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ABSTRACT 

This report describes two experiments in which posterior probability 

estimates made by humans are compared with similar estimates made by a com- 

^ofnYuX119 i™odification of Bayes' theorem incorporating human estimates 
01 nD|Hj. The task was to estimate, on the basis of intelligence data from 

a simulated threat-evaluation situation, the likelihood of various alterna¬ 
tive hypotheses that could account for the observed data. 

The purpose of the first experiment was to determine the effect of in- 

creased experience upon the human's ability to estimate posterior proba¬ 

bilities. With increased experience the subjects' performance improved. 

In terms of the size of the estimates placed in the correct-hypothesis cate- 

gory there were no overall statistically significant differences between the 

subjects estimates and the Bayesian calculations. However, the Bayesian 

solution placed significantly more first-choice estimates in the correct 
hypothesis categories. 

The purpose of the second experiment was to compare human and automated 

posterior probability estimates under several levels of input data fidelity. 

It was predicted that, under low fidelity conditions, human posterior proba- 

bility estimates would become increasingly inferior to automated solutions. 

iTiis hypothesis was only partially confirmed. In both experiments, but par¬ 

ticularly in the second, the humans provided higher pc.terior probability 

estimates than the certainty in the data justified. Several reasons for 
these excessive estimates are discussed. 

, , W^th aspect to the design of diagnostic systems, the present research 

tends to confirm the feasibility of automated Bayesian hypothesis-selection 

incorporating expert human estimates of the conditional probabilities P(£)|h). 
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I. HYPOTHESIS SELECTION AND BAYES' THEOREM 

In an effort to understand, describe, and predict various aspects of 
human performance, psychologists have made rather free use of formal mathe¬ 
matical statements or models originally developed for other disciplines such 
as physics, economics, and statistics. Information theory, servomechanism 
theory, game theory, and decision theory are examples of formal systems ap¬ 
propriated by psychologists in their search for orderly relationships in 
human behavior. In many cases these formal statements specify the require¬ 
ments for optimal performance under a prescribed set of conditions. Unhap¬ 
pily for psychology, it is easier to specify mathematically optimal 
performance than it is to predict how humans will actually perform. For 
example, the various decision theory models discussed by Chernoff and Moses 
(ref. 1) are "canons of reationality" in the sense that they specify how a 
decision maker "ought" to behave in order to maximize his expected utility. 
In the face of human inconsistencies, however, these models fail to be ade¬ 
quate descriptions of actual human performance. Nevertheless, these imported 
theoretical systans have often suggested methodological innovations highly 
useful to psychologists in their investigations of a variety of human tasks. 
Shuford has recently mentioned that although information theory, game and 
decision theory, and dynamic programming (all of which he calls "purposive 
mathematics") are not exact models of human behavior, they can be used 
profitably by psychologists in their investigations of the ''ogical structure 
of behavioral tasks (ref. 2). 

One task area of current interest concerns situations in which humans are 
required to ascribe causes to effects or, more specifically, to estimate the 
likelihood of various alternative hypotheses in the light of observed data and 
to revise these estimates as new data become available. The diagnosis made by 
a physician on the basis of a set of observed symptoms provides a convenient 
example of the task of ascribing causes (hypothesized states of nature) to 
effects (observed data). Similarly, there are military agencies in which 
intelligence data are meticulously processed and evaluated in an attempt to 
discern the intent of some real or potential adversary whose activities are 
under surveillance. It happens that there is a formal quantitative statement 
which describes, subject to the acceptance of certain conditions, how one 
ought to revise his opinions about the probability of some hypothesis in the 
light of new data or experience. The Reverend Thomas Bayes seems to have been 
the first to develop an exact and quantitative statement of inductive infer¬ 
ence, This statement, subsequently called "Bayes1 theorem," appeared in an 
article published postumously in the Philosophical Transactions of the Royal 
Society in 1763 (ref. 3). Bayes' theorem, which logically follows from the 
notion of conditional probabilities and from the fact that probabilities as¬ 
signed across some hypothesis set must have unit sum, states that the proba¬ 
bility of a hypothesis given an observed datum (the a posteriori probability 
of the hypothesis) is equal to the normalized product of the a priori proba¬ 
bility of the hypothesis and the probability of the datum given that the 
hypothesis is true. In modem symbols this statement is described as follows: 

p(Hi|d) 
p(m) p(p|m) 

J, P(Hk) P(D|Hk) k«l 

(Eq. 1) 

1 



where 

P(H¡¡D) = the probability of hypothesis i in the light of datum D 
(the a posteriori probability of hypothesis i). 

P(H¡) = the a priori probability of hypothesis i (or the proba¬ 
bility of hypothesis £ before the observation of the 
datum). 

PtDlHj) = the probability of the datum if hypothesis i is true. 

n = the number of hypotheses in the mutually exclusive and 
exhaustive set of hypotheses. 

¡E P(Hk) P(D|Hfc) = the noraalizing constant which assures that 2 P(Hk|o) = 
k"l 1.0. k=1 

The major impediment in the path of universal practical application of 
this theorem results from the fact that there is no universal agreement about 
the definition of probability. Good (ref. li) has recently described five 
different explicit definitions of probability that have been formulated 
throughout the years, and he suggests that there may be others. From one 
point of view probabilities are defined in terms of long-run frequencies. 
Those who favor this frequentistic definition generally reject Bayes1 state¬ 
ment as being self-evident or axiomatic on the grounds that the prior proba¬ 
bility required in Bayes1 theorem is not specifiable in terms of relative 
frequencies. R. A. Fisher, for example, relates that the advocates of in¬ 
verse probability (Bayes1 theorem) are "... forced to regard mathematical 
probability, not as an objective quantity measured by observable frequencies, 
but as measuring merely psychological tendencies, theorems respecting which 
are useless for scientific purposes" (ref. 5, p. 6). An even more extreme 
position might be taken, namely that a priori probabilities are unknowable 
or do not exist. Regarding this view Uspensky observes, "To admit a belief 
in the existence of certain unknown numbers is common to all sciences where 
mathematical analysis is applied to the world of reality. If we are allowed 
to introduce the element of belief into such 'exact* sciences as astonomy 
and physics, it would be only fair to admit it in practical applications of 
probability" (ref. 6, p. 70). 

Uspensky's comment leads us into consideration of "subjective" or "per¬ 
sonal" probability, a notion which has provided impetus to a current recon¬ 
sideration of Bayes' theorem. Recent interest in this interpretation of 
probability stems primarily from the work of Savage (ref. 7). According to 
this view, probability measures the confidence which a "reasonable" person 
has in the truth of some proposition. This view allows for probabilistic 
estimates to be applied to propositions about processes which are not repeti¬ 
tive and which, from a "frequentistic" point of view, seem unspecifiable in 
terms of probabilities. Advocates of personal probability are quick to point 
out, however, that personal probabilities measure consistent or orderly 
opinion (ref. 8). Good, for example, relates: "A subjective probability is 
a degree of belief that belongs to a body of beliefs from which the worst 
inconsistencies have been removed by means of detached judgments" (ref- Ù, 
p. 14*6). Savage (ref. 9) and Edwards, et al. (ref. 8) have demonstrated 
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several types of meaningful propositions which are subject to personal but 

not frequentistic interpretations of probability. With respect to Bayes* 

theorem, advocates of personal probability are inclined to believe that prior 

probabilities, far from being meaningless or unspeeifiable, can indeed be 

iref^öf WithOUt consider^^ variability and vagueness 
t ext fi*- to which vague and variable prior probabilities ad¬ 

versely affect estimations of posterior probabilities is a matter for some 

conjecture. One statement concerning the effects of prior probabilities 

Sw* roí pr^iUti^ is th* so-called "principle ofstable estiL- 

distrih^f* nr ^ ^sse?îc f ^is ^9^ent seems to be that if the prior 
distribution of some hypothesis in question is not exceedingly divergent 

with respect to the conditional distribution of some datum given this 

âblv^aporox[mitêd bv K?Wní^riterÍOr Probability fP(H|D)J can be reason¬ 
ably approximated by K[P(d|h)J, where K is the normalizing constant. To 

use Savage s expression, if the prior distribution behaves "gently" with 

win bl PiD H di^tributioni then the influence of the prior distri¬ 
bution will be overcome by an accumulation of data. As far as human judq- 

ne ^0nCerne?i means that although two individuals may hold 
fnrclfX I?? prior beliefs, they will, if they are open-minded, be 

SuôXrtoKf.ir aflre"ent future h*11*"5 ^ ac- 

Ca? ?Ccept1íJle of personal probabilities and the argument 
0rK0P ^ en one can see that «»orea provides rforaal 

dataTwovi^ ÍT 0ne ““íí í° revise these opinions in the light of new 
cast in nròhahíi^f •°UiSe’ «pressions about data and hypotheses are 

U™S)- ^ ““Alness of such a formal statement in 
bill's™. ?f. ï ei ^ »ilitary affairs has been apparent for 

present study the major concern is with applications 
o the Bayesian paradigm in a certain military context. Hopefully, however 

a SCat relevance t0 other applications. In fact, as it’ 
will be mentioned in a subsequent section of this report, there is reason 

least'àrmi^h31 !'he reSUJtS “5,°“ twD exPerinents being described bear at 

S the^were'observed^ "111U^ ln 

Edwards and Dodson have both recently illustrated how the Bayesian 

thí^t^iâ^L^ ln niîitary coimand and control systems^here 
threat diagnoses or threat evaluations are performed (refs. 10, 11. 12). 
With respect to Bayes theorem, Edwards retains the original statement ¿hile 

w pJcf^tcd a "»eddied version which will be described in detail in 
nHrlfn ^ f^iS fep°ît: Edwards, however, has been considerably more ex- 
of cith^LmLrí? °f hUm?îîS 1? ^af-diagnosis systems. The usefulness 
of either approach hinges rather heavily on the ability of humans to estimate 
the conditional probabilities implied by the Bayesian paradigm, particularly 

Tb« Present report describes^ experi- 
lnw S,BU?ted threat-diagnosis situation, in which S¿a^ 

The «rt?heStÍmat? conditional Probabilities P(h|d) and P(d|h). 
The purpose of the experiments was to investigate human perfomanee in eati- 
thp1?0 these conditional probabilities in a complex situation and to explore 
the implications and relevance of the results for the design of multiman- 
machine information-processing systems in which threat diagnosis or threat 
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evaluations are performed. More important perhaps, and as intimated at the 
outset of the report, one would hope that current research, stemming from a 
reconsideration of Bayes1 theorem as a formal statement, will lead at least 
to some methodological innovations useful for psychology and will otherwise 
aid in the study of the logical structure of the task of revising one's 
opinions in the light of experience. 

h 



II. THE ROLE OF HUMANS IN THREAT-DIAGNOSIS SYSTEMS 

Within the context of military affairs individuals are required to provide 
hypotheses or make diagnoses which will account for the occurrence of certain 

LmoetTf3 ^ SrA°KtÍle °r P°tentially Estile environment. An ín- 
PupifT?1 the fonn ^ magnitude of the threat implied by these 

enta is required before effective counteraction can be recommended. This 

ther^íñ?f^9n0S1S /"tiVity is t0 be exPected in any military agency in which 
control faciMties of^thp1«9 is assessed. The command and 

a specific Example of tt Talus ^cTacUvi^n^e 

0f when available response tines to^ostiïr31119 

diagnoses of environ^«?1? ^ SeC?ndS' °f incorrect diagnoses of environmental events are frightening to contemplate. The demands 

SecificX the^L5 t° mst Provide these diagnoses are indeed formidable. 
the TOlSe of íoVeT y ! ^ f if"9® 0f P°tential explanatory hypotheses; 
these data vi 1 l al^vfhT0Í a diverse character) may be enormous; 
and the cause and effect f1'’ '1“,10 ™ o'*110™ degree and often contradictory; 
and the cause and effect relationships between data and hypotheses may be ex- 

vhodproÍidf threat dïa!Î!îkn0“n: ïn ^ beC°m increasinSly apparent that humans 
sistmcl d threat diagnoses in these complex circumstances have need of as¬ 

óse haS re3e"tly desoribed how Bayes1 theorem might be put to good 
use in the design of threat-diagnosis systems (refs. 11, 12). Specifically 

lhTZVvlãStrZdeSÍ9n i" “MC" - processed 

mtes irthe nrnhnh3!T fü “ould.be P°=terior probability estimates or esti¬ 
mates of the probability that various alternative hypotheses of interest to 

resslsres” occurtr“Ce 0Í WhaUver intelliSa'‘« data the system possesses. From Bayes theorem these posterior probability estimates follow 

prered?ngrec«r„°/thP(H) ^ f(D Usin9 th" 
SrobS m^f í-S>,rfK0^ Edwards contends that the initial or prior 
probabilities [F(H)J which the system entertains at the beginning of some 
period can be arbitrarily chosen (as long as they are not L cîose toTor 

tAe^ore thatnthP ZVTr ^ ^ maSS °f inc°raing data* He maintains, 
nrnh!íni^ ^ ^ infonation needed for calculation of posterior 
g/i?iliEles (which, of course, would be done on high-speed computers) are 

( |H) values, since the P(h|d) values calculated on cycle n-1 become the 
prior probabilities used for calculation on cycle n. P(d|h) would of course 

data"i^ouestioneXPIfh preSUmab.ly w¿th considerable past experience with the 
a in question. If the arguments about Bayes1 theorem have merit and if 

^hSp(DlHriLrbfrnable e3ti^tes of P(DIH) or “me other quantity from 
wnicn PiDjH) can be recovered, then one faces the intriguing possibilities 

luHorlreh^P °r hyP°theSiS SeleCtion since th' assig^nt of S 
task one suñeíí f 3!:rofs.the hyP°thesis set is merely an arithmetic 
task, one superbly and almost instantaneously performed by a computer. 
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III. CONDITIONAL PROBABILITY ESTIMATION BY HUMANS: 
A REVIEW OF RECENT RESEARCH 

Edwards' proposal has succeeded in generating a growing amoant of re¬ 
search on human commerce with the probabilistic information implied by Bayes1 
theorem. For the most part, this research has involved comparisons, under 
several different circumstances, of human and various automated estimations 
of posterior probabilities. At present, the proposition that posterior proba¬ 
bility estimation ought to be automated in diagnostic systems rests upon em¬ 
pirical evidence which although suggestive, is not compelling. It is possible 
to group the various studies into two classes according to the experimental 
disposition of the environmental contingency rules or P(d|H). 

