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ABSTRACT

This report describes the method of integration that is used in a Lincoln Laboratory
computer program (the Planetary Ephemeris Program) to determine as functions of time
the position and velocity of the Moon and the partial derivatives of these quantities
withrespect to initial conditions. The method consists of numericelly integrating the
differential equations for the differences between the positions, velocities and portial

derivatives in the true lunar orbit and in Brown's mean lunar orbit.
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GENERATION OF THE LUNAR EPHEMERIS
ON AN ELECTRONIC COMPUTER

I. INTRODUCTION

A computer program, cailed the Planetary Ephemeris Program (PEP), is being written at
Lincoln Laboratory. The purpose of the program is to improve planetary and lunar ephemerides
by using the results of radar and optical observations. In this report we describe the method of
integration that is used in PEP to determine as functions of time the position and velocity of the
Moon and the partial derivatives of these quantities with respect to initial conditions.

In Ref. 1 we described Encke's method of integration used in PEP for the planets and the
Earth-Moon barycenter; we also presented lincke's method of integration for the Moon. How-
ever, this method is not satisfactory for the Moon, since the 'notion of the Moon deviates greatly
from elliptic motion, In fact, the expression given in Brown's lunar theory for the mean lunar
orbit2 implies that the Moon approximatezly follows an ellipse whose ascending node moves back-
ward along the ecliptic one revolution in 18.6 years and whose perigee advances ene revolution
in 6 years.

Our method of integration for the Moon utilizes Brown's mean lunar orbit rather than the
initial osculating elliptic orbit of Encke's method of integration. Namely, let (x1, ceey x6) denote
the position and velocity in the true orbit of the Moon and let (yi, cees y6) denote the position and
velocity in Brown's mean lunar orbit. We then numerically integrate the differential equaticns
for the § -y determining the xk from the results of the integration by the fact that the
y are known as functions of time. The partial der1vat1ves ox /8/3'] of position and velocity with
respect to initial osculating elliptic orbital elements (B yoees B ) needed in fitting to observations
are determined either (1) by assuming that these quantities are equal to the partial derivatives
ayk/aﬁj of position and velocity in Brown's mean lunar orbit with respect to initial mean orbital
elements (;_?1 Bé) or \ ') by numerically integrating the differential equations satisfied by the
quantities an ox /8[3‘] ayk/a,e] Opti 1 (1) might give results of the accuracy required by the
least-squares process of fitting to observations. Not having to follow the exact procedure of
(2) would save a great deal of computer time, The partial derivatives oxk/ o of position and
velocity with respect to parameters a that are not initial conditions (such as the mass of the
Moon or the combined mass of the Earth and Moon) are determined by numerically integrating
the differential equations for these quantities; since these equations are given in Ref, 3, we do
not derive them in this report.

We intend to integrate the equations in . coordinate system referred to the mean equinox
and equator of 1950,0. The use of this coord ..ate system dictates some of the manipulations
we perform in Secs. IIl and IV on Brown's mean lunar orbit, since the reference angles for this

orbit are given relative to the mean equinox and ecliptic of date,
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The differential equations of motion of a given body about a central body can be numerically
integrated with arbitrarily given accuracy over an arbitrarily given period of time if a small
enough interval of integration is used and if enough figures can be handled in the computations
to prevent significant accurnulation of round-off errors. By subtracting a mean orbit from the
true orbit as we do in the case of the Moon, the reguirements on the size of the interval of in-
tegration and on the number of figures needed are less stringent than if we just worked with the
original equations of motion.

The electronic computer (an IBM 360 Model 67) we intend to use for the numerical integ.a-
tion has hardware floating point arithmetic operations with execution times of a few microseconds
which handle 7, 16 or 32 decimal places. As presently envisioned, PEP will make certain crucial
computations (such as taking a numerical integration step or calculating mean lunar orbit quan-
tities) with 32 decimal place accuracy. Other computations (such as the determination of the
positions of perturbing planets) will be done with 16 decimal place accuracy. If necessary, the
design of PEP could be altered so that crucial computations csuld be carried out to 64 (or even
more) decimal place accuracy. Such higher precision floating point operations would have to be
programmed operations rather than machine operations and would thus require a great deal more
computer time,

In any event, PEP can be designed to handle enough figures to prevent the significant accumu-
lation of round-off errors. The only question is whether so small an interval of integration is
needed that excessive computer time is used in integrating the motion of the Moon for centuries
with the accuracy required by observations. This point can only be determined by computer
experimentation. Because of the rapidity with which improvements are being made in electronic
computers, such a calculation could very well be handled within a decade if not at the present
time,

Since PEP is written in the Fortran IV language, only slight modification of the program will
be necessary for its use in future computers. It is quite easy to insert in PEP the effect of ad-
ditional forces, since it is the logic concerned with making a numerical integration step and ma-
nipulating input and output which makes the program intricate, not the specific terms on the right-

hand sides of the equations.

II. EQUATIONS OF MOTION AND EQUATIONS FOR PARTIAL DERIVATIVES
WITH RESPECT TO INITIAL CONDITIONS

We make the following definitions concerning subscripts:

s = Sun

e = Earth
m = Moon

¢ = Earth-Moon barycenter (center of mass of farth-Moon system)
j =3 planet (j = 1,2,4,...,9)

Let y denote the gravitational constant and suppose that (x1, xz, x3) is an inertial coordinate

system. We make the following notational conventions:

x;( = kth coordinate of s, etic,
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xk = x.k—x: = kth coordinate of j relative to s so that

js

les{ = —xskj, ete.

rsj = rjs = distance between s and j, ete.

Ms = mass of s, etc.

