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Large-scale System Optimization: A Review 

by 

George B. Dantzig 

Mathematical programming is a generic term for the related fields of Linear 

Programming, Network Flow Theory, Integer Programming, Convex and Non-Linear Pro- 

gramming, and Programming under Uncertainty,    Its research has problems, parti- 

cularly those problems where random events and decision events occur alternately 

in successive stages.    In problems where such uncertainty occurs, what is usually 

done in formulating is to replace the uncertain elements with their expected va- 

lues  (with possible an added safety factor).    It is well known that a plan based 

on expected values of its coefficients and constraints can lead to answers that 

are not correct.    Although the use of expected value does not lead to the best an- 

swer, it is entirely possible that it could lead to excellent plans indistinguish- 

able from the optimum in the run-of-the-mill application.   When one considers in- 

stead, a direct attack on uncertainty via mathematical programming, it inevitably 

leads to the consideration of large-scale systems.    These, because of their struc- 

ture, have proven difficult of solution so far, but, I believe, of intensive in- 

vestigatlon in the future. 

Mathematical programming is a term invented by Robert Dorfman of Harvard a- 

round 1950.    He felt that at that, time, the fundamentals of linear programming 

were well enough known that the wave-of-the-future lay in the extension of the 

methods of linear programming into the non-linear programming field.    Certainly 

we today, 15 years later, feel this is true.    In the Calculus, the derivative 

(or first order approximation) plays a key role.   Applied to non-linear inequal- 

ity systems, it leads to approximation by linear Inequality systems.    This is one 

way which these extensions have taken place, and Illustrates why the various fields 

-1- 



conprieed under mtheaatieal prograiming are related. Here are some other ways: 

One attempts to extend the concept of duality to non*linear Systeme. Having 

done so, one tries to coablne the ccobinatorlal power of linear prograas with the 

classical steepest descent processes to solve non-linear prograns. 

One attciapts, as we have Just noted, to reduce problens involving uncertainty 

to equivalent deterministic systems and to large-scale systems with special struc- 

ture. 

One tries to solve an Integer program by replacing it with an equivalent lin- 

ear program; that is to say, by cleverly building up a set of linear inequalities 

that are both necessary and sufficient. 

In all of these developments, one characteristic stands out; namely in one 

way or another, techniques for ßolving large-scale systems play a dominant role. 

Accordingly, let us look first at direct methods for handling large problems. 

Aroun4 1951* or so, under the auspices of The RAND Corporation, William Orchard- 

Hays produced the first truly coumercial linear programming code. It had many fea- 

tures that helped smateurs to get their problem on the machine with a reasonable 

chance of getting an answer. Today, the building of a linear programming code 

(complete with all the special features) is a major undertaking which is expen- 

sive to produce and to maintain. 

As applications grow, there has been an increasing demand to handle truly e- 

normous systems. The Russian, Kantorovlch, in his 1939 pamphlet, envisioned such 

a possibility. Already, linear programming models of industrial systems have been 

6 k solved with more than 10  variables and 10  equations. These models, of course, 

do not have general matrix structure and it is not likely that any instance of a 

large prafctical problem will ever have general structure. The reason is obvious. 

JUst imagine the physical task alone of finding all the coefficients for a thou- 

sand by ten thousand general linear programs (there could be a high as 10 non- 
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zero coefficients). 

Forttaifttely, large-scale practical models tend to have a low percentage of 

non-zero coefficients; in fact, under 5^, sometimes under 1^, Orchard-Hays' first 

code exploited this characteristic by making use of a "pricing vector". This made 

inexpensive the selection of the pivot column directly frcta the original non-dense 

data. The pivot column here refers to one of the steps in the simplex method for 

solving linear programs. 

As systems have grown in size, every advantage has also been taken of the 

characteristics of the improved computers. It has been discovered recently that 

the size of the inverse representation of the basis in the simplex method could 

have an important effect on running time. Therefore, compact-inverse schemes a- 

long the lines first proposed by Harry Markowitz of RAND have become increasingly 

important. Recently, two groups working independently, developed this approach 

with astounding results. For example, the standard Oil Company of California 

group reports running-time on some of their typical large problems cut to l/k. 

How to find the most compact inverse representation of a sparse matrix is 

still em unsolved problem: 

Conjecture: If a non-singular matrix has K non-zero elements, it is 

always possible to represent them as a product of elemen- 

tary matrices such that the total number of non-zero en- 

tries (excluding their diagonal unit elements) is at 

most K .  [incidentally, the impirical schemes Just 

mentioned often have no more than K + lO^K non-zeros 

in the inverse representation. ] 

Dynamic structures are interesting in themselves, and could have important 

applications. One such is the linear control processes proposed by Pontryagin. 
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(I will speak of his problem later In connection with the deccqposltlon prin- 

ciple.) As early as 1951S I published a paper on how to compact the inverse 

representation of the basis with a staircase structure (see figure). Again in 

19621 I discussed another method which permitted one to find a compact inverse 

and then efficiently maintain this compactness in moving from one iteration to 

the next. There have been several other proposals, all excellent, that seek 

to apply the simplex method to the full system by compacting the inverse. As 

far as I know, none of these direct proposals have been realized in computer 

codes. 

