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ABSTRACT 

Measured decay rates end flutter speeds for e two-degree-of-freedom 

hydrofoil model with sweep or taper do not agree with the decay rates end 

flutter speeds predicted by two-dimensional strip theory, whereas the 

measured and predicted frequencies are In agreement. Calculations based 

on the two-dimensional strip theory show that Increasing sweep angle or 

decreasing caper yields higher flutter speeds as well as higher values of 

the critical density ratio. It Is shown that flutter-speed predictions 

based on quasi-steady representations of the unsteady hydrodynamic forces 

are not valid. 
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NOMENCLATURE 

A0 * Ajl , Ag, Aj 

a(y) b(y) 

b(y) 

b0 

C(k) 

«(y) b(y) 

F 

F(k), G(k) 

F(y.t), T(y,t) 

Fh‘ FQr’ Th’ Ta 

Fj(*.y) 

9j (y) 

H(y,t) 

span to semichord ratio ■ s/bo 

parameters defined In Equation (30) 

parameters defined In Equation (33) 

parameters defined In Equation (?6) 

distance from midchord to rotational axis, 
positive if the rotational axis is aft 

local semichord length 

reference semichord length 

Theodorsen function defined In Equation (15a) 

distance from y-axis to rotational axis» 
positive If the rotational axis is aft 

a real constant 

real and Imaginary parts of C(k), respectively 

lift and moment per unit span, respectively, 
relative to the y-axis 

harmonic hydrodynamic derivatives defined 
in Equation (27) 

th 
j displacement mode shape 

J*** spanwise mode shape 

downwash velocity at 3/k chord point, defined 
In Equation (40) 
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H(y,t), ®(y,t) 

I 

iq, k8 

k 

ko 

L(y,t), H(y,t) 

Si' S>' Mh' Ma 

MJA 

"«(y) 

n 

P 

Ap(x,y,t) 

P, Q, R 

Qj(t) 

Pjít) 

r 

rorb 
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translational and rotational displacements, 
respectively, for two-dimensional airfoil 
sect Ion 

Initial value of h 

translational and rotational spring 
stiffnesses, respectively 

reduced frequency 

reduced frequency at b ■ bQ 

lift and moment, respectively, per unit span 
in two-dimensional flow 

two-dimensional harmonic hydrodynamic dériv¬ 
ât Ives 

generalized mass defined by Equation (3) 

mass per unit span 

number of displacement mode shapes 

Laplace transform variable 

load distribution on lifting surface 

parameters defined in Equation (33) 

generalized force defined in Equation (4) 

generalized coordinate in Jtb displacement 
mode shape 

number of translation mode shapes 

radius of gyration per unit span about 
rotational axis 
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T 

T(t) 

t 

U 

Uf 

X. y 

Z(x,y) 

A 

^CR 

P 

9(t) 

u> 

U). 

0). 

span length of model 

taper ratio 

time dependence of hydrofoil displacement 

time 

forward speed of hydrofoil 

forward speed at flutter 

orthogonal Cartesian coordinate system In 
plane of lifting surface 

distance from rotational axis to center of 
gravity, positive If center of gravity is aft 

space dependence of hydrofoil displacement 

midchord sweep angle 

density ratio 

critical dens.lty ratio 

fluid density 

Wagner function given approximately by 
Equation (41) 

dimensionless natural frequency defined by 
Equation (48) 

response frequency 

uncoupled natural frequency in Jth mode 

response frequency at flutter 
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INTRODUCTION 

In two eeriler hydroelastic investigations at the Davidson Laboratory, 

measured flutter speeds of several hydrofoil models were compared with 

flutter speeds predicted by airfoil flutter theory. The hydrofoil models 

considered in those studies were highly simplified, to provide the best 

possible basis for corroboration of the theory. In particular, they were 

constrained to motions In only two degrees of freedom, namely, uniform 

translation and rotation; and they were mounted between large end plates, 

to insure two-dimensional flow. These models were tested over a range of 
I j 2 density ratio and center-of-gravlty location, while other parameters, 

such as rotational-axis location, natural-frequency ratio, and radius of 

gyration, were held constant. 

The dynamic response characteristics of the experimental setup (l.e., 

decay rate and frequency, as well as amplitude ratio and relative phase 

of the responses in the two degrees of freedom) were compared with those 

predicted over a range of speeds by two-dimensional unsteady airfoil 

theory. The results show that the theory overestimates the decay rate 

near the critical value of density ratio, leading to a non-conservative 

prediction of flutter speed in the range of density ratio which is of 

interest for hydrofoils. Thus it was concluded that, for deeply submerged 

hydrofoils with two degrees of freedom and In two-dimensional flow, aero- 

elastic theory can be used only as an indication of the proximity of an 

actual flutter boundary. Flutter tests must be carried out for accurate 

predictions of flutter speeds, when flutter is imminent. 

Other investigators have encountered this discrepancy. ' None 
3 ii 

of the proposed explanations^' has, however, been substantiated. To 

study the physical mechanism leading the discrepancy, reliable flow studies 

and force measurements, at high values of reduced frequency (.3 < k < 2), 

are needed. 

The scope of the hydroelastic studies at the Davidson Laboratory has 

been extended In subsequent investigations to include the effects of 

1 
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7 8 Q 10 
operation near a free surface '* and more realistic support conditions. 

The comparison of measured and predicted flutter speeds Is extended 

In the present study to Include the effects of planform variations (partic¬ 

ularly sweep and taper) with the same baste two-degree-of-freedom system 

as that described In the first two volumes relating to this series of 

investigation. * Measured flutter speeds are compared, In this report, 

with flutter speeds predicted by the two-dimensional strlpwise technique. 

