The most general function which is harmonic in the cut
circle, which satisfies the raquired conditions along the cut, end which
is an odd functiun of @ (as required by the symmetry of the boundary
conditions) 1is .

fa ..4','& H (PR
w =) A,r** 2 sin(n+h)$
A=0

* Ses, for example, von Misse and Friedrichs, Fluid Dynamics, p. 237,
Brown University, 1942,

- .o = e - .- - .
) s - ~o RS T e~ - -
m—‘_ - sl N ——




‘3 6 Aerodynamic Characteristics of Wings at Supersonic Speeds

This is not the conventional Fourier ceries for a function which is
periodic with period 277 ; however, it is useful to notice that the
series is periodic with period4m . Thie suggests the extension of
the problem to a two-sheeted Riemann surface by analytic continuation
across the cut, It ie convenient to retain the symmetry by consider-

+
- S———

3“ ing @ to range from -2 to + 2V ;
:{’-‘i
then the boundary values on the arcs in the "lower" sheet of the Riemann
~ surface (that is, -2 P -T and < @< 271')

are to be assigned in such a way that the even harmonics, which cannot
appear in the series for w drop out. This is done by aesigning bound-
ary valnes in the lower sheet which are the negative of the values at
correspending points of the ypper ("physical) sheet. Then

"Tr/g 3\'{"2
A,= —3-;4% sin(n +%) ¢de *%’#[siﬂ(ﬂ*'/a) edo
e e
_ (-1)" 4w, sin(n+')Ms
m 2n +|

Using the symbol R to indicate ®real part of", the Fourier seriee for
¥ :ay be written as

! I
s LA o TN*2

QWp M &
w =%ﬁ§-')n on + |

- 2 o Vi) - ot [y ] )

. T U/
! 2VT cos(Ya-"74) L, evy cos(’/2+/4)

%;_._.,. 1lff° |~ r ~37 fan = (4)
=% sin".\/g. . (5)
:é_+1l-f sin”! (2%-!) (5')




Application of Bucemann's Conical Field Method to Thin Wings 7

On the lower surface of the wing

(p=-7)

w is merely changed in sign., The right member of Eq. (5) or (5') is
shown as a function of R/A ip Fig. 3. From the form (5'), it is clear
that the curve is symmetric with respect to the point (1/2, 1/2), so
that the average value of w along any spanwise line from R = O to R = A
is just weo/2. The triangle cut off by the Mach cone contributes Just
one half as much to the 1ift as an equal area located in,the region where
two-dimensional calculations are valid, (It will be seen in the next
section that the same simple result holds for raked wings with leading
and trailing edges perpendicular to the flow.) Formulae for 1ift co-
efficient and center of pressure are now easily obtained. If Oy oo

is the lift coefficient for s plane wing of infinite span, and Cp, the
1ift coefficient for a rectangular wing of total span & and chord c,

C
2t )-1l8 tan u (€)

c..-'"2s

The center of pressure is located at a distance back from the leading
edge expressed by

1-2/3 C/s tan p (7)
|-}, Grg tan u

_GC
2=3

The above discussion tacitly

assumes that the two Mach cones from
the tips do - not intersect on the
wing. However, this restriction is

1.0 e

the (disturbance) potential inside

<
sesen tc be unnecessary. If @, 1is TE 0

o
one of the cones, §, the potential NS

d

inside the other cone, and ® oo the "

potential for a wing of infinite < 04 /’
span with leading edge perpendicu- - /]
lar to the stream, then in the 0'2/
region commonﬁto th% two cones the o0 o
potential is @=9@+¢Q., - . To ‘ 4 06 08 10
verify this, it gz‘ay Yo goo:ed that N2 glon u
t@};,ép'; ij??l are sol?t;.ons of

e Prandtl-Glauert Eq. (1), and : ; i - ;
since that equation ig linear, Q is ﬁéi"?ﬁe":ﬁ:;"?ﬁf :1o|s:r?gc:m;rxoocrgﬁe?ponme'
e solution as well, Aiso P and its
first derivatives (u, v, w) are con- FIG. 3
tinuous across the conical surfaces
bounding the region in question, PRESSURE DISTRIBUTION ALONG SPAN

It may be said that the Htip effects" FOR REGTANGULAR WING OR FOR
from the two tipe are additive, RAKED-BACK RECTANGULAR WING

<
since the equation defining § may WITH 161 <M
be written

(3.-8)={8,-8) + (8.-%,)

Te o emaweeme aew > LR e A A ——— o=
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I+ should be noted thet the flow in the region in question is not a "conical
field", The combination of the two conical fields with different vertices
is never a conical field, although it approaches a conical field asymptoti-
cally downstream,

This solution iz limited by the condition that the Mach cone from
one tip should nct intersect the cther end of the wing., If this happeas
a further alteration is needed to satisfy boundary conditions at the edge,
and the difficulty of the problem is incrsased snormously.

Since overlapping *tip effects" are additive, the lift coefficient

_and center of pressure are easily calculatle as long as the Msch cone from

one wing tip does not cut the other wing tip. After calculation, it is
found that Eqs. (6) and (7) also'hold for the overlapping case. It may
be noticed that as the quantity$ tan u increases from O to 1 (the highest
value for which the solution apl;iiea , the ratio Cy/Cy, o decreases from
1 to 1/2, and the center of pressure moves from C/2 forward to C/3,

Raked Wing

The following treatment applies t¢ wings with a positive rake angie
8, defined in such a way that the leading edge is greater than the
trailing edge. If 8> , the problem is quite simple. The pressure
on the wing is uniform and is to be calculated from ¢wo-dimensional
theory. This is seen by considering the wing as carved out of an infin-
ite span wing, which only involves remeving portions whose domain of
influence does not contain any part of the final trapezoidsl wing.

1r 0K 8()& , the boundary conditions differ from the previously
considered special case of the rectangular wing only in that the "cut®
or radial line on which dw/an= Q (end across which w is necessarily
discontinuous) does not extend as far as the coordinate origin. The
cut along @=+T in the (R, @ ) plane runs from R = A = tan m to R =
+4tan 8 . In the (r, 9 ) plare ths cit is still on the ray Q=%
and runs from r = 1 to

tan fan,n.)‘__ 2
”=+tan8 \/(70"8' =T

The new problem may be solved by finding a conformal transformation
vhich carries it back to the already solved problem of the rectangular
wing. To do this it is advantageous to map both the new and the old
problem onto a half-plane, Letting £= 4e4® , the transformation

E-§-vE v sesvige g

maps the upper half of the circle i€l onto the upper half plane
g?_) o . The transformed boundary conditions relate to the real

axis éfo
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w=0 for §>0
| +r2 tan i
w=0 for§<c5"22=-—=
AT tan § 5

W = We for -1<8.<0

oW _ P _
an - 0 f.Ol' §°\\ gp< l

The ultimate objective is to find a transformation whick connects the

€ plane with the €'(=4'=4#) plane corresponding to e fictitious rectang-
ular wing. The & plane is mapped onto the §’ plane by the same trans-
formation which connects & and § . The boundary conditions in the §'
plane are obtained from those in the € plane by setting § = —oc

The transformation which carries the & plane into the & plane 1s now clear;
it must be tiie homographic transformation which carries the points

