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ABSTRACT

This work begins with a study of individual decision-making
under uncertainty, a problem which we formulate as

(1) Maximize f(x,B) subject to 31(5’9) 20, i=1, ... , m,
X

where x 1is a decision n-vector, P 1is a b-vector of exogenous
variables and parameters of the decision model, f 1is an objective
function to be maximized, and the 8, ~Te constraint functions
which determine the set of feasible decisions. The source of uncer-
tainty is B, which is known only to lie in a given set B. We
also consider the case in which a probability distribution over B
is given.

Several methods for circumventing uncertainty in the constraints
are briefly reviewed, and several decision criteria for circumventing
uncertainty in the objective function are discussed. Particular
attention is devoted to the demonstration of certain relationships
between these criteric:. It is concluded that vector max.mum reformu-
lations of (1) play a prominent role in dealing with uncertainty in
such decision problenms.

A vector maximum problem is of the form

"Maximize" fl(f)’ cee fr(i)
X

(2) =
subject to gi(f-) 20, i=1, ... ,m.

The quotation marks signify that it is desired to find all efficient




decisions, i.e., all decision vectors satisfying the constraints
such that it is impossible to achieve an increase in any one objective
function without violating the constraints or decreasing at least
one of the other objective functions. In Chapter II we discuss two
methods for transforming a vector maximum problem into an equivalent
parametric programming problem. Existing computational methods for
the latter problems are briefly surveyed.

The principal contribution of this work is presented in Chapter III:
a class of algorithms for solving parametric concave programming

problems of the form

Maximize afl(ﬁ) + (l’a)fg(f)
(3) =
subject to gi(_:g') >0, i=1, ... , m

for each fixed value of a 1in the closed interval (0,1], where

£, (i = 1,2) are strictly concave functions, g (1 =1,...,m)

are concave functions, and certain additional regularity assumptions
are made. Under these assumptions it is shown that (2) (with r = 2)
and (?) are equivalent in the sense that 50 is efficient in (2)

if and only if Eo solves (3) for some value of a in the unit
interval. The present class of algorithms is not "simplex-like"

or "gradient" in nature, but proceeds by maintaining a solution of
the Kuhn-Tucker Conditions as @ varies by small increments (under
our assumptions these conditions are necessary and sufficient for

an optimal solution of (3)). The main algorithm given herein displays
quadratic convergence at each increment of a. A simple modification

for handling linear equality constraints is indicated.
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Problem (3) also subsumes the standard (non-parametric) concave
programming problem when a feasible solution is known. Thus the
present algorithms provide a deformation method of concave programming.
Since many of the results of this chapter hold for much more general
parametric problems than (3), moreover, the present algorithms are
pertinent to sensitivity analysis applications.

The final chapter presents a numerical example which illustrates
the solution of a decision problem under uncertainty by means of the

techniques discussed in the preceding chapters.
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Notation

(xl,...,xn) is a decision vector in E" (n-dimensional Euclidean

I
L]

space), and is under the control of the decision.maker

; (Bl,...,ab) is an uncertain vector in Eb representing exogenous

o)
!

variables and model parameters, and is not under the control

of the decision-maker

f(£92) is & real-valued criterion function which is to be maximized;
if there is no dependence on B, we write f£({x); if there

are several criterion functions, we write f(x) for

(£,(x),...,f (x))

g(x,p) = (gl(f’é)""’gm(f’g)) is a real vector-valued constraint

function; if there is no dependence on B, we write g(x;

{(z € 2: 2z has property P} cenotes the set c¢f all elements z
in the set Z which have property P; when Z is omitted,

it is implicitly understood to be the pertinent universal

set

X 1is a subset of En consisting of the feasible decisions; often

X represents ({x: 5(&)29]

B (in Chapter I) is a subset of Eb which is known to contain the

"true realization" of 2]

x> (>} 0 signifies X, 2 (>0 (i=1,...,n)
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X >0 signifies x >0 but x #0
4 denotes a probability distribution over B

C C(C) D signifies that the set C is a (proper) subset of D

o, & = 0,2 1/2 o]
N (x") = ¢x: Y (x,-x <rl} , an open neighborhood of i«
r'= & i i i -
of radius r

F(a) denotes the maximum a-fractile cr. terion (see problem (4.5)

of Chapter I)
A(M) denotes the aspiration criterion with aspiration level M
(see problem (4.6) of Chapter I)

[a,b) £ (t ¢ B a <t <b)

(Pa) denotes the parametric programming problem considered in
Chapter III; the parameter @ may vary in this notation
(there is no relation between this usage of a and that

of Chapter I)

£(x;0) £ af,(x) + (1-a)f,(x)

fo(f)

np>

3t (x) 3 (x)

yr ey

, the gradient of f(x)
Xy axn -

S denotes a subset of constraint indices; S_C_M, where M is

the set of the first m positive integers

u = (ul,...,um) denotes the dual variables associated with the

Kuhn-Tucker conditions

xii



(KT-1),...,(KT-4) are, collectively, one version of the Kuhn-

Tucker conditions associatel with (Pa)

(=S)a is a more complete notation for the equations (KT-1) and

(KT-2); S and @ may vary in this notation

(x*(a), u*(a)) 1is the optimal solution and dual variables of (Pa)

as functions of «
(§S(a), Es(a)) is a solution of (=S)a as a function of «
K?if(z) denotes the matrix of second partial derivatives (i.e., the

hessian) of f(i)

> + x° means that the (infinite) sequence 51,52,...,§v,...

o
converges to x
C-D denotes the points in the set C which are not in the set D

A= (ie M u;(a) > 0}, the set of active constraints at a; «

may vary in this notation

m £ (i € M: gi(i*(a)) = 0)j, the set of binding constraints at

x*(@); a may vary in this notation

a'(j = 1,...,N) are the points of change of Ax or of Bx 1in the

unit interval; Q@' 1is a generic term for a point of change
a'+ 1is an arbitrary point strictly between two points of change

Tor 2 (a'-Z, a'+Z], where £ 1is defined immediately above Theorem k.2,

Chapter III
xiii




CHAPTER I
On the Relevance of the Vector Maximum

Problem to Decision-Making Under Uncertainty

1. Introduction

This chapter addresses a problem of individual decision-making
under uncertainty of the form

(1) Maximize f(x,8) subject to g(x,p) 20,
X

where x = (x x ) is the decision vector, B - (Bl,...,ﬁ ) is

12000 %p b
a vector of exogenous variables and parameters of the model, f 1is

the objective (or criterion or payoff) function to be maximized,

and g = (gl,...,gm) is a vector-valued constraint function which
determines the set of feasible decisions. We assume that the functions
f and g are known, but that B 1is known only to lie in a given

set B g; Eb, where Eb is b-dimensional Euclidean space. O0ften

we snall make the additional assumption that P may be regarded as

a random variable with a known probability distribution over B.

A choice of x must be made before B is found out, 1f, indeed,

it ever is revealed to the decision-maker. Throughout this chapter,

no experimentation is permitted in order to reduce uncertainty about

B.

If P were known exactly, then (1) would be a well-defined

problem (providing that the desired maximum exists, of course).

But we have assumed that B is uncertain, and so (1) is not well-defined.




There are two distinct aspects of the difficulties arising from
uncertainty in B: the set of feasible decisions is uncertain, and
the objective function is uncertain. Maximization cannot .be performed
until the constraints and objective function are reformulated so as

to be independent of PB. We shall discuss a variety of such reformu-
lations, and it will be seen that quite frequently vector maximum

reformulations play a prominent role.

The Vector Maximum Problem

A vector maximum problem arises whenever there is more than one
objective function to be extremized. Consider the problem

(2) "Maximize" f(x) ,
xeX

where f(x)= (fl(z),...,fr(zc_)) is a vector-valued objective function
(each component of f represents an objective, usually non-additive
with the others, which the decision-maker wants to maximize), and

XC E" 1is a set of feasible decisions. In the fortunate event that
each component of the objective function reaches its maximum simul-
taneously, as in Figure 1, then (2) is said to have a perfect solution.
In general, however, an improvement of one objective beyond a certain
point can only te obtained at the expense of worsening another.

Suppose that for a feasible decision 50 there exists no other feasible

decision 51 such that}/ 2(51) 2'2(50). Then 50 is termed an

l77111 this work we adopt the convention that x > O signifies
X, 20 (iel,...,n), x>0 signifies x; 20 (i =1,...,n) and

x; >0 for at least one i, and x >0 signifies x, >0 (i=1,...,n).



]

efficient solutiong/ of (2). The quotation marks in (2) signify

that it is desired to find all efficient solutions. When they are
all found, the vector maximum problem (2) has been solved.

When f has only two or three components, we envision determining
the entire set of efficient solutions and presenting the corresponding
outcomes in graphical form to the decision-maker, who would then
subjectively determine a trade-off between conflicting objectives
and thus make the final selection of a decision. Figures 1 and 2
illustrate the graph of attainable outcomes for two hypothetical cases
involving two objective functions. The efficient outcomes are denoted

by the heavy line and dot.

A A

attainable _|

outcomes hﬁhﬁ“wh

;?(x) ilﬁf]

— (x) » 0 (x)

Figure 1 Figure 2

In many applied decision problems, even in the absence of uncer-
tainty, there are several objective functions which naturally present

themselves to the decision-maker. In such situations, the relevance

2/

=’ The notion of an efficient solution is essentially the same as
the notion of "undominated" or "admissible" decisions in decision
theory, and the notion of "Pareto optimality" in game theory (see
Luce and Raiffa, 1957, p. 287 and p. 118).



of the vector maximum problen is obvious, and need not be emphasized
further. What we do wish to emphasize is that in the presence of
uncertainty even a single-criterion-tunction problem such as (1),
which we would accept as the "correct" formulation if P were known

exactly, tends to explode into vector maximum reformulations when

one attempts to turn it into a well-defined problem.

Plan of Discussion

Because uncertainty in the constraints is fundamentally different
from uncertainty in the objective function of (1), we split our dis-
cussion into two parts: 1in section 2 we consider ways of reformulating
the constraints so as to be independent of B, and in section 5 we
consider ways of reformulating the objective function so as to be
independent of B (this is usually known as invoking a decision
criterion). These two steps must be accomplished in order to convert
(1) into a well-defined problem. The conversion usually can be
accompliched in several ways, reflecting various compromises which
may be made to uncertainty in B, realism in the final model, and
computational considerations.

In section 2, three reformulations of the constraints will be
discussed: permanent feasibility, the penalty function reformulation,
and probabilistic constraints. The first two do not require a proba-
bility distribution over B, while the last does. The last two
reformulations sometimes lead to a vector maximum problem.

In s2ction 3 we consider several decision criteria, and some

relations between them are noted. We suggest that a given decision




problem should be attacked by several decision criteria rather than
by only one. The result is, of course, a vector maximum problem. Two
examples are presented which demonstrate tne usefulness of considering
two criteria simultaneously. The second example is a one-period
inventory model, and an argument is given for deviating from the

now classical solution.

2. Treating "Incertainty in the Feasibility Constraints

This section is essentially a review of some of the existing
ways of circumventing uncertainty in the constraints, and is included
mainly for completeness. Mixtures and variations of these basic

approaches can be improvised to cover most particular applications.

The Permanent Feasibility Reformulation

To be absolutely sure of choosing a feasible decision, choice
must be limited to those vaiues of x which are feasible for all
B € B. That is, restrict attention to the sebé/ m (x: g(x,p) >0}
(see Madansky, 1962 and 1963). Be¥

An obvious difficulty with this reformulation is that when B

is "large," the permanently feasible set is apt to be "small," :.i even

may be empty. When the maximization operation is performed . ° ;eguently,

there may be little opportunity to achieve a satisfactorily righ value

of the objective function.

2/ We adopt the notation of using braces to denote sets in this work.
The symbol @ denotes the empty set.



