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Abstract

Concatenation is a method of building long codes out of shorter ones; it attempts to
meet the problem of decoding complexity by breaking the required computation into
manageable segments. We present theoretical and computational results bearing on the
efficiency and complexity of concatenated codes; the major theoretical results are the
following:

1. Concatenation of an arbitrarily large nu.nber of codes can yield a probability of
error that decreases exponentially with the over-all block length, while the decoding
complexity increases only algebraically; and

2. Concatenation of a finite number of codcs yields an error exponent that is infe-
rior to that attainable with a single stage, but is nonzero at all rates below capaciLy.

Computations support these theoretical resiilts, and also give insight into the rela-
tionship between modulation and coding.

This approach illuminates the special power and usefulness of the class of Reed-
Solomon codes. We give an original presentation of their structure and properties,
from which we derive the properties of all BCH codes; we determine their weight dis-
trbution, and consider in detail the implementation of their decoding algorithm, which
we have extended to correct both erasures and errors and have otherwise improved.
We show that on a particularly suitable channel, RS codes can achieve the performance
specified by the coding theorem.

Finally, we present a generalization of the use of erasures in minimum-distance
decoding, and discuss the appropriate decoding techniques, which constitute an inter-
esting hybrid between decoding and detection.
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I. INTRODUCTION

it is almost twenty years since Shannon1 announced the coding theorem. The prom-

ise of that theorem was great: a probability of error exponentially small in the block

length at any information rate below channel capacity. Finding a way of implementing

even moderately long codes, however, proved much more difficult than was imagined at

first. Only recently, in fact, have there been invented codes and decoding methods

powerful enough to improve communication system performance significantly yet simple

enough to be attractive to build. 2-4

The work described here is an approach to the problem of coding and decoding com-

plexity. It is based on the premise that we may not mind using codes from 10 to 100

times longer than the coding theorem proves to be sufficient, if, by so doing, we arrive

at a code that we can implement. The idea is basically that used in designing any large

system: break the system down into subsystems of a size that can be handled, which

can be joined together to perform the functions of the large system. A system so

designed may be suboptimal in comparison with a single system designed all of a piece,

but as long as the nonoptimalities are not crippling, the segmented approach may be the

preferred engineering solution.

1. 1 CODING THEOREM FOR DISCRETE MEMORYLESS CHANNELS

The coding theorem- is an existence theorem. It applies to many types of channels,

but generally it is similar to the coding theorem for block codes on discrete memoryless

channels, which will now be stated in its most modern form. 5

A discrete memoryless channel has I inputs x i , J outputs yj, and a characteristic

transition probability matrix pji - Pr(yj/xi). On each use of the channel, one of the

inputs xi is selected by the transmitter. The conditional probability that the receiver

then observes the output yj is pji; the memorylessness of the channel implies that these

probabilities are the same for each transmission, regardless of what happened on any

other transmission. A code word of length N for such a channel then consists of a

sequence of N symbols, each of which comes from an I-symbol alphabet and denotes one

of the I channel inputs; upon the transmission of such a word, a received word of length

N becomes available to the receiver, where now the received symbols are from a

J-symbol alphabet and correspond to the channel outputs. A block code of length N and

rate R (nats) consists of eNR code words of length N. Clearly eNR < IN; sometimes we

shall use the dimensionless rate r, 0 < r 4 1, defined by Ir N = eN R or R = r in I.

The problem of the receiver is generally to decide which of the eNR code words was

sent, given the received word; a wrong choice we call an error. We shall assume that

all code words are equally likely; then the optimal strategy for the receiver il principle,

though rarely feasible, is to compute the probability of getting the received word,

given each code word, and to cho3se that code word for which this probability is great-

est; this strategy is called maximum-likelihood decoding. The coding theorem then
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asserts that there exists a block code of length N and rate R such that with maximum-

likelihood decoding the probability of decoding error is bounded by

Pr(e) < e- N E ( R ) ,

where E(R), the error exponent, is cha:zacteristic of the channel, and is positive for all

rates less than C, called capacity.
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RATE (IN BITS )

Fig. 1. E(R) curve for BSC with n =.01.

Figure 1 shows the error exponent for the binary symmetric channel whose cross-

over probability is . 01 -that is, the discrete memoryless channel with transition prob-

ability matrix p 1 1  p2 2 
= .99, pz = P21 = .01. As is typical, this curve has three

segments: two convex curves joined by a straight-line segment of slope -1. Gallager 5

has shown that the high-rate curved segment and the straight-line part of the error

exponent are given by
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E(R)= max {E (Pp)-pR}
O<p < 1

P

where

Eo(P, p) S -1n PL p0/l~)
J.

0i 11

P being any I-dimensional vector of probabilities P.; this is called the unexpurgated

error exponent, in deference to the fact that a certain purge of poor code words is

involved in the argument which yields the low-rate curved segment, or expurgated error

exponent. An analogous formula exists for the exponent when the inputs and outputs form

continuous rather than discrete sets. It should be mentioned that a lower bound to Pr(e)

is known which shows that in the range of the high-rate curved segment, this exponent

is the true one, in the sense that there is no code which can attain Pr(e) < e for

E*(R) > E(R) and N arbitrarily large.

Thus for any rate less than capacity, the probability of error can be made to

decrease exponentially with the block length. The deficiencies of the coding theorem are

that it does not specify a particular code that achieves this performance, nor does it

offer an attractive decoding method. The former deficiency is not grave, since the rel-

atively easily implemented classes of linear codes 6 and convolutional codes' contain

members satisfying the coding theorem. It has largely been the decoding problem that

has stymied the application of codes to real systems, and it is this problem which con-

catenation attempts to meet.

1. 2 CONCATENATION APPROACH

The idea behind concatenated codes is simple. Suppose we set up a coder and

decoder for some channel; then the coder-channel-decoder chain can be considered from

the outside as a superchannel with exp NR inputs (the code words), exp NR outputs (the

decoder's guesses), and a transition probability matrix characterized by a high proba-

bility of getting the output corresponding to the correct input. If the original channel is

memoryless, the superchannel must be also, if the code is not changed from block to

block. It is now reasonable to think of designing a code for the superchannel of length n,

dimensionless rate r, and with symbols from an eNR-symbol alphabet. This done,

we can abandon the fiction of the superchannel, and observe that we have created a code
for the original channel of length nN, with (eNR)Nr code words, and therefore rate rR

(nats). These ideas are illustrated in Fig. 2, where the two codes and their associated

coders and decoders are labelled inner and outer, respectively.

By concatenating codes, we can achieve very long codes, capable of being decoded

by two decoders suited to much shorter codes. We thus realize considerable savings in

complexity, but at some sacrifice in performance. In Section V we shall find that this

3
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Fig. 2. Illustrating concatenation.

sacrifice comes in the magnitude of the attainable error exponent; however, we find that
the attainable probability of error still decreases exponentially with block length for all
rates less than capacity.

The outer code will always be one of a class of nonbinary BCH codes called Reed-
8Solomon codes, first because these are the only general nonbinary codes known, and

second, because they can be implemented relatively easily, both for coding and for
decoding. But furthermore, we discover in Section V that under certain convenient
suppositions about the superchannel, these codes are capable of matching the per-
formance of the coding theorem. Because of their remarkable suitability for our
application, we devote considerable time in Section III to development of their struc-
ture and properties, and in Section IV to the detailed exposition of their decoding
algorithm.

1.3 MODULATION

The functions of any data terminal are commonly performed by a concatenation of
devices; for example, a transmitting station might consist of an analog-to-digital con-
verter, a coder, a modulator, and an antenna. Coding theory is normally concerned
only with the coding stage, which typically accepts a stream of bits and delivers to the
modulator a coded stream of symbols. Up to this point, only the efficient design of this
stage has been considered, and in the sequel this concentration will largely continue,
since this problem is most susceptible to analytical treatment.

By a raw channel, we mean whatever of the physical channel and associated terminal
equipment are beyond our design control. It may happen that the channel already exists
in such a form, say, with a certain kind of repeater, that it must be fed binary symbols,
and in this case the raw channel is discrete. Sometimes, however, we have more free-
dom, to choose the types of signals, the amount of bandwidth, or the amount of diversity
to be used, and we must properly consider these questions together with coding to arrive
at the most effective and economical signal design.

When we are thus free to select some parameters of the channel, the channel con-
templated by algebraic coding theory, which, for one thing, has a fixed number of inputs
and outputs, is no longer a useful model. A more general approach to communication

4



theory, usually described under the headings modulation theory, signal design, and

detection theory, is then appropriate. Few general theoretical results are obtainable

in these disciplines, which must largely be content with analyzing the performance of

various interesting systems. Section VI reports the results of a computational search

for coding schemes meeting certain standards of performance, where both discrete raw

channels and channels permitting some choice of modulation are considered. This gives

;onsiderable insight into the relationship between modulation and coding. In particular

it is shown that nonbinary modulation with relatively simple codes can be strikingly

superior either to complicated modulation with no coding, or to binary modulation with

complicated binary codes.

1. 4 CHANNELS WITH MEMORY

Another reason for the infrequent use of codes in real communication systems has

been that real channels are usually not imemoryless. Typically, a channel will have long

periods in which it is good, causing only scattered random errors, separated by short

bad periods or bursts of noise. Statistical fluctuations having such an appearance will

be observed even on a memoryless channel; the requirement of long codes imposed by

the coding theorem may be interpreted as insuring that the channel be used for enough

transmissions that the probability of a statistical fluctuation bad enough to cause an

error is very small indeed. The coding theorem can be extended to channels with mem-

ory, but now the block lengths must generally be very much longer, so that the channel

has time to run through all its tricks in a block length.

If a return channel from the receiver to the transmitter is available, it may be used

to adapt the coding scheme at the transmitter to the type of noise currently being

observed at the receiver, or to request retransmission of blocks which the receiver

cannot decode. 9 Without such a feedback channel, if the loss of information during

bursts is unacceptable, some variant of a technique called interlacing is usua]ly envi-

sioned.1 0 In interlacing, the coder codes n blocks of length N at once, and then trans-

mits the n first symbols, the n second symbols, and so forth through the n N

symbols. At the receiver the blocks are unscrambled and decoded individually. It is

clear that a burst of length b c n can affect no more than one symbol in any block, so

that if the memory time of the channel is of the order of n or less the received block

of nN symbols will generally be decodable.

Concatenation obviously shares the burst-resistant properties of interlacing when

the memory time of the channel is of the order of the inner code block length or less,

for a burst then will usually affect no more than one or two symbols in the outer code,

which will generally be quite correctable. Because of the difficulty of constructing ade-

quate models of real channels with memory, it is difficult to pursue analysis of the

burst resistance of concatenated codes, but it may be anticipated that this feature will

prove useful in real applications.
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1. 5 CONCATENATING CONVOLUTIONAL CODES

We shal consider only block codes henceforth. The principles of concatenation are

clearly applicable to any type of code. For example, a simple conv.ltxtional code with

threshold decoding is capable of correcting scattered random errors, but when channel

errors are too tightly bunched the decoder is thrown off stride for awhile, and until it

becomes resynchronized causes a great many decoding errors. Frc.i the outside, such

a channel appears to be an ideal bursty channel, in which errors do not occur at all

except in the well-defined bursts. Very efficient codes are known for such channels,

and could be used as outer codes. The reader will no doubt be able to conceive of other

appliCatons.

3.6 OUTLINE

This report consists of 6 largely self-sufficient sections, with two appendices. We

anticipate that many readers will find that the material is arranged roughly in inverse

order of interest. Therefore, we shall outline the substance of each section and the con-

nections bet ween them.

Section H begins with an elaborate presentation of the concepts of minimnum-distance

decoding, which has two purposes: to acquaint the reader with the substance and utility

of these concets, and to lay the groundword for a generalization of the use of erasures

in minimum-distance decoding. Though this generalization is an interesting hybrid

between the techniques of detection and of decoding, it is not used subsequently.

Section III is an attempt to provide a fast, direct route for the reader of little back-

ground to an understanding of BCH codes and their properties. Emphasis is placed on

the important nonbinary Reed-Solomon codes. Though the presentation is novel, the only

new results concern the weight distribution of RS codes and the implementation of much

shortened RS codes.

Section IV reports an extension of the Gorenstein-Zierler error-correcting algorithm

for BCH codes so that both c .asures and errors can be simiidaneously corrected. Aisc,

the final step in the GZ algorithm is substantially simplified. A close analysis of the

complexity of implementing this algorithm with a computer concludes this section, and

only the results of this analysis are used in the last two sections. Appendix A contains

variants on this decoding algorithm of more restricted interest.

Section V contains our major theoretical . esults on the efficiency and complexity of

concatenated codes, and Section VI reports the results of a computational program eval-

uating the performance cd concatenated codes under a variety of specifications. The

reader interested chiefly in the theoretical and practical properties of these codes will

turn his attention first to Sections V and VI. Appendix B develops the formulas used in

the computational program of Section VI.

6



I. .IIMUM-DIST~ANCE DECODING

We introduce here the concepts of distance and minimum-distance codes, and discuss

how these concepts simplify decoding. We describe the use of erasures, and of a new

generalization of erasures. Using the Chernoff bound, we discover the parameters of

these schemes which maximize the probability of correct decoding; using the Gilbert

bound, we compute the exp nent of this probability for each of three minimum-distance

decoding schemes over a few simple channels.

2. 1 ERRORS-ONLY DECODNG

In Section I we described how an inner code of length N and rate R could be concat-

enated with an outer code of length n and dimensionless rate r to yield a code of over-

all length nN and rate rR for some raw channel. Sumpose now one of the e orRos

of this code is selected at random and transmitted -how do we decode what is received?

The optimum decoding rule remains what it always is when inputs are equally likely:

the maximum-likelihood decodi,3g rule. In this case, given a received sequence r of

length r-N, the rule would be to compute Pr(fI) for each of the eiiirR code words ff.

The whole point of concatenation, however, is to break the decoding process into

manageable segments, at the price of suboptimality. The basic simplification made pos-

sible by the concatenated structure of the code is that the inner decoder can decode

(make a hard decision on) each received N-symbol sequence independently. In doing so,

it is in effect discarding all information about the received N-symbol block except which

of the e N I inner code words was most likely, given that block. This preliminary proc-

essing enormously simplifies the task of the cuter decoder, which is to make a final

choice of one of the en N r R total code words.

Let q = e N R . When the inner decoder makes a hard decision, the outer coder and

decoder see effectively a q-input, q-output superchannel. We assume that the raw chan-

nel and thus the superchannel are memoryless. By a symbol error we shall mean the

event in which any output but the one corresponding to the input actually transmitted is

received. Normally, the probability of symbol error is low; it is then convenient to

assume that all incorrect transmissions are equally probable -that is, to assume that

the transition vrobability matrix of the superchannel is

PJi =  q - l e
i(ij

I -p, j

where p is the probability of decoding error in the irner decoder, hence of symbol error

in the superchannel. We call a channel with such a transition probability matrix an ideal

superchannel with q inputs and probability of error p.

Recall that the maximum-likelihood rule, given r, is to choose the input

sequence f for which the probability of receiving r, given f, is greatest. When

7



the channel is memoryless,

Pr(rI~ rf) P-(r if-).=1 IL

But since log x is a monotonic function of x, this is equivalent to maimrizing

n
nog l Pr(rI 

) = 1 
(Z)

' i=l
og or -~ = i og Pr(ri Ifi.

Now for an ideal s'u-erchannel, substituting Eos. I in Eq. Z, we want to Mxmize

as'lri fi), (3)

i= 1

where

log (I--P), ri = fI

a'(ri, fL) { i

log (-l), ri~ i

Define the Hamming weigrt a(rifi) by

' ri = f..
I1 1

a(ri, j 1  r (4)1 r.if i

Since

a'(ri,fi) = log (I-p) + og a(ri, fi,

maximizing Eq. 3 is equivalent to mE -imizing

P
n log (l-p) + [o-g (q-1)(1-p) a(z fil.

Under the assumption p/(q-1) 1- (l-p), this is equivalent to minimizing

n

dH(r~f a(rif 1) (5)
i= 1

d(r,f) is called the Hamming distance between r and f, and is simply the number of

places in which they differ. For an ideal superchannel, the maximum-likelihood

decoding rule is therefore to choose that code word which is closest to the received word

in Hamming distatce.

8



Although this distance has been defined between a received word and a code word,

there is no difficulty in extending the definition to apply between any two code words. We

then define the minimum distance of a code as the minimum Hamming distance between

any two words in the code.

A code with large minimum distance is desirable on two counts. First, as we shall

now show, it insures that all combinations of less than or equal to a certain number t

of symbol errors in n uses of the channel will be correctable. For, suppose f is sent

and t symbol errors occur, so that r- i in t places. Then from Eq. 5

H (r,f) = (6)

Take some other code word '. We separate the places into three disjoint sets, such that

-S o  if fi I gi

i Sc  iff. g. and r= f- (7)

S if f. gi and r- f-.

We note that the set Se can have no more thin t elements. Now the distance between r

and

n

dH(r, g) =a(r.., g.
1=1

= a(ri,gi) a(rgi)- a(r, gi),.  (8)

icS iES iE SO c e

can be lower-bounded by use of the relations

a(r, gi) >agif i ) = 0, i E So

a(rigi) = a(gi,fi) = 1, i E Sc (9)

a(r i g
) > a~gi, fi) - 1 = 0, iES

Here, besides Eqs. 7, we have used a > 0 and the fact that for i C Sc , r i € " Substi-

tuting (9) in (8) yields

dH(-r,-) > d,,{g',f) - ISeI > d - t. (10)

Hei e, we have defined IseI as the number of elements in Se and used the fact that

dH(g, f) > d if g and f are different words in a code with minimum distance d. By com-

bining (6) and (10) we have proved that

dH(r~f ) < dH(r, ) if t < d. (11)

9



In other words, if to is the largest integer such that Zt0 < d, it is impossible 'or any

combination of to or fewer symbol errors to cause the received word to be closer to any

other code word than to the sent word. Therefore no decoding error will occur.

Another virtue of a large minimum distance follows from reinterpreting the argu-

ment above. Suppose we hypothesize the transmission of a particular code word; given

the received word, tis hypothesis implies the occurrence of a particular sequence of

erro,,z. If this sequence is such that the Hamming distance criterion of Eq. I I is sat-

isfied, then we say that the received word is within the minimum distance of that code

word. IThis may seem an unnecessarily elaborate way of expressing this concept, but,

as in this whole development, we are taking great pains now so that the generalizations

of the next two sections will follow easily.) Furthermore, the preceding argument shows

that there can be no more than one code word within the minimum distance of the

received word. Therefore, if by some means the decoder generates a code word that

it discovers to be within the minimum distance of the received word, it can without fur-

ther ado announce that word as its maximum-likelihood choice, since it knows that it is

impossible that there be any other code word as close or closer to the received word.

This property is the basis for a niamber 12-15 of clever decoding schemes proposed

recently, and wfil be used in the generalized minimum-distance decoding of section 2. 3.

A final simplification that is frequently made is to set the outer decoder to decode

only when there is a code word within the minimum distance of the received word. Such

a scheme we call errors-only decoding. There will of course in general be received

words beyond the minimum distance from all code words, and on such words an errors-

only decoder will fail Normally, a decoding failure is not distinguished from a decoding

error, although it is detectable while an error is not.

2. 2 DELETIONS-AND-ERROPS DECODING

The simplifications of the previous section were bought, we recall, at the price of

denying to the outer decoder all information about what the inner decoder received except

which of the inner code words was most probable, given that reception. In this and the

following section we investigate techniques of relaying somewhat more information to the

outer decoder, hopefully without greatly complicating its task. These techniques are

generalizations of errors-only decoding, and will be developed in the framework that has

been introduced.

We continue to require the inner decoder to make a hard decision about which code

word was sent. We now permit it to send along with its guess some indication of how

reliable it considers its guess to be. Ln the simplest such strategy, the inner decoder

indicates either that its guess is fully reliable or completely unreliable; the latter event

is called a deletion or erasure. The inner decoder normally would delete whenever the

evidence of the received word did not clearly indicate which code word was sent; ?.lso,

a decoding failure, which can occur in errors-only decoding, would be treated as a dele-

tion, with some arbitrary word chosen as the guess.

10



In order to make use of this reliability information in minimum distance decoding,

we define the EMias weight by

0, r. reliable and r. = f

b(r-,f)-  , r. erased (12)

1, r- reliable and r. e f.
I I 1

where p is an arb'trary number between zero and one. Then the Elias distance16

between a received word r and a code word f is defined as

n

dE(r,f) S b(r, fi.). (13)
i=l1

Note that Elias distance is not defined between two code words.

We shall let our decoding rule be to choose that code word which is closest in Elias

distance to the received word. Let us then suppose that some word f from a code of

minimum (Hamming) distance d is transmitted, and in the n transmissions (i) s dele-

tions occur, and (ii) t of the symbols classed as reliable are actually incorrect. Then

dE(r,f) = t P 0s. (-14)

Take some other code word g. We separate the places into disjoint sets such that

So  if fi =g

S if f. #gi r- = f., r reliable

i E (15)
S d  if f: - gi, r. deleted

Se if fi I gi, ri l fi, ri reliable

Note that

Ise - t

and (16)

Now the distance beiween T and g can be lower-bounded by the relations

b(r i ,g i ) >a(g i ,f i
) = 0, iE S0

b(r i l i
) = a(g i , f i

) =  1, iE S1 (17)

b(r i g i ) - a(g i , f i
) - + P = P, E Sd

b(ri, gi) >a(gi,f i ) - I = 0, i C Se

I I



where we have used Eqs. 12 and 15. Now

n

dE{i") =(r, brig.

>1E a (gi f) + a(g, f.) + [a(gif-)-1+t3 + [ a(gi, f )-IJ.i E SO  i E Sc  i E Sd  i S Se

>d - {1I-P)s - t, (18)

where we have used Eqs. 13, 16, 17 and the fact that the minimum Hamming distance

between two code words is d. From Eqs. 14 and 18, we have proved that

d E(r,g) > dE(r,f) if t+s < d - (1-)s - t or t + s < d. (19)

(The vanishing of P sho-vs why we took it to be arbitrary.) Thus with a decoding rule

based on Elias distance, we are assured of decoding correctly if Zt + s < d, in perfect

analogy to errors-only decoding. When we decode only out to the minimum distance -

that is, when the distance criterion of (19) is apparently satisfied - we call this dele-

tions -and-errors decoding.

