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ABSTRACT

An experimental investigation and correlative analysis were conducted
to determine the pressure distribution over the surface of parachute
canopies during the period of inflation for the infinite mass case and
to correlate pressure coefficients with inflating canopy shapes.
Parachute canopy models of Circular Flat, 10% Extended Skirt, Ringslot,
and Ribbon designs were tested under infinite mass conditions in a

9 x 12 ft low speed wind tunnel. External and internal pressure values
were measured at various locations over the surface of the model cano-
pies throughout the period of inflation, and generalized canopy profile
shapes were obtained by means of photographic analysis.

Pressure coefficients derived for the steady state (fully open canopy)
are quite comparable to the results of previous mecasurements. Peak
pressure values during the unsteady period of inflation were found to
be up to 5 times as great as steady state values.

The relationships between the pressure distribution and time for each
of the canopy models deployed at free-stream velocities between 70 and
160 ft/sec are presented in detail and correlated with changing canopy
shape. A complete shape analysis is made and a mathematical model is

proposed.
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1. INTRODUCTION

Minimum weight and packing volume are basic requirements for
parachute canopies for any application. To meet these require-
ments, knowledge of the stress distribution in the canopy is a
prerequisite for the parachute designer. This applies in parti-
cular to the period of transient force generation, the parachute
filling or opening process. In order to accomplish a valid deter-
mination of the canopy stress distribution and since attempts to
measure the actual stresses in parachute canopies during the
transient state have not been successful, the pressure distribu-
tion over the surface of an inflating parachute canopy must be
known to yield a basis for the calculation. In addition, the shape
and shape changes which a parachute canopy undergoes during the
period of inflation must be known so that the caloculation procedure

may be generalized.

For the steady state condition, that is for the fully inflated
parachute canopy, the calculation of stresses in the canopy has been
attempted by Jones [1] and by Topping et al [2] . Only recently, an
approach was developed by Heinrich and Jamison [3] to predict the
canopy stress distribution for the transient state. Although this
calculation approach considers synthesized canopy profile shapes
through which the canopy evolves during the period of inflation,

pressure coefficients were based upon results obtained during steady

state measurements on these synthesized canopy shapes.

A great difficulty for all steady state considerations is that
maximum stresses occur during the rapidly occurring canopy shape
changes of the filling process, and pressure and stress values can

vastly exceed steady state values,

A number of attempts have been made in the past to measure the actual
pressure versus time relationships during the process of inflation.
These attempts, however, have been unsuccessful primarily due to the
non-availability of a pressure sensing method or device which would

yield accurate results under the accceleration levels encountered



during canopy inflation.

By means of a specially developed pressure transducer it has now
become possible to measure pressure values at various locations

on the canopy. In addition, an analysis was made of the changing

canopy shape and related to the cahanging pressure distribution.
fﬂ The experimental investigation and correlative analysis were con-
.}” ducted for the case of parachute opening under infinite mass con-
ditions, the case where there is no or only a relatively small
velocity decay during the period of canopy inflution. Although
the results of this investigation do not apply to all cases of
parachute application, they do represent a major step towards a

better knowledge of the parachute opening dynamics.,

2, TEST CONDITIONS

A. Parachute Canopy Models

The investigation was performed on parachute canopy models of 4
basic types or designs

1. Solid cloth, circular flat type

2. Solid cloth, 104 flat extended type

3. Ringslot type

4. Flat circular ribbon (FIST) type
The solid cloth, circular flat type canopy model was based upon
the design of the personnel type (C-9) canopy, incorporated 28
gores, and had a nominal diameter (Do) of 53.5 inches.

The design of the solid cloth, 104 flat extended skirt type canopy
model was based upon that of the troop type (T-10) canopy. The model
incorporated 30 gores and had a nominal diameter (Do) of 62,0 inches,

The ringslot and flat circular ribbon (FIST) type canopy models were
fabricated of 24 , 'res with a geometric porosity of 16% for the
ringslot and 18% for the flet circular (FIST) types. The ringslot
type canopy model was constructed of 5 cloth rings and 1 vertical
tape in each gore, the FIST type canopy model was constructed with

27 horizontal ribbons and 4 vertical tapes in each gore. These models

had a nominul diameter (Do) of 53.5 inches.,



The cloth used in the fabrication of the canopy models met the
German Kennblatt 1004 (Perlon; nominal cloth permeability at
1/2 inch H,0: 130 cfm/ftgg weight: 1.45 oz/yd2).