A. P(h1d) Estimation by Humans, P(d|h) Given 

Two experiments using fairly complex stimulus environments and one fairly 
simple experiment are representative of this general condition. In an un¬ 
published experiment Hays, Phillips, and Edwards (described by Edwards and 
Phillips, ref. 13) displayed prior probabilities and P(D|H) values directly 
to their subjects. They found that the subjects were suboptimal estimators 
of P(h|d) upon comparing these estimates with calculations of P(H|D) using 
Bayes1 theorem. In the first experiment performed using the Ohio State Uni¬ 
versity multiman-machine system simulator (ref. lU), the P(H|D) estimates 
provided by the primary decision maker on an eight-man threat-evaluation team 
were compared with P(h]d) estimates calculated on the basis of Dodson's modi¬ 
fication of Bayes' theorem (see section IV). (This modification hereafter 
will be termed the "MBT.") The conqwiter-implemented MBT solutions were sig¬ 
nificantly superior to the human's estimates over the course of the experiment. 
In a very simple experimental setting described by Edwards (ref. 15) subjects 
were asked to estimate the posterior probability that sequences of red and 
blue poker chips were being drawn from either of two bookbags (a 70¡£ red-30^ 
blue bag or a 70* blue-30* red bag). These estimates, compared with those 
calculated from Bayes' theorem, were uniformly conservative. 

With respect to the first two experiments mentioned above, there is very 
little assurance that the subjects in either experiment were in any position, 
by virtue of training or experience, to use the displayed P(D|H) values to 
best advantage. Hays, Edwards, and Phillips gave no instructions aboul how 
to use these P(d|h) values except "the obvious qualitative statements"; e.g., 
if a datum is highly likely under hypothesis A and unlikely under hypothesis 
B, and the datum occurs, it favors hypothesis A (ref. 13). In the 06U experi¬ 
ment great pains were taken to present the P(d|h) values to the subject in a 
form which was thought to be most meaningful to him. In fact, verbal abstrac¬ 
tions of the required 20 x 103 P(d|h) matrix were provided in the hopes of 
increasing its meaning. In both experiments, however, one has very little 
idea of how well the subjects were able to utilize this P(D|H) information. 
If they disregarded this information because it was unfamiliar or meaningless, 
one might argue that the superiority of the mathematical solutions would be 
obvious under these conditions and that very little has been shewn in these 
two experimental comparisons between human and automated P(H|D) estimations. 
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B. P(h1d) Estimated by Humans, F(d|h) Uaknown 

In one condition of the recent Kaplan and Newman study (ref. 16), naive 
subjects were asked to estimate P(h|d) directly from data. This condition 
was called the "non-PIP" condition (PIP meaning Probabilistic Information 
Processing). In the non-PIP condition P(D¡H) was neither explicitly esti- 
mateoTDy the.subjects nor displayed to them. Human P(h|d) estimates in the 
non- IP condition were compared with computer-implemented Bayesian solutions 
of P(H|D) based upon P(D|H) estimations made by the subjects in the second 
condition of the experiment which was called the "PIP" condition. Although 
the highest probability was always assigned to the correct hypothesis in both 
PIP and non-PIP conditions, the PIP condition resulted in significantly hTHKir 
P(H|D) values. 

One might criticize the manner in which the sequential nature of the task 
in the non-PIP condition was interpreted to the subjects. Presumably, by a 
careful analysis of human P(H|D) estimates, one would hope to be able to show 
the extent to which humans are adept at revising opinions on the basis of ex¬ 
perience. The sequential and cumulative aspects of this process are apparent. 
Yet in the experiment being cited, the only instructions given to the subjects 
with regard to the sequential acquisition of experience in the non-PIP condi¬ 
tion was the meager statement: "If you wish, you may turn back the pages and 
see what responses you have given before" (ref. 16, Appendix A, p. 6). No 
mention is made of observing the data in any cumulative or sequential fashion 
which an intelligent judgment of P(H|D) would require. 

In the second experiment performed by Southard, Schum, and Briggs (ref. 
17) the posterior probability estimation performance of the primary decision 
maker on an eight-man threat-evaluation team was evaluated as this individual 
was given an increased amount of control over a Bayesian hypothesis-selection 
aid. Although this individual's performance was independent of the aid con¬ 
figuration, his accuracy in estimating P(h|d) was very nearly identical to the 
accuracy of MBT solutions of P(h|d) calculated on the basis of the same data 
used by the human estimator. In addition, with an increasing number of trials 
(there were 2u0 in all), the human's P(H|D) estimates showed slight superiority 
over those calculated by means of the MBT. One very interesting result was the 
human s shift from conservative P(H|d) estimates to more definite commitment- 
type (very high) estimates as the experiment progressed (ref. 1?, see figure 

With one exception the results of the experiments cited above indicate 
that human estimations of P(h|d) are inferior to solutions of P(h|d) based 
upon Bayes theorem. Without exception, all of these studies are introductory 
in character and the results, therefore, should be interpreted with some cau¬ 
tion. Edwards' general conclusion is that humans fail to extract all the 
consistency or certainty that exists in probabilistic information (ref. 15). 
This conclusion is indicated by the conservative estimates that the humans 
typically produced (compared with Bayesian estimates) in all experiments ex¬ 
cept the one in which conservatism diminished with experience. However one 
may well question whether or not the design arid conduct of the various ex¬ 
periments cited above actually allowed or encouraged the humans to perform 
at a higher level. With more adequate instructions and better procedures 
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gaining experience in tasks involving probabilistic information, the humans 
could perhaps have been induced to perform even more creditably than they 
actually did. There is further danger in unrestrained generalization on the 
basis of these early studies. In all studies, with the possible exception 
of the second study by Southard, Schum, and Briggs (ref. 17), naive subjects 
performed briefly in unfamiliar circumstances. Presumably, however, persons 
in real-life situations performing crucial hypothesis-selection tasks are 
exceedingly competent people with considerable experience in dealing with 
data relevant to the situation. 
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IV. A SIMULATED THREAT-DIAGNOSIS SYSTEM 

The two experiments being reported were performed using the multiman- 
maohine system simulator at the Ohio State University Laboratory of Aviation 
Psychology. The major hardware components of this simulation facility in¬ 
clude an IBM 709^-II4OI computer system, digital display interface equipment, 
and phone and closed-circuit television facilities for system operator inter¬ 
communication. The computer facilities provided the means for generating a 
complex real-time stimulus environment, or data base simulating the movements 
of the surface and air forces of a hypothetical adversary called "Aggressor." 
In both experiments a subject-operator team attempted to evaluate or diagnose 
the threat posed by deployments of Aggressor's forces on the basis of intel¬ 
ligence information obtained on simulated reconnaissance overflights of 
Aggressor's territory. Since both experiments were performed using the same 
simulation facilities, there were many features common to both experiments. 
The purpose of this section of the report is to describe the stimulus en¬ 
vironment or data base, the tasks for members of the threat-evaluation team, 
the types of human and automated performance being evaluated and compared, 
and the measures of human and automated performance. All of these features 
aie common to both experiments and will be described in enough detail to 
render the two specific experiments and their results intelligible to the 
reader. 

A. Stimulus Environment Characteristics 

The stimulus environment or data base refers to the characteristics of 

the scenario presented to the threat-evaluation team. This scenario, as 

mentioned above, represented the maneuvers or deployments of the surface and 

air forces of the hypothetical aggressor whose activities were under surveil¬ 

lance. The precise features of the stimulus environment and the procedures 

for generating events to be portrayed in this environment have been described 

in considerable detail in a previous report (ref. II4). Briefly, however. 

Aggressor territory was defined as a square area 1021 miles on each side. 

Within this territory there occurred orderly buildups or deployments of 

Aggressor s forces which were called developmental groupings. The computer 

facilities allowed the experimenter to depict the buildup of these develop¬ 

mental groupings in a time-dependent fashion. In the experiments being re¬ 

ported there could be as many as 25 individual developmental groupings in 
various stages of buildup in Aggressor territory at any one time. Figure 1, 
a highly simplified abstraction of the basic scenario, should help to make 

this buildup process clear. The large triangles in the figure represent 

certain fixed installations such as forts, supply depots, and airfields. 

The clusters of small circles represent units of Aggressor's surface and 

air forces. The term "developmental grouping" refers to the clusters of 

these units which, in figure 1, are shown in various stages of buildup. 
Each developmental grouping was given a unique number (e.g.. No. 101) which 

allowed mutual identification of the grouping by the experimental subjects 

on the threat-evaluation team and the experimenter. Observe in figure 1 
that there are developmental groupings in various stages of buildup. A de¬ 

velopmental grouping reached the terminal stages of buildup when all of its 

associated units had reached their final locations along one of the four 

borders, e.g.. No. 101 and No. 103 in figure 1 have terminated. When all 
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Figure 1. Aggressor Territory (Highly Simplified). 

the units in a developmental grouping had reached their terminal locations 

and had remained there for a set period of time, they disappeared from the en¬ 

vironment. No. 102, No. 10U, and No. 105 illustrate developmental groupings 

in various intermediate stages of buildup as their units are still moving from 

the centrally located fixed installations out to terminal peripheral locations. 

System "load" was defined as the number of developmental groupings terminating 

in an experimental session. In the two experiments being reported six develop¬ 

mental groupings terminated each session. Certain members of the threat- 

evaluation team determined the existence and characteristics of these develop¬ 

mental groupings by a computer interrogation procedure described below as the 

system's task is discussed. 

B. A Modification of Bayes1 Theorem 

Before describing the precise characteristics and significance of these 

developmental groupings, it will be wise to proceed with a discussion of 

Dodson's modification of Bayes' theorem at this point since Dodson s formu¬ 

lation has influenced the design of the stimulus environment to a very great 

extent. Dodson's modification of Bayes' theorem (MBT) provides for 
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sUt0Mnta?ref ^n)“0 fT?'? °p s 1‘°ns n°t accounted for in the original 
statement Jref. 10). First, Bayes' theorem assumes only two possible states 
°í-anvfVerit °r datuiT1i occurrence or nonoccurrence. The MBT. however is ao 
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Equation 2 is Dodson's MBT with 
authors in an effort to preserve 
report. 

notâtional modifications introduced by 
a single notational system throughout 

P(Hî |d) 
ii P(D*> 

P(Hi) P(Dk|Hí) 

i?! P(Hi) p(DklHi) 

(Eq. 2) 

This aquation applies to the evaluation of the probabilistic responses given 
¿1 f. sttahtes data set. P(H¡1d) is the a posteriori píõbâ- 

- 15 true ST" the probabilistic estimates that the 
oressifnVHO6- ‘th he daba ?las° ^ been observed. In the bracketed ex- 
the rnn2if-Hl 1 Probability of hypothesis i and P(Dk|Hi) is 
in state k‘i“hv^th«U ^i f‘ ^ in '^«‘•¡on will be observed 
ihich assies ! k f ^ denominator is a nomalizing constant 
vmicn assures that the a posteriori probabilities sum to 1.00 across the n 
hypotheses. PÍDk) is the probability that the kth state „f the ™ta cîas? is 

the state being observed. Note that ^ PfDk) - 1.00. For each data class 

there are ^ states or conditions where n varies according to the data class 
being considered. There may be observations in many different data classes 

oT^e o1seív"rS °f ^ ^ p(Hi lb) calculated ^ means of the observations and conditional probabilities for one data class 
for°the íext ^lori probab'lities p(Hi) «sed in the calculation of P(Hí|d) 

ta clasf.and 30 on all data observations have been 
these MBT’cafruiauT11 °f dat?.cíass independence is necessary since 
across”tL diffirpnï h fre f^entlal COI1lbinations of probabilistic estimates 

bhc d ff 1 data classes* Th« results of these calculations may be 

InJthedorP«,eTCndin9'UP°? ^ ^ ^ extent °f data class deoende^ies. 
e^neHmpnt^rU experi.mentl the independence assumption is justified since the 
fS eve^ dLpiPr0Ce?Ur f0r ?electin9 the ’'true" levels in each data class 

^ . grouping assured data class independence. In order 
o generate the characteristics of each developmental grouping, the experi¬ 

menter selected one level from each of the 2? data classes at random accordino 
to the previously specified "true" P(Djk|Hí) distributions In e^h data cllss? 

m,ir<>L¡ífCrj-PtÍDn 0f{thcjftimulus environment features which match the re- 
the tCo eLeíilntThT dia9no3tic P^^i^ now be presented. First, in 
the two experiments being reported Aggressor was allowed eight mutually ex¬ 
clusive and exhaustive response alternatives. These response alternatives 
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were in fact "hypotheses" from the point of view of the threat-evaluation 
team and were used to account for the occurrence of the intelligence data 
obtained with respect to the developmental groupings. The various response 
alternatives can also be considered as possible strategies to be employed by 
Aggressor in initiating some hostile action across the borders of his home¬ 
land area. These hypotheses or response alternatives were simply labeled 
alphabetically A through H. This arbitrary labeling scheme was initiated be¬ 
cause of a methodological necessity discussed in detail in a previous report 
(ref. 17). The procedure seems to have had little or no effect on the sub¬ 
jects' performance. With experience in dealing with environmental events the 
subjects learned rather quickly what hypothesis A "meant," B "meant," and so 
on. The second environmental feature concerns the multiple event o^ data 
classes. The attributes of each developmental grouping could be described 
in terms of 2? different types of information or data. These 2? attribute 
data classes are listed in Appendix I of this report. In general, they re¬ 
ferred to such developmental grouping features as (a) infantry-armored con¬ 
stituency, (b) artillery, missile, rocket, and air support, (c) logistics 
support, and (d) spatial and temporal arrangement of forces (order of battle). 
As Appendix I also illustrates, each of the 2$ attribute data classes had be¬ 
tween two and eight possible states or conditions. This is one particular 
feature of the stimulus environment which matches Dodson's paradigm. For 
example, data class X (Tactical Air Support Squadrons) has four possible 
states, i.e., in any developmental grouping there could be either 0, 1, 2, or 
3 tactical air support squadrons. Only one state of each of the 2$ data 
classes was "correct" for each developmental grouping. 