Mc = Me + Mm = mass of Earth-NMoon barycenter

Let Fk and Fk denote the components of force on the Earth and Moon, respectively, in addition

to those due to the planetary and solar attractions. Then by Newton's laws of motion and gravity

we have
2.k k k k ]
dx X x
e _ me Je 1 Lk
2 -mer3 +yM, =3 +'yEM =¥ Tere
me es J Je
y k=1,2,3 . (1)
2.k k |4 k
d'x X Xg
_ em 1 k
= —'yMe——r3 +y1v1sr3 +3ZMJ-—3— M- F
me ms h] Jm J

Subtracting the first equation of (1) from the second equation of (1), we obtain

2_k k
d™x M X
me _ _ c\me k., .k, (1 k_ 1 _k -
dZ = yMS(M) 3 + B+ ¥ +\M Fm M Fe) s k=123 (2)
t s rme m e
where
xk xk ‘
k _ es ms
B -'yMS<——r3 ——-——-r3 >
es ms
+ k=1,2,3 . (3)

Let H denote that part of the (F::1 /Mm - Fé{/Me) term due to the higher harmonics in the grav-
itational potentials of the Earth and Moon, and hereafter let Fe and Fm denote the components
of force due to effects other than these higher harmonics and the planetary aad solar attractions.

Then (2) can be put in the form

dxk ‘
—me _ ki3

dt  ~ “me

k+3 k
dx M X
““me _ Yo\ *me | ok, ok, uk 1 -k _ 1 -k} k=123 (4)
= yMS(MS)———r3 +BY+ ek H +(—Mm F M, Fe)

me
k __k k+3 _ _k+3 _
*me =~ *ome ’ me - *ome whent—to J




which is exactly as written in Ref. 4. The expression given for H* in Ref. 5 includes the effect
of the second and third harmonics of the Earth and of the second harmonic of the Moon,

Let (Br:)’ cee, ﬁr(x)u) denote the osculating elliptic orbital elements at time t, of the orbit of the
Moon about the Earth. Differentiating {(4), we obtain6

k j k+3
dlox /B ) e
dt - j
By
k+3/.0 ] k 3 2 k )
d(axme/aﬁm) = vM (&) 1 3xme Z xl axrne _ axme
dt s S 73 \}2 me “o5] o)
me me f£=1 m m
- L) S (1 pk_ 1 gk | k=123
j j 3 TA\M_ "m~ M Ye j=4,...,6 (5)
og) el ep) el \'m c
k k k+3 k3
axme _ axome axme _ axome N
i 3 , T 3 whent-to
aﬁm aﬁm 8Bm aﬁm J

k

where the partial derivatives of Bk, L Hk are given in Ref. 7.

III. MOTION IN BROWN'S MEAN LUNAR ORBIT
In the following the unit of time t is measured in ephemeris days. Let

i = inclination of Brown's mean lunar orbital plane on the mean ecliptic
of date

= ascending node of Brown's mean lunar orbital plane on the mean
ecliptic of date measured from the mean equinox of date along the
ecliptic

w = argument of perigee of Brown's mean lunar orbit measured along
the orbital plane from the ascending node on the mean ecliptic of date.

We then have2

sin% = 6.044886967 (i ~ 5°145)

Q = 2597183275 — 020529535222 (t — t,.)
#10557 x 10712 (-t )2+ 520 x 10720 (1 —t,)% | (6)
w = T'—Q = 75146281 + 021643580025 (t — t,)

-12 2

— 92296 X 10

—3og x93

£ J

(t - t*)

where t, is the time at the epoch 1900 January 0.5 = J. E. D. 2415020.0. If we measure angles
in radians, then




Q = 452360151485 — 9.24220294234919 X 10™% (t —t,) ‘
+2.717477645355 X 107 (¢ — 1, + 8.72664625997 x 10722 (¢ —t,)°

© = 1,31155002408 + 2.868588295626071 X 107> (t —t,) - (7
- 1.6224580726539 x 10713 (¢ — ¢ )2
—5.4105206811824 x 10~ 21 (t - t*)?’ J

From these equations it easily follows that

4R - _9.24220294234919 x 10™* + 5.434955290710 x 1071% (¢ ) |
+2.617993877991 x 10721 (1 —1,)2
; (8)
dw _ -3 -13 4
L - 2.868588295626071 X 107> - 3.2449161453178 X 10713 (t — t,)
— 1.62315620435472 x 10720 (¢t — ¢)? ,
2 h
98 . 5434955290710 x 107 + 5235987755982 x 1072 (£~ t,)
dt
. (9)
4 -13 20
L8 - _3.2449161453178 x 10713 — 3.24631240870944 x 10720 (¢ — 1)
dt ,

Let (v1, vZ, v3) be a coordinate system such that the v1 axis points toward the perigee of the
mean lunar orbit, the v2 axis lies in the orbital plane and points in the direction of motion at
perigee, and the v3 axis is perpendicular to the orbital plane and completes the right-hand
system. Let (wi, wz, w3) be a coordinate system referred to the mean equinox and ecliptic of
date, that is, a coordinate system such that the w1 axis points toward the mean equinox of date,
the w3 axis is perpendicular to the mean ecliptic of date and points to the north, and the wz axis
cormpletes the right-hand system. The relation between the (vi, v2, v3) and (wi, \vz, w3) coor-

dinate systems, assuming that they have the same origin, is

3 3
w! = E Blivk s vl = E Bjkwk , j=1,2,3 (10)
k=1 k=1

where the orthogonal matrix B = (Bli) is given by8

1 . . .
B’L = cos cosw — sin? sinw cosi
1 . . .
B2 =—cos§ sinw —sinQ cosw cosi
1 . ..
B3 = sin & sini
2 . . .
B1 = sinf) cosw + cosQ sinw cosi
2 . . .
132 = —sin® sinw + cos Q cosw cosi