It has been suggested by several investigators that a simplified, 

quasi-steady representation of the unsteady hydrodynamic forces might be 
11 12 

used to predict the flutter speed of hydrofoils. * To shed further 

light on such an approach, this report also presents several comparisons 

of the flutter-speed predictions based upon quasi-steady and unsteady 

representations of the hydrodynamic forces. 

Computations were carried out at The Computer Center of Stevens 

Institute of Technology, which Is partly supported by the National Science 

Foundation. 

2 
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THEORETICAL ANALYSIS 

INTRODUCTfON 

The hydrofoil, because it is relatively thin and has small values 

of camber and angle of attack, is replaced by a lifting surface with no 

thickness which has the same shape as the hydrofoil in planform and front 

elevation. The unsteady motion of the hydrofoil is then presumed to 

consist of small perturbations normal to the lifting surface, since other 

motions do not have an appreciable effect on lift. Furthermore, it Is 

assumed that the motion can be represented by a finite sum of prescribed 

displacement mode shapes, each multiplied by an unknown time-dependent 

amplitude. Thus, for the case of a flat lifting surface in the x-y plane, 

the normal displacement Z(x,y)T(t) is represented by 

n 
(1) 

where fj(x,y) are the mode shapes, n is the number of modes, and 

qj(t) are generalized coordinates giving the amplitude of displacement 

in each mode as a function of time t . 

The equations of motion for the hydrofoil can be written as'^ 

a a • § H 

(2) 

This surface must be a cylindrical surface with generator parallel to the 
forward motion of the hydrofoil. 

3 



deriving Equation (2), it is assumed that the elastic forces are conserva* 

tive and are proportional to the displacement amplitudes; and that gen* 

erallzed coordinates have been chosen such as to make the elastic coupling 

forces vanish. The generalized masses are obtained from fj(x,y) and the 

mass distribution per unit area m(x,y) through the relation 

yx’y> dxdy (3) 

where the range of Integration extends over ail masses which participate 

In the motion. 

The generalized forces in this study are restricted to those conserva¬ 

tive forces which arise from the unsteady hydrodynamic pressure distribution 

Ap(x»y»t) . They are obtained from the relation 

Qj(t) fj(x,y) dxdy (4) 

where the range of integration extends over the hydrofoil planform area. 

Many hydrofoil structures can be considered as rigid in the chordwise 

direction, and the mode shapes fj(x,y) therefore divisible into r 

translational modes with spanwise distribution [gj(y) ; J - 1, ..., r] , 

plus n-r rotational modes with distribution [gj(y) ; J “ r + I.n] . 

Then Equation (I) becomes 

Z(x,y)T(t) g,(y)q,(t) + (eb-x) 2 
J J j-r+l 

9j(y)qj(t) (5) 

where b is the local semichord length and eb is the distance from the 

y-axis to the rotational axis of each section. Then, the generalized 

masses (3) can be written in terms of gj , as can the spanwise distributions 

of mass m(y) , center of gravity b(y) x^iy) , and radius of gyration 
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b(y) ra(y) , which In turn are given by 

m(y) 

bxam(y) 

bara8m(y) 

J m(x,y) dx 

f (x-eb)m(x,y) dx 

J (x-eb)8 m(x,y) dx 

With these definitions, the generalized masses (3) become 

H 
J* 

J^(y)9i(y)9^y) *y 

m J^am(y)9i(y)9^y) *y 

m(y)2A(y)9^(Y) ày 

m Jbxam^9i^9^y) ày 

j J ■ I, ..., r 

1 i ■ I, ..., r 

j j ■ 1, ..., r 

i » r+l, ..., n 

- r+1, ...» n 

! i • r+l, ..., n 

IJ - r+l.n 

& m I, ..., r 

(6) 

Then the generalized forces are brought to the form 

Qj(t) - 

Jpíy.Ogjíy) <*y 

/(y.Ogjiy) dy 

J ■ ^ i • • • » r 

J - r+1.n 

(7) 

where F and T are the lift and moment distribution per unit span 

5 
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defined by 

F(Vit) - J*Ap(x,y,t) dx 

Tíy.í) ■ y*(eb-x)Ap(x,y,t) dx 

(8) 

FLUTTER SPEED 

When operating at the critical flutter speed (neutral oscillatory- 

dynamic stability), the motion of the hydrofoil will be harmonic. When 

one presumes that this condition has been attained, the equations of motion 

lead to a relation between the various parameters of the system which must 

be fulfilled during the flutter motion; and thus the critical flutter-speed 

boundary can be determined. 

Therefore, harmonic motion is introduced In the form 

djiO ■ PjO") e,U,t ; J - I.r (9) 

where qj(u>) is the complex amplitude of motion in the mode of dis¬ 

placement. When this motion has persisted for a sufficient length of time, 

its effects will also be harmonic with the same frequency (u ; then Qj , 

Ap , F , and T can be written in the same form as q,(t) in Equation (9), 
iuut J 

and a common factor of e can be cancelled from all equations. In 

particular, the displacement (5) becomes 

:(x.y) ■ £ g,(y)p,(w) +£ (eb-x)g.(y) q (u>) (10) 
J-I J J JTr+l J J 

and the equations of motion (2) can be written as 

^ i?i [(^) V ’ '] V*(u,) “ V“0 ; J ’1,2.n 
(11) 

6 
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where represents the Kronecker delta defined by 