(8, ~1,0)
into

(eo,~1, 0)
This is easily found to be

. (5,18
$="¢.¢

or

.. &5
§+EF

’ g
The transformation from the € plane to the & p'ene is now known,
since
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'

By eliminating g and S it is possible to obtain E' as a function
of € . In the plane of the wing, where =0 or '77‘ and § =A/Rcie
the resukt nimpiifies %o

'R U i

A A-R, '
- " Here Ry, Po are the polar coordinates of the edge of the wing; P, is
0 or yr according as the rake is positive or negative. On the surface
of tha wings

R"_ R-R,
AT AR, $ee =T

As R!' goes from O to A, R goes from Ry, to A, and the dependence of R!
on R 418 linear. Thus the 1ift for a raked wing also varies according

0
f(a) = T% sin~! VA

where A = X! /A is the frection of the spanwise distance from the edge

of the wing to the Mach cone. The function £ { A) is shown graphically
in Fig. 5. Since it is now known that the spevxwise average of 1lift from
tip %o cone is just .one-half of the two-dimensional value, it is easy to
derive formulas for lift coefticient and center of pressure. These formu-
ias hold also if the Mach ccues overlap on the wing without cutting the
opposite wingtip, In other words, the formulae hold for %tan,« L
where S is the mean span, or average of the span at the leading and
trailing edges.

: CL _, I ¢ _ tan 8, + tan 8, ()
- Tzs s 2
2=l Su5t (8)
= | 55 fan L+ a3

S;. and Sp are the spans at the leading and trsiling cdges respsct-
ively. The center of pressurs is lccated at the following distances
behind the leading edge:

s ~ .
%5 ¢, tan . ., tan& +ian 82
3 Yston W+ /3% 2

| - !/ac/s tan ML+ |/2 c/s tan Sio't' tan 52.

(=]

(8)

G
Z =
-2




Application of Busemann's Conical Field Method to Thin Wings

It may be well to repeat at this point that thése results hold only for
positive rake angles (Sp" Sp).

Bent Laading Edge

A problem of considerable importance is illustrated in Fig. 2,

The angles @, and Oga are not necessarily acute angles, as in the case
drawn, but each is assumed to lie in the range u< 9 < -u . To

simplify the immediate discussion it is assumed that the angle of the
leading edge points upstream, so that &+ 9, <y ; it is shown later
that the formulae obtained are valid without this restriction. Evident-
1y the wing separates the problem into two parts which may be treated
independently. Attention may be confined to the upper half, since the
solution for the lower half differs only in sign. The points on the
circie for which @=(3, , and = T-(3, mark tne tangency of the plane
Mach waves from the leading edge with the Mach cone. By elementary
geometry,

cos 4, = tan ./ tan 5,
cos &, = tan j/tan &z

From a consideration of the "domains of influence", see (Fig., 2) it is
seen that the flow in the regions I,, 12, II] is aa indicated in the
legend of Fig. 2. As before, the normal desrivative of w vanishes on
the wing, All three components 9f perturbation velocity vanish on the
arc ﬂ,<¢<1r- ﬁz ; on the other two arcs the boundary contitions are to
be obtained from the essentially two-dimensional problem of an infinite
span airfoil at an angle of yaw, to which we now turn.

Let & ve the angle between the main stream direction and the lead-
ing edge of an airfoil of infinite span, 80 that 7/2-9 4is the angle
of yaw, It is assumed that e 3<7- . . The uniform flow W may
be considered as a superposition of a uniferm flow at velocity W cos &
parallel to the leading edy s, giving rise to no perturbation, and a flow
perpendicular to the leading edge at velocity W, =W sSin @ and effect-
ive Mach number M,= Msin$ . The effective angle of attack (&, )
for this second flow is measured in a plane perpendicular to the lead-
ing edge; it is related %o the sireamwise angle of attack (& ), meas-
ured in & plane containing the stream direction and perpendicular to
the plane of the wing for zero angle of attack, by the formula

tan @ = tan o« sin &

Within the limits of validity of the linear theory we need not distinguish

between the angle of attack and its tangent, so that
@ =, sin

For a plane airfril of infinite span and not yawed, the streamwise com-
ponent (w) of perturbation velocity is

mw - P
w = aWien o 2"/—’—] E We
v?\’l“"
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To obtain the chordwise coaponent of perturbation velocity for an air-
foil at an angle of yaw W2 -5 , replacs <, Wand Mby @, W, and M,.
The streamwise component of perturbation velocity follows from multi-

plication by sin&': o W .
W= ——b gin § = o Wsin &
Vme-| VM2 sin2f-| (0
or
w@
W= sinB

where, as before, cos & = tan M/tan §

The boundary conditions for the remaining two arcs of the upper
gemicircle are

= Wo -
w= Sinﬁng' for O<?<ﬁl

snd

1w,
w= =2 =K, for M-Fp<Q<T!
sin8p
The potential probdlem which is now uniguely determined in the upper semi-
circle may be written out immediately as a Fourier series, This is a

gosine series only, because of the condition that dw/dn=0 for 20 and for
oY (P::?P.

BiKi*BoKo . 2 (2 S g
w = & ITT 22 -}-717 2';!"“ cos nQ{K,/cos nu- du +sz cOSs hu du}
° w-Bs
_ BKtB K -KJ{fan" rsin(@*t8) . | rsinle-4)
o v I-r cos(p+B,) an |-t coS(9-4,)
_ -&{tan'“i rsinie+B2) _ . .4 rsin(e-/) } (11)
Ll i 41 COS(¢+4;) {4+ COS(¢-/9,)

In Bq. (11) each inverse tangent is restricted to its principal velues
(-2 to +Y/2). The deteils of this summation are not much different
than for the case of the rectangular wing, and need not be dwelt upon
here,

In the symmetrical case 5, = 82, the sxpression {il) for w on the
wving (@= 0,7 ) simplifies to
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ZKfp rzsin 28
L~ t %
Wy {’J or i—ra cos 25}
_ _2_,._“,!'&.1 i tan@_-
T sin Vi-Re/AZ (12)

Returning to the general case ( 8, and 8pnot necessarily equal) we seek
the average value of w along the segment of a spanwise iine (i.e., per-
pendicular to the stream) cut off by the Mach cone. It is neceseary te
eveluate integrals such as

A ,
-l_ -1 rsinYy
. A[tan I-rcosY

Since R/A=2A/,-.‘,/&3 , integration by parts leads to

i rs smf __]I ) M-
/ S 7 dR 4 tan f‘+(l-sec1’)~—2—

where o< v 2w . U81n thie result it is found that the average valus
sought is

w = —Ké'—(iﬂan B, -sech)) +%g(l+tonﬁ2- secd,) (19

Case of Intersecting Envelopes

For treating forward sweep or®dihedral, it is necessary to discuss
the 1lane waves “rom the lealding edge in more detail. On one side thers
1s & weak shock wave and on the other side a weak expansion wave; how-
ever, in the linear theory the distinction between shock waves and rara-
faction waves disappears.* Both are regarded merely as surfeces of dis-
continuity, which can occur only across the envelope of Mach cones with