The Penalty Function Reformulation

The above reformulation does not admit the possibility of ever
choosing a decision which is infeasible. What does it mean to say that
a decision x' 1is "infeasible" when, say, P' obtains? Mathematically,
we have g(x',B') z 0, which means that either (x',B') is physically
impossible, or is physically possible but "undesirable" (we are dis-
tinguishing between those constraints which are dictated by the physical
limitations of the system and those which are imposed at the model-
maker's discretion). 1In the second case, it may be possible to take
additional action in order to make the outcome less "undesirable,"
or at least to pay a price for being "infeasible." Denote this "price"
by 2(5',9'), not necessarily measured in dollars. Note that p is,
in general, a vector-valued function, reflecting the fact that vio-
lations of different constraints may imply different dimensions of
disutility. For example, consider an investment portfolio optimization
model which has as its objective the maximization of portfolio worth
at the end of a specified horizon. One constraint may specify a desired
level of diversification (e.g., a maximum of 30% of the portfolio in
defense industries), and another constraint may specify a lower bound
on the average Standard and Poor's quality rating of the securities.
Violation of each of these constraints would be measured in different
units from the unit of measurement of the objective function.

The penalty function reformulation of (1) results, in general,
in a vector maximum problem of the form

(3) "Maximize" f(x,B), -p(x,B) .
X




An important special case arises when p has but one component,
and this component is additive with f. This reformulation then
becomesg/

(3.1) Maximize ([f(x,8) - p(x,B)] .
X

All of the two-stage "stochastic programming" problems (see, e.g.,
Dantzig, 1955, Madansky, 1962, and Mangasarian and Rosen, 1964) can
be thought of as penalty function reformulations. The basic idea of
these problems is to aj pend a second stage to the original problem

to "correct for" possible infeasibility of the original decision; p
then represents the minimum cost of correcting for an infeasible x,
as alfected by the then known actual value of PB. The usual example
of a situation in which the two-period formulation may be appropriate
is the case of a manufacturer who is committed to produce to satisfy
an unknown demand P for his perishable products. If all of the
demand 1s not satisfied, then he purchases the difference on the open

market.

Probabilistic Constraints

Assume that P may be regarded as a random variable, and that

its probability distribution over B 1is known.

L

L7 Note that (1) can be written equivalently in this form if p 1is
taken to be arbitrarily large for infeasible combinations of x and
B, and equal to zero for feasible combinations. For example,

Maximi Inf |[f ’ 5
&X)I(MIZG [2;9[ (x) +§: uigi(z g)1]



The notion of permunent f'easibility may be relaxed if one requires
merely that each or all of the constraints must hold with at least

some prescribed probability. For example, consider

Maximize f(x,B)
X

subject to Prob[gi(_)g,_B_) >0]> a, , AN RS TS

where 0<a, <1 (i=1,...,m). Charnes and Cooper (1959, 1963)

3

refer to this as 'chance-constrained" programming. Note that when
each a, is nearly one, this reformulation approaches the permanent
feasibility reformulation.

Another probabilistic constraint reformulation is

Maximize f(x,B)
X

subject to E[g(x,p)] >0,

where "E" denotes expectation.

As en alternative to the formulations above, one may incorporate

some or all of the probabilistic constraints in the objective function,

e.g.,

"Maximize" f(x,B) , Prob[gl(_)g,g) > 0]
X

subject to Prob[gi(_)s,g) >0]>a U > S RS

i )

The efficient solutions to the resulting vector maximum problem show
clearly the available trade-offs between the original objective function

and assurance that various of the constraints will be met.




P Treating Uncertainty in the Objective Function

In section 2 we discussed several ways of reformulating the
constraints so as to be independent of g. Here we assume that this
has been accomplished, and discuss several ways of reformulating the
objective functions so as to be independent of B. For the sake of
simplicity of discussion, we shall treat the case of but a single
objective function, so that the problem to be considered in this section
can be rewritten as

(4) Maximize f(x,B)
xe X

As before, B 1is known to lie in a given set B, and X 1is the
set of feasible decisions.

Since it is necessary to choose a decision X Dbefore ;g is
revealed (if it is ever revealed), f(x,B) must be replaced by a
inown function of x alone. That is, (4) must be reformulated as

(4.0) Maximize ?(x)
X € X -

~nJ
where ? is a known function to be chosen. The choice of f in a

given situation is equivalent to what is customarily known as the choice

of a decision criterion. 1If a decision is an optimal solution of

(4.0), it is said to satisfy the decision criterion which produces ??5)
from f(x,B).

After first discussing two alternative restatements of (4), we
shall briefly summarize the admissibility criterion, the maxmin payoff

criterion, the estimate criterion, and the Principle of Insufficient



Reason., The difficulty of finding a single ideal decicion criterion
is well-known, and so we take the position that it may be more useful
to select twc ciiteria, each with distinet merits of its own, and
recast (4) as a vector maximum problem (each component ot the vector-
valued objective function is derived from one decision criterion).

An example is presented to illustrate the possible advantages of such
a procedure.

We then shall assume that a probability dist.ibution over B 1is
given. The concept of stochastic admissitility is introduced as a
generalization of the ordinary concept of admissibtility. Next we
examine three decision criteria for reducing (4) to a well-defined
problem with heavy emphasis on a geometric motivaticn for each irn
order to gain insight and understanding. These are the maximum
expected payoff criterion, the maximum q-fractile criterion (maximize
the a-fractile of the distribution of f(f,g) under the probhabilicy
distribution of B, for some preselected a), and an aspiration
criterion (maximize the probability nf achieving at least some pre-
scribed level of payoff). Several propositions are proved which
relate these criteria to each other and to the previously mentioned
criteria which do not involve probauilities. Finally, a one-period
invertory example is presented to illustrate the ideas orf this section
and to support the suggestion that several criteria, rather than a
cingle one, should be selected to embody the conflicting aims of the
decision-maker. The resulting vector maximum problem should then be

solved in place of (4).

10
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Alternative Problem Stalements

In some situations the objective function of (4) can be written
as f(x,B) = Fl(f) + F2(§,§). If F, and F, each represent a
quantity which the decision-maker wants to maximize, one may reformu-
late (4) as a two-component ve:tor maximum problem

"Maximize" F (x), F (X,B) ’
1N oNED =
x € X

s0 as to quarantine the part depending on B. The advantage of this
formulation is that the decision-maker gzins a clearer understanding
of how his objectives are influenced by uncertainty. As an example,
let F, represent the immediate payoff of a multistage decision

1

problem, and let F, represent the present worth of the future payoffs,

2
where B represents the future values of exogenous variables.
Another restatement of (4) is obtained by using regret in place

of payoff. Assume that [ Max f(x,B)] is achieved for each p e B.
x e X

The regret due to making decision x and then observing B is defined
to be

r(f:é) = [ Mex f(_)j,E)] = f(f;é) .
xeX

Stating problems in terms of regret rather than payoff has the advantage
of highlighting the consequences of uncertainty in B dramatically.

In addition, gret may have more tractable mathematical properties
than payoff (assuming that the indicated maximization operation is

not overly difficult), due to non-negativity and sometimes symmetry.

11



When B is known exactly, maximizing payoff is, of course,

exuctly equivulent to minimiving regret. When g is uncertain,
however, and various criteria ure applied in order to arrive at u
decision, it is welleknown that different decisions often result
depeniing on whether puayoff or regret ic used.

In this work the discussion will be carried on primarily in

terms of payoff, but with the obvious modifications each criterion

can be applied to regret as well.

3.1 FRetformulations not Invclving Probabilities

We shall briefly review a few classical decision criteria which
do not involve probabilities. An example is given to illustrate that
it can be more useful to consider several criteria simultaneously

rather than to search for a single ideal criterion.

Admissibility Criterion

Consider (4). A decision x' is said to be admissible (with
respect to X and B) if x' € X and if there exists no other
decision x" € X such that f(x",8) > f(x',B) for all B € B, with
strict inequality holding for some value of P ¢ B. If such a decision
x" did exist, it would be said to dominate x! (one may also define

weak dominance by dropping the proviso that strict inequality must

hold for some value of E). The admissibility criterion requires
that one choose an admissible decision. 1In other words, if a(§)
is defined to be equal to 0 if x 1is admissible and equal to -1

if x 1is inadmissible, (4) is reformulated as:

(4.1) Maximize a(x) .
BE 1€

212



The difficuliies with ihis criterion are twofold: the cet of
admissible decisions may be onerous to determine computationally, and

this set may be quite a large subset of X.

Maxmin Payoff Criterion

A conservative decision-maker might invoke the maxmin payoff
criterion, which yields

(4.2) Maximize [ Inf f(x,B)] .
xeX BeB

The correcsponding criterion in terms of regret is known, of course,

as the minmax regret criterion.

Estimate Criterion

The estimate criterion requires that one pick a value for B,

A A 5/
say B, and then act as though B were the true value of B.=
That is, solve

(4.3) Maximize f(ﬁ,ﬁ)
xeX

A
Since P may be chosen to be any point in B, we see that we

really have a whole family of criteria.

z/ This criterion is included in order to formalize the common practice
of using Judgmental or engineering approximations to costs and other
parameters of decision models. The notion of an estimate is related

to the idea of a certainty equivalent, which will be discussed at the
end of subsection 3.2. It should be noted that this criterion may

also be invoked when B 1is regarded as a random variable, and in

fact, the expected value of B is a popular estimate.

13



The computationud atvantapges . Llis approach tre obvious. It

is not o obvious that there exists a "rood" cotimate in 3, or

how to i onc.

The Principle of Insufficient Reason

Assume that B consists of a finite number (k) of elements,
each denoted by gi. Then the Principle of Insufficient Reason asserts

that one chould replace (4) by

(b, L) Maximize
X € X i=1

-
M~
)
P
1=
-
I™
p

Comparison of Criteria

The above decision criteria are representative of the methods
which have been proposed in an effort to circumvent uncertainty in
the objective function in the absence of probabilities. The diffi-
culties of selecting one criterion which satisfies all of a compre-
hensive set of intuitively appealing desiderata for "rational"
decision-making are well-known (see, e.g., Luce and Raiffa, 1957,
Chapter 13), and suggest the futility of seeking an ideal criterion.
One possible way out of this dilemma is to consider several criteria
at once, and thus to reformulate (4) as a vector maximum problem.
The actual choice of a decision would be made on an ad hoc basis
from the set of efficient solutions.

Table 1 defines a decision problem in which there are four
possible values of B, and five possible decisions. The entries
L)

give the values of f(fl,g and the consequences of each possible

decision in terms of average payoff (on which the Principle of

14



Decision

AVERAGE PAYOFF

50 2@ )
59,0
LO pb—
10
30 |— 5 ©
20 b—
10 b—o
0 I R B
10 20 30 40
MINIMUM PAYOFF
Figure 3
Value of B
. 5 3 L AVG MIN
B~ g B B PAYOFF PAYOFF
15 Lo 53 20 52 15
10 60 50 8¢ 50 10
20 Lo L5 91 L9 20
60 58 30 uh L8 %0
ol S Pl D a1 51
TABLE 1
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Insutficient Renson 1o tor1) and in terms of minimum payoff (on
which the maxmin payot'f’ eriterion is based). Figure % grraphs these
consequences.

All decisions are admissible. The Principle of Incufficient
Reason would lead to the choice of decision number two, while the
maxmin payoff criterion leads to the fifth decision. However, it
ceems reuaconable to favor the fourth decision over any of the others
because it comes very close to satisfying both of the above criteria.

We csubmit that by judicious choice of two criteria the resulting
vector maximum reformulation of (h) can be expected to lead to a more

satisfactory decision than a single criterion.

5.2 Reformulations Involving Probabilities

With the additional assumption that B may be regarded as a
random variable, one may choose to regard (4) as a continuous game
in norma. form. This viewpoint, and the consequent game-theoretic
solutions, will not be considered here. Instead it will be assumed
that B has a known probability distribution u over B and so
(L) may be regarded as a game against a neutral "Nature." That is,
we are in what is sometimes known as a situation of individual decision-
making under 'risk."