That erasures could be used with minimum distance codes in this way has long been

recognized, but few actual decoding schemes have been proposed. One of our chief con-

cerns in Section III will be to develop a deletions-and-errors decoding algorithm for the

important class of BCH codes. There we find that such an algorithm is very little more

complicated than that appropriate to errors-only decoding.

Z. 3 GENERALIZED MINIMUM-DISTANCE DECODING

A further step in the same direction, not previously irvestigated, is to permit the

inner decoder to classify its choice in one of a group of J reliability classes C., i -j J,

rather than just two as previously. We define the generalized weight by

Pcj ri in class C. and ri = f.
ctr., f.) 1. 1(20)

d eJ' r. in class C. and r. f.

where 0 P fcj < Pej 1 1. it will develop that only the difference

j ej - Pcj

of these weights is important; a. will be called the reliability weight or simply weight

corresponding to class C.. We have 0 < a. .< 1; a large weight corresponds to a class
we consider quite reliable, and a small weight to a class considered unreliable; indeed,

12
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if a. < a we shall say class C. is less reliable than Ck . The case a. = 0 corresponds
3 J J 

to an erasure, and of a. = 1 to the fully reliable symbols of the preceding section.J
Let us now define a generalized distance

nd G (rf = c~r, fi). {l

j= I

Again we suppose the transmission of some word f from a code of minimum distance d,

and the reception of a word in which n c symbols are received correctly and placed in

class C., and n are received incorrectly in C-. Then

J

dG (r'f) = [nej Pej -ncj Pcj
j=1

Take some other code word g, and define the sets S0 Scj, and S ej by

S 0 if f = gi

iE- S j if 'Lgi, ri = f i , ri in class C. (Z3)

LSej if f. #gi, ri f i , riinclass Cj

Note that

Is cjl <5 n cj (24)

Isej I< nej.

Using Eqs. 20 and 23, we have

c(r i g i ) *a(g i , f i ) = 0, i E S0

c(rig i ) = a(g i fi) - I + Pej = Pej' i E Scj (25)

cri, gi) a gi, f i ) 1 + cj = Pcj i E Sej'

where the second relation depends on r. = fi * gi, i E Scj. Now

n

dG(rg) = b(rig i )

i=l

is0 j=1 liE S. cES

13



dG(- ) = dH g) - [(1-Pj)IScjl( -Pcj)lsej]j=1

-d - [( -P encj (1-Pcj)n (26)

j=l

Thus, using Eqs. 2 and 26, we have proved that
J

dG(r )> df(r ) if [(i-P +Pcjncj+(- + e)nej] < d,

dG 9i GrJ Yj ei Cj CJ C] ej ej3j=1

J

or Y [(-a.)n c+(1a.)nej ]< d. (27)
L j cj e

j=l

Therefore if generalized distance is used as the decoding criterion, no decoding error

will be made whenever n c anid nej are such that the inequality of (27) is satisfied. When

in addition we decode only out to the minimum distance - that is, whenever this inequal-

ity is apparently satisfied -we say we are doing generalized minimum-distance decoding.

This generalization is not interesting unless we can exhibit a reasonable decoding

scheme that makes use of this distance criterion. The theorem that appears below shows

that a decoder which can perform deletions-and-errors decoding can be adapted to per-

form generalized minimum-distance decoding.

We imagine that for the purpose of allowing a deletions-and-errors decoder to work

on a received word, we make a temporary assignment of the weight a! = I to the set of3

reliability classes C. for which j E R, say, and of the weight a! = 0 to the remaining

reliability classes C, j E E, say. This means that provisionally all receptions in the

classes C., j E E, are considered to be erased, and all others to be reliable. We then

let the deletions-and-errors decoder attempt to decode the resulting word, which it will

be able to do if (see Eq. 27)

2 1 nej+ I (n cj+n ej)<d. (28)

jER jEE

If it succeeds, it announces some code word which is within t+e minimum distance

according to the Elias distance criterion of (28). We then take this announced word and

see whether it also satisfies the generalized distance criterion of (27), now with the

original weights a. If it does, then it is the unique code word within the minimum dis-

tance of the received word, and can therefore be announced as the choice of the outer
decoder.

We are not guaranteed of succeeding with this method for any particular provisional

assignment of the a!. The following theorem and its corollary show, however, that a

14



small number of such trials must succeed if the received word is within the minimum

distance according to the criterion of Eq. 27.

Let the classes be ordered according to decreasing reliability, so that a. > ak if

j < k. Define the J-dimensional vector

a - (a,,a2,.... ,aj).

Let the sets Ra consist of all j <a, andE of all j >a+ 1, O a<J. Let a' be thea a a
J-dimensional vector with ones in the first a places and zeros thereafter, which repre-

sents the provisional assignment of weights corresponding to R = Ra and E = Ea . The

idea of the following theorem is that a is inside the convex hull whose extreme points

are the a , while the expression on the left in Eq. 27 is a linear function of a, which

must take on its minimum -alue over the convex hull at some extreme point - that is, at

one of the provisional assignments a,.
a

THEOREM: If [(1-a)n c+(I+ai)nej ] < d and a3 > ak for j < k, there is some

j=1
a J

integer a such that 2 nej + (ncj+nej)< d.

j=1 j=a+l

Proof: Let

J

f (a) -- [(1-aj)n c+(l+aj)ne].

j=1

Here, f is clearly a linear function of the J-dimensional vector a. Note that

a J

f(a )=2 + (nj+ne)"
a eflj~r cj ej

j=l j=a+l

We prove the theorem by supposing that f(aa ) >d, for all a such that 0 - a - J, anda
exhibiting a contradiction. For, let

X _=l-a
o 1

X 0 1 -a1

a -a a+ 1  1<a<J- 1

Xa a J lkj- aJ.

We see that

J

0 < Xa < 1, 0 <a-<J, and X a = 1

a=0

15



so that the Xa can be treated as probabilities. But now

J

a = Z aXa
a=O

Therefore

f(a) = f Xa at X2 fa d Xa = d.
a=O 0 a=0 a=0

Thus if f(aa) > d, all a, then f(a) > d, in contradiction to the given conditions. There-
.. a

fore f(aa ) must be less than d for at least one value of a. Q.E. D.

The import of the theorem is that if there is some code word which satisfies the

generalized distance criterion of Eq. 27, then there must be some provisional assignment
in which the least reliable classes are erased and the rest are not which will enable a

deletions-and-errors decoder to succeed in finding that code word. But a deletions-and-

errors decoder will succeed only if there are apparently no errors and d - 1 erasures,

or one error and d - 3 erasures, and so forth up to to errors and d - Zt° - 1 erasures,

where to is the largest integer such that Zt0 < d - 1. If by a trial we then mean an oper-

ation in which the d - 1 - Zi least reliable symbols are erased, the resulting provisional
word decoded by a deletions-and-errors decoder, and the resulting code word (if the
decoder finds one) checked by Eq. 27, then we have the following corollary.

COROLLARY: to + 1 < (d+l)/2 trials suffice to decode any received word that is

within the minimnm distance by the generalized distance criterion of (27), regardless

of how many reliability classes there are.

The maximum number of trials is then proportional only to d. Furthermore, many

of the trials - perhaps all - may succeed, so that the average number of trials may be
appreciably less than the maximum.

2. 4 PERFORMANCE OF MINIMUM-DISTANCE DECODING SCHEMES

Our primary objective now is to develop exponentially tight bounds on the probability

of error achievable with the three types of minimum-distance decoding discussed above,
and with these bounds to compare the performance of the three schemes.

In the course of optimizing these bounds, however, we shall discover how best to

assign the weights a. to the different reliability classes. Since the complexity of the
decoder is unaffected by the number of classes which we recognize, we shall let each

distinguishable N-symbol sequence of outputs yj form a separate reliability class, and

let our analysis tell us how to group them. Under the assumption, as usual, that all

code words are equally likely, the task of the inner decoder is to assign to the received

yj an xj and an aj, where x. is the code word x for which Pr(yj Ix) is greatest, and a.

is the reliability weight that we shall determine.

16



a. The Chernoff Bound

We shall require a bound on the probability that a sum of independent, identically

distributed random variables exceeds a certain quantity.

The bounding technique that we use is that of Chernoff 7; the derivation which follows

is due to Gallager. 18 This bound is known19 to be exponentially tight, in the sense that

-nE*no bound of the form Pr(e) < e , where E is greaier than the Chernoff bound expo-

nent, can hold for arbitrarily large n.

Let yi, 1 < i -< n, be n independent, identically distributed random variables, each

with moment-generating function

g(s) =e _§ Pr(y)e

and semi-invariant moment-generating function

(s) = ln g(s).

Define ymax to be the largest value that y can assume, and

y- yPr(y)

Let Y be the sum of the yi, and let Pr(Y>n6) be the probability that Y exceeds n6, where

Ymax > 6 > . Then

pr(Y>-n6) = Pr(y Y0...''Yn) f(YlYZ,...Yn),

where
1,' Y = Z; Yi > n6

f (y1'yZ,"  yn) = i

0 otherwise.

Clearly, for any s >, 0, we can bound f by

f(ylYZ,.. ,Yn
) --< eS -n ]

Then

Pr(Y>n6) f-< es e-nS = e -ns 8  e
i=l

Se
- ns 6  

syi
1=1

- en[s6 - (s)l , s o,

17



where we have used the fact that the average of a_ product of independent random vari-

ables is the product of their averages. To get the tightest bound, we in-axiniize over s,

and Ict

E()max s-i(s)J.
S>'O

Setting the derivative of the bracketed quantity to zero, we obtain

g' (s)
6 = W()= g

It can eas ily be shown that p 1(0) = 3F p I (c) = y ax and that 3±'(s) is a monotonically

increasing function of s. Therefore if y a.> 6 >_3F there is a non-negative s for

which 6 = 10'(s), and substitution of this s in (s-p(s)) gives E(6).

As an example, which will be useful later, consider the variable y which takes on

the value one with probability p and zero with probability 1 - p. Then

g(s) =pes +1p

6= JI"(s) = p
p e +-p

6(l-p) 1 - p
EM6 6 in p15) - In 1-

=- 6 in p - (1-6) In (1-p) - X()

wvhere

3C (6) -6 in 6 - (1- 6) In (1 -6).

The~n ff 1>-6 ,P,

Pr(Y>-n6) _< e n[ Ship (1 6)ln (1-p)-C (6)]1

This can be interpreted as a bound on the probability of getting more than n6 occur-

rences of a certain event in n independent trials, where the probability of that event in

a single trial is p.

From this result we can derive one more fact which we shall need. Let p = I/Z, then

n
n n n3C (6)

i=n 6

It follows that
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b. Optimization of Weights

We now show that the probabiEty CE decoding error or failure for minimum-distance

decoding is the probability that a certain sum of independent identically distrib-_ted ran-

dom variables exceeds a cer :n quantity, and therefore that we can use the Chern f.f

bound.

Let a code word from a code cf length n and minimum distance d be transmitted.

We imow alreadi that a minimum-distance decoder will fail to decode or decode imcor-

rectly if and only if

[ncj(1--c_)-iaej(! c_)1 >d (?

for, in the case of errors-only decoding, all a. = 1; of deletions-and-errors decoding,3
a. = 0 or 1; and of generalized minimum-distance decoding, 0 -< a. -< ).3 3

Under the assumption that the channel is memoryless and that there iS no correla-
tion between inputs, the probabilities Pj of a correct reception in class C. and pej of an

incorrezt reception in class C. are constant and independent from symbol to symbol.

Consider the random variable that for each symbol assumes the value (1-a.) if the sym-

bol is received correctly and is given weight a-, and (l+ai) if the symbol is received

incorrectly and given weight a.. -hese are then independent, identically distributed ran-3
dom variables with the common moment-generating function

g(s) [pcj e aj l +p ej(e . (30)

Furthermore, the condition of Eq. 29 is just the condition that the sum of these n ran-

dom variables be greater than or equal to d. Letting 6 = d/n, we have by the Chernoff

bound that the probability Pr(e) of error or failure is upperbounded by

Pr(e) - enE'(&) (31)

where

E'(6) max [s6-i±(s)], (32)
s> 0

ti(s) being the natural logarithm of the g(s) of (30). This bound is valid for any particular

assignment of the a4 to the reliability classes; however, we are free to vary the a. toJ 3
maximize this bound. Let

E(6) - max E'(6) = max [s6-(s)].
a. s,a.

3 3

It is convenient and illuminating to maximize first over the distribution

E(6) = max [s6-.m(s)], (33)
s
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wh~ere

C(33

p(s) is i by niizig g(s). and we shAl no.- do This for the ,hree types of

m i-distance decoding.

For errors-only decoding, there is no choice -n the c-, all of which must eqml one;

therefore,

g (35)
gi(S) = g()= e2s r 35|

The total probability of symbol error is p = Z Pej" Making the substitutions s' =2s and

6' = 6/2, we see that this bound degenerates into the Chernoif bound of section 2. 4a on

getting more than d/Z symbol errors in a sequence of n transmissions, as might be

expected.

For deletions-and-errors decoding, we can assign some outputs to a set E of erased

symbols and the remainder to a set R of reliable symbols; we want to choose these sets

so as to minimize g(s). In symbols, a. =0, allj4EE, and a= 1, al j E R, so

g(s) = e2 Z e + e5 [s (e'ej P + R

Assigning a parti ar output yj to E or R makes no difference if

Zs + = es (Pej+Pcj)e ej Pcj -jc

or

Pej s

Pcj

Here, we have defined L., the error-likelihood ratio, as Pe /p .; we shall discuss the
3 j c3 -S

significance of L. below. We see that to minimize g(s), we let j E E if L. > e and
s 3  3

j E R if L. < e -that is, comparison of L. to a threshold that is a function of s is the
optimum criterion of whether to erase or not. Then

gm(s)-eZs pe(s) + eS Pd(S) + Pe(S)'

where
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De~s)j 4R iej jER"L. e s

jER

(36)
dE ff L > e

jEE

Pc S( = I - Peos) - Pdls)-

Finally, for generalized rninimusm-distance decoding, we have

g9s = ej e s l j

JJwhinch we can mini-mize with respect to a single c j. by setting the derivative

3g(s) 3(1--c-) s(14 C.)

to zero, as long as 0 1 a. < 1. 'The resulting condition is3

-2sa. Pej
e = - L.,

PCj j

or

a. In Lj.

Whenever L. is such that -(n L.)/7s > 1, we let a. = 1, while whenever -(In L.)/Zs < 0,

we let a. =0. Then
3

gm (s) )e2s[j RPejj + [jj pR] + es E (Pei+PciI + es LG -j c4j.

where

jER if L-e 2 ,

j E E if L > 1, (37)

j E G otherwise

sa.
and we have used e = 4= 7Tp when j E G.

cj ej
Let us examine for a moment the error-likelihood ratio L. Denote by Pr(x.,Y.) the

probability of tranimitting x i and receiving yj; the ratio Lij between the probability that

xi was not transmitted, given the reception of yj, and the probability that x i was trans-

mitted (the alternative hypothesis) is
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1 - Pr jyj I; Pr(xiy) 2: Prixi,, y)

I __ __ _ 1 -1i __ _ __ _

_J prx- iy j) Przxily-) = pr-i,yj)

The optimum decisicn rule for the inner decoder is to choose that x i for which Prfx. ly.i)
is maximum, or equivalently for which Lij is minimum. Bt, now for this xi,

=)Prx ,y.) and V - = Z ?r(xi,,y_.Pcj P~ , Je

Thus

L. = min L._.
3 i 13

We have seen that the optimum reliability weights are proportional to the L.; thus the
3

error-likelihood ratio is theoretically central to the inner decoder's decision making,

both to its choice of a particular output and to its adding of reliability information to that

choice. (The statistician will recognize the Lii as sufficient statistics, and will appre-

ciate that the simplification o minimum-distance decoding consists in its requiring of

these statistics only the largest, and the corresponding value of i.)

The minimum value that L. can assume is zero; the maximum, when all q inputs are
3

equally likely, given yj, is q - 1. When q = 2, therefore, L. cannot exceed one. It fol-

lows that for generalized minimum-distance decoding with binary inputs the set E of

Eq. 37 is empty.

In the discussion of the Chernoff bound we asserted that it was valid only when

6 >i 1 (0), or in this case 6 >p(0). When s= 0, the sets R and E of (36) and (37)

become identical, namely

jER' if L>I

jEE if L<1.

Therefore gro(0) is identical for deletions-and-errors and generalized minimum-distance

decoding. If there is no output with L. < 1 (as will always be true when there are onlyJ
two inputs), then Iro(0) for these two schemes will equal that for errors-only decoding,

too; otherwise it will be less. In the latter case, the use of deletions permits the prob-

ability of error to decrease exponentially with n for a smaller minimum distance n6,

hence a larger rate, than without deletions.

We now maximize over s. From Eqs. 35-37, In(s) has the general form

.r(s) = ln [e2sp 2 (s)+eSpl (S) +po(s)].

Setting the derivative of (s-Im(s)) to zero, we obtain

2 eZs P(s) + es Pl(s) + e2 s p(s) + es p1(s) + Po(S)
6 : (s)= Zs es  (38)

e p2 (s) + eP(s) + P0 (s)
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which has a solution when 2 > 6 > p' (0). Substituting the value of s thus obtained in
(s&--¢M(s)), we obtain E(6), and thus a bound of the form

Pr(e) -< e - n EP 6 ).  (39)

We would prefer a bound that guaranteed the existence of a code of dimensionless

rate r and length n with probability of decoding failure of error bounded by

Pr(e) < e- nE(r)

The Gilbert bound2 0 asserts for large n the existence of a code with a q-syinbol alpha-

bet, minimum distance 6n, and dimensionless rate r, where

3C(6) In (q-1)}
lnq 1 nr

Substitution of r for 6 in (39) and using this relation with the equality sign gives us the

bound we want.
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Fig. 3. Minimum-distance decoding exponents for a Gaussian
channel with L = 3.
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c. Computational Comparisons

To get some feeling for the relative performance of these three progressively more

involved minimum-distance decoding schemes, the error exponents for eacn of them

were computed over a few simple channels, with the use of the bounds discussed above.

In order to be able to compute easily the error-likelihood ratio, we considered only

channels with two inputs. Figure 3 displays a typical result; these curves are for a

channel with additive Gaussian noise of unit variance and a signal of amplitude either -3

or -3, which is a high signal-to-noise ratio. At lower signal-to-noise ratios the curves

are closer. We also considered a two-dimensional Rayleigh fading channel for various

signal-to-noise ratios.

For these channels, at least, we observed thai though improvement is, of course,

ob'rained in going from one decoding scheme to the next more complicated, this improve-

ment :s quite slight at high rates, and even at low rates, where improvement ;q greatest,

the exponent for generalized minimum-distance decoding is never greater than twice that

for errors-only decoding. The step between errors-only and deletions-and-errors

decoding is comparable to, and slightly greater than, the step between the latter and

generalized minimum-distance decoding.

From these computations and some of the computations that will be reported in Sec-

tion VI, it would seem that the use of deletions offers substantial improvements in per-

formance only when very poor outputs (with error-likelihood ratios greater than one)

exist, and otherwise that only moderate returns are to be expected.
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III. BOSE-CHAUDHURI-HOCQbUENGHEM CODES

Our purpose now is to make the important class of BCH codes accessible to the

reader with litfle previous background, and to do so with emphasis on the nonbinary BCH

codes, particularly the RS codes, whose powerful properties are insufficiently known.

The presentation is quite single-minded in its omission of all but the essentials

needed to understand BCH codes. The reader who is interested in a more rounded expo-

sitien is referred to the comprehensive and still timely book by Peterson. 4 In particular,

our treatment of fhite fields will be unsatisfactory to the reader 16ho desires some depth

of understanding about the properties that we assert; Albert2 1 is a widely recommended

mathematical text.

3. 1 FINITE FIELDS

.Mathematically, the finite field GF(q) consists of q elements that can be added, sub-

tracted, multiplied, and divided almost as numbers. There is always a field element

called zero (0), which has the property that any field element P plus or minus zero is f.

There is also an element called one (1), such that P" I = P; further, P" 0 = 0. If P is

not zero, it has a multiplicative inverse which is that unique field element satisfying the

equation 1 = 1; division by P is accomplished by multiplication by -

The simplest examples of finite fields are the integers modulo a prime number p.

For instance, take p = 5; there are 5 elements in the field, which we shall write I, II,

III, IV, and V, to distinguish them from the integers to which they correspond. Addi-

tion, subtraction, and multiplication are carried out by converting these numbers into

th eir integer equivalents and doing arithmetic modulo 5. For instance, I + III IV,

since 1 +3=4 rod 5; III+IV=II, since 3+4=2 mod5; I- 111=11I, since 1 3= 3

mod 5; I1 - IV = II, since 3 - 4 = Z mod 5. Figure 4 gives the complete addition and

multiplication tables for GF(5).

I I Ill IV V II III IV V

I II II1 IV V I i I iI III IV V
II IlI I V V I II II II IV I I1 V
III I V V I II III III IlI I I V II V
IV V I II II II V IV IV III IH I V
V I II IIl IV V V V V V V V

ADDITION TABLE MULTIPLICATION TABLE

Fig. 4. Arithmetic in GF(5).

Note that V + 1 = 13, if P is any member of the field; therefore, V must be the zero

element. Also V -= V. I - =P, so I must be the one element. Since I" I = I1" III=
TV.TV =, 1-1 -1 -1 1

, II =1I1,1III =II, and IV =IV.
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In Figure 5 by these rules we have constructed a chart of the first 5 powers of the

field elements. Observe that in every case P5 = P, while with the exception of the zero
p4

element V. P = L Furthermore, both I1 and III have the property that their first four

powers are distinct, and therefore yield the 4 nonzero field elements. Therefore if we
0 4 3 Z

let a denote the elementil, say, I= a = a , H=a, I= a , and IV=a , which gives

us a corvenient representation of the field elemerts for multiplication and division, in
lOgl 0 x

the same way that the logarithmic relationship x = 10 gives us a convenient repre-

sentation of the real numbers for multiplication and division.

2 3 4 5 +

I I I I I I 1
I! II i I I I ! II1 3 0
!iI iV II IiiIlV 4 I
iV I IV I IV V 010

V V V V V

Fig. 5. Powers of the field elements. Fig. 6. Representations for GF(5).

Figure 6 displays the two representations of GF(5) that are convenient for addition

and multiplication. If P corresponds to a and ab, and y corresponds to c and ad, then
a[b-idmod4] , ad "y-1

P+y.--a+c mod5, P-y--a-c mod5, 3- y -- *a, and P. y-

a[b- d m Od 4], where - means 'corresponds to' and the 'mod 4' in the exponent arises,
4 o

since a = = .