* It is this fact which makes possible the usual two-dimensional linear
and second order calculations, in which the pressure is determined by
local conditions and does not depend on the history of the flow up to
that point. The entropy increase is of the third order in the pertur-
bation velocity components, whereas the linear theory retains only the
first order, '
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A G

vertex on the leading uwdge. As

the simplest example, Fig, 4

showe a section perpendicular

to the main stream for the case

of a wing with dihedral and with

the leading edgse perpendicular

$£0 the main stream, The situa- L

tion for a plane wing with for-

ward sweep would differ only in

that the trace LMN of the wing

in Pig, 4 wonld be straight, and

overlapping of the plane waves

would occur over the tottom arc o

as well as the top. \\\\\\\\ I
The envelope of all Mach '

cones with vertex on LM consists

of two half planes with traces AC

in Cote drawn Leoding Edge

and ac, Similarly the Mach cones is Perpendicuiar to Streom

with vertex on MN give rise to

the envelope represented by FG FiG. 4

and fg. It is important to WING WITH DIHEDRAL,

SECTION BY PLANE

notice that no arc of the circle PERPENDICULAR TO STREAM

is a part of either envelope,

Within the bounds of the linear

theory, shock waves or rarefection waves intersect without mutual inter-
ference, and the perturbations caused by each ars additive., In the region
GBCDN the flow is uniform; in the region ABFEL there is another uniform
flow; in the region between FBC and the circle the flow is also unifornm,
since the components of the perturbation velocity are obtained by additior
of the components of perturbation velocity for the other two uniform
flows. This completes the specification of the boundary conditions for
the upper part of the circle. When dealing with u, v, or w, the function
sought assumes a constant value of EF, another constant valus on CD (bpth
of these constants obtainadle from two-dimensional theory), and a con-
stant value on the arc FC, namely the sum of the other two constants.

The boundary conditions for the lower part of Fig., 4 present nothing new;
u, v, and w take on calculable (constant) values on the arcs Ec and £D,
and the value zero on the arc cf.,

Review of the problem illustrated by Fig. 2 now shows that the analysis
given holds also for the case of a wing with forward sweep, that is, a
wing with the angle pointing downstream, The only difference is a slight

modification of Fig, 2.
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Trupezoidal Wing

The 1ift coefficient aud center of pressure for the symmetrical
trapezoidal wing shown in Fig. 5 may now br studied. The leading and
trailing edges are perpendicular
to the main stream, and the tip
angle (9§ ) is greater than the
Mach angle, Since the leading
edge is perpendicular to the
stream, §, =3, = /2
and the subscript may be
dropped from §, and (3,

In the region I,

-‘UL-I FIG. 5
w” [ ] o

In the region II, the average
w is found from PBq. (13):

T A l+tan{3-secﬂ
We 2 2 sin @

In the region III,

35L-==<:SCK9
)

On taking the average of these quantities, weighted according to the
area in which each applies, it is found that

Co,,

CL =1. (14)

Similarly the center of pressure is found to lies behind the leading edge
by the distance

_sf,1c )
2=%5{"*3 StonS} (15)

Thus in this case the 1if¢ coefficient and center of pressure are the

same as if the wing were subject to the uniform 1ift distribution of

an infinite span eirfoil, The actual 1if%{ is not uniform; in the region
I the 1ift is that of an infinite span airfoil; in the region II the

1ift is less, and in the region III the 1lif%t is greater by Jjust enough
to compensate for the decreased lift in II. As an example, Fig. 6 shows

the spanwise pressure distribdution for the case §3 45° 15 30° (M:=2).
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I ,/J
8
=1 0 |
X3 TAN u

FIG. 6

PRESSURE DISTRIBUTION

ALONG A SPAN LINE FOR

TRAPEZOID WITH §=45°
U =30° M=2

(SEE Fi6. 5)

General Syzmetrical Qusdrilsateral

The case of a quadrilateral which is symmetrical about a diagonal,
that diagonal being parallel to the stream is considered here. The semi-
vertex angles at the nose and tail, say § and 5, respectively, are not
necessarily acute angles (gee Fig. 8 for the various possibilities); it
ie assumed only that each lies in the range U< & ' T-4 .

It is, of course, necessary that §+§,<r.

The forward pointing triangle is a special case, §,z /2.
It is also a special case of the trapezoid; setting S wg or S=CTan §
in Bqs. (14) and (15) leads to )

C =
L/Cl—cc' I (18)
Z= 20/3

Hore ¢ is the distance from the vertex to the trailing edges. Fig, 7
ghows the pressure distribution spanwise for the case’' d=4g§e,
A 330° (M=2) . Fig. 7 is applicable to any other case for which

tan §= V3 tan S by a uniform change of acale.

For the more general quadrilateral of Fig, 8, the 1ift distribution
is shown by Bq. (12) in conneztion with Eq, (3); the calculation of 1ift and
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~-/§ 15 -0 -08 L) 0.5 1.0 stg-
%5 TAN

Semi -vertex angle § = 45°
Moch angls u = 30°
Mach number M = 2

FIG. 7

PRESSURE DISTRIBUTION
ALONG SPAN LINE FOR
FORWARD POINTING TRIANGLE

Airflow

Direction

FIG. 8
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center of pressure involves a tedious integration, The most convenient
. procedure for finding the average pressure over the wing is te intagrate
¢ along any lins (AB in Fig, 8) parallel to the trailing edge on one side.
This gives for the average vaiue of w, by Eg, (12)

’\ f ts
~*“1 2 -i tanf df df
.. W & iy _)\2
w = s:r:g
. df'
R Asecd,
where \=— = —"——
A A+ secl,
sin AL _ __sind

=1]A=l=m = *])F secd  sin(§+86)

C,L, W 2 #&sin2p-£sin2p, (17)

CLp Wo Tl sing, sin28-sing sin26,

The a.ngles{a" and 2, are, of course, to be measured in radians, This
expression for €y /CL, 18 symmetric in the two anglee 3 and B
and therefore is unchanged by jnterchanging § and §,

The center of pressure is at

z=%°-(|-?cos §) (18)

where ¢t is the '7reighted average of t along AB, with weights proportional
to the pressure. It is found that

!
2 -] tanﬁ
5t dt +
; 8_! T Ve TH T s
= C0S O,

f
'2 o120l """B dt f dt

_!_cosa,d.wosz,c smzﬁ . sin26,—26,cos 24, (19)
T 2 cosBB, —cosZB ' 2sineA, 28,sin28 - 26.5in26,

]

s 2



Application of Busemanrn's Conical Field Method to Thin Wings

These formulae contain as special cases the forward pointing tri-
angle ((3,=T/z) &and the backward pointing triangle (/3=/2 )e
For these triangles, the invariancs of 1ift coefficient (and in this
particular case, the center of preasure also) with respact to reversal
of the flow direction msy bs easily verified. It has already been shown
that lift coefficient and ceater of pressure for the forward peinting
triangle ars the same as if the pressure were uniform (which it is not;
cf. Fig. 7). For the backward pointing triangle the pressure is uni-
form., Reversal of direction of flow causes a radical change in pressure
distribution even though it does not alter the 1lift coefficient for these
quadrilateral wings,