In summary, the stimulus environment consisted of the homeland area of 
a hypothetical adversary called Aggressor. The Aggressor activities under 
surveillance consisted of buildups of surface and air forces in this home¬ 
land area. These buildups were termed "developmental groupings" and could 
be described in terms of 2½ attributes or dimensions. There could be as many 
as 25 groupings in various stages of buildup at any one time although only 
six terminated in each experimental session. 

C. Tasks Performed by Members of the Threat-Evaluation Team 

The purpose of this section is to describe how members of the threat- 
evaluation team provided answers to the following questions: (a) what events 
are taking place in Aggressor's territory, and (b) what is the significance 
of these events, or more specifically, what is Aggressor's intention with re¬ 
spect to each developmental grouping? Figure 2 illustrates the flow of in¬ 
formation in the simulated system and describes the two basic task levels at 
which the answers to the above questions were sought. The first task level 
concerns the intelligence staff officers (ISOs). These individuals attempted 
to provide answers to the first question indicated above. It was the task of 
this portion of the system to locate the various Aggressor developmental 
groupings and to describe their characteristics in terms of the 25 attributes 
listed in Appendix I. For each developmental grouping under surveillance 
the ISOs produced probabilistic estimates that the various levels or states 
in each attribute data class were in fact being observed with respect to that 
grouping. The ISOs received information about events in Aggressor territory 
only after Jiey had initiated a two-stage information retrieval sequence. 
The first phase was initiated by the "Chief of Staff" who specified an area 
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of Aggressor territory over which simulated reconnaissance missions were to 
be flown. The computer facilities simulated these overflights and also simu¬ 
lated the activities of tne many individuals who interpreted and catalogued 
the photographic, radar, and infra-red sensor data thus obtained on the over¬ 
flights. After an "overflight" has been completed and the resulting data 
"processed" and "catalogued," the ISO team could proceed with the second 
phase of the retrieval sequence. In this second phase the ISOs could make 
direct interrogations of computer storage by means of their digital display 
consoles and ask specific questions about events in the territory which had 
been put under surveillance. These questions were directly related to the 
area of responsibility which the ISO had assumed. Observe in figure 2 that 
there are four ISOs who, in effect, served as "content experts." Each of 
these individuals was responsible for developing a subset of the attribute 
data classes indicated in Appendix I. For example, the "Main Attack" ISO 
was responsible for developing information about attribute data classes I, 
II, and" III in Appendix I for each developmental grouping. The information 
which the ISOs received on their digital display consoles was in the form of 
verbal and numerical descriptions of the type, number, activity, and location 
of collections of mobile weapons, vehicles, and aircraft (collectively termed 
"elements"). Using tabled reference sources which related numbers and types 
of elements to Aggressor units, they attempted to infer the existence of the 
various Aggressor units in a developmental grouping and the spatial and 
temporal arrangements of these inferred units. From the information obtained 
using the procedure indicated above, the ISOs could provide estimates of the 
probability that the various states or levels of each of the 25 attribute data 
classes had been observed with respect to a particular developmental grouping. 
Table 1 should help to make clear the exact form of the ISO responses. Table 
1 illustrates the form of the probabilistic responses made by the ISO respon¬ 
sible for data classes X and XI on the basis of information retrieved with 
respect to developmental grouping No. 101. He is confident, for example, 
at .70 that there are two tactical air squadrons in this developmental group¬ 
ing but he allows for possible underestimation or overestimation. Such re¬ 
sponses were provided by the ISOs for each of the 25 attribute data classes 
for every developmental grouping under surveillance. Since the events in 
the stimulus environment were time-dependent, information became obsolete 

TABLE 1 

AN ILLUSTRATION OF AN INTELLIGENCE 
STAFF OFFICER RESPONSE 



and the two-phase retrieval sequence was initiated many times during an ex¬ 
perimental session. This, of course, caused the ISOs to revise their data 
state estimates quite frequently. The final estimates which they made during 
the terminal stages of buildup of a developmental grouping were collected and 
relayed to the next task level in the system (the threat evaluators, TEs, 
shown in figure 2). Thus, the output of the ISO level was a set of probabil¬ 
istic estimates of the state or condition of each of the 2$ attribute data 
classes for each terminating developmental grouping. 

The second task level shown in figure 2 consisted of those individuals 
whose task was to evaluate the threat posed by each developmental grouping 
and thus provide answers to the second of the two questions posed above. 
Each of the TEs produced estimates of P(h|d) and P(d|h) on the basis of the 
probabilistic attribute data relayed to them from the ISO level. Since the 
P(H|D) and P(D|H) estimates represented the most important behavior in the 
present study, the use of several subjects to provide these estimates was an 
experimental necessity. Equipment limitations precluded the use of more than 
four subjects in the TE role. It must be emphasized that each TE produced 
his own estimates of these conditional probabilities. In fact, TE perform¬ 
ance was carefully monitored to assure the experimenter of independent esti¬ 
mates. The attribute data inputs to each of the TEs were identical. 

As previously mentioned, six Aggressor developmental groupings terminated 
each day. When it was apparent that a grouping had terminated its buildup, 
the ISO team relayed its final attribute data estimates for that grouping to 
the TE level by means of closed-circuit television. On the basis of these 
data each TE estimated the probability that each of the eight Aggressor re¬ 
sponse alternatives or strategies could have accounted for the occurrence of 
these attribute data [P(H|D)I. More appropriately this term should be sym¬ 
bolized as POilDi^ Dji, ..., Djocy) since there were, in fact, 25 data 
state estimates presented simultaneously. For convenience however, the term 
P(H|D) will be used with the understanding that D stands for the entire 
"package" of data state estimates for a developmental grouping. Each TE 
therefore provided six P(H|D) estimates during each experimental session. 
The TEs were required to noraalize their P(h|d) estimates for each grouping, 
i.e., their estimutes were required to have unit sum across the eight hypothe¬ 
ses. At the beginning of each session (with the exception of the first 
session) the TEs were informed about the six "true" hypotheses applicable 
to the data seen in the previous session. 

On the basis of these verified data-hypotheses relationships provided 
at the start of each session and applicable to the six groupings which had 
terminated on the previous day and on the basis of similar accumulated veri¬ 
fied data-hypotheses relationships established in earlier sessions, each TE 
estimated P(D|H) for every state of each of the 25 data classes given each 
of the 8 hypotheses. More appropriately, these estimates should be syndbolized 
as PfDjjjHj) since a TE was actually estimating the probability that the jth 
level of data class k would be observed if hypothesis i were true. This in¬ 
volved generation of an 8 x 103 P(Djk|Hi) matrix since there were 8 hypothe¬ 
ses and 103 possible data states across all data classes. This P(Djk|Hi) 
matrix was generated by each TE once during each experimental session. These 
P(Djk|Hi) estimates served two purposes: (a) they were used as inputs to the 
MBT in order to provide one class of automated estimates of P(h|d) for 
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comparison with the TEs' estimates of P(h|d), and (b) they provided each IE 
with a method for summarizing and accumulating the past experience about 
events in the stimulus environment necessary in order for the IE to make 
his own estimates of P(HÍD). 

D* Performance Comparisons 

The primary purpose of both experiments being reported was to compare 
estimates: (a) unaided human estimates of P(H|D), (b) 

D) on the basis of human estimates of P(d|h), and (c) 
D) calculated on the basis of Dodson's "self-adapting" 

three types of P(H|D] 
MET solutions of P(H 
MET solutions of P(H 
version of the MET (ref. 10). Although the means for acquiring the first 
two estimates were discussed in the preceding section, an additional fact 
about these two estimates must be made apparent. At the beginning of the 
first experiment and at the beginning of each of three conditions in the 
second experiment the four TEs were told to assume that the prior probabili¬ 
ties of each of the hypotheses were equal (i.e., .125 since there were eight 
hypotheses). With respect to the MET solutions of P(h|d) using the TE esti¬ 
mates of P(d|h), the prior probability term [P(Hi)] in equation 2 was set at 
.125 for each calculation. There were two reasons why the prior probabilities 
were treated in this manner. First, the effects of varying prior probabili¬ 
ties upon subsequent P(h|d) estimates is an experimental issue in its own 
right. At this juncture in the research series the subjects were each told 
to assume equal prior probabilities in order to reduce the complexity of an 
already difficult experimental situation. Second, the events in the stimu¬ 
lus environment were designed so that in each experimental condition each 
hypothesis was "true" an equal number of times. Therefore, setting P(Hi) = 
.125 in each MET solution of P(h|d) using the TE estimates of P(D|H) was 
judged to be minimally damaging to the accuracy of these solutions. 

The third solution or estimate of P(h|d) mentioned above was based upon 
Dodson's suggestion about how the MET could be made to adapt itself to chang¬ 
ing environmental events. This adaptation feature has as its basis parameters 
which regulate the rate at which information obsolesces and an expression for 
feedback about the true state of affairs existing in the environment at the 
time each observation was made. These parameters and the expression describ¬ 
ing feedback are applied by Dodson to the P(Hi) and P(d|Hí) terms in equation 
2. The parameters and the feedback expression describe how these terms are 
to be updated on every trial or observation cycle in a sequence. ^ In the ex¬ 
periments being reported the a priori probability was set at .125 in all 
calculations provided from this self-adapting MET as well as from the other 
MET solution described above. At this juncture in the experimental series 
the experimenter's concern was limited to the possibility of control over the 
adaptation process strictly with respect to the contingency relationships be¬ 
tween each level of every data class and each hypothesis [P(DjJHí)]. Equa¬ 
tion 3, with notâtional modification, is Dodson's expression for P(Djk|Hi) 
illustrating the adaptive or "learning" features allowed by the parameters. 

P(DjklHi)v 
P(Djk|Hj)v_1 + Ky [P(Djk)v P(Fi)v «¡vi 

1 + Kv [P(F¡)V wiv] 
(Eq. 3) 
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where 

P(Djk|Hj) - the conditional probability of the state or condition 
of data class j given the occurrence of hypothesis Hf. 

V = a particular observational trial or cycle number, (v-1) 
refers to the preceding observational trial or cycle. 

P(Djk)v = the probability that the kth level of data class j has been 
observed in cycle v. (The values were provided by the ISOs 
upon observations made of the stimulus environment.) 

p(Fi)v = probability that Hj is to be associated with the input 
pattern of P(Djk) in cycle v. This term is essentially 
the feedback from the environment as to what actually hap¬ 
pened in association with the attribute data for a particu¬ 
lar grouping. The term applies to the strategy (Hj) 
Aggressor actually used in cycle v. P(Fi)v assumes only 
two values, 0.0 or 1.0. If P(Fi)v = 0.0, then Hi was not 
Aggressor's strategy in cycle v; if P(Fi)v = 1.0, then Hi 
was Aggressor's strategy in cycle v. 