0 I } t * 

and where the generalized forces are now given by 

J ■ 1» ... r 

J ■ r+1, ..., n 

■ yAp(x,y,u>) dx 

Tiy.w) ■ y (eb-x)Ap(x,y,u)) dx 

(12) 

(13) 

In order to solve the equations of motion (II) for the unknown flutter 

speed and frequency, the harmonic force and moment per unit span (13) must 

be expressed In terms of the displacement (10). If the span of the hydro¬ 

foil Is large and If the mode shapes, rotational axis location, and plan- 

form geometry change slowly In the spanwise direction, then the hydrodynamic 

force and moment per unit span can be closely approximated by that of 

two-dimensional hydrofoil sections with the same properties at each span- 

wise station. The unsteady lift In two-dimensional flow on a foil 

oscillating in heave h and pitch ã is given by 

!(»,«.) - npbV jt.h £ - - (i + •) lh] Si 

5<y-") ’ "pbV I - [\ * <* + 8> lh ] b + [Ma -<*♦•> <Hh ♦ g 

7 
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where ab Is the distance from the midchord to the rotational axis, 

positive aft, and where the lift and moment derivatives * Mh ’ 

and M are expressed in terms of the Theodorsen function C(k) , by 

S, ■ ' * T c<k> 

L0 - i - C(k) - { H + 2C(k)] 

k (15) 

Mh ' i 

Ma “ I'k 

where k ■ u)b/U is the reduced frequency. The Theodorsen function can be 

evaluated by means of the relation 

C(k) - F(k) + IG(k) (15a) 

where 

F(k) 
Mk) Ji(k) + Y0(k)] - Yi (k) J0 (k) - Yi (k)] 

1 
Jjfk) + Y0(k) 

a 
+ [jl,(k) - Yi(k) 

8 

6(k) 
Jo(k)Ji(k) + Yo(k)Y,(k) 

[Ji (k) + Y0 (k) + Wo Ot) - Yi (k)]1 

where J and Y are the n*^ order Bessel functions of the first and n n 
second kind, respectively. With displacement given by Equation (10), the 

heave and pitch amplitudes at station y are given by 

£ - £ 9¿(y) 5,(^)/5 
i ■ 1 

8 
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so that 

F(y,i») 

T(y,«>) 

where 

yields 

n 

® ■ £ 9¿(y) 
/■r+1 

the harmonic force and moment per unit span (13) become 

TTpb3u>* cos A ILh 5 s*<y> 5<(u,)/b 

- [i0 - (i + ») S.J ^(y) iiM 

(16) 

TTpb4U)8 cos A j- (i ♦ •) thJ 9X(y) dxW/b 

- (i + •) (Mj, + i-0) ♦ (i + «)* i^J 9/(y) 5^(^1 

\ Is the midchord sweep angle. Combining Equations (12) and (16) 

tip«) cos A I ^ y*g^tyjgjiy) dy 

- Ë 5,(^) 
jt»r+l 

y^3 [La " + a) lhJ 9jt(y)9j(y) <*y j ; 

J “ i* •••» •* 

■ TTpu) COS 

(17) 

A j " yî»3 ^Hh - a * a) LhJ gx(y)gj(y) dy 

£ , fi* [Ma “ + a) tMh + ♦ (i ♦ a)a Lhj 9x(y)9j(y) <iy | ; 

J ■ r+l, ..., n 
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by which the generalized forces are related to the generalized coordinates 

qj((u) . Substituting Equations (17) into Equations (II), then dividing 

the translational equations (J ■ 1.r) by np b03 o)as , and the 

rotational equations (J ■ r+1, ...» n) by ftp b04 ui8 s , where b0 and 

s are suitable reference lengths in the chordwise and spanwise directions, 

yields the linear set of dimensionless homogeneous equations. 

5¾1 ([-(¾ 
.1 . 3 

i-r+l 
A/ (^) [la - (i + Lh] 9/(v)9j(y) ^ - 0 

J “ 1.r (18) 

.1 3 

‘cos A jf (i) [Mh -(i + a> Lh] 9i<y)9j('') dy 
£• 1 Io 

j^Ha - (i + a) (Mh + La) + (i + a)a LhJ g^íyígjíy) dy 0 ; 

J - r+1, ..., n 09) 

For these equations to have a non-trivial solution, the determinant of the 

coefficients of qj is required to vanish; this yiélds the "flutter 

determinant." The values of speed (which appear in the reduced frequency) 

and of unknown frequency which make this determinant vanish are the pre¬ 

dicted flutter speed and flutter frequency u>^ . 

The present study is concerned with the effect of sweep and taper 

on flutter speed. The planform geometry of the foils used in this study 

10 
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Is shown In Figure I. For a foil with midchord sweep angle A t the 

midchord-to-rotational-axls distance is given by 

a " e(y) - £yA tan AJ / (20) 

where A ■ s/b0 with b0 ■ b(0) ■ root semichord length, and where s 

is the distance from root to tip In the direction normal to the flow. 

The semi chord length is obtained from 

^-1- (l-T) y (21) 

where T « b(s)/b0 , and the reduced frequency is obtained from 

(22) 

(23) 

With these definitions, the relation between kg » ^ » and the parameters 

of the system at the critical flutter speed is specified by the flutter 

determinant. 

