ADVANCED RESEARCH PROJECTS AGENCY
Con¢ract SD~-88

Technical report No. ARPA-17

THE MAGNETIC SCATTERING OF NEUTRONS BY NICKEL

CLiEARINGHOUSE
GR FEDERAL SCAENTIFIC AND
PRCUNICAL INFORMATION

~Jiardoopy | Mieroficke|
3 L'*Cl 3 0. 75/‘ %/wéﬁ.
ARCHIVE GORY

- Opcle |

=

By
Herbert A. Mook, Jr.

November 1965

h £
A 1

=] mmmw

DiVISION OF ENGINEERING AND APPLIED PHYSICS
HARVARD UNIVERSITY « CAMBRIDGE, M/ SSACHUSETTS




THE MAGNETIC SCATTERING

OF NEUTRONS BY NICKEL
by

Herbert A. Mook, Jr.

Technical Report No. ARPA-17
Contract SD-88

Novembver, 1965

Submuitted to:
Advanced Research Fiojects Agency

The Der.rtment of Defense

Division ot Engineering and Applied Physics
Harvard University

Cambridge, Massachusetts

e

;
?




~ BLANK PAGE



O A SR T R R

A

ABSTRACT

Despite the fact that a large amount of work has been devoted to
unde: standing the nature of the electronic structure in the transition
metals, very little precise knowledge of the magnetic electrons in the
ferromagnetic metals is available. By using the neutron as a probe, pre-
cise information can be obtained about the spatial distribution of the

iagnetic moment density in a ferromagnet that is quite free of theoretical
approximations. Neutron magnetic scattering amplitudes are generally
quite small, especially at large scattering angles, and polarized neutron
tearas must be employed if accurate measurements are to be made. Pro-
fessor C. G. Shull of M.I. T. has dev :loped the polarized neutron beam
technique to such an extent that extremely small magnetic scattering am-
plitudes can be measured with high precision. Professor Shull and his
students have used the polarized beam technique to determine the mag-
netic form factors of iron and cobalt.

There are no accurate wavefunctions available for the magnetic
electrons in a metal lattice; however, free atom wavefunctions are generally
available for most transition metals. By comparison of the measured form
factors with free atom form factors, and by direct calculation of the mag-
netic moment density from the measured neutron data, it was found that
the magnetic moment distribution in iron and cobalt agreed with a model of
the magnetization that imposed free atom-like distributions on a constant
negative background. It was also discovered that the magnetic rnoment
density was quite isymmetric about the nuclei in iron but almost spherical
in cobalt. It was apparent that it would be valuable to know distribution
of the magnetic moment density in nickel so that it could be compared with
that of iron and cobalt, We thus decided to measure the magnetic form
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factor of nickel. The measurements were performed at the M. [. T. reactor
using one of Professor Shull's polarized beam spectrometers.

The magnetic scattering amplitude of nickel is smaller than that
of either iron or cobalt and a large amount of neutron counting time was
necessary to measure the desired number of reflections. It was also neces-
sary to apply corrections to the neutron data. The data had to be corrected
for incomplete polarization of the neutron i;:eam and for the half-wz cloneth
contamination of the beam. The polarization ¢f the beam was close to 1009’O
and the half-wavelength contamination was very small, otherwise these
corrections could not be made with any certainty. Secondary extinction had
to be minimized and the data corrected for any remaining secondary ex-
tinction that could not be elirninated. The data also had to be corrected for
any multiple scattering effects that might be present. The magnetic scat-

tering amplitude for nickel was deter:nined for the first 27 Bragg reflec-

sin @

N value of 1.16.

tions, corresponding to a

‘ The measured form factor for nickel was compared to free ion form
‘ factors that were available. It was discovered that the measured form fac-
tor agreed extremely weil with an unrestricted Hartree Fock iree ion form

factor for Ni* provided a uniform negative contribution was included in mag-

sin 6

netization. The measured form factor ;s not a smooth function of ~

showing that the magnetic moment distribution in nickel is viry asymmetric

———

about the nucleus. From the comparison of the measur:d and free ion form
factors it was determined that 81 + 10/0 of the 3d magnetic electrons occupy '
orbitais with t2g symmetry compared to the 60?’0 required for spherical
symmetry. Shull's data show that 47% of the 3d electrons o :cupy tZg
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orbitals in iron. Thus, the magnetic moment density is spread out along
the [111] dirc~tion in nickel and the [100] direction ir iron relative to the
other crystallographic directions.

The magnetic form factor was Fourier transformed to give a
three-dimensional map of the magnetic moment density directly from the
measured data. The map shows clearly the asymmetry in the magnetic
moment distribution. The Fourier series from which the density map was
obtained converges too slowly to give information about the moment den-
sity in the region far from the nickel nuclei. A Fourier series was de-
rived that gives the magnetic moment density averaged in space over a
cub\c bloék. This series,giving the average density,converges very rapidly
and t is found from it that the magnetic moment density goes negative in
the r4gion {Jgtween the atoms. This is in agreement with the comparison

\
tetween the free ion and measured form factors which requires that a uni-
form negative {contribution be included in the magnetization. The size of
the negative c&rtribution agrees very closely in the two cases and the
analysis pf the data is consistent with a model of the magnetization which

assigns the ma.g{xetic moment of nickel in the following way: 3d spin+0. 656 }16;
\

3d orbit + 0. 055 B,; uniform negative contribution -0.105 &

B’ B

The neutron data give no information about the origin of the nega-
tive contriblition. One possibility is that the 4s electron spins in the metal
might be oppositely polarized to the 3d electron spins. 4s electron form
factors fall to a very small value before the first Bragg reflection so the 4s
electrons cannot be seen directly by the neutrcne. Another possibility is

that spin polarization effects in the 3d band may give an effec.ive nzgative

v
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contribution in the region between the atoms. In this case all the scattering
would take place from the 3d band. Since a negative contribution to the mag-
retization is found in iron, cobalt, and nickel, it seems that the origin of
the negative contribution must be intimately connected with the interaction

that makes these materials ferromagnetic.
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THE MAGNETIC SCATTERING

OF NEUTRONS BY NICKEL
by

Herbert A. Mook
Division of Engineering and Applied Physics

Harvard University, Cambridge, Massachusetts

I. REVIEW OF THEO!I Y AND EXPERIMENT

A. Introduction

When a neutron is scattered by a magnetic atom there are two main inter-
aciions that take place. There is a nuclear force interaction betweea the neutron
and the nucleus of the scattering atom. For neutrons of thermal energy the
neutron wavelength is very large compared to the nucleus and only the S partial
wave is significant in the scattering interaction. This means nuclear scattering
is independent of scattering angle. If the atom has any unpaired electrons there
will also be an interaction between the magnetic moment of the neutron and the
magnetic moment of the vnpaired electrons. The thermal neutron wavelength is
of the same order as the radial extent of the atomic eiectrons and one finds that
the magnetic interaction between the atomic and neutron moments is strongly de-
pendent on the scattering angle.

This reportdiscusses the measurement of the angular distribution of mag-
netic scattering in nickel metal. The magnetic scattering in nickel is very small
in intensity, and .1e measurements were made by observing the interference term
between the magnetic and nuclear scattering. We will see later how this can be

I-1

ffﬂx e o




I-2
done by using polarized neutron beams. The angular distribution of the magr.atic
scattering is simply related to the spatial distribution of the periodic magnetic
moment density in the scattering material. Sufficiently accurate measurements
have been made that the magnetic moment density in nickel can be well determined
in three dimensions.

In the iron series transition metals most of the magnetic moment density
results from the 3d electronic shell. Despite the fact that a great deal of effort
has beenspent to ga.n an understanding of the behavior of the 3d electrons in the
transition metals, very little is known about their exact nature. The neutron dif-
fraction measurements give direct information about the 3d magnetic electrons
that is quite free of theoretical approximations. It is unusual in the study of
transition metals that precise experimental measurements have such a direct and
meaningful interpretation.

The basic measurement of the magnetic scattering is fairly straightforward
and is discussed in Chapter I. There are several small but fairly involved cor-
rections that need to be made to obtain the final data and these are discussed in
Chapter II. The results of the mesasurement and comparison with theory are dis-
cussed in Chapter III. If the reader is not concerned with the details of the ex-
perimental methods he may omit Chapter II and concern himself only with the

review sections of Chapter I and the final results of Chapter III.

B. Magnetic Scattering
The theory of magnetic scattering was first developed by Schwinger [1].
The first comprehensive treatment of the scattering of polarized neutrons was
developed by Halpern and Johrson [2] and their work has been extended by

other authors to include orbital effects and higher-order terms [3-7]. "he
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deviation of magnetic scattering presented here follows that given by Blume [5]
and Marshall [7].

The crcss section in the Born approximation for a process in which the
scattering system goes from state q to state q' while the neutron is scattered

from wave vector k to k'and spin state S to S'is given by
2

k'| o <qs | UN(R) | q's™><q's' | U (B)] qs> (1-1)
k 2

2mh

do =

t
qs—+q's’
— — -_—
where K= k - k and U (K) is the Fourier transform of the interaction between
the neutron and the scatterer. k'is given by the energy conservation cc -dition
2, 2 .
h k" +E ,:/ﬁ"kz + E \1-2)
2m 1 2m q
o o
To get the total cross section from (1-1) we must sum over the final states q's',
and average over the initial states qs taking account of their different probabilities
P q and Ps. Usually Pq is given by the Boltzmann distribution

-Eq/kT
P =-¢ (1-3)
LI -Eq/ kT

e

q
Performing the summation and averag' ng processes and including relationship (1-2)

we obtain

2
<= — -
PP ) klle ) <as | UH®) | qrsr><a’s’ | UR)) as> x
K
q's'

PSS
d o =
- ,
daQy dE a5 Y
8 722 B - %A - E 1 (1-4)
5 q 2 q

(o] (o]

-

We would like to consider scattering of polarized neutror beams, and,

in general, this cannot be done using a single wavefunction for the following reason.