The principal tenet of utility theory (an excellent summary is
given in Luce and Raiffa, 1957, Chapter 2) is that for a "rational"

decision-maker there exists a utility transformation of f, which

we denote by u(f), such that the most preferred decision is an

16



optimal solution of':

Maximize E(u(t(x,B))] .
X € X

If one accepts any of the sets of axioms of rational behavior leuding

to this result, then the maximum expected utility criterion is Justified

provided that the required utility transformation is at hand.
Unfortunately it may be very tedious actually to determine wu(f).

For this reason fand also because of certain reservations which we

have with regard to the axioms of utility theory), we shall consider

other criteria which can be applied directly to f(x,B) without the

need for a utility transformation. We begin by introducing a natural

analog of the admissibility criterion.

Stochastic Admissibility Criterion

For fixed X, u induces a probability distribution on f which
may be plotted in cumulative form as in Figure 4 (each curve represents
the cumulative distribution function of f corresponding t- different
values of x). Loosely speaking, one wishes to pertorm (4) by choosing
an X which determines a c.d.f. that is uniformly as low (or, equiva-
lently, as far to the right) as possible. 1In Figure 4 it is clear that

the c.d.f. determined by X, must be strictly preferred to that of

2

X1 while X5 need not be preferred to 53. Cbgserve that although

the probability density functions determined by x. and x, overlap,
il =

2
the c.d.f.'s do not.

We formalize the above ideas in terms of the concept of stochastic

. o o . ; . .
iqominance. A decision x is said to stochastically dominate x'

L7



¢~ o1~

[x > (dX)3]q0a

(X > (§%)3)20xd

0°T
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if  Prob[ r(x°,B) < k] < Prob[£(x',) < k] ror all reul &k, with
strict inequality holding for at least one value of Kk (it we drop
the proviso that strict inequality must hold for at least one value

of k, then we use the term weak slochactic dominance). If a feasible

decision is not stochastically dominated by any other feasible decision,

it is said to be stochastically admissible.é/ The stochastic admissi-

bility criterion requires that one choose a stochastically admissible

decision (this criterion can be written in a form similar to (4.1)).

Remark: Although we do not choose to do so in this paper, it is possible
to strengthen the stochastic admissibility criterion somewhat
by permitting randomized decisions over X. COne would say
that the feasible decision x' 1s stochastically inadmissible
under a randomized decision strategy if there exists a proba-
bility distribution N on X not involving 5' such that
Probu,)\[f(i,g) <k]< Prob“[f(f,g) < k] for all k, with
strict inequality holding for at least one value of k. For
example, in Figure &4, X3 is stochastically dominated by
the randomized strategy which chooses X5 and X, each with
a probability of one-half, even though neither x, nor X,
stochastically dominate Xx, alone. Randomized decision

rules have the effect of taking vertically convex combina-

tions of the c.d.f.'s. It is clear that the set of

e/

=’ Since stochastic admissibility is defined in terms of X and the
particular distribution u, to be precise we should qualify stochastic
admissibility as heing "with respect to X and u." We omit this
qualification for the sake of brevity, since no confusion is likely to
result in our discussion.
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stochusticully admissible decisions allowing randomized
stratepgiec is contained in the set of stochastically admissible

decisions allowing only pure strategies.

We now explore the relationship between ordinary and stochastic

admissibility,

Proposition 1:

Let u vanish outside of B. If io weakly dominates x',

then 50 weakly stochastically dominates x'.

Proof: We must show that for all real k, Prob[f(x’,p) < k]
< Prob[f(f',g) < k]. By the definition of (non-stochastic) weak
dominance, we have f(x',B) < f(io,g) for all B ¢ B. Thus for any
fixed value of k, f(ﬁo,g) <k implies f(x',B) <k, and so for

each k we have
BeB: £(x°8) <k)C(BeB: £(x,8) <k).
The proposition follows.

Remark: To see that the converse of this proposition need not hold,

consider the following example. X [xo,xl}, B = (61,62},

£(x°,8Y) = £(x},8%) = 1, r(x%69) = £(x1,8Y) = 2,

Prob[B = Bl] = .2 5 Prob(p = B2] = .8. Then x° stochasti-

cally dominates xl, put x° does not weakly dominate xl.

With additional hypotheses, one may strengthen Proposition 1.

20



Proposition 2:

Let f(x,B) be continuous on B for cach x ¢ ¥, ani let

M be positivez/ everywhere on and vanich outside of B. If

x° dominates x', then ﬁo stochastically dominates x'.

Proof: From Proposition 1 we have that 50 weakly ctochasti-
cally dominates x'. It remains to show that Prob[f(zo,g) < k*] <
Prob[f(x',B) < k*] for some k*. Since 50 dominates x', there
exists P* ¢ B such that f(zo,g*) > f(x',f*). Put k¥ =
l/2(f(§°,§*) + f(x',p*)). By the continuity of f there is a neigh-
borhood N¢ of B* such that f(x°,B) > k* > f(x',p) for all
B e N* () B, and so by the positivity of u on B we have
Prob[ £(x°,8) > k* > £(x',p)] > 0. This fact, with the definition

of Eo’ yields
Prob[ £(x',8) < k*] = Prob[£(x',B) < k* < £(x°,)] +
Prob[ £(x",8) < k* > £(x°,p) ]
= Prob[£(x',B) < k* < £(x°,8) ] + Prob[£(x°,B) < k]

> Prov[ £(x°,B) < k*] .

Z/ A probability distribution is said to be positive everywhere on

B if for each 60 ¢ B then for every (b-dimensional) neighborhood

No of Eo the event [Nofw B] has & non-zero probability. A neigh-

b
borhood of Bo of radius p 1is defined as zg;\/:: (B?-Bi)2 < p} .
i=1

and is denoted by Np(go) when a complete notation is desired.
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Proposition 2 shows that, under the given assumptions, the set
of stochastically admissible decisions is contained in the set of
admissible decisions, as one would exj-ct and hope. To see that the
set of stochastically admissitle decisions can be considerably smaller

than the set of admissible decisions, consider the example

Meximize [10 - (B - x)2] ’

X € Rl

where pu 1is the Normal distribution with mean E and variance 02,

and B Rl. Viewing the objective function as a family of functions
of B 1indexed by x, this family is seen to consist of concave
parabolas which are identical except for the axis of symmetry, which

occurs at B = x. Clearly every x° € Rl is admissible, for

f(xo,ﬁ = x°) 10 > f(x,B = x°) for all x # x°. It is also clear

that x' # B 1is stochastically inadmissible, for Prob[f(B,B) < k] <
Prob[f(x',B) < k] for all k. To see this assertion, observe that

1/2 centered at

(B: f(x,B) >k} 1is an interval of width 2(10-k)
B = x. By the symmetry and unimodality of the Normal distribution,
the interval centered at B = P must include the greatest probability
for any k, and hence Prob[f(B,B) > k] > Prob((x',B) > k] when

x' # B, which is equivalent to the assertion that x' # B is

stochastically inadmissible. Since x = 8 {is stochastically admissible,

we see that onlx X = E is stochastical.y admissible, whereas all x

are admissible.

The Maximum @-Fractile and the Aspiration Criteria

In terms of Figure 4, we would like to choose a decision which

=
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achieves the lower envelope of c.d.f.'s everywhere. 1In general this
is impossible, but we can attempt to achieve it at a single point and
hope that this one point wili "pin down" a c.d.f. so that it is close
to the lower envelope. The point may be specified in terms of its
ordinate or abcissa value, whichever seems most natural in a given
problem context. The criteria implied by this idea are, respectively

and lobsely:

Criterion F: Choose an x which corresponds to a

c.d.f. which approaches the lower envelope of c.d.f.'s

at an ordinate value of a{0 < a < 1).

Criterion A: Choose an x which corresponds to a

c.d.f. which approaches the lower envelope at an abcissa

value of M(-» < M < =),

It i3 evident that we have two entire families of criteria here, indexed
by a and M respectively, Criterion F with a = 0.1 would lead

to the choice of X in Figure 4, and Criterion A with M = 20 would

2

5 .
lead to the choice of fh'

Criterior F is equivalent to maximizing the a-fractile§/of the

distribution of f(x,B) wunder u. That is, it maximizes the payoff

74

level below which there is at most an Q probability of falling.

§/ We define the a-fractile of a (possibly mixed) cumulative distri-
bution function F(y) = Prob{Y <y] as

sup(k: F(k) <aj .

L See Kataoka (1963) for a linear programming model of this type.
It is one of the few published references to this criterion.

no
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It corresponds, for fixed O <a <1, to:
Maximize Kk
k,x

(4.5) subject, to x ¢ X
Prob{ f(x,B) < k] <a .

When Q 1is small, say less than 0.1, this criterion should appeal

to conservative decision-makers because it tends to control the lower
tail of the distribution of payoffs. When a = 1/2, (L4.5) maximizes

the median of the distribution of payoffs, of course. We sometimes

use the mnemonic notation F(a) for this criterion.

Criterion A is equivalent to maximizing the probability of exceeding

a prescribed "aspiration" level M of payoff (see Charnes and Cooper,
1963, for an application to linear programming). It corresponds to:

(4.6) : Minimize Prob| £(x,B) < M] .
XxeX

We sometimes use the notation A(M) for this criterion.

Remark: It is to be noted that all cumulative distribution functions

in this subsection are written as Prob[f(x,B) < k] rather
than as Prob[f(x,B) < k] (regard x as being fixed).

This convention is followed in order to avoid some minor
difficulties which would be encountered by these two criteria
if the opposite convention were adopted and the c.d.f.'s

were discontinuous.




- ollae

We introduced these two criteria together becaus: of their intimate
mathematical relationship, as well as their common graphical motivation,
When the lower envelope is attained by some x at every point, and is
continuous and strictly increasing, it is geomctrically clear that
the F and A criteria are complementary in the sense that for every «
there is an M which leads to the same set of decisions, and conversely.
Without such assumptions, however, the complementarity is weakened,

as we shall see in the following two easy propositions.

Proposition 3:

7 . . .» 0O . o .
(i)  Assume that critericu i(u , is satisfled by at ieast one

decision. Then the set of decisions which satisfy criterion
F(ao) contains the set of decisions which satisfy criterion

A(M®), where M° is the maximum o°-fractile.

(1i) Assume that criterion A(M°) is satisfied by at least one
decision. Then the set of decisions which satisfy criterion
A(M°) contains the set of decisions which satisfy criterion

F(ao), where a° 5 Min Prob| f(x,B) < M°].
x ¢ X

Proof: (i), Let x* satisfy F(ao), and let M Dbe the maximum

a-fractile. If x° satisfies A(M°), then Prob[f(ﬁo,g) < M%) <

Prob[ £(x*,B) < M°] < a®, and so x° must also satisfy F(a°).

0 &

(i1), Let x* satisfy A(M°), and let « Min

x eX
Probl £(x,8) < M°] = Prob[f(x*,8) < M°]. 1Ir x° satisries F(a°),

then there exists k° > M’ such that Prob[f(x°,8) < k°] <a° since
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0
k° > 11°, we have Prob[f(fo,g) < M) < PTOb[f(fo:é) < k°] ca,

. o
from which it follows that x° must satisfy A(M°).

Proposition 4:

(1) 1Irf x° sacisfies criterion F(a°) uniquely, then it

satisfies criterion A(M°) uniquely, where M° is the

, o .
maximum & -fractile,

(1) 1r x° satisfies criterion A(M°) uniquely, then it

R . . o .
satisfies criterion F(a ) uniquely, where

a® = Prob[r(x°,p) < M°].

Proof: (i), Suppose.that x° does not satisfy A(M°) uniquely.

o)

Then there exists x' € X, x A X, such that Prob[f(z',g) < Mo] <

Prob[f(fo,g) < MO], which contradicts the fact that §° satisfies

F(a°) uniquely.