Kv = the parameter which regulates the extent to which P(Djk)v 
and P(Fi)v are allowed to modify all condition probabili¬ 
ties. Kv can assume any value in the range 0 < Kv £ oc. 
When Kv = 0, no adjustment of the preceding conditional 
probability (on the v-lth cycle) in made, i.e., equation 2 
reduced to: 

P(Djk|Hi)„ - P(Djk¡Hj)v_2 

As Kv approaches infinity, P(Djk|Hi)v approaches PÍDnJv»1 
This means that P(Djk|Hi) on vth cycle is entirely deter¬ 
mined by the most recent estimation of P(Djk). Fairly 

Let P(Djk|Hi)v_2, [P(Djk)v P(Fi)v Wiv], and [P(Fi)v Wiv] be constants in 

any cycle v; call them Ci, C2, and C3, respectively. Then: 

lim 
Kv-+oo 

C1 * KyC2 
1 + KvC3 

(Cl + KyC2) 

Kv 
lim 

Kv-»°o (1 > KyC3) 

Kv 

lim 
Kv-*a> 

K, 

K, v 

C2 

C3 

C2 

C3 

P(Djk)y P(Fj)v Wjy 

P(Fi)vwiv‘ 
p(Djk)v 
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large changes of P{Dík|Hí)v in the direction of most recent 
estimations of P(DjkT can be made with fairly small values 
of Kv. In the present experiments Kv was set at .5. This 
value introduced moderate rather than drastic changes toward 
the most recent estimates of P(ßjk). 

wiv = a parameter which regulated the extent to which the input 
sets of P(Djk)v will be associated with a specific Hi. In 
terns of the present experiment wiv represents the extent 
to which the conditional probabilities associated with any 
Aggressor response alternative (or strategy) determined by 
previous data are modified by current data. In effect, wiv 
is a vernier weight which allows one to control differen¬ 
tially the adjustments of conditional probabilities for each 
of the hypotheses. Kv, on the other hand, can be considered 
a more gross weight affecting all conditional probabilities 
across all of the hypotheses. In the present experiments wiv 
was defined more precisely as: 

»iv = [P(H¡|D)V - PtFiJJ2 (Eq. li) 

where 

P(Hi|D)v = the self-adapting MET calculation in cycle v. 

P(Fi)v = environmental feedback as to the correct hypothesis in cycle 
v. Recall that P(Fi)v assumed only two values, 1.0 if Hi 
was true and 0.0 if Hj was not true. 

This definition of wiv says, in effect, that the closer the 
calculated P(Hi|D) was to being correct the smaller will be 
the change induced in the values of P(Djk|Hi) on the follow¬ 
ing cycle. Thus, large changes will not be induced when 
P(Djk|Hi) values are relatively accurate. Equation I4 shows 
why values of wiv were limited to the range 0 < vîv < 1.0. 
Note, by observing equation 3, that a change in P(Djk|Hi) 
values could occur only in the hypothesis category correct 
in that cycle, i.e., where P(Fi)v = 1.0. When P(Fi)v = 0.0, 
the right hand side of equation 3 reduced to PtDjklHiVi. 

Equations 3 and 1* thus specify how the PfDijHi) term in equation 2 is to 
be automatically adjusted on the basis of experience. Since P(Hi) was con¬ 
stant throughout the experiments, automatic solutions of P(h|d) for each 
developmental grouping could be obtained from the self-adapting MBT upon 
entering into the computer the P(Djk) estimates (probabilistic attribute data 
state estimates) provided by the ISOs for each developmental grouping. 

E. Performance Measures 

In both experiments two types of measures were taken with respect to the 
human and automated estimates of P(h|d). The first measure, called "verified 
certainty," was simply the value of P(H|D) in the correct hypothesis category. 
Table 2 should help to make this measure (and the one which follows) clear. 
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TABLE 2 

AN ILXU5Ti<ATI0N OF P(h|d) RES TONS ES 

Hypotheses 
ABODE FGH 

Human 
No. 101 __ 

MBT 
.10 .70 .10 .05 .05 

.08 .60 .18 .0J4 .Oh .02 .02 .02 

Human 
No. 102 _ 

MBT 

.50 .iiO .05 .05 

.20 .30 .20 .10 .10 .05 .03 .02 

Assume in both examples (developmental grouping Nos. 101 and 102) that B is 
the true hypothesis. The verified certainty scores for the human are .70 and 
.liO, for the MBT .60 and .30. It is also of interest to observe the precise 
number of occasions on which either the human or automated first choice or 
highest P(H|D) estimates were correct. For this reason a second method of 
scoring was introduced. These scores, called "dichotomous scores," indicate 
the number of occasions on which the highest or first-choice P(h|d) estimate 
was placed in the true hypothesis category. In table 2 observe that for No. 
101 both human and MBT first-choice estimates are correct since hypothesis B 
was known to have been true. In No. 102, however, the MBT placed its highest 
P(H|D) value in the correct category while the human did not. This latter 
example illustrates how different interpretations of the relative performance 
of human and MBT can arise depending upon the scoring procedure one uses. 
Although the human's verified certainty score for No. 102 was higher than the 
MBT score, the MBT placed its highest estimate in the correct category and 
the human did not. 

Verified certainty scores were also used to evaluate the performance of 
the ISOs in estimating the probability of the various states within a data 
class. Verified certainty, in this instance, was simply the value of P(Dîk) 
placed in the true data class state for the particular developmental group¬ 
ing. 

For the P(d|h) estimates produced by the TEs a somewhat different scoring 
procedure was used. The P(D¡H) score was called an "agreement score" (a i) and 
was defined as follows: J 

k-i idkl 
<M = 1-- OsajSl.O (Eq. S) 

where 

* the number of states or conditions in data class j. 

k * the state or condition in data class j. 
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- [P(DjijHi)eskimates “ )trueJ 

i = the ith hypothesis category 

There was one aj score for each data class under each of the eight hypothesis 
categories. Perfect agreement between the estimated conditional probabilities 
assigned across a data class given some hypothesis and the true conditional 
probabilities for this class and hypothesis yielded a score of aj = 1.0. 
Complete lack of agreement yielded aj = 0.0. 



V. EXPERIMENT I: HUMAN ESTIMATIONS OF POSTERIOR PROBABILITIES 
OVER AN EXTENDED SERIES OF TRIALS 

A. Objectives 

The general character of the first experiment was exceedingly simple. 
Two questions were asked: (a) how does increased experience affect human 
performance in the task of estimating P(h|d), and (b) to what degree will 
human P(H|D) estimates match those provided by both the MBT using human- 
estimated P(D|H) .and the self-adapting MBT? In the writers' opinion, not 
al;,?r.the Previous.studies reviewed in section III of this report provided 
sufficient instructions, time, or procedures to allow the subjects to make 
more correct and more confident estimates of P(h|d). There was an indication 
in the second experiment performed by Southard, Schum, and Briggs (ref. 17) 
hat conservatism in estimating P(h|d) diminishes with experience. This re- 

^0]ljever> needed.confirmation since data were collected from only one 
subjiCo.. From one point of view, an experiment devoted solely to the effects 
of experience upon human performance may seem rather trivial and improvement 

exPerience is the sort of thing one would naturally ex- 
Unfortunately, most studies so far offer little notion about what to 

expect from persons who are experienced in dealing with events in some en- 
vironmen of concern. The allegation is simply that humans are conservative 
or suboptimal estimators of posterior probabilities and that they do not 
extract maximum certainty from probabilistic information. The purpose of 

e present experiment was to observe the extent to which this statement will 
have to be qualified when humans are given the opportunity to become familiar 
with environmental events and proficient in dealing with probabilistic state¬ 
ments describing these events. 

B. Experimental Procedures 

The present experiment consisted of 30 consecutive ii-hour sessions. In 
each session six Aggressor developmental groupings terminated. On the basis 

att:lbute data provided by the ISOs for each grouping, 
c , TE produced.his estimates of P(h|d). The attribute data were presented 

to each TE individually and simultaneously by means of closed-circuit tele- 
In Edition to these televised data, each TE was also able to follow 

ohi ;^,ea<?h,9r0lí?1 n9 m A99ressor territory. The ISOs maintained an 
c„rv’-i?hted plexiglf? display board upon which all Aggressor activity under 
surveillance was continuously posted. A television camera was focused on 

is board and a continuous TV picture of it was available to each TE. Since 
there were six developmental groupings terminating in every session, the TEs 
H^hT?r°dyCed 180 piHlD) estimates throughout the experiment. In each session 

e TEs also generated their estimates for the required 8 x 103 P(DiulHi) 
effort* TE Perfonriance was carefully monitored to assure independence of 

Af fv,FOr eaCb °VÏT 180 developmental groupings terminating during the course 
of the experiment the experimenter obtained: 

(1) Four unaided human estimates of P(h|d). 
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(2) Four MBT solutions of P(h|d) calculated individually on the basis 

of each TE's P(d|h) estimates. 

(3) One self-adapting MBT solution of P(H¡D). 

Various types of knowledge of results were given to the ISOs and TEs. 

Complete feedback with respect to the correctness of the environmental data 

produced by the ISOs was judged to be unrealistic. For this reason, verifi¬ 

cation of the true state of only five of the 25 classes of attribute data 

(for each of the six terminating developmental groupings) was provided for 

the ISO team on the session following the termination of the groupings. 

These five classes were chosen at random. Each TE was also given this at¬ 

tribute data feedback. Each TE was also provided each session with the six 

correct hypotheses explaining the occurrence of the data seen in the previous 

session. One assumption, therefore, was that previous courses of action ac¬ 

tually taken by Aggressor could always be recognized. 

The two MBT solutions were also made available to the TEs. At the start 

of each session each TE was able to compare his unaided P(H|D) estimates made 

in the previous session with the MBT P(h|d) solutions based upon his P(d|h) 

estimates from the previous session and with the self-adapting MBT solutions. 

The TEs did not see each others1 estimates. Finally, feedback about the cor¬ 

rect P(d|h) estimates was not provided for the TEs because it seems highly 

unrealistic to assume that the true environmental contingency rules could 

ever be known by the threat-evaluation team. 

C. Subjects, Training, and Instructions 

All of the subjects in the experiment were either upperclass undergradu¬ 

ates or students in the graduate or various professional schools at Ohio 

State University. They were volunteers and were paid at rates determined by 

length of service and amount of responsibility assumed in the threat-evaluation 

system. All of the subjects had served in at least one of two previous ex¬ 

periments and all had received the extensive llli-hour training program dis¬ 

cussed in detail in a previous report (ref. Ik). The ISOs in the present 

experiment were already well trained in their respective tasks. The TEs, 

however, were given further training consisting of lectures and practice 

problems involving P(h|d) and P(d|h) estimation. The practice problems were 

similar in content and difficulty to those actually encountered in the ex¬ 

periment. This training program consisted of five sessions each of li-hour 

duration. 

The TEs were instructed to produce their most accurate estimates of 

P(h|d) and P(d|h). Speed of response was not emphasized in this experiment . 

D. Results 

1. Human and automated posterior probability estimation as represented 

by verified certainly scores: As mentioned previously with respect to pos¬ 

terior prob'äbi 1 ity estimates, verified certainty scores simply indicated the 

value of the estimate placed in the correct hypothesis category. Figure 3, 

thereforej illustrates the change, as environmental experience increases, in 

the size of the certainty estimates placed in correct hypothesis categories 
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Figure 3. Human and Automated Posterior Proba¬ 
bility Estimates over 30 Experimental Sessions. 

TC HDlirLuLipf rî1 uS a Sr0Up)’ f0ur soluti^ on the basis of 
r^Jce est^ates (taken as a group), and the self-adapting MBT. On the 

innert “trr!-SeSSl0n Peri0dS- ordinaU «loos refer to the average verified .ertainty scores obtained with reference to the 18 developmental““2" 

nectedMbv th^ ^ P^od. The solid circles con- 
j X line indicate unaided human performance. Each of these 

ttlZT: aerZ)Tr ^ fflVtra9*/erlfíed cert8inty — of the Lr TCs 
three-day period i e Tfnt&1 9rouPin9s terminating in that y period, i.e., each data point represents the overall averane* nf 

Soores in 72 p(H|D) estimates. SesoHd circîês 
m^ bí th^MBT^onír 1Íne1rePííSent the avera9e verified certainty score 
Imtal oramos 9 estinates of p(D|H) for the 18 develop- 
encai groupings in that three-session period. Since there were four cooa 

Lia oo n llír TM the 18 d8«l°P"ental grouping e^ ofTeT 
slnTT ÎTesents the average verified cerUinty score of 72 P(hId) 
MBT sÔîâtionT T" Cirfes rePr€sent the performance of the self-adapting 
mentaMM« solutlon ras P™''1»'“ for each develop 
score of 18¾¾) estíos!” represent “>* •"'"'W »■■¡fUô cerUinty 

rprt h^ífK1117? ^ indicates, higher P(h|d) estimates were placed in the cor¬ 
rect hypothesis categories by both MBT solutions early in'the session semence, 
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The MBT using TE estimates of P(d|h) yielded higher verified certainty scores 
than the humans until about session 15. The self-adapting MBT yielded higher 
verified certainty scores than the humans until about session 9. Thereafter, 
in both cases, the human and automated estimates are quite similar except for 
the one irregularity in the sixth three-session sequence. Figure 3, although 
a representation of group data with respect to the TEs and the MBT solutions 
using their P(d|h) estimates, is also quite representative of individual per¬ 
formance. Graphs (not shown) for each of the TEs showed the same early su¬ 
periority up to session 15 for the solutions incorporating the human-estimated 
P(d|h), and up to session 9 for the self-adapting MBT. After session 15, in 
all cases the performance of the humans and these MBT solutions were quite 
similar. 

Also illustrated in figure 3 is the fact that the accuracy of the attri¬ 
bute data upon which the various P(h|d) estimates were based was not constant 
throughout the experiment. The accuracy of these data, indicated by the 
solid triangles in figure 3, increased slightly as the experiment progressed. 
Each data point represents the verified certainty scores averaged over all 
25 data classes and over all of the 18 developmental groupings terminating 
in the three-session period. Recall that verified certainty scores, with 
respect to the attribute data classes, refer to the value of the data state 
estimate placed by an ISO in the correct state of the data class for a par¬ 
ticular developmental grouping. The measure indicated in figure 3 is admit¬ 
tedly a gross indication of accuracy since averaging was performed across 
data classes having several different possible states. The purpose of its 
inclusion in the figure is merely to point out that a portion of the increase 
in P(h|d) estimation accuracy may be due to the fact that the data upon which 
these estimates were based became slightly more accurate as the experiment 
progressed. That the entire P(h|d) estimation increase is not due to the 
data accuracy increase alone can be seen by comparing the slopes of the at¬ 
tribute data and P(h|d) curves between points at various locations on the 
graph. Moreover, the same attribute data were common to all three types of 
P(H|D) estimates and the primary interest was in a comparison of the relative 
accuracy of these estimates. 