Choosing an arbitrary quantization axis, which we will call the z axis, the most

general wavefunction describing the spin of a neutron is

| m— . S AT M8 W e e AT
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Y = aa + bp (1-5)
where a is the wavefunction representing spin up and B is the wavefunctior rep-
resenting spin down. If the wavefunction is normalized,a and b obey the equa-
tion

lal? 4] =1 (1-6)
The expectation values of the x, y, and z spin components are given by

w _ _

S, =1/2 [a*b+b*a]

WA

Sy =1/2 1 [ab*-a*b] (1-7)

5 =1/2[[a|*- b |7

If we set b equal to zero, §x and gy would be zero and g‘z would be 1/2. The
spin would then be completely polarized along the z axis. If a is zero,the spin

is completely polarized along the -z axis. Other choices of a and b will give

L o L el L
intermediate values of Sz but must also give non-zero values for Sx or SY

or both. So for all other choices the spin is polarized along some direction

- other than the z axis, however, since from (1-7)

w2 w2 = 2 2 2,
S, * S, *5; =14l la|"+]b["]=1/4 (1-8)

the spin must be completely polarized along some direction. Thus, no mat-
ter what choice is made for a and b, (1-5) always describes a spin completely
polarized in one direction. We see then that in order to describe partially
polarized or unpolarized beams we cannot use one wavefunction but must use
an average over many wavefunctions. We could then treat the scattering of
rolarized beams in the following manner. Using (1-4) we could calculate cross
sections for scattering out of initial state (1-5), treating a and b as arbitrary.

Tr.: average over & initial wavefunctions could then be performed by aver-




I-5
aging the result over the magnitudes and relative phasés of a and b. In fact,
this turns out to be a very difficult process and it is rauch easier to do the
calculation by introducing the concept of a density matrix.
We wish to find 2 shorthand way of describing the wavefunction (1-5)
by specifying the values of a and b. This can be done by defining the density

matrix

aa* b*a
p: ok s (1-9)
\a b bb

Notice that
3
trp =aa +bb =1 (1-19)
Also, we can show by comparison with (1-7) that

S, =tr[v_p]

Lo

Sy = tr [tryp] (1-11)
gz = tr [O'ZP]

where L try and o are the Pauli spin operators. All the initial wavefunctions
can be averaged over by simply averaging over the elements of (1-9) to give the

density matrix for the whole beam

e s e

aa* b*a
p = —— (1-12)
25 BB

]

Then (1-11) is still correct if 'S”a is reinterpreted as the expectation value of
"S"a averaged over the whole neutron beam. Because P is a two-by-two matrix,
it can be expressed as a linear combination of the four linearly independent

two- two matrices which are the unit matrix and the three Pauli spin ir.atri-

ces.
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1-6
p -g+P o + P\,ro-y +P o, \
g +1/2P, 1/2(P 2 iP ) \
|
N . /2 D i (1-13)
l/Z(Px+1Py) g=1/2 : |

g, Px’ Py’ and Pz are constants and have to be determined. We can fird g
immediately since by (1-10) trp = 2g = 1.

The other constants can be found using (1-11).

iy 2

S = tr(o‘zp)-g tr o, * Px tr T, T, + PY tr o-ZO'y + Pztr c, (1-14)
Now tre_, tro_o_, tro o are all zero and tr ¢ = 1/2. Thus (1-14) becomes

z z x zy z

o

s* =1/2p_ (1-1%)

Pz is therefore the z component of the polarization. Similar equations hold for
the other components; thus, the vector Pdefined by the components Px, Py’
Pz denotes the polarization of the beam. (1-13) then becomes

p=1/2T1+P-§ (1-16)
Now let us go back and consider our formula for the cross section (1-4). We
want to concentrate on the neutron spin, so let us suppose the sums over q' and

q have been done giving

ds &

:

~ T _t _
= Z PSZ <s|O |s'><s'|0O |s> (1-17)
s s'

where O is a suitably defined operator. The sum over S' can be done immedi-

ately giving

2 }
d z -] = = q
de— ~L mesols e

The above expressions for the cross section are only useful when there is no

phase correction between the states with quantum number S, i.e., the densi-

’
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ty matrix is diagonal with respect to the states S. In this case, the proba-

bility Ps is just the diagonal element <$[0|S> and (1-18) can be written

2 t
ﬁ.ﬁ%—- ~ z <1] O ©]s><s|p|s> (1-19)

s
IfP is diagonal <S' [P [ S>8__,=<S | P| S>so (1-19) can be written

fn =3 siotolsmeiole -

ss!

and this can be summed immediately over S!' giving

de’ zz <S[6+60[S>=tr(6(_)+9) (1-21)
dS4E 3

The last form is independent of the representation used to label the states o
and thus in this last form it does not matter whether or not P is diagonal: A
formula that is more general than (1-4) and includes the effects of neutron
polarization can therefore be written in the following way
m 2
a%s_ =y p K| = \ tr _<qu+(I—<)lq'><q'lU(R) el
JSdE" q k 2“.12} i |
qq’

x 6 z_&f (k'2-k%) + Eq' - qu (1-22)

2m
o

—

where the trace is to be taken only with respect to the neutron spin coordinates.
The interaction between the neutron and the scattering system is usual-
ly broken up into an interaction with the nuclei of the scatter Un and a mag-

netic interaction Um with the spin and orbital moments of the electrons. Un

and Um have been given by Halpern and Johnson [2] and are




1-8
2 iK(n+d.)
= _ 2TH j 5. 2
Un(K)—m Ze a._‘..Z_E_A.h_T
o) : nj m
-, o)
n)
i K* r
7 _2“ h ZYe 1 1 -— --1 -—
Um(K)-m 5 Ze [Kx(SixK) K(pri)]-S
0 mc :
2 2
=47 K Ye 3.0 (1-23)
m _mc

where n + Ej is the positicn of the scattering nucleus, n giving the position of

the unit cell and Ej the position vector of the nucleus within the uu:t cell. ;i’
-S—i’ P; and m are, respectively, the position, spin, momenturm, and mass of

th: i th electron. S is the neutron spin, Y = 1.191 is the neutron gyromagnetic

ratio and a_ is the neutron scattering length. To find the cross section we
n;

must substitute (1-23) in (1-22) and perform the required traces. It is helpful
to remember that

S,Sq = 1/4 5043*1/2 180 S (1-24)

p BY"Y

whére a Y run over x y z and & v 1S zero unless a, B and Y are all differ=nt,

af}
plus unity if aByare in cyclic order and minus unity if efY are not in cyclic

order. Using (1-24) it is easy to show

tri=2 trS S;=1/2 &

p

tr S, =0 tr SaSpSY= 1/4 i&

P

By (1-25)

Substituting (1-23) in (1-22) and using /1 -25) we obtain

= < a1 ST - T R ——— gy < —— - =y
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2 2
d_L_ -&T + ' 1 € ) | + 1 VP
adE - % /.Pq l}qlT lq'><q |T|q>+(i—c7 <q!T'|q'><q" |P- Qlq>+
Qq’
2\ .15 gt 2
(25) <a P atlar><ainlas+ (125 <alatia> <a'[@la> +
mc mc
5.2
B (<q|a!
i (19—2) P (<q|Q'[q'> x <q'|R]g>)| =x
mc
2
5 (z’l‘—- (k'®-k%) +E_, -E ) . (1-26)
n'lo q q

In deriving (1-26) we have used the relation

ExB)Y = Z EaﬁyAﬁ BY
By

for the components of the vector product of two vectors A and B.

It is generally assumed that the electron distribution responds so
quickly to the motion of the nuclei that the Debye-Waller temperature fac-
tors for nuclear and magnetic scattering are the same. We will see later
that this assumption is well supported by experimental evidence. The quan-
tity measured in the nickel-scatiecring experiments is the ratio of the mag-
netic to the nuclear scattering. In this case, the Debve- Wailer temperatnure
factore will cancel in the final result and we might as well drop them at
this time. We can thus assume that the nuclei are rigidly fixed and ignore
lattice vibrations. We are only interested in elastic scattering, so we can
take |q' > = |q>. It is much easier at this point to assume the orbital moment
is quenched. This is very nearly true in nickel although when the magnetic
form factor is compared with theoretical calculations we will want to include

the orbital term. For convenience we will drop the orbital contribution at

this time and quote the result complete with orbital term when we need it.
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_si 2 the above simplifications we can take over Halpern and Johnson's [2]
resu..

_ T SRCed) . - A — A
<q|Q|q>=_Z S EMtd) r 7 qlkx 5 %K) | o> (1-27)
nj nj

nj

S_ is the spin operator for the ion at the site {n,j) while f_(K) is the
nj nj
J

Fourier transform of that ion's spin density and 1s called the form factor for
that .on. Since the Curie point of nickel is 631° [8], we can assume thar only
the giound state of the spin system is appreciably occupied so that

<q|S_ |@>=5S_ n_ (1-28)
nj nj nj

where S_ i3 “he magnitude of the spin and n_ is a unit vector in the direc-
nj nj
tion of the spin.
Since natural nickel is made up of t.ree isotopes with different scatter-

ing amplitudes we must average our scattering exprer~ >ns over the isotope

distribution found in natural nickel. Let
<a> =Z C a (1-29)
a a
a

where Ca is the concentration of the ath isotope and a, is the scattering
length for this isotope. Assuming the isotopes are randomly distributed

<a_ ><a_>=<a, >a>-= | <a> lzforn;(n’ j;(j'
nj nj ) )

=<[aj [2> for n=n' j=j'

2 2 2
or<a ><a >=|<a>[“+{(<|a.[">= [<a>]|")0 o
HJ IFJf I j I I _]I l j ' i ]J' (1-30)

Substituting (1-27) in (1-26) and using ‘1-28) and (1-30) the elastic scat-

cering cross section becomes

P -— . T - —— e gy - o e  —— - Ty

'},.