B32 = —cos 2 sini

3
1

B, = sinw sini
3 .
B2 = cosw sini
3.
B3 = cosi . (11)
We have
Fooand ] ‘
dB) 0B 4o . 9B} gy
d - e dt T w at
a®Bl e8I 2. Bl 2
K. kdP, _kdo b k=123 (12)
dt © o at ’
2] 2.7 2.1
$ 28k amz, PPk doe , 2Bk a0 aw
g2 | dt 2 Uat Mow dt at
where
aBk1 ) aBk2 ) aBlf
- = —By o = By S5 =0 ., k=123 (13)
aB3 aBJ . oBJ
1 _Rrj 2 __Ri 3 . .
% - B2 % - Bj o 0 o 1=123 (14)
asz1 .y aZBk2 ) 82B§
_—T--_Bk -—E-=~—B ~‘—2—=0 , k=1,2,3 (15)
a0 90 20
aZBf . 2°BJ aZB3j
__2._—__.Bi] -——2-=—Bé] ——2 =0 , j=1,2,3 (16)
ow ow ow
9?p 1 %82 a%p3
0B | g2 1. gt k .o
Mow - B2 M ow - 2 Q0w -
. hk=1,2,3 . (17)
2°B} o’B2 o?p)
2 _p2 2 __p! 3,
Qow - o1 dw -1 00w -

Let (yi,yz, y3) be a coordinate system referred to the mean equinox and equator of 1950.0,
that is, a coordinate system such that the y1 axis points toward the mean equinox of 1950.0, the
y3 axis is perpendicular to the mean equator (of the Earth) of 1955.0, and the y2 axis completes
the right-hand system. The notation 1950.0 denotes the instant near the beginning of the calendar
B 40™ so that 1950.0 is J. E. D. 2433282.4237
The relation between the (yi_ya, y3) and (wj, w2, w>) coordinate systems is given by

year 1950 when the longitude of the mean Sun was 18

3
V=) Alﬂwk ,owl= 3oalk L je123 (18)
k=1




where expressions for the orthogonal matrix A = (Ag) and its derivatives dA/dt and dZA/dt2 are
given as functions of time in Appendix B.

Combining (10) and (18) we see that the relation between the (yi, yz, y3) coordinate system
referred to the mean equinox and equator of 1950.0 and the (vi, vz, v3) coordinate system with v1
axis pointed toward thie perigee of Brown's mean lunar orbit and with v3 axis perpenaicalar to

Brown's mean lunar orbital plane pointed toward the north is

3 3
j_ i k j k_k . :
yl = Z Cl‘zv ., V= Z ij , §=1,2,3 (19)
k=1 k=1
where the orthogonal matrix C = AB is given by
3
Y alB/! i k=1,23 (20)
f k ’ Jl ’ » .
The derivatives of the matrix C are
dc _ dA dB
a " at Bt A
2 2 2 (21)
dCc _ d°A dA dB d’B
T 2Bty w AT 2
dt dt dt

We are interested in a body moving in Brown's mean lunar orbit with position coordinates
(vi, vz). The position, velocity and acceleration of this body in the coordinate system referred

to the mean equinox and equator of 1950.0 is then

2 )
ik
yJ=Z C!'Zv
k=1
dy?! : dv¥ : li 423 22
Wo T il j=tas . 22
k=1 k=1
2 2 4ol 2 j
d2y3=>CJZ , 3 Tk at E"c
3 J dt  dt
dt k=1 k=1 k=1 J

The mean anomaly L at time t in Brown's mean lunar orbit isZ

L= (= 1I'=—63%895392 + 1320649924465 (t —t,)

+ 6:889 x 10712 (1 = £.)% + 2099 x 10717 (£ — )3 (23)
If we measure angles in radians, then
L = —1.1151849673 + 0.22802713493961401 (t — t,)
4 1.202357321699 X 10”13 (t — 1,07 + 5.218534463463
x 107 (1 -t ) . (24)




B~ s il

From this it follows that

- = 0.22802713493961401 + 2.404714643398 X 10772 (t ~ )
-20 2
+ 1.5655603390389 x 1070 (¢ —t,) L. (25)
a’L -13 -20
> = 2.404714643398 X 107> + 3.4311206780778 x 1070 (t —1,)
dt J
The eccentricity e of Brown's mean lunar orbit is constant:2
e = 0.054900489 (26)

The semimajor axis a of Brown's mean lunar orbit is also constant.

we can assume that

a = 60,2665 equatorial earth radii

Let u be the eccentric anomaly at time t in Brown's mean lunar orbat.

solving Kepler's equation

L. =u—-—esinu

By inference from Ref. 2,

(27)

It 1s determined by

(28)

by iteration. Then the radius distance p and the components of position (v1, vz) in Brown's

mean lunar orbit at time t are given by10

a{1 — e cosu)

©
n

a{cosu —e)

v2 a«/i—-ez sinu

From (28) it follows that

<
]

du_ 1 dL
dt {1 —e cosu) dt

so that by (29)

(cosu — e)

(1 ~e cos u)2

sinu

av! ____asinu_ dL

dt (1 —e cosu) dt

g_?: - anN1—e® cosu dL.

dt (1 — e cosu) dt
dzv1 - a —sinu d’L, N
dtz (1 —e cosu) dtz

——

dzv2 - a\/i—ez cos u dZL _
dtz (1 —e cosu) dt2

(1-e¢ cosu)2

dL,2
(W)]

dL,2
(59

(29)

(30)

(31)

(32)

The position, velocity and acceleration in the coordinate system referred to the mean equinox

and equator of 1950.0 1s then given by (22).
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IV. PARTIAL DERIVATIVES IN BROWN'S MEAN LUNAR ORBIT
Let

= sernimajor axis at time to of Brown's mean lunar orbit

eccentricity at time to of Brown's mean lunar orbit

=l o W
n

= inclination at time to of Brown's mean lunar orbit to the mean
equator of 1950.0

ascending node at time t_ of Brown's mean lunar orbit on the mean
equator of 1950.0 measured from the mean equinox of 1950.0

2l
n

@ = argument of perigee at time t, of Brown's mean lunar orbit
measured from the ascending node on the mean equator of 1950.0

= mean anomaly at the initial time to in Brown's mean lunar orbit.