Another special case of interest is the diamond (8,—‘ ) ) B =(5)
In this casa Eqs. (18) and (19) reduce to

C _sin2@8-26cos24 (20)
CL. B 1 sinsﬁ
_1_2Asin%28
Z = 3 sin28-20¢c0s28 (21)
c ~ I-cos 264

Using Eqg. (20) and (21), the 1lift coefficient and center of pressure
for a diamond have been evaluated and are presented in the following
table, It is seen at once that the property of invariance under re-~
versal of flow direction, which was found to hold for Cj, doee not in
general apply tc the center of pressura, If such were the case the
center of pressure of the diamond would necessarily be at Z=¢/z
From Table I it ies seen that the center of pressure of a diamond act-
ually lies forward of the midpoint, though never forward of 7c/is

as long as S>j£

Table I,
B 00 100 200 300 400
01,/C, o0 8488 .8511 ,8592 .8720 .8897
/¢ 4667 L4672 , 4685 .4709 L4743
tan§/tann| 1’000 1.015 1.064 1,156 1.205
3 500 600 700 800 900
Cr/cy, 9120 9376 .9646 .9885 1.000
s/c .4788 .4842 4905 4966 .5000
""‘5/ tanu| 1,556 2,000 2,924 5,759 o0
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¥ing With Dihedral

The case of a wing with dihedral, which may be combined with for-
vard or backward swesp at the dihedral point, is reducible by a conform-
al transformation to the caze of & sizple bend in the leading edge of a
flat wing. In Fig, 9, the angle P=0 has been taken in the wing (with
no loss of genernlity). Let ¥
be the radian measure of the arc
of the circle subtended by the
wing. The part of the circle
not drawn refers to an indwpend-
ent probiem of the same type,
with a differenty” . The
angles /3, and By bave the same
meaning ag in the plane case.

In the case shown,3,+3,{Y
(which incidentally corresponds
to considerable sweepback i:. this
case), but this condition is not
esgential, and is assumed here
merely to simplify the drawing.

/’_—r\

The potential problem to be
solved in thet, plans in-
volves the following boundary FIG. 9
conditions:

dw
-ai—q—*-O for ¢=0 or ¢=Y, O<«l

we= K1 for O(?(/o, , r= |
w=K, for Y-Gp(q<r, r=|
w=0 for S<Ky<r-F,, r=|

PR e ]
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..71‘/)"’
The transformation &'= maps the relevant part of the

unit circle in the £ = /te*? plane into the upper half of the unit
circle in "he& =4\t plane. It 18 clear that w is given by Eq.
(11), with r replaced by 4®r , and every angle (/3,, /3,’ and, @)
mltiplied by 77/

It remains to specify /3,,/33,,1(,, Ky in' terms of the geometry
of the wing. As ih the plane case,

tanp _ tanu
cos 3 = tan 5| ) 305162— tan 8o

where 8, and §, are the angles from the main stream direction to the
leading edge. The boundaryvalues Ky and Ky are given by the same ex-
pression g8 for a plane wing, except that the angle of attack is now,
in general, different for each plane of the wing, Writing ¢, and
A, for these "local" angles of attack, one find that

_ a,Wtan).L _ @pWtan
' sin g, 2" sing,

It is interesting to note that in the case of symmetry
there is a certain dihedral, namely ¥'=2/8 , for which the boundary

condition is w = k over the entire arcy , 80 that the flow is uniform
in the whole sector,

The restriction B,+3,<Y  is seen to be non-essential as in the
previous case of a bent leading edge. Also it should be pointed out that
for a wing with upswept dihedral (cf‘(-rr for the upper surface) the,
1ift is decreased in magnitude.

An spplication of these formulae mey be found in the perpendicular
vane at the tip of a rectangular wing, the vane being large enough to
project through the Mach cone. This may be regarded as an example of
a wing with dihedral, one of the angles of attack being zero. If the
vane extends both above and below the wing, ths lift remeins constant
out to the end of the wing., If the vane is confined to either the top
or the bottom of the wing, the 1ift decreases moving along a span line
toward the wingtip; the 1ift at the tip is 1/3 of the 1ift in the cen-
tral region of the wing, and the spanwise average from tip to Mach cone
ies found by integration to bs of the 1ift in the central

region. ( /- ‘T")
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[. AERODYRAMIC CHARACTERISTICS OF SOLID RECTANGULAR AIRFOILS AT SUPERSONIC SPEEDS*

by E. A. Bonney

Summary

The 1ift, drag, moment, and center-~of-presasure characteristics of
rectangular airfoils can readily be obtained for angles of attack below
that at which the shock wave detaches from the leading edge of the air-
foil, This report presents expreesions for the above characteristics
and establishes optimum values of aspect ratio, angle of attack, and
lift-drag ratio for any given conditions of allowable stress, airfoil
cross-sectional shape and Mach number as well as method of supporting
the wing, i.,6. by the entire base or on & hub.

égsgggtions

It was necessary to make certain simplifying assumptions to keep
the various exprersions reasonzbly simple and yet accurate. They are
as follows:

1. The change in Mach angle with positive angle of attack
over an airfoil of finite thickness and aspect ratio was ignored. The
angle will be higher on the lower surface and lower on the upper sur-
face, thereby offsetting each other to a great extent.

2. The possidility of secondary tip effects originating at
the point of maxirum thickness of a double wedge airfoil for example
was not considered.

3. .Consideration of the phenomena of separation necessarily
vag omitted due tc the lack of knowledge of this effect in supersonic
flow. This factor can cause the center of pressure expressions ob-
tainesd herein to be somewhat in error, particularly at high angles of
attack. A study of the effects of separation is contained in reference

(12).

4. A constant skin friction drag coefficient of Cp, = .00265
per square foot of wetted area is used throughout, This is the value
obtained by von Karman for a Reynolds number of about 20,000,000, It
is recognized that the actual value may be considerably different than
this and, inasmuch as skin friction is the predominant factor in the
drag of thin airfoils, can cause a corresponding difference in the
values for optimum conditions.

* This paper is a revision of CM-247 which wae originally published as
an internal memorandum of the Applied Physics Laboratory. Slight re-
vision was necessary to complete the discussion of the subject.

23
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5. The expression for aspect ratio correction to 1lift curve
slope for an infinitely thin flat plate was used in deriving optimum
conditicns for simplification., The maximum error that could result from
this assumption is about 3 per cent for practical airfoil sizes,

6. Throughout the analysis the assumption is made that
Sin @ = C and
Cos (L = |

' This will cause no sivable error for angles of attack up
to 15 degrees.

Nomenclature

The following nomenclature is used throughout this paper:

b = wing semi-span

¢ = chord

R = 3% = aspect ratio
M = Mach number

w= V2 -1
R=ARx¥

Mach angle = Sin~1 1 = mgn-11
M M-

local static pressure at any point on the airfoil

o E

g
(o]
i

free stream static pressure

/9 = free stream density

)
u

velocity in ft/sec,

q= /°o;2 = j; Po M§ = free stream dynamic pressure

1ift

=
n

>
1

2v¢ = wing area

Cy, = _% = 1ift coefficient of finite span airfoil
<.