. <a.>| f_(K) S_.P +
:'ncz ” 1 I _]( Aj an
njn';’
o 2 \° iR (R-.-R_, )
I<a >'f_,.,‘K)S_, 'q—vv]+ 1= Y e ) " X
n; n’) Lo
mec ~ .,
njn'j
Sﬁjsfi'j' fﬁj(K) fﬁ,j,(l_() (a'ﬁ'j' . aﬁj +iP - (aﬁ'j' x a'ﬁj ) ) (1-31)
where we have defined
_ ~ _ N
qﬁj = K x(nﬁij) (1-32)

iK- 4,
and let Rﬁj -H+cTJ.. In (1-31) FN(I_() =Ze J <aj>is the nuclear

structure factor. J

In a ferromagnet like nickel we are able to simplify equation {1-31)
greatly by lininé up all the spins in the sample with a large magnetic field. In
this case, all the spins would be along the vector n so aﬁj would be independ-
entof n and j. We will see later that the experimental results are very easy

to interpret if the magnetic field is applied perpendicular to the plate of scatter-
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ing defined by k and k'. Taking then q ai to be independent of n and j, the cross

section rcduces to

e 6 T
T 1 K'rl' I — IZ 2 2 — e — —)
de = e F + iYe S F F Peoi .
Se =1} | N |+ 2¥eT S PR F() Peg+
i mc
I 2% 2 2 4 2 2!
— — \
[ Ye S F f + NZ ( <a> | -] <a.,> 1-33
S IM(K)(mlq} Al <apt =T <] (1-33)
\mc ) j
_ iR-Ej
where FM(I—{) = Z e is the magnetic structure factor for a ferromagnet.
J
Let us now consider the sumz e K- ", This sum contains N terms
n

where N is the number of lattice points in the crystal. For most values of
K these terms will have different phases both positive and negativc, so there will
be a great deal of cancellation and the sum will be negligible.
For certain values of K, however, all the terms will have zero phase
and the sum will be N. If we define a reciprocal lattice vector 7 by

ZTETR ) o an s (1-34)

then whenever Kis equal toc 27 times a reciprocal lattice vector T the sum is
N, and a=s K moves slightly from 277 the sum falls rapidly to zero. After some

conseideration of the volume under this very narrow peak, one finds

_ _ 2
iK'nI N

-_1\11__)_ Z 5(K- 277 ) (1-35)

-—

e

”'B—/]

where Vo is the unit cell volume. This expression shows that the first set of
terms in equation (1-33) will only make a contribution when K is equai to 2T

times a reciprocal lattice vector or that the scattering will all fall in certain

|
l
;
|
-
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Bragg pcaks. These terms then give the coherent Bragg scattering. The
scattering resulting from the last term of equation (1-33) is found uniformily
everywhere and is called the diffuse scattering. When the conditions are
such that Bragg coherent scattering may take place, one finds that the co-
herent scattering is much larger than the diffuse scattering and that the
diffuse scattering only comes in as a small correction to the coherent scat-
tering.

For a face-centered cube,

_ ! K.dj il (hxj * kyj * lzj) o for h, k, frixed
Z e =\ e =
24 4 for h, k, £ All odd or
j j All even  (1-36)

Thas we have for the coherent scatiering

3
do _ 4N(2m) [l 2 f 2 vel K Peq
= <a> |+ [ <a> | 2ve” S{(K Peq +
as v, 2
mc
N2 22 2
Ye S°f“{Kq (1-37)
—

mc
One usually calls Ye Sf (K the magnetic scattering amplitude and denotes it
2

mc

by p. p is a function of scattering angle through the form factor f(K) which

is 1 when K= C and falls off from 1 when (K ) differs from zero. [ <a> | is

called the nuclear scattering amplitude and is usually denoted by the letter b.

b is independent of the scattering angle. Thus, finally, we may write for the -

coherent cross section:

-~ 2
do _ 4anEm)® i+ 2pbBeq +p°h) (1-38)
= TV

d?
O

This expression gives the cross section for the scattering of a polarized neu-

tron beam by a magnetic material with no orbital moment, completely saturated

wf




I-14
in a high magnetic field. This is very nearly the case for nickel under the ex-

perimental conditions used and frequent use will be made of expression (1-38).

C. MAGNETIC FORM FACTORS

As mentioned in the introduction, the angular distribution of the magnetic
scattering is related directly to the distribution of magnetic mement density
of the scattering aom. The angular distrivution of the magnetic scattering is
given by the form factor and we define the form factor as the Fourier transform
of the spatial distribution of the magnetic moment density. As we shall see in
the next section,polarized neutron beams are needed for accurate form factor
measurements. The first accurate polarized beam magnetic form factor mea-
surement were made by Nathans, Shull, Shirane and Andresen [9] on iron and
nickel. Since then, a number of form factor measurements have been reported
[10-14]. The most interesting of these to compare with nickel are the very com-
plete measurements of Shuli and Yamada [10] on iron, and Moon {11] on hexagonal
cobalt. In both iron and cobalt very good agreement was obtained between the
measured values and free atom form factore. The form factors were unrestrict-
ed Hartree-Fock calculations that allowed electrons iﬁ the same atomic sheil,
but having different spins, to have d:fferent radial distributions. In both iron
and cobalt this very good agreement was obtained by assuming the spin density
was the sum of an aspherical 3d contribution and a negative constant. We shall
see later that this same assurnption is employed in nickel to give good agree-
ment with calculated results.

The behavior of the magnetic electrons in the transition metals is a
difficult problem [15, 16]. It is somewhat surprising that free atom form fac-

tors should agree with the measured values for a metal so closely. The rea-




I-15

son that free atom form factors are any good for a metal at al. #2ems to stem
frorn the fact that tt = 5d wavefunctions at the top of the ban 1 in the metal are not
much different from the free atom wavefunctions [17, 18, 19]. The wavefunctions
at the bottom of the 3d band are quite diffuse compared with free atom wave-
functions, and neutrons can be scattered by the difference in radial distributions
of spin up and spin down electrons at the bottom of the band even without a net
spin difference. An unrestricted Hartree-Fock calculation by Freeman and
Watson [20] shows that there is a small but noticeable difference in the radial
distribution for spin up and spin dowrn electrons in the free atom. This difierence
may be larger in a metal but it is expected that most of the scattering must come
from the unpaired spins at the Fermi level near the top of the kand where the
free atom and metal 3d wavefunctions are in substantial agreement,

The neutron magnetic form factor is depcndent on the difference in the
radial distribution of spin up and spin down electrons and is different fron. a
form factor derived from any single electron of either type [20]. The neutron
iorm tactor is expanded in relation to any of the 3d electron X-ray form fac-
tors representative of the charge distribution. For this reason, we cannot use
neutron form factor data to g~t an accurate picture of the 3d electron rharge
distribution, which will be differentfrom the magnetic moment distribution of
the atem. |

Shull and Yamada [10] found that in iron the 3d electron spin distribu-
tion was quite aspherical about the nucleus as the form factor at a given
scattering angle and wavelength was dependent on the direction of scattering
through the crystal. Moon [11], however, found the spin distribution to be
quite spherical in } 2xagonal cobalt. In a cubic field the degenerate d orbitals

split into triply degenerate tZg and doubly degenerate eg orbitals. The tZ
g

TREMRISEE gl &
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orbitals are peake along the cube body diagonal wnile the e orbitals are
peaked along the cube edges. S5hull and Yamada found that in iron 47 o/o
of the magnetir electrons had tZg symmetry and 53 0/o had eg symmetry
rather than the 60 o/o and 400/0 requir2d for spherical symmetry. The data
of Nathans et al. [9] for the magnetic scattering in nickel did not go far
enough out in angle to determine the asymmetry of the magnetic electron
distribution. One of the objectives of this study of nickel was to see how the
asymmetry in the magnetic electron distribution compares with that of i- on

and hexagonal cobalt.

D. EXPERIMENTAL METHODS

The quantity that we wish to rmeasure is the magnetic scattering ampli-
tude p because the form factor is determined from the angular dependence of
p . If a polarized neutron beam is not available, one can consider the following
experiment. Apply a strong magnetic field perpendicular io the scattering
vector K so that q becomes a unit vector in the direction of the magnetic
field. From expression (1-38) the crose section becomes propnrtional to
b2+ p2 since the P q term will average to zero for an unpolarized becmn. One
then applies a strong magnetic field along the vector K making q=0 and the
cross section will be proportional to bz. Assume the sample crystal introduces
no corrections into the data. Then if we bring a beam of monochromatic
neutrons onto the sample crystal, the ratio of the scattered intensities in the
two cases for a coherent Bragg peak will be equal to the ratio of the cross

sections or

R = E__i{; _ (1-39)
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At the first Bragg peak, p for nickel is about ..2 x l().12 cm and 1.03 x 10 "“ ¢m

is the accepted value for b [2!l. R then becomes

Z

R = (1.03)% 4 (.12} ~ 1.013

(1. 03)Z
This gives only about a 1. 50/0 effect for the first Bragg peak in nickel and it

would be difficult to determine the magnetic scattering amplitude for many re-

flections in the above manner. Since, in fact, this is the best experiment that

can be done with unpolarized neutrons, polarized neutron beams must be em-

pioyed to inake the experiment feasible.

Polarizcd neutrons can be produced by using a monochromating crystal

with equal nuclear and magnetic scattering amplitudes at the monochromating

reflection used.

If there is an upward magnetic field on the monochromating

cryg;tal,the cross section for neutrons of spin up will be proportional to

(b + p)2 = (Zb',& under the above conditions,whilc the cross section for epin

down neutrons will be (b-p)Z = 0. The monochromater-polarizer used in the

nickel measurements was a disorder alloy crystal of Co Fe placed in

.92

a magnetic field of about 3000 oersteds. The(20{}reflection of this crystal

was used for which b is very nearly equal to g and the rolarization was verv

close to 100°/o g

The general experimental arrangement is similar to that used by

Nathans et al.[9].

is shown in Fig. l.

A diagram of the M.I. T. S-4 polarized beam spectrometer

A guide field of about 1500e. parallel to the direction of

the neutron polarization is maintained along the path between the polarizing

crystal and the sample crystal. The sampleis positioned in a magnet pro-

ducing a field of abrut 72000e.in the same direction as the guide fields and the

iiitiai neutron polarization direction. A =olenoid is placed in the path between
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el

e

bl

!

Ixe

- ) o™




BLANK PAGE



H=3 koe.

¢
H= 7.2 koe.
H =140 oe.
N t }
t t 4
<«— SAMPLE CRYSTAL
FLIPPING COIL

MONOCHROMATING
AND POLARIZING @
GRISIaL COUNTER ="

FIG. { EXPERIMENTAL ARRANGEMENT




i-18
the polarizing crystal ard the sample so that the polarized nieutron beam can
pess along its axis. The solenoid can be energized witn R. F. current that yroduces
an R. F. l1eld perpendicuiar to the constant guide field. When the k. F.
frequency of the solenoid is set to match the energy level separation of the two
spin states in the guide field, transitions are induced betwe;en the two spin states.
If the current in the R. F. solenoid is then adjusted to match the neutron transit
tim: in the solenoid the neutron: passing through the solenoid are fiipped over
from spin up to spin down with a probability very close to one. Thus, by energizing
the solenoid, neutrons polarized downward are brought onto the sample.