In the experimental part of the present study, the number of dis¬ 

placement modes was restricted to one In translation (j - I) and one In 

rotation (J ■ 2) , where the spanwise distribution of each mode was 

uniform; i.e., 

where 

u>b0 

ko " “XT 

9j(y) - 1 ; J - 1.n ; n - 2 (24) 

The inertial terms in Equations (18) and (19) can be written 

the density ratio ^ defined by 

Zm(y) dy 
■. 
Tip b02S 

In terms of 

(25) 

II 
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Then, the dimensionless generalized masses are given by 

'11 
TTp b0a s 

la 
"P bn s 

H 
—^V 
TTP b.3 S 

- »X, (26) 

M 22 
npboS 

|i r a. 

where bx^ and bartt9 have been assumed constant along the span. The 

harmonic hydrodynamic derivatives are defined by 

■ cos A r (*•)■ Lhdy 

a 

(27) 

A f (^) I”® ’ + a) (Mh + L<>) + + a>8 Lh] dV 

With these definitions, the flutter determinant obtained from Equations 

(18) and (19) reduces to the form 

I + F. ■ *“<, + fa 

M r O' + T a 

(28) 

12 
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Since the hydrodynamic terms are complex, the expansion of the flutter 

determinant (28) yields a pair of simultaneous equations in the unknowns 

kQ and <^/u>f . An explicit solution of these equations cannot be 

obtained, due to the complicated dependence on k,, which enters through 

Equations (IS). (16), (22), and (27). On the other hand, if p and u>a/<"f 

are cônsldered the unknowns at specified values of kQ , then the imaginary 

part of the expansion of (28) leads to an equation of the form 

where 

, Bi 

i-S- (29) 

*, - Tcl + r‘ F hi 

ai + r a hi * xa*Thl + ral> (30) 

C I Fhr Tofl + Fh. Torr ' FW Thl * Fa, Thr 

and where the real and imaginary parts of the harmonic hydrodynamic 

derivatives have been separated in the form 

F* ■ F«r + k7F«r'-£Fa. 

Th ■ Thr - IT Th. 0 

Ta * Tar + kfi- 1ar' * IT Tol 

(31) 

Combining Equations (15) and (27) yields relations for these quantities 

(Fjir, .... T^j) directly In terms of C(k). These are listed In the 

13 
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Appendix. The function C(k) can be evaluated by means of Equation (15a), 

with k given by Equation (22); hence these quantities can be evaluated 

easily with a suitable quadrature formula. (Simpson's Rule with twenty-one 

ordinates was used in this investigation.) 

After elimination of p by use of Equation (29), the real part of 

the expansion of (28) leads to an equation of the form 

(<i)2/0)f)4 P - (<i>3/(i>f)a 0 + R - 0 (32) 

where 

FrVCl + ra [l + 'V“.)'! 

14 
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F 
r 

B + 
r (T 

QT ♦ */ar V K’ (33) 

The roots of the quadratic Equation (32) can now be found, together 

with the values of m> from Equation (29). These roots determine the 

flutter frequency; the flutter speed is found from the relation 

A. 
bw 0 2 ko(W 

(3¾) 

The solution of Equation (28) by means of this procedure has been carried 

out for the hydrofoil configurations used In the experimental part of 

this investigation. 

QUASI-STEADY ANALYSIS 

In earlier flutter analyses,^ ^ an asymptotic behavior of flutter 

speed has been found for density ratios, p » In the range of practical 

interest for hydrofoils. The value of M> at which this asymptote occurs 

is known as the critical density ratio, ^CR . Along this branch of the 

flutter-speed curve, one finds that k0 -* 0 as Up - 00 . As a result, 

^CR can k® Pre<^c*ed hy using the quasi-steady approximation of the 

circulatory components of the lift plus the added mass.* The quasi-steady 

approximation is introduced by replacing C(k) with a real constant F 

If the added mass were neglected as well, i.e., k0 «0 , then the 
expansion of the flutter determinant would yield an expression for 
the divergence speed. 

15 
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In Equations (IS)» which gives 

L, 
h 

■ i - ■jT F - "j“ 0 ♦ 2F) 

(35) 

M, 
h - i 

The dependence of the quasi-steady harmonic hydrodynamic derivatives on 

1^ Is now given explicitly by Equations (31)* where the quantities 

Fhr , ..., Tat depend only on F and the foil geometry, and can be 

obtained from the expressions given in the Appendix with G(k) ■ 0 and 

F(k) - F . 

Equation (28) can be expanded and solved for quasi-steady flutter 

speed and quasi-steady flutter frequency, as well as critical density 

ratio, In the form 

(36) 

where 

16 
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^ B, + C 

H A 
(37) 

(38) 

For the case of a straight rectangular planform with 0^/1¾ « 0 the 

critical density ratio reduces to 

(39) 
" I + 2(xa + a) 

which is in agreement with the results presented by Henry, Henry and All, 
i 2 lb 

and Henry, DugundjI and Ashley. ’ * The critical density ratio was 

predicted by means of Equation (38) for the hydrofoil configurations used 

in the experimental part of this investigation. 

TRANSIENT RESPONSE 

All results obtained from the equations of motion (18) and (I9) — 

or, Equation (28) *- are limited to the case of harmonic motion, since this 

condition is specified in the statement of the problem. (See Equation [9].) 

The results can be extended to more general motions by application of 

Fourier transform techniques; however, the indiciai aerodynamics approach 

yields identical results with less analytical effort. 