Drawings of the four models are included in Appendix I,

B, Test Facilities and Test Method

All experimental investigations were performed in the 9 x 12 ft
low speed wind tunnel of the Deutsche Forschungsanstalt fiir Luft-

und Raumfahrt e.V. (DFL) in Braunschweig.

A schematic presentation of the test arrangement is shown in

Figure 1. The canopy models were mounted in the wind tunnel test
section in a stretched-out position, but prevented from inflating
by two leather clamps, one enclosing the skirt and the other enclo-
sing the middle section of the canopy. The wind tunnel was then
brought up to specific speeds (70, 100, 130 and 160‘ft/sec) and

the clamps were suddenly released by burning a thin wire and

by the action of springs attached to the clamps. Upon release of
the clamps, the canopy models were free to inflate.

The distribution of the local pressure (internal, external and
differential) over the canopy model from skirt to vent was measured

by strain gage type pressure transducers attached to the canopy
surface at specific locations. The pressure transducers were developed
ba the Deutsche Forschungsanstalt fiir Luft- und Raumfahrt. A view of
the pressure transducer is shown in Figure 2. The physical specifi-
cations of the sensing element are: weight 0.2 02z, diameter 1.2
inches, thickness 0,35 inches, capacity + 0.5 psi,

Each sensing element is temperature and acceleration compensated.
Errors in per cent of output under applied pressures of 0.3 psi as

a function of g-loadings applied statically in three mutually perpen-
dicular planes are shown in Figure 3. The influence of accelerations
up to 200 g's is below 3% of the full scale output of the transducer.
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Since accelerations experienced on the parachute canopy during in-
flation are not static but dynamic, that is portions of the cloth
surface may move or oscillate with frequencies up to 100 cps, the
frequency response of the transucer must be considered in order

to determine the total introduced error under dynamic conditions.

As indicated in Figure 4, the point of resonance of the transducer
is approximately 250 cps with a maximum error of 9 % of the total
output at an appliad pressure of 0.3 psi. Up to an applied frequency
of 170 cps, this error is only 1.5 %, Output voltage and linearity
of the pressure transducer over a range of applied pressures are

shown in Figure 5.

In addition to the pressure values, the forces generated by the
purachute canopy were also recorded as measured by a strain gage

type tensiometer. Hottinger carrier systems were used for the elec-
tronic measurements and the resulting signals recorded on a light-beam

oscillograph Honeywell Visicorder.

C. Test Procedure

A total of four pressure transducers were located along the cord
center lines of the canopies and distributed 90 degrees apart

around the surface of the canopies because of weight influences. In
addition, the location of the transducers was staggered in a manner
shown in Figures 7 through 52 to obtain pressure measurements near
the skirt, near the vent, and at two intermediate positions on the
canopy. Additional measurements were made for comparative purposes
with the transducers located along the gore center line (Figures 103
thru 105).

The complete filling process was photographed from one side by a
high speed camera with 100 frames per second. From the photecgraphic
record, canopy profile shapes and projected canopy diameter vealues

were obtained.

At the time of removal of the clamps setting the canopy free to
inflate (time t = 0), a time base signal of 50 cps was initiated
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and recorded on both the oscillogram and the photographic film for
synchronization purposes.

The internal, external, and differential pressure values were measured
and recorded during different runs., For the measurements of the in-
ternal and external pressures, the barometric pressure was conducted
by tubings to the outer and inner pressure taps of the transducer,

respectively.