1"

PR

o2

Aerodynamic Characteristics of Solid
Rectangular Airfoils at Supersonic Speeds

Cy,

%1

t2

~

P
Subscripte

U

L

1ift coefficient of an infinite span airfoil
drag

_%_: drag coefficient of finite span airfoil
goment about leading edge of wing

M= moment coefficient ;bout leading edgs
:gﬁter of pressure measured from leading edge
ekin friction drag coefficient
form drag coefficient

vave drag coefficient due to lift
coefficient for taper in thickness
coefficieﬁfffor wing form drag
coefficient for wing strength

Cr, q = wing loading

K K3 Kgw

e

stress

section modulus

wing thickness a¢ root

wing thickness at tip

angle of attack

semi-vertex angle of leading edge

local angle betwsen any point on the surface of the
airfoil and the free stream direction

ratio of specific heats

P~Po = Ap = pressure cecefficient
q Q

upper surface of airfoil

Lower surface
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F = forward half of doubdle wedze airfoil
R = rear half '
o0 = frze stream conditions

Discusgion

A, Basic equations of 1lift, drag, mcment, and center of pres-

sure for infinitely shin flat plates and for airfoils, both with infinite
and finite aspact ratios,

Varioue methods (references 4, 10, and 11) have been developed for
determining the pressure on an airfoil in supsrsonic flow where a shock
wave has formed and is attached to the leading edge. However they do
not all lend themselves to convenient handling for purposes »f develop-
ing expressions for 1lift and drag of the airfoils, The one exception
to this is the Busemann "second order approximation® (see ref. 4 and
10) which is usually written as follows:

p/p°= | +2¥ cosec 24,8 +8sec? p, cosec® 2, (¥+cost2)8° (1)
Transforming by use of the fundamental relationsnips,

.M.
sin L, = %Wo tan e='4h cos 8= °M° and q=§/2p,,Mf

a convenient expressiorn for Ap is obtained as follows:

q

B __2 o, YMME-2)
v Ve o(M2-)®

2 2
8" = (O +C,6 (2)

This metnod is found to be very accurate when compared to the theo-
retically correct method of "patching curves" of reference (4) two dim~an-
sional method of characteristics) with the error approaching about -2
per cent in 1ift, drag, and moment at about 60 per cent of the detachment
angle, Above this the error increases roughkly in a parabolic manner un-
til at the detachient angle it may amount %0 -10 to ~13 per cent, depend-
ing on the geometry of the airfoil., The angle of attack at which detach~
ment occurs (called detachment angle) de creases with decreasing Mach
number and incressing leading edge wedge angle and may be determined
for any condition from reference (4)., The error in center of pressure
location, neglecting separation, whon compared to the accurate method
is negligible at any angle of attack up to detachment,

From this expression, 1t 1s possible to deteruine the asrodynamic
characteristics of any shape of airfoil of infinite aspect ratio

4 m_"r N -
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and if the loss in pressure at the tips for finite aspect ratio wings
is also known, then they can be found for any airfoil of any aspect
ratio. For example, for any wing of infinite aspect ratio and symmet-
rical about its chord line, the 1lift coefficient can be determined
simply by the inspection of equation (2) as being

4@
YME-1 -
(@ = tatA depending on surface)

The lo#s in pressure at the tips due to flow from the lower to
the upper surface has been determined in references (2) and (8) and is
shown in Fig. 1. I% can be seen from this figure that the assumption
of a linear loss in 1ift from the limit of the Mach angle to the tip

is justified and that the 1lift inside the Mach cone will therefore te
one-half of the two dimensional value for the same area.

CL= 2C|¢ =

With conditions of pressure known at every point on the airfoil,
it is now possible to develop expressions for 1lift, drag, moment and
center of pressurs for any type ¢f airfoil, These expressions are
listed in Table I and ars good for all airfoils that are symmetrical
about both the chord line and a line perpendicular to the chord at the

midpoint, Sample derivation of some of these expressions will be found
in the section on "Derivations”.

B, m_de igg ggg nggg for wing Qi finite thickness
uppor entire bage gnd

In determining the optimum design conditions of aspect ratio, drag,
and angle of attack for various values of allowable wing strass and type
of airfoil (which establish the value of K3), and Mach number, the meth-
ods of refereaces (7) and (9) were used for the most part.

It should oe pointed out that the problem of estavliehing optimum
conditions is, in this paper, principally of academic interest for two
reasons, First the optimum type of airfoil will not be eolid, but rather
of monocoque construction due to the excessive weight of a solid wing
and secondly, the optimum angle of attack upon which all of the other
conditions depend is different for a wing on a body than for a wing
alone, Various trends can be studisd however, which will be applicable
regardiess of these factors,

Derivations

A, In this section, the method of derivation of the express~
ions given in Table I for lift coefficient and center of pressure of an
airfoil of finite thickness and aspect ratio will be shown. Several
of the other expressicns will be found in the various references (sse
references 1, 2, 3, and 10) although perhaps net in exactly the same
form, For the sake of brovity, the double wedge section will be used
in the following illustrations and the final expressions generalized
by a method suggested by Busemann,
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; ? . < 2b —5
: ;; | X (:)

. ' /©

© ® e i<———2b~°/;M.———9{ K
= — = c
, ® @ A
J kab 4.—»4 @
/ /'(—— C/ —
p'= S =Ci0 +Cy0
&=‘a+ﬁ
-8
E%:"‘(I"K9 (3)
63=C(+,5’
&= a-F

Therefore, the two dimensional pressure difference over the front and
rear halves of the airfoil,

7 ’

}
’ ’

-p.=2C -~
Remembering that the 1lift in region C is equal to half of that in region
A (for a like area) and likewise the 1ift in region D is half of that of

B, than

(2C,a+4§am.e)L2b- )§+ X o glﬂzqm 4020:,8)[% )9~+-
" 2be

(4)

3C €
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Using the expressions,
_2b
C=T7R and R= ARVme-y (6)

the coefficient of 1ift becomes

_ | C.

This expression applies to a double wedge airfoil only. However, Buse-
mann has pointed cut that the expression can be made general for all air-
foils that are symmetrical about their chord line and a line perpendicular
to the chord line at the midpoint by substituting the parameter of cross-
sectional area divided by the chord equared in place of the half wedge
angle, Therefore for a double-wedge airfoil,

Acs tc  t A

c2 922”2 8)
2Acs

B = o2 =28

Values of A' for various types of airfoils are noted in Table I

Therefore if oC
C = 2 and Gz = —=
I~ 3 737 ¢
4 |
C..=';~:+'[ “'"z‘ﬁ(l-caA’)] )
Inmsmuch as the 1ift coefficient for infinite aspect ratlo is
4q '

CLm = -'-’;1'— (10}

then the aspect ratio correction to 2 dimensional 11ft (and drag dus
to 1ift) is
CL

o | (- Cu A

The center of pressure is obtained by summating the center of pres-
gure of each region times the total pressure in that region for the en-
tire airfoil and dividing by the total pressure Or 1ift force,
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Referring again t0 the sketch of the airfoil,
(Cp <2b+4b‘%> 3R-2
6 _

¢ 2b+2b-5r / 12R-6 (12)
i 4c
- (ee) o L.l 2b- WF““’"‘" _9R-I4
2" 6 2b--M—+2b-M 12R-I8
(9&) 2,1 L
Clop 3 2 3
epy .5 1_17
( c lb)‘ 279%*2 =79
Area of each region c c be
@ = (2b- 5y 2z =(@R-Dzg (13)
c.C be
® = (20- 25 % =(2R-3) 5%

oM 2 4M-
Therefore the center of pressure will be, (omitting factor be
from top and bottom) 2B

cp. (Barac aﬂ)[(,%% 2N or-n+-L bl riec,c- 4c2a/3)R,92RR 2R13. )ier- 3)+;xéx3]

(2Ca+4C,0xP) [2R~] +-2-xl]+ (2Cix - 4Cax/3) [2R—3 +-2- X 3]

2 '
- R=3 =C3zA (R-I)
2R-1+ CsA’

(14)

This expression iikewise is general for all symmetrical airfoils
when expressed as 8 function of A' rather thanf3 .