It is assumed that two-dimensional strip theory applies, so that the 

lift and moment per unit span due to translational and rotational motions 

h(y,t) and ^(y.t) , respectively, can be written in the form 

L(y,t) » npb8 (- h + Ucr - baQ') - 2npUb / H(y,t) 0(t-T) dT 

(^0) 

17 
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M(y,t) « - TTpb3 [bah + Ub(^ - a) O' + b2(1/8 + aa) o'] 

- 2npUba(i + a) / H(T)0(t-T) dr 
•CD 

(40) 

where 

*H(y,t) * h - üà - b(i - a) o' 

and where 0(t) Is the Wagner function which Is given approximately by 

0(t) = I - .165 e"-0455 Ut/b - .335 e’*3 Ut/b (41) 

With displacement given by Equation (5), h(t) and o(t) become 

h(y,t) = £ gx(y) qx(t) 
£■1 

(42) 

"(y.t) -5 L g/(y) ^(t) 
£«r+l 

Combining Equations (40) and (42) yields the force and moment F(y,t) 

and T(y,t) per unit span which, when Inserted in Equation (7)» give the 

generalized forces In the form 

J-l.r 

Qj(t) - npu8b0s I - ^ ) f ^(ylg^fy) <iy 

1 a 

£*r+1 o ' 

18 
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•»o’«/«*) f /k\3 

x*r+l o 

- 2 tf 
Ut/bn 

bo^íT) 
tp(t-T) d 

Ç/'fâ'j 
(y)g#(y) dy 

" 'Ut/b»b0qi(T) 
+ 2 > I -V(t-r) d 

n -I 

El 
i»r+l U e/‘ (t) (y)g,(y) dy 

n Ut/b, 

+ 2 £ / £= r+1 •'-a 

J“r+1, ..., n 

Qj(t) - npu8bas 

0 L 3 Î 
»o' 

tp(t-T) d S/‘ (i)‘ (i - a) gjíyíg^íy) dy | cos A 

m 

{-ÉT/fóV ' JÈ-1 U 0 r 

■ ¿ / (^)(i •4) 9J(y) 9<(y> dy 
i«r+1 

^ bo8qx(t) /b\' 

- 2 (b-j (i + * > 9j(y) 9i(y) dy 
£»r+1 o 

,i . . 4 

r ^Ut/b, 

•£/ 
je-i -°1 

0 bo^(T) 

ua 
cp(t-T) d ^y (i + a) gj(y)gi(y) dy 

19 
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I 

" ,Ut'bo 

*!?/ /-7+I -CD 

.1 . a 

U 

♦ 2 E / 
i«r+1 -o» 

Ut/bÄ .a 
° b08 ^(t) 

U‘ 

cp(t-T) à — f (i + a) gj(y)g¿(y) dy 

rl 3 

£/ (t)(i - 9j(y)^(y) dy ) Cp(t-T) d cos A 

(M») 

The equations of motion (2) can now be written in dimensionless form 

by dividing equations J ■ I, ...» r by nP b0 Uas and equations 

J - r+l, ...» n by "p bQa U8s , giving 

V* MJ¿ boqi V' 0 i MJJ Ü °J . 
npb a s ua + ^Pb0ö s \ U / npb^ s b0 " rrpb U*s * 

/-1 0 /-r+l 

j ■ I, .... r (45) 

V1 MJ‘ ‘‘»‘'i v* Mjí hjj _ 
2-d TTpb às Uà + TTpb04s U8 + \ U / TTPb04 S qJ " nPb08 U3! * 
/-1 /- r+1 

J ■ r+l, ...» n (46) 

The solution of these equations of motion (45) and (46), together 

with the generalized forces given by Equations (43) and (44), can be found 

by Laplace transform methods. This procedure has been carried out for the 

two-degree-of-freedom hydrofoil models which were used in the experimental 

part of this investigation. For this case, 

r - I ; n - 2 

9j(y) • i ; J - 1.2 

20 
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and the equations of motion reduce to 

~ * .. Vr _ a * « 
Mi - + ni -^(1) 

M * a * <^a a * A */ *\ 

■ + “''c» % * ^ % - «3 (‘ ) 

(47) 

where the denotes the corresponding dimensionless quantities of 

Equations (45) and (46) and where 

0. 
U 

(48) 

Taking the Laplace transform of Equation (47) and introducing the initial 

conditions 

^*(0) - qa*<0) - q2*(0) - 0 

q,*(0) - h0 

yields the algebraic equations 

^ jp’ [4 +/ (fy d7* ] + 4¾8 + 

+ 4=|p2[-4xa*/ (^) ^ -y"] - 

0 

ipb/ (t)d/] + 2pcp i(s) dy 

(49) 
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and 

ï.jp* [- ♦/(£)•dy*]+ [ » / fc)'<*+ •> -/] I 

♦ q8 I Pa ♦ y* (i ♦ «•) dy*J + P y* (i * •) dy* + Pra naa 
0 o 

*2p? [p/ (t)(i * -/+ / (t)(i + a> -/] I 
0 0 

* ho j P[‘ Pxcr + / (^) a-V^j + wf (i + •) dV*| 

where dy * cos A dy (50) 

where p is the Laplace transform variable, the bar indicates Laplace 

transformation, and 

B(p) 1  _'6? 335 
p p + .0455 p + .3 (51) 

Expanding the determinant of the coefficients of ^ and q2 in Equations 

(49) and (50), then multiplying by [(p f .045?) (p + ,3))a in order to 

clear fractions, leads to an eighth-order polynomial in p . The real 

and imaginary parts of the roots of this polynomial are the decay rate a 
and frequency u> of the transient response of the system. These calcula¬ 

tions have been carried out for the cases of the hydrofoil models used in 

the experimental part of this study. 
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EXPERIMENTAL ANALYSIS 

FLUTTER APPARATUS 

The Davidson Laboratory Flutter Apparatus1 was used In the experimental 

phase of this investigation. The flexure system described in Volume II of 

the series of reports relating to this study was used to support the 

models, and the thicknesses of the flexures were adjusted to obtain the 

properties listed In Table I. The upper and lower end plates were retained 
to negate end effects. 