The experiment can then be done in the following manner. The sample
crystal is positioned at a Bragg peak and the scattering from the sample of spin
up neutrons is counted for an interval of time, usually about ten minutes in prac-
tice. The cross section for spin up neutrons is proportional to (b+p)2. The
R. F. solenoid, usually called the flipper, is then turned on and the scittering of
spin down neutrons is counted for an equal interval of time. Thecross section
for spin down neutrons is proportional to (b-p)Z. Assuming that the sample
crystal is ideal and that the beam polarization is perfect, the ratio of the intensity
of the spin up neutrons scattered to the spin down neutrons scatiered is givzn by

R = §b+2§2 , (1-40)

(b-p)*
Putting in numbers again for the first Bragg re:lection we get

R = (.03 +.12)° =1 597
(1.03 - .12)°

and this is nearly a 600/0 intensity effect. The experiment then consists of
measuring R,and p is c¢btained from equation (1-40). R can be measured

accuratelv for a large number of reflections and in each case the magnetic

4
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scatierirg alaplitude is given by (1-40Q) since b 1s a constant independent of angle.

For the actual experimeut there are two separate counting channels. One
of these systems, called the monitor channel, receives pulses (rom a low eff1-
ciency counter mounted directly in the beam incident on the sample crystal. The
main counting channel counts for a preset number of monitor channel counts
and prints the resuit by means of a digital recorder. By this arrangement small
changes in the incident beam flux are cancelled out to fizat order. The {lipper
is turned on automatically in alternate countin periods. Scattering data for
both spin up and spin down neutrons can thus be automatically collected as lorg
as necessary to gain the desired counting statistics. Standard BF3 proportional
counters are used in both channels and standard commercial amplifiers and

scalers are us2d in the counting circuits.
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II. CORRECTIONS TO THE EXPERIMENTAL DATA

A. Instrumental Corrections

In the ideal case where no corrections to the experimental data are neces-
sary, the flipping ritio is given by
5 I.g , d\ay /
R= - .
= - = B
g 18 . d\dy

(2-1)

~——

where the integration is to be taken over all wavelengths \ and directions Y ot the
beam 158 incident upon the crystal. g0+ and go- are the ideal reflectivities of the
sample crystal for spin up and spin down neutrons. For the ideal case considered
above, the effects of incident beam divergence and wavelength spread cancel in
the flipping ratio and R becomes proportional to the ratio of the cross sections for
spin up and spin dow.: ».u.rons given in (1-38).

Unfortunaiely, the ideal case is seldom realized in practice and there
a e corrections to the data that need to be made particularly for the first few re-
flections. The corrections to be considered in this section are characteristic of
the particular spectromecer used for the experiment. Instrumental corrections
must be made for imperfect beam polarization from the monochromating crystal,
depolarization effects along the neutron path, imperfect spin flipping by the flip-
per, and half wavelength contributions in.the beam. The polarization of the $-4
spectrometer is close to 1000/0 and the half wavelength contamination is small,
otherwise, these corrections could not be considered with any certainty. The
derivation for the polarization corrections that follow is similar to that developed
in previous work in the neutron diffraction laboratory and discussed for instance,

by ™hillips [13].

=
]
—
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In the actual experiment, the crystal is quite small and we can assume
that the beam is uniform in intensity over the crystal and that the distribution of
N\ and Y is the same in the heams polarized with spin up and spin down. Let P,
be the beam polarization just as the beum enters the sample crystal. Any mag-
netic field components not parallel to the neutron polarization direction will
serve tO depolarize the beam, thus, as we shall see later, in some cases, the
neutron polarization in the sample can be smaller than the incidznt polarization
Po‘ Let the beam polarizaticn in the sample crystal be given by P where P is

defined by

pr I -1 41 =1 (2-2)
+ -
I +1
where T+ and I are the intensities of spin up and spin down ncutrons in the sample

crystal. One can then write

"= 1/2(1 +P)
I = 1/2(1 - P) (2-3)
If the eificiency of the flipper is given by f, the beam emerging from the flipper

is characterized by

+ 4.

I (1-6) 1 +ro'

f

ig

+ P oy
1.7+ (-01" (2-a)

If and If- are the intensities of spin up and spin down neutrons after passing
+ -
through the flipper and Io ana Io are the corresponding initial intensities.

The polarization of the beam emerging from the flipper is defined by

+ -

I, -1

= L& -
R (2-5)

If +If

The measured polarization ratio using the flipper is then given by

by




5 <. o I

[1-3

S[I+(X¢/) g: W) + I (W) g0° ()] dx ay
R = -, (2'6)
mg + + - -

S‘[If (M,l/)go () + If(wz)gO Y} ax ay ‘

The monochromating crystal which is posifionea to scatter neutrons
with wavelength A at the (200) reflection will also scatter neutrons with wave-
length \/2 by ineans of the {400) reflection. The value of \ is chosen to be
close t5 the peak of the Maxwell distribution of neutron wavelengths incident
on the monochromating crystal. The half wavelength intensity is then quite

far down on the Maxwell distribution curve so0 that

v

1
_,*ﬁ <« 1 (2-7)

A

Then making use of the fact that

= = (2.
Pf PO (1-2f) (2-8)
and including half wavelength terms, the measured flipping ratio is given by

A

+ o 2 + -
(1+P)g +(1-P)g +—L-[(1+P )g +(1-P, ,))g ]
a - I, N/2'eN\/2 x/2'&n\/2

m + . 1
[P+(1-2f) Pl g +[1-(1-2f) Pl g™+

\/2 +

[1-01-28, )P, fley 1, (2-9)
where gT and g are the acual crystal reflectivity functions for spin up and
spin down neutrons averaged over the crystal volume. Inthe above equation the
integraticn over the wavelength spread and beam divergence is not explicitly

written, This integration rnust be carried out by using the crystal reflectivity

e
"
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function, which we will consider in the next section, and using the above-
mentioned assumptions regarding the equality of the beam distribution cver the
crystal for spin up and spin down incident neutron inte: sities. Since any cor-
rections to the data are very small, this procedure is well justified for finding
polarization correction expressions.

The polarization is quite high and the flipping efficiency is near 1000/0 ,
so P is only slightly smaller than 1 and (i-2f)P is slightly more positive than
-1. We can, therefore, expand Eq. (2-9) abcut small deviations & and n
in the beam polarization. Let

P=1-2¢

(2-10)

(1-26) P= -1+ n

and substitute (2-10) into (2-9) giving
I
+ + - N/2
g -&/2(g -¢g )+—rLg
\ \/2
I

- - /2
g +n/2(g-g)+—1)\!—g>\/2

R =
m

(2-11)

+ - .
= e = 1 i
where we have assumed gX/Z gk/2 gX/Z in the half wavelength term. This
is certainly valid in the case of nickel considering that the half wavelength term
I
18 very small. Since n and —}ZZ— are small w2 can expand the denominator
A

of Eq. (2-11) givin_ to first order

+ + - + + - I g +
R =8 .g/2B -8 ;L8 (BB )+ Mz DMz e | (za12)
m - ‘ - - o = -
g g g g A - g |
+
Let Rext = g—_— which 1s the measured flipping ratio when P =1 and f = 1000/0

g
but crystal extinction may te present. Then
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/2 B/2
Rm ) Rext. -5/2 (Rext. ) = n/z Rext:. (Rext. “E) S I)\ ] (I-Rext,)
(2-13)
Since the correction terms are small, R does not differ inuch from Rext and
m .
we can write I
_ i M2 B2 oo i
Roet. = Ry t &2 (R_-1)+n/2R_(R_-1)+ N - R_-D  (2-14)
or using (2 -10)
I g
_ _ _ - A2 S\
Rext. =Rt (Rm 1) (1/2 (1-P) + 1/2 [ (1-2f) P+]] Rt I)\ g_

(2-15)

The determination of P, f and I’)\/Z are discussed in Appendix A. Once these are

known, {2-15) may be used to correct the flipping ratio for incomplete polarization

and half wavelength effects. The flipping ratio Rext still includes extinction

cffects, however, so we will consider extinction corrections in .the next section.
B. Extinction

In tne last section we have dealt with the corrections made necessary
by the properties of the polarized beam spectrometer itself. In this section,
we will consider the problem of primary and secondary extinction which depends
on the properties of the sample crystal. For neutron scattering, secondary ex-
tinction is much rnore important than primary extinction so we will deal with
it £ rsti.

1. Secondary Extinction

Secandary extinction was first treated theoretically bv Darwin [22] and

later applied particularly to neutron scattering by Bacon and Lowde [23] and

o ——— i e . - e fummrasn o mman
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Moon [11]). The treatment here will follow that given by Bacon and Moon.
We make the assumption, first proposed by Darwin, that the sample crystal
consists of a large number of small pcerfect crystal blocks, called mosaic blocks,
that are tipped slightly in angle relative to one another. In this case, Bragg
reflection occurs in each block and the total intensity is obtained by summing
up the intensities from each block. Secondary extinction results from the re-
duction in. beam strength seen by those blocks deep in the sample relative to
those blocks.near the surface where the neutron beam enters. Simultaneous
differential equations can be set up for the transmitted and reflected beams in
each block and solved to get the total reflected intensity. If there were no ex-

tinction, the reflectivity would be given by

+ +
g, = g Q"W (8- ) tdé (2-16)
t \3N2F2t
where Q = and W (9B - ¢) is a function normalized to 1 which gives
sin 9B

the angular distribution of mosaic blocks. N is the number of unit cells per cm3
+

F~ =4 (b+p) is the structure factor, 6

’

B is the Bragg angle and ¢ is the average
path length in the crystal.
All the experiments were performed by symmetric transmission of a

crystal of uniform thickness. For this case, the secondary extinction problem

can be solved exactly and the reflectivity function is given by [23]

-Zg
g = 1/2(l-e °) e Mt (2-17)

where g is the crystal reflectivity with exftinction and where u is the linear

absorption coefficient. This gives for the measured flipping ratio

R __ = : . (2-18)
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In order io evaluate (2-16) some assumptions must be made to make the integral

tractable.

-

Assume the neutron path length t is constant over the crystal,

which amounts to neglecting edge effects, and assume W (Gﬁ-¢ ) 1s Gaussian

so that the mosaic block distribution is given by

W(G"):
ﬂ¢ Zﬂne

2172

(2-19)

The integral in (2-16) over df will depend on the angular and wavelength diver-

gence of the incident beam as well as the mosaic block sprezad.

Some assumption

must thus be made as to the relative importance of the mosaic distribution and

the beam spread in angle and wavelength in produczing broadening of the Bragg

peak. Q is much more slowly varying in \ than the beam distribution and can be

taken outside the integral in (2-16).

If we assume that the broade: "ag resulting from the mosaic distribution

of the crystal is much smaller than that from beam divergence effects, the integral

in (2-16) becomes

then

-+

assumin, that

we are interested.