1st period 

input 

1st period 

output 

2nd period 

input 

2nd period 

output 

3rd period 

inpi.t 

large-scale systems have been attacked Indirectly by means of the decompo- 

sition principle, several codes have been written, and some of the recent ex- 

periences have been encouraging. J. F. Benders in his thesis "Partitioning in 

Mathematical Programming i960", developed the dual of the decomposition prin- 

ciple, and shows how this approach can be used to deal with the mixed-integer 

programming problem. Rosen and Beale have each proposed partitioning methods 
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for solving systems whose structures fit Into the framework of a eo—on hori- 

zontal and/or vertical border while the reminder is a diagonal set of indepen- 

dent blocks. 

• 

L .    I 

Purely combinatorial problems form an important division of nftthenatical 

progranning. They fall briefly into two categories. 'Hie first are those prob- 

lems whose structures are special — like the transportation problem — or the 

minimum number of arcs which "cover" nodes in a network (graph). For these, 

special methods have been sought. 

One of the most tantalizing problems of this type has been the travelling 

salesman problem. It is so close to a network-flow type problem that one would 

hope to find some easy representation of the faces of its polyhedral solution 

set. so far, none has been discovered. There is also a close relation between 
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covering problems and the famous four-color problem. The other approach to com- 

binatorial problems is through integer progranming. This was first used in 195**- 

to solve a particular large-scale travelling salesman problem by Fulkerson, 

Johnson, and myself. In 19^8, Gomory laid the foundations of this field by 

shoving how to systematically determine a necessary and sufficient system of 

linear inequalities. 

The inter-relation between large-scale system methods and integer pro- 

gramming was brought out in a recent paper of Gomory entitled "large and Non- 

convex Problems in Linear Programming". Here, Gomory reviews in a unified man- 

ner, how the ideas of integer programming and those of the decomposition prin- 

ciple can be combined to solve many important applications such as the paper- 

trim problem, multi-connodity flows in networks, programming of economic lot 

sizes, etc. 

Integer programming methods are being experimented with ic a number of 

places. It seems likely that we are nearing a threshold, and that we will soon 

see some excellent commercial codes produced and used successfully for certain 

problems. 

I will not, in this presentation, describe the developments in non-linear 

programming. Bather, I have chosen to illustrate the power of certain non- 

linear programming ideas, such as the generalized linear program of Wolfe to 

em interesting problem in linear control theory. 

But first, I would like to review the concept of a Generalized Program. 

This differs from an ordinary lineaz program. Instead of coefficients in each 

column being known, the column P. may be freely drawn from a convex set, C. . 
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PROBLEM : Find Min X0 , (X^ ^ 0, P^C^) , PtfC^C^   such that 

Vo + ^Vn-« * 

As an example, consider the CONVEX PROGRAM: Find (x., Xg,...^ )€ C cos- 

pact and convex such that 

^(x) ^ 0 

♦2(x) ^ 0 

♦B(x) ^ 0 

♦0(x) - Z(Mln) 

where ♦.(x) are continuous convex functions of XeC . Let us assume an 

x ■ x  Is known such that ^.(x ) < 0 for 1^0, It can be shown that the 

generalized program on the following page Is equivalent. 
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PROBLEM:    Find   Min Z   and X,, X1 ^ 0 , i^ £ 0   such that 

ix 

♦,00 

♦„(«) 

♦o<«) 

1     1 

X*       ^(x0) |    XQ ♦ ^ 

Prices 

- 0 

- 0 

(-Z)    - 0       1 

The position of an Initial basic-set of columns Is. indicated by heavy dots. 

The associated set of simplex multipliers are denoted by n. ; initially, 

* * *     where it. ■ 0 for i ^ 0 and KQ ■ -♦QCX ) . TSxe next step is to form 

the lagrangian 

♦(X)-T0(x)* X*i#l(x) + 
1-1 

for « ■ r  and to mini'nize ♦(x) for xcC . Notice that the lagrangian is 

precisely what we get if we were to "price out" the general column of coeffi- 

cients of the variable X using the price vector to form the inner product. 

Thus, we wish to choose x such that this scalar product is minimum. 