MODELS 

Four hydrofoil models were constructed, each with the NACA 0012 cross 

section, 6-In. chord and 12-ln. span. Two of these models had midchord 

sweep angles of 15 degrees and degrees, with no taper, while the remain¬ 

ing pair had taper ratios of 2/3 and 1/3 with a midchord sweep angle of zero 

degrees. During calibration, it was found that the mass of the model with 

sweep angle of 45 degrees could not be varied without significant changes 

In the radius of gyration and center-of-gravlty location. Therefore, no 

flutter tests were conducted with this model. The properties of the 

remaining three models are summarized In Table 2. 

CALIBRATIONS 

The center-of-gravity weights and additional weights were designed 

and constructed following the procedure described in Volume I of this 

series of reports.^ The uncoupled natural frequencies and u>a in 

translation and rotation, respectively, were measured in air and the values 

are reported in Table 3 for those configurations used in the flutter tests. 

These values of the uncoupled natural frequencies are exhibited In Figure 2; 

their variation with respect to l/^T is substantially linear, indicating 

23 
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that the uncoupled natural-frequency ratio is nearly constant for all 

configurations. Furthermore, the radius of gyration r^ Is related to 

the uncoupled natural-frequency ratio through the expression 

a (40) r a 

where ^ and 1^ are the support stiffnesses in translation and rotation, 

respectively. Therefore, r^ is also nearly constant for all configurations. 

TEST PROCEDURE AND DATA ANALYSIS 

The response characteristics of each of the configurations described 

above was Investigated over a range of speeds ln DL Tank 3. The model 

was given an initial displacement and locked in position before each run. 

After the apparatus had reached a constant speed, the model was released 

and the time histories of the translational and rotational motions were 

recorded. The apparatus was then returned to the starting position and 

the water was allowed to settle for about five minutes before the next 

run. The speed was increased in each subsequent run, until a flutter 

condition was obtained or until the maximum speed of about 15 fps was 

reached. 

The decay rate and frequency of response were obtained from the 

recorded motions by means of the procedure described in Volume I of this 

series of reports.^ These results are presented in Table 4 and in Figures 

3, 4, and 5» for the three models used in this investigation. 
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DISCUSSION OF RESULTS 

Measured values of decay rate, frequency, and flutter speed are 

compared herein with the corresponding results predicted by two-dimensional 

airfoil theory applied in a stripwise manner. The dynamic configuration 

of the hydrofoil models includes only two degrees of freedom, viz., uniform 

translation and rotation about a spanwise axis. Three hydrofoil models are 

considered (with properties listed In Table 2), each supported with two 

degrees of freedom. Table 3 exhibits the elastic and inertial properties 

of the test configurations; and Table 4 shows the measured values of speed, 

frequency, and decay rate, in dimensionless form. Note that a negative 

decay rate indicates a stable response and vice versa. 

The measured decay rate o and frequency u> for Model 1 are shown 

in Figures 3« and 3b for the two density ratios, u , tested. The corres¬ 

ponding theoretical results, predicted by the methods described in the 

previous section, are also shown (see Theoretical Analysis, Transient 

Response). The predicted response frequency is in agreement with the 

measured value, whereas the measured decay rate is not. In fact, at 

4 - 3.43 in Figure 3b, the experimental results indicate a critical flutter 

speed at Uf/bou>a ■ 2.4 , while the theory predicts stable response at all 

speeds. 

The same comparison is made for Models 3 and 4 in Figures 4 and 5, 

respectively. Again agreement is found between measured and predicted 

frequencies, but the predicted decay rate is larger (more stable) than the 

measured one, near flutter. 

The measured flutter speeds for Models I, 2, and 3 are compared in 

Figures 6, 7, and 8, respectively, with values predicted by the flutter- 

analysis procedure described previously (see Theoretical Analysis, Flutter 

Speed). The non-conservative discrepancy described in Volumes I and II of 
1 2 6 

this series of reports ' and by Woolston and Castile appears again in the 

present study where sweep and taper have been introduced. Since the dynamic 

configuration used in these tests is highly simplified, it is not evident 
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to what extent the conclusions reached here will apply to actual hydrofoil 

systems. However, since the present results and those of Volumes I and II 

show the theory to be non-conservative for the prediction of flutter speed 

and decay rate, it is suggested that in hydrofoil design studies the theory 

be used only as an indication of the proximity of an unstable condition. 

Model tests should be carried out when flutter appears imminent. 

In order to show the effect of sweep angle for this configuration, 

the flutter speed wai calculated over a range of sweep angle. The results, 

exhibited In Figure 9» show that the flutter speed increases with increas¬ 

ing sweep angle and that, furthermore, the critical density ratio increases 

(Figures 9 and 10). The results shown In Figure 10 were calculated by 

means of the quasi-steady analysis; In particular, by Equation (38). 

The same calculations, carried out over a range of taper ratio, led 

to the results shown In Figures II and 12. The flutter speed may increase 

or decrease with increasing taper, depending on the range of density ratio. 

For p < I , which Is of Interest for hydrofoil craft, Increasing taper 

(decreasing taper ratio) leads to lower flutter speeds (Figure II), as well 

as lower values of the critical density ratio (Figures II and 12). Thus, 

for this dynamic configuration, increasing sweep angle or decreasing taper 

yields higher flutter speeds and higher values of the critical density 

ratio. 