Table 3 lists the means and standard deviations of these verified cer¬ 
tainty scores over the entire 30 sessions. 

A discussion of the distributions of the verified certainty scores at 
this juncture will facilitate subsequent discussion of the statistical analy¬ 
sis of these scores. Figure h illustrates the distributions of verified 
certainty scores for the four unaided human estimates of P(H|D) and for the 
four MBT solutions based upon the human estimates of P(D|H). On the abscissa 
are verified certainty score class intervals. The ordinate refers to the 
frequency of verified certainty scores occurring in these class intervals. 
The data points represent scores pooled from all four subjects and from all 
four MBT solutions based upon the subjects1 P(d|h) estimates. 

It is quite apparent from figure li that the greater number of estimates 
placed in the correct hypothesis categories was either very high (.905 to 
1.000) or very low (.000 to .101*) for both the humans as a group and the MBT 
solutions incorporating the human estimates of P(d|h). There were, in other 
words, large numbers of definite commitment-type responses made by the humans 



TABLE 3 

MEANS AND STANDARD DEVIATIONS OF VERIFIED CERTAINTY SCORES 

• T •? r 

Vtrif i«d Otointy Scot» CIossm 

Figure I4. Distributions of Verified Certainty 
Scores, Experiment I. y 
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and the MET. If the humans' P(h|d) estimates were generally conservative, 
one would have expected higher frequencies of scores in the middle class in¬ 
tervals. Notice, however, that the distribution of human scores does show a 
considerably greater frequency in the class interval .ii05> and The score 
distributions for the individual subjects shown in Appendix II indicate that 
this greater human score frequency in class interval .1*05 to was due, 
almost entirely, to one subject (subject No. 1). Also observe in Appendix II 
the extremely similar score distributions for Subjects 2 and 3 and the MBT 
solutions based upon their P(d|h) estimates. Figure 5 illustrates the dis¬ 
tribution of verified certainty scores for the self-adapting MBT. The lower 
frequencies in each class interval are due to the fact that only one solution 
was obtained for each developmental grouping. 

Since figures and 5 show only the frequency of various sizes of esti¬ 
mates placed in the correct hypothesis category, distributions of al_l P(HjD) 
estimates are needed in order to provide a more complete response profile for 
the humans and the MBT. Accordingly, figure 6 illustrates, in terms of ten 
P(h|d) estimate size class intervals, the frequency of aH P(H|D) estimates 
in these class intervals for the four humans and the fouFlffiT solutions 

Figure Distribution of Verified Certainty 
Scores for the Self-Adapting MBT. 
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based upon the human estimates of P(d|h). The data points in either of the 
two distributions are not independent of each other since the distributions 
deal with estimates which must have unit sum across the eight hypothesis 
categories. For example, for every estimate of 1.0 recorded there were seven 
es mates of 0.0 recorded. Both distributions show large numbers of extremely 
high and, concomitantly, extremely low P(h|d) estimates. Hie greater fre- 
quency of human estimates in the .hOS-.SOii class interval is again due essen- 
nf Peff0r?anc® of one subJect- Appendix III, showing distributions 
of all P(H|D) estimates for each subject, illustrates the extreme preference 
or estimates in this interval by subject 1. It is apparent that subject 1 

made .^0-.50 estimates using only two hypothesis categories on a large number 
of occasions. Subject I4 contributed to the greater human frequency of esti- 

hV2™ T^92*. APParent his distribution in Appendix III 
s his use of .30-,30-.140 estimates in only three hypothesis categories. 

These preceding statements are warranted because of the fact that the humans 
typically expressed their estimates only to the nearest .10 or .05. Subjects 
2 and 3 again show response patterns remarkably similar to those of the MBT 
solutions incorporating their P(d|h) estimates. In the distributions shown 

• r r ? * 

P(H|D) Estimate Sin Clan Itetrvole 

Figure 6. Distributions of All P(h|d) Estimates. 
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in figure 6 and Appendix III there were in every case a very large number of 
estimates in the class interval .000-.IOI4. This was to be expected, of 
course, since there were fairly large numbers of estimates in the class in¬ 
terval .905-1.000. In order to illustrate the precise frequency of estimates 
in the interval .000-.lOJj and still portray the major portion of the distri¬ 
butions without recourse to a scale transformation, the ordinates were broken 
in two places and the two data points were placed adjacent to the correct 
frequencies as they appear on the ordinate. The data points in the first two 
class intervals were not connected lest the reader be presented with a dis¬ 
torted view of the correct distributions. 

Figure 7 shows the distribution across the ten class intervals of all 
the P(H[D) estimates produced by the self-adapting MBT. The form of this 
distribution is quite similar to that of the MBT solutions using the human- 
estimated P(D¡H) values. 

Figure ?• Distribution of All P(h|d) Estimates 
by the Self-Adjusting MBT. 
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Recalling the dramatic verified certainty score distribution change ob¬ 
served in an earlier experiment (ref. 17), it is also of some interest to 
observe how the distributions of verified certainty scores for the humans 
.and the MBT changed as environmental experience increased. Figure 8 illus¬ 
trates the form of the distributions of verified certainty scores for the 
four human subjects during the first, middle, and last ten-session periods 
during the experiment. The graph clearly illustrates the increase in the 
number of large scores as the experiment progressed. With the exception of 
subject 1, to whom one can attribute the preponderance of scores in the 

Figure 8. Distributions of Verified Certainty 
Scores for Humans in the First, Middle, and Last 
Thirds of Experiment I. 
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.h05-.50ü class interval, the subjects' score distributions changed during 
the experiment and by session 21 resembled very closely the form of the MBT 
distributions shown in figure 9. Notice in figure 9 that the MBT using the 
human estimates of P(d|h) produced very few early scores in the middle score 
class intervals. There was, however, a fairly substantial increase in very 
large scores for the MBT as the experiment progressed. 

What the verified certainty score distributions do not indicate, of 
course, is the degree of relationship between the human estimates and the 
two types of MBT estimates as the scores for each developmental grouping 

Figure 9. Distribution of Verified Certainty 
Scores for the MBT in the First, Middle, and Last 
Thirds of Experiment I. 
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are examined. Hank-order correlations were, therefore, calculated between 
each subject's verified certainty scores and the scores for the MET using 
his P(D|H) estimates, between each subject's scores and those for the self- 
adapting MBT, and between the scores for the two types of MET solutions. 
The Pearson product-moment correlation was not employed primarily because 
of the decidedly bimodal character of each score distribution. A fairly 
large number of tied scores occurred for each subject because of the tenden¬ 
cy on the part of the subjects to round off their estimates to the nearest 
.0i>. The correction for tied ranks described by Siegel (ref. 18) was in¬ 
corporated in all calculations of Rho. Table li lists the rank-order corre¬ 
lations between the human and MBT verified certainty scores. 

Most of the Rho values in table li are of moderate size and all are 
highly significant. This latter finding is perhaps not too surprising in 
view of the number of degrees of freedom in the calculations. As a rough 
measure of relationship in the present instance, the Rho values presented 
are probably satisfactory as long as one does not try to interpret them in 
the exact way that a product-moment correlation would be interpreted. The 
reason for using the two-tailed probability values is discussed below. 

Now that the characteristics of the verified certainty score distribu¬ 
tions have been presented, the statistical analysis of these scores can be 
discussed. The primary factor affecting the choice of a statistical 
hypothesis-selection method was the form of the score distributions shown 
in figures li and 5. Clearly, a distribution-free method was called for. 

TABLE 1* 

RANK-ORDER CORRELATIONS BETWEEN HUMAN AND MBT 
VERIFIED CERTAINTY SCORES 

(df * 177) 

Rank-Order Correlation between 
Verified Certainty Scores for: 

Subject 
No. Rho t 

P 
(Two-Tailed) 

I. Each subject and the 
MBT using his P(d|h) 
estimates 

1 
2 
3 
h 

.58 

.53 

.55 

.55 

9.51i9 
8.373 
8.703 
8.709 

<.00i 
<.001 
<.001 
<.001 

II. Each subject and the 
self-adapting MBT 

1 
2 
3 
li 

.38 

.56 

.55 
•li7 

5.1ili8 
8.9li3 
8.801 
6.989 

*"H
 

t—4
 

rH
 

8
8

8
8
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III. MBT calculated from 
each subject's P(d|h) 
estimates and the self- 
adapting MBT 

1 
2 
3 
li 

.57 

.70 

.59 

.59 

9.277 
13.1ii0 
9.609 
9.709 

<.001 * 

<.001 
<.001 
<.001 
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Another consideration involved the degree to which the score samples for each 
of the three groups were related. All three types of P(H¡D) estimates were 
based upon the same attribute data. In addition, the human estimates and one 
form of MET estimate were presumably based upon the same set of P(D|H) values. 
For these reasons the three verified certainty score samples were considered 
as being related. In view of these considerations, and because there were 
only three groups to be Compared, the Wilcoxon matched-pairs test was per¬ 
formed to test the significance of the differences between each of the three 
groups. Before presenting the results of the significance tests, the spe¬ 
cific experimental hypothesis being examined warrants further discussion. 
It has been previously mentioned that although there were data in existence 
which tend to show superiority of automated estimates of P(h|d) over unaided 
human estimates, one might argue that the humans in most of these studies were 
at some disadvantage because of lack of experience and insufficient instruc¬ 
tions. From one point of view, then, under better conditions the results 
might indicate no differences or even differences in favor of human subjects. 
At this juncture in the research, therefore, the experimenters preferred to 
allow for the possibility of performance differences in either direction. 
This was particularly the case with respect to the self-adapting version of 
the MBT since the parameters involved in its calculation were more or less 
arbitrarily chosen. In view of these considerations, the tests of signifi¬ 
cance performed on the results of this experiment were two-tailed. The re¬ 
sults of the Wilcoxon tests are as follows: 

a. The overall difference between the verified certainty scores 
for the l80 P(h|d) estimates produced by the four humans and 
those of the four MBT solutions using the human estimates of 
P(d|h) did not meet the conventional requirements for statis¬ 
tical significance. The average human verified certainty 
score for each of the ISO developmental groupings was com¬ 
pared with the average MBT solution. The hypothesis of no 
difference was not rejected. N (the number of greater-than- 
zero differences) = 173, Z = -1.232^, £ (two-tailed)< .2196. 

b. The overall difference between the average human verified 
certainty score for each of the I80 groupings and the self- 
adapting MBT solution also was not statistically significant. 
W = 172, Z = -1.619, £ (two-tailed) < .1052. 

c. The overall difference between the average MBT solution using 
the human estimates of P(d|h) and the self-adapting MBT solu¬ 
tion for every developmental grouping was not significant. 
N = 175, Z = .0715, £ (two-tailed) < .9U¿2. 

2. Dichotomous score analysis: The other method of measuring human and 
MBT P(h|d) estimation performaince Involved an account of the number of occa¬ 
sions on which the humans or the MBT placed their highest or first-choice 
P(h|d) estimates in the correct hypothesis categories. Their highest estima¬ 
tions were, therefore, treated in a dichotomous fashion as being either cor¬ 
rect or incorrect. Table 5 illustrates the number of occasions on which the 
highest P(HjD) estimates were placed in the correct hypothesis category by 
the humans and by both types of MBT solutions. For each subject and for each 
MBT solution there were 179 possible correct hypotheses. (One developmental 
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TABLE 5 

DICHOTOMOUS SCORES IN EXPERIMENT I 

Subject 
MBT Using 

Self-Adapting 
MBT 

Unaided Human Human's 
p(d|h) 

1 

2 

3 
h 

62 

111 

91 

71 

99 
105 

96 

91 

Total 339 387 96 

grouping result was discarded. This also accounts for the fact that there 
were 177 instead of 178 degrees of freedom in calculating the significance 
of the Rho values.) 

The lower total recorded in table 9 for the self-adapting MBT is due to 
the fact that only cne such solution was calculated for each developmental 
grouping. When the scores for the MBT using human estimates of P(d|h) are 
compared with the associated human scores one finds MBT superiority in all 
but one case. The overall difference between the humans as a group and the 
MBT solutions using their P(d|h) estimates was found to be statistically 
significant in favor of the MBT [Wilcoxon test, N = 28, Z = -2.973, P (two- 
tailed) < .01]. To make this comparison the total number of dichotomous 
scores made by the four humans in each experimental session was compared 
with the similar total for the four MBT solutions. Comparing the self- 
adapting MBT total against each human total, one also finds MBT superiority 
in the same three cases. The differences between each subject's total and 
the self-adapting MBT total were not analyzed statistically. 