In this section we shall derive the expressions for the partial derivatives of the position, velocity
and acceleration in Brown's mean lunar orbit with respect to these quantities.
‘We of course havea =aand € =e, Let
M

= -c
p= (yMS) M, (33)

Then the mean motion in Brown's mean lunar orbit is
n= pi/za-3/2 . (34)

If the orbital elements of Brown's mean lunar orbit were not functions of time, we would have

the mean anomaly L at time t given by

L=l+n(t-to)

By this equation and expression (24), the mean anomaly L at time t in Brown's mean lunar
orbit can be written in the form

- 2 3
L -£+n(t—to) + Li(t—to) + LZ(t—-to) + L3(t—to)

so that

oL 3 nit - tOH

% 3 a

oL

- S
= =0 (35)

oL _
o -1 )

Then from (28) it follows that

ou __3 _ M=ty ]

0a 2 a(1 —e cosu)

Ju _ sinu .

o¢ = (1 —e cosu) k (36)
uw _ 1

of (1 —e cosu) ]
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Differentiation of (29) with respect to @, € and I gives
1 n sinu (t—t)
v — 3 __ o
9a =(cosu-—e) + 2 (1 —-ecosu)
— V1 - e? cosu (t—t) e
2 nNi—e cosu(t—t
av_ _ 2 i3 o
o5 -~ N1—e sinu-3 (1 —e cosu)
i é)v_1 = —3— asinzu Q_Z___ae sinu +a'\/1—ezsinucosu (38)
FH (1—ecosu) e 5 (1 —e cosu)
1—e
13
i [
i aL_i=_ a sinu _i=a 1-—ezcosu (39)
. ot (1t—ecosu 2 (1 —e cosu) :

For any parameter @ that is independent of time (such as the initial orbital elements), we have

Hw " ar Thus, either differentiating Eqs. (31) and (32) with respect to §, &, £ or differ-

entiating Eqs. (37), (38) and (39) with respect to time, we obtain

a (aLi _3 _nsinu _ _ 1 a3 nt -t ) (cosu—e)
dt \ 93 2 (1—ecosu) (1 —ecosu) dt 2 (1-—ecosu)2
(40)
d (avz) _ 3 nN1—-e® cosu + Ji-e? 4L 3 nlt—t ) sinu
= () = -3 == lcosu + & ——————=
dt \oa 2 (i—ecosu) (1—ecosu) dt (1—-ecosu)2
1 3
d (av) a sinu dL [ (cosu — e)
| - —————— == |cOosu F et
dt \ oe (1—e cosu)? & (1 —ecosu)
i b (41)
H [
d (@E) - a 4L ) _ecosu 1—e2 cosu — sinzu
dt e (1 —e cosu) dt > (1 —e cosu) (1 —e cosu)
1—e J
d (ﬂi) __ alcosu—e) dL d (OVZ) i anN1—e? sinu dL (42)
F) - =, F A5 - =
dt oL (1 — e cos u) dt dt of (1—ecosu)3 dt
g2_ (@) ) 1 dZL {—Sinu+ 3 n(t—to) (cosu—e)]
gt2 \oa (1 —ecosu) .2 2 (1-e cosu)’
3n{cosu—e) dL 1 dLl,2
e S - | (ET)
(1 — e cosu) {1 —e cosu)
n{t—t ) sinu
d—e) b DO 3e{cosu—ce)
X jlcosu—e) + 2 {(1—ecosu) [1+ (1 -e cosu)]}
. ! (43)
.9_2_ (a_vf) _ 1 —e® gL [cosu+ 3 n{t—t) sinu
at? \% (1-ecosu) 42 2 (1—c cosw?
, 30Nt —e®sinudl _ _ Wi -e? (A2
(1—e cosu)3 dt (1 —e cosu)3 dt
n(t—-t) .2
. o) 3e sin"u
X smqui(i—ecosu) (1—ecosu)—c°su”
J
10
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2 1 : _ )
(g (%Yr;—) - ___asinu al I?:. (cosu + (1<:f>.seucosez1 ]
at (1—ecosu)
. 2 2
+ a (dLZ[ (cosu — e) __“__e)+3s1m u(1—e)]
(‘1—ecosu)4 (1 —e cosu)
—
i av__z) _ a d’L __ecosu J1—e? cos®u — _sin‘u__
dtz &/ " (1 ~ecosu) dtz = ' (1 —e cosu) (1= cosu|| {(44)
1-e”°
. ’ 2
+ a (dL) e sinu 1i—e
(1_ecosu) dt J—‘Z' (1—6 cOSu)
X 4sinucosu-—- 3esm —=cSin u_
{1 <€ cosu) J
2 1 2 .
a  f{ov ) _ a(cosu—e) d L a sinu dL 2 3e{cosu —e)
2 \Na) "~ (dt [1+ (1= ecosu)]
dt (1—e cosu) dt (1-—ecosu)
ﬁ(a_v_?;) ____a»\/i—ezsinu dZI_.+ anN1—e’ (dLZ ! (45)
dt2 d (i—ecosu)3 clt2 (1—e cosu)
X {~cosu + ~2& sinzu
(1 —e cosu) J