AN N
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B, For a given value of allowable stress at the root section,
there will be an optimum aspect ratio which, for a given lift, will pro-
duce the least drag. AV low aspect ratics, the tip loss will be great
and hence the area for a given 1ift will be large while at high aspect
ratics the thickness and hence the drag for a given stress will be large;
therefore the optimum aspect ratio will be somewhere in between these
two conditions and is obtained as follows:

KaKi T2 . .00122a? [CL (15)
D= vy + M CLw ""CDf qA

(C in degrees from this point on.)
Wow for a given 1lift, '

. Az
L= CLQ qAo=CiLqA (16) o« A —m (17)

Substituting into (15)
001220/ JaAn . KaKiT%qAm | CoyqAg

D

M(Cl/CLo) M(CL/CL m) (Ci./cl_w) (18)

' D 00122 «? , KnK 72 +Cp M-
and = + ! (19)

A M
1% Mo, )

Now for a double wedge airfoil the section modulus is

. ct® m  (wbe)b (20)

23§ = oG

whers the spanwise center of pressure is conservatively assumed to be
at one-half the distance to the tip, From this expression the thickness

ratio becomes 2 2
7%= 3WR” _ KawR (21)
S -~ S

where 14 ig a function of the cross-sectional shape and is given in Table
I for various airfeils,

Bquation (19) now becomes,

D__.00122 «?® KzR" +Cpett (22)
QA M MGt )
NOTE

'AJES 32 & 33
TRANSPOSED
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The parameter Kl“t>2 is plotted in Figs. 12 and 18 to show the variaticz
in thickness ratio.

From the expressions for drag coefficient

_ 00I22a? | KayARP

Co vy (!-ZR)+ vy +CDf.

2nd 1ift coefficient

~ _.0698x ,, _ 1
the drag~1ift ratio becomes: b
b K3AR® + Cp
= Ol745x + (28)

0698 (1 - —zlﬁ)oc

Differentiating with respect to <L and optimizing, the optimum angle
of attack beco§es,

2R (K3 ARE+ Copt -
Kopt. = 28.6\/ o (29)
and the minimum drag-1ift ratio becomes
(D) _ \/ 2R(Kz ARP+Cp o) N K3 ARP+ Cp
L/miN ~ 2R -1 2.0(2R-l_)\ /’éR(Ksan+cofM)
2R ‘v 2R-|
b
_ \/ZR(K3AR +Cpit) (50)
(_l_-_) _ \[ 2R- |
D /max 2R (K3 ARP +Cp, M- . (31)

The interesting relation between maximum lift-drag ratio and optimum
angle of attack is to be noted.

2865 |
Qopt (deg) = or  (op (rad) =
( L/D)mx Z(L/D)MAX (32)
This relation will be true for a wing alone or for a wing and body com-
bination.

From the above expressions, the maximum lift-drag ratic and optimum
angle of attack are found to be very nearly alike (within 3 per cent)
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KAKI K4W
S

By a more srduous means, it may be showr that for a2 wing supported
bv a hud or shaft, the exponent of the aspect ratio will be approximately
3/2 for values of shaft diameter equal to 1 1/2 - 2 times the maximum
thickness at the root. This is an approximation (because the value must
again be 2 for hud diameters aqual to or greater than the chord leagth),
but it will be shown that the method cof support does not affect the aero-
dynamic values t0 any great extent, but simply changes the optimum aspect
and thickness ratios.

where K3 =, (23)

Optimizing equation (22) for asvect ratio,
d (KsmNcD,M )
8 (T 1) )
Using the exprassion for aspect ratio correction to lift curve slope

of a flat plate for values of R?1, the expression for optimum aspect
ratio for a wing supported over the entire base, becomes,

K
3_N3 2
M = _Cbg R® (4R-3) (24)
and fos= wings supported by a hub,
5% K3z 3 5 (25)
M‘ 2 - e 2 - cmtm—e

These expressions are plotted in Figs., 7 and 13 to show the varia-
tion of optimum aspect ratio with Mach number and the aerodynamic-atrength
parameter Kg. The correspondinz expressions for values of R € 1 will not%
be derived here because, for the most part, such values are outsids of the
realm of practical aspect ratio - Mach number combinations,

From the development of optimum aspect ratio, it becomes apparent
that, for wings supported over their entire base, that

K| T2= K3 AR® (26)
and for wings supported by a hub,

K!»ra = K3,R3/2 (27)
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for both methods of support and the mean values are shown plotted in
Figs. 9, 10, 15, and 16,

In order to determine the value of wing loading, w to be used ir
svaluating Ez, it 1s necesgary to know either the weight and wing area
or the 1lift coefficient and dynamic pressure. The dynamic pressure will
depend on the choice of altitude and Mach number. Inasmuch as the opti-
mem agpect ratio and angle of attack have been established, the optimum
1ift{ coefficient can readily be found and develops to be very nearly in-
dependent of ths method of support and the parameter Ko, The mean value
is plotted in Figs. 8 and 14,

Results

Expressions for 1lift, drag and moment coefticients and center of
pressure for thin flat plates and airfoils of infinite and finite aspect
ratio are given in table I. The 1ift curve slope corre¢ciion and center
of pressure expressions for a flat plate will be found plotted in Figs,

3 and 4, The effect of thicknsss on 1ift has not been added due to its
small magnitude and the fact that it does not lend itself to a general
expression for plotting, however the effect on center of pressure is quite
sizable and two sample cases have been plotied in Fig, 4, The express-
ions of table I are exact (within limits of accuracy of the Busemann sec-
ond order approximation) down to a value of R = 1. Below this value, a
linear extension to O will be approximately correct.

The loes in 1lift at the tips due to flow around the tips as found
in references (2) and (8) and is plotted in Fig. 1. A straight-line
variation is also shown to illustrate the fact that the 1ift in ths af-
fected region (inside the Mach angle from the tip) is one-half of the
amount for vwo dimensional fiow for the sgame ares,

‘A correction factor, Ky for tapered (in thickness) airfoils of
rectangular planform to be used in the expression for Kz is given in
Fig. 5 2nd the terms explained in Fig, 6, These two curves were taken
directly from reference (6).