The prime field of most practical interest is GF(Z), whose two elements are simply

0 and 1. Addition and multiplication tables for GF(Z) appear in Fig. 7.

It can be shown that the general finite field GF(q) has q = pm elements, where p

is again a prime, called the characteristic of the field, and m is an arbitrary integer.

As with GF(5), we find it possible to construct two representations of GF(q), one con-

venient for addition, one for multiplication. For addition, an element P of GF(q) is

represented by a sequence of m integers, bl,b 2 ,... ,bm . To add P to a, we add b 1

to c 1 , b2 to c2 , and so forth, all modulo p. For multiplication, it is always possible

to find a primitive element a, such that the first q - I

powers of a yield the q - 1 nonzero field elements.

0 1 0 1 Thus a q- 1 = o° = 1 (or else the firstq- I powers would

0 0 1 0 0 not be distinct), and multiplication is accomplished by

1 1 0 1 0 1 adding exponents mod q - 1. We have, if P is any non-

zero element, pq- I-- (a a)q-1 = (aq-1)a = 1a = 1, and

Fig. 7. Tables for GF(Z). thus for any P, zero or not, pq = p.

Thus all that remains to be specified is the proper-

ties of GF(q) to make the one-to-one identification between the addition and multiplication

representations. Though this is easily done by using polynomials with coefficients from
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1P

GF (p),4, 1 it is not necessary to know precisely what this identification is to understand

the sequel. (In fact, avoiding this point is the essential simplification of our presenta-

tion.) We note only that the zero element must be represented by a sequence of m

zeros.

As an example of the general finite field, we use GF(4) = GF(2 ), for which an addi-

tion table, multiplication table, and representation table are displayed in Fig. 8.

Note that GF(4) contains two elements that

0 1 ab 0 1 b can be identified as the two elements of GF(2),

0 0 Ia b 0 01 0 b namely 0 and 1. In this case GF(Z) is said to

1 b 1 l a b be a subfield of GF(4). In general, GF((q'))
a a b 0 1 a a b 1 isa subfield of GF(q) if and only if q= q,
b b a l 0 b 0 b I a

where a is an integer. In particular, if q =ADDITION MULTIPLICATION

p m, the prime field GF(p) is a subfield of

1'- x '+  GF(q).

0 00 0 We shall need some explanation to under-
1 01 stand our later comments on shortened RS
a 10

b 11 codes. For addition, we have expressed the

REPRESENTATIONS elements of GF(q) as a sequence of m ele-

ments from GF(p), and added place-by-place
Fig. 8. Tables for GF(4). according to the addition rules of GF(p), that

is, modulo p. Multiplication of an element

of GF(q) by some member b of the subfield GF(p) amounts to multiplication by an inte-

ger b modulo p, which amounts to b-fold addition of the element of GF(q) to itself,

which finally amounts to term-by-term multiplication of each of the m terms of the ele-

ment by b mod p. (It follows that multiplication of any element of GF(p m ) by p gives

a sequence of zeros, that is, the zero element of GF(pm).) It is perhaps plausible that
21 a

the following facts are true, as they are1: if q = q1a, elements from GF(q) can always

be expressed as a sequence of b elements from GF(q'), so that addition of Z elements

from GF(q) can be carried out place-by-place according to the rules of addition in

GF(q'), and multiplication of an element from GF(q) by an element P from GF(q') can

be carried out by term-by-term multiplication of each element in the sequence repre-

senting GF(q) by P according to the rules of multiplication in GF(q').

As an example, we can write the elements of GF(16) as

00 10 aO a20

01 11 al a2 l

Oa la aa aza

Oa2 la2 aa2 aZa2

where a is a primitive element of GF(4). Then, by using Fig. 5, (1a) + (aa) = (a 20), for

example, while a . (a1) = (a 'a).
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We have observed that p - 0 for all elements in a field of characteristic p. In

particular, if p = 2, P + P = 0, so that P = -P and addition is the same as subtraction

in a field characteristic two. Furthermore, (P+y)P = OP + (p) P ... + ( P ) Pyp-1 +1 p- 1

yP, by the binomial theorem; but every term but the first and last are multiplied by p,

therefore zero, and (P+y? = PP + yP, when P and y are elements of a field of charac-

teristic p.

3. 2 LINEAR CODES

We know from the coding theorem that codes containing an exponentially large num-

ber of code words are required to achieve an exponentially low probability of error.

Linear codes 422 can contain such a great number of words, yet remain feasible to gen-

erate; they can facilitate minimum distance decoding, as we shall see. Finally, as a

class they can be shown to obey the coding theorem. They have therefore been over-

whelmingly the codes most studied.

Assume that we have a channel with q inputs, where q is a prime power, so that

we can identify the different inputs with the elements of a finite field GF(q). A code word

f of length n for such a channel consists of a sequence of n elements from GF(q). We
7. th . b.

shall write f = (f1, f,. ,fn), where fi occupies the i place. The weight w(f) of f is

defined as the number of nonzero elements in f.

A linear combination of two words f and f 2 is written PfI + Yf2 , where P and y are

each elements of GF(q), and ordinary vectorial (that is, place-by-place) addition in

GF(q) is implied. For example, if fl = (fllfl 2 ,fl 3 ) an = ( f = (f2 lf 22 f 2 3 ), then

f I- f = (fl 1 -f2 1 ,fl -f 2 2 ,f 13-f 2 3). n
A linear code of length n is a subset of the q words of length n with the important

property that any linear combination of words in the code yields another word in the code.

A code is nondegenerate if all of its words are different; we consider only such codes.

Saying that the distance between two words f 1 andf2 is d is equivalent to saying that

thc weight of their difference, w(fl-f 2 ), is d, since fI - f2 will have zeros in places in

which and only in which the two words do not differ. In a linear code, moreover, f - f

must be another code word f3' so that if there are two code words separated by dis-

tance d there is a code word of weight d, and vice versa. Excluding the all-zero, zero-

-,.,eight word, which must appear in every linear code, since 0 • fI + 0 f 2 1 is a valid

linear combination of code words, and the minimum distance of a linear code is then the

r-.inimum weight of any of its words.

We shall be interested in the properties of sets of j different places, or sets of

size j, which will be defined with reference to a given code. 1f the j places are such

that there is no code word but the all-zero word with zeros in all j places, we say that

these j places form a non-null set of size j for that code, otherwise they form a null

set.

If there is a set of k places such that there is one and only one code word corre-

sponding to each of the possible ak assignments of elements from GF(q) to those k places,
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then we call it an information set Z 3 of size k, thus any code with an information set of
k

size k has exactly q code words. The remaining n - k places form a check set. An

information set must be a non-null set; for, othervise there would be two or more words

corresponding to the assignment of all zeros to the information set.

We now show that all linear codes have an information set, by showing the equiva-

lence of the two statements: (i) there is an information set of size k for the code;
k

(ii) the smallest non-null set has size k. For an information set of size k implies q

code words; to any set of size k - 1 or less there are no more than qk-I different assign-

ments, and thus there must be at least two distinct code words that are the same in those

places; but then their difference, though not the all-zero word, is zero in those places,

so that any set of size k - 1 or less is a null set. Conversely, if the smallest non-null

set has size k, then its every subset of k - 1 places is a null set; therefore there is a
-~th thcode word f that is zero in all but the p place, but is nonzero in the p place; if f has

th - 1-11 thii, the p place, then P-1 f is a code word with a one in the p place, and zeros in

the remaining information places. The k words with this property are called generators;k k
ciearly, their qk linear combinations yield q code words that are distinct in the speci-

fied k places. (This is the property that makes linear codes :asy to generate.) But
k

there can be no more than q words in the code, otherwise all sets of size k would be

null sets, by the arguments above. Thus the smallest non-null set must be an infornia-

tion set. Since every linear code has a smallest non-null set, every linear code has an
k

information set and, for some k, q code words. In fact, every non-null set of size k
k

is an information set, since to each of the q code words must correspond a different

assignment of elements to those k places. We say such a code has k inforuation sym-

bols, n - k check symbols, and dimensionless rate k/n, and call it an (n, k) code on

GF(q).

If the minimum distance of a code is d, then the minimum weight of any non-zero

code word is d, and the largest null set has size n - d. Therefore the smallest non-null

set must have size n - d + 1 or less, so that the number of information symbols is

n - d + 1 or less, and the number of check symbols d - 1 or greater. Clearly, we desire

that for a given minimum distance k be as large as possible; a code that has length n,

minimum distance d, and exactly the maximum number of information symbols, n-d + 1,

will be called a maximum code. 2 4

We now show that a code is maximum if and only if every set of size n - d + 1 is an

information set. For then no set of size n - d + 1 is a null set, thus no code word has

weight d - 1 or less, and thus the minimum weight must be greater than or equal to d;

but it cannot exceed d, since then there would have to be n - d or fewer information

symbols, so the minimum weight is d. Conversely, if the code is maximum, then the

minimum weight of a code word is d, so that no set of size n - d + 1 can be a null set,

but then all are information sets.

For example, let us investigate the code that consists of all words f satisfying the
n

equation f 1 +f 2 
+ . +fn = f = 0. It is alinear code, since iff 1 and f 2 satisfy this
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equation, f3 ( fI +f ) also satisfies the equation. Let us assign elements from GF(q)
arbitrarily to all places but the p th In order for there to be one and only one code word

with these elements in these places, f must be the unique solution to

Sf +f p =0, or f =- f..

i~p iAp

Clearly, this specifies a unique f that solves the equation. Since p is arbitrary, everyp
set of n - 1 places is thus an information set, so that this code is a maximum code with

length n, n - 1 information symbols, and minimum distance 2.

a. Weight Distribution of Maximum Codes

In general, the number of code words of given weight in a linear code is difficult or

impossible to determine; for many codes even d, the minimum weight, is not accurately

known. Surprisingly, determination of the weight distri',ution of a maximum code pre-

sents no problems.

Suppose a maximum code of length n and minimum distance d, with symbols from
GF(q); in such a code there are n - d + 1 information symbols, and, as we have seen,

every set of n - d + 1 places must be an information set, which can be used to generate

the complete set of code words.

Aside from the all-zero, zero-weight word, there are no code words of weight less
than d. To find the number of code words of weight d, we reason as follows. Take an

arbitrary set of d places, and consider the set of all code words that have all zeros in

the remaining n - d places. One of theee words will be the all-zero word; the rest must
have weight d, since no code word has weight less than d. Consider the information set

consisting of the n - d excluded places plus any place among the d chosen; by assigning

zeros to the n - d excluded places and arbitrary elements to the last place we can gen-

erate the entire set of code words that have zeros in all n - d excluded places. There

are thus q such code words, of which q - 1 have weight d. Since this argument obtains

for an arbitrary set of d places, the total number of code words of weight d is (n) (q-1).
Similarly, let us define by Md+a the number of code words of weight d + a that are

nonzero only in an arbitrary set of d + a places. Taking as an information set the n - d - a

excluded places plus any a + 1 places of the d + a chosen, we can generate a total of qa+1

code words with all zeros in the n - d - a excluded places. Not all of these will have
weight d + a, since for every subset of size d + 1, 0 -< i _< a - 1, there will be Md+i code

words of weight d + i, all of which will have all zeros in the n - d - a excluded places.

Subtracting also the all-zero word, we obtain

a-1

Md+a= q - 1 -I Zi) Md+i "

i-O

From this recursion relation, there follows explicitly
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a

Md~ (q-1) Z (;)1 (d +a-I ) q a-i.

i=O

Finally, since there are Md+a words of weight d + a in an arbitrary set of d + a places,

we obtain for Nd+a , the total number of code words of weight d + a,

Nd+a = +a) Md+a °

We note that the summation in the expression for Md+a is the first a + 1 terms of the
d+a-1 -(d-1) a+l

binomial expansion of (q-1) q , so that as q - o, Md+a - q . Also, we may
a+1

upperbound Md+a by observing that when we generate the q code words that have all

zeros in an arbitrary n - d - a places, only those having no zeros in the remaining a + 1

information places have a chance of having weight d + a, so that

Md+a _< (q-1)

3.3 REED-SOLOMON CODES

We can now introduce Reed-Solomon codes, whose properties follow directly from

those of van der Monde matrices.

a. Van der Monde Matrices

An (n+l) X (n+1) van der Monde matrix has the general form:

2 n
1 a a ... a

0 0 0

2 n
1 a a 1  ... a1

2 n
1 a a ... a

n n n

where the a. are members of some field. The determinant of this matrix, D, also a1

member of the field, is a polynomial in the ai in which no a i appears to a power greater

than n. Furthermore, since the determinant is zero if any two rows are the same, this

polynomial must contain as factors a i - aj, all i : j, so that

D = D' R (a .-a.)
i>j

But now the polynomial 17 (a)-a contains each a. to the nt h power, so that D' can only
i>j 2 n

be a constant. Since the coefficient of 1 * al * a • an in this polynomial must be one,1 /_ n

D' = 1, and D = H (ai-a.).
i>j
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t

-Now suppose that all the a are distinct. Then a- a. 0 0, i j, since the a. are

members of a field. For the same reason, a product of nonzero terms cannot be zero,

and therefore the determinant D is not zero if and only if the a- are distinct.

Similarly,

m M 0+1 m +n
0o 0

a a ... m
a 10 =t[oa. 0 [1(a.o~n

a- -. 1

m m +1 m +n
0 0 0a a ... an n n

Thus the determinant of such a matrix, when m o € 0, is not zero if and only if the a.i
are distinct and nonzero.

b. Reed-Soiomon Codes

25 -
A Reed-Solomon code on GF(q) consists of all words f of length n < q - 1 for

which the d - 1 equations

f aim 0, m m m< m +d- 2
i=l1

are satisfied, where m 0 and d are arbitrary integers, and a is a primitive element of

GF(q).

Clearly, an RS code is a linear code, since if f and fZ are code words satisfying the

equations, 3f1 + yf2 = f 3 satisfies the equations. We shall now show that any n - d + 1

places of an RS code can be taken to be an information set, and therefore that an RS code

is a maximum code with minimum distance d.
We define the locator Z. of the i t h place as an then we have Z f.(Z m =-<

i=l1
m-< m 0 +d- Z. We note that since a is primitive and n-< q- 1, the locators are dis-

tinct nonzero elements of GF(q). Let us arbitrarily assign elements of GF(q) to n-d + I

places; the claim is that no matter what the places, there is a unique code word with

those elements in those places, and therefore any n - d + I places form an information

set S. To prove this, we show that it is possible to solve uniquely for the symbols in

the complementary check set S, given the symbols in the information set. Let the loca-

tors of the check set Sbe Yi., 1 < j < d - 1, and the corresponding symbols be d.. If

there is a set of d. that with the given information symbols forms a code word, then

d-1
Sdj(llj )m = f i ( Z i d mo 0 < m mo0 + d-2.

j=1 iES
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By defining Sm  - - f(Z i )m , these d - I equations can be written
iES

m m +I m +d-2"
Y Y d Sm

m in +1 m +d-Z
Y2 Y2 " 2 d2 Smo+1

m m 0 m -1d--2

d-I d-1 ~ d-1 ddl 3 m +d-7-

The coefficient matrix is of the van der Monde-like type that we examined above, and

has nonzero determinant, since each of the locators is nonzero and distinct. Therefore

there is a unique solution for the d. for any assignment to the information places, so thatJ
an arbitrary set of n - d + 1 places can be taken as an information set. It follows that

Reed-Solomon codes are maximum and have minimum distance d. The complete dis-

tribution of their weights has already been determined.

As examples, RS codes on GF(4) have length 3 (or less). The code of all words sat-

isfying the single equation f + f f3 = 0 (mo=0) has minimum distance 2. Taking the

last symbol as the check symbol, we have f3 = f + f. (we omit minus signs, since we
are in a field of characteristic two), so that the code words are

000 101 aOa a ZOaZ

011 110 ala 2  a la

2 2
Oaa laa aaO a al

Oa 2 a la 2a aa 21 a a 0

2The code of all words satisfying f +f Z +f 3 = 0 andf I +f 2a + f 3a = 0 (m 0=0) has

minimum distance 3. Letting f 2 = afI and f3 = a2 f1 we get the code words

000 laa 2  aa 21 a Zla.

The code of all words satisfying f1 +f 2 a + f 3a = 0 and f 1 +f 2 aZ +f3a4= 0 (mo=1)

also has minimum distance 3; its code words are

222
000 ill aaa a a a .

c. Shortened RS Codes

A Reed-Solomon code can have length no longer than q - 1, for that is the total num-

ber of nonzero distinct elements from GF(q) which can be used as locators. (If mo=0,
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we can also let 0 be a locator, with the convention 00=1, to get a code length q.) If we

desire a code length n _5 q - 1, we can clearly use any subset of the nonzero elements

of GF(q) as locators.

Frequently, in concatenating codes, we meet the condition that q is very large, while

n needs to be only moderately large. Under these conditions it is usually possible to

find a subfield GF(q1 ) of GF(q) such that n < q'. A considerable practical simplification

then occurs when we choose the locators from the subfield of GF(q'). Recall that if

q b = q, we can represent a particular symbol f- by a sequence of b elements from
Zm 1

GF(q'), (il'fi,... ,fib ). The conditions ]E f.Z. = 0, m o < m < 0 + d - 2 then become
ithe conditions Z f-f.Zm = 0 , m 4<m -<- m - d - , 1 'j--b, since -when we add two f.

i 13 1 0 0 1

or multiply them by Zm , we can do so term-by-term in GF(q'). hn effect, we are inter-

lacing b independent Reed-Solomon codes of length n < q' - 1. The practical advantage

is that rather than having to decode an RS code defined on GF(q), we need merely decode

RS codes defined on the much smaller field GF(q'l b times. The performance of the

codes cannot be decreased by this particular choice of locators, and may be improved if

only a few constituent elements from GF(q') tend to be in error when there is an error

in the complete symbol from GF(q).

As an example, if we choose m o = I and use locators from GF(4) to get an RS code

on GF(16) of length 3 and minimum distance 3, by using the representation of GF(16) in

terms of GF(4), we get the 16 code words

000 1, Il1 1 1 1
(000) i aaa)' (aO O a 0 a ) Z1  00 ) (1 1a)' ( Z a Zca )

, 

a a'aa 

a

We shall now give a general method for finding a code with symbols from GF(q) of

length n and minimum distance at least d. If n _< q - 1, of course, an RS code will be

the best choice, since it is maximum. But often n is larger than q; for instance, if we

want a binary code, q = 2, and the longest RS code has length one. BCH codes 26, 27 are
a satisfactory solution to this problem when n is not extravagantly large, and are the

only general solution known.

a aa/

Let us find an integer a such that q > n. Then there is an RS code on GF(q ) with

length n and minimum distance d. Since GF(q) is a subfield of GF(q ), there will be a

certain subset of the code words in this code with all symbols in GF(q). The minimum

distance between any two words in this subset must be at least as great as the minimum

distance of the code, so that this subset can be taken as a code on GF(q) with length n
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and minimum distance at least d. Any such subset is a BCH code.
We shall call GF(q) the s mbol field and GF(a) the !ocator field of the code.

For example, from the three RS codes on GF(4) given as examples, we can derive

the three binary codes:

a) 000 b) 000 c) 000
011 !il
101
110

Since the sum of any two elements from GF(q) is another element in GF(r,), the sum

of any two words in the subset of code words with symbols from GF(q) is another word

with symbols from GF(q), so that the subset fcrms a linear code. There must therefore
k

be q words in the code, where k has yet to be determined. How useful the code is

depends on how large k is; example b) shows that k can even be zero, and examples b)

and c) show that k depends in general c.a the choice of m0 . We now show how to find the

number of information symbols in a BCH code.

Since all code words are code words in the original RS code, all must satisfy the

equations

f fiZm =0 m-m<m +d-2.

Let the characteristic of the locator field GF(q a ) be p; then qa = p am, q=p , and thus
thraising to the q power is a linear operation, ( +¥)q -= + yq. Raising each side of

these equations to the q. power, we obtai,

,'I m) q --  fq Z 'm q =  f Z m q '  m < m d- 2.

0 fi f 1 m0 1 0 + d

Here. we have used f9 = f. since f. is an element of GF(q). Repeating this operation,1 1 1

we obtain

f- fi Z mi q = 0, 0 a- j<a- 1, (40)

i

where the process terminates at j = a - 1, since Zm is an element of GF(qa), and there-1

forez = Zm . Not all of these equations are different, since if mq J = qm'q
j M

mod q - 1 for some m' - m, and j' v j, then Z q = i for all i. Let us denotei i
by r the number of equations that are distinct - that is, the number of distinct integers

modulo q - I in the set
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In a mo q Zmq a-min0 ,oo,- in..., q m

a-(
m 0 -1,q(m 0 (), ... ,0 -)

I o a-1I

0 +d- Z, q(m:-d-2), ... , q (m -d-Z).

Clearly, r -< a(d-1). We label the distinct members of this set m, 1 < 2 < r.

We now show that r is the number of check symbols in the code. Let [ be any ele-
a b b+I b~r-l

ment of GF(q ) with r distinct consecutive powers P Pb,..., -. We claim that

the places whose locators are these r consecutive powers off P may be taken as a check

set, and the remaining n - r as an information set. Let the symbols in the information

set S be chosen arbitrarily. A code word is uniquely determined by these information

symbols if there is a unique solution to the r equations Z fi(Zi) , 1 < 2 - r, which

in matrix form is

bm (b+1)m 1  (b+r-1)m1

[3"' [ b Si

bm (b+l)m 2  (b+r-! m 1l

bm r (b+)m r ... fb+r-. Sr (41)

in 2

in which we have defined S2 - f.Z. . The coefficient matrix is van der Monde-like
iES m f

(for a different reason than before), and since P are all nonzero and distinct, ti-e

equations have the solution as claimed.

We must show that the f bthat solve Eqs. 41 are elements of the symbol field GF(q).We us sow ha te b+i th

Suppose we raise Eqs. 41 to the q power; we get a superficially new set of equations

of the form

fq(zidqm = 0 (42)

But for i E S, f. E GF(q), so f9 = f.. Furthermore, Eqs. 42 are exactly the r distinct1 1 q , fq
Eqs. 2, since Eqs. 2 are the distir7t equations in Eqs. 1. Thus fqf b+lf' solveb' b1'" b+r-1

Eqs. 41 for the same information symbols fi, i E S, as did fbp fb+1'*. 'fb+r-l' which

were shown to be the unique solution to Eqs. 41. Therefore fq = fi; but the elements
of GF(qa) which satisfy pq = P are precisely the elements of GF(q) I so that the fb+i are

elements of GF(q).