Let a denote oae of the parameters a, €, £. By (22) we then have the partial derivatives of the

position, velocity and acceleration in Brown's lunar orbit with respect to 3, €, I given by

3

iz 1
ay’ _ j ov
= L Clm
k=1
2 2 ]
ST e () S
at \9a k dt \d& dt a
k=1 k=1
b i=1,2,3 . (46)
2 2 2 .k 2 4c) k
ac (gyj)= Y cid (a_v_)+2 y _ksi_(aL)
dtz @ k:i_t'z oa dt dt \ o
k=1 k=1
2 2.
Py S at
g2 9@
k=1 J

Next, we define

inclination of Brown's mean lunar orbital plane at time t, on the

i

® mean ecliptic of time t
Qo = ascending node of Brown s mean lunar orbital plane on the mean
ecliptic of time t, measured from the mean equinox of time t
along the ecliptic
w_ = argument of perigee of Brown's mean lunar orbit at time t

measured along the orbital plane from the ascending node on
the mean ecliptic of time to'

11
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A

A=

—Ha.

Further, let1, €, w be the similar reference angles at the initial time to of Brown's mean lunar

orbit relative to the coordinate system (yi,yz, y3) referred to the mean equinox and equator of

1950.0 as defined at the beginning of this section. Preliminary to finding the partial derivatives

of the position, velocity and acceleration in Brown's mean lunar orbit with respect to 1, €, w,

we shall derive the expressions for the partial derivatives of io' Qo, W, with respect to i, @, w.
By (20) and the fact that the matrix A is orthogonal, we can write

3

Y oalc Bk=1,2,3 (47)
j k 1 - ’ »

=1 i

where the matrix B is given by (11) with the angles i, ©, w replaced by io, Qo' W, the matrix

C is given by (11) with Bd replaced by Cli and with the angles i, 2, w replaced by 1, &, v, and
the matrix A is given in Appendix B evaluated at time to From (47) it follows that

3
. 1.1 o o : °
cosi = Z A3C3 , 0 <10\<180 (48)
=1
3 ]
N N LR
sini sm‘,zo— Z, A1C3
=1
\ 0°< 9 _<360° (49)
3 o)
o _ L1
—sm10 cosQo- Z A2C3
=1 J
3 A
s _ L0
sini Smwo = Z A3C.1
=1
0°Cw <360° . (50)
3 o
. _ 2.1
sinijcosw = Z AC,
=1 J

Let @ denote one of the parameters 1, €, w. Differentiating (48) we obtain

ai
o

o ~ sin 1

3 i
3
Z A '—5' . (51)

Differentiating the equations in (49), we obtain

. 3 £

194 oi oC

- o) A o _ ¢ _73

sini cosSZ0 ol + cos i, sto m Z A1 Y-
£=1

20 ai ; . oC;

sini s1ns2o o5 —cosi, cos SZO w - L A2 e
£=1

Multiplying the first of these equations by cos QO and the second by sin SZO and adding, we sze that

12




3 £ 3 £
1) oC aC
—o_ 1 2773 . £ -3
% - sinio <cos$2o E A1 o . .,on E AZ —-—-aa> . (52)
=1 =1
Differentiating the equations in (50), we obtain
w a3 act
sini_cosw —2 4+ cosi sinw = E LA
o) o ow o] o 9@ '3 9@
£=1
3 £
ow oi aC
ini_ si —2 - 9 . 2 72
—sini  sinw == + cos iy cosw 7= = E A3 Yo
£=1

Multiplying the first of these equations by cos W, and the second by sin w, and subtracting, we
see that

aC

3
oC
o _ 1 L 1 i 2
9a ~ sini <coswo z A3 o | Sme&,
° =1

L2
Ag —) . (53)
/

£ 3 {
o

£=1

Finally, using expression (11) for the matrix C with Bli replaced by Cli and the angles i, &, w

replaced by i, €, w, we see that

oc, 2 oy oc,

% =% - % 5 =0 . k=123 (54)

oc] aCj) oC)

w 7 T ¢ o =0 L, j=123 (55)
\

ac11 3 acz1 3 8031 - -

e = C1 sin Q 5 C C2 5in - sinQ cosi

Eri 4 cos R 5 cos® 7 ) cosi

ac? e _ o ac) _

i sinw cosi T COSW COS1 - —sini J

In (56) the angles I, €, w are determined by

cos—i=C33 , 0°gig180° (57)
LT L= 1
sini sin® = C3
0°KQ <360° {58)
—sini cos @ = C32
. T . — 3
sini sinw = C1
0°gw<360° . (59)
- - 3
. T s
sini cosw = C, j
13
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02, ag) denote the quantities (io, Q. wo) and let (&1, &'2, &3) denote the quantities

(1,9, w). Then by (22) the partial derivatives of the position, velocity and acceleration in Brown's
mean lunar orbit with respect to the initial angles 1, €, w are

1
Let (ozo,a

3 m 2 ]
ol _ 7 o] 5 Y 1
_Bj a_l e 1P
o m=1 ®  p=q 9@
3 m 3 j 2 ;
d (o). E 3 Z aCy Silliq. Z d aCy "
dt o5 - a_l o ™ t dt o ™
o m=1 k=1 %o k=1 0
+ j=1,2,3
3 mg 2 i 2 j £=1,2,3 (60)
i (o] .3 da 7 aCy davknz 4 %S, ﬂ
at® \oal @l |2 2 ol dt \gom/ dt
m=1 k=1 o k=1 o
2 J
R s AW
2 m/]Y
k=1 9t \da g N

7

where the 3 X 3 matrix (80:5“/8&1) is determined from formulas (51), (52) and (53) evaluated at
the initial time t . By (20) and (21} we have