Y e d(6g -¢) = ————
oo 2T
(2-20)
= -
- ot
- Q+ - 2T n
Q .ot T
2 /i 1 (2-21)

Q ~ t < <1 which is alwaye true in the cases in which
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If we assume that the broadening due to the beam divergence is much
srnaller than that caused by the mosaic spread but larger than that of a perfect

mosaic block, we iinmediately obtain, using (2-16), (2-18), and (2-19),

_1 Q't ]
o -
Rext. = Q- : 211 ' (2-22)

T . e ]
L \/em n_l

The actual case is somewher: between the results given by (2-21) and

(2-22). In the crystals used for the reflections where extinction is largest, the
broadening due to the mosaic width was larger than the broadening due to beam
spread, so we will adopt equation (2-22). We will see later in this section that
an absolute value of the tcrm multiplying Qi is not generally needed 10 make the

extinction correction, so the actual form taken is not important. Thus, making

use of the fact that

2 4
{1 +p/b . Q
R '(ﬁ‘%ﬁr) S0 (2-23)

and using (2-22) we obtain

+
R, =R 1-_.9_t_..(1-R1 Vo (2-24)
’ Ver 7 ext.
Then
AR _ R-Rext. - Q't 4 p/b
R R - 2 (2-25)
V2T n  (l+p/b)
and

+
_ _Q't 1 -p/b
Ap/b = ———-———Zﬂ p/b (ﬁﬁ‘éﬁ) 12-26)
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where A p/b is the error introduced hy neglectiag extinction entirely. The

data can then be corrected for secondary extinction by the expression

Rext K
P/b = —==— +AFMD . (2-27)
ext,+ '
+
In order to make the extinction correction, Q t must be known.
V2T n

This term will be used often so let us denote it by the letter A. The extinc -
tion correction is always small so the measured valve of the magnetic scatter-
ing amplitude can be used in finding Q". Some knowledge of the Dzbye-Waller
factor is also needed to find Q+, but this knowledge can be very approximate

as the correction is not particularly sensitive to the Debye-Waller factor. The
Debye-Waller factor was calculated by using a characteristic temperature of
400°K given by James [24] for nickel. Everything is then known in the term A
except for the factor n which is a measure of the angular distribution of the mo-
saic blocks in the sample. In theory, n is simply related to the width at half
maximum of the sample rocking curve taken with a sharp monochromating crys-
tal in such a geometry that the rocking curve width is minimized. The relation
isn =B where P is the rocking curve width at half maximum. It is found
in praiéi?:?a that the rocking curves show a very irregular mesaic distribution,
and it is usually difficult, if not impossible, to get a value of f; that is satis-
factory for the entire crystal sample. The beam size can be reduced so as to
look at only a small portion of the sample, and in this case, the rocking curve
becomes more regular as only a small part of the total mosaic distribution is
examined. Even in this case, however, the parameter ndaduced from the

rocking curve must be treated as quite unreliable. Rocking curves for the

L J e s M ——— A = — - - o mar 8 o e | e e e
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A-2-1 sample are shown in Fig. 2.
A better approach to finding the correction term A for various crystals

is to minimize the extinction in one case to such an extent that Rext = R for a

given reflection, preferably the first reflection. Once the correct value of
R is obtained for a given sample, the A value of other sample crystals can be
found using the relationship

A= R-Rext.

R-1 ' (2-28)

The extinction can be made small by decreasing the crystal thickness.
For thellll)reflection,erystal slices as thin as 0.0038 cm. were used for long
counting periods in an effort to find R. Measurements from a set of crystal
slices of va rious thicknesses can be used to get the correct value of R by
extrapolating tr, zero sample thickness. The preparation and cutting of the
crystals is discussed in Appendix B.

If the flipping ratio is measured at different wavelengths for a given
crystal, R can ke eliminated between two equations like (2-23) and the value of
A for the crystal can be obtained. Measurements were made on several crys-
tals for the (111] reflection at wavelengths of 1. 05 f‘)\.\ and 0. 77 .Z . The crystals
can also be examined at different reflections and values of A obtained through
the angular dependence of the extinction correction. By a series of intercom-
parisons, a reliable value of the extinction correction factor A can be found for
each sample crystal. In some cases, the sample rocking curves were uniform
enough to give a reasonable estimate of the parameter n. The values of A
determined from these values of 7n were in good agreement with the values of

A determined using (2-23). In no case, however, was any reliance placed on

the value of A determined from a crystal slice rocking curve. A table cf the
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A values of some of cthe sample crystalslices is given below for A = 1.05 A°,

TABLE 1
Secondary Extinction Correction

Tactors for Various Samples

Sample Thickness

Sample Reflection in Cm. A

A-2-1 (111) 0.056 0.314 + . 008
A-3-1 (111) 0.021 0.077 + .007
A-4 (111) 0.010 C.056 + .006
A-2-2 (111) 0.0038 0.000 + .008
B-3-b (200) 0.023 0.171 £.007

Z. Primary Extinction

Primary extinction results from the r-~duction in neutron intensity seen
by those atoms at the bottom of a mosaic block relative to those at the top of
the block where the neulron beam enters. There are several expressions
available for correcting for primary extinction in the X-ray case. The well-
known Darwin Theory for primary extinction can be carried over to the neutron

case by replacing Zachariasen's [25] factor Ap for X-rays by
At FEN
o

g

where t0 is the thickness of a rnosaic sheet. In this case, the flipping ratio is

given by o
A+ Z T i1 (2A)0)
R= Rf:tl' ’(‘;° (2-30)
N +
Ap - Z J2n+1(2Ap )
n=o
e — -
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-

where Jn is a Dccael function of order n. Since A; is small, the Bessel

function can be expanded in the usual manner giving

. l— A%t _°N° 2
R = Rs;t: 1+1/12 —7 (F -F )| . (2-31)
cos
B -

[he Darwin formulation is derived for a thin plate of infinite lateral ex-
tent. It would seem more reasonable to consider a formulation for a small per-
fect spherical crystalline, and correction expressions taking thie prin. of view
are available from Ekstein [26]. Using the Ekstein formulation, one obtains in

a similar manner

. 2
R = RPT [1+7/16 N2t Z(F+ F ). (2-32)

For secondary extinction, the correction to the flippingy ratio can be
wri‘ten using (2-22)

\ 'r N2 \2 2
- sef (F©' -F ) (2-33)
LS \/211 sin 29 cos Op

To being the sample thickness. We see that th: expressions for cor-

recting for primary and secondary extinction are very similar. Urfortuvnately,
there s no way to measure accurately the thickness ty of a mosaic block, so
we have no idea af to the exact size of the primary extinction correction, For
any reasouable estimate of the thickness of a mosaic block, however, the
correction teria is very small.

Cambii'ing both primary and secondary extinction correctiors and keeping

only first-order terms, the flipping ratio becomes




II<13
2 2 ~ 2 AT
R=R__, E+ NS Ft - F ) (7/16t ¥ = )
ext- L o V27T sin 263 cos 9[3

(2-34)

Notice that the primary extinction term conta:ning to has a different dependence on
0(3 than the secondary :xtinction term containing TO . We can thus hope to be able
to sort out the relative importance of the correction terms by considering refiec-
tions ~t different Bragg angles. Equation (2-34) can be rewritten as

sin 29‘3 cos 6 2 2

- B _ 2 2
R 1 +2 2 = 7/16 \ Nt en Bﬁcos 9p+

= £ . (2-35)

-+

R, and thus F _, can be obtained by using . very thin bent crystal slice which would

have small primary and secondary extinction. The correction formula can then i
be tried out on a thick crystal slice which has large secondary extinction and %

[ AHEN

presumably larger primary extinction taan a thin bent slice. If we compute §

-

and examine its angular dependence we can decide which correction terms ave _,}
important. If all the extinction in the thick slice is secondary extinction £ should
be independent of the Bragg angle. If there is appreciable primary extinction, §
should be some function of the Bragg angle. § i3 plotted in Fig. 3 as a function

of the Bragg angle for the A- 2-1 slice which is . 022 inch thick and has 250/0 !
secondary extinction at the(lill)reflection. We see that £ is independent of angle

within the experimental error. Unfortunately, in the Ekstein case the difference

in angular dependence of the primary and secondary extinction correction terms

is small. We can probably say from Fig. 3, however, that primary extinction

in the A-2-1 slice does not cause more than a 10/o error in the flipping ratio.

'WF - ) - e T = %vﬁfg.ﬁ,
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This gives a sufficiently small error in p/b that the erro» caused by primary ex-
tinction can be neglect:d in comparison with nthe~ -..-rimental errors. There-
fore, in all cases we have assumed that any contributions trou. primary extinc-

tion to tne cdata are negligible and have only correcte2d for secondary extinction

effects.

C. Muliiple Reflections

In finding the magretic scattering amplitude by the flipping ratio measure-
ment, it is assumed that che neutron scatters just once from the planes corre-
sponding to the Bragg peak heing measvred. There are cestain orientations.nf
the sample crystal that permit reflections, in addition to the Bragg reflection,
that one wishes to observe. Moon and Shull [27] have shown that these simul-
taneous reflections have a large effect on the neutron intensity diffracted by
single crystals. The effec: of simultaneous reflections will tend to cancel some-
what in the flipping ratio; nevertheless, the effects are still large enough that
they must be correctly taken into account particularly for the first few reflec-
tions. For this reason, all:'the data were taken while the sample was rotated
slowly around the scattering vector K. Anv abrupt changes in the Bragg re-
flected intensity as the sample 18 rotated about K are an indication of multiple
reflections and the data in that region were disregarded. Multiple reflections
usually are more prominent when there is appreciable secondary extinction,
and little multiple scattering was observed in the thin crystal slices used for
most of the measurements. Figure 4 shows data taken tor the thick A-2-1
slice and the thin A-4 slice as they were rotated about K for the(222) reflection.
The sizeable intensity changes with rotational angle for the A-2-1 slice are the

result of multiple reflections. The effect is particularly noticeable when the
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II-15
rotational angle is zero and the crystal slice is perpendicular to the neutron

beam. The A-4 crystal slice intenrities show no multiple scattering effects.
D. Sample Depolarization

We have so far assumed that the sample is magnetically saturated per-
pendicular to the plane of scattering defined by th~ incoming and outgoing neutron
beam. The flipping ratio of the (220} reflection was looked at as a function of
the applied magnetic field. Figure 5 shows that R did not vary with field in the
region of ., 7000 oe. used throughout the experiment, and it can be assumed
that the sample was completely saturated in this region. A very sensitive check
on the extent of saturation of the sample crystal can be made by examining t.ae
beam depolarization caused by the crystal [28]. This can be accomplished by

using two Co 92 Fe 08 polarizing crystals and examining the change in the flip-

ping ratio when the sample is placed between them, but still in the 7000 oe. field.
The experimental arrangement is shown in Fig. 6. The beam depolarization was
measured for each sample and found to be very small in each casc verifying that
the sample was very close to complete saturation.