It has been suggested by several investigators that a simplified, 

quasi-steady representation of the unsteady hydrodynamic forces can be 

used to predict the flutter speed of hydrofoils. ’ In order to provide 

evidence counter to this suggestion, the quasi-steady flutter speed was 

calculated by means of Equations (35) and (36) with C(k) * F - 1.0 and 

0.5 . The results of this calculation for the case of the hydrofoil models 

tested In this study are shown In Figures 6, 7i and 8; also shown Is the 

flutter speed predicted by using the exact C(k) . In addition, the same 

calculations are shown in Figures 13 through.16 for the models tested 
I 2 earlier. ' No consistent agreement is found between the quasi-steady and 

unsteady results, nor is any consistent agreement shown between quasi- 

steady predictions and measured flutter speeds. Hence flutter speeds 

predicted by quasi-steady analyses are not reliable. 
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In a subsequent report, the comparison of measured and predicted 

flutter speeds for the two-degree-of-freedom system will be extended to 

models with rectangular planform and finite aspect ratio and to a model 

with sweep, taper, and finite aspect ratio. The measured flutter speeds 

will be compared with predictions based on lifting-surface theory and two- 

dimensional strip theory. 

CONCLUSIONS 

Measured and predicted values of the decay rates, frequencies, and 

flutter speeds of hydrofoils are compared herein for the case of a two- 

degree-of-freedom system. Three hydrofoil models are considered: one 

with a midchord sweep angle of 15 degrees and no taper, the others with 

taper ratios of 2/3 and 1/3 with no sweep. The tests were conducted over 

a range of speeds and density ratios. 

It is shown that the non-conservative discrepancy between measured 

and predicted decay rates and flutter speeds, which was found In previous 
l 2 studies, ’ appears again in the present results where sweep and taper 

have been Introduced. Thus, it Is suggested that theoretical calculations 

be used only for an indication of the proximity of a flutter boundary, and 

that model tests be carried out when flutter appears imminent. 

Calculated values of flutter speed based on two-dimensional strip 

theory for the two-degrees-of-freedom model show that Increasing sweep 

angle or decreasing taper yields higher flutter speeds as well as higher 

values of critical density ratio. 

No consistent agreement is found between the quasi-steady and unsteady 

predictions of flutter speed for the two-degree-of-freedom system, nor is 

any consistent agreement shown between quasi-steady predictions and measured 

flutter speeds. Hence, flutter speeds predicted by a quasi-steady analysis 

are not rel iable. 
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TABLE 1 

PROPERTIES OF DAVIDSON LABORATORY FLUTTER APPARATUS 
WITH NO WEIGHTS OR MODELS 

(Reference span length, 12 In.; reference semichord length, 3 In.) 

Kj - 0.203 lb/in.* 

Kg ■ 3.68 in.-lb/in.-rad 

“»i ■ 13.3 rad/sec 

0¾ ■ 48.7 rad/sec 

ü0 - 0.413 

ra* - 0.150 
o 

xa - 0.092 
o 

TABLE 2 

PROPERTIES OF MODELS 

Model Description M> m 

1 Span-chord ratio, 2 0.168 
Sweep angle, 15° 
(no taper) 

2 Span-chord ratio, 2 0.204 
Taper ratio, 2/3 
(no sweep) 

3 Span-chord ratio, 2 0.143 
Taper ratio, 1/3 
(no sweep) 

0.40 0.0 

0.280 -0.4 

0.285 -0.4 
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TABLE 3 

Model 

MEASURED PROPERTIES OF TEST CONFIGURATION 

CG WEIGHTS 

© 
Position 

»? ( 1 nches^ 

■4.0 5.3 

-3.5 

-3.4 

6.9 

6.6 

Weight 
Teach] 
(lb) 

0.5 

0.5 

0.5 

or 

0.189 

0.204 

0.194 

3.02 

3.43 

1.00 

1.14 

1.27 

1.81 

2.34 

0.94 

1.08 

1.74 

2.27 

2.83 

(U 
3 

rad/sec 

9.54 

8.94 

16.6 

15.7 

14.8 

12.2 

10.7 

17.4 

16.2 

12.4 

10.9 

10.06 

0.530 

0.530 

0.528 

0.526 

0.527 

0.534 

0.537 

0.520 

0.523 

0.535 

0.534 

0.518 

0.752 

0.752 

0.748 

0.746 

0.747 

0.757 

0.762 

0.738 

0.742 

0.758 

0.757 

0.734 
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TABLE 4 

Model 

1 3.02 1.44 

1.96 

2.52 

2.84 

2.94 

3.43 2.06 

2.20 

2.55 

0.987 2.49 

2.79 

1.00 1.46 

1.88 

2.10 

2.40 

1.140 1.42 

1.53 

1.60 

1.70 

1.80 

2.02 

1.27 1.10 

1.35 

1.63 

1.68 

(D/U>3 0/U)a 

0.820 -0.194 

0.834 -0.086 

0.815 -0.022 

0.814 -0.009 

0.820 -0.008 

0.933 -0.071 

0.806 -0.049 

0.845 +0.027 

0.868 -0.045 

0.855 -0.090 

0.898 -0.074 

0.893 -0.037 

0.91 -0.044 

0.882 -0.037 

0.898 -0.044 

0.888 -0.037 

0.888 -0.019 

0.885 -0.017 

0.876 -0.007 

0.88 +0.026 

O.902 -0.08 

0.885 -0.043 

0.887 -0.003 

O.892 +0.006 

MEASURED RESPONSE CHARACTERISTICS 

U/bu)a 

32 

u>b/U 

0.568 

0.426 

0.324 

0.286 

0.279 

0.452 

0.367 

0.331 

0.349 

0.307 

0.615 

0.474 

0.433 

0.368 

0.632 

0.579 

0.557 

0.522 

0.484 

0.435 

0.82 

0.656 
0.544 

0.530 

[cont'd] 
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f ' — 

Model 

2 1.81 

2.34 

0.925 

0.94 

1.08 

1.74 

2.27 

U/bu)a 

0.99 

1.16 

1.28 

1.40 

0.97 

1.28 

1.39 

1.64 

1.48 

2.03 

1.50 

1.71 

1.87 

1.93 

1.11 

1.28 

1.35 

1.48 

1.6) 