Q.IQ.
o
TN
a
BW:.-
~—
"
g I
o,
o] &
&
© B o~
+
> w
e =3
e
<)
8
/\
2 &
Pl
~——

foo NV
w w

-

[ ]

-

(61)

3 2.8
- d™B
R <__5>

m 2
aao dt
1 2 3 . .
Leta’, o, «” denote i, €, w. Then by (6) we can write
Jo o e — Jig — ¢ 12 I —¢y3
@ al + ar1(t to) + ozz(t to) + a3(t to)

so that

= — , £=1,2,3 , k=1,2 . (62)

In (62) the partial derivatives with respect to az = Q and oz3 = w are given by (13) and (14), and
the partial derivatives with respect to @ = iare given by

14




B/ 4 31312 3 3313 . )
ﬁ“ = B1 sin @ o =—B1 cos Q i - Sinw cosi
(63)
31321 3 8322 3 "‘1323 .
—a— =B2 sin Q i =—B2 208 Q o COSWw COS1
By (12) and (62), we have
? £ £ ]
o g dt o0 \ 5, t " B\ g d ) dt
2. £ { {
5 <d Bk>= 2 <8Bk> 2q L <8Bk> i
sad \ at? /] ®\aad/ at? % \oed/ at® i=1,2,3
o
r k=1,2
, . £=1,2,3 (64)
. 8 <8Bk>(is_2 2, 0% <33k> ()2
892 2a) dt 8w2 ] dt
2 aB;
43 2 k\dQ dw
29 0w j/ dt at
da J

where the partial derivatives of E)Bé/aa‘] are given by (13) through (17)*with Bé replaced by

Lo ]
aBk/ da:Y.

V. DETERMINATION OF MOTION AND PARTIAL DERIVATIVES
WITH RESPECT TG INITIAL CONDITIONS

Let (x1 PR X6 ) denote the position and velocity of the Moon relative to the Earth, and
1 me me
let (yme' . yme) denote the position, velocity and acceleration in Brown's mean lunar orbit.
Let
X oexk vk L k=16 . (65)
Then by (4) the (§r1ne’ ceey gr(;xe) satisfy the system of equations
Kk )
d¢ me _ , kt+3
at " fme
., k3 K
9% me = —yM (El_c) *me _ ko, Bk + X
a s \M 3 me
Ve x” | k=1,2,3 (66)
k ( ok _ Lok
+ H : F” — === R
A\’lm m Me }
k _ .k <3 _ , kr3 _
fme “fome *  Sme " Some Whents to)
where

k _(k

k —
ome * xme_yme)lt=to , k=1,0..,6 (67)

15




-~

PEP determines the position and velocity of the Moon as functions of time by numerically

ces gé’le) using relation (65) and

) are known as functions of txme During the integration the posi-

integrating the dn‘ferentxal equatxon system (66) for the (g
the fact that the (y - yme
tions of perturbmg planets 1,2,4,...,9 in the ¥ term of (3) are determined f"om an mput mag-
2 3

x_,x_), which

netic tape. The position of the Earth-Moon barycenter relative to the Sun (xcs’ cs’ Xes

is needed in evaluating the BX term of (3) because of the relations |

M

xk _xk . m xk
es “ecs M me
c
k=1,2,3 (68)
KoLk M, K
ms cs M me

is determined either from the perturbing planet input tape or from integrating the equations of
motion of the Earth-Moon barycenter given in Ref. 12 along with equations (66).

Let 8x /aﬁJ (, k=1, , 6) denote the partial derivatives of the posxhon and velocity
of the Moon w1th respect to initial osculating elliptic orbital elements (B - Bf;), and let
/63J (=1, ,6, k=1, , 9) denote the partial derivatives of the position velocity
and accelera’uon in Brown's mean lunar orbit with respect to initial mean orbital elements
(31 l3 ). Let
m’
k
ox oy
k.:-'——n:le—'—me ’ j,k=i,...,6 - (69)
m m
Then by (5) the n (], = 1,..., 6) satisfy the system of equations
k 1
i k3 '
dt Mmj
k+3 2 k
d"mj = vM Mc) me E ox __me
at -~ "™Ms \M *me J o
me ‘Tme f=1 B m Bin [ k=1,2,3
j=1,...,6 (70)
kt+6
Yme . oBX _ ovK _ oH® | k1 _X
o + ; + ; + 3 + T \M Fm—- M Fe
By ey a8l el gl \Wm e
k _ k k+3 _ _kt3 -
nmJ = nomj , mj = nomj when t = tO J
where
k k
ox ay
= (- ) ke s
% m % m’ It=t

The 8x /8[3'] at the initial tlme t are determined from the elliptic orbit formulas of Ref. 12.
PEP determines the ?)A /8ﬁ (], k =1,...,6) as functions of time either by assuming that
they are equal to the Oy /OBJ (J, .., 6) or by numerically integrating the differential

16
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equation system (70) for the "r‘r(u (i, k = 1,..., 6) using relation (59) and the fact that the 8y;e/
aErJn (j=1,...,6, k=1,...,9) are known as functions of time. PEP has thesg two options,
because it might be sufficiently accurate tc assume that axr‘;e/apgn z ay;e/aﬁ;‘n in the least-
squares process of fitting to observations. As mentioned earlier, not having to follow the exact
procedure of numerically integrating equations (70) would save a great deal of computer time.