3. P(d|h) estimation accuracy: It should already be apparent from the 
performance of the MB? using the subjects' estimates of P(d|h) that these con¬ 
ditional probabilities were estimated quite reasonably. However, it is ex¬ 
tremely difficult, if not impossible, to present a single summarized descrip¬ 
tion of the overall accuracy of these estimates. The agreement scores (a j) 
defined in an earlier section are specific to a particular data class. Pooling 
or averaging these aj^ scores over data classes with differing states or condi¬ 
tions does not seem justifiable because of the different probabilistic struc¬ 
ture underlying these data classes. Moreover, the agreement scores are also 
specific to a certain hypothesis category. Pooling each <ij score over the 
eight hypothesis categories seems more defensible than the previous pooling 
procedure, but a description of the accuracy of estimation specific to cer¬ 
tain hypotheses is lost in the process. The only other alternative is to 
present the average aj score for eacn data class under every hypothesis (a 
matrix of 200 values). For the purposes of the present report, however, a 
less precise but considerably more convenient representation will be provided. 
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In Appendix IV are shown the aj score distributions for each of the threat 

evaluators in four selected data classes, each having 8, 6, I4, or 2 alterna¬ 

tive states or conditions. (The data class numbers I, III, IX, and XIX refer 

to those listed in Appendix I.) The aj scores in each distribution have been 

pooled across the eight hypothesis categories. The mean aj score for each 

subject in each data class is also given. The distribution for data class IX 

(two alternatives) is the best distribution, in terms of location, of the 25 

possible distributions. That for data class XIX is the worst of the 25. All 

others lie somewhere between these extremes. The abscissa in each graph 

shows aj score class intervals. Recall that aj = 1.00 means perfect agree¬ 
ment between the estimated and true P(Djk|Hi) values while aj - 0.0 means 
perfect lack of agreement between these values. The ordinate shows the fre¬ 

quency of aj scores in these class intervals. 

The most critical feature underlying an interpretation of these scores 

is the fact that the P(Djk|Hi) values were estimated by the subjects upon 

observation of repetitive events. This fact will be taken into consideration 

when the experimental results are interpreted in the next section. 

E. Discussion and Interpretation of Results 

There seem to be at least four major considerations which one ought to 

keep in mind as the results of this experiment and the one which follows are 

discussed and interpreted. These considerations define, more or less, the 

types of situations in which the results of these experiments stand the 

greatest chance of application. First, the subjects gained experience in 

an environment whose critical events were essentially repetitive in nature. 

To facilitate P(d|h) estimation the subjects kept rather careful accounts 

of the number of times a certain data state occurred in the presence of some 

hypothesis. The stimulus environment, therefore, can generally be described 

as "frequentistic" in nature since relative frequencies could be used to in¬ 

dicate the probability of critical events. There seems to be nothing unreal¬ 

istic about such a situation. Indeed, in the field of medicine, for example, 

careful records are maintained with respect to the occurrence of certain symp¬ 

toms given various known causes or states of nature. The second consideration 

is that the design of the stimulus environment and the subjects' tasks al¬ 

lowed for situations in which one is not always precisely sure about what 

datum one is observing. Dodson's MBT allows for this observational uncer¬ 

tainty. Third, in both experiments subjects were used who were already quite 

experienced in dealing with the critical environmental events. The perform¬ 

ance of these individuals will surely be different from that of a collection 

of naive subjects who perform only briefly in unfamiliar circumstances. 

Finally, the estimators of P(h|d) were always subsequently informed about 

the true hypothesis and consequently about the quality of their estimates. 

The first major result of the experiment was that with experience the 

human's performance eventually matched that of the MBT solutions. The veri¬ 

fied certainty scores for the MBT using human estimates of P(D|H) were 

superior in every instance until about session 15. Presumably, this indi¬ 

cates that a greater amount of consistency (or predictability) existed in 

the P(d|h) values than the subjects actually perceived while making their 

P(h|d) estimates. With increased experience the subieciis gained a greater 

appreciation for the consistency which their own P(D|H) estimates said was 
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in the environment and which the MBT "recognized" quite early in the sequence 

of trials. There is another explanation for the performance increase. This 

explanation was indicated in a questionnaire administered to the four TEs 

after eve?y four sessions during the experiment. It seems that, out of neces¬ 

sity, the humans, when initially confronted with the mass of attribute data, 

acted to reduce the complexity of the situation and in so doing lost valid 

or useful predictory infoimation. With experience, however, the better sub¬ 

jects took greater notice of a larger number of data classes in which there 

existed consistency or predictability. This improved consistency recognition 

was reflected in improved scores. The increase in the number cf large esti¬ 

mates with experience is clearly shown in figure 8. There is another poten¬ 

tial explanation for this finding. There were no explicit costs or payoffs 

in these experiments and, therefore, the subjects were never penalized for 

incorrect diagnoses. High scores in themselves were certainly rewarding to 

the subjects. One wonders whether or not the extreme estimates would still 

be obtained in a direct cost-payoff situation. Under the conditions of the 

experiment, therefore, the optimal strategy for the humans was probably not 

Bayesian. Beyond a certain threshold of certainty the subject might just as 

well have estimated 1.0 since there was nothing to lose. Most assuredly it 

was an easier task to write 1.0 in one hypothesis category than to give 

vernier estimates across all eight categories even though the estimate may 

have been much higher than the consistency of the data justified. 

In terms of verified certainty scores the MBT solutions using human 
estimates of P(D|H) were not superior to the unaided human estimates, while 
in terms of the dichotomous scores the MBT solutions were significantly 
superior. The latter explanation in the preceding paragraph should help to 
account for this discrepancy. In comparing the relative performance of MBT 
and humans the average verified certainty scores by themselves may be mis¬ 
leading because of the apparent increased tendency of the subjects to use 
higher certainty estimates than the data justify. If it is true that the 
subjects tended to maximize the size of their estimates (which the MBT does 
not do), then both types of measures are needed in order to provide an ac¬ 
curate evaluation of the relative performance of human and MBT. 

A more thorough analysis of individual performance proved to be highly 
informative. The best performance in terms of both measures were those of 
subjects 2 and 3. It happens that their response profiles (Appendixes II 
and III) closely match those of the MBT using their P(d|h) estimates. In 
addition, the questionnaire revealed that a high percentage of the attribute 
data influenced their P(h|d) estimates. Subjects 1 and 1* adopted a con¬ 
siderably less sensitive approach. Already mentioned was their preference 
for estimates in only two ^ three categories. Table 3 also confirms their 
lack of sensitivity. Obsei e that these two subjects have the lowest mean 
scores and also the lowest rcore standard deviations. The questionnaire re¬ 
vealed the startling fact that even after the 28th session both subjects were 
completely discarding information in 8 or more of the 25 data classes. Sub¬ 
ject 2, on the other hand, utilized the information from as many as 23 data 
classes in his estimates. 

The questionnaire also helped to establish the fact that none of 
the humans processed the data from each class in an iterative fashion. 
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Apparently the P(h|d) estimation task for the humans involved taking notice 
of those data which were found to be the best discriminators among the 
various hypotheses, eliminating certain of the hypotheses on the basis of 
these data, and then loading with certainty estimates the remaining hypothe¬ 
ses. 



VI. EXPERIMENT II: HUMAN AND AUTOMATED ESTIMATION OF 
POSTERIOR PROBABILITIES UNDER SEVERAL LEVELS 

OF INPUT INFORMATION FIDELITY 

A. Objectives 

Individuals faced with the task of evaluating events in a hostile en- 
vironment will seldom, if ever, have access to information about these events 
which is utterly precise or reliable. Indeed, these tasks involve the use of 
information which is less than perfect for any one of a number of reasons. 

LL. the following causes of decreased input information fidelity are 
worthy of note: J 

1. Information may be gathered by sensors with varying degrees of 
inherent resolving power. On any given occasion, this resolv¬ 
ing power may be degraded for some reason or another. 

2. Information is lost or altered in any transmission or recoding 
process. Verbal descriptions or pictorial representations of 
events are always somewhat less than the event itself. 

3* Relevant information may be available only after a painstaking 
search through irrelevant or extraneous information. Important 
information may be lost in the process of filtering out relevant 
signals from "noise." 

li. Information may become available which has been intentionally 
disseminated in order to obscure certain critical events and 
thus to deceive an observer or evaluator of these events. 
Thus, authentic information may be confused with that which 
is spurious. 

Each ol these factors, alone or in combination with others, produces a common 
result: discriminability among environmental events is reduced. 

In evaluating the efficacy ol the Bayesian paradigm for information¬ 
processing systems, it is surely of interest to see how the various proba¬ 
bilistic estimates made by humans or automated devices fare under various 
levels of input fidelity. Edwards, in his description of a probabilistic 
information-processing system suggests that "a probabilistic system can af¬ 
ford to accept and use with profit information so seriously fallible or 
degraded that it would be excluded or ignored in deterministic systems" 
(ref. 18, p. 1). The probabilistic system which Edwards has in mind is one 
m which posterior probabilities estimates are calculated on the basis of 
Bayes theorem using as inputs the P(d|h) estimations produced by humans. 
One implication from Edwards' statement seems to be that if Bayes* theorem 
is optimal in its extraction of consistency from probabilistic data, then 
aS ^!:a.be(:omJ more unible and consistencies among data become more obscure 
or dilficult for humans to perceive, the superiority of the Bayes-theorem- 
based solutions over unaided human estimates of P(h|d) ought to become more 
apparent. The justification for this implication is as follows. As the 
fidelity of data describing environmental events decreases, uncertainty 
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about what has been observed in connection with the hypothesized states of 

nature increases. Contingent data-hypothesis relationships [P(D|H)j become 

more obscure or abstruse. The assertion then is that since Bayes' theorem 

is a mathematically optimal method for combining these conditional proba¬ 

bilities, solutions of P(h|d) based upon Bayes' theorem will be superior to 

estimates of P(h|d) produced by humans if the humans are not able to incor¬ 

porate all the consistency contained in the contingencies or P(D|H) values 

as they produce P(h|d) estimates. In other words, there may simply be more 

consistency or predictability in the P(d|h) values (even though based upon 

fallible data) than the humans will be able to recognize and reflect in their 

estimates of P(h|d). 

The major purpose of this experiment is to compare, under several levels 

of input fidelity, human estimates of P(h|d) and MBT solutions of P(H|D) 

based upon the human estimates of P(d|h). The variable in the experiment 

speaks directly to a performance comparison involving human estimates of 

two types of conditional probabilities [P(h|d) and P(D|H)]. For this reason 

the performance of the self-adapting MBT will not be statistically analyzed 

in comparison with the other two types of estimates. Another reason for not 

including the self-adapting MBT in the analysis is that only one such solu¬ 

tion will be available for each developmental grouping, while there will be 

four each of the other two types of estimates. Individual comparison of 

self-adapting MBT with each subject's estimates are of limited interest in 

this experiment. The performance of the self-adapting MBT will, however, be 

presented descriptively. 

B. Input Fidelity as a Variable 

The input information which was utilized by the team of ISOs in develop¬ 

ing the 25 types of attribute data consisted of verbal descriptions of the 

type, number, and activity of Aggressor vehicles, mobile weapons, and air¬ 

craft. These descriptions were based upon photo, radar, and infra-red sensor 

records obtained on simulated reconnaissance overflights of the territory of 

the hypothetical adversary. The overflights and the interpretation of the 

obtained sensor records were simulated, of course, by the computer facilities. 

Of the four factors mentioned above which act to reduce discriminability 

among environmental events, the first, sensor resolution, can be manipulated 

most systematically in the present stimulus environment configuration. In 

order to simulate the fact that there might exist several graded quality 

levels of sensor data, different levels of verbal description were available 

for each event to be observed by the ISOs. There were three quality levels 

of photo information and two each of radar and infra-red. To illustrate how 

discriminability among events in the stimulus environment is contingent upon 

level of sensor description, consider the following example. The verbal de¬ 

scription of a 2-l/2-ton cargo truck given to an ISO using a level 1 photo 

(highest level) is "2-l/2-ton cargo truck," an unequivocal description. 

Under a level 2 photo, however, the description would read "medium size 

wheeled vehicle." In this case, the operator could not distinguish a 2-1/2- 

ton cargo truck from a 5-ton truck, an amphibious armored carrier, or a 

lljO-ram rocket launcher since they are also described as "medium size wheeled 

vehicles" under a level 2 photo. Using level 3 photo (poorest), the verbal 

description of a 2-l/2-ton cargo truck would be "self-propelled vehicle." 

Discrimination is now very poor indeed since there are many types of mobile 
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weapons and vehicles also described as "self-propelled vehicle" under a level 

3 photo. It is also true that discriminations among critical events, which 

e 25 attribute data classes reflect, are based upon frequency counts of 

these vehicles, weapons, and aircraft. One can systematically induce uncer- 

For theSe ¡;ounts af the q^aiity level of sensor records is reduced. 
For example, a certain unit in Aggressor's surface forces contains 111 wheeled 

haD^eir^bp6611-^61^ leVel 1 (highest This vehicle count 
appens to be unique and the unit can always be identified. Before the ISO 

receives his vehicle total, however, the experimenter can, by means of a pro- 

Thi^rLlir1^11^' add subtract a random number from the original total. 
number 13 chosen within a certain range which indicates the reso- 

r^Mo0Ícthe Se^or* SuPPose» Tor example, that the degraded sensor was 

JÍ ?ï?V1^n9 ^ a<rcuracy of ±m on vehicle totals. If the original 
total were 131, the experimenter could, on each occasion, add alqebräTSallv 

of vehicle t^TnR3^ ^ 0rÍ9Ínal t0ta1’ making the Poss^le 
fK talS-J18 through 1Í4Í4* ^13 wil1 cause the ISO to confuse 

totalHossíbÍp^ T 56 range °f fallS Within the range of totals poss ble for the unit in question. This procedure for degrading totals 

can be supplied independently of the procedure for degrading verbal descrip- 

nrrpeînfalÎ previ°Vf experiments the ISOs have always been allowed unrestricted 
reoor^H^W^ Í yfKenSOr (™s was the case in Experiment I 
reported above.) In the present experiment, where fidelity of input is the 

variable of interest, the experimenter manipulated both the verbal and numeri¬ 

cal descriptions provided by sensor records, thus simulating the effects of 

of^the6fiHp?* radar, and infra-red images. Following are the chosen levels 
f the fidelity variable and the method by which these levels were induced: 

** iigyel 1‘ Highest fidelity: No change was induced here over 

previous experiments. ISOs had unrestricted access to top- 
level photo, radar, and infra-red sensor records. 