So far, it has been assumed that the sample crystal slice was straight up
and down in the magnetic field. The data, however, were taken with the sample
being rotated around the vector K in order to correct for multiple reflections.
The neutron spin precesses about the direction of the total magnetic field
given by

B=H+ (4T - N) M (2-36)
where N is a demagnetizing factor. Because of the (47- N) M term, the di-
rection of B in a tilted sample will be different from the incident neutren polariza-

tion direction, and this willcause depolarization of the neutron beam in the sample.

|
|
|
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Halpern and Holstein [28] have shown that this problem can be treated classically,
and Moon [11] has treated the case where M 1s not along H in the sample crystal
due to magnetic anisotropy but with the sample slice straignt up and down in the
applied magnetic field. Moon's treatment also assumed the sample slice was
many neutron Larmor precessions long.

The nentron polarization direction is always along B, and the magnitude
of the polariz: inside the sample is given by

P = Po J08.Y (2-37)
where Y 1s the angle between B inside the sample and B outside the sample. This
is the so~called sudden approximation and in our case amounts to assuming that
the fields at the sample edge change rapidly over a .Larmor precession length.
An attempt was made to measure the depolarization of a crystal slice tilted in a
magnetic field using the same arrangement as Fig. 6 but including a provision
for changing the tilting or azimuthal angle of the slice. It is found that the neutron
precession time in fields that we are concerned with is such that the neutron makes
only a few precessions in traversing the sample crystal slice. The neutron polari-
zation on leaving the slice will then depend on the extent to which an integral num-
ber of precessions is completed in the slice. If <he neutron spin makes an integral
number of precessions in the sample, it rotates back to its original direction on
leaving the slice and no depoldarization is observed. If, on the other hand, the neutron
makes a half integral number of precessions, the polarization on leaving the sam-
ple is less than the polarization inside the sample and is given by

P = Po cos 2Y (2-2

Intermediate cases can also be calculated and the general case is given in
Appendix C. The observed depolarization of the tilted crystal slice depends on its

tilting ang'e, its thickness, its shape (through its demagnetizing factors) and its
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saturation magnetization. Figure 7 shows the result of a depolarization experi-
ment for the sample A% which is slightly over a Larmor precession length thick.
The theoretical curve comes from the deviation in Appendix C. From the results,
it is found tha! if the tilting angle is limited to 100, negligible error is introduced
in the measured values of p/b. If larger tipping angles are desired, depolariza-

tion corrections could be applied using the methods of Chapter II, Section A.
E. Temperature Dependent Effects

All measurements were made at room temperature. In this case, a
thermal average of the ratio of magnetic to nuclear scattering is being measured.
This can be written

2 2
Hw (x5 - w (k)]

< p/b >T='p/b<Mz>e n (2-39)

where < Mz > is the time average of the z component of the unit magnetic moment

vector. The exponential term consists of the difference between the Debye-Waller
factors for nuclear scattering and magnetic electron scattering. As mentioned in
Chapter I, Section B, it is assumed that the nuclei and their electrons move together
in such a way that their Debye-Waller factors are the same and the exponent in (2-34)

vanishes. The only temperature effect would then be the variation of < M, > with

temperature, and this would be proportional to the variation in the saturation mag-
netization per unit mass with temperature. Following Bozorth [29], the magneti-
zation at rcomn temperature for nickel is taken to be . 946 of that at zero degrees
Kelvin,

There have been se eral temperature dependent flipping ratio measurements
made and no evidence has been found that p/b is strongly temperature dependent

except for the expected change in magnetization. Pickart and Nathans [12] checked
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severa. reflections in Fc3A1 at 77°K und found no variation in p/b from that at

room temperature outsice of the change in magnctization. Siwll [10] measured

two iron reflections particlilakly sensitive 'to the egtot, ‘+a%io0 ard féund no
g

temperature dependence in the asymmetry of the spir distribution in the tem-
perature region between 78° and 830°K. Moon [11] examined three cobalt re-
flections at 78°K and found no temperature dependence in p/b except for the
magnetization change. Menzinger and Paoletti [30] have fourd a :small tem-
perature dependence in p/b in f.c.c. cobalt at 873% that cannot be explained
by the change in magnetization. This may stem from a temperature dependence
in the magnetic form factor or a difference in therDebye-Waller factors for
nuclear and magnetic scattering at high temperatures.

Corsidering the above results, it would seem reasonable to assume that
p/b in nickel is only temperature dependent through its magnetization through
most of the temperature range from 0°K to the Curie temperature. The tem -
perature dependence of p/b may not follow the magnetization in the temperature
range near the Curie point, but Shull's results on iron suggest that the asymmetry
in the magnetic moment distribution is probably temperature independcunrt.

Saenz [31] has shown that the inelasti¢ scattering of neutrons by spin
waves peaks rather sharply around the Bragg reflections in a ferromagnet. If
this scattering is of substantial intensity, it could cause an error in the background
correction to the flipping ratio. For the magnetic field geometry employed, the
cross section for spin wave scattering is minimized and is polarization independ-
ent. The effect of spin wave inelastic scattering was assumed negligible at room

temperature and nc correction was made for it.

o sl
B¢




III. DIGCUSSION DF RESULTS

A. General Remarks

The mugnetic scattering amplitude was measured for the first 27 Bragg
reflections. About nine months of neutron counting time was required since
the magnetic scattering is small ir nickel. A summary of the measured data is
given in Appeadi- D .

There are two approaches that can be taken in analyzing the scattering
data. The firct is to compare the results with calculated values. The compari-
son has to be made with Hartree-Fock free atom calculations since no wave-
function calculations are available for nickel atoms contained in a metal lattice.
We will see that free atom calculations fit the data very closely if a constant negative
term is added to the magnetization. The second approach is to Fourier-transform
the measured data to obtain the periodic rmagnetic moment distribution directly.
This method does not requirz advance knowledge of the 3d wavefunctions and
gives a three-dimensional map of the periodic magnetic mornent density inde -
pendent of any mode® of the magnetization.

The magnetic scattering amplitude {cr the (000) reflection cannot be
measured but can be calculated from the magnetizatio: . If we take the magneti-
zation of nickel to be 0. 606 }1‘3 per atom [32] at zero degrees K and the relative
magnetization at room temperature to be 0. 946 of that at zero degrees K [29],

the magnetic scattering amplitude for the (000) reflection at room temperature

is given by

. 2 < n.> _
p{000) = L& -g— = 0.1545 x 10 *%cm. (3-1)
mc
wneren, is the room temperature number of Bohr magnetons per atom and

B

Y is the neutron gyromagnetic ratio.
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To find the magnetic scattering amplitude from the measured data
we must know the nuclear scattering amplitude. 1.03 _'t .01l x 10-]'2cm. is
the accepted value of ihe nuclear scattering amplitude in nickel [21]. Th-
form factor is given by the magnetic scattering amplitude normalized to
unity at (000) and is given ia Table 2. A lo/o error in-the ncrmalization of
the form factor has been included to take accoun’ of the uncertainty in our
knowledge of the nuclear scattering amplitude. The form factor is con-
sistently higher than that measured by Nathans et a.. [9]. Thic difference
probably results from their improperly accounting for secondary extinction.
All of the data of Nathans et 1l,were taken on a relatively thick 0. 0227
crystal slice whose mosaic character was assumed to require no correction
for secondary extinction.

The periodic magnetic moment density is given by a superposition

of the moment cistributions centered at each lattice site i,
- a -i K* (F - T4
p(r) =Z P(F-F)= "B _ ( ke’ (F-Tilgk) =
i (2:)3 g v

- Z‘n’ i;o;

—'\-,9 Z e f(r) (3-2)
T

where 7 is a reciprocal lattice vector, V the unit cell volume, and p(r) is
measured in Bohr magnetons per cubi Angstrom. We see that only the values
of the for}'n factor determined at the Bragg reflections are needed to obtain

the periodic magnetic moment density. However, p (r), cannot give us any
information about parts of the moment distribution that are not periodic. For
instance, a measurement of the magnetic scattering at the Bragg reflections
cannot give any information about magnetic clusters. Letting p (hk £) be

the magnetic scattering amplitude, equation. { 3-2) can be written

e - . | a——c - i . TR < s s ~ @E!
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Comparison of Calculated and Measured Form Facto's
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= 2 / PRT ) Lz |
P | 2mc . jl -iKer {3-3)
p(r)=%5 | n,n+ = p(ikd)e e :I
v l p™ * 2 ) \Z }

hk) \ j

where the summation j extends over all the atoms of the unit cell and n is the
number of atoms in the unit cell. The sum over h k[ is to be taken over a'l
h k £ both positive and negative but should not include the term (000). The
neutron measurements determine the magnetic scattering amplitudes p (h kyl)
in magnitude and sign and thus give the shape ot Xr) in absolute terms, but
say nothing about the normalization of P (. . We can rewrite (3-2) as

p(r)=A +pYr) (31-4)
where 7p—a.nd p'(r) correspond respectively to the first and higher terin. .
equation (3-2). If P (r) integrated ver r cortzius a d’..:rent magnetic mument
than is obtained in the magnetization measurement, the zero level determined
byE must be shifted so the integral of p(r) over r gives the c~rr~ct total
moment. Consider the case where we have two crystals in which p !(r) 1s the same
but with different magnetization values. The neutrcn diffraction measurements
would give the same values for p(h k 1) but the normalized form factors would
have a different sha:pe. We thus see that the proper way to compare form factors
is to iest their proportionality at all h k I values other than (000), i.e., two
form factors correspond to equal radial distributions when fl(K) =C fZ(K), K #0.
It is important to remember this when comparing measured form factors with
calculated form factors.

B. Comparison of the Data with Calculated Results

In the derivation for magnetic scattering in Chapter [, we assumed the
orbital moment was quenched and included only the spin part of the form factor.
This would be the case if g=2. 00 where g is the spectroscopic splitting factor

The deviation of g from 2. 00 gives a measure of the orbital contribution to

e — e g e A et sy 0 i, v Auamtaian S § e B
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the total magnetic moment. Specifically, -{-‘7-:?—2— is the {raction of the total mag-
netic moment which is due to orbital motion. For nickel, g= 2.20 as given
by the magnetomechanical measureinents of Scott [33], so almost 109% of the
magnetic moment is due to orbital motion. An orbital contribution must thus
be included in our form factor expression and the spin contribution reduced
by 2/g.