A total of four separate measurements were made for each condition
in order to determine the repeatability of the measurements and obtain
valid average data, Thus, four equal test runs for each of the four
canopy types at four different speeds to obtain three different pressure
(differential, internal, external) versus time relationships were per-

formed for a total of 192 wind tunnel test runs.,

In order to cbtain background data on the acceleration distribution
over the parachute canopies during the period of inflation, accelera-
tion measurements were performed on each of the four canopy types

for each of the four deployment speed conditions. For this purpose,
miniature strain gage type accelerometers of approximately the same
size and weight as those of the pressure transducers were located at
the same points on the canopies where pressure measurements were taken.
Maximum values were measured on the solid cloth flat cirocular type
canopy models at a location near the canopy ckirt which at the largest
deployment speed (160 ft/sec) is accelerated at the beginning of in-
flation at approximately 50 g's and decelerated at the end of infla-
tion at approximately 200 g's.

RESULTS AND ANALYSIS

The two major objectives of the program weres

1. To determine the characteristic relationships between the pressure

and time for each of the four canopy types,

2. To correlate the pressure values and canopy shape at any point

during canopy inflation.



In addition, a detailed analysis of the canopy shape development
for the period of canopy inflation under infinite mass operating

conditions was to be attempted.

A. Canopy Pressure Distribution

Reproductions of actual oscillograph records obtained from the

tests are shown in Figure 6. These records represent the registra-
tion obtained on a flat circular ribbon type (FIST) canopy during
four different test runs conducted at the same deployment condition
of 130 ft/sec. Analyzing these registrations, two general statements

may be made:

1+« The reproducibility of the four measurements made at any one
test condition was relatively good. This applies in particular

to the solid cloth type canopies. Therefore, since no significant
deviations occurred the results of only one measurement for each

canopy type and deployment condition are included in this report.

2. As the original recordings illustrate, the pressures fluctuated
during the steady state period (canopy fully inflated) due to flow
conditions. During the unsteady period (canopy inflation), some
fluctuations can occur due to the unsteady movement of the canopy
material, in particular in the skirt area; however the mean values
show increasing pressures with a more or less prominent peak. The
determination of mean steady state values was sometimes difficult
due to fluctuations in the pressure values and since actuel steady
state conditions were not reached immediately after canopy inflation,
but several seconds later. To avoid cable breakage and other damages
to the test set-up, especially at the high deployment velocity, the
wind tunnel was shut down immediately after canopy fiiling was com-
pleted. To obtain more accurate steady state values, readings should
be taken for at least five seconds during the steady state period.
In general, however, the steady state values obtained are quite

comparable to the results of former measurements [4] .
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same initial condition of

v, = 130 ft/sec for FIST.
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The local pressures measured on the surface of the canopies

were differential pressures, dp, since atmosheric pressure was
conducted by tubing to one of the ports of the pressure transducers.
For open test section wind tunnels, the atmospheric pressure can be
assumed to be equal to the static pressure of the airflow. The pressure
values measured are expressed in coefficient form by relating these

to the dynamjc pressure of the airflow. Thus

. 4r
q

c
P

As mentioned above, the differential, internal, and external pressure
distributions were measured. For each of the canopy types and test
conditions, the differential, internal, and external pressure coeffi-
cients (cpd’ cpi' and ope) for the four locations on the canopy were
generalized (smoothed) and are plotted as a function of time in
Figures 7 thru 52. In order to correlate pressure values to canopy
shape, the instauntaneous projected canopy diameter, Dp, was evaluated
from the phot :raphic recordings. Therefore, the relationship between
projected canopy diameter ratio, Dp/Do’ as a function of time is shown
also for each test run. A presentation of all three pressure coeffi-
cient (cpd' cpi' °pe) versus time relationships for each test condition
together with reproductions of the original oscillograph recordings is
included in Appendix II,

In general, the pressure peak occurs first in the canopy vent area
and travels very rapidly towards the skirt area. The pressure peaks
occur slightly prior to the time at which the canopy reaches its
fully inflated shape for the first time. For the solid cloth type
canopy models, the pressure peaks from vent to skirt follow very
rapidly one another, being separated in time only approximately 1/100
of a second. The last peak in the skirt area occurs at almost exactly
the time at which the canopy is fully inflated. For the geometric
porosity type canopies, the peak separation time is somewhat greater,
for the FIST type canopy approximately 5/100 to 1/10 of a second, for
the ringslot type canopy 1/10 of a second or more. The last peak in

11



the area of the canopy skirt is again close to but before the fully
inflated projected canopy diameter is reached for the first time.