2‘ level H. Intermediate fidelity: ISOs had access only to the 

poorest quality photo, radar, and infra-red records, but only 

the verbal descriptions showed degradation (i.e., vehicle 

weapon, and aircraft totals did not suffer degradation), ^is 

C°üdíV0n induced considerable confusion in the estimates pro¬ 
vided by the ISOs in 13 of the 25 attribute data classes. 

.P001, fidelity: ISOs had access only to poorest 
Photo, radar, and infra-red sensor records. In this 

case, however, the experimenter degraded both vehicle descrip¬ 

tion and vehicle, weapon, and aircraft tolals. This condition 

induced considerable confusion in the estimates provided by 

the ISO in 2li of the 25 attribute data classes. Sensor reso¬ 
lution was set at ±1($. 

of thlir in levels 11 ^ 111 ch03cn brause 
of their even effects upon the 25 attribute data classes, i.e., approximately 

b lcvel 11 ^ a11 one by level III. Following is 
the effect which the experimenter hoped to induce by this manipulation? In 

the description of the first experiment, it was mentioned that the ISOs 
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produce probabilistic estimates of the level or state of each attribute data 
class for every Aggressor developmental grouping. On the basis of top-quality 
sensor records they receive unequivocal verbal descriptions and exact weapon 
and vehicle totals. In a large number of cases unique identifications of 
Aggressor surface and air units were possible with this top-quality input 
information and the 150 could estimate the state or level of a certain data 
class with some confidence. Under the reduced fidelity conditions (for those 
data classes which are affected by the degradation level) lack of discrimin- 
ability should force him to be considerably less certain about the level or 
state of the data class in question. The effects of increased attribute data 
uncertainty (caused by decreased sensory record fidelity) upon the P(H|D) 
estimates produced by the humans and the MBT were, therefore, the primary 
concern of this experiment. 

C. Experimental Design 

There were actually two variables in the experiment: sensor record 
fidelity (three levels) and node of P(H D) estimation (three levels of which 
only two were to be analyzed statistically). The pian of the experiment, in 
terms of these two variables, is shown in table 6. The experiment consisted 
of 30 h-hour sessions. In each session, as in the previous experiment, six 
developmental groupings terminated. The first 10 sessions were performed 
under fidelity level I, the next 10 under fidelity level II, and the last 
10 under fidelity level III. Breaking up the sessions per level in an at¬ 
tempt to balance out possible residual effects was not possible because of 
the nature of the task. For each mode of estimation each 10-session period 
was a completely new learning experience. At the beginning of each 10-day 
session the humans and the MBT operated upon an entirely different set of 
environmental contingencies and Aggressor response alternatives. Although 
the 25 types of attribute data remained the same, the relationships between 
these data and the eight hypotheses (i.e., the true P(d|h) values) were 
changed in each 10-session period. The numbers in the cells of table 6 
refer to the number of individual P(h|d) estimations made under each mode 
of estimation. Since there were four humans, six developmental groupings 
terminating per session, and 10 sessions per fidelity condition, there were 

TABLE 6 

PLAN OF EXPERIMENT II 

Mode of P(h|d) 
Estimation 

Fidelity Condition 

I (Top) II (Intermediate) III (Low) 
Sessions 1-10 Sessions 11-20 Sessions 21-30 

Human 2i|0 2I4O 2U0 

MBT using human- 
estimated P(D¡H) 

2li0 2lk) 2UO 

Self-adapting 
MBT 

60 60 60 

h0 



2^0 estimates produced in each of the first two modes for each fidelity level. 
Only one self-adapting MBT solution was calculated for each grouping, making 
the total under this mode only 60 per fidelity condition. 

D. Subjects 

The subjects serving as ISOs were the same in this experiment as in the 
previous one. With one exception, the TEs were the same as those who served 
in Experiment I. 

E. Results 

The major results of the experiment in terms of verified certainty 
scores are illustrated in figure 10. Along the abscissa are the three levels 
of sensor record fidelity. The ordinate refers to the average verified 

Senior Sword Fidelity Condition 

Figure 10. Posterior Probability Estimation 
Accuracy under Several Levels of Input Data Fidelity. 



certainty scores for the 60 developmental groupings terminating in the 10- 

session period for each fidelity level. The data points for the humans and 
the MBT incorporating the human estimates of P(d|h) are averages over 2I4O 
P(H D) estimates. Each self-adapting MBT data point is an average over 60 
P(H D) estimates. The attribute data points are gross estimates of the aver¬ 
age accuracy in all data classes for all developmental groupings terminating 
in each of the three 10-session periods. The accuracy of the attribute data 
estimates (bar A) decreased rather sharply as the simulated sensor records 
were degraded. Reduction in accuracy of these data caused a corresponding 
decrease in P(H¡D) estimation accuracy by humans and MBT. This P(H|D) accu¬ 
racy decrease was slightly more drastic for the humans (bar B) than for 
either the MBT using the human estimates of P(d|h) (bar C) or the self- 
adapting MBT (bar D). Surprisingly, the humans, as a group, placed higher 
average estimates in correct hypothesis categories than either MBT solution. 

The distributions of these verified certainty scores (Appendix V) were 
of exactly the same form as those obtained in the first experiment. In 
every case there was a distinctly bimodal distribution with extremely high 
frequencies at either end of the distribution. Again, as in the first ex¬ 
periment, the use of a distribution-free method of analysis was imposed. 
As previously mentioned, there were two variables of interest: fidelity 
condition and mode of P(h|d) estimation. The major experimental hyoothesis 
referred, however, to an interaction between these variables. It wus spe¬ 
cifically stated in the preceding section that the MBT using the human P(d|h) 
estimates ought to be increasingly superior as fidelity decreased. A distri¬ 
bution-free method of analysis which permits one to examine interactions is 
the Ranks Test for Matched Data described by Bradley (ref. 19). The mean 
verified certainty scores shown in table 7 for the humans and the MBT using 
the human estimates of P(d|h) were compared using the ranks test. 

Table 7 

VERIFIED CERTAINTY SCORE MEANS AND STANDARD 
DEVIATIONS IN EXPERIMENT II 

Mode of P(h|d) 
Estimation 

Subject 

Fidelity Condition 

I 

7 SD 

II 

7 SD 

III 

7 SD 

Human 

1 
2 
3 
h 

.538 .I437 

.671 .397 

.638 .lité 

.635 .I4I43 

.572 .1456 

.597 .I4I42 

.563 .1456 

.601 .157 

.586 .Í428 

.5614 .152 

.I479 .I4I4O 

.528 .157 

MBT using human- 
estimated p(d|h) 

1 
2 
3 
U 

.556 .396 

.529 .I430 

.577 .lil5 

.567 .I4I0 

■h90 .390 
.530 .U35 
.537 .Uil 
.1>66 .1)01 

.506 .373 

.553 .381 

.513 .I405 

.I498 .382 

k2 



The first result of the ranks test vas that the main effect of fidelity 
i^uced a statistically significant decrease in the overalfTerí- 

fied certainty scores for both humans and MBT (S = 26, p = .OM. The inter- 
action between fidelity condition and mode of estimation vas net significant 
;. Analysis of the main effect due to mode of estimation 

Çrf ?nted a Probl“- I" table-77 iJ' one pools the 
across all three fidelity conditions and then ranks these results, 

one obtains a 2 x I; matrix of ranks. Nov observe that all the values for 
the four humans vi 11 be higher than those corresponding for the MBT and, 
therefore, all human scores vill receive a rank of 2 and all MBT scores vill 
recede a rank of 1. The value of S, the sun of the different betweenÜe 
ranks, is maximum in this case and equals 8. There are 2« = = 16 vavs the 

Ís íaíneC^ fl“ ^ ^ 3re ^ tw0 of Siting an S value 
the iivL™ H:rr smallest p value, therefore, is 2/16 = .12?. Even though 
the maximum difference vas observed, the small size of the matrix of ranks 
precluded obtaining a statistically significant result. There is another 
way to analyze the overall differences between the human and MBT scores 
which makes no additional assumptions. Resorting to an exact probabilities 
test, one can compare each human's score with his corresponding MBT score 
tabled °f the three fldellty conditions* These comparisons are shown in 

Summmg the differences between each of these two scores, one obtains 

Se*!? are (2) °r 1096 P0SSible in ^ich the siSns of 
evi.t Can arr^9e themselves* Given the differences which 

st and rearranging the signs in all possible ways, one must calculate the 

"ST °T occasions on which an absolute value of greater than or equal to 
.650 could occur. It turns out that there are 12 ways of getting |Zd| > .650 
and only one way of getting 2d = .650. Therefore, the probability of a dif- 

dïïferen^sainrt if R 1 = -65° by chanc*> ^observed 
faíínn ^ f ^^°96 = -0032^ “ain effect of mode of esti- 
mation intermsof verified certainty scores was statistically significant 
v£ ~ ^0032) in favor of the humans. 

TABLE 8 

DIFFERENCES BETWEEN HUMAN AND MBT AVERAGE VERIFIED 

CERTAINTY SCORES IN EXPERIMENT II 

Subject 1 2 3 I h 
Fidelity 

Condition I II III I II III I II III I II III 

Human Score 

MBT Score 

•538 .572 .586 

.556 .1*90 .506 

.671 .597 .56£ 

.529 .530 .553 

.638 .563 .1)79 

.577 .537 .513 

.635 .601 .528 

.567 .166 .498 

Difference d -.018 .082 .080 .lh2 .067 .011 .061 .026-.03£ 

o
 •
 

• 

S
 

o
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TABLE 9 

RHO VALUES: EXPERIMENT II 

Rank-Order Correlation between 
Verified Certainty Scores for: Subject 

Fidelity Condition 
I II III 

I. Humans and MBT using 
human P(d|h) 

1 
2 
3 
h 

.66 .hi) .50 

.71 .51 .30 

.50 .67 .51 

.67 .52 .32 

II. Humans and self- 
adapting MBT 

1 
2 
3 
h 

.52 .59 .53 

.6I4 .Ü9 .39 

.60 .56 .Uo 
• 63 . 6ij . J46 

III. Both MBT solutions 1 
2 
3 
h 

.82 .75 .70 

.69 .7I4 .60 

.78 .81 .72 

.77 .69 .78 

TABLE 10 

DICHOTOMOUS SCORES: .EXPERIMENT II 

Subject 
Fidelity Condition 

I II III Total 

I. Humans 1 

2 
3 
h 

Total 

30 32 29 90 

kl 36 37 116 
39 3I1 27 100 
la? 3k 28 99 

11*9 136 121 h06 

II. MBT using 

human P(d|h) 
1 
2 

3 
h 

Total 

3k 30 36 100 

3I4 32 37 103 

35 33 31 99 
36 30 32 98 

139 125 136 hOO 

III. Self-adapting 
MBT 

_ 

35 35 101» 

Ul 



Appendix VI shows human and MBT performance in terms of verified cer¬ 
tainty by session in each experimental condition. The similarity of the 
three "learning" curves in each condition is considerable. The rank-order 
correlations between these three types of estimates in each fidelity condi¬ 
tion are given in table 9. 

All Kho values in table 9 are significant beyond £ < .02 and the sig¬ 
nificance test for all values was calculated with 98 degrees of freedom. 

Table 10 shows the dichotomous scores for the humans and MBT in each 
fidelity condition. The scores shown for each individual subject and MBT 
solution in each of the three conditions refer to the number of occasions 
(out of a possible 60) on which the first-choice or highest P(h|d) estimate 
was placed in the correct category. The first two types of data shown in 
table 10 were analyzed in the same manner as the verified certainty data. 
The main effect due to fidelity condition and the interaction between 
fidelity condition and mode of estimation [human versus MBT using human 
FHDjHjJ were tested using the Ranks Test for Matched Data. Neither the main 
effect (£ = .273) nor the interaction (£ = .693) was statistically significant. 

Stntor Record Fidelity Condition 

Figure 11. Dichotomous Scores for Humans and 
MBT under Each Fidelity Level. 



The main effect due to mode of estimation was tested by the exact probability 

method described for the verified certainty scores. The hypothesis of no 

difference could not be rejected (£ = .378). What is fairly interesting, of 

course, is that the largest difference between the overall human scores and 

the MBT scores occurred at the lowest fidelity level and favored the MBT. 

This result is shown graphically in figure 11. 

F. Discussion and Interpretation of Results 

In terms of verified ce'tainty scores, the statistical significance of 

the main effect due to the fidelity variable merely shows that the experi¬ 

mental procedure of degrading the simulated sensor records was sensitive 

enough to cause an overall decrement in the certainty with which P(H¡D) esti¬ 

mates were placed in the correct hypothesis categories. This result, by it¬ 

self, is neither surprising nor especially important, but it does indicate 

that experimental control was achieved in a very complex situation. The 

statistical significance of the main effect due to mode of P(H¡D) estimation 

is very important but difficult to interpret since the observed result seems 

to imply that human performance was greater than "optimal." A careful in¬ 

terpretation of this result demands at least the following; (a) a more 

thorough explanation of what is meant by optimal performance, (b) a more 

careful specification of the situation in which the humans performed, and 

(c) an examination of the performance scoring procedure. 