Figures 7 to 12 and 13 to 18 represent the optimum aercdynamic char-
acteristics of symmetrical wings as a function of Mach number and Kz,
" the aerodynamic-strength parameter, for wings supported over their en-
tire base and for wings supported by a hub, The similarity in magnitude
of the aerodynamic coefficients for wings supported over their entire
base as compared to winge supported by a huo i1s to be noted, Optimum
aspect ratio and thickness ratio are different for the two cases, but
compensate for each other so that the coefficlents are nearly the same,

Conclusions

The Busemann second order approximation theory for the pressure
over a two dimensional wing and the lmown theory for pressura loss near
the tips of a finite span airfoil provide a convenient method for finding
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the aerodyramic coefficients for flat plates and airfoils of finite and
infinite aspect ratio at angies of attack telow the detachment angie in
supersonic flow., This second order theory is very accurate for angles
of attack up to about sixty per cent of the detachment angle after which
it departs from the exact theory at a more-or-less parabolic rate.

By a method also suggested by Busemann, it is possible to general-
ize the expressions to include any type of airfoil section which is
symmetrical about its chord line and a line perpendicular to the chord
line at its midpoint.

Decreasing the aspect ratio will decrease the 1lift, wave drag (here-
in defined as the drag due to 1lift), and mcment coefficients and cause
the center of pressure to move forward. Increasing the tnickaess will
increase the 1ift and drag coefficients of airfoils of finite suspect
ratio very slightiy, but will decrease the moment coefficient and cause
the center of pressure to move forward quite markedly for airfoils of
finite and infinite aspect ratio. Increasing Mach number will either
increase or decrease the coefficients depending on the magnitude of the
Mach numbers being considered and the aspect ratio.

The expressions for 1ift check very well with available test data.
The center of pressure expressions, however, make no allowance for sep-
aration effects {and other minor factors noted in items 1l and 2 under
"Agsurptions®) and therefore will be somewhat in error, the error being
= function of the angle of attack, The expressions will make it possible
to determine the magnitude of the separstion effects on center of pres-
sure location however,

Using the information developed above, the optimum conditions of
aspect ratio and angle of attack and the corresponding coefficients for
rectangular wings supported by the entire base and supported by a hub
can be determined, For a given value of the zerodynamic-strength para-
meter Kz, the aerodynamic coefficienta are not a function of the method
of support;,, being almost identical for either method. The aspect ratio,
however, will be higher for a wing supported by a hudb, the thickness
ratio also being higher in general to compensate for this effect stress-
wise, Other effects may be noted by a study of Fig., 7 through 19,

The expressions for 1lift, drag and moment coefficiente «nd center
of pressure will be found in Table I. Note that an increment for skin
friction has been added to the drag equations which will not appear in
the derivation of the expression,
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I1I. THE REVERSE DELTA PLANFORM

A section on the "reverse delta" type of wing as discussed in
CM~258*was to have been included in this report, however the assumpt-
ions made in that paper were not exactly correct, and therefore only
a short discussion of this planform will be included here.

The reverse delta wing has the planform of an isoceles triargle
with the base facing into the airstream. The angle of the rear sur-
face is greater than the Mach angle so that no tip loes effects will
be felt over the surface of the wing. It was assumed in the refer-
ence report that this therefore constituted a wing whereon only two-
dimensional flow existed and the characteristics corresponded to the
two-dimensional case. Actually however, the pressure on a surface
behind a yawed corner, such as the aft portion of this type of wing
when constructed with a double-wedge section (region B of figure) is
a function of the component of Mach number which is normal to the
corner, My. Furthermore, the pressure inside the Mach cone created
at the point of maximum thickness (region C of figure) is of the
conical flow type and must be computed by the conical field method.
Only in region A is the flow of pure two-dimensional character.

Because of the various tyres of flow it will bve difficult to
develop a general expression for form érag and moment coefficient.
The design should not be overlooked however, inasmuch as it has dis-
tinct structural advantages and the drag may be very little worse than
the two~dimensional case. The 1lift coefficient will te very close %o
the two-~dimensional value, being equal to it for zero thickmess,
(See figure below)

ARSTREAN

* Aerodynamic Charscteristics of Reverse Arrow Wings at Supersonic
Speeds!, APL/JHU (May 1946).
43



IV. LIPT AND DRAG CHARACTERISTICS OF DELTA WINGS AT SUPERSONIC SPEEDS

by E. A. Bonney

Abstract

The 1ift characteristics of the delta type of wing with the leading
edge both inside and outside of the Mach cone from the vertex of the wing
have besn determined by Stewart (1), Snow (2), and others, and the drag
characteristics (for double wedge section only) have been determined by
Puckett (3). Using the methods of references (4) and (5), this informa~
tion is herein used to determine optimum conditions of lift-drag ratio,
angle of attack, etc., for comparisor with other wing planform shapes.
The actual pressure distridution for wings of finite thickness iz not
known at this writing, and therefore moment and center of pressure data
are not included in this report. It is shown that, except for relative-
1y large thickness ratiss at low Mach numbers, the delta type of wing
has lower values of maximum lift-drag ratio than the reverse-arrow type
for which the flow is entirely two-dimensional, The relatively large
root chord length required for a given 1ift is another disadvantage »of
the delta wing.

The principal advantage of this type of airfoil is in its use as a
tail surface dus to the aft center of pressure location.

In two reports (6) (7) concerning the 1lift of delta wings, it has
been mentioned tha® the resultant force on the surface of delta wings
entirely inside the Mach cone will be tilted forward of the normal to
the chord of tae airfoil by an amount which depends on the ratio of
the complement of the sweepback angle to the Mach angle, approaching
a limit of /2 ahead of the normal for a sweepback angle of 30 degraes.
This is due to the subsonic effect wherein the normal Mach number con-
trolling the pressure i{s less than 1, and will only be possihle where
the leading edge of the wirg is rounded to permit suction peaks simi-
lar to the zuosonic case,

This effect has not been realized in any tests t¢c date however,
and the following analysis assumes that the resultant vector was al-
ways at right angles to the chord of the wing.



Lift and Drag Characteristics of
Delta Wings at Supersonic Speeds

Assumptions

The assumptions noted in reference (4) concerning separation, skin
friction drag coefficient and linearizing trigenometric functions will
also be applicadble in this report snd in addition:

1. The 1lift curve slope correction for delta airfoils is
assumed to be independent of thickness ratio, N¢ sizeable error will

result from this assumption because of the small thickness ratios which
ars used.

2. The slupe of the 1lift curve as derived by Stewart is at
an angle of attack of zero degrees. It is assumed here that the slope
is constant with angle of attack. This assumption should introduce no

gizeable error at the angles for maximum lift-~-drag ratio which are con-
sidered herein.

Fomenclature

The nomenclature of references (4) and (5) is used throughout with
the following additions (See &lso Fig. 13):

¢

angle between the leading edge and a normal to the flow
direction

n = Tap § = parameter of leading edge sweepback angle compared
M with Mach angle

(o= plenform semi-vertex angle = 90 - §

¢ = basic chordwise dimension measured from the apex to the
position of the tip

1 = root chord

r = chordwise di;tanca from most rearward point to point of
maximum thickness divided by ¢

a=(c-~-1)

b= (one
"1

d
i

thickness ratio = t/c

distance from wing center line to center of pressurs of
the semi-span.