There is also some scattering from the core electrons inside the

3d shell. The core contains as many electrons with spin up as with spin down,
but the radial distribution of spin up and spin down electrons is slightly different
[20} © _ ‘o exchange effects. This difference in radial distributions results in
a small amount of scattering from the core and we will include a core polariza-
tion term in nur form factor expression.

The measured form factor f(K) may thus be written as tte sum of

three contributions

R)+82 £ (®)+f (R (3-5)

- 2
fK) = g f gpin g orbit core

(K) is a normal-

= . . . . ‘.
where fspin(K)ls a normalized spin density form factor, forbit

ized orbital form factor, and %0’43 (K)is 2 normalized core polarization form

factor.
Since 3d free atom form factors are available, we would like to com-

pare our measured form factor with them. As we have seen, this is properly

done by seeing if the free atom form factor can be scaled to agree with the
measured form factor at all reflections other than (000). We wish, however,
to deal with normalized form factors and we will assume the form factor

can we written

T i " : ' ' : R A TP
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£ (K = (14a) .f3d('12) - a §(K) 3-6)

where a is a constant; ab (K) makes a contribution at K=’ only, and thus corre-
sponds to a uniform contribution to the magnetization. By using expression (3-6)
we can compdare the radial distribution oi epin density in nickel metal with that
in a free atom and still deal with normalized form factors.

. 5in 6
The measured form factor in nickel is not a smooth function of 51{1

Notice, for instance, that the (422) and (600) reflections fail at the same value
of EE;?— but have very different scattering amplitudes. This means that thc
spin density must be different along different directions in the crystal lattice.

In a cubic field, the five-fold degenerate orbitals of the 3d electrons split

2g orbitals which transform like xy, xz, and yz, and
doubly degenerate eg orbitals which transform like 3z 3 -rz and xz -yz. The

into triply degenerate t

neutron scattering amplitudes from these two sets of orbitals are different,
and Weiss and Freeman [34] have shown that the spin form factor for 3d elec-
trons in a cubic field can be written

£3408) = <§ > + (5/2 Y1) A, <i 4> (3-7)

where <jo> represents the spherical part of the spin distribution and <j4>

the aspherical part. Yis the percentage of 3d electrons in eg orbitals and is

equal to 400/0 for spherical symmetry.

A is a function of the direction that is leing ex2mined in the crystal

hkt

and is given by

bt et -3 m A it ne?)

ke (h°4x°40%) ¢ (3-8)

s}
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The <jn> represent various moments of the radial spin dewsity p'(r) and are

given by

<= ot 3,000 ax (3-9)

where J (Xr) is spherical Bessel function of order n.
n

Blume [4] has derived an expression for the crbital form factor,

and usiang his notation it is given by

f(K{)= (851, 85) +(5/2 ¥-1) Ay (3/14 g, - 1/2 g,) (3-10)
orbit

where the first term gives the spherical contribution and the secord term gives
the aspherical contribution. One finds that (3/14 g4-1é gz) is much smaller than

<j4> and we will leave it out of our form factor expressions. Using equations

(3-4), (3-6), {3a7(,-bnd (3-10) the form factor expression becomes
- . . -2
f(K)=2/g (L +a) [ <> + (5/2¥-1) Ap,<ig> 1+ B=-[g, - 1/2 g,)

i o (B +2/gad (R (3-11)

Hartree Fock calculations of <jo> have been performed by Freeman
and Watson for nickel in various stages of ionization [26], [35], [36]
<jc.> is given for :Ni, Ni+, Ni* and it taking all the oute: electrons to be
in the 3d shell. and for the free atem 3d8 432 configuration [35]. The <jo>'s

#

for Ni, Ni+, Ni" and Ni* are plotted in Fig. 8. It is found that the <jo> for

the 3d84sZ configuration is very similar to that for Ni* so it is not plotted
separately. <jo > has also been calculated for Nit using an unrestricted
Hartree-¥Fock technique that allows wavefunctions-with differing spin quantum

numbers m_ to have different radial functions [20]. The form factor is ae-

termined from a density that involves the difference of the two radial func-
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I-8
tions for the two spin states and is slightly expanded relative to the form fac-
tor given by the restricted Hartree-Fock calculation. The <j°> from an un-
restricted Hartree-Fock calculation for NiH'in a cubic field arising from an

octshedral array of point charges is also available [34] The <j_>'s for the

three Ni* calculations is shown in Fig. 9.

Hartree-Fock free atom calculations for <j4> have been performed
for Ni, Ni*, Ni ¥, and Ni* [35]. <j,> is plotted in Fig. 10 for each of the above
cases. The orbital contribution (go -1/232) was obtained from A. J Freeman

[37]. It is simiiar to a spin form factor being only slightty more expanded in

8————1{1 6 . The orbital form factor is given in Table II.

The data were compared with all these calculations and the best fit
was obtained using the <Ijo> from the u restricted Hartree-Fock calculation
for Ni*, the <j,> for Ni¥ and setting Y = 199, and @=0.19. The comparison
of the measured and calculated form factors is shown in Fig. 1l.

The agreement is extraordinarily good. f(K)is very sensitive to the
calculation chosen for <jo> and it is easy to determine which calculation is best.
The form factor is not very sensitive to the calculation taken for <j4> and either
Ni*, Ni¥, or Ni'* will give a good fit with Y=19%. <) > is not needed to find Y
since <jo> can be eliminated between two equations like (3-11) written for the

same value of sin® bLut for different values of h k £. It is best to do this at
A

.0 o -
sm)\ values ranging from 0,8to 1 A ! where <j > is large and fairly constant.

In practice, the best way to determine Y is to Ifourier-transform differences between

calculated and measured results for various values of Y. For the corrzct valie of
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Y the Fourier transform of the difference will have spherical sy. metry. In
this manner, it was determined that 19 + 19, of the 3d magnetic electrons are

in the eg orbitals.

Figure 1l shows that the shape of the spin distribution‘ in metallic
nickel is almost identical to the shape of the free atom spin distribution. We
have obtained this agreement by scaling the 3d free ion form factor by 190/0 ’
and thus in order to obtain the correct value for the magnetization we must
include a constant negative contribution to the spin density. Since we cannot
sec the point K = 0 by neutron diffraction techniques, none of our measurements
is of any assistance in determining the origin of the negative constant density.
One possibility is that the negative constant represents 4s electrons oppositely
polarized to the 3d electrons. 4s electron form factors fall to immeasurably
small values before the first Bragg reflection and thus can be represented by
a delta function as in (3-10). There would also be 3d, 4s cross terms in the
form factor from the admixing of the 3d, 4s wavefunctions. It is difficult to
determine the exact nature of this 3d, 4s cross term. It is expected that it
should be very small. Certainly, the cross term would have a K dependence
unlike either the 3d or the 4s form factor,and the good agreement between the
measured and the free atom form factor would be ruined by such a term if it
were at all sizable., We are probably safe in assuming the cross term can be
neglected in comparison with the other contributions to the form factor.

In this case, since the neutrons scatter from an unpaired spin density,
either 3d or 4s, (3-1l) can be taken to represent a form factor which includes
both 3d and 4s electrons. The neutron data are thus in agreement with a.madel

of the spin density which distributes the net mag:.etic moment per atom at 0°K.

r— e i o 8 i e e - -
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in the following way,

3d Spin = + 0. 656 kg

4s Spin = - 0.105 Ky

3d Orbit = + 0. 055 Hp

If the 4s spin density were spread uniformly throughout the unit cell, it would

03
amount to a constant magnetization field of -. 0097 Mﬁ/A or 1.2 kg.

It is also plausible that the parameter a represents scattering fiom parts
of the 3d band that have wavefunctions very unlike free atom. wavefunctions. As
mentioned in Chapter I, the wavefunctions at the top of the 3d band are very simi-
lar to 3d free atom wavefunctions, and this is presumably why the 3d free atom
form factor provides the good fit to the data shown in Fig. 10.

Th: 3d wavefunctions at the bottom of the band are quite diffuse. There
is no net difference in the number of electrons with spin up and spin down at the
bottom of the band. However, scattering can still take place from the bottom of
the band if there is a difference in the radial distribution of spin up and spin down
electrons. Watson and Freeman's unrestricted Hartree-Fock calculation on Ni*
shows tnat there is some variation in the radial wavefunctions for spin up and
spir down electrons in the free atom. Freeman [37, has suggested that, in a metal,
these spin polarization effects can act like an effective negative moment in the
region far removed from the lattice sites and may be sufficient to account for the
value of a. In other words, if the exact 3d wavefunctions including spin polariza-
tion effects could be obtained for the metal, a form factor calculated from these
wavefunctions would fit the data without the necessity of scaling it. Along these

lines, L. Hodges, N. D. Lang, and H. Ehrenreich [38] appear to be having some
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success in calculating a 3d form factor for nickel metal using a pseudopotential
method in a band calculation. Although only preliminary results are available,
it appears that it may not be necessary to include negative 4s electron polari-
zation to obtain a fit between the measured form factor and the form factor
derived from the band calculations.

If one believes tfxat all the scattering results from the 3d band, the
asymmetry function <j4> should be calculated from a P {r) that applies to the
scaled 3d free atom form factor, and not just the 3d free atom form factor it-
self. A function <j4> which corresponds to the P(r) actually measured was sup-
plied by R. J. Weiss [39] and is plotted in Fig. 12. This function is not very dif-
ferent from the <j4> for N‘i*, and since the form factor is not very sensitive
to the exact shape of <j4> it is impossible to say if the Weiss <j4> gives a
better ‘it to the data than the <j4> for the Ni¥ free ion. Using the Weiss <j4>,
the best fit is obtained with an ey population of 209, which is a very small
change from the 19% required with the free ion calculation. An ey populati_n
of 19 + 190 seems to be valid regardless of the origin of the constant.