1.69 

1.01 

1.30 

1.51 

1.58 

0.93 

1.32 

1.42 

1.53 

U)/(l)a 

0.952 

0.917 

0.898 

0.882 

0.952 

O.909 

O.896 

O.878 

0.901 

0.913 

O.905 

0.912 

0.941 

0.926 

0.934 

0.916 

0.934 

O.9I2 

O.9O8 

O.908 

0.974 

0.937 

O.920 

O.909 

0.978 

0.937 

0.928 

O.912 

a/o)a u>b/U 

-0.082 0.964 

-0.048 0.794 

-O.O29 0.702 

+0.001 0.630 

-0.068 0.985 

-0.035 0.709 

-0.018 0.643 

+0.051 0.536 

-0.074 0.611 

-0.038 0.451 

-0.027 0.604 

-0.022 0.532 

-0.017 0.504 

+0.02 0.480 

-O.072 0.838 

-0.051 0.714 

-0.025 O.689 

-0.039 0.617 

-0.003 0.562 

+0.015 0.539 

-0.053 0.962 

-0.020 0.719 

+0.019 0.6)1 

+0.030 0.576 

-0.063 1.048 

-0.023 O.709 

-0.010 0.654 

+O.OI9 0.598 

[cont'd] 
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Mode 1 [i U/bo)a 

3 2.83 1.30 

1.45 

1.55 

1.60 

u)/ii>8 a/u>a cub/U 

0.925 -0.036 0.713 

0.909 -0.019 0.626 

0.893 0.0 0.576 

0.882 +0.022 0.552 
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SECTION A-A 

FIGURE I. SCHEMATIC DIAGRAM OF HYDROFOIL MODEL WITH 
DEFINITION OF PARAMETERS AND COORDINATE 
SYSTEM 
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FIGURE 2. UNCOUPLED NATURAL FREQUENCIES 
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FIGURE 7. COMPARISON OF UNSTEADY, QUASI-STEADY AND 
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MODEL 3 

Wj/Cüj r 0.523 

XQ *0.194 

ra *0.744 

e0 *-0.4 
A * 0 

FIGURE 8. COMPARISON OF UNSTEADY, QUASI-STEADY AND 
EXPERIMENTAL FLUTTER SPEEDS FOR A TWO-DEGREE- 

OF-FREEDOM HYDROFOIL MODEL IN TWO DIMENSIONAL 

FLOW 
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FIGURE 9. EFFECT OF SWEEP ANGLE ON FLUTTER SPEED FOR 

A TWO-DEGREE-OF-FREEDOM HYDROFOIL AS 

PREDICTED BY TWO-DIMENSIONAL STRIPWISE 
TECHNIQUE 
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FIGURE 10. EFFECT OF SWEEP ON CRITICAL DENSITY RATIO FOR A 
TWO-DEGREE-OF-FREEDOM HYDROFOIL MODEL IN TWO- 

DIMENSIONAL FLOW 
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FIGURE II. EFFECT OF TAPER RATIO ON FLUTTER SPEED FOR 
A TWO-DEGREE-OF-FREEDOM HYDROFOIL AS 
PREDICTED BY TWO-DIMENSIONAL STRIPWISE 

TECHNIQUE 
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FIGURE 12. EFFECT OF TAPER ON CRITICAL DENSITY RATIO FOR A 
TWO-DEGREE-OF-FREEDOM HYDROFOIL MODEL IN TWO- 
DIMENSIONAL FLOW 
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FIGURE 13. COMPARISON OF UNSTEADY, QUASI-STEADY AND 
EXPERIMENTAL FLUTTER SPEEDS FOR-TWO-DEGREE- 
OF-FREEDOM HYDROFOIL IN TWO-DIMENSIONAL FLOW 
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FIGURE 14. COMPARISON OF UNSTEADY, QUASI-STEADY AND 

EXPERIMENTAL FLUTTER SPEEDS FOR TWO-DEGREE- 

OF-FREEDOM HYDROFOIL IN TWO-DIMENSIONAL FLOW 
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FIGURE 15. COMPARISON OF UNSTEADY, QUASI-STEADY AND 
EXPERIMENTAL FLUTTER SPEEDS FOR TWO-DEGREE- 
OF FREEDOM HYDROFOIL IN TWO-DIMENSIONAL FLOW 
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EXPERIMENTAL FLUTTER SPEEDS FOR A TWO-DEGREE- 
OF-FREEDOM HYDROFOIL MODEL IN TWO DIMENSIONAL 
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APPENDIX 

HARMONIC HYDRODYNAMIC DERIVATIVES 
AS GIVEN BY 

TWO-DIMENSIONAL STRIPWISE TECHNIQUE 
FOR THE CASE OF 

TWO DEGREES OF FREEDOM 
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