Thus the code has an information set of A - r symbols, and therefore there are qn-r

code words.
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We remark that any set off r places whose locators can be represented as r consec-

utive powers of. some field element is thus a check set, and the remaining n - r an infor-

mation set. In general every information set cannot be so specified, but this gives us a

lower bound to their number.

For example, to find the number of check symbols in a binary code of length 15

(qa=16) and minimum distance 7, with m4 chosen as 1, we write the set

1, 2, 4, 8

3, 6, 12, 9 (24=9 mod 15)

5, !0 (20=5 mod 15)

where we have excluded afl duplicates. There are thus 10 check symbols. This is the

(15,5) binary Bose-Chaudhurii 6 code.

a. Asymptotic Properties of BCH Codes

We recall that for large n the Gilbert bound guarantees the existence of a code with
3C(6 _ In (q-l)

minimum distance n and dimensionless rate k/n = 1 - 6 l q With a BCH

code we are guaranteed to need no more than a(d-1) = an6 check symbols to get a mini-a
mum distance of at least d = nS, but since q must be greater than n, a must be greater

than In n/In q, so that for any fixed nonzero 6, an6 exceeds n for very large n. Thus,

at least to the accuracy of this bound, BCH codes are useless for very large n. It is

well to point out, however, that cases are known in which the minimum distance of the

BCH code is considerably larger than that of the RS code from which it was derived, and

that it is suspected that their asymptotic performance is not nearly as bad as this result

would indicate. But nothing bearing on this question has been proved.
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IV. DECODING BCH CODES

We shall present here a decoding algorithm for BCH codes. Much of it is based on

the error-correcting algorithm of Gorenstein and ZierlerZ6 ; we have extended the algo-

rithm to do deletions-and-errors and hence generalized minimum-distance decoding

(cf. Section II). We have also appreciably simplified the final, erasure-correcting

step.27

Since we intend to use a Reed-Solomon code as the outer code in all of our concatena-

tion schemes, and minimization of decoder complexity is our purpose, we shall consider

in Section VI in some detail the implementation of this algorithm in a special- or

general-purpose computer.

Variations on this algorithm of lesser interest are reported in Appendix A.

4.1 INTRODUCTION

In Section I we observed that a BCH code is a subset of words from an RS code on

GF(q) whose symbols are all members of some subfield of GF(q). Therefore we may use

the same algorithm that decodes a certain RS code to decode all BCH codes derived from

that code, with the proviso that if the algorithm comes up with a code word of the RS code

which is not a code word in the BCH code being used, a decoding failure is detected.

Let us then consider the transmission of some code word f = (f 1 , f 2 """ fn) from a

BCH code whose words satisfy

fZ m = 0, In m m +d-2,

where the Zi, the locators, are nonzero distinct elements of GF(q). In examples we shall

use the RS code on GF(16) with n= 15, to = 1, and d= 9, and represent GF(16) as follows:

3 7 11
0 0000 a 0001 a 1101 a 0111

1 1000 a4 1100 a8 1010 a 1111

a 0100 a5 0110 a9 0101 a13 1011
Z 6 lO14
a 0010 a 0011 a10 1110 a 1001

We shall let Z. a = a 15-i1

We suppose that in the received word-T = (r 1 , r 2 , ... , rn), s symbols have been

classed as unreliable, or erased. Let the locators of these symbols be Yk' 1 - k < s,

and if the kt h deletion is in the it h place, Jet dk = r i - f be the value of the deletion, pos-

sibly zero. Also, of the symbols classed as reliable, let t actually be incorrect. Let

the locators of these errors be Xj, 1 4 t, and if the jth error is in the i t h place, let

its value e. = r i - fi, where now ej € 0. We define the parity checks, or syndromes,

Sm by
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- Iirzm;Sm 1m

i

then

e Xj f +Zd +

i j i

j k

The decoding problem is to find the ej, Xi, and dk from the Sm and Y The following

algorithm solves this problem whenever 2t+ s <d.

We shall find it convenient in the sequei to define the column vectors
-- b (Sa Sa-' Sb)T

S(ab) -... 1 T, m o < a- b- m + d-2

Xj(ab) (a - , ... , , and

Evidently,

t s

(ab) ejji b + i

j= 1 k= 1

Finally, let us consider the polynomial o-(Z) = 0 defined by

o(z) =(z-z 1 )(z-z 2) ... (Z-ZL),

where Z are members of a field. Clearly cr(Z) = 0 if and only if Z equals one of the Z.
Expanding (Z), we get

a(Z)- Z - (ZI+Z 2 +... +ZL)Z + . + (-1) (ZIZ 2 ... ZL).

The coefficient of (-I)L-2z2 in this expansion is defined as the L- 2 th elementary sym-
metric function of Z], Z 2 , .. , ZL; note that is always one. We define as the

row vector

0-( o, - i •.Z 1) (-i)L).

then the dot product
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- - Z'()

'(Lo) -

where

-~ L zL- Tz(~o - , z L -  1)T

Z(Lo) (Z3

4. 2 MODIFIED CYCLIC PARITY CHECKS

The Sm are not the only parity checks that could be formed; in fact, any linear com-

bination of the Sm is also a valid parity check. We look for a set of d - s - I independ-

ent parity-check equations which, unlike the Si, do not depend on the erased symbols,

yet retain the general properties of the S
Let -d be the vector of the symmetric functions dk of the erasure locators Yk. We

define 1-he modified cyclic parity checks TI by

TI -- d '(mo ++sm o+') (40)

Since we must have m <m 0 +1 and m 0 +l+s- 0 +d-Z, the range of 1 is 0,1-<d-s-Z.

In the case of no erasures, TI = Sm +. Now, since

t I+js m I

S(mo+1+s, mo+)= eX X As, 0) + dkYk o k(s, o)' (41)

kil k=I

we have

t +s
T- 0 + o )  ejXjood + dkYk oj d * o)

j=1 k= 1
t s m +

e .X.M0 + dk~

j= I k= I

t

- E~ EX1 (42)

j=1

m
in which we have defined E -e.X 0 a dX and used o-0, since Yk is one of the

~ dj' Gd(Yk)=
erasure locators upon which ad is defined. The fact that the modified cyclic parity checks

can be expressed as the simple function of the error locators given by Eq. 42 allows us

to solve for the error locators in the same way as if there were no erasures and the

minimum distance were d - s.
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4.3 DETERMINING THE NUMBER OF ERRORS

If d - s is odd, the maximum number of errors that can be corrected is to= (d-s- 1)/2,

while if d - s is even, up to to = (d-s-2)/2 errors are correctable, and to + 1 are

detectable.

We now show that the actual number of errors t is the rank of a certain t X t0 0

matrix M, whose components are modified cyclic parity checks, as long as t -< to . In

order to do this we use the theorem in algebra that the rank of a matrix is t if and only

if there is at least one t X t submatrix with nonzero determinant, and all (t+1) X (t+1)

submatrices have zero determinants. We also use the fact that the determinant of a

matrix which is the product of square matrices is the product of the determinants of the

square matrices.

THEOREM (after Gorenstein and Zierler 2 6): If t -< to, then M has rank t, where

TZto-Z T2to- 3  ... Tt-I

T2t -3 T2t -4 ... Tt -2
O 0 0M_

Tto- Tt 0 " T 0

Since 2t -Z < d - s - 2, all the T in this matrix are available.

PROOF: First consider the tXt submatrix Mt formed by the first t rows and column-s

of M. Using Eq. 42, we can write Mt as the product of three t X t matrices as follows:

tt- t- X- EXI 0 0 t-I t-2T 0o_ T 0o_ T 0o _ I  X 2  X t  I X 1I

a T-3 Zto-3 XI  2 Xt  0 EaXa 0  0 X t t 2

2Tto- 2 t-at-t

T ZtoM t Tuto-t-2 T2toZt I 0 0 EtX t  " Xt* I

as may be checked by direct multiplication.
at - 2t

The center matrix is diagonal, and therefore has determinant . E.X 0 since
m j J

E3 = ejXj a- d(XJ), Xj : Yk, and e. * 0, this determinant is nonzero. The first and third

matrices are van der Monde, with determinants H (Xi-X.), which is nonzero since the
c-'l

error locators are distinct. The determinant I Mt I is then the product of three nonzero

factors, and is therefore itself nonzero. Thus the rank of M is t or greater.

Now consider any of the (t+1) X (t+1) submatrices of M, which will have the general

form
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a + a+b ... T a xi X20 ... X,°  0 F 0 ... 0 0 X I I--. T ao -. o b0  bI
00 1

I  a a 0 b 0 X °  ... X2

xI E . . . .

t bO  b, bt0t x t 0 0 0 -. 0 xt 0 . Xt

V 0 V O 0 0 .. . 0 0 0 ... 0

L J L J

Again, this may be checked by direct multiplication with the use of Eq. 4Z. Each of the

three fa tor mati ices has an all-zero row and hen-e zero determinant; therefore all

t+1) X (t+1) submatrices of M have zero determinants. T.gLs the rank of M can be no

greater than t; but then it is t.

4.4 LOCATING THE ERRORS

We now consider the vector ae of elementary symmetric functions a- of the X j and

its associated polynomial

e e (t, o)'

where

- - tt t-i T
X(t, o) '

If we could find the components of 0e' we could determine thc error locators by finding

the t distinct roots of a7e (X). If we define

-, b) (Ta T a-I'., T b) Ta

then from Eq. 42

t

T(a, b) i Ej j(a, b)
j=1

and we have

t
_ = EiXi07 (Xi) = 0, 0 <-2' d - s -t- 2.
e (t,) L. j e

j=1

We know that the first component of 1e' e r equals one, so that this gives us a set of
0
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Zt0 - t equations in t unknowns. Since t < to by assumption, we can take the t equations

specified by 2t0 - Zt < 1' < Zt0 - t - 1, which in matrix form are

T2to- 1 T to_ 2  Tto-3  T 2 -t-1 -e 1

Tat -2 Tat -3 2t -d ... Tto_t_2 e2

TZt 0-t T to-t- 1 T2t o_t_ - T-at 0 t 2t 1 ) t et

or, defining

e = ( -Te ,3 T 20..., I - et)

-T o _ t M (43)

Since 0 < 2t0 - 2t and Zt0 - 1 d - s - 2, all of the T needed to form these equations
are available.

We have alr 3ady shown that Mt has rank t, so that these equations are soluble for

a' and hence T" . Then since a- (Zi) is zero if and only if Z. is an error locator, calcula-e e e 1
ti-)n of G-e (Zi) for each i will reveal in turn the positions of all t errors.

a. Remarks

The two steps of finding the rank of M and then solving a set of t equations in t equa-

tions in t unknowns may be combined into one. For, consider the equations

-(To1l) = 0-"M (44)

where

" - Cr 1) ,...,( a- 0, ... ,0).
e e 2 '

An efficient way of solving (44) is by a Gauss-Jordan 2 8 reduction to upper triangular

form. Since the rank of M is t, this will leave t nontrivial equations, the last t0 -t equa-
tions being simply 0 = 0. But now Mt is the upper left-hand corner of M, so that the upper

left-hand corner of the reduced M will be the reduced M Therefore, we can at this

point set the last to - t components of a-" to zero, and get a set of equations equivalent

to (44), which can be solved for 0'. Thus we need only one reduction, not two; sincee
Gauss-Jordan recudtions tend to be tedious, this may be a significant saving.

This procedure works whenever t < to - that is, whenever the received word lies

43
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within distance to of some code word, not counting places in which there are erasures.
It will generally be possible to receive words greater than distance to from any code

word, and upon such words the procedure discussed above must fail. This failure, cor-

responding to a detectable error, will turn up either in the failure of Eq. 44 to be reduc-
ible to the form described above or in a e(X), which has an insufficient number of nonzero

roots.

Finally, if d - s is even, the preceding algorithm will locate all errors when t < to =

(d-s-Z)/2. Also, if t = to + 1, an uncorrectable error can be detected by the nonvanishing

of the determinant of the t X t matrix with Td-sZ in the upper left, T in the lower right.

Such an error would be detected anyway at some later stage in the correction process.

3. Example 1

Consider the (15, 7) distance 9 RS code that has been introduced. Suppose there occur
errors of value a4 in the first position and a in the fourth position, and erasures of

value 1 in the second position and a7 in the third position.

4=a,X1 =a ,e=a,X2 =a , d=1,Yl=a , d= Y=a).(e1 a 2 X2=a d1 1 d2 2

In this case the parity checks S will turn out to be

14 13 5  6 9  13 10 4
Sla , S =a , S 3 = , 6 =a ,S 7 =a , and8 =a.

With these eight parity checks and two erasure locators, the decoder must find the

number and position of the errors. First it forms

Vd =  -do 'd d

(Since we are working in a field of characteristic two, where addition and subtraction
are identical, we omit minus signs.)

Sd =1
0

0d* =~ Y 13Y =1+a =(01)+(II2=(10
1 Y = a 13+ a 12= (1011) + (1111) = (0100) = a13 12 10

d 2 = Y 1Y 2 = a a = a

Next it forms the six modified cyclic parity checks TI by Eq. 41.

5  13  10 14 5 14 9
T S3+cdS2+dS a a +a +

8
= (0110) + (1001) + (0101) = (1010) = a
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T1 = S4 + rd l S 3 + 7d2S2 = a8

3 13 3T 2  0, T3 =a T= a , T 5 = a.

Equations 44 now take the form

3 13 3a -- o, - +" -a
e, e2

13 3 8
a = a 3a +a cr

el e3

a3  = a ae + a 8 a 3.

By reducing these equations to upper triangular form, the decoder gets

5 5
a 5-a'+a o

el e2

10a - - +a-
e2  e3

0 0.

From the vanishing of the third equation, it learns that only two errors actually occurred.

Therefore it sets o- to zero and solves for a- and a- e obtaininge3 eI  e

10 10
T =a 0'a =a

e1  e2

Finally, it evaluates the polynomial

2 Z 10 10
(X)=X +a-eX+ a- X +a X+a

14 1for X equal to each of the nonzero elements of GF(16); o-e (X = 0 when X = a and X= a

so that these are the two error locators.

4.5 SOLVING FOR THE VALUES OF THE ERASED SYMBOLS

Once the errors have been located, they can be treated as erasures. We are then

interested in the problem of determining the values of s + t erased symbols, given that

there are no errors in the remaining symbols. To simplify notation, we consider the

problem of finding the dk, given the Yk' 1 < k < s, andt= 0.

Since the parity-check equations are linear in the erasure values, we could solve s

of them for the d. There is another approach, however, which is more efficient.

As an aid to understanding the derivation of the next equation, imagine the following

situation. To find dk , suppose we continued to treat the remaining s - 1 erasures as
0
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erasures, but made a stab at guessing d k. This would give us a word with s - 1 erasures

and either one or (on the chance of a correct guess) zero errors. The rank of the

matrix M would therefore be either zero or one; but M 1 would be simply a single modi-

fied cyclic parity check, formed from the elementary symmetric functions of the s - 1

re-naining erasure locators. Its vanishing would therefore tell us when we had guessed

dk correctly.
0

To derive an explicit formula, let k -d be the vector of elementary symmetric func-
0

tions of the s - 1 erasure locators, excluding Yk * Since t = 0, we have from (41)
0

-36 s m 0+d-s-l_.

(m0 +d-Z, m +d-s-l) dkYk Yk(s-l, o)
k=I

and therefore

k0 d-s-z k 0d S(m +d-2,m 0 +d-s-1)

=dkY m 0+d-s-1 ka' 1~ ) + I d Ym1 ~-s-dk 0Yk 0 k 0rd (k 0k kk k 0 d(Yk )

k 0 k 0k0k o 0

m +d-s-I 1ys
= dkoYk k

since k d(Yk)-  = 0, k *k . Thus
0

koTds-1

dk =m +d-s-1
o yko  kjd(Yk0 )

This gives us our explicit formula for dk , valid for any s:
0

Smo+d-2 - k o d 1Smo+d-3 + k odZSmo +d-4 -(45

dk m +d-Z m +d-3 m +d-4 (45)

k kko 0 k10 o odZ o 

Evidently we can find all erasure values in this way; each requires the calculation

of the symmetric functions of a different s - 1 locators. Alternatively, after finding dl,

we could modify all parity checks to account for this information as follows:

IS = - dY
(m+d-2, m (m0+d-2, m) 1 1(m +d-2,m
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and solve for d. in terms of these new parity checks and the remaining s- 2 erasure loca-
tors, and so forth.

A similar argument leads to the formula for error values,

Jo0G e T(-Zd-s-t-1)
e jo -m +d-s-t-I0

Xjo jo =o0

in terms of the modified cyclic parity checks. We could therefore find all error values

by this formula, modify the parity checks Sm accordingly, and then solve for the era-

sure values by Eq. 45.

a. Example 2

As a continuation of Example 1, let the decoder solve for e 1 . The elementary sym-

metric functions of X 2 , Y1 , and Y2 are

6 3 6
3 2 XY 1Y2 - a , Z - Y2Y1 Z2+ X 21 - ' + X2 1 = Y 2 - a

Therefore

4 6 10 a3 a13 6 a9a +a 'a +a "a +a *a a 4
el- 7 6 a 8  3 a9 6 16 - 12 "d

a +a * a +a " a a

e2 can be found similarly, or the decoder can calculate

48 13 + 47 3 46
S,=S 8 + S +a a X =a , SS + a X 0.

Since

0= Y Y = a 10, = Y + Y a,
2 1 2 ' 1~ 1

13 3 11a +a'a a
e a.2- 13 + 2 10 6- 10 a.a +a"a +a •*a a

2
Also, S = a , S7  0,'8 ' 7

2
50u 1 13=1,

a+a "a

13

13 a 7
and, withSn = a , d =-- a

8 2 6a

4.6 IMPLEMENTATION

We now consider how a BCH decoder might be realized as a special-purpose com-

puter. We shall assume the availability of an arithmetic unit able to realize, in
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approximate order of complexity, the following functions of finite field elements: addition

(X=XI+X 2 ), squaring (X=X 2 ), multiplication by am , m 0 m< m 0 + d - 2 (X=mX1).

Furthermore, because of the bistability of common computer elements, we shall assume
p = 2, so that subtraction is equivalent to addition and squaring is linear. We let the

n-ilocators Zi = a Finally, we shall assume that all elements of the symbol field are

converted to their representations in the locator field GF(q) = GF(2 M), and that all oper-

ations are carried out in the larger field.
Peterson29 and Bartee and Schneider 30 have considered the implementation of such

an arithmetic unit; they have shown that multiplication and inversion, the two most dif-

ficult operations, can be accomplished serially in a number of elementary operations
proportional to M. All registers will be M bits long. Thus the hardware complexity is

proportional to some small power of the logarithm of q, which exceeds the block length.

We attempt to estimate the approximate complexity of the algorithms described above

by estimating the number of multiplications required by each and the number of memory

registers.

During the computation, the received sequence of symbols must be stored in some

buffer, awaiting correction. Once the Sm and Yk have been determined, no further

access to this sequence is required, until the sequence is read out and corrected.

The calculation of the parity checks

Sm = r(zm) = r 1 am(n- 1 ) + r 2 a rm(n- 2 ) + ... + rn

is accomplished by the iteration

Sm= ((ra m+r) am+r3)am+ r 4

which involves n - 1 multiplications by a M. d - 1 such parity checks must be formed,

requiring d - 1 registers.

"-d can be calculated at the same time. We note that

rdk = ko dk + Yk k 0d(k-l);

* d can be calculated by this recursion relation as each new Yk is determined. Adding

a new Yk requires s' multiplications when s' are already determined, so that the total

number of multiplications, given s erasures, is

s memory registers are required (-d = 1).
0

The modified cyclic parity checks T are then calculated by Eqs. 40. Each requires
s multiplications, and there are d - s - 1 of them, so that their calculation requires

s(d-s-1) < d2/4 multiplications and d - s - 1 memory registers.

Equations 44 are then set up in t0 (t0 +1) < d /4 memory registers. In the worst case,
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t =t o p the reduction to upper triangular form of these equations will require to inversions

and

to(t+1)+ (to-1) to + + 1. z 0 ) + (+1)< 3

multiplications. As d becomes large, this step turns out to be the most lengthy,

requiring as it does d 3/24 multiplications.

Determination of Ie from these reduced equations involves, in the worst case, a

further 0 <d 2 /8 multiplications, and to memory registers.

As C ien3 1 has shown, finding the roots of ae (X) is facilitated by use of the special

multipliers by am in the arithmetic unit. If

Z e(t-j) = 0,
j=0

m +t-j

then 1 is a root of a (X). Let -' (tj a eot-a) Nowee~j eft-j)" o

U = a 0 . a-iore (t-j) I a-Je(t-j)

j=0 j=0
-1 n-i.

which will be zero when a = a is a root of a- e (X). All error locators can therefore
mbe found with n multiplications by a , and stored in t memory registers.

Finally, we have only the problem of solving for s + t erasures. We use (45), which

requires the elementary symmetric functions of all erasure locators but one. Since

Y--1bei wth k = - fin all+ k1) the'dk

we can begin wk and find all a' from the with s - 1 multipli-
w 0 0nbokd(s-1) k°  s kddk

cations and an inversion. Then the calculation of (45) requires 2(s+t-1) multiplications

and an inversion, Doing this s + t times, to find all erasure values, therefore requires

3(s+t)(s+t-1) multiplications and s + t inversions. Or we can alter s + t - 1 parity checks

after finding the value of the first erasure, and repeat with s' = s + t - 1 and so forth;

under the assumption that all Ym are readily available, this alternative requires onlyk
0

2(s+t)(s+t-1) multiplications and s + t inversions.

a. Summary

To summarize, there are for any kind of decoding two steps in which the number of

computations is proportional to n. If we restrict ourselves to correcting deletions only,

then there is no step in which the number of computations is proportional to more than
2

d 2 . Otherwise, reduction of the matrix M requires some computations that may be as
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large as d3 . If we are doing general minimum-distance decoding, then we may have to

repeat the computation d/2 times, which leads to a total number of computations propor-

tional to d4 . As for memory. we also have two kinds: a buffer with length proportionaldZ .
to n, and a number of live registers proportional to d In sum, if d = 6n, the otal com-

plixity of the decoder is proportional to nb. where b is some number of the order of 3.

All this suggests that if we are willing to use such a special-purpose computer as our

decoder, or a specially programmed general-purpose machine, we can do quite powerful

decoding without making the demands on this computer unreasonable.