(ii), Suppose that 50 does not satisfy F(a®) uniquely.
Then there exist ko‘z M° and x'€X, x'# 50, such that
Prob[ f(x',B) < k] < a® = Prob[f(ﬁo,g) < M°]. since ko‘z Mo, we
have Prob[ £(x',p) < M’] < Prob[f(x',B) < k°], and so
Prob[ £(x',p) < M°] < Prob[£(x°,p) < M°]. This contradicts the fact

that 50 satisfies A(MO) uniquely.

It is possible for criteria F(a) and A(M) to lead to stochas-
tically inadmissible decisions. The next proposition is of interest

in this regard.
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Proposition 5:

(1) 1Irf x° satisties criterion F(a®) uniquely, then 50

also satisfies the stochastic admicsibility criterion.

(11) 1f x° satisfies criterion A(M°)  uniquely, then 50

also satisfies the stochastic admissibility criterion.

Proof: (i), In view of part (i) of Proposition 4, to prove {i)

it is sufficient to prove (ii).

(ii), Let 50 satisfy A(M®) uniquely, so that
(o) 0] \ O 0
Prob( f(x ,B) <M ] < Prob[f(r 8V < M'] for all x ¢ X, x # x .
Suppose that ﬁo were stochastically inadmissible. Then there would
exist x' € X, x' # 50, such that Prob[f(x',B) < k] <
Prob[f(fo,g) < k] for all k. Letting k = Mo, one would obtain

a contradiction.

Now we turn to the relationship between the maxmin payoff criterion
and the maximum -fractile criterion with a = 0. It is not at all
surprising that under mild assumptions these criteria are in fact

equivalent, i.e., the same decisions satisfy both.

Proposition 6:

10/

Assume that f(f’é) is upper semicontinuous—’ on B for each
x € X, and that u is positive on and vanishes outside of B.
Then the maxmin payoff criterion is equivalent to the maximum

O-fractile criterion.

}9/ Let x be fixed in X. Then f(f’g) is upper semicontinuous

at Qo € B if for each € >0 48 > O (depending on Eo and €) such

27
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Proof: We chal! rewrite (4.0) and (#.5) in such a way as to

emphacive their cimilarity, and then show that they are in fact

identical,
11/
The maxmin payoff criterion can be written—

Maximize [sSup(k: f(x,B) >k, V¥V B e BJ],
xeX

and the maximum O-fractile criterion can be written

Maximize [Sup(k: Prob[f(x,B) > k] =1}].
xeX

Define Sl()_() and 82(5) to be the sets appearing in the first and
second problems, respectively, for fixed X. Clearly sl(i)csa(z),
v X € X, for p vanishes outside of B. The proof will be complete
when we show that 82(5) ;Sl(f_), VY XeX

We consider a fixed x, and drop the x arguments from

S and §S,. We may assume that S_. 1is not empty, for if it is

1 2 2
empty then Sl is also empty, and the proof is complete. Take
k' € S2. Suppose that k' ¢ Sl' Then there exists PB' € B such

that f(x,p') < k'. But by the upper semicontinuity of £(x,p) there

exists a neighborhood N' of PB' such that f‘(lc_,g) < k' for all

that f(x.p) < £(x,8) + e whenever B €N.(B”). If f is continuous,
then f 1is upper semicontinuous. Also, recall that if B is a finite

point set in Em, then f(ﬁ,g) is automatically continuous on B.

11 . C s .
—/ This problem follows from the definition of 'inf' as the greatest
lower bound.
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B e N'(N\B. By the positivity of u on B, this contradicts the

fact that k' ¢ 82.

The F and A criteria have the interesting property that one may
perform a continuous monotonic transformation on f(f,g) without
altering the decisions which satisfy these criteria. This certainly

is not true of the next criterion we shall discuss, the expected

value criterion. We emphasize this point in

Proposition 7:

Let g(t) bé any strictly increasing and continuous function
defined from Rl into Rl. Then (i) the set of decisions which
satisfy criterion F(a) does not alter if f(ﬁ,g) is replaced

by g(f(x,8)), and (ii) the set of decisions which satisfy criterion
A(M) does not alter if f(x,B) is replaced by g(f(x,8)) and

M is replaced by g(M).

Proof: Observe that fix,8) <k 1if ard only if g(f(x,B)) < g(k),

since g 1is invertible and strictly increasing. Hence (B: f(x,B) <k] =
(B: &(f(x,p)) <glk)}, and so Prob[f(x,B) < k] = Problg(f(x,B)) <
g(k)]. This yields (ii). To see (i), write

Sup(k: Prob[f(x,B) < k] <al

= Sup(k: Prob[g(f(x,8)) < g(k)] < al

Yg(k)):  Proble(f(x,8)) < g(k)] < a)

Suplg”

g l(supla(k): Problg(f(x,B)) < g(k)] < al)

“(suplt: Froble(s(x,B)) < t] < al)

4
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Finally,

Max [Sup{k: Prob[f(x,B) < k] < a}]
Xx ¢ X

- g Y( Max [oupik: Problg(f(x,8)) < k] <all) .
x eX

Maximum Expected Payoff Criterion

The F and A criteria are designed tc achieve the lower envelope

of the family of c.d.f.'s (Prov|f{x,B) < k]} at a single point,

X € X

in an attempt to "pir down" a c.d.f. to lie "close"to the lower
envelope. Another approach would be to use the area above the lower

envelope and below a candidate c.d.f. as a measure of "closeness."

Criterion E: Choose arn x ¢ X which determines the

c.d.f. with the least area below it and above the lower

envelope.

We shall show now that this geometrically motivated criterion

is equivalent to the maximum expected payoff criterion:

(k.7) Maximize E[f(i,g)] .
X € X

Proposition 8:

Criterion E is equivalent to the maximum expected payoff criterion.

Proof: The proof is a simple consequence of the geometric inter-

pretation of the mean of a random variable in terms of the graph of
its cumulative distribution function. In Figure 5, the mean of the

random variable Y 1is area 1 minus area 2 (see Parzen, 1960, p. 211).
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Denote by A(§)+ the arca corresponding to arcu 1 of Figure 5
tor the c.d.f, Prob[f(x,B) < k], and by A(x)™ the arca corres-
ponding to area 2. OSimilarly, denote by AF and A the areas abov:
and below the lower envelop= of all such c.d.f.'s. The the maximum
expected payoff criterion may be written

Maximize [A(§)+ - A(x)7],
x € X
and Criterion E may be written

Minimize [(A(x)™ - A7) + (A" - A(§)+)] .
xeX

Clearly these two problems lead to the same decisions.

Prob[Y < k]

Figure 5

There is an obvious and fortunate relationship between the maximum

expected payoff criterion and the estimate criterion which sometimes
permits one to choose an estimate in a simple way so that the estimate
criterion is satisfied by the same set of decisions as the expected

payoff criterion.
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Proposition 9:

Acsume that f(x,B) cau be written as

£(x,8) = F (x) + F,(B) + ¥ H,(x)B, -
1

A
Then the estimate criterion with B = E[B] is satisfied by the

same set of decisions as the maximum expected payoff criterion.

Proof: The maximum expected payoff criterion gives

Maximize E[Fl(g) + F2(§) + v Hi(i)ﬁi:] , or
xeX Al

Maximize [Fl(f) + E[F2(E)] + ? Hi(f) E[Bi]-:l .

56)(

A
The estimate criterion with B = E[B] gives

Maximize [Fl(x) ¢ Fy(E[B]) + T H,(x) E[Bi]] :

x e X - i
Since the F2 terms of each problem do not contain x, they may

be deleted, and hence the two criteria lead to identical sets of

decisions.

When the above proposition applies, we cey that the estimate

= E[B] 1is a certainty equivalent with respect to the maximum

o>

expected payoff criterion., Other results in the same vein are given
by Reiter (1957), Simon (1956), and Theil (1964).

It is easy to see from Proposition 8 that any decision which
satisfies the maximum expected payoff criterion must be stochastically

admissible.



It is also wor*h noting that the expected vaiue criterion leads
to the same decisions when applied to payotff us when applied to regret.

In general this is not true for criteria A(M) and F(a).

3.3 An Example

We present a simple inventory model as an illustration of the
ideas of this section and as a vehicle for further discussion. Consider
a firm stocking and selling a single commodity for a single period of
time. We use the notation
X = number of units to be ordered in advance of the
demand
B = unknown demand level during the period
¢ = cost per unit
r = revenue per unit (r > c)

v = salvage value per unit left at end of period (v < c)

.—ﬁ
—
<

-

w

~
|

total profit
X = [0,°)
B = [O,BMAX], where BMAX is chosen sufficiently large

to account for the largest likely demand
The payoff and regret are given by

(r-c)B - (x-B)(c-v) if B <x

f(x)B) =
(r-c)x if B >x
(c-v) (x-B) if B < x
T(X:B) = -
(r-c) (B-x) if B>x.
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First we examine the criteria not involving probabilities over
the set of possible demand levels. All choices for x € X are readily
seen to be admissible., The maxmin payoff criterion leads to the decision
to order zero units, since Min f(x,B) = -(c-v)x. When this criterion
is applied to regret, howeves,eif (minmax regret) leads to the decision
to order [(r-c)/(r-v)]BMAx. This is the same decision that the
Principle of Tnsufficient Reason would give if we interpret it as
putting a uniform distribution over [O,BMAx]. The estimate criterion
leads to a trivial maximization problem once an estimate 3 is chosen,
and indicates that we should order exactly x = @L

Next we examine the criteria involving probabilities over the set
of possible demand levels. 1In order to plot the cumulative distri-
butions of payoff for various candidate x's, we need to know the

set of PB's for which the payoff is less than k.

(

) if k < -(c-v)x
(B: B >0, f(x,) <kl = [o, W) it -(c-v)x < k < (r-o)x

[0,=) if k > (r-c)x .

\

Using the fact that x 1is non-negative, we have for k‘z 0
1 1f x < =t
(r-c)

Prob[ £(x,B) < k] = ﬁ
o . K
‘ 1 -f du if x > ~—




For k <0,

( -k

0 if X<W

1.f dn if x>
\ k+(c-v)x

r-v

Prob[ £(x,B) < k] =4

The lower envelope may be obtained by solving, for all real k,

the problem

Minimize Prob[f(x,B) < k] .
x >0

This problem has a very simple solution for this example. For k <O,

thie minimum i1s zero and is achieved for 0 < x < lkl/(c-v). For k 20,
o0

the minimum is 1 :I’ du and is achieved for x = k/(r-c).
k/(r-c)

Assume for computational simplicity that the demand is exponen-
tially distributed with mean 10, that (c-v) = 1/2, and that
(r-c) = 3/2. Then for k > 0, the lower envelope has height
(1 - exp(-.0666 k]], and is achieved at x = 2k/3.£§/ Figure 6
illustrates the lower envelope and a few sample c.d.f.'s. Observe
that each c.d.f. jumps to the value 1 as soon as it attains the lower
envelope, and that every x >0 is stochastically admissible.

We are now in a position to read off the "optimal" decisions
corresponding to criteria A(M) and F(a) for any choice of M
or a. A(M°) leads to the unique choice of x = MO/(r-c), and

F(a®) leads to the unique choice x = -10 In(1-a ). In this

}2/ Not- that the lower envelope is the c.d.f. of an exponential
distribution with mean 15.
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particular cxample, these criteria lo not fuifiil their promise of
"pinning down" a c.d.f. to lic close to Lhe lower cnvelope, because
each c.d.f. is discontinuous at tunc point at which it achicves the
lower envelope.

The maximum expected payoff criterion may be applied by setting
the derivative ot E[f(x,B)] equal to zero and solving for x.
This computation leads to the well-known (Dvoretzsky, Kiefer, and
Wolfewitz, 1952) result that one should choose the value of x

corresponding to the (r-c)/(r-v)-th fractile of u. That is,

X %

x* should satisfy J[ du = (r-c)/(r-v). For the data assumed above,
o

x* = 13.8, It is interesting to observe that if u were uniform

on ], then the minmax regret criterion would lead to exactly

(0, By
the same action as would the maximum expected payoff criterion.