Aside from the determination of pressure versus time relation-

ships and pressure distributions, the determination of the magnitude
of the pressure peaks is a significant result of this program. For
comparative purposes, a pressure factor, Fp, can be defined which

is the ratio between the maximum value of the pressure coefficient,

opmax' and the value of the steady state pressure coefficient,
cpst’ or
c
pmax
F = £
P pst

A compilation of all maximum and steady state pressure coeffi-

cient values (¢ and cpst) at the four locations on the four

canopy types, tﬁzatime increment between occurrence of pressure
peaks in the areas of canopy vent and skirt, and the time at which
the fully inflated projected canopy diameter, Dp. is reached for
the first time is given in Table I for each of the four deployment

speed conditions, Vo'

The steady state pressure coefficients, ¢ in the area of the

’
canopy skirt are approximately 1.0 for thgsznternal and-0.7 for
the external pressures, resulting in a differential pressure
coefficient of 1.7. This is true for the extended skirt, FIST,
and ringslot type canopies. These values are comparable to the results
obtained by Heinrich [4] . For the circular flat type canopy steady
state pressure coefficients of up to 1.5 for the internal, -1.0 for the
external, and 2.5 for the differential pressures were obtained. These
values are high and there is a wide variation of all values acquired
on this canopy type. More tests appear to be necessary to verify the

findings.

On the circular flat type canopy, peak differential pressures during
inflation reached approximately three times the steady values at full

cancpy inflation. In one test, a pressure factor of 5.4 was even

12



obtained at a location near the canopy skirt. At the higher deploy-
ment velocities of 130 and 160 ft/sec, the pressure factor decreased
slightly due to the slightly lower peak pressure coefficient and

the somewhat higher steady state pressure coefficient values.

For the extended skirt type canupy, differential pressure factors
from 2.5 at a location near the canopy vent to 3.6 at a location
near the canopy skirt were found. Again as for the circular flat
type canopy, the pressure factors decreased with increasing deploy-
ment velocity. At a deployment velocity of 160 ft/sec, the pressure
factors varied from a value of 2.1 to 2.8 from the location near

the canopy vent to one near the skirt.

For the geometric porosity type canopies, the pressure factors

are remarkably lower. The maximum pressure factor obtained on the

flat circular ribbon (FIST) type canopy was 2.3, decreasing to

1.7 at the highest deployment velocity. For the ringslot type canopy,
the maximum pressure factor was approximately 1.6, with no significant
differences between the low and the high deployment velocities. For
the geometric porosiiy type canopies, there was no significant diffe-
rence in the magnitude of the pressure factor for locations near the

canopy vent or the skirt.

Absolute filling times of each of the canopy types decrease with
increasing deployment velocity as can be seen from the Figures and

from the tabulated diuta in Table J. The filling times are shortest

for the circular flat type canopy, become longer for the extended skirt
and FIST ribbon type canopies, and are longest for the ringslot type

canopy.

A correliation between pressure changes and changing canopy shape may
be obtained from Figures 53 thru 60 in which the pressure coefficients
(opd’ Cp? cpe) are plotted as a function of the projected canopy
diameter ratio, Dp/Do' These diagrams clarify the pressure-shape
relationship. For the circular flat type canopy, the curves for the

four locations of the pressure sensing elements run very close together,

thus indicating a very quick filling of the canopy. These relationships
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show a slow increase in pressure at the beginning of inflation, with
a rapid build-up in pressure immediately prior to achieving first
full canopy inflation. A different characteristic is observed on

the ringslot type canopy. The four curves representing the four
pressure points from the canopy vent to the skirt are spread.
Although the curves show a rapid increase in pressure at each loca-
tion, they indicate that the canopy shape change does only slowly
follow increasing pressures. The trends for the extended skirt

and FIST ribbon type canopies are located between these two extreme

trends.
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