Bartee and Schneider 3 2 built such a computer for a (127,92) 5-error-correcting

binary BCH code, using the Peterson3 3 algorithm. More recently, Zierler 3 4 has studied

the implementation of his algorithm for the (255,225) 15-error-correcting Reed-Solomon

code on GF(256), both in a special-purpose and in a specially programmed small general-

purpose computer, with results that verify the feasibility of such decoders.

b. Modified Deletions -and -Errors Decoding

If a code has minimum distance d, up to s o = d - i deletions may be corrected, or

up to to , (d-l)/2 errors. We have seen that while the number of computations in the

decoder was proportional to the cube of to, it is proportional only to the square of s .

It may then be practical to make the probability of symbol error so much lower than that

of symbol deletion that the probability of decoding error is negligibly affected when the

decoder is set to correct only up to t 1 < to errors. Such a tactic we call modified

deletions-and-errors decoding, and we use it wherever we can in the computational

program of Section VI.



V. EFFICIENCY AND COMPLEXITY

We shall now collect our major theoretical results on concatenated codes. We find

that by concatenating we can achieve exponential decrease of probability of error with

over-all block length, with only an algebraic increase in decoding complexity, for all

rates below capacity; on an ideal superchannel .vith a great many inputs, Reed-Solomon

codes can match the performance specified by the coding theorem; and with two stages

of concatenation we can get a nonzero error exponent at all rates below capacity,

although this exponent will be less than the unconcatenated exponent.

5. 1 ASYMPTOTIC COMPLEXITY AND PERFORMANCE

We have previously pointed out that the main difficulty with the coding theorem is the

complexity of the decoding schemes required to achieve the performance that it predicts.

The coding theorem establishes precise bounds on the probability of error for block

codes in terms of the length N of the code and its rate R. Informative as this theorem

is, it is not precisely what an engineer would prefer, namely, the relationship Detween

rate, probability of error, and complexity. Now complexity is a vague term, subsuming

such incommensurable quantities as cost, reliability, and delay, and often depending on

details of implementation. Therefore we should not expect to be able to discover more

than rough relationships in this area. We shall investigate such relationships in the

limit of very complex schemes and very low probabilities of error.

We are interested in schemes that have at least two adjustable parameters, the

rate R and some characteristic length L, which for block codes will be proportional to

the block length. We shall assume that the complexity of a scheme depends primarily

on L. As L becomes large, a single term will always dominate the complexity. In the

case in which the complexity is proportional to some algebraic function of L, or in which

different parts of the complexity are proportional to algebraic functions of L, that part

of the complexity which is proportional to the largest power of L, say La, will be the

dominant contributor to the complexity when L is large, and we shall say the complexity

is algebraic ia L, or oroportlonal to L. In the case in which some part of the complexity

is proportional to the exponential of an algebraic function of L, this part becomes pre-

dominant when L is large (since ex = I +x+x Z2 I + > x-co), andwe say the

complexity is exponential in L.

Similarly, the probability of error might be either algebraic or exponential in L,

though normally it is exponentially small. Since what we are really interested in is the

relationship between probability of error and complexity for a given rate, we can elim-

inate L from these two relationships in this way: if complexity is algebraic in L while

Pr(e) is exponential in L, Pr(e) is exponential in complexity, while if both complexity

and Pr(e) are exponential in L, Pr(e) is only algebraic in complexity.

For example, the coding theorem uses maximum-likelihood decoding of block codes

of length N to achieve error probability Pr(e) -< e - NE(R). Maximum-likelihood decoding
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involves eNR comparisons, so that the complexity is also exponential in N. Therefore,

Pr(e) is only algebraic in the complexity; in fact, if we let G be proportional to the com-
(n E(R) E(R)

plexity, G = eNR, (n G)/R = N, Pr(e) < e = G R. As we have previously

noted, this relatively weak dependence of Pr(e) on the complexity has retarded practical

application of the coding theorem.

Sequential decoding of convolutional codes has attracted interest because it can be

shown that for rates less than a critical rate R < C, the average number of com-comp
putations is bounded, while the probability of error approaches zero. The critical lia-

bility of this approach is that the number of computations needed "o decode a given

symbol is a random variable, and that therefore a buffer of length L must be provided

to store incoming signals while the occasional long computation proceeds. Recent work 3 5

has shown that the probability of overflow of this buffer, for a given speed of computa-

tion, is proportional to L - , where a is not large. In the absence of a feedback channel,

buffer overflow is equivalent to system failure; thus the probability of such failure is

only algebraically dependent upon the length of the buffer and hence on complexity.

Threshold decoding is another simple scheme for decoding short convolutional codes,

but it has no asymptotic performance. As we have seen, BCH codes are subject to the

same asymptotic deficiency. The only purely algebraic code discovered thus far that

achieves arbitrarily low probability of error at a finite rate is Elias' scheme of iterating

codes 3 6 ; but this rate is low.

Ziv3 7 has shown that by a three-stage concatenated code over a memoryless channel,

a probability of error bounded by

5
Pr(e) < K

can be achieved, where L is the total block length, while the number of computations

required is proportional to L a . His result holds for all rates less than the capacity of

the original channel, although as R - C, a - oo.

In the sequel we shall show that by concatenating an arbitrarily large number of

stager of RS codes with suitably chosen parameters on a memoryless channel, the over-

all probability of error can be bounded by

L(IA)
Pr(e) < p

where 1, is proportional to the total block length, and A is as small as desired, but posi-

tive. At the same time, if the complexity of the decoder for an RS code of length n is
b bproportional to nb , say, the complexity of the entire decoder is proportional to L . From

the discussion in Section IV, we know that b is approximately 3. This result will obtain

for all rates less than capacity.

We need a few lemmas to start. First, we observe chat since a Reed-Solomon code

of length n and dimensionless rate (1-2,0) can correct up to nP errors, on a superchannel
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with probability of error p-,

Pr(e) < (O)~n p 4n e g~~p] (46)

Here, we have used a union bounu and

This is a very weak bound, but enough to show that the pro~bability of error could be made

to decrease exponentially with n for any P such thpt -0 log p - 3C(P) > 0 if it were pos-

sible to construct an arbitrarily long Reed-Soiomon code. In fact, however, if there are

q inputs to the superchannel, with q a, prime power, n 4 q - 1. We shall ignore the

prime power requirement and the 'minus one' as trivial.

It is easily verified that for P 4 1/2,

-P In P > -(l-p) In (I-P).

Therefore

-21p In pB > X(P) > -P In A{, P 4 1/2. (47)

1

Now we can show that when (-in1 P) (2a)a-10

3C(Pa) < 3C a(p) (48)

For, by (47),

3C(Pa) ,-a In a = a . Za(-In P)

a (,) > a(l)a

but

2ax < xa when x > (2a)a - I

which proves Eq. 48. We note that when 4 * I/e 2 , a 4, this condition is always satis-

fied. ,(In fact, by changing the base of the logarithm, we can prove a similar lemma for

any P < 1, a> 1.)

Finally, when x > y > 0, and a > 1,

(x-a= a 1 _xy~a)> xa 1 a - yay (49)

We are now ready to construct our many-stage concatenated code. Suppose by some

block-coding scheme or otherwise we have achieved a superchannel with N1 inputs and

outputs and a probability of error
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Pr(e)Po ~e-E E>l1 (50)

?~~ We now apply to this superchannel an RS code of dimensionless rate (1-2p) and length N,
achieving a probability of error, from (46), of<IPr (e) 4e -e .(51)

ft Assume PE - MC() > 0, and define a to sitisfy

-N [PE- W4P)] E a;

thus -

InN 1 In [PE-WC4P)]{ajE + ln E (52)

We assume that

4 I/e(53)

and

4 4 a 4 12)

and we shall prove the theorem only for these conditions.
N (1-2 P)

This first concatenation creates a new superchannel with N1  inputs and

outputs and Pr(e) 4 exp -E1  Apply a second RS code to this new superchannel of

length N = NIa and dimensionless rate (1-2pa). (That a code of this length exists is2 1
guaranteed by the condition of Eq. 53 that a < N1 (1-2p).) For this code,

-N2 [PaE 1 -,,(,a)] -E,
Pr(e)e e .(54)

'Btnow

E2  2 N[E 1  1(a]=N[~~~Cp)

Ea (55)
1*

Here, we have used the inequalities of (48) and (49).

Thus by this second concatenation we achieve a code which, in terms of trans-
a+ 1missior~s over the original superchannel, has length N1 N 2  N N1  ,dimensionless
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2
rate (1-2 P)(1-2 A), and Pr(e) < exp-E

Obviously, if P < 1/e 2 , then pa < I/e 2 , and if a < NI (1-2P), then a < NZ(,_,,a).
Therefore if we continue with any number of concatenations in this way, (53) remains

satisfied, and relations like Eq. 55 obtain between any two successive exponents. After

n such concatenations, we have a code of dimensionless rate (1 -2p)( 1-a)* ... (1- 1)
n-ia n
a-I alength L=N 1 , andPr(e) <exp-E . Now, for a >2, P <1/2,

_12 )(1-2 a) ... n- 1) > 21- )(1_,) .n- 1)

-1- 2P - 2P2 + 4P3 -2P 4 +

>t 2 1 - 4 AZ  -  8 P 16p 4 - .

1 - 4P
-1- 2P~123)= (56;

Also,
n-Iln
nInN =lnL, an 1 + (a-() l 1 57)
a-i 1(7

so that

(a-l in L (a-1) In E

Pr(e) < e = e = PL = PL (58)

by substitution for a, where A is defined by

n N1

Since PE - C(p) is assumed positive, but P < 1, A is positive.
We now construct a concatenated code of rate R' >, C(1-) for a memoryless ehannel6 - E - 20

with error exponent E(R). Choose R = (1-6)C > R' and P = 5-E so that - R-
2(1+6-E)

C(1-). We know there is some block code of length N and rate R such that Pr(e) <

exp -NE(R). Now we can apply the concatenation scheme already described with
N1 = expNR, E = NE(R), as long as

ln[PNE(R) -X(P)]
4 <a= NR + .< eNR(I2P).

In NE(R) 1n NE(R)

It is obvious that there is an N large enough so that this is true. Using this N, we
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;achieve a scheme with Fae greater thar. or ecum:_i .- 4-i = CI-E) and with urobabil-

:t;y of ierror

Se < Xr (
Po

M3Ni(R)J

NR
4

C=arly, as long ao E(R) > 0, A can be made se Finall as desired by letting N be suf-

ficiently iarge. It remains positive, however. 2o t:Va the error exponent E defined by

E i rn - log Pr(e)

-t

, appears to go to zero, if this botud is tight.

That E must be zero when e-n arbitraril.y large number of ininimum- distance codes
f are - .. " - can be shown by the following simple lower bvuziA, Suppose a code of

length N can correct up zo '-:"2! ,c,'r since the mini,i:m distance cannc~t exeeed N,

A p - 1/2. Then on a channel with symbol probabiuiy c- .rvor p, a decoding error will

certainly be made iS the first NP symbols are in error, so that

Pr(e) >p

Concatenating a large number of such codes, we obtain

Pr(e) p(N 1N2...)(PP 2...

p0

Now N 1N 2 ... = L, the total block length, so that

IE - lim -flog Pr(e) 4 (-logp) 1,
L-oo

because i 1/2. Since E cannot be less than zero, it must actually be zero. In other

words, by concatenating an infinite number of RS codes, we can approach as close to a

nonzero error exponent as we wish, for any rate less than capacity, but we can never

actually get one.

As was shown in Section III, decoding up to t errors with an RS code requires a num-

ber of computatione proportional to t3 . We require only that the complexity of a decoder

which can correct up to NP errors be algebraic in N, or proportional to Nb , although in

fact it appears that b - 3. After going to n stages of concatenation according to the
1)n-i

scheme above, the outermost decoder must correct (N P) errors, the next outer-
n-2

most (N1 )a , and so forth. But in each complete block, the outermost decoder need
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ampitu oice, v!ile the e.x. outerrnost declr must compute times, the
yi-1 n-2 -

t- outrmost Ni \N times, vnd so forth, Hence Lhe total n-uimber of computations
i. proportional. to

3 n-I n f A' '-2 a-1 :'--2+En-3

4 N ba1 Na+ N : ,3 +ba +

i ... e ba > b + a, a Z 2, b > 2. tht fir.,- term i, this ueries P- ,iomi-a-nt. 1-inatly., since

I-I

Thus the number o.f computations can iw-reA!:e only as a small power of L. The com-

p!exity of the hardware required to tipiernent these computations is also ins :easirg, but

generally only in proportion to e power- of log L.

This rerult is not to be taken as a guide to design; in practice one iinds it unnecces-

sary to concatenate a large number of codes, as two stages generally suffice. it doe

indicate that concate-nation is a powerful tool for getting exponentially Fmall probabilities

of error without an exponentially iarge decoder.

5. 2 CODliNG TV',7..REM FOR IDEAL SUPERCHANNELS

We recall that an ideal superchannei lb .- o,'.-t1 mrn.ioryle.i oiel

which is symmetric from the input and the output and has equ lp.l c- (rr.-or. ibv

total probability of error is p, its transition probability matrix is

(I-p), 1j

P.- (59)ji ij

We shall now calculate the unexpurgated part of the coding theorem bound for this

channel, in the limit as q becomes very large. The result will tell us how well we can

hope to do with any code when we assume we are dealing with an ideal superchannel.

Then we shall find that over an interesting range ReedSolomon codes are capable of

achieving this standard. Finally, we shall use these results to compute performance

bounds for concatenated codes.

Specialized to a symmetric discrete memoryless channel, the coding theorem asserts

that there exists a code of length n and rate R which with maximum-likelihood decoding

will yield a probability of error bounded by

-nE(R)Pr(e) e
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where

F (R) = max {f (p)-pR) (60)

and
q Vq 1+P

L (61)
-j=1 {_i=1

$ubstituting Eq. 59 l E. 6. we obtain for the ideal superchannel
_l1+p

0(p) = -In q-PI(1-p) - + (q-1)1+p p+p (62)

To facilitate handling Eq. 62 when q becomes large, we substitute p' = p in q and

the dimensionless rate r = R€/ln q; then

Pr(e) 0 enE(r); (63)
' E~r) = ma

Max {E(f'.-p'r}

- 1+

,'(' +Ir)nnqqp' lnq pq

E (op in e-p'[II(1-lnq + p'  +' qP '

d0

We conrsder fi'st the cr -a- in which p is fixed, while q becomes very large. For p' > 0,

P(p)becc-rnes

S0 r -p e

=I p n [(l-p)+peP'].

In the maximization of E(r), p' can now be as large as desired, so that the curved,

unexpurgated part of the coding theorem bound is the entire bound; by setting the deriv-

ative of E(r) to zero, we obtain

ap 0

P1 I
pe P  1 - p

(l-p) + pe p  (1-p) + pe p'

or

e p  _
p r
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Thus,

1i-p 1-r 1-p

E(r) =(l-r) In r -p r r

-r In (-p) - (1-r) In p -3C(r). (64)

This bound will be recognized as equal to the Chernoff bound - to the probability of

getting greater than n(1-r) errors in n transmissions, when the probability of error on

any transmission is p. I suggests that a maximum-likelihood decoder for a good code

corrects all patterns of n(l-r) or fewer errors.

On the other hand, a code capable of correcting all patterns of n(1-r) or fewer errors

must have minimum distance Zn(l-r), thus at least 2n(l-r) check symbols, and dimen-

sionless rate r' = 1 - Z(1-r) < r. No code of dimensionless rate r can correct all pat-

terns of n(1-r) or fewer errors. What must happen is that a good code corrects the great

majority of error patterns beyond its minimum distance, out to n(1-r) errors.

We shall show that on an ideal superchannel with q very large, Reed-Solomon codes

do just about this, and come arbitrarily close to matching the performance of the coding

theorem.

One way of approximating an ideal superchannel is to use a block code and decoder of

length N and rate R over a raw channel with error exponent E(R); then with eN R inputs

we have Pr(e) < eNE(R). We are thus interested in the case in which

NR
q e

and (65)

-NE
p-e

Substituting Eqs. 65 in Eqs. 63, and using p' = p In q = pNR, we obtain

Pr(e) < e - E )

E(r) = max {E (p)-pNRr} (66)
O<p-<l

__1 NE

E0(P) = -In e - pNR[( 1-e-NE) I  + (eNR-I) I + P e P

When N becomes large, one or the other of the two terms within the brackets in this last

equation dominates, and E0 (p) becomes

{ pNR, pNR < NE
E0 (p)= INE, NE 4 pNR,

or

E (P) = N min{pR, E). (67)
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The maximization of E(r) in (66) is achieved by setting p = E/R if E/R < 1, and p = 1

otherwise. Thus

NE(I-r) E R

E~ErRE~)= NR(I-r) E > R

or

E(r) =N(-r) rain {E, R}. (68)

In the next section we shall only be interested in the case E < R, which corresponds to

the curved portion of the bound, for which we have

Pr(e) e - E( 1-r) (69)

5.3 PERFORMANCE OF RS CODES ON THE IDEAL SUPERCHANNEL

We shall show that on an ideal superchannel (which suits RS codes perfectly), RS

codes are capable of matching arbitrarily closely the coding theorem bounds, Eqs. 51
and 69, as long as q is sufficiently large. From these results we infer that RS codes

are as good as any whenever we are content to treat the superchannel as ideal.

a. Maximum-Likelihood Decoding

We shall first investigate the performance of RS codes on a superchannel with large

q and fixed p, for which we have shown (Eq. 51) that there exists a code with

Pr(e) 4. e - n [ - ( l - r ) Li p- r ln (1 -p) - X(r).

! It will be stated precisely in the following theorem.THEOREM:- For any r> 1/2, any 6 such that 1/4> 6 > 0, and any p such that

1/4 > p > 0, there exists a number Q such that for all ideal superchannels with proba-
bility of error p and q > Q inputs, use of a Reed-Solomon code of length n 4 q - I and
dimensionless rate r with maximum-likelihood decoding will result in a probability of

error bounded by

Pr(e) < 3e - h f- (1l-r) ln p- rln (1l-p) - X(r) - 6]

PROOF: Let Pi be the probability that a decoding error is made, given i symbol

errors. Then

n

=! i=0

The idea of the proof is to find a bound for Pi which is less than one for i < t, and then

to spli this series into two parts,
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t n
,(n liP in-i + In) i n-.i,

Pr(e) = P ) pi -p + P) U~-p , (70)
i=O i=t+l

in which, because Pi falls off rapidly with decreasing i, the dominating term in the first

series is the last, while that in the second series is the first.

We first bound P. for i < d - 1. Consider a single code word of weight w. By1

changing any k of its nonzero elements to zeros, any m of its nonzero elements to any

of the other (q-2) nonzero field elements, and any 1 of its zero elements to any of the

(q-1) nonzero field elements, we create a word of weight i = w + 1 - k, and at distance

j = k + 1 + m from the code word. The total number of words that can be so formed is

kWm (kw) m(-P.
Here, the notation (km indicates the trinomial coefficient

wI

k I m ! (w-m-k) !

which is the total number of ways a set containing w elements can be separated into sub-

sets of k, m, and (w-m-k) elements. The total number, N, of words of weight i and

distance j from some code word is then upperbounded by

N. < w' )w (n-w\ iq-,)m (q1kN, (71)

w, k, k, m
i=w+k-k
j-k+k-m

where N is the total number of code words of weight w. The reason that this is anw
upper bound is that some words of weight i may be distance j from two or more code

words.

We have shown (see Section III) that for a Reed-Solomon code,

Nw. (n) (q-1)W-d+l.

Substituting this expression in (71) and letting k = j - 1 - m, w i + j - m - 21, we

obtain

S(i+j-m-Z 
2n-i-j+m+2) n (q l)i+j-m-k-d+1Nij'< \-f-m,m/ ) ( i+j-m-2f (q z~

n I (q-Z) m (q-1) i +j - m - f - d + l

mO l m I2k (j-k-m)I (i-k-m) I (n-i-j+m+k))l

61



A more precise specification of the ranges of m and 1 is not necessary for our

purposes.