We intend to adjust the initial osculating elliptic orbital elements rather than the initial
position and velocity in the least-squares process of fitting ephemerides to radar and optical
observations, because the method of integration we use makes it easy to calculate the partial
derivatives of position and velocity with respect to the former parameters and because the former
parameters should be less correlated than the latter. The elliptic orbital elements (131, e ﬁé)

we have used in this report and in Ref. 1 are:

a = semimajor axis
e = eccentricity (0 L e < 1)
inclination (0° < i< 180°)

i

2 = longitude of ascending node {0°< 2 < 360°)
= argument of perigee, measured along the orbital plane from the
ascending node (0° < w < 360°)
20 = initial mean anomaly

Some other choice of elliptic orbital elements could be less correlated 1 elative to the radar and
optical data than this choice. For instance, this would very likely be the case if we replaced

the angles (2, w, lo) by the angles

g=0
O=Q+tw (72)
M=Q+w+!

[o]

since the angles in (72) are those gen:rally used in celestial mechanics and were probably arrived
at from the results of experience with optical data. The formulas in this'report and in Ref. 1 are
stated in terms of the angles (€, w, lo). The partial derivatives with respect to (&, @, M) can be
determined from these results because of the relations

a— = -a— — a—

oS a0 ow

d 0 0

= == -\ . (73)
o dw E)Zo

2_ - 9_

oM azo )

17




APPENDIX A PRECEDING PAGE RLANK
EXPANSION FOR PRECESSION MA'TRTX ‘

12 3 .
Llet {(y ",y ", ¥7) be a coordinate system referred to the mean equinox and equator of 1950.0
(J. E.D.2433282.423), and let (xi, xz, x3) be a coordinate system referred to the mean equinox

and vquator of date. Then the relation between them is given by

]

J. Y pl.k
y'= 2, ka
k=1
r 1=1,2,3 (A-1)
3
PO pjkyk
k=1

where the orthogonal matrix (Pd) is the precession matrix.

. . . . . . 1
To give the establislied expression for the precession matrix, we first define the angles 4

2304'1948T + 0'1302T% + 0'10179T>

t =

0O

z = 2304''948T + 1'.'093'[‘2 + 0‘.'01')2’1‘3 (A-2)
6 = 2004".'255T - 0'.‘426'1‘2 - 0'.'0416']’3

where T is measured in tropical centuries of 36524.21988 cphemeris days from the epoch
1950.0 (J. E. D). 2433282.423) to the instant of interest. Then the precession matrix at this in-

. 15
stant is
P1 = cost cosO cosz —sing_sinz
1 0 o]
P2=——s"nr cos® cosz —cos!_sinz
1 o - ‘o
3.
P1 = —-5inB® cosz
P1 = cost_ cosO sinz + €in{_cosz
2 0 o
PZ = —~sin? c¢0s O sinz + cost _cosz . (A=-3)
2 i) o
3 . .
PZ = —~sin® sinz
Pl—-cosr sin ©
3 ‘o
P2=—-s'in)’ sin©
3 o
P; = cos 6 J

l.et 7 denote the time from the epoch 1250.0 (J. E. D, 2433282.423) in units of 10,000

ephemeris days. Then by Taylor's theorem we have

19
PRECEDING PAGE BLANK



b “c

-

- —

.2 a'r)

pl- P (4 —X M, G k=1,2,3

k n! drn
n=0 =0

(A-4)

Treating the ccefficients in (A-2) as exact, some simple calculations show that the terms up to

the fifth power in the Taylor expansions (A-4) are:

5

Pf = 1.0 — 2.22603398052547 X 10 072 — 2.6903385325366 X 10~ 15
+8.191221606878 x 16~ 11+ + 1.79948222850 x 107 14;°
2 -3 . 72
PJ = —6.119064710033514 X 107 —5.06975739290688 X 10”7
+ 4.5321716219079 X 10573 + 8.619581795926 x 10~ 1274
— 1.02943658327 x 10~ 13,2
P} = —2.660399722772102 X 10”31 + 1.54818397804898 X 107742
+1.9729201591810 X 10873 + 1.960730253191 x 10~ 1274
— 4.39298354075 x 10~ 14;°
1 -3 7.2
P, = 6.119064710033514 X 1077 + 5.06975739290688 X 10”5
~ 4.5324716219079 X 10873 — 9.636891635856 x 10~ 17*
+1.02604298897 x 101372
!
2 -5 2 -9 3
P2 = 1.0 - 1.87214764627888 X 10 >r% — 3.1022173551368 X 10”7
+ 6.882478825535 x 10~ 1174 4 1.91215207447 x 107145
P23 = — 8.13957902909886 X 10" °7% — 5.8309700675934 x 10103
+2.994360606802 x 10”114 4 5.71739459043 x 1071970
P31 = 2.660399722772102 X 10737 - 1.54818397804898 X 10'772
— 4.9729201594810 X 10~8+3 + 3.791379581151 x 10~ 13,4
+ 4.50404085077 x 10~ 14,5
P2 = -8.13957902909886 X 107072 + 1.8168268497009 x 10”103
+3.024323052660 % 10~ 1+% + 2.58550054981 x 10”1742
-P33 = 1.0 — 3.53886334246294 x 10~ %1% + 4.1187882260017 x 10”103
+ 1.308742781343 x 10~ 1424 — 1,12669845971 x 10”155 )
20
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APPENDIX B
EXPANSION FOR MATRIX A AND ITS DERIVATIVES

The mean obliquity of the ecliptic :Is16

€, = J3°27'08'126 — 46%1845T — 0'.'0059T2 + 0'.'00181’1‘3 (B-1)

where T is measured in Julian centuries of 36525 ephemeris days from the epoch 1900 January
0.5 E.T. = J. I‘ D. 2415020.0 to the instant of interest. The relation between a coordinate sys-
tem (x’, 2 , X ) referred to the rmean equinox and equator of date and a coordinate svsiem

(wi, w2 w ) referred to the mean equinox and ecliptic of date with the same origin is”