It is worthwhile noting that scaling the free atom 3d ferm factors
also gives a very good fit to the measured torm factors in both iron and
cobalt [10-11]. The value of « is C.10 for iron and 0.18 for cobalt. It seems
that any theory that ascribes the origin of a to the 3d band must also have to
be valid in iron and cobalt.

it is conceivable that expression (3-1) for p (000) is incorrect in a
metal ind that no scaling factor is actually nezded. This seems very unlikely
as there is no experimental evidence that (3-1) is incorrect. The magnetic

cross section expressions from which (3-1) is derived give the correct ex-

T i T il i ' : T [
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1II-12
perimental results for the magnetic scattering in salts, and for paramagnetic
scattering. Moreover, if the magnetic amplitude expression (3-1) were incor-
rect,we shc.ld expect to have found a common scaling factor a for the three
cases, iron, cobalt,and nickel, whereas these are not the same. In any case,
since the scaled free atem form factors fit the neutron diffraction data so
extraordinarily well for iron; cobalt, and nickel, it seems that free atom-
like wavefunctions must play a very fundamental role in describing the periodic

spin density in these metals.
C. Fourier Inversion

In Section B we have seen that the measured data arenin good agreemiint
with a medel of the magnetic moment density that suberimposes free atom-like
distributions on a constant negative hackground. By using equation (3-3), the
Fourier summation can e performed to give the magnetic moment distribution
directly from the measured data and the calculated point at (000). It would be
interesting to see how the distribution given by the Fourier inversion compares
with the model ﬁsed in Section B.

The three-dimensional summation was done cn the M.I. T. Computation
Center 7094 computer using the MIFRI Fourier Summation Program [40]. Fig-
ure 13 shows the magnetic moment density along the three main crystallographic

directions. As we expect, since the 3d electrons in nickel have 819’0 1:Zg sym-

metry, the magnetic moment density P (r) is spread out along the [111] direction
relative to the [1001 direction. The density p(r) falls to zero quite rapidly and the
magnetic moment density over most of the unit cell is very small.

The densityP (r) shown in Fig. 13 is really the true density as seen with

finite resolution, since data aresnhly awvailable updaithe (Z33):ixeflection at
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. o-1
sm_9_= 1.16 A . This is the optical equivalent of viewing an object through a

A
finite-sized aperture. The resolution function in Fig. 13 is obtained by
Fourier-transforming a constant form factor for all reflections up to and in-
cluding (733), and letting the forrr; factor be zero for all higher reflections.
The resolution functionshows the diffraction effects that would te produced in
attempting to map a lattice of points using the same set of reflections used in
the nickel measuremnents. Any detail finer than the wvidth at half maximum of
the resolution function cannot be resolved. We know, for iastance, that the
magnetic moment density from the 3d shell should be zero at the atomic site.
The diffraction broadening effect of limited data smears out the moment density
so that the decrease in the 3d moment near the atomic site is not obeerved.

The limited resolution also causes the p(r) obtained from the Fourier
scries to oscillate at large r. We would like to be able to determine the size
of the moment density in the region between atoms, but the oscillations chscure
the real value of p(r) which is smaller than the amplitude of the oscillations.
The problem is that the F.urier sc<ries for P{r) converges too slowly to give
us the information we arc asking for, namely, the moment density in the region
between the atoms. This problem has been solved by deriving the Fourier series

that gives P (r) averaged in space over a small cubic block. The Fourier series

for the average H(r) is given by

e
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x+6 y+& z+46

-27mi (h x/at+k y/a+ 1 z/a)
ol S‘ S 5 ), Pt Ty s
x-=

-6 z-6 hkt
n F. .,
- _\/p : 3 ; 'g%f’; sin (27 h §/a) sin (27 k6/a) sin(27 1 §/a)
(27 &/a) '
ki
xe °Fib x/a +k y/a + L 2/a) (3-12)

where Fhk.l is the magnetic structure factor, a the lattice constant, and §/a is

1/2 of the length of a side of the cubic block over which the average is taken.
This series converges much more rapidly than the series given in (3-2) because
of the factor (hk.b)-l. The convergence of the two series for the point (1/2 00)

is shown in Fig. 14 for §/a = .075 . Th~ continued sum of the Fourier series

is plotted versus 81{1

number of terms in the series by one, except the average is shown when two

y80 successive points are obtained by increasing the

reflections fall at the same sin 8 value. The size of the oscillations is a

measure of the convergence of the series.

The p(r) determined by {3-3) is still oscillating widely at sin 6 =1.16,

‘o3
but the series for P (r) has converged nicely to the value -0. 0085 Hp/A .

Several different cube sizes (2 §/a) were tried. Good convergence has

been obtained with blocks as small as 0. 07 lattice constants on each side. Far
much smaller blocks D (r) does not converge well and would approach the

N (r) given by (3 -3) if the cube became small enough. If the block is large,
the moment in the region of the atom is smeared out over the entire cell. For
intermediate sizes of §/a the Fourier series forp (r) converges to a negative

o3
density of 0. 0085 Hp / A uniformly over the entire unit cell outs:  of the
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region near the atoiras. P (r)is plotted in Fig. 15 for the direction along the
[100] axis. Note that the moment density hump near the origin is spread out more
than in Fig. 13, and the value of the moment density at th2 atomic site is there-
fore decreased. The P (r) in other directions in the crystal i8 similar to P (r}
aiong [100], the part of the density in the 3d hump being slightly different in
different directions due to the high tZg symmetry,

The magnetic moment density in the [100] and [110] planes is shown
on the contour mapa, Fig’s. 16 and 17. These maps again emphasize the strong
as;rmmetry in the magnetic moment distribution. The moment density extends
out along the [111] body diagonal direction showing the effect of the tzg symmet'ry
of the 3d magnetic electrons. The part of the moment density near the atomic
sites in the 3d magnetic moment humps was given by the series for p(r). The
series for P(r} was employed to give the moment density far from the lattice
points. The Fourier maps show that the magnetic moment density consists of
large positive humps near the atomic sites imposed on a small constant negative
background of about 0. 0085 “5/23. This is in very good agreement with the
model of the magnetization obtained in Section B. This model required that
at 0°K a negative moment density of 0. 009§ PB/.?&E} be spread uniformly over
the unit cell. At room temperature, the ccnstant negative contribution would
be about 0. 0091 }‘Lﬁ/Ao 3 which agrees closely with that seen in the moment
density maps.

It is worthwhile to emphasize that the Fourier inversion technique
requires no theoretical model of the magnetic moment distribution, and gives

the spatial distribution of the magnetic moment density directly from the

measured dava.
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) D. Summary

The magnetic form factor of nickel has been determined for the first
0.1

27 reflections, which cosresponds to a sin 8 value of 1.16 A ", The mag-

netic form factor contains information;.abt))\ut the spatial distribution of the
magnetic momeni density in the unit cell. There aie twu apprcaches one can

take in obtaining this information. The first is to compare the measured form
factor with calculated form factors. Unfortunately, there are no calculated

form factore available for nickel metal, but a number of free atom form factors
are available for several stages of ionization. [t is surprising to find that the
free atom form factor for Ni* fits the data extremely well provided a uniform
negative contribution is added to the moment density. We are unable to determine

the origin of the negative contribution but feel that negatively polarized 4s elec-

trons, or spir. polarization effects in the 3d band, could be responsible. The

sin 0

form factor is not a smooth function of Y

, and from the comparison with

the free atom form factor we find that 81_1_-10/0 of the 3d electrons occupy ty

orbitals regardless of the origin of the negative contribution to the magnetization.
The second approach in analyzing the data is to Fourier-transform the
form factor to obtain a three-dimensional map of the moment distribution. The
Fourier series gives accurate irnformation about the shape of the moment density
near the iattice points, but converges too slowly to give any information in the
region between the atoms where the moment density is small. A Fourier series
was devised that gives the density avcraged in space over a cubic block. This
series smears out the moment dist.ibution somewhat but converges quickly
giving accurate information in the region where the moment density is small.

A map cf the moment density derived from these Fourier series shows the t,
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symmetry clearly and pictures the moment distribution as being similar to asym-
The two

metric free atom distributions placed on a uniforrma negative background.

approaches to analyzing the data give very similar results for the size of the

negative background and appear to be consistent with each other in every way.
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APPENDIX A
INSTRUMENTAL CORRECTIONS
I
\/2

For the half wavelength correction we must know
I)\ Moon

[11] measured this ratio for the S-4 spectrometer by determining the inte-
grated intensity for the same reflection from the same crystal for both
wavelength components. This measurement had to be corrected for the
difference in crystal reflectivity and absorption for the two wavelengths to
obtain the incident beam intensity ratio from the reflected intensity ratio.
The measurement was checked by inserting a Pu filter in the beam which
at 1. 05A° removes practically all the \/2 component. Previovs values

I
to I, were -—I-Alz— =0. 011.

obtained in the laboratory for the ratio of I)\/Z X N

This number does not have to be known accurately as the \/2 correction
to the data is very small in all cases,

The polarization is determined by 1sing an analyzing crystal simi-
lar to the polarizing crystal and measuring the flipping ratio. The polari -.
zation is not uniform over the entire beam and in particular is lower in the
upper and lower edges of the beam compared to the middle. The form
factor measurements were all made using just *he middle section of the

beam over .;hich the polarization is quite uniform. With the analyzing crys-

tal in the beam, the flipping rativ is given by

I g.
1+Papo+1"/‘2 r/2
R - A g\

a

I g

1-P P (26-1) + M2 A2 (A-1)
o a I)t 08

making use of equa‘tion (2-9) and letting

A-l

——— p— -a S —




+ -
-ga

g

- -2
Pa- +
€2

- A-2
re, (A-c)

where ga+ and ga- are the reflectivities of the analyzing crystal. P0 18 the
beam polarization at the test crystai position and can be thought of as being
the product of Pp’ the polarizing e.ficiency of the polarizer, and Pb which
represents the beam depolarization along the path between the polarizing and

analyzing crystals. The half wavelength terms require a knowledge of

gk/Z/gX which can be calculated using the form factor data for
Co 4, Fe o of Nathans and Paoletti [41].
The shim ratio is given by

S=1+ P P (A-3)
0o a

This ratio S is defined as the ratio of the reflected intensity irom a polw.rized
beam to the reflected intensity for the same beam completely depolarize .
The beam is depolarized by inserting a cteel shim in the beam. Moon found
for the S-4 spectrometer S=1.997 + . 004 and R =97 +1. Using( A-1)and
(A-3) this gives (1-2£)=0.985 + 004. The nickel measurements were taken
using a different magnet and for this magnet Ra=84 + 2. It is reasonable

to assume that this smaller value of Ra was caused by a decrease in P0
rather than in (1-2f) so we can let (1-2f)=0. 985+. 004 in our case also.

The analyzing crystal is in a larger magnet than the polarizing
crystal so it is expected that Pa > Pp if the two crystals are cut from the
same ingot., Flipping ratics as high as 260 have been measured with the
analyzing crystal on the S-3 spectrometer. In this case, even if Pp and

(1-2f) are taken to be 1 this give Paz 0.995, so it is a very good assump-

to set P_=1in our calculations. Using Ra=84 we then obtain P°=0. 9<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>