The ratio of the (1+1)th to the 1th term in this series, for a given m,

(q-l) -1 (j-2-m) (i-2-m)

(2+l) (n-i-j+m+f+1)

is upperbounded by

(d-1)2 (q-l) -1 n2 (1 -r) 2  (-r) 2

(1+1) [n-2(d-1)] (1+1) (q-1) n(2r-1) (2+1) (Zr-i)

Here, we have used r>1/2, j <i <d-1 =n(1-r), 1 > 0, m > 0, and n <q-1. Defining

(1 -r) 2
- -Zr -1'

we have
ni (q- 2)m i+j-m-d+ l

n I  (qn2)(q-1) - d

m>O m 1 (j-m) I (i-m) I (n-i-j+m) I

Similarly, the ratio of the (r+l)t h to the mt h term in the series of (73),

(q-2) r-m) (i-.m)

(q-1) (m+l) (n-i-j+m+l)'

is upperbounded by

(d-l)2  nC

(m+l) [n-2(d-1)] (m+l)

so that

N I n (q-l)i + j - d+l m

C 1 I(-1) C1
ii i i (n-i-j I M I

m>O

ClI (n +l )  n. > q i+j-d+l
= e Q 3 (q- 1 ) (74)

Since the total number of i-weight words is
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(n) (q-1)

the probability that a randomly chosen word of weight i will be distance j from some

code word is bounded by

eCl1(n + 1) (n-i)(lJ+l-d,

and the total probability Pi that a word of weight i will be distance j 4 i from some code

word is bounded by

C 1 (n+1) (n-i) I (q-1)j+ I-d

j j I (n-i-j) I

or, if we substitute j' = i - j,

Pi e C ( (75)
j'>O (i-j') I (n-Zi+j') I

The ratio of the (j1+l)th to the j'th term in the series of (75),

(i-j')

(q-l) (n-2i+j'+1)'

is up,,erbounded by

Cd - 1 0 -r)

(q-1) [n-2(d-1)] (q-l) (2r-1)

so that

Pi Cl(n+1) (n-i) I (q- 1)+l - d C'
1 4! (n-Zi) I 'O

If

(l-r)
q-1 .. 2 r-1 (76)

so that C2 - 1/2,

e eC1 (n+i) (q-1) i+l-d

C1 (n+l) -d
4 Ze (nil) (q-) l  (77)

Substituting (77) in (70), we obtain
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C( (n+l)(q 1 )i+ld (n) p1( - +i ~~ Pr (e) 4< Ze ni(qil-1) Unpl~-i + I (n)pi lpn-i

i=0 i=t+l

SI + S2 . (78)

We let

d- 1 -t>0 '
n

so that t = n(l-r-Q). The second series of (78) is just the probability that more than t
errors occur, which is Chernoff-bounded by

$2 < e-n[-(l-r-E) Inp- (r+E) ]n (l-p) -3C(r+E)] (1-r-c) > p. (79)

(If E<6, 1 -r-c> 1/4>p.) Setting il =t-i, we write the first series of (78) as

Cl(n+l) . ni (q-l)t+l - d-i ' t-p'(p)n-t+80)

(t-i') I (t-i') I (n-2t+2i') I

The ratio of the (it+l)th to the ilth term in the series of Eq. 80,

(I -p) (t-i') 2

p(q-1) (n-Zt+2i'+1) (n-Zt+2i'+2)'

is upperbounded by

(l-p) (d-1)? -  (1-p)(1-r) 2
C3 - ---

p(q-1) [n-2(d-1)] 2
- p(q-1)(2r-1) 2 '

so that

s1 < 2e C(n+l) n!I (q-1)~ - p"(1 -p) n  C i

It! t! (n-2t) 1 i 3

if
1 - p (1-r)2

q-1 ? 2 P (2r-1)2  (81)

so that C3 4 1/2,

C(n+1) n! (q-l)t+l -d pt l-p)n-t
S1  C 1 n< 4eqi p.-p (82)

t ! ti! (n-2t) I

Substituting Pt from (77) in (82), we obtain
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tQ ) (83)

Substituting (83) in (78), with the use of

we have

Pr(e) 4 (ZPt+1) e (1-r-E) lnp - (r+E) in (l-p) -3C(r+e)]

Choose

6 '
6 =(84)

ln (I-p) - 1ip

since p < 1/4, E < 6, and Eq. 79 is valid. Since

3C(r+4E) < M(r), r >I /Z,

(2Pt+) e-[- (-r) ln p - r ln (1l-p) - X(r) ]
Pr(e) 4 (ZPtl) e[p (85)

Finally, for this choice of E, from (77),

p= ZeC n
1  (n.t) (q-l)t+l-d

n[C 1 + 1 -E ln (q-l)]+ [C1 +lnZ]

in which we have used d - 1 - t nE and

ti (n~t) K<n( '-) <en"

t e4e

Thus Pt 4 1 if

1 C I + ln 2

ln(q-1) > C + I +2]

in (1-p) - in p
> [ZC 1 + 1 + In2], (86)

in which we have used n> 1 and substituted for E by Eq. 84. Defining C4  2C 1 + 1 -ln 2,

(84) can be written

q~1 p I -P 4/ 6 . (7

q - (87)

When this is satisfied,

Pr(e) 3 e - n[- (l-r) in p - r in (1-p) - (r) -6] (88)
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as was to be proved. Equation 88 holds if (76), (81), and (87) are simultaneously satis-

fied, which is to say if q - 1 > Q, with

(1-r) 1-p(l-r) ['-p1 4 /

m 2 -'1's 2, L (89)

Q.E.D.

NRFrom this result we can derive a corollary that applies to the case in which q = e
p -NE, for which we have found the coding theorem bound, whsn E < R (Eq. 69),

Pr() < - n N E ( l - r ) .

Pr(e) 4

COROLLARY: For E < R, r > 1/2, and any 6' > 0, there exists an N such that for

all N ; N0 , use of a ReEd-Solomon code of dimensionless rate 3 and length n < q - 1
with maximum-likelihood decoding on an ideal superchannel with probability of error

p.= E and q = eNR inputs will yield an over-all probability of error bounded by
SPr(e) 4 3e - n N [E ( 1 - r )- S' ] .

Proof: The proof follows immediately from the previous theorem if we let 6 =

N6' - WCr), which will be positive for

N >---- (90)

For then, since -r In (1-p) > 0,

Pr(e) 4 3 e - n ( Il-rNE+nN6'" (91)

which was to be proved. Equation 91 holds if Eq. 90 holds and if, by substituting in

Eq. 89,

OR{ r 1 - e- NE (1-r)2  e_ RN6'c(r)N  > max 2-' 1 2eN (ri2, ee-- . (92)
2r I -NE 2 L -_Te (2r-1) e

The first condition of (92) is satisfied if

N >1ln2 1-r (93)r - 1(

the second, if

NR '- [E + in 2 (r)(94)

in which we have used 1 - e - N E  1. Equation 94 car be rewritten
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SU-4

In 2• i (Zr-i) z

iN > - (95)
R-E

Here, we assume R > E.
The third condition of (92) is satisfied ifF 1C4

NR > NE C4 - (96)LN6' -Cr)

which can be rewritten

: EC4/R + 3(r)

N > 6' " (97)

* Equations 93, 93, 95, and 97 will be simultaneously satisfied if N > No , where

! N -rnax- -In 2 2 1rI R -E 2 In2Z-~, R' |
00 _r- E (-I R61

Q.E.D.

This result then provides something for communication theory which was lacking pre-

viously: a limited variety of combinations of very long codes and channels which approx-

imate the performance promised by the coding theorem.

For our present interest, this result tells us that cnce we have decided to concatenate

and to treat errors in the su-erchannel as equiprobable, a Reed-Solomon code is entirely

satisfactory as an outer code. If we fail to meet coding-theorem standards of perform-

ance, it is because we choose to use minimum-distance rather than maximum-likelihood

decoding.

b. Minimum-Distance Decoding

If we use minimum-distance decoding, decoding errors occur when there are d/Z =

n( l-r)/2 or more symbol errors, so by the Chernoff bound

Pr(e) 4 e (.) (98)

One way of interpreting this is that we need twice as much redundancy for minimum-

distance decoding as for maximum-likelihood decoding. Or, for a particular dimension-

less rate r, we suffer a loss of a factor K in the error exponen., where K goes to 2 when
NR -NEp is very small, and is greater than 2 otherwise. Indeed, when q = e , p = e - , and

E < R, the loss in the exponent is exactly a factor of two, for (98) becomes

Pr(e) e- •- n N E ( I- r )/ 2 .
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5.4 EFFICIENCY OF TWO-STAGE CONCATENATION

By the coding theorem, we know that for any memoryless channel there is a code of

length N' and rate R' such that Pr(e) < e- N'E(R'), where E(R') is the error exponent of

the channel. We shall now show that over this same channel there exists an inner c-ode

of length N and rate R and an outer code of length n and dimensionless rate r, with
-N'Ec(R')

nN = N' and rR = R', which when concatenated yield Pr(e) 41 e C . We define the

efficiency -q(R') -Ec(R')/E(R'); then, to the accuracy of the bound, the reciprocal of the

efficiency indicates how much greater the over-all length of the concatenated code must

be than that of a single code to achieve the same performance, and thereby measures

the sacrifice involved in going to concatenation.

For the moment, we consider only the unexpurgated part of the coding-theorem

bound, both for the raw channel and for the superchannel, and we assume that the inner

decoder forwards no reliability information with its choice. Then there exists a code

of length N and rate R for the raw channel such that the superchannel will have eNR

inputs, eNR outputs, and a transition probability matrix pji for which

Pr(e) = e - N R  Pji < e-NE(R) (99)

Applying the unexpurgated part of the coding theorem bound5 to this superchannel,

we can assert the existence of a code of length n and dimensionless rate r (thus

rate r In (eNR) - rNR) which satisfies

-hE(r, p ji)
Pr(e) 4< e

where
t

rax
E(r, p ji) 0 I IE P(P, p ji)-prNRI

and

1+p
E l ,P ) -ln .. -- _1 P

j~ 4

We cannot proceed with the computation, since we know no more about the matrix Pji

than is implied by Eq. 99. We shall now show, however, that of all transition probabil-

ity matrices satisfying (99), none has smaller E(r, Pji) than the matrix Pji defined by
e-NE(R),

e i j

,,, e-NE(R) i j
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which is the transition probability matrix of the ideal superchannel with eN R inputs, and

Pr(e) = e N E (R) . In this sense, the ideal superchannel is quite the opposite of ideal. (In

a sense, for a fixed over-all probability of symbol error, the ideal superchannel is the

minimax strategy of nature. while the assumption of an ideal superchannel is the corre-

sponding minimax strategy for the engineer.)

First, we need the following lemma, which proves the convexity of E (P, ) over the

convex space of all transition probability matrices.

LEMMA: If p.. and q.. are two probability matrices of the same dimensionality, for

XE (P, p.i + (I-X) E (P, q.) E (P, Xp..+(1-XL)q.ip I 31 pI 31 pJ 1

PROOF: The left-hand side of the inequality is

Ep 1 P - jii~, l - (1-
I + p  I - Iqp[+P (I )X1+P

_ .. ..']I p 1 +p p

= Pik~j ) -' l'  + Pil-pji } l- ' j-

E-ln L,

(P, Xp i +(! ill-kqji) = Rkj (-L~i)-nR

Jj

while the right iseult sta ewe h rtmtcadgoercmas n h

But

L X pipji + (1 -X) ZJZ ji

P [+p + P( qi + +
Li

LPi(Xpji+(l-k)qji)1+P] R,

where thv first inequality is that between the arithmetic and geometric means, and the
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second is Minkowski's inequality, which is valid because 0 < 1/1+p 4 1. But if L 4 R,

-In L > -In R, so the lemma is proved.
From this lemma one can deduce by induction that E P, Pji) EP (P, pji), where the

bar indicates an average over any ensemble of transition probability matrices. The

desired theorem follows.

THEOREM: If eNR z P- . K 4 eNE(R) then~~i j~i PJi

. E(r, P.i ) > E~r,?;,i),

where

-NE(R) alp ii = I - e all i

e -NEIR)

ji =NR 1

PROOF: Let e - N R be the particular assignment P in which P = e-NR all i, which

because of its symmetry is clearly the optimum assignment for the ideal superchannel.

Then

E(r, pji) =maxE (P, p.. ) - prNR
.,P 31

PpP

E (eNR p) - prNR, O < p 4 1.

Suppose we permute the inputs and outputs so that the one-to-one correspondence between

them is maintained, thereby getting a new matrix P', for which evidently E (e-NR. P.i)

E (e - NR, Pji). Averaging over the ersemble of all (aNR)! such permutations, and noting

that

Pii = I - K. all i

S K j,Pji = NR 1

we have

Ep(e-N j)Ep(e- Pji/ E(e Pji)

Obviously, EP (e N , ) < Ep(e -  ji) since K 4 eNE(R) so that finally

E(r, pj) > max E eNR,-j) p rNR =
0<p<l ip
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In Section II we computed the error exponent for this case, and found that J
e_nNE •

Prle) e (r, R),

S where
E E*(r, R) = (1-r) min {R, E(R)}. (100)

To get the tightest bound for a fixed over-all rate R', we maximize E (r, R) subject

to the constraint rR = R. Let us define RE to be the R satisfying RE = E(RE); clearly,

we never want R < RE, so that Ec(R') can be expressed

Ec(R') = max E(R)(l-r). (101)~rR=R'

R RE

The computational results of Section VI suggest that the r and R maximizing this

expression are good approximations to the rates that are best used in the concatenation

of BCH codes.

Geometrically, we can visualize how Ec(R') is related to E(R) in the following way

(see Fig. 9). Consider Eq. 100 in terms of R' for a fixed R:

E*(RI) = ( Rt min {R, E(R)}.

This is a linear function of RI which equals zero at R' = R and equals min {R, E(R)} at

R' = 0. In Fig. 9 we have sketched this function for R = R1 , R, and R3 greater than

REr for REs and for R4 less than RE. Ec(R') may be visualized as the upper envelope

of all these functions.

As R' goes to zero, the maximization of (101) is achieved by R = RE , r - 0, so that

EC(O) = E(RE) = RE.

Since the E(R) curve lies between the two straight lines L 1 = E(0) and L= E(0) - R, we

have

E(0) > E(RE) E(0) - RE

or
11

The efficiency il(O) = EC(0)/E(0) is therefore between one-half and one at R' =0.

As R' goes to the capacity C, EC(R') remains greater than zero for all R' < C, but

the efficiency approaches zero. For, let E(R) = K(C-R) near capacity, which is the

normal case (and is not essential to the argunent). Let R' = C(1-E), . > 0; the maxi-

* mum of (101) occurs at R = C(1-20/3), where EC(R) = 4EKC2/27 > 0. Hence j(R') =

4E/27, so that the efficiency goes to zero as R' goes to C. The efficiency is propor-

tional to (I-R'/C), however, which indicates that the drop-off is not precipitous. Most
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Fig. 9. Derivation of Ec(R') from ECR'.

important, this makes the coding theorem so provocative that exponential decrease in

Pr(e) at all rates below capacity is preserved.

We know from the previous discussion that over that part of the curved segment of

Ec(R') for which r > 1/2, which will normally be [when E(RE) is on the straight-line seg-

ment of E(R)] the entire curved segment, Reed-Solomon codes are capable of achieving

the error exponent Ec(R') if we use maximum-likelihood decoding. If we use minimum-

distance decoding, then we can achieve only

-nNEm(R')

Pr(e) < e m

where

E m(R') = max E(R) I-r)/2.
rR=R'

Over the curved segment of Ec.(R), therefore, E m(R') is one-half of Ec(R'); below

this segment E m(R') will be greater than Ec(R')/2, and, in fact, for RI = 0

E m(0) = E(0)/Z

which will normally equal EC(O). Thus mininum-distance decoding costs us a further

iacLor of one-half or better in efficiency, but, given the large sacrifice in efficiency

already made in going to concatenated codes, this further sacrifice seems a small

enough price to pay for the great qimplicity of minlmum-distanc2 decoding.
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Fig. 10. E(R) curve for original channel.

In Fig. 10 we plot the concatenated exponent Ec(R'), the minimum-distance expo-

nent Em(R'), and the originail error exponent E(R') of a binary symmetric channel with

crossover probability . 01. The efficiency ranges from 1/2 to approximately . 02 at 9/10

of capacity, which indicates that concatenated codes must be from 2 to 50 times longer

than unconcatenated. We shall find that these efficiencies are roughly those obtained in

the concatenation of BCH codes.

It is clear that in going to a great number of stages, the error exponent approaches

zero everywhere, as we would expect.

We have not considered the expurgated part of the coding-theorem bound for two

reasons: first, we are usually not interested in concatenating dnless we want to signal

at high rates, for which complex schemes are required; second, a lemma for the expur-

gated bouna similar to our earlier lemma is lacking, so that we are not sure the ideal

superchannel is the worst of all possible channels for this range. Assuming such a

lemma, we then find nothing essentially new in this range; in particular, 'q(0) remains

equal to 1/2.

Finally, let us suppose that the inner decoder has the option of making deletions.

Since all deletions are equivalent, we lump them into a single output, so that now
NR. NR

the superchannel has e inputs and 1 + e outputs. Let the error probability
-NE -ND

for the superchannel be e and the deletion probability e ; assuming the ideal
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superchannel with deletions again the worst, we have

Pr(e) < e-nE(r)

where

E(r) =max E (P) - pNRr

P ,P

= max E (eNR) NR
O<p<l P

and

[ [ 1 P NEl N}
E(e - NR) -ln IeNR [e-NR(IeNEeND I+P + e-NRleNR-1)+P e + + e-ND

AsN - co, E P(eNR) min (E, D, pR). But, by adding deletion capability, we can only

increase the probability of getting either a deletion or an error, so that

eNE(R)-< e-NE + e- N D

and thus min (D, E) > E(R), so that

min (D, E, p R) > min (E(R), p R).

Thus a deletion capability cannot improve the concatenation exponent Ec(R'), although

it can, of course, bring the minimum-distance exponent Em(R') closer to Ec(R'), and

thereby lessen the necessary block length by a factor less than two.

i
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VI. COMPUTATIONAL PROGRAM

The theoretical results that we have obtained are suggestive; however, what we

really want to know is how best to design a communic-ation system to meet a specified

standard of performance. The difficulty of establishing meaningful measures of com-

plexity forces us to the computational program described here.

6.1 CODING FOR DISCRETE MEMORYLESS CHANNELS

We first investigate-the problem of codiigfor a memoryless channel for which the-

modulation and demodulation have already been specified, so-that what we see is a- chan-

nel with q inputs, q outputs, and probability of error p. If we are given-a desired over-

all rate R' and over-all probability of decoding error Pr(e), we set ourselves the task

of constructinga list of different coding schemes with rate R' and probability of decoding

error upperbounded by Pr(e).

The types of coding schemes which we contemplate are the following. We could use

a single BCH code on GF(q) with errors-only minimum-distance decoding. Or, We could

concatenate an RS outer code in any convenient field with an inner BCH code. In the latter

case, the RS decoder could be set for errors-only or modified deletions-and-errors

decoding (cf. sec. 4. 6b); we do not consider generalized minimum-distance decoding,

because of the difficulty of getting the appropriate probability bounds. If the outer decoder

is set for errors-only decoding, the inner decoder is set to correct as many errors as it

can, and any uncorrected word is treated by the outer decoder as an error. If the outer

decoder can correct deletions, however, the inner decoder is set to correct only up to

t 1 errors, where t 1 may be less than the maximum correctable number t0 , and uncor-

rected words are treated by the outer decoder as deletions.

Formulas for computing the various probabilities involved are derivedind discussed

in Appendix B. In general, we are successful in findingformulas that are both valid upper

bounds and good approximations to the exact probabilities required. The only exception

is the formula for computing the probability of undetected error in the:-inner decoder,

when the inner decoder has the option of deletions, where the lack of good bounds on the

distribution of weights in BCH codes causes us to settle for a valid upper bound, 'but not

a good approximation.

Within this class of possible schemes, we restrict our attention to a set of 'good'

codes. Tables 1-6 are representative of such lists. Tables 1-4 concern a binary sym-

metric channel with p = . 01; the specifications considered are Pr(e) = 10- 12 for

Tables 1-3, Pr(e) - 10- 6 for Table 4, R' = .5 for Table 1, .7 for Tables 2 and 4, and

.8 for Table 3. (For this channel C = . 92 bits and R = . 74.) Table 5 concerns a

binary symmetric channel with p = . 1 (so that.C = . 53 and R = . 32); the specifica-comp
tions are R = . 15 and Pr(e) = 10- 6. Table,6 concerns a 32-ary channel with p = .01 (so

that C = 4. 86 and Rcomp = 4. 11); the specifications are RI = 4, and Pr(e) = 10- 1 2

Since the value of a particular scheme depends strongly upon details of implementation
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Table 1. Code3 of rate -5 that achieve Pr(e) 6 10- 12 on a binary symmetrz;c channel
with crossover probability p =01.

(1N.K) D T (nk) d t Nfl Comment

(414,207) 51 25 ... 414 one stage

.( 15.11 ) 3 1 (76,52) 25 12 1140 e-o

(31,21 ) 5 2 (69,51) 19 9 2139 e-o

( 63.36 ) 11 5 (48,42) 7 3 3024 'best' e-o

( 63, 39 ) 9 4- (52.42) 11 5 3276 e-o

( 63,45 ) 7 3 (54.38) 17 8 3402 e-o

(127,71 ) 19 9 (38,34) 5 2 4826 e-o

(127,78 ) 15 7 (33,27) 7 3 4191 e-o

(127,85 ) 13 6 (32, 24) 9 4 4064 e-o

(127.92) 11: 5 (46,32) 15 7 5842 e-o

(127, .)- 9 4 (62,40) 23 11 7874 e-0

( 31120 ) 6 2 (45,35) 11 5 1364 d&e

( 31,21 ) 5 1 (77,57) 21 4 2387 d&e

( 63,36 ) 11 4 (40,35) 6 2 2520 d&e

( 63,36 ) 11 3 (72,63) 10 1 4536 d&e

( 63,38 ) 10, 4 (41,34) 8 3 2583 d&e

( 63.38 ) 10 3 (47,39) 9 2 4536 d&e

( 63.39 ) 9 3 (42,34) 9 4 2646 d&e

Notes -Tables 1-6

N(n) = length of inner (outer) code
K(k) = number of information digits
D(d) = minimum distance (d- 1 is the number of deletions corrected)
T(t) = maximum number, of errors corrected
nN = over-all block length
.Comment: e-o = errors-only, d&e = deletions-and-errors decoding in the

outer decoder.

76



Table 2. Codes of rate. 7 thai achieve Pr(e) 1071 on a binary symmetric channel
with crossover probability p - 01.

( N-.K ) D T ( nk ) d t MN Counent

(Z740,1918) 143 71 ... 2740 one stage

( 1 "7,99 ) 9 4 (530.476) 55 27 67310 e-o

(255,207) 13 6 (465,401 ) 65 32 118575 e-o

(255.199) 15 7 (29.262) 31 15 74460 e-o
(255. 191 ) 17 8 ( 306,26) 21 10 73030 e-o

(255,187 ) 19 9 ( 308.294) 15 7 75540 'besto e-o

( 127.98 ) 10 4 (324,294) 31 12 41148 e.&e

( 127.92 ) 11 4 (1277,1234) 43 5 162179 d&e

( 127.91 ) 1z 5 (1034.1059) Z5 10 137663 d&e

(255.199 ) 15 . 6 (214,192 ) 23 4 54570 d&e

(255,193 ) 16 6 ( 234,211 ) 24 3 59670 d&e

(z55,19Z) 16 7 (214,193) 2z 9 54570 d&e

( 255,191 ) 17 7 (214,20 ) 15 3 54570 d&e

(255,190 ) 18 7 (232,218) 15 3 59160 d&e

( 255,190 ) 18 8 ( 232,218 ) 15 7 59160 d&e

( 255,187 ) 19 8 ( 198,189 ) 10 3 50490 d&e

(255,186) 20 8 ( 224,215) 10 2 57120 d&e

Table 3. Codes of rate 8 that achieve Pr(e) 4 107 17 on a binary symmetric channel
with crossover probability p = 01.

( N,K ) D T ( n.k ) d t nN Comment

no single-stage code

(2047, 1695) 67 33 (1949, 1883) 67 33 3989603 e-o

(2047, 1684) 69 34 (1670, 1624) 47 23 3418490 'best' e-o

(2047,1673) 71 35 (1702, 1666) 37 18 3483994 e-o

(2047, 1662) 73 36 (2044,2014) 31 15 4184068 e-o

(2047, 1695) 67 31 (1477, 1427) 51 3 3023419 d&e

(2047,1695) 67 32 ( 866,856 ) 31 6 1813642 d&e

(2047, 1684) 69 32 (1234, 1200) 35 3 2525998 d&e

(2047, 1684) 69 33 ( 763,742 ) 22 5 1561861 d&e

(2047, 1673) 71 34 ( 804,787 ) 18 5 1645788 d&e

7
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Table 4. Ccdes of rate. 7 that achieve Pr(e) 4 10-6 on a binary symmetric channel
with crossover pr dob lify p, 01.