«
1]
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Discussion

The delta airfoil consists of a planform shape which is symmetrical
about itz centerline, pointed at the front, has a sweptback leading edge
and straight trailing edge normal to the center line.,

For the case where the leading edge is outside of the Mach cone,
the lift remains identical in value, but not in distribution (2) to the
two~dimensional case, The form drag, however, is slignhtly higher, hence
the maximum lift-drag ratic will be slightly lower than for the reverse
arrow type for which two-dimensional 1ift and drag apply.

For delta shapes where the leading edge is inside the Mach cone,
the 1ift curve slope will decrease from the two-dimensional value by
an eguount which is a function of the ratio of the leading edge sweep-~
back angle to the complement of the Mach angle (defined by the parameter
"n%) as shown in Fig. 1 (1). (Note that when n = 1, the sweepback angle
iz just equal to the complement of tha Mach angle, and n = 0 corresponds
to a straignt leading edge.) The form drag will also be a function of
"n" as well as being a funciion of the thickness ratio, location of point
of waximam thickness, and Mach number. The coefficient of form drag was
determ ned in reference (3) and is shown in Fig., 2. It can be sesn that
for la.ze values of n, the form drag is greatly reducad from the optimum
two-dimensional value, where n = O, Hence, for conditions of high wing
lcadings where the required thickness ratio becomes large and form drag
becomes a big proportion of the total drag for optimum lift-drag condi-
tions, the delta type of wing design will theoreticaliy show up to ad-
vantage over the reverse arrow type in the lower range of Mach numbers.
However, for most practical thickness ratios and Mach numbers, the re-
verse arrow will still give higher lift-drag ratios as shown in Figs. 3,
4, and 7, A definite disadvantage of the delta wing where n is large is
the relatively large root chord length required for a given 1lift. The
center of pressure travel of this type will probabiy te large also due
to the large chord length and the odd type of pressure distridution (2)
with the leading edge either inside ¢r outside the Mach cone.

It is to be noted that this analysis is for the double wedge typs
of airfoil cross-sectional shape only, but the results cbtained herein
will be qualitstively comparadble for any type of cross-section,

Figura 3 shows the actual thickness ratioe at which the delta type
of airfoil with n = 1,3 and 2.5 will bs superior to the reverse arrow
type while Fig, 4 shows the same effect when considered from the aero-
dynamic-strength combination standpoint. Limiting values of Kz at n =
0, 1.3, 1.7, and 2.5 are shown for purposes of comparison. Fig, 5 shows
the maximum lift-drag ratios for the range of practical values of Kz for
values of n = 1,3 and 2,5,

A comparison of the maximum lift-drag ratios of delta and reverse
arrow wings is shown in Fig, 7. The improved characteristics of the delta
type wing for high thickness ratios at low Mach numbers is evident from
the curves,
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In references (4) and (5), the following exprassions were dorived
for 1ift and drag coefficients:

Cp, = 4cc (91'__) , (& in radians)
* b

2
cD‘-'xlT + 4q? (CL )+cnfand

% luo
2
CD = El@,_ + 4@2 (CL ) + ch
# F\ 0y,

Equation (3) applies for wings supported over their entire bass.
Xz will be evaluated below.

The opiimum angle of attack is,

L = cL/cL“c

Values of Cy/Cy .o and K} can be read directly from Figs. 1 and 2
respectively. The skin friction drag coefficlent is taken as .0053, as
in roferexces 4 and 6. Ths asrcdynamic-strength parameter X3 is depend-
ent on ths opanwise pressure distribution as shown in the following de-

rivation:

s .'gié— = g = !32.: bx ¥z %

vhere y/b is the ratio of the distince betwesn the wing center line and
the center of pressure, to the wing somi-span.

~ By the methods of reference (2)*, it may be shown that, for wings
whose leading esdges are ocutside of the Mach cone,
2¢

yt——.

3 ¥

* Zhis reference considers the distridution over a flat plats only. EHow-
ever it iz sssumsd here that the epanwise veristion will be similar for
a wing naving a finite thickness.
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where % is found as the limiting case of aquation (28) of that reference

to Dbe

T .1 28
t-.-.-%tanj.z\(l-i-m)
In the atove terminslogy, is defined as follows:

Cosp = . S
¥ Tan w,

Thersfore

Y=_2 ¢cosa (1 + 26 )
b 3w ? Sin 2.3

The variation of y/b with 3 as defined above will be found plotted
in Fig, 13,

Now from equation (6),

_t__2_=2= Swmz L
c2 T 48 )

Then Kz = X1 ¥4 ¥ 5
85 b

where K4 = 06 as in references 4 and 5.

For the case of the delta airfoil entirely inside the Mach cone,
reference 5 indicates that the value of y/b for large values of n is

the same as calculated above at n = 1.0 ( = 0), namely,

L= _4 = .4244
P apr

Inasmuch as the slcope of the curve of Fig. 13 is 0 at 3 = 0, it will
be assumed that thisg value is constant for any valus of n greater than
1.0, i.e., all cases of leading edge inside the Mach cone., Therefore
the sxpression for Kz will be:

Since the origin:l preprration of this report, addition~l calcul-
etions for the charactcristics of the delte wing with the trriling edge
swept forwsrd ~nd backward hrve been carried out by Dris. Puckett nnd
Stow: vt {8) -nd they hnve very kindly consented to the inclusion of
this inform:tion in this report. These dta will be found in Figures
13 through 22. DNo gener:1l study of optimization hos been mede due to
the detriled investigetion involved.
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V., SECTIONAL CHARACTERISTICS OF STANDARD AIRFOILS

by E. A. Fonney

In selecting the optimum cross-secticnal shape of airfeil for use
in supersonic flight, one is {empted to choose the double-wedge type be-
cause of its low form drag per unit thickness, This is a fallacy bec- 'se
drag per unit stress is the proper criterion for desizgn. The increas«a
. drag of other types must be balanced against their increased strength
(section modulus) to determine the optimum shs e,

With this in mind, the following %2ble and curves have been con-
structed to show the relation between drag, stress, and thickness
ratio for various types of airfoils including one designed by Dr. A. E.
Puckett in which the optimum shepe to give minimum drag per unit stress
was the design criterion, It is shown that the optimum shape is only
very slightly (0,7 per cent) better than the biconvex (double circular
arc) section. TFor practical purposes, therefore, (inasmuch as the
Puckett wing would be difficult to machine) the biconvex type of cross-

section 18 the optimum shape of airfoil for a giver allowatle strecs at
the root of the wing,

L : Optimum | Double | Mcdified | Modified
Shape | Biconvex ! (p,ekett) | Wedge |Double Wedge Double Wedge
T | | < | T et =—
S L O - R e
13.125 13.87 24 12 12 = ¢
s 1:2 2 2 2 2
3 T -I- l 3—(2-30)
13.125 13.87 24 12 i2
@ 2
A - 2 2 2 2
1.333T°| 1.253 7 T L5T I
4 2a
@
cD VMz-I
0 17.50 s (738 s 24 ¢ I8 s S s
4 ¢ ¢ 3 ¢ a(2-3q)c®

® ¢ = fraction of chord length hoving
wedgs shape (each end)

® cp = for infinite span ratio
°
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