Bayes1 theorem is a statement which is consistent with the definition 

of a conditional probability. P(h|d), or the probability of some hypothesis 

after the impact of some datum, is a conditional probability and can be de¬ 

fined in terms of set theory notation as: 

p(h|d) = 
P(HAL') 

P(D) 
(Eq. 6) 

Now. since P(HAD) is equivalent to P(DAH) and P(DOH) is equal to 
P(H)P(D|n), P(h|d) can be expressed in terms of conditional probabilities: 

p(h|d) 
p(h)p(d!h) 

P(D) 
(Eq. 7) 

Equation 7 is Bayes' theorem and calculations of P(h|d) on its basis are 
optimal in the sense that they arise because of formally consistent combina¬ 
tions of probabilities. Presumably, Dodson's modification of Bayes' theorem 
(equation 2) is similarly consistent in its extension to the situations men¬ 
tioned in section IV of this report. Now, if humans were optimal in the 
sense that Bayes' theorem is optimal, they would aggregate probabilities in 
this formally consistent manner and then reflect this consistency in their 
P(H|D) estimations. Previous research has indicated that humans are not 
particularly good at aggregating probabilistic data and that their estimates 
of P(H|D) are conservative (with respect to Bayes' theorem calculations) be¬ 
cause there is more certainty in the data than they can recover (ref. 15). 
Presumably, maximum certainty could be recovered only by the formally con¬ 
sistent probability aggregation accomplished in Bayes' theorem. The results 
of the present experiment lead one also to consider situations in which 



human estimates of P(h|d) may actually be higher than the certainty in the 
data justifies. 

Appendix V clearly shows the larger number of extreme estimates provided 
by the humans in each experimental condition. To be examined now are the 
reasons why these extreme estimates were made. It was mentioned in connec¬ 
tion with the results of the preceding experiment that the humans had nothing 
to lose by trying to maximize the size of their scores. In addition, the 
tasks of estimating both conditional probabilities P(h|d) and P(d|h) on the 
basis of large amounts of data were most demanding and arduous. Surely it 
was an easier task, once a preliminary discrimination among hypotheses had 
been made, to provide a single high estimate in one category than to adjust 
meticulously estimates in eight categories. 

The verified certainty scoring procedure may be misleading in the light 

of what has been said about optimal performance. The point is that higher 

verified certainty scores may not necessarily mean superior performance. 

Surely, it is just as undesirable to be excessively certain as it is to be 
overly conservative in one’s estimates. 

It was specifically hypothesized that the superiority of the MPT solu¬ 

tions of P(H|D) calculated on the basis of human-estimated P(d|h) would be 
increasingly superior to the human estimates of P(h|d) as fidelity decreased. 

In terms of the verified certainty scores, this interaction was not statis¬ 

tically significant. One can observe, however, that the smallest difference 

between the humans and the MET occurred at the lowest fidelity level. An¬ 

other lower level may have brought forth MBT superiority. Indeed, this sug¬ 

gestion is substantiated below as the results of the dichotomous score 
analysis are discussed. 

Dichotomous scores, as previously mentioned, show only whether or not 

the first-choice or highest P(h|d) estimate was placed in the correct hypothe¬ 

sis category. Failure to obtain any statistically significant main effects 

due to mode of P(H|D) estimation rather confirms the interpretation of the 

verified certainty results. It also indicates how well, in fact, the humans 

did perform when compared to the MBT. Although the interaction effect was 

not significant, the largest difference between human and MBT performance 

occurred at the lowest fidelity level and was in favor of the MBT. This 

possibly indicates that with a lower level of fidelity the main experimental 

hypothesis might have been confirmed. Indeed, an experiment is now in 
progress to test this notion. 

hi 



VII. SUMMARY AMD CONCLUSIONS 

Two experimento have been reported in which human posterior probabili¬ 
ties estimates have been compared with those calculated on the basis of a 
modification of Bayes1 theorem. Human performance was observed in a complex 
simulated threat-evaluation setting. The major features of the two experi¬ 
ments qualifying their results and affecting generalization of the results 
are as follows: (a) the critical events under surveillance by the subjects 
in both experiments were essentially repetitive in nature, and probabilistic 
statements about these events were essentially frequentistic; (b) the stimu¬ 
lus environment and experimental procedures were designed such that observa¬ 
tional uncertainty was induced in the subjects' tasks; (c) individuals, 
already experienced in dealing with events in the stimulus environment, were 
used as subjects in both experiments; and (d) those subjects providing pos¬ 
terior probabilities estimates were always informed about the quality of 
their estimates. 

The major results of the experiments were as follows: 

1. Human performance at estimating posterior probabilities on the 
basis of large amounts of data was decidedly superior to what 
one might have concluded on the basis of previous studies. 

2. The role of experience in dealing with environmental events 
seems to be especially important. With experience the sub¬ 
jects, either by incorporating more data in their judgments 
or by perceiving more certainty in the data, were increas¬ 
ingly able to place larger posterior probabilities estimates 
in the correct hypothesis categories. 

3. Although human estimates of posterior probabilities may be 
conservative on occasion because of suboptimal extraction of 
certainty from probabilistic data, the present experiments 
lead one to recognize that there are situations in which 
humans may provide higher estimates than the certainty in 
the data justifies. Several reasons for these excessive 
estimates, specific to the present experimental situation, 
were discussed in the preceding section. 

I;. Although a decrease in input data fidelity appears to play a 
significant role in depressing the size of posterior proba¬ 
bility estimates, the hypothesis of increased superiority of 
the MBT under lower levels of fidelity was not substantiated 
by the data. Further levels of data degradation below those 
actually used in the experiment may have brought forth the 
predicted superiority of the MBT solutions over the human 
estimates of posterior probabilities. The results of Experi¬ 
ment II seem to justify further research on this issue. 

5. It is apparent that more than one type of scoring procedure 
is needed if one expects to get an accurate account of per¬ 
formance in these tasks. Without the use of the dichotomous 



scores in the first experiment one might have tended to de¬ 
valuate the overall performance of the MET calculations on 
the basis of the human estimates of P(d|h). In the second 
experiment, the verified certainty scores by themselves may 
have been similarly misleading. 

of conc^sions which may be drawn from these ex- 
searrh f^ fh a t0 ^ imPlicati°^ of the present re- 
search fot the design of threat-evaluation or other diagnostic systems and 

oeneraW^ aSSfrh 3 t0 ^ imPlicatio^ of the present research for the 
soprt fn fh ^ "om,Tierce with Probabilistic information. With re- 
spect to the design of diagnostic systems, the present research tends to 
o°r^m notlonthat.automated Bayesian hypothesis selection on the basis 
of expert human estimation of the conditional probabilities P(d|:I) may well 
prove useful in systems with a diagnostic mission. Although the present 
research hopefully gives a better idea about what to expect in real-life 

exp!rienced Pe°Ple> the subjects in the present experiment per¬ 
formed under no time stress, nor was there a meaningful cost-payoff arrange- 

thf¡irn^JÍeqUerUSUC n\tUre 0i the data being processed by 
the medíí=l fSyStem su?3esl? that the Present results may be important for 
the medical diagnosis situation in which a frequency notion of probability 
.S of en indicated. Many military diagnosis s^stem^ must deal wRhliwíL 
Z taM^r0CeSSeS “hlch.are not apacifiable in terms of long-run frequencies. 
For this reason, Bayesian automated hypothesis selection as a diagnostic aid 
needs to be evaluated in nonfrequentistic environments. Indeed, the Enqi- 
'iherf^n?rh?l09y Lf°fatory at thc diversity of Michigan will soon have 
tne lacility for evaluating human performance in these situations. 

. 0T}e may ask what the comparison of human and MBT posterior 
probability estimates suggests as far as the study of human commerce with 
probabilistic information is concerned. Although there were some striking 
similarities between the MBT and human performance, it seems clear that 
analogous processes were not involved. The response profiles for the better 
subjects were almost identical to those of the MBT solutions calculated on 
the basis of their P(d|h) estimates. In addition, the better subjects used 
a very large amount of the input data. The performance of all subjects was 
moderately though significantly correlated with that for both types of MBT 

.H°werri calculation of th* MBT solutions involved an itera¬ 
tive and consistent aggregation of all that available data. The human P(hId) 
estimates, on the other hand, seem to have been based upon the following 

Ptn0CrtS^r. ^ ^ ^ ^ first or "shrunken" in an effort 
to reduce the complexity of the situation. The retained data were then used 

fmal discrirainations among the available hypotheses, 
imal step in the process involved assigning numbers to indicate the 

subject s certainty that the discrimination had been an accurate one. 



APPENDIX I 

ATTRIBUTE DATA CLASSES 

Data Class 
Number of 
Possible 
States 

Description 

I. Mechanized Rifle Battalions 8 The states or levels of 
data classes I through 
XII all refer to numbers 
of battalions or squadrons 
of the type indicated by 
the various data class 
labels indicated in 
column 1. The first level 
in every data class refers 
to zero battalions or 
squadrons. 

II. Medium Tank Battalions 7 

III. Heavy Tank Battalions 6 

IV. Artillery Battalions (range 
up to 10,000 meters) 

3 

V. Artillery Battalions (range 
up to 20,000 meters) 

3 

VI. Artillery Battalions (range 
up to 30,000 meters) 

3 

VII. Rocket Battalions 3 

VIII. Intermediate Range Ballistic 
Missile Battalions 

3 

IX. Ground Reconnaissance 
Battalions 

2 

X. Tactical Air Support 
Squadrons 

h 

XI. Aerial Reconnaissance 
Squadrons 

k 

XII. Surface to Air Missile 
Battalions 

k 
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Data Class 
Number of 
Possible 
States 

Description 

XIII. Units of Fire for Infantry 
and Armored Units (Main 
Attack Forces) 

h This data class refers 
to the amount of ammuni¬ 
tion being carried by 
road or rail convoys which 
provide logistics support 
for infantry and armored 
units. 

XIV. Units of Fire for Artillery 
Missile, and Rocket Units 
(Combat Support Forces) 

h Refers to the amount of 
ammunition being carried 
by supply convoys for 
these three classes of 
units. 

XV. Dispersal Distance between 
Supply Units 

h Distance in miles between 
terminal positions of 
supply convoys. 

XVI. Supply Timing for Main 
Attack Units 

3 Refers to temporal order 
of appearance of supply 
units and units being 
supplied. 

XVII. Supply Timing for Combat 
Support Units 

3 Same as XVI. 

XVIII. Terminal Activity Zone 5 Refers to the distance in 
irles from the border of 
the most forward units in 
a developmental grouping. 

XIX. Terminal Activity 
Development Pattern 

h Refers to the configura¬ 
tion or placement of units 
laterally along the border 
of contention after these 
units have reached their 
terminal positions. 
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Data Class 
Number of 
Possible 
States 

Description 

XX. Attack Position Lateral 
Dispersion 

5 Dispersal distance in 
miles along a border of 
contention of an entire 
developmental grouping. 

XXI. Attack Position Depth k Distance in miles involved 
in the placement of forces 
perpendicular to a border, 
i.e., the distance between 
the most forward unit in a 
grouping and rearmost unit. 

XXII. Attack Buildup Timing 3 Refers to the temporal 
order of appearance at 
terminal positions along 
a border of contention 
of main attack units and 
combat support units. 

XXIII. Transportation Methods 3 Refers to the combination 
of road, rail, and air 
facilities used to trans¬ 
port Aggressor units in 
any developmental grouping. 

XXIV. Ground Transportation 
Speed Class 

5 Road and rail convoy speed 
during the buildup of a 
developmental grouping. 

XXV. Developmental Period 6 

_L 

Length of time in days 
from beginning to termina¬ 
tion of a buildup of a 
developmental grouping. 
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appemdix il 
DISTOIBUTIONS OF VERIFIED CERTAINTY SCORES IN EXPERIMENT I 

The following four graphs illustrate the distributions of verified cer- 
taint^sco^s in E^ ri»Lri for each of the four threat evaluators and the 

MET solutions incorporating their P(D|H) estimates. 
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APPENDIX III 
DISTRIBUTIONS OF P(h(d) ESTIMATES MADE IN EXPERIMENT I 

. following four graphs illustrate the distributions of all P(h|d) 
estimates made in Experiment I by each threat evaluator and the MBT solu¬ 
tion calculated on the basis of his P(d|h) estimates. 
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APPENDIX IV 
DISTOIBUTIONS OF AGREEMENT SCORES IN EXPERIMENT I 

The following four graphs illustrate representative distributions of 
agreement scores (aj ) in Experiment I for each of the four threat evaluators’ 
P(d|h) estimates. 
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APPENDIX V 

DISTRIBUTIONS OF VERIFIED CERTAINTY SCORES IN EXPERIMENT II 

The following three graphs illustrate the distributions of verified cer¬ 

tainty scores in each condition of Experiment II for the humans (as a group) 

and the MBT solutions calculated on the basis of their P(d|h) estimates. 
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APPENDIX Ul 
VERIFIED CERTAINTY SCORES IN EXPERIMENT II 

The following three graphs illustrate human and MBT performance in terms 
of verified certainty scores fo’- each of the three fidelity conditions in 
Experiment II. 
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