Next we carry out a parallel analysis in terms of regret rather
than payoff , It will be seen that A(M) and F(a) are more
appealing when applied to the regret distributions. An argument will
be presented for choosing a value of x other than that which mini-
mizes expected regret (which, of course, is cquivalent to maximizing

the expected payoff, the now ciassical solution to this problem).

We have, for k 2> O, /e

(B: £>0, r(x,8) <kl - (¢

X - B ,y X +'—5-] I e

Cav r-c c-Vv

kb
Since we are dealins in terme of regr ', rather than payoff, we seek
the upper envelope r«'her th *he ower envelope. It is obtained by
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rarimicingg, for i or >0, teonlrls,l) < :

rec
Maximlize dp
> K
R BN Max{O, X - ——-&
c-V

Since the exponential distribution is monotone decreasing, the maximum
is easily seen to be achieved at x = k/(c-v). The height of the
upper envelope is thereforc equal to Prob|p < k/(c-v) + k/(r-c)].
For the data given previously, this quantity is computed to be
(1-exp(-0.2666 k)], and the upper envelope is achieved for x = 2k.
Figure 7 is the counterpart of Figure 6. Note that the c.d.f.'s
are continuous, so that A(M) and F(a) are more effective in their
endeavor to "pin up" a c.d.f. to lie near the upper envelope.
For a given value of x, it is a straightforward matter to calcu-
late the expected regret and the a-fractile. This has been done
for a = .95 and some representative values of x 1in Figure 8. The
striking feature of this graph is that large relative changes in .95-
{ractile are available with only small relative changes in expected
regret, with the result that it becomes attractive to deviate from
the ordinary minimum expected regret solulion to the problem. For
example, consider x = 13.8 (which yields the minimum expected regret)
in comparison with x = 20. The former has an expected regret of
0.9 and a .95-fractile of 24.1, whereas the latter has an expected
regret of 7.7 and a .95-fractile of 14.8. That is, by choosing x = 20
instead of 13.8, one may achieve a 38.5% decrease in .95-fractile at
the expense of only 11.6% increase in expected regret; for x = 18
instead of 13.8, the percentagec become 26.1% and 5.9%.

38



Prob (r(x,B) < k]

29




10

Jf 12

13.8

15

20
22.4

\L 18

|

1h

12

10

30 -

28 |-

|
=
N

1
N
N

1
o
N

| R I S
3 9 3 § g3 °

NOILNATYISIA LIMOA JO0 FILLOVHI~G6°

EXPECTED REGRET

Figure 8

Lo



This example shows a special instance of what is likely to be
a quite general situation: in the neighborhood of the decision indicated
by the maximum expected payoff criterion, it is possible to substan-
tially improve the a-fractile or aspiration levels of payoff or regret
without lowering the expected payoff very much. Such possibilities
ought to be investigated and exploited when {ound to be relevant to

the decision-maker's objectives.

3.4 Vector Maximum Reformulations

The "ideal" decision criterion is analagous to the much-sought
philosophers’ stone of medieval times, and seems about as likely
to exist. We suggest that one might profitably consider, in a given
application, two or even three plausible criteria (not necessarily
the ones discussed herein) and retormulate (4) as a vector maximum
problem. The solution of this vector maximum probiem would reveal
clearly the tradeoffs involved between the criteria, and a decision
may be chosen in an ad hoc manner from the efficient candidates. For
example, if a situation such as Figure 9 occurs, one would probably
choose an efficient sclution nearer to point B than to point A, for
a large gain in criterion 2 can be achieved at the expense of a rela-

tively small loss in criterion 1.

+Criterion 2 (to be maximized)

S Criterion 1

Figure 9 (to be maximized)
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One combination of criteria which seemsparticularly plausible
when a probability distribution over B 1is available is the a-fractile
criterion with the expected value criterion. With a small, the
first criterion tends to control the lower tail of the distribution
of payoffs, while the second tends to control the mean. Such a com-
bination might be used to program a mutual investment fund, for example,
for the possibility of ruin or large losses seems to loom as a separate
dimension of utility from the average growth rate. Markowitz (1956)
had precisely this viewpoint in mind for his well-lkuown portfolio
problem, except that he used variance in place of the a-fractile.
Hodges and Lehmann (1952) proposed essentially this combination
of criteria, except that they took a equal to zero. Letting «
rise above zero seems to avoid same of the excessive conservatism in
their formulation, while keeping the aim of protection against large

losses.
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CHAPTER 11
Keducing a Vector Maximum Problem to a

Parametric Programming Problem

In this chapter it is assumed that uncertainty has been removed
from a decision problem by means of devices such as those discussed
in the first chapter, and that it is desired to solve the vector
maximum problem

(1) "Muximize"  10x) ,
% € X

where f(x) = (fl(f)""’fr(f))’ x is an n-vector, and X is
a given set of feasible decisions. Recall that "solving" (1) means
finding all efficient decisions, where a feasible decision Eo is
called efficient if there exists no feasible decision x' such that
£(x') 2_2(50).1/ We shall discuss two ways of reducing (1) to a
parameterized family of ordinary (one criterion function) mathematical
programming problems, or "parametric" programming problems. Existing
computational methods for these problems will be indicated.

This chapter is intended to serve as a bridge between the study
of decision problems under uncertainty, wi.ich was the topic of the

first chapter, and the study of a clagss of algorithms for parametric

programming, which is the topic of the third chapter.

l/7Recal.l that by this notation we mean fi(f')<2 fi(io) (i =1,...,r)
with fi(f') > fi(ﬁo) for some i (see Footnote 1, Chapter I).



1.  Reducing (1) to a Problem Perametric in the Constraints

From the defirition of an efficient decision for (1), it is

easy to see that a feasible decision x® is efficient if and only if

x° 1is an optimal solution to each of the r problems

Maximize fi(z)

(21) x e X

subject to fj(f) > fj(xo) , =1, ..., r but J#£1,

i=1,...,r. Jt follows immediately that the following assertion

holds.

Proposition 1:

let 1<i <r be fixed. If x° is efficient in (1), then

there exists an (r-1)-vector & such that 50 is an optimal

solution of (310), where (3i) is given by

Maximize f,(x)
X S
(31) =€
subject to fj( X) > 63 y J=1, «e. , r but j£1i.

This proposition suggests a method for finding all efficient
decisions. Taking r = Z and io = 1, for example, we find the
set of all efficient decisions among the totality of optimal solutions

to

Maximize fl(f)
(3) % e
subject to fg(ﬁ) >

as b varies over (-w,+x), Often f2(§) is bounded from above
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on X, and so the interval of parametric variation does not extend
to 4o, Likewise when fg(f) is bounded from below on X, or when
the maximum of fl(z) on X is achieved for some value of X, the
interval of parametric variation nezd not extend to -«,

This method yields not only all efficient decisions, but possibly
some inefficient ones as well, since it may be possible to increase
fg(i) without decreasing fl(i) below its maximum value for a parti-
cular value of 5. A similar remark holds a fortiori for r > 2.
Culling cut the inefficient decisions when r = 2 1is easily done,
in principle, by viewing the graph of (fl(z)’fe(f)) for all candi-
date decisions generated by the method. For r > 2, graphical analysis
rapidly becomes impract. .1, and one must rely on sufficient conditions

such as those given in

Proposition 2:

Let 1<i <r and the (r-1)-vector 8, be fixed, and let
50 be an optimal solution to (3io) with & =8 . If any of

the following three conditions are satisfied, then x° is

efficient in (1).

(1) 50 is also an optimal solution of the r-1 problems

" q o
(3i), 1#10, with &, = fd(:), 3 = 15se:pms

J

(11) x° 1is the unique optimal solution to (31 ) with
&=5,

(111) x° is the unique optimal solution to (31,) with

o
&y = fJ(5 ), 341,

L5
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Proof: If (1) is satisfied, x° 1is efficient in (1) by the

opening remark of this section.

~ Assume that (11) 1is satisfied, and suppose that 50 is not

efficient. Then there exists x' e X such that f(x') > £(x°),

which implies that x' is feasible and optimal in (310) with

8 = éo’ thus contradicting the unique optimality of 50. Hence

o
X

is efficient.

Since 50 also is an optimal solution of (310) with 63 = fd(io)’

the argument apropos (ii) applies.

Under additional hypotheses, Propositions 1 and 2 can be combined

to give

Proposition 3:

Let 1< 10'5 r be fixed. Assume that fio is strictly concave,
fJ(J # io) is concave, and X is convex.g/ Then 50 is

efficient in (1) if and only if zo solves (3io) for some (r-1)-

vector §.

Proof: Necessity was proven in Proposition 1. To prove suffi-

ciency, apply A.2 of Appendix A and part (ii) of Proposition 2.

2. Reducing (1) to a Problem Parametric in the Objective Function

We shall give some conditions under which (1) can be reduced to

g/ See Appendix A for definitions of convex sets and concave functions,
and some properties thereof which will be used freely in the sequel.
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a family of problems of the form
r

(&) Maximize 3, vifi(f) »
xeX i1

where v 2 0 1isa vector-valued parameter.

Proposition k:
(1) If v>0 eand _)Eo is an optimal solution to (4), then

x° is efficient in (s

(i) If v>0 and 50 is the unique optimal solution of

(4), then x° is efficient in (1).

Proof: Suppose that (i) is false. Then there exists x' € X
such that f(x') > _15_‘(§°); since v > 0, this implies that
Evifi(f') >2 vifi('-)fo)’ thus contradicting the optimality of 50
in (4). This proves (i).

Suppose that (ii) is false. Then there exists x'eX, x' #50,
such that f(x') > £(x°); since v >0, this implies that
Evifi(f') zzvifi(ggo), thus contradicting the unique optimality

of 50 in (4). This proves (ii).

3/

Proposition 5:=

Let X be convex, let fi(f) be concave, i =1,...,r, and

let 50 be efficient in (1). Then there exists an r-vector

v® > 0 such that x° is an optimal solution of (4) with v = v°

37 The earliest statement and proof of a theorem of this type seems to
be due to Kuhn and Tucker (1951). An elegant proof of this proposition
has been given by Karlin (1959, p. 217). For the sake of completeness
we record & slightly different version of that proof here.
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Proof: Put P = (p ¢ EF: P2 2(50)]. Clearly P 1is convex.
Put 2= (z ¢ E: z < f(x) for sone Xx € X}. Z 1is convex, for
let z',2" € 2 and let O <A <1. By the definition of Z there

exist x',x" ¢ X such that 2z' S£(>_c') and 2" :2(5"). Hence
(Az' + (1-M)z") S Af(x') + (1N £(x") < £Ox' + (1-M)x")

where the last inequality follows from the concavity of E(E)' Since
(A" + (1-A)x") € X by the convexity of X, (Az' + (1-A)2") € Z.

This shows that Z 1s convex.

Because 50 is efficient, ZMP 1is the single poin't _f_‘(ﬁo),
so that Z and P have no interior points in common. Hence we may
apply the well-known Theorem of the Separating Hyperplane (see A.7,
Appendix A) to assert the existence of an r-vector XO #0 and a

scalar c¢ such that

The right-hand inequality and the definition of P imply that
v" >0, for otherwise the sum Evci) p; would e unbounded from
below. By the definition of Z, the left-hand inequality yields
Yvi £;(x) Sc, ¥xeX. Taking p= £(x°), we have T vi £ (x) <
Ev? fi(fo), VYx € X, which is equivalent to the assertion that
3(_0 is an optimal solution of (4) with v = \_ro.