-

1 1
X = w
2 2 .
X =W COSé¢ -w3 sine_ 3 . (B-2)
o o
x3 'wz Siac +w3 CcoSs €
“Co o

Let 7 denote the time from *he epoch 1950.0 (J. E. D. 2433282.423) in units of 10,000 ephemeris

days. By treating the coefficients in (B-1) ar exact, Taylor expansions similar to (A-4) gie

0.3978811865927521 — 5,70513893192403 X 10-'47

1}

sin¢
0

-9 2 -10_3

— 1.8312087506169 X 10 77 + 1.652267540061 X 10 "7

19_5

~15.4 _ 5 36469209 x 10~ 17;

+4.45783951328 X 10
¢ (B-3)

cos € 0.9174369522509674 + 2.47424898500247 X 10—57

9. 2

- 1.31335717:0992 X 10 7% = 7.173527734648 X 10”173

-14_4 19_5

+ 1.02732897621 X 10 13.29806267 X 10’7 J

Combining {ranstformations (A-1) and (B-2) gives transformation (18), where

N

iopl

Aj = P

Al =Plcose +PIsine V! j=1,23 (B-4)
2 =Py cose,+ Pysine, 3

j.pl - —PJ sine

A3—P3 cos e, P2 sine

The Taylor expansions for the A1J (j = 1, 2, 3) are given by the first three equations in (A-5). To
determine the Taylor expansions for the AJ, Ag (3 = 1,2 3), we multiply and add the expansions
given in (A-5) and (B-3) as indicated in (B-4):

21
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&

A

1
2

N o

N ow

Do

2
A;

A

3
3

3 72 )

= 6.672379076707188 X 10 "1 + 4,03140345445988 X 10™ ‘7

— 4.9421227156709 X 10”373 — 8685948302421 x 10”1274

+1.11902061670 x 10~ 13;3

0.9174369522509674 + 2.47424898500217 X 10—57

— 2.04156730272966 X 10’512 — 2.8443776398581 X 10‘973

+7.513826113713 x 107 17% 4 1,75327407517 x 1071477

0.3978811865927521 — 5.70543893192403 X 10 7

6_2

— 8.87742893170170 X 10~ %72 — 2.0534553328574 x 10”1073

+3.266231487901 x 10”1174 4 4.79023554313 x 107 97>

= 6.08828576338671 X 10~07 + 7.11738284222153 x 10872
—3.4836043645777 x 10”123 — 9.238939614350 x 107 14;4
—1.72691125954 X 10"675

= —0.3978811865%927521 + 5.70513893192403 X 10-57

— 1.67960985290526 X 10 "51% — 3.3710116720406 » 10”117

3
+ 1.616276978960 X 107134 4 7.61970380671 X 10‘“’75
= 0.9174369522509674 + 2.47424898500217 X 1027

9 2

—~9.41199405263501 X 10" 7% - 1.3793679110716 x 10”1173

+ 6.583259897028 X 107 142% 4 3.21079987643 x 107165 ]

assumption that the inverse of A is equal to its transpose is unimportant.
L.et t denote time measured in days. Ifor a function f defined by

5

£= ), f7

n

n=0

22

(B-5)

The expansion for the matrix A given in (B-5) and the {irst three equations of (A-5) has 13
decimal place accuracy 30 years away from the epoch 1950.0 and 9 decimal place accuracy 300
years away from the epoch 1950.0, Actually, we treat expansions (A-5}) and {B-5) as defining
the matrix A so that the formulas for the mean lunar orbit involving the matrix A can b« regarded
as exact, except for those which assume that the inverse of A is equal to its transpose. But
this is only done in computing the matrix (0« ;“/a&’z) in (60), so that only those form:.' s involving
partial derivatives with respect to initial mean orbital elements (i, 2, w) are affected. Because

of the use which is to be made of these quantities, any possible loss in accuracy due to the




we have

df _ ,,-4 _n-1
a = 10 nfn.
n=1
2 5
d-f -8 -2
— = 10 Z n{n — 1) fnfn
dt -
n-2

Thus, the coefficients in the expansions for dA/dt and cle/dt2 are easily derived from the
expansion for the matrix A given in (B-5) and the first three equations of {A-5).
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APPENDIX C
DIFFERENCE BETWEEN TRUE LUNAR ORBIT AND MEAN LUNAR ORBIT

The graphs of Fig. C-1{a-c) represent the differences between the x, y and z components
and the radius vectors in the true lunar orbit and in Brown's mean lunar orbit during the 50-
day period from 9 January 1967 to 3 April 1968. The distance unit is earth radii and the coor-
dinate system is referred to the mean equinox and equator of 1950.0, The true lunar orbit coor-
dinates were taken from the Jet Propulsion Laboratory Ephemeris Tapes;”3 the mean lunar orbit
coordinstes were evaluated by using the formulas in this report.

From these graphs it is clear that the mean lunar orbit does indeed follow the true orbit on
the average as the Moon moves at a distance of 60 earth radii from the Earth. However, there
are considerable oscillations about the mean orbit {mostly due to the Sun), so thait numerically
integrating the equations for the difference between the true and mean lunar orbits represents
only a 1} order-of-magnitude improvement over numerically integrating the original equations
of motion. Althougan tnis is a considerable saving, it is not as large as one might hope.

Krown's lunar theory rcpresents the mction of the Moon by the mean lunar orbit plus over
1650 trigonometric terms. Adding a few of the larger trigonometric terms to the mean lunar
orbit would yield an orbit which gives a further saving in representing the true orbit of the Moon.
{From the graphs it would appear thzt the main terms of this addition would have periods of about
14 davs and somewhat less than a ycar.) At some future time we shall alter the mean lunar orbit

subroutines in PEP in this manner; for the present they utilize the formulas in this report.

PRECEDING PAGE BLANK
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