(NK) D T (nk) d t ON. Comment

(754,49) 49 24 .. 74 one staLe

(12.99) 9 4 (236,212) 25 1z 2997- e-o

(1Z7.93) 11 5 (475,459) 17 a 603Z5 e-o

(255,207) 13 6 (204.1?6) 29 14 5202G e-o

(255,199) 15 7 (136,122) 15 7 3460 e-o

(255,191) Z7 8 (123.115) 9 4 31365 fbestl e-o

(255,187) 19 9 (132, 126) 3 3360 e-o

(27,98) 10 4 (564,545) 20 2 71628 die

(127.92 ) A1 4 (140,,12,) 14 5 17730 d&e

(127,91) 12 5 (477.466) 12 4 60579 d&e

(255.206) 14 6 (128,111) 18 8 32640 d&e

(255,199) 15 6 (93,83) 11 2 24990 d&e

(255,198) 16 6 (102,92) 11 1 26010 d&e

(255, 198) 16 7 ( 92,83 ) 10 4 23460 dre

(255,191) 17 7 (92,86 ) 7 1 23460 d&e

(255,190) is 7 (100.94) 7 1 25500 d&e

(255,190) 18 8 (100.94) 7 3 25500 d&e

(255,187) 19 8 ( 88.84) 5 1 22440 d&e

(255,186) 20 8 (100,96) 5 1 25500 d&e

Table 5. Codes of rate. 15 that achieve Pr(e) 4 107 6o a binary symmetric channel
with crossover probability p =1.

(1. K) D T (nk) d t nN Comment

(511,76) 171 85 --- 511 one stage

(31,11) 1 5 ( 59,2 35 17 1829 e,-o

( 31,6 ) 15 7 (54,42) 13 6 1674 e-o

(63,18) 21 10 (51,27) 25 12 3213 e-o

( 63,16) 23 11 (35,21) 15 7 2205 e-o

(31,11) 11 4 (40,17) 24 5 1240 d&e

( 31,10) 12 4 (43,20) 24 4 1333 d&e

( 31,10) 12 5 ( 47,22) 26 10 1457 d&e

( 31,6 ) 15 5 (116,90) 27 2 3596 d&e

( 31,6 ) 3 6 (45,35) 11 3 1395 d&e
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Table 6.. Codes of rate 4 thIrt aehiev Pr(e) 1071Z n a 3-inpt symmetric cml
with Pit of error p = 01.

(N.K) D T ( n.k ) d t inN Comment

(540,432) 57 28 ... 540 one stage

(31,u") 5 2 (393.361) 33. 16 12183 c-o (both RtS)

(31,25) 7 3 (3SO,3?Z4) 27 13 100750 e-o

(148,125) 13 6 (341.323) 19 9 50468 e-o

(148.121) 15 7 ( 652.638) 15 7 964% e-o

(223.1%) 15 7 (245,223.) 23 11 5463S e-o

(223.192) 17 8 ( 193,184) 15 7 44154 e-o

(223,188) 19 9 196.186 ) 11 5 43705 e-o

(Z9. 267) 17 8 (24.217) 27 13 72414 e-o

(29,263) 19 9 ( 172,156) 7 8 51256 e-o

(298,259) 21 10 ( 11,139) 13 6 44998 e-o

(98,255) 23 11 ( 123,115 ) 9 4 36654 e-o

(Z98,251) 25 12 ( 120114) 7 3 35760 e-o

(31,26) 6 2 (434.414) 21 7 13454 d&e

(148, 1) 13 5 ( 266,ZSZ) 15 Z 39368 d&e

(148.123) 14 6 .( 375.361 ) 15 6 55500 d&e

(148,121) 15 6 ( 466,456 ) 11 2 68968 d&e

(223,196) 15 6 ( 168,153 ) 16 2 37464 d&e

(223, 192) 17 7 ( 128, 119 ) 10 2 28544 d&e

(298,263) 19 8 ( 107,97 ) 11 2 31886 d&e

(298, 259) 21 9 ( 89.8z ) 8 2 26522 d&e
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and the requiremenis of a particular system, we cannot say tha a particulr entry on

any of these lists is 'best' if minmum over-a'U block length is the overr criterion,

then a single stage of coding is the best so!Lvuo-; however, we see that using only a

single stage to ach-eve certain specifkations may require the correction of a great n =-

ber of errors, so that almost cea "iaf 1y at same polit the number o decoding com=u-

ations becomes prohbitive. Then the svings in bzer f computations which

coA-aenai'n affords may be qmte striing.

-._ocg the concatenated codes with errors-only de.oding in the outer decoder, the
'best' code is not too dficuh to identify pproz imately, si ce the codes that correct the

fewest errors over all tend also to be those with comparatively short block les.rgus.

Tables 7 and 8 disply sach lbest' codes for range of rates and Pr~e) = !0-  2n 10-6.

on a BSC with p = 01; the best single-st2ge codes are also shown for comparison.

a. Discussion

Frem these tables we may draw a nmnber of conclusions, which we shall now

discuss.

From Tables 1-6 we can evalcate the effects of using deletions-and-errors rather

tha errors-only decoding in the outer decoder. These are

1. negl4ible effect on the inner code;

2- reduction of the legth of the outer code and hence the over-all block leng-h by a

factor less than two; and

3. appreciable savings in the number of computations required in the outer decoder.

Fram comarison of Tables ? and 4 and of 7 and 8 we find that the effects of squaring

the required probability of error, a, moderately high rates, are

1. negligible effects on the inner code; and

2. increase of the length of the outer code and hence the over-- 11 block length by a

factor greater than two.

We conclude that, at the moderately high rates where concatenation is most useful,

the complexity of the inner code is affected only by the rate required, for a given

channel

These conclusions may be understood in the light of the following considerations.

Observe the columns in Tables 7 and 8 which tabulate the probability of decodirg error

for the inner decoder, which is the probability of error in the superchannel seen by the

outer decoder. This probability remains within a narrow range, approximately 10-

10 -, largely independent of the rate or over-all probability of error required. It seems

that the only function of the inner code is to bring the probability of error to this level,

at a rate slightly above the over-all rate required.

Thus the only relevant question for the design of the inner coder is: How long a block

length is required to bring the probability of decoding error down to 10- 3 or so, at a rate

somewhat in excess of the desired rate? If the outer decoder can handle deletions, then

we substitute the probability of decoding failure for that of decoding eiror in this
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qu n, but without grealy affecting the answer, since getting suffici.ent minimum dis-
*tance at the desired rate is the crux of the problem.

Once the inner code has achieved this moderate probablity of error, the function of

the outer code is to drive the over-a1 probabilty of error down to the desired value, at

a dimensionless rate near one.

The arguments of section 5. 4 are a useful guide to understanding these results.

Recal- tha when the probab-lity of error in the superchannel was small, the over-all

probablity of error was bounded by an expression of the form

P-re) 4 e

Once we have made the su erchannel probabiity of error 'sma'll (apparently -10-3), we

then achieve the desired over-all probability of error by increasing n. To square the

Pr(e), we would expect to have te dosble x. Actualfly, n increases by -more than a factor

of two, which is due to our keeping the inner and outer decoders of comparable

complexity.
That the length of the outer code decreases by somewhat less than a factor of two

when deletions-and-errors decoding is permitted is entirely in accord with the results

of section 5.4. Basically, the reason is that to correct a certain number of deletions

requires one-half the number of check digits in the outer code as to correct the same

wm ber of errors, so that for a fixed rate and equal probablities of deletion or error,

the deletion corrector will be approximately half as long.

Finally, we observe that, surprisingly, the ratios of the over-all length of a con-

catenated code of a given rate to that of a single-stage code of the same rate are given
q-ualftatively by the efficiencies computed in section 5. 4 - surprisingly, since the bounds

of that section were derived by random-coding arguments whereas here we consider

BCH codes, and since those bounds are probably not tight. The dimensionless rate of

the outer code also agrees approximately with that specified in section 5.4 as optimum

for a given over-all rate.

In summary, the considerations of section 5.4 seem to be adequate for qualitative

understanding of 1-he performance of concatenated codes on discrete memoryless chan-

nels.

6. 2 CODING FOR A GAUSSIAN CHANNEL

We shall now take up the problem of coding for a white additive Gaussian noise chan-

nel with no bandwidth restrictions, as an example of a situation in which we have some

freedom in choosing how to modulate the channel. R

One feasible and near-optimum modulation scheme is to send one of M-- 2 o bior-

thogonal waveforms every T seconds over the channel. (Two waveforms are orthogonal

if their crosscorrelation is zero; a set of waveforms is biorthogonal if it consists of

M/2 orthogonal waveforms and their negatives.) If every waveform has energy S, and
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the Gaussian noise has two-sided spectral density No/2. then we say the power signal-

to-noise ratio is SIN 0 T. Since the information in any transmission is %0 bits, the infor-

mation rate is RIT bits per second; finaly, we have the fact that the dimensionless

quantity signal-to-noise ratio per information bit is S/(NoRo).

Sl( o ) is commonly taken as the criterion of efficiency for signaling over unlimited
- 39bandwidth white Gaussian noise channels. Coding theorem arguments show that for

reliable communication it must exceed In 2- 7. Our objective Will be to achieve a

given over-all probabilfty of error for fixed S/I(NR 0o). with minimum complexity of

instrumentation.

The general optimal method3 9 of demodulating and detecting such waveforms is to

set up a bank of M/2 matched filters. For example, the signals might be orthogonal

sinusoids, and the filters narrow-bandpass filters. In some sense, the complexity of

the receiver is therefore proportional to the number of matched filters that are

required - that is, to M. The bandwidth occupied is also proportionai to lkL

Another method of generating a set of biorthogonal waveforms, especially interesting

for its relevance to the question of the distinction between modulation and coding, is to

break the T-second interval into (ZT/M)-sec subintervals, in each of which either the

positive or the negative of a single basic waveform is transmitted. If we make the cor-

respondences (positive--.- 1) and (negative-,--- 0), we can let the M sequences be the

code words of the (M/2, R) binary code that results from adding an over-all parity

check to an (M/2-1. Ro) BCH code; it can then be shown that the M waveforms so gen- 4
erated are biorthogonaL If they are detected by matched filters, then we would say that

we were dealing with an M-ary modulation scheme. On the other hand, this (M/2, R)
0

code can be shown to have minimum distance 14/4, and is thus suitable for a decoding

scheme in which a hard decision on the polarity of each (ZT/M)-sec pulse is followed by

a minimum-distance decoder. In this last case we would say that we were dealing with

binary modulation with coding, rather than M-ary modulation as before, though the trans-

mitted signals were identical. The same sequences could be decoded (or detected) by

many methods intermediate between these extremes, so finely graded that to distinguish

where modulation ends and coding begins could only be an academic exercise.

We use maximum-likelihood decoding for the biorthogonal waveforms; the corre-

sponding decision rule for a matched filter detector is to choose the waveform corre-

sponding to the matched filter whose output at the appropriate sample time is the greatest

in magnitude, with the sign of that output. Approximations to the probability of incorrect

decision with this rule are discussed in Appendix B. In some cases, we permit the

detector not to make a decision - that is, to signal a deletion - when there is no matched

filter output having magnitude greater by a threshold D or more than all other outputs;

in Appendix B we also discuss the probabilities of deletion and of incorrect decision in

this case.

We consider the-following possibilities of concatenating coding with M-ary modulation

to achieve a specified probability of error and signal-to-noise ratio per information bit.
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J First, we consider modulation alone, with Rchosen large enough so the specifications

are satisfied. Next, we coasider a single stage of coding, with a number of values of

R 0O, and with both errors-only or deletions-and-errors decoding. (If r is the dimension-

less rate of the code, the signal-to-noise ratio per information bit is now S/(NoRor).)

Finally, we co!isider two stages of coding, or really three-stage concatenation.

Tables 9-11 are representative of the lists that were obtained. Table 9 gives the

results for S/(NoRr) = 5, Pr(e) = 10-12; Table 10 for S/(NoRo r ) = 2, Pr(e) = 10-12; and

Table 11 for S/(NoR r) = Z, Pr(e) = 0- 3 . Again, one cannot pick u-mmbiguously the

'best' scheme; however, -the schemes in which M is -large enough so that a single Reed-

Solomon code of length less than M can meet the required specifications would seem to be

very much the simplest, unless some considerations other than those that we have con-

tempjatcd heretofore were significanL

To organize our information about these codes, we choose to ask the question: For

a fixed M and specified Pr(e), which RS code of length M-I requires the minimum signal-

to-noise ratio per information bit? Tables 12-15 answer this question for Ro  9 (after

which the computer overflowed), afid for Pr(e) = 10 - , 10- , 10- , 01 20 . Except in,

Table 15, we have considered only errors-only decoding, since Table 15 shows that, even

for Pr(e) = 10- 12, allowing deletions-and-errors decoding improves things very little,.

to the accuracy of our bounds, and does not affect the character of the results. The

S/(No0Ro) needed to achieve the required'probability of error without coding, for R o - 20,

is also indicated.

a. Discussion

Let us first turn out attention to Table 9, which has the richest selection of diverse

schemes, as well as being entirely representative of all of the lists that we generated.

Certain similarities to the lists for discrete memoryless channels are immediately evi-

dent. For instance, the use of deletions allows some shortening and simplification of

the outer decoder, though not as much as before. Also, for fixed M, going to two stages

of coding rather than one lessens the computational demands on the decoders, at the

priceof much increased block length.

It seems clear that it is more efficient to let M become large enough so that two

stages of coding are unnecessary, and in fact large enough that a single RS code can be

used. As M falls below this size, the needed complexity of the codes would seem to

increase much more rapidly than that of the modulationdecreases, while for larger M

the reverse is true. The explanation is that a certain M is required to drive the proba-

bility of detection error down to the point where coding techniques become powerful, for

S/(N'Ro) somewhat less than the final signal-to-noise ratio per information bit. Once

* this moderate probability has been achieved, it would seem to be wasteful to use modu-

lation techniques to drive it much lower by increasing M. Tables 10 and 11 illustrate this

point by showing that this critical M is not greatly affected by an enormous change in

required Pr(e).
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Table 9. Modulation and coding that achieve Pr(e) 4 10712 with a signal-to-noise ratio

per information bit of 5. an a Gaussian channel

M (N.K) D T (n.k) d t kKR d/b Comment

16334 ... -- 14 571.4 no coding

64 (21,15) 7 3 ... 90 7.47 e-o

64 (20.12) 9 4 . 72 8.89 e-o

32 ( 26,18 ) 9 4 ... 90 4.62 e-o

32 (26,16) 11 5 ... 80 5.20 e-o

16 (155,136) 11 5 ... 544 2.28 e-o

16 (90,67) 13 6 ... 268 2.69 e-o

16 (85,58) 15 7 ... 23Z 2. 93 e-o

16 (80,50) 17 a ... 200 3.20 e-o

16 (75,43) 19 9 .. 172 3.49 e-o

8 (236,184) 21 10 ... 552 1. 71 e-o

8 (201,138) 25 12 .. 414 1.94 e-o

8 (197,124) 29 14 ... 372 2. 12 e-o

2 (511,358) 37 18 ... 358 1.43 e-o

2 (481,310) 41 20 ... 310 1.55 e-o

z (461,254) 51 25 ... 254 1.81 e-o

64 (43,37) 7. 1 .. 222 +6.20 d&e

64 (,41,33 ) 9 1 ... 198 6.63 d&e

64 (26,22) 5 2 .. 132 6.30 d&e

64 ( 19,13 ) 7 2 ... 78 7.79 d&e

64 (22,14) 9 2 ... 84 '8. 38 d&e

64 (18,12) 7 3 ... 72 8.00 d&e

32 (29,23 ) 1 2 .... 115 4.03 d&e

32 ( 30,22 ) 9 2 ... 110 4.36 d&e

32 (25, 19) 7 3 o.. 95 4.21 d&e

32 ( 22, 14) 9 3 .... 70 5.03 d&e.

16 (127,108) 11 3 ... 43 2.35 d&e

16 '(117,94 ) i3 3 ... 376 2.49 d&e

16 ( 81,62 ) 1 4 ... 248 2.61 d&e

16 (79,56) 13 4 ... 224 Z.82 d&e

i6 ( 73,50 ) 13 6 ... 200 2. 92 d&e

16 ( 15 '11 ) 5 2 (25,21) 5 2 924 3.25 e-o

8 ( 43,36 ) 5 2 (77,69) 9 4 7452 1.78 e-o

8 ( 48,37 ) 7 3 (48,42) 7 3 4662 1.98 e-o

8 ( 63,49 ) 9 4 (31,27) 5 2 3969 1.97 e-o

z ( 63,45') 7 3 (92, 80) 13 6 3600 1.61 e-o

2 ( 63,39 ) 9 4 (92,82) 11 5 3198 1.81 e-o

2 ( 63,36 ) 11 5 (63,55) 9 4 1980 2.00 e-o

Notes: Tables 9-11.

N, K, D, T, n, k, d, t have been defined in Section I
M = number of biorthogonal signals transmitted
kKR° = total bits of information in a block

d/b = dimensions required (nNM/(2kKRo)) per information bit.
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Table 10. Modulation and coding that achieve Pr(e) 10-  with a signal-to-noise ratio
per information bit of 2, on a Gaussian channel.

-M (N,K) D T (n,k) d t Comment

512 (211,167) 45 22 ... e-o

512 (261, 209) 43 21 ... e-o

512 (311,271) 41 20 .... e-o

256 (255,195) 61 30 .. e-o

128 (127,97 ) 31 15 (127,119) 9 4 e-o

128 '(127,-99 29 14 (127,117) 11 5 e-o

128 (127, 101) 27 13 (127, 124) 4 0 d&e

128 (127, 104) 24 11 (127, 122): 6 0 d&e

128 (127, 104) 24 10 (127, 120) -8 0 d&e

Note: The special RS bound on weights in section 3. 3a has been used to compute prob-
abilities for the last three codes. With the general bound of Appendix B, it
appears that deletions are no help.

Table 11. Modulation and coding that achieve Pr(e) 4 10-3 with a signal-to-noise ratio
per information bit of 2, on a Gaussian channel.

M (N,K) D T (n,k) d t Comment

16384 ...... no coding

'256 (37,27) 11 5 ... e-o

256 (45,37) 9 4 ... e-o

128 (48,34) 15 7 ... e-o

128 (50,38) 13 6 ... e-o

64 (895,719) 91 45 ... e-o

Note: Deletions are no help.

86



Tables 12-15. 'Minimum S/(NoR r) achievable on a Gaussian channel

Table 12. Table 13. Table 14.
Pr(e) = 10 Pr(e) = 106. Pr(e) = 10 - .

Ro  no code RS code A no code RS code t no code RS code t

1 4.78 I. 30 17.-98
2 5.42 11.96 18.66
3 4. 26 4.23 1 8.68 7.34 1 o13. 16 -10.42 1
4 3.57- 3.11 3 6.92 4.59 3 10. 28 6.01 3
5 3.12 2.41 5 5.83 3.19 5 8.52 3.88 6
6 2.81 2.02 9 5.09 2.44 10 .7.34 2.80 11
7 2.59 1.77 18 4_56 2.01 19 6.49 2.21 19.
8 2.41 1.6i 33 4.16 1.76 34 5.85 1.88 35
9 2.28 1.50 62 3.85 1.60 64 5.35 1.67 65

10 2.16 3.60 4.95
11 .2. i8 3.40 4.63

12 2.11 3.23 4.35
14" 2.00 2.96 3.93
16* 1.92 2.76 3.61
18 1.85 2. 60 3.36

,20 1-80 2.48 3. 16

Table 15. Pr(e)= 1

R no code RS code t RS code (d&e)

1 24. 74%

2' 25.42
3 17. 67 13. 53 1 .0000002 13.60

4 13.67 7.45 3 .000 i6.86
5 11.23 4.54 6 .002 4.25

6 9., 60 3.13 11 .009 3.02

7 8.43 2.40 20 .02 2.38

8 7.55 1.98 36 .036

9 6.86 1.73 67 .,05
10 6.31

11* -5. 86

12 5.49

14* 4.96

16* 4.46

18 4.11

20 3.84

Notes: Tables 12-15.

Ro = log 2 M
no code = minimum signal-to-noise ratio per information bit achievable without coding
RS code = minimum signal-to-noise ratio per information bit achievable with an RS code

of length M- 1
t = number of errors which the RS code must correct
RS code (d&e) = minimum signal-to-noise ratio per information bit achievable by an

RS code correcting t errors and 2t deletions.
*For these values of R a weaker probability bound was used (see Appendix B).
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I
Since the RS codes are the most efficient of the BCH class wii respect to the num-

ber of check digits required to achieve a certain minimum distance and hence error-

correction capability, another important -effect of increasing M is to make the symbol

field GF(M) large enough that RS codes of the necessary block lengths can be realized.

Once X is large enough to do this, further increases result in no further increase of

efficiency in this respect.

Tables 12-15 are presented as much for reference as for a source of further insight

T It is interesting to note that for a givep M, the same RS code is approximately optimum

over a wide range of required Pr(e). No satisfactory explanation for this constancy has

been obtained; lest the reader conjecture that there might be some universal optimality

to these codes, however, it might be mentioned that the same tables for a different-type

of probability distribution than the Gaussian show markedly different codes as optimum.

Table 15 includes the superchannel probabilities of error seen by the outer coder; they

are somewhat higher than the comparable probabilities for the discrete memoryless

channel, 10--10 - 3 , but remain in the same-approximate range.

6.3 SUMMARY

A most interesting conclusion emerges fromehese calculations. A distinct division

of function between the outer code and the inner stages - of modulation, or inner- coding,

or perhaps both -is quite apparent. The task of the inner stages, while somewhat

exceeding the specified rate or S/(NoR 0 ), is to turn the raw channel into a superchannel

with moderate (10-2-10 "4 ) probability of error, and enough inputs so that an RS code

may be used as the outer code. The function-of the outer code is then to drive the over-

all probability of error as low as desired, at a dimensionless rate close enough to one

not to hurt the over-all rate or S/(NoRo ) badly.