When the hypotheses of Proposition 5 hold, one is sure to find

all efficient decisions for (1) among the totality of optimal decisions

for (4) as v ranges over all non-negative values. Notice that
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without loss of generality one may take z:vi =1 in (4), since for
fixed v Z 9 the objective function of that problem can be scaled

by a factor of l/ 2"1 without affecting the set of optimal solutions.
Hence v 1is really only an (r.1)-dimensional parameter. When r = 2,
for example, (4) reduces to the parametric problem

(4.1) Maximize Vfl(f) + (1-v) fg(f) for each 0<v<1l,
X € X

By strengthening the hypotheses of Proposition 5, the last two

propositions can be combined to give

Proposition 6:

Let X be convex, and let fi(f) (i =1,...,vr) be strictly
concave. Then §° is efficient in (1) if and only if 50

solves (4) for some v > 0.

Proof: Necessity was proven in Proposition 5. To prove sufficiency,

apply A.2, A.4, and part (1i) of Proposition k4.

) Computational Methods for Parametric Problems

A very common approach for a decision-maker to take, when faced
with solving a multi-criterion problem such as (1), is to reformulate
(1) in the form of (3i) or (4) (or possibly a combination of the two)

with & or v fixed at some value of particular interest. Problem

(31) corresponds to selecting and retaining the most important criterion
function and putting the rest in as constraints so that the remaining

criteria each meet at least some minimally acceptable level.ﬁ/

4/

-’ For an early and important example of this, see Neyman and Pearson
" (1933), who employed this device as a cornerstone of their theory of
statistical hypothesis testing.
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Problem () corresponds to maximizing u welghted combination of criteria
which is designed to reflect the relatlve importunce of each. Such

an approach offers computational simplicity in comparison with a
complete solution of (1), since just one ordinary maximization problem
has to be solved. After (3i) or (4) has been solved for the selected

Eo or xo, the value of & or - may be varied in e neighborhood

of Qo or !o in order to ascertain how the corresponding optimal
decisions and payoff function vary. This is a type of "sensitivity
analysis." The above propositions relate this type of sensitivity
analysis to the partial solution of (1) in the vector maximum sense.
Whether for purposes of sensitivity analysis or of solving (1),
solution methods are required for the parametric problems associated
with (31) and (4). Since analytic methods can be expected to have
very limited applicability—if experience with nor-parametric mathe-
matical programming is any guide- numerical methods must be employed.
In this regard, we are obliged to limit our consideration to problems
for which X 1is convex and fi(ﬁ) (i =1,...,r) 1is concave, for

5/

most known programming algorithms=' require at least convexity of

the feasible region and concavity of the objective function. We shall
further limit our consideration to the important case r = 2, because
the vastness of Lhe parameter space increases so rapidly with r as

to preclude the reasonable hope of solving parametric problems even

to reasonable approximation when r is much larger than 2 or 3.

27’For surveys of (nonlinear) programming algorithms, see, e.g.,
Dorn (19€3), Hadley (1964), Saaty and Bram (1964, Chapter 3), Wolfe
(1962), and Zoutendijk (1960).
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We now indicate some existing computational methods, and point out
the need for the developments of the next chapter.

If X 1is a convex polyhedron (i.e., the feasible region is
determined by a set of linear equalities or inequa]ities), then several
efficient parametric programming algorithms are available for certain
special classes of criterion functions: when fl and f2 are both
linear functions, parametric versions of (3) and (4.)) can be solved
by parametric linear programming (Gass, 1955); when f, is linear

and f. 1is a quadratic polyncmial,é/ the algorithms of Houthakker

2
(1960) , Markowitz (1956), and Wolfe (1959) are available;y when f,

and f, are both quadratic polynomials, an algorithm of Zahl (196k4)

2
essentially solves (4.1), although it seems possible to improve upon
the efficiency of his procedure by utilizing the developments of the
next chapter. Little if anything appears to have been done to devise
efficient algorithms for parametric problems involving more general
classes of criterion functions or feasible regions other than convex
polyhedra. The class of algorithms developed in Chapter III is
intended as a contribution in this direction. At the present state
of the art of parametric programming, however, one must fall back
upon more rudimentary methods.

In principle, if an algorithm is available which will solve

(31) or (4) for any particular value of the parameter, then by

é/ That is, f2(§) = Etgf + EFE’ where t denotes transpose and Q

is a negative semidefinite matrix.

Z/ See also Boot (1963a, 1963b).
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employing a suitably fine grid of parametcr values one can obtain a
discrete approximation to the optimal sclutions of the parumetric
problem. This is a very straightforward approach, and for many
problems it may be fairly practical, since the optimal solution for
one parameter value can be expected to provide a nearly optimal
solution at the next parametcer value on the grid. Because most
programming algorithms nay be viewed as gradient methods, this
approach should provide roughly first order convergence between
optimal solutions at adjacent pairs of grid points.

In the next chapter we offer an alternative to the last approach
under quite general assumptions on the criterion functions and the
feasible region. We shall develop a class of algorithms for solving
(4.1), 2 main member of which exhibits second order§/ convergence

between adjacent pairs of grid points.

§/ A sequence < xv > which converges to x° exhibits first (second)
order convergence if the norm of the error at the n-th step is
asymptotically proportional to the (square of the) norm of the error
at the n-lst step (see Appendix C, section 1).
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CHAPTER III

A Class of Algorithms for Parametric Concave Programming

1. Introduction and Proliminaries

In this chapter we present a class of algorithms for solving parametric

concave programming problems of the form

Maximize afl(z) + (l'a)fg(f)
X
(Rx) =

subject to g(x) >0

for each @ € [0,1], where x is an n-vector, fi(f) (1 = 1,2) is

strictly concave,l/ and each component function of g(x) = (31(§)""’3m(§))

is concave. Certain additional regularity requirements are detailed in
subsection 2.1,

Since our topic is parametric programming, rather than ordinary
(non-parametric) mathematical programming, we shall further assume
that an optimal solution of (Rx) 1is available for some value of «
in the unit interval. This assumption is in fact not restrictive,
for it is shown in subsection 1.1 that a parametric programming algorithm
for (Rx) which requires an optimal solution for some value of «
in order to "get started" can itself be used to generate such an

optimal solution.

17 The algorithms to be given still apply if (in the following, € > O
is arbitrarily small): (a) f, is strictly concave and f, is (non-
strictly) concave and [0,1] 1is veplaced by [e€,1], or (b) f, is
concave and f2 is strictly concave and [0,1] 1is replaced by
[0,1-€], or (c) af, + (l-a)f‘2 is strictly concave for each fixed

ae (0,1) and [0,1] is replaced by [e,l-¢].

>3

R g



~

The remainder of this section motivates (Rx) and the present
class of algorithms: in subse:tion 1.1 it is noted that (Rx) subsumes
the vector maximum problem for two criterion functions and also the
standard (non-parametric) concave programming problem, and in sub-
section 1.2 the Kuhn-Tucker Theorem for nonlinear programming is
presented in slightly unconventional form so as to display ~learly
the foundation upon which the present class of algorithms is built.
Section 2 is devoted to presenting and proving a Basic Conceptual
Algorithm for solving (Rx) for each value of Q@ in the unit interval.
Three graphical examples are given in Appendix B. The development
of this conceptual algorithm iiito a Basic Computational Algorithm, via the
use of Newton's method for solving the relevant systems of equations,
is the subject of section 3. Some necessary computational devices are
recorded in Appendix C. Section 4 hosts a modification (more accurately,
a completion) of the algorithms aimed at improving their efficiency.
Two extensions are indicated in section 5: the adaptation of the
present algorithms to handle linear equality constraints, and the
possibility of solving more general kinds of parametric problems than

(Rx).

1.1 Motivation of (Rx)

One motive for studying (Rx) was given in Chapter II. From
Proposition 6 of that chapter, which applies because of the above
assumptions, solving (Rx) for all 0 <a <1 is exactly equivalent
to solving the vector maximum problem

(1) "Maximize" fl(_>5), fe(f) subject to g(x) >0 .
N =

5k



That is, every efficient decision for (1) is an optimal solution of
(Rx) for some 0 <a <1, and conversely.

Another reason for studying (Rx) is that it subsumes the standard
problem of concave programming. - Suppose that it is desired to solve

(2) Maximize F(x) subject to g(x) >0,
x

where F(f) is strictly concave and the constraint functions are all
concave, If 50 is any feasible decision whatsoever of (2), put
(Rx) equal to

n
Maximize oF(x) + (1-a)(-1) ? (x; - x‘i’)2
X

subject to g(ﬁ) >0.

Then io clearly is the optimal solution of (30), and (3a) satisfies
the assumptions required of (Rx) 1in the opening paragraph. Applying
an algorithm for parametric concave programming to (3a) beginning

with a = O and increasing a wuntil «a = 1, one obtains the optimal

solution to (3,), which is identical to (2). Hence a parametric

1
algorithm for (Rx) provides a "deformation" method of concave pro-
gramning.

Problem (3a) is capable of an interesting interpretation, which
we shall now sketch briefly. Consider an enterprise currently "operating"
at the (feasible) point _)_c_o, with a single criterion function F(.’.E)

and a feasible operating region (x: g(x) > 0). Due to conservatism,

or a desire to avoid disrupting the operations of the enterprise

2



radically, or to a desire L hedge against the risk of a faulty decision
model, assume that the managers of the enlerprise prefer to adjust the
operating point gradually from ﬁo toward x*, where x* 1is optimal
in (2). If the managers have a quadratic loss function }) (xi-xi .
associated with deviations from §°, the optimal solution to (3x)
as @ varies from O to 1 gives an optimum path from 3(_0 to x¥,

Since (Rx) for fixed a 1is of the form (2), the device repre-
sented by (3a) can be used to find a starting optimal solution to
(Rx) 1if one exists (providing that a feasible decision is known), so
that the assumption stated in the introduction is not restrictive,
as asserted.

Of course, in place of (3x) one could use

Maximize aF(x) + (1-0t)H(x)

(4at) =

subject to g(x) >0,

where H(f) is a strictly concave function with a known maximum

over the feasible region.

1.2 Theoretical Foundation

The standard problem of concave programming can be written in the
form of (Rao) with ao fixed. For simplicity of notation, we write

f(x;a) for afl(ﬁ) + (l-a)fe(f). Hence (Rzo) may be written as

(RIO) Maximize f(x;ao) subject to g(x) > 0.
X - - =T
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Fundamental theoretical results concerning this problem have been given
by Kuhn and Tucker (1951). A version of their Theorem 3 is recorded

here without proof.

Theorem (Kuhn-Tucker):

Consider (Ry ) with o fixed. Let f(x;o) and g,(x)
(L =1,...,m) be differentiable on the feasible region (x: g(x) > 0},
let f(z;ao) be concave on the feasible region, and let gi(f)
(1 = 1,...,m) be concave on E'. Assume that the constraint functions
satisfy the Kuhn-Tucker Constraint Qualification (see the remark
following the statement of the theorem).

Then 50 is an optimal solution of (Rzo) if and only if there
exist real m numbers k? such that (fo,ﬁo) satisfies the following

(Kuhn-Tucker) conditionsg/ at a=a:

0
m
(5) Virtma) + 3 a Vg () = 0
(6) gi(f_)zo, i=1, ..., m
(7) g; (x) {Z}o implies A, {;}o , 1i=1, .00 ,m.

Remark: For a statement and discussion or the Kuhn-Tucker Constraint

Qualification, see Kuhn and Tucker (1951, p. 483 or Arrow,
Hurwicz, and Uzawa (1961). It has been shown, for example,

that if all the constraints are linear then this qualification

E/ The symbol ‘7 denotes the gradient of a function of several variables,

_far(x) of (X)
€. 8., vxf(f) =(?§I— R ) —‘)’((—n

o7
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is satisfied; and that the existence of an interior point

of the feasible region is also sufficient for the qualifi-
cation to be satisfied. The sufficient condition which will
be of direct use in the sequel is: |if 5*(ao) is an optimal
solution of (R:o), then the matrix whose rows are
‘zxgi(i*(ao)), i such that gi(f*(ao)) = 0, 1is of maximal

rank (see Arrow, Hurwicz, and Uzawa, 1961).