Let x ■ x  be the value of the minimizing x . If ♦(x ) ■ 0 , then 

x  is an optimum Solution. If #(x ) < 0 , an extra column is inserted in the 

generalized program with coefficients [l,#.(x ),...,♦ (x ),t0(x )] and varl- 

•J.*. •!.•. 
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able X, . The problem, restricted to those variables whose columns have 

known coefficients, Is then optimized using the simplex method. This gives 

rise to a new set of simplex multipliers « ■ «' . nils gives rise to a nev 

2 1 
solution x ■ x , etc. At any stage, the approximate solution is x ■ Zx.x 

using for \.    those \.    which solve the problem restricted to those varl- 

bles with known coefficients. 

Let us turn to a problem in control theory. The application of mathe- 

matical progranning methods to solve control problems has been studied by 

Zadeh and Whalen, by Ben rosen, and others. I would like to confine myself, 

however, to Linear Control Theory as described by Fontryagin, Botlyanski, Gem- 

krelidge, and Mischenko in Chapter III of their book on this subject. 

We consider an "object" defined by its n + 1 coordinates x ■ 

(IQ * ^l »•••'tJ whose "motion", described as a function of a "time" para- 

meter t , can be written as a linear system of differential equations 

(1) ^ - A» + ^ 

where u ■ (a, , u2 , ...,u ) is a control vector that must be chosen for each 

t from a convex compact set u(t) . The initial conditions at t ■ 0 are 

x0- (0, 4?, 4^ ,...^) , (fixed) 

The terminal conditions at    t ■ T   is obtained by setting 

(2) xT - XT + ZE0 
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where 

xT- (0, il  , ^ »...^) » (^ed) 

E0 - (1,0,0,...,0) 

and by requiring that u ■ u(t) to be chosen such that 

(3) Z Is minimum 

As given in Chapter III of the book "Mathematical Theory of Optimal Con- 

trol Processes" by Pontryagin, Boltyashll, Gemkrelidge, Mischenko, the final 

state may be written in the form 

(U) -ZE0 + J  PT_tB u(t)dt - b 

TO tA where   b ■ 7   - PJJf       is a known vector, and   P+ ■ e       matrix that may be con* 

veniently computed as a function of   t .    For example, for the case of real dis- 

tinct characteristic roots   X,    of   A : 

n 

(5) Pt - e« ^V^ 

where M. are square matrices independent of t . The latter formala for the 

M. is developed in "An Introduction to the Application of Dynamic Programming 

to Linear Control Systems" by F. T. Smith in RAND Report RM-3526-PR, February 

1963. 
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We nay fomally write (4) as a generalized linear program. 

PROBLEM: Find Min Z, n ^ 0 such that 

(6) -ZE0 + Y u - b 

where Y nay be freely chosen from the convex set defined by 

(7) Y^ /  PT_tBu(t)dt 
T 

0 

for all possible choices of u(t) e U(t) . 

The method for solving the generalized linear program described earlier 

for convex programming can be applied. For brevity, we omit the question of 

how to obtain the Initializing basic set, except to say it is the analog of the 

phase I procedure of the ordinary simplex method. 

k 
As soon as K ■ it  is determined for iteration k we seek a solution of 

the sub-problem such that the inner product 

T 
PT_tBu(t)dt 

0 

/T 
[Min(nkPT-tBu(t))dt for'u(t) €'U(t) . 

It is Important to note that for each    t , K *>    .B   is some known vector    c    , 

Thus, for each   t   we must solve: 

SUB-roOBLEM:    Find   Min cSi    for   u € U(t) . 

If   U(t)    isa polyhedral set, the sub-problem is simply a linear program.    If 
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U(t) Is the same for all t , then the linear programs are the same for all t 

except for the varying objective forms c u . Interesting enough, the sub-pro- 

grams turn out to be the same as what Pontryagin obtains using his maximal prin- 

ciple . 

A control problem is an example of a dynamic system which, is t is treated 

by the straightforward procedure of discretizing the time, would lead to a large- 

scale computational problem. The generalized linear program (or decomposition 

principle approach), however, provides us with a procedure which does not re- 

quire the discretizing of the time interval. 

•Bie last twenty years have been marked by the accelerated trend toward auto- 

mation. Many believe that not only simple control processes, but soon the more 

complex control processess will be mechanized. If so, whether we like it or not, 

decisions will be made for us by machines. Whether or not they will be good de- 

cisions will depend on how cleverly we have instructed the machines. This is 

turn will depend heavily on how clever we have been in developing solution tech- 

niques for solving large-scale systems. 

To this end, we have sketched several ideas: (1) taking advantage of the 

low density of the non-zero coefficients in the original matrix, (2) finding a 

compact inverse representation of the basis using the simplex method, ^nd (3) 

making use of the generalized linear program or decomposition principle approach. 

We illustrated the latter on a linear-control problem and found that it led to 

the maximal principle with the added bonus, however, that It can be used to con- 

structively converge to em optimal solution. 
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