For future work, two separate problems of design are suggested. The first is the

most efficient realization of RS encoders and decoders, with which we were concerned

in Section P. The second, which has been less explored, is the problem of efficient

realization of a moderate probability of error for given specifications. Communication

theory has previously focused largelyon the problem of achieving negligibly, small proba-

bilities of error, but the existence of RS codes solves this-problem whenever the problem

of achieving a probability of error less than 10-3 , say, can be solved. This last prob-

lem is probably better considered from the point of view of modulation theory or signal

design than coding theory, whenever the former techniques cqan be applied to the channel

at hand.
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APPEM A

Variations on the BCH Decoding Algorithm

A. 1 ALTEIATIVE DEERMIENATION OF ERROR VALUES

The point of view which led us to the erasure correction procedure of section 4. 5

leads us also to another method of determining the values of the errors. Suppose the

number of errors t has been discovered; then the t X t matrix M has rank t and there-

fore nonzero determinant. Let the decoder now determine the locator X. of any error.

If we were to guess the corresponding error value e. and modify the Tf accordingly, the
jo

guessed word would still h ie either t or (on the chance of a correct gues}) t- I errors;

thus the t X t matrix M1 formed from the new Tj would have zero determinant if and only

if the guess were correct. In general one would expect this argument to yield a polyno-

mial in e. of degree t as the equation of condition, but because of the special form of
30

M t this equation is only of first degree, and an explicit formula for e. can be obtained.

In symbols, let

S(m+n+s, m+n) S(m 0 -lns, m+n) -ej j0 (m +n+sm+n)'

Then

T' in; -~nsmne ad -X.S=d" (mo+n+s, io+n) d (mo+njs, m0 n)- d (mo+n+s, mo+n)
0 0' 00

m +n
=T- eoXo r d T -EX.

jo 0 d3 0  Jo 30

2t -2 2t -3 2t -t- 1

Tt_ 2  E joX jo0 Tt 03 Eo Xjo ... Tt-t-i- Ejo x Jo

2to-3 to-4 2t -t-2

M'= Tt o-3 - E joX jo Tto-4- E jo X jo T2tot-2 - E joXjo

2t -t-1 2t -t-2 _ o-zt
T to-t- joX j  Z 0-t-2 jo "0  T2to-2t Ejo Jo

Let us expand this determinant into 2t determinants, using the fact -that the deter-

minant of the matrix which has the vector (;+7) as a row is the sum of the determinants

of the two matrices which have a and b in that row, respectively. We classify the

resulting determinants by the number of rows which have E. as a factor.

There is one determinant with no row containing E.o, which is simply I MtI .
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There are t deterlinants with one row having E. as a factor. For exawple, the

first is 0

Zt -a Zt -3 2t--
- 0  0E X

4 O 0JOo JO JO
-,ojo° -ox ° -+oo

T2t- 3  Tto-4 .. Tat -2
0 0 0

Tat -t-I Tto-t-2 _2t
0o 0

There are ( determinants with two rows having E- ax a factor. The first is

Zto0 -a Zto t -t-I
-E. X. -E X. 1,,_1.X

JOJO Jojo - Jo
at -3 2t -4 at -t-2

-EX 0  -E. X. 0,_E.X
Joo0 JOj JO JO

TU 0o-4 T~to-5 ... T 2to~t_3

Tat Tzt T tt

Tto-t-I Tt-t- TZto-t

But in this determinant the first row is simply X. times the second, so that the deter-
JO -

minant is zero. Furthermore, in P11 such determinants with two or more r.,ws having

E. as a factor, these -rows will be some power of X_ times each other, so that all such
Jo JO

,determinants are zero.

The t determinants with one row having E as a factor are all linear in-E. , and
JOj

contain explicit powers of X. between 2t - at and 2to - 2; their sum is then
JO 00

2t -2t
-E X0Jo° Poo)

where P( X. ) is a polynomial of degree Zt - 2, whose coefficients are functions of the
" Jo]

original Tn" m

Finally, we recall that B° r X. 0 0(Xi ) and that IMtI= 0 if and only if e. isJ o o " 0  t

chosen correctly: from which we get the equation of condition

2t -2t
0: IM I =IMt -E joX jo0  P(x

so
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I(AAe--z=

ec easIy be orained as a by-prcdmct aff the redaction of M- The o-,y term in

the de=G-inmdor of (A- 1) that is rj* edl ca -Pumah!e is FIX) I Eng~~,f An: is

the deer= izat of the mstre raIni~g afler the P ro~ - 2d kcolmn ar-e str Ck

fro Mt , then

2t

P(X; I = ) 1-K ( Ia--, %k

A simPlification ozcurs when we are in a field of characteristic two. For note that

because aff the diagonal symmetry off M,~ A. n -v1 oss,.k = oAl.- P-_--yoM T. =. . .6.1-3 z .-_-mL..
entirely of pis- +_ = 0 umess - is even, when the entire sym euals A- re

j = I/?.- Then

t

P Ix Zt~)

Evaluation of the coefficients of P(X) in a field of characteristic two therefore involves

calculating t (t-l) X (t-1) determinants.

. 1 Example

Let the decoder have solved Eas. 50 as before, obtaining as a by-product I Mt a6.

Trivially,

A-22T 4 , A1 1  T 2 = 0.

14
The first error locator that it will discover is X 1 = a . Then, from Eq. A. 1,IMal __ _ _ _ _ _

a0Z 4
1 xXl+OdlXl+Oda)(A1IXI+AzZ - Zl +l 4 +a )a

II II
11

Similarly, when it discovers X2 = a
6

ae2=I 3 a.
a3(a7+a.aL +a l )a

Then it can solve for dI an-? d2 as before.

A. 12 Remarks

The procedure just described for determining error values is clearly applicable in

principle to the determination of erasure values. In the last case, however, qd must be
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re=laced by i the AL o ei -j sy==etri;c f.=Hons of the s - 1 erasmres

other than the one being co.-sered. and the original m:odiffed cyclc parity checiks TIby the .ed cyclic piy checks defined en the other s - I ersre loctors. Ts

means that the Zetr&nan'- appearing in Ea- A. 2. as well as I3 tI mrrrst be rewinpcted

to solve for each eriaste. !n co=has! to the solhtio for the error wa ,es. this ronises

to be fte&w.s amd ta i. f e .a2imst this method in pr-ctice. We mze=o this pssibity

on~ly becanse it does aJRcvv ca2Ie=aff !on c6 the correct v~dne of =n eras=-e, given only the

=ber of errors and the positoms of the other erasnres, at kwwledge of the lca-

tim~ onz val=n of the errors-. a care"iIfty which might be useful in some 2plicatf on.

The eraesure-correction schem=e with no errors (sectiown 4.5) can be seen to be a spe-

cia! case of this algoritb

A. 13 bnneezne=Latio

After we have located the errors, we have the option of solving for the error ra-ies

directly by (A. 1), or indirecly, by treating the errors as easres and usinhg Eq. 50.

if we choose the former -et-od, we need the t (v-1) X (t-1) deermainnts A-- ef (A.- 2).

In general1 this regaires

mUip t , which is rapidly too =any as t becomes large. There is a method of

calculating all A-- at once which seems feasible for moderate values of t- We assume
31

a field of characteristic two.

Let B be the determinant of the j X j matrifx which remins when all theth th .. Jth
rows and columns but the a1

t , a2 . - -, a- are struck from I In this notation

IM.] = ,3 and A--= B

The reader, by expanding B in terms of the minors of its last row and cancelling those

terms which because of symmetry appear twice, may verify the fact that

Bal. a,,... a-a--1B TTt o 2 aaBa Baa 2 " j-Z

2+ .a,--- -- I Zt0Za + ,a,-- Z

2to-2a2a 1, a2,. aj_ 3 , a- 1

The use of this recursion relation allows calculation of all A- with N multiplications
ji t

(not counting squares), where, for small t, Nt is Nz = 0 (see section A. 11), N3 = 3,

N4 = 15, N5 = 38, N6 = 86, N 7 = 172, N8 = 333, N9 = 616.

Once the A.. are obtained, the denominator of (A. 1) can be expressed as a single

polynomial E(X) by st multiplications; E(X) has terms in X , m0 + Zto -Zt -< m

m +Zt+s, or a total of t+s+ 1 terms. The value of E(X) can therefore be obtained for
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X = 1. p -- .. i tarm by the Chien method of solving for the roots of a X.and

i fact. these two c2alations may be dome simuH.nously. Whenever -- - is a root of

V (X) E(PP') Will anear- as the canrt. ivalke of ().Since I MtI will have been
obtained as a by--od-ct of solving for a eX), an Rn erszlon and a =Riilicauon will give

the error vane correspapding to X. = p Oter n(sZt) m ltiplicalions by pe e
Jo

invohed here. and s i =emory registers.

In order to cormrn.e the alternative metbods of finding error vanues, we simply com-

pare the ==-ber of uplications nee&dd in ez:h case, leaving aside all analysis of any

odber eqnipment or operations needed to realize eitber algorithmm We recall that the

values of a erasures can be determined w,:h approximately 2sis-!) munlip- i.cons. For

the first method, we need am :or- -aely N. multiplications to fnd the error values, and

and Zs(s-1) to find the cras!res; for thie second, 2(stt)(s-t-1) tso find both the erasures

and the errors. Using the values of Nt given earlier, we find that tbe former method

rec-ires fewer multiplications wben t 4 7. which suggests tht it ought to be considered

wbenever the mninimum distnce of the code is 15 or less.

A- 2 ALTERNATWVE DETERMINATION OF ERROR LOCATIONS

Continued development of the point of view expressed above gives us an alternative

method of locating the errors. If we tentatively consider a received symbol as an era-

sure, in a received word with t errors, then the resulting word has t errors if the trial

symbol was in error. The vanishing of thee t X t determinant Mm formed from the T 3

defined now by s + 1 erasure locators then indicates the error locations. The reader

may verify the fact that if X_ is the locator of the trial symbol,
Jo

03TO -- T~

and [Tt_1 -X JoTZt o Z TZt 0 Z- X30 T 2t- 3  ... T~t~ X oT ti

T0r -- l ° - -  j-zt°-3 2t -3 XJT-4 ' T-t-l - X- To -zt-t-2

0 o 0 0 0 0 0o 0
to-t -XoTt-t- Tato-t-1 -XjoTzto-t-2 """ Tt-t+i XjoT 2 t-2t

If we expand I Mt' I by columns, many of the resulting determinants will have one column

equal to -X. times another. The only ones that will not will beJo

-D~ T, ITT-X

Do - (Zto0-1 , 2to t)' T(Zto0-2, 2t o t -l)'" " Z 0 ' (t-t, 2to0-2t+l)!

-XjoD I T(Zto-0 12t-t' (Zt o-t+ 1, zto-2t+Z)'-X jo T(Zt0-t- 1,2t0 -2t)1
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a. s_%--, . --"b. -2oo.beoynm

_. 0tt) Y -- '(Zt O-t+Z. Zt 0 -2.i.3 ) j 0~ T(2tot. Zt 0-Zt.l)'

34) (2t6-t-4. Zt 0-0

and so forrt& Thn LU X- is a root of the polynomial3o
0

IMtO I is zero and X - is an error locator. It can be checked by the expansion of D. into
O

three matrices, as was done earlier in the proof that the rank of M is t. that
Dj. = D(t-j)t

so that

DVX = Dtae(X).

and this method is entirely eqmuivalent to the former one. Flu-tiermore, it is clear V'mt

TZt 1 Tt - T

Xt- Tt -2 TZ[E -3 ... Tt -t-1

0 0 0
D(X)=

X T Zt -t "£2t -t-1 ... T t -2t+l

1 T 2 -1 T -t- -r

Tt tI 2t -t.Z I. .2t -2t

The condition of the vanishing of this matrix determinant is the generalization to the non-

binary case of the 'direct method' of Chien. 3 1 It appears to offer no advantages in prac-

tice, for to get the coefficients of D(X) one must find the determinants of t + 1 t X t

matrices, whereas the coefficients of the equivalent ae (X) can be obtained as a by-product

of the determination of t.
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APPENDIX B

Formulas for Com.utation

We shall now derive and discuss the formulas used for the comopitations of Section V.

B. I OUTER DECODER

Let us consider first the probability of the outer decoder decoding incorrectly, or

failing to decode. We shall let pe be the probability that any symbol is in error, and

pd be the probability that it is erased.

If the'outer decoder does errors-only decoding, pd = 0. Let the maximum correct-

able number of errors be to; then the probability of decoding error is the probability of

t + I or more symbol errors:
on

Pr = >j ( pel-peI t (B. 1)

t=to+l

If the outer decoder does deletions-and-errors decoding, the minimum distance is

d, and the maximum number of errors corrected is to. then the probability of decoding

error is the probability that the number of errors t and the number of deletions s sat-

isfy 2t+s zd or t>t 0+ 1:

Pr(e) = C p--d 2t+sIdortto +1

t, s

t
0 n n

PePdt'-Pe-Pd'n I k t) Pe l _n-t

t=O s=d-Zt t t +

Equation B. 2 is also valid for modified deletions-and-errors decoding, when to is the

reduced maximum correctable number of errors.

For fixed t, we can lower-bound an expression of the form

n
nn) t ps. .1pP)n-s-t (.3
(')PePlPPd s (B. 3)

s=t1

by
t2+1

pPds -pe-Pd}  -. (B. 4)

.S=t1

95



To upperbound (B. 3), we write it as

tSzt (snt) t - --- t + (n()~-(.5

-t -

Since the ratio of the (s+1)st to .he s term in the latter series is

. (n--zt}P d  (n-t-tZ)pd
T9 (l}pePd) tZ(_Ped - a,

Eq. B.5 can be upperbounded by

(n t s n-s-t + n\ f n-t-t -! a

tj1  + rd4 2-eI1 tJ Pe~d (1 aPd

,n 1  .sn--t
pp(1p-p)I~1 1,Lln-t- 2 -1 (B. 6)

~s=t 1

By choosing t. large enough, the lower and upper bounds of Eqs. B. 4 and B. 6 may be

made as close as desired. In the program of Section V, we let t be large enough so

that the bounds were within I per cent of each other. Both (B. 1) and (B. 2) can then be

upperbounded and approximated by (B. 6).

B. 2 INNER DECODER

If the outer decoder is set to do errors-only decoding, the inner decoder corrects

as many errors as it can (to), Whenever the actual number of errors exceed to, the

inner decoder will either fail to decode or decode in error, but either of these events

constitutes a symbol error to the outer decoder. If the probability of symbol error for

the inner decoder is po, then

n
= po ,-p)n-t. (B. 7)

t=to+1

Equation B. 7 can be upperbounded and approximated by Eq. A. 6.

If the outer decoder is set for deletions-and-errors decoding, the inner decoder is

set to correct whenever there are apparently t 1 or fewer errors, where t1 4 to0 ; other-

wise it signals a deletion. If there are more than t 1 actual errors, the decoder will

either delete or decode incorrectly, so that
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n n-t

Pe + dpoP-po)
t=t +1

Ordinarily t is set so that Pe c Pd. so that pd is upperbounded and approximated by

- n

Po£t-Po} , (B. 8)

t=tll

which in turn is upperbounded and approximated by Eq. A. 6.
Estimating pe turns out to be a knottier problem. Of course, if the minimum dis-

tance of the -inner code is d, no error can occur unless-the number of symbol errors

is atleast d-t, so that

p Pt (-PJn-

t=d-t1

This is a valid upper bound but a very-weak estimate of pe' since ingeneral many fewer

than the total of (n) t-error patterns will cause errors; most will cause deletions. A
tighter bound for pe depends, however, on knowledge of the distribution of weights in

the inner code, which is in general difficult to calculate.

We can get a weak bound 6n the number N of code words of weight w in any codew
on GF(q) of length n and minimum. distance d as follows. Let to be the greatest integer

such that 2t0 <d. The total number of code words of weight w-to distance to from a code
word of weight w is .t), siice:to get such a word we may change anyt O of the w non-

zero symbols in the word to zeros. The total number of words of weight w -to distance

to from all code words of weight w is then

and all of these are distinct, since no word can be distance t from two different code0
words. But this number cannot exceed the total number of words of weight w-to:

w-t
to (q -l

Therefore

w-t

n! t 0(q-1) 0

N (B. 9)wI (n-w-to)!

Now a decoding error will occur, when the inner code is linear, when the error
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pattern is distance tI or-less from some code word. The total number of words dis-

tance k from some code-word of-weight w is

(q- l ) /i") (q-) ; i +j+f=k 

ii j.
since all code words can be -obtained by changing any f of the n -w zeros to any of the

(q-1)-nonzero elements, any i of the w nonzero elements to any of the other (q-2) non-

zero elements, and any j of the remaining nonzero elements to zeros, where i+ j +1= k.

The weight of the resulting word for a particular i,j,-l,will be w+ I -j, so that the prob-

ability of getting a word distance k from a particular code word of weight w is

e; (q-l)f I.wN ,q- )i I- )p w '-~-on-w- j" j

iw) 0
i,j,I

i+j+f=k

Summing over all words of all weights w > d and all-k4 t, and substituting j= k -i - 1 >O,

we obtain

n k k- (n_w)*w-(q_ -W+k-i-I (q_2)i p+21+i-k(lPo)n-w-Zj-ik
Pe =  nw " I Nu - Z) - I( P -k-P )

w=d k=O i=O 1=0

Interchanging sums, substituting the upper bound of (B. 9) for Nw, and writing the ranges

of w, k, i and 1 .more suggestively, we have

n~t1-(-wl~q1)k-1-i-t 0 "q2 w+21+i-k (I po) n - w - ZP-- i + k

k4tl i> 0 P, w>d I! (n-w-I)! i! (k-I-i)! (w-k-I)I (n-w+to)0I

We now show that t6e dominant term in this expression is that specified by k=tl, i=O, 1=0,

and w = d, and in fact that the whole series is bounded by

t1 -to d-tI n-d+t1
Pe 1Ct3 4 (~) ~ 00(B. 10)

p 4C1 C 4t I I (d-t ) I (n-d+to ) I (B 0

where
p n - d + t

a1 1-a 1 ' 1 - d -t 1 + 1

2

PO (n-d)t1o E -0o) q idt +'
C2 1-a 2 ' a. q-1 d-t}
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1 Po qc- 2

1 3 o 1 __t_

41- 4' Al-,p a- I d-t 1 -1'

and-it is assumed that-the constants ;am are less than one. This 'result follows- from

repeated bounding of the series by-the first term times a series of the form

nn

For example, the ratio of the (W+!)st to the.w th term is

Pc n-w- n-w -to a
1-p 0  n w w-ik+ I+ 1

since w >d, k4tl, 1>0.

The ratio of the (1+1) s t term to the 1th term is

(P 2 1 n-w-1 k-- i <a2;

(1P40q~l1 w-kffi, l

of the (i+1)s t to.the ith

Po "q-2k-f-i4

1 -p q- 1 i+ 1 3

and'of the (k-1)st to the kth:

PO 1 k-I-i 4
I -poq- 1 *--k+ I+ 1

The bound on pe, of Eq. B. 10 is a valid upper bound, but not a good approximation,
since (B. 9) is a weak bound for Nw . A tighter bound would follow from better knowledge

of N w . In Table 5 we use the actual values of Nw for RS codes,, which markedly affects

the character of our results.

B. 3 MODULATION ON A GAUSSIAN CHANNEL
R

We contemplate sending one of M = 2 biorthogonal signals over an infinite band-

width additive white Gaussian noise channel. A well-known model 3 9 for such a trans-

mission is this. The M signals are represented by the M (M/2) -dimensional vectors
xis 1 4 i -4 M/2 or -i > i > -M/2, which are the vectors with zeros in all places but the

jilth, and in that place have EL according to whether i = ± I (These vectors corre -
spond to what would be observed at the outputs of the bank of M/2 matched filters if the
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waveforms that they represent,uncorrupted by noise, were the input.)

Thi actual, noisy outputs of the bank of matched filters are represented by the (M/2) -
dimensional vector y = (yl,Y 2,..., YM/2). If we assume a noise energy per dimension

of N, then

Pr~j~ 2.) exp..: 1n

1 (, M/Z j=1 ZN

Interpreting

M/2

j=l

as the Euclidean distance between the vectors y and xi, we see that the maximum-

likelihood decision rule is to choose that input closest in Euclidean distance to the

received signal.

The case M= 4 is illustrated in Fig. B-i, wherewe-have drawn in the lines marking
the boundaries of the decision regions'. There is perfect symmetry between the four
inputs. If one of them, say (L, 0), is selected, the probability of error is the :probability
that the received signal will lie outside the decision region that contains (L, 0). If we

let E 1 be the event that the received signal falls on the other side of the line AB from

(L, 0), and E 2 that it falls on the other side-of-CD, then it can readily be shown by a 450
coordinate rotation that E 1 and E 2 are independent, and that each has probability

p = I e-y 2 /2N dy

, N L/%4 -
Jdy

2
The probability that neither occurs is (l-p) , so that the probability that at least one
occurs, which is the probability of error, is

2
q = 2p - p

When M >4, the symmetry between the inputs still obtains, so let us suppose the

transmission of

x= (L, 0,... ,0).

Let E., 2 4 j < M/2 be defined as the event in which the received signal is closer
to one of the three vectors x-, xj, xj, than to x.. Then the event E of an error is the

union of these events
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~M/2

E u Ej.
j=Z

But the probability of any one of these events is q. Thus, by the union bound,

M/Z

po= Pr(E) 4 Pr(E:)= (-1) q. (B. 11)
j=Z

When the signal-to-noise ratio L2 /N is large, the bound of Eqs. B. 7-B. 9 becomes

quite tight. To calculate 0, we use an approximation of Hastings.4 0 Viterbi 4 1 has cal-

culated the exact value of p for 3 4 R 4- 10; we have fitted curves to his data in the low

signal-to-noise-range, and used the bound above elsewhere, so that over the whole range

p is given correctly within one per cent. When R0 >11, the union bound is used for all

/0

D

(-L,. (L,O) ( --') EB D (LO

(()(0 -,L "L) /0
L) C

DF

Fig. B-1. Illustrating the case M= 4. Fig. B-2. Decision and deletion regions (M;-4).

signal-to-noise ratios.

Finally, we have the problem of bounding the deletion and error probabilities, when

the detector deletes whenever the magnitude of the output of some matched filter is not

at least D greater than that of any other. Figure B-2 illustrates the decision and dele-

tion regions, again for M= 4. It is clear that the probability of not decoding correctly

is computed exactly as before, with L replaced by L -D; this probability overbounds

and approximates the deletion probability. The probability of error is overbounded, not

tightly, by the probability of falling outside the shaded line DEF, which probability is

computed as before with L replaced by L+ D.

When M >4, the union bound arguments presented above are still valid, again with L

replaced by L - D for deletion probability and by L + D for error probability.

The case in which M =2 is trivial. 1
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