Direct analytical or numerical attempts to satisfy these conditions
have proven quite difficult, in general.

We shall find the following equivalent version of the Kuhn-Tucker

Theorem more suitable for our purposes.

Theorem (Kuhn-Tucker, an alternate version):
Assume that the hypotheses of the Kuhn-Tucker Theorem are satisfied.
Then 50 is an optimal solution of (Rzo) if and only if there
exist m real numbers u® and a subset S° of constraint indices

i

such that (Eo’go’so) satisfies the following conditionsat a = a@_:

(kr-1) L £(x;0) + 3 uivxgi(z) =0
(=8)a S
(KT-2) g,(x) =0, ¥ ie€sS
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Equations (KT-1) t.:d (KT-.’) uppear so often together in the sequel
that we introduce the speciui symbol (=8)a to denote them (in this

notation, S and a may vury). We also denote the set of the first m

positive integers by M.

The equivalence of the two versions of this theorem follows from

the easily verified

Proposition 1:

(1)  1f (x°,A°) satisfies (5) through (7) at a_, then
(x°,1°,8°) satisfies (KT-1) through (KT-4) at a for

any So satisfying
(8) (1 eM A{>0)Cs°C et g(x)=0).

(11) 1f (x°,u°s°) satisfies (KT-1) through (KT-4) at a,

then (EO,EO) satisfies (5) through (7) at o .

The numbers >‘i or u, will be referred to as dual variables.
In view of Proposition 1 it is useless to distinguish between A and
u; henceforth we shall use the symbol u to refer to the dqual vari-
ables of either version of the Kuhn-Tucker Theorem.

The concept of a valid set plays a central role in this work.

A subset So of constraint indices is said to be valid at ao if

%3

and only if there exists (50,30) such that (io,go,so) satisfies

(KT-1) through (KT-4) at a-
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Proposition 2:

A subset So of constraint indices is valid at ao if and only
ir s° satisfies (8) for some (50&0) which satisfies (Y)

through (7) at .

Proof: Assume that So is valid at ao. Then there exists (EO,BO)

such that (x°,u°,5°) satisfies (KI-1) through (Kr-4) st a_, which
implies by part (ii) of Proposition 1 that (fo,go) satisfies (5)
through (7) at a_. By (KT-2) and (KT-4), (i e M: A >0}CS° holds.
By (KT-2), Sog[i € M: gi(gt_o) = 0} holds. This proves necessity.
Assume now that S° satisfies (8) for some (50,50) satisfying (5)

0.0

through (7) at a. By part (i) of Proposition 1, (x ,A ,8°) satisfies

(KT-1) through (KT-4) at @ , which shows that s° is valid at a.

The alternate version encourages the important observation that the

Kuhn-Tucker Conditions may be viewed as the Lagrange multiplier equations-?-/

3/ The method of Lagrange multipliers (see, e.g., Apostol, 1957, p. 153)
gives a set of first order necessary conditions for a point 50 to be
an optimal solution of the problem

Maximize f(x) subject to gi(zc_) =0, i=1, ... ,m.
P

Assume that f(x) and gi(ﬁ) (i =1,...,m) are continuously differen-
tiable on some open region containing the feasible region, and that the
matrix whose rows are ngi(5°), i=1,...,my, 1is of maximal rank (note
that this last assumption implies that m < n, where n 1is the dimension
of x). If x° is an optimal solution of the above problem, then

there exist m real numbers A, such that (x°,\°) satisfies the
(Lagrange multiplier) equations? -7

V. e(x) + 3 2, Vg (x) = 0 and
1

gi(§)=0, i=1, ... , m.
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applied to a subset $ of the constraints, augmented by the inequations
(KT-3) and (KT-4). Attention thereby focuses on discovering the
identity of a valid set, for if one knew a valid set S¥* then in
principle one could solve (=S*)ao for all solutions (x',u'),

among which at least one would satisfy (KT-3) and (KT-4) and hence
solve (Rzo). Indeed, at least one algorithm (see Theil and Van de
Panne, 1960, and also Boot, 1961) has already been proposed which is
essentially aimed at determining a valid set. However, this approach
is probably not very efficient computationally, for although it reduces
the concave programming problem to one of solving sets of simultaneous
equations, there is a vast number of candidate sets of equations to

be tried when a valid set is not known. It seems to be difficult, even
for problems of modest size, to know how to order the trials so as to
keep the number of erroneous trials at a reasonable level. This
combinatorial difficulty is further aggravated by the numerical burden
of actually solving (=S)a°. Thus we may expect the customary gradient
methods tn be more efficient than methods based on the "valid set

approach, "

Let us turn now to parametric programming. It is perhaps surprising,

in view of the immediately preceding comments, that here methods based
on the "valid set approach" seem to nave the advantage over gradient
methods. In fact the parametric programming algorithms (cf. section 3
of Chapter II) of Markowitz (1956), Houthakker (1960), and Zahl (1964)
each may be viewed as maintaining the identity of a valid set as a

parameter is varied.
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Under appropriate acsumptions the optimal solution 5*(&) of
(Rx) and the associated dual variables u*(a) are unique and con-
tinuous. This fact, coupled with the observation that there is only
a finite number of subsets of constraints, suggests that if S' |is
valid at ao’ say, then S' is likely to be valid in some interval
including ao. If this is the case, then one may derive E*(a) and
u*(a) 1in that interval by solving (=S')a parametrically, and (KT-3)
and (KT-4) are automatically satisfied. If this is not the case,
then even though (=S')a may have a solution near ao’ either (KT-3)
or (KT-4) will be violated, and it is necessary to find a new valid
set before being able to proceed. Because of continuity, moreover,
a set which is valid near ao will usually differ by only a few
constraint indices from S'. This approach leads to a decomposition of
(RJ) on [0,1] into a chain of parametric subproblems. Kach sub-
problem involves the parametric solution of the Lagrange multiplier
equations associated with the constraints specified by a constant valid
set on a subinterval of [0,1]. By continuity the optimal t:rminal
solution to one sutproblem is the optimal initial solution to the
next subproblem of the chain, and the valid sets of adjacent sub-
problems are both valid at the transition point between them.

Thus parametric programming can be reduced essentially to the
problem in numerical analysis of solving parameterized (nonlinear,
in general) simultaneous equations. This approach to parametric
programming turns out to be a useful one computationally, since the

systems of equations involved will be shown to be well-behaved. By
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applying Newton's method (see Appendix C), second order convergence
can be achieved as the parameter increases by discrete increments,

whereas gradient methods display roughly first order convergence.

2. A Basic Congltual Algorithm

In this section we state and prove a Basic Conceptual Algorithm
for solving (Rx) for each value of a in the unit interval. We
use the adjective "conceptual" because computational implementation
is not considered at this point of the exposition. The Basic Con-
ceptual Algorithm can be modified and implemented in various ways,
as will be indicated in sections 3 and 4, thus giving rise to an entire

class of computational algorithms.

2.1 Assumptions

We assume that an optimal solution of (Rx) is available for some
value of a in the unit interval, say a = 0 (in view of the dis-
cussion of subsection 1.1, this assumption is not restrictive).

Throughout this work the following conditions will be imposed

upon (Rx). We denote the feasible region (x: g(x) :g] by X.

Condition 1: The functions fi(f) (i = 1,2} and gi(f)

(i =1,...,m) are analytic on some open region
containing X, and the constraint functions are

n
¢éoncave on E' .

Condition 2: X 1is non-empty and bounded.
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. . b/ =2 .
Condition 3: The hessian matriccs— ‘7x 1i(§) (i = 1,2) are

negative definite for all x ¢ X.

Condition 4: 1If a € [0,1] and f*(ao) is an optimal solution
of (Rzo), then the matrix whose rows are the
*
gradients vxgi(?f (ao)), i such that

g.(x*(a)) = 0, 1is of maximal rank.

A function f(xl,...,xn) of n real variables is said to be
analytic in a region R 1if in some neighborhood of every point of R
the function is the sum of a convergent power series with real coeffi-
cients. The class ¢f all analytic functions includes, for example,
all polynomials, and seems amply wide enougihr to include nearly any
continuous function likely to be encountered in epplications.

Conditions 1 and 2 imply, by A.1l of Appendi: A, that X is
convex and compact.

Condition 3 impliec, by A.3, that fl and f,_ are cstriccly

2
concave on X. This, in turn, implies by A.4 that f(x;a) = afl(:
(l-a)fg(f) is strictly concave on X for each fixed value of
& € [0,1]. In the presence of Coniitions 1 and 2, this last assertion

remains true even on some open interval containing [0,1], as

Proposition 3 shows.

Proposition 3:

Assume that Conditions 1, 2, and 3 hold. Then K7if(§;a) is

3/

§7i f(x) denotes the n by n matrix whose ij~th element is

O£ (x)

R
i) 6L



negative definite on X for each fixed v-olue of  1in some

open interval containing [0,1].

Proof: It is well-known that K?i f(x;a) 1is negative definite at

(x,a) 1if and only if all of its eigenvalues gu(§7; f(x3a)) (b= 1,...,n)

are negative, i.e., if M&x gu(§7i f(x;a)) < 0. Assume for the moment
that the last-mentioned funciion is continuous in (x,a) on some open
region containing X x [0,1], where x denotes the Cartesian product.
Since a positive sum of negative definite matrices is again negative

definite, from Condition 3 it follows that Max gu(§7i f(x;a)) <0
M

on Xx [0,1]. The proposition follows from this fact, the assumed

continuity, and the compactness of X x [0,1].

To see that Max ¢ (‘72 f(x;a)) is continuous on same open
e RIS =
region containing X x [0,1], observe that Condition 1 implies that
the elements of ‘75 T(f;a) are all continuous on some open ragion
containing X x [0,1]. Since the eigenvalues of a square matrix are
continuous functions of its elements (Ostrowski, 1960, p. 192),
gu(§7f f(x;a)) (u = 1,...,n) is therefore continuous on some open

region containing X x [0,1]; the same must be true for

max ¢ (V] £(x;00).

Remark: As indicated in Footnote 1 of this chapter, Condition > may

be weakened to (in the following, € > 0 is arbitrarily
2 2 9 .
small): (a) ‘7x fl(f) (Vx f2(§)’ is negative (semi-)

definite for all x e X, if [0,1] 4s replaced by [e,1],
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or (b) ‘72 ‘b(f) (‘]: fl(f)) ie negative (semi-) definite
for all x € X, iv [0O,!] 1is replaced by [0,.-¢], or
(c) a‘?i fl(f) + (1-a)‘7i fg(f) is negative definite for
all x ¢ X at each a ¢ (0,1), if [0,1] 1is replaced

by [(e€,l-€].

Condition 4 is equivalent to requiring that the gradients
‘7; gi(ﬁ*(ao))’ i such that gi(f*(ao)) = 0, must be linearly
independent; hence at most n constraints can be satisfied with
exact equality at an optimal solution of (Rzo). In the remark
f21lowing the Kuhn-Tucker Theorem, it was noted that this condition
implies that the Kuhn-Tucker Constraint Qualification holds. Thus
the hypotheses of the Kuhn-Tucker Theorem are satisfied by (RJO)

for each fixed a e [0,1] when Conditions 1, 3, and 4 hold.

2.2 Statement of the Basic Conceptual Algorithm

For convenience we view  as increasing from O toward 1.

Step 1: Solve (Po) by any convenient method, so that
(x#(0), u*(0), s*) satisfying 'KT-1) through (KT-4)
at @ =0 is at hand. Put o =0, s° = s*, and

(x,u)° = (x*(0), u*(0)).

Step 2: Solve equations (=So)a by any convenient method as

a increases above a° for the unique continuous
5/ ,.8° g®
solution=’ (x” (a), u” (a)) setisfying the left

2/ Throughout this work we employ the symbol (is(a), us(a)) to
denote a solution of equations (=S)a. -
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end-point value (5,3)0 so long as this solution satisfies

(KT-3) and (KT-4); that is, until a = a', where

o
o 2 Max (a: o®<a<, g(x° (@) >0, Vifso

o
ui (@) >0, ¥ 1¢8 on [@% a ).

If a' =1, terminate. Otherwise put (x,u)° =

0

o
(ES (a'), ES (x')) and go to Step 3.

Step 3: Solve equations (=S)a by any convenient method as
@ increases above @' for the unique continuous
solution (ﬁs(a), Bs(a)) satisfying the left end-point

value (f,g)o for different sets S which satisfy
s° s°
(8.1) (ieM u; (@) >0]CsCieM gl(x (a') =0)

until for some §S', (53 (), ES (a)) satisfies (KT-3)
and (KT-4) on [a',a'+e] for some € > 0. Put

a =qa', g2 S', and return to Step 2.

The next subsection is devoted to the development of the theo-
retical results necessary for justifying this conceptual algorithm.

Complete justification requires proof of the followin:

Theorem (Basic):
Assume that Conditions 1 through 4 hold. Then the following

assertions regarding the Basic Conceptual Algorithm hold:
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(1) Step 2 is well=defined.

o 0
(11i) At each execution of Step 2, (ES (a), BS (@) = (x*(a),

u*(@) on [a%a'],
(111) Step 3 is well-defined.

(iv) Step 3 will be executed only a finite number of times

before termination obtains.

2.3 Theoretical Development

Contimuity plays a crucial role in parametric programming.

Theorem 1 (Continuity):
(i)  Assume that Conditions 1 through 3 hold. Then (Rx) has
a unique optimal solution x*(a), and x*(a) is continuous

on some opzn interval containing [0,1].

(ii) Assume that Conditions 1 through 4 hold. Then (Rx) has
unique dual variables u;(a) (i =1,...,m) such that
(x*(a), u*(a)) satisfies the Kuhn-Tucker Conditions (5)

through (7), and u*(a) is continuous, on some open interval

containing (0,1].

Proof: First we prove (i). The existence of an optimal solution

of (Rx) for any fixed value of Qa follows from the fact that
f(i;a) is a continuous function of x on the compact set X. The

uniqueness of the optimal solution follows by A.2 from the fact that
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f(ﬁ;a) is strictly concave in x over the convex set X for each
fixed value of a in some open interval tﬁ containing [0,1]. Denote
the unique optimal solution by x*(a).

To demonstrate that _)_c*(a) is continuous on (;?, suppose
the contrary. Then there exists a sequence < a’ >+ a with av,
Qe J such that < _J_(_*(av) > # x*(@). Hence there is an (open)
neighborhood N(x*(@)) of 5*(6) such that 5*(av) ¢ N(i*(a))
infinitely often, and by taking a subsequence, if necessary, we may
assume that this holds for all . Since.é/ X-N(x*(a)) is compact
we may assume, again taking a subsequence if necessary, that
< 5*(av) >~ x' e {X-N(x*(@))). Thus by the continuity of f(x;a)

with respect to (x,a), we obtain
(9) < f(x*(a");a") > - £(x';a) .

Now f(x*(a);a) = Max (f(x;a) subject to g(x) :g] is the
X
supremum of & family of functions linear in @, and therefore is

convex in Q on C/ Using A.5, we obtain
(10) < f(x*(@’);a’) >+ £(x*(@);q) .

Assertions (9) and (10) imply that f(x';a) = f(x*(a);a); but by

construction x' # x*(@), so that the unique optimality of x*(Q)

ETw}len used with sets, the symbol "-" denotes relative complement.

Thus X-N(x*(a)) 5 {x € X: x £ N(xx(a))].
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{s violated. Hence x*(u) wmnut be continuous on té? This completes
the proof of (i).

Now we prove (ii). The existence of u*(a) such that (x*(a),
u*(a)) setisfies (5) through (7) on some open interval containing
(0,1] would follow from the necessity of the Kuhn-Tucker Conditions
if the hypotheses of the Kuhn-Tucker Theorem were satisfied by (Rx)
on such an interval. It was noted in subsection 2.1 that these
hypotheses are satisfied for each value of a € [0,1]. To show that
this remains true on some open interval containing [0,1], 1in view
of Condition 1, Proposition 3, and the remark following the statement
of the Kuhn-Tucker Theorem, it is enough to show that Condition 4 is
still satisfied on some open interval containing each end-point.
Consider the left end-point a = 0. Denote by D(a) the matrix whose
rows are vxgi(f*(a))’ i such that gi(i*(o)) = 0. By Condition 4
applied at a = 0, D(0) has rank equal to the number of its rows,
which is equivalent to the existence of [D(O)Dt(O)]'l, which is
equivalent to the determinantal inequality |D(O)Dt(0)| # 0. Since
ID(a)Dt(a)I is a continuous function of a for a sufficiently
near 0, it does not vanish in some open interval containing a = 0,
and so D(a) remains of maximal rank on such an interval. This
implies that Condition 4 holds on some open interval containing a = 0O,
for by the continuity of x*(a) and of gi(i)’ and hence of
gi(ﬁ*(a)), one easily obtains that (i: gi(ﬁ*(a)) - 0)C
{i: g, (x*(0)) = 0} for a sufficiently near 0. A similar argu-

1

ment applies to a = 1,
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To show the uniqueness and continuity of E*(a) on some
open interval containing [0,1], fix a € [0,1]. Since x*(a) is
unique, from (7) we conclude that u;(ao) must vanish for each 1
such that gi(f*(ao)) > 0. By the continuity of gi(i*(a)), we
have that gi(z*(a)) > 0 on some open interval about a  when
gi(f*(ao)) > 0. Hence ui(a) vanishes on some open interval about
a_  for each i such that gi(f*(ao)) > 0. Denote (i: 81(5*(05)) = 0}
by B. It remains to consider u;(a), i € B. From (5) and (7) one
obtains

(1) Vrxxe)sa) + 5 ura) Ve, (x*@)) = 0.
ieB

Since by continuity (i: gi(f*(a)) = 0)C (i gi(f*(ao)) = 0} =B
for a sufficiently near a, it follows from (5) and (7) that (11)

must hold in some open interval about ao with the same summation set.

That is,

(12) V e(x*(a);0) + 3 ut(a) (e, (x*(@) = 0

ieB
holds on some open interval about ao. Write Eg(a) for the row

vector whose components are u;(a), i € B. Then (12) can be rewritten

in matrix notation as
(12.1) ux(a)D(a) = - vxf(f*(a) ;Q) .

Repeating a previous argument, one may assert that [fkafﬁt(a)]'l

exists on some open interval containing @ . Postmultiplying (12.1)
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by .ﬁt(a)[‘ﬁ'(a)ﬁt(a) ]'l, one obtains that B*é(a) must satisfyz/

(12.2)  ux(@) = - {r(xx(e);05 @) D@ (@) 17

on some open interval containing ao. The right-hand side is unique
and continuous in @, and therefore Bﬁ(a) is also unique and con-
tinuous on some open interval containing @ .

It will prove convenient to introduce some special notations.
Define Ax to be the set of constraint indices corresponding to the
constraints which are active at @ in the sense that their dual

variables are strictly positire:
A
A= (1 e M: u;(a) >0} .

Define Bx to be the set of constraint indices corresponding to the

constraints which are binding at x*(a):
A
Bx = (i ¢ M: 81(5*(a)) = 0} .

The sets Ax and Bx are well-defined on some open interval con-
taining [0,1] because of the existence and uniqueness of (x*(a),
u*(a)) on some such an interval. We can now state two important

corollaries of Theorem 1.

Corollary 1.1:

Assume that Conditions 1 through 4 hold. Then for each a € (0,1]

1 Equation (12.2) is intended only for theoretical and not compu-
tational |use.
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there exists an open interval containing ao such that, on

this interval,

Proof: The outermost relations follow directly from the definitions
of Ax and Bx and the continuity of x*(a) and u*(a). The middle

relation follows from (7).

Corollary 1l.2:

Assume that Conditions 1 through 4 hold. Then there is an open
interval containing [0,1] such that, for each fixed value of
a 1in this open interval, a subset S of constraint indices is

valid at a if and only if AXC S Chx.

Proof: This assertion is an immediate consequence of the unique-

ness of (x*(a), E*(a)), and Proposition 2.

The significance of Corollaries 1.1 and 1.2 is that the totality
of ~~lid sets at @ € [0,1] contains the totality of valid sets
fe= a sufficiently near . Hence the optimal solution of (Rzo),
whiecl, yields Aao and BJO, gives a strong indication of the identity
of a valid set for a near ao.

The next theorem shows that equations (=S)a can be solved on

some open interval about a e [0,1) if S 1is valid at .

Theorem 2:
Let @ € ([0,1] be fixed, let S be valid at a and assume

Conditions 1 through 4 hold.
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Then there exist an open interval Iao containing and symmetric
about a_, and an open neighborhood N(f*(ao)’ 3*(00)) containing
(f*(ao), 3*(00)), such that on Ia_  there is a unique function
(x°(@), u5(a)) 1n N(x*(a ), u*(@)) which satisfies (=S)a.

Furthermore, (§S(a), gs(a)) is analytic on Ia .

Proof: The theorem wouald follow directly from a version of the
Implicit Function Theorem (Bochner and Martin, 1948, p. 39) applied
to the equations (=S)a if the following hypotheses of th.t theorem
were satisfied:

(a) (5*(ao), B*(ao)) satisfies (=S)ao.

(b) The left-hand side of each equation of (=S)a 1is analytic
in (x,u,a) in an open neighborhood of (5*(ao), 3*(a°),ao).

B((:s)ao)

. . : n .
(¢) The Jacobian _?RETQT__ is non-zero at (x (ao), u (ao)).

By the validity of S at a°, part (i) of Proposition 1 and Corollary
1.2, (a) holds. It follows from Condition 1 that (b) holds. To
simplify the task of showing that (¢) holds, we regroup the order of
partial differentiation , which is equivalent to regrouping the columns

of the Jacobian matrix, so that we actually consider the Jacobian
3 (=8)a_)
o(x; u;, 1eS; uy, i¢8)

Writing H for the n by n hessian matrix

2 & )
UMGESCRIERIS W CRIFACCRY)

and D for the matrix whose rows are ‘J;gi(f*(ao)), ie€S, one
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readily derives that this Jacobian, evaluated at (5*(00), 2*(00)),

is the determinant of the matrix (we use dotted line to denote

partition)
- [ 1 I
H ' Dt : 0
D 1 o L0
R B =N
o 1 0 I

where O and I are zero and identity matrices of the appropriate

orders. Th~ determinant is non-zero if and only if

t

|
H : D
——————-
D 10

is invertible, which is true if and only if the matrix equation

o 07][y 0
(13) G | e - |-
D | 0]J\z 0

has y =0, 2 =0 as its only solution, where y is an n-vector
and 2z 1is a vector with a number of components equal to the number
of constraint indices in S. The proof of the theorem will be com-
plete when we show that (13) has only the null solution.

Performing the indicated block mu:tiplications for (13), one

obtains
(13.1) Hy + Lﬁg = 0 and
(13.2) Dy =0.
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Now H 1is negative definite, for it is a positive linear combination
of negative semidefinite hessians, at least one of which is known to

be negative definite. Hence H 1is invertible, and (13.1) yields

(13.3) y=-H"Dz.

(13.4) Dy = -DH D'z=0.

By Corollary 1.2, Ax &S CBx . By Condition l,, therefore, D
is of maximal rank, and that rank equals the number of rows of D.
Hence [DH-lDt] is invertible, and (13.4) yields z = 0. By (13.3),

y = 0 also. Thus (13) has only the null solution.

Corollary 2.1:

Let «a_ € [0,1] be fixed, let S be valid at @, and assume
that Conditions 1 through 4 hold.

Then there exists an open interval containing ao and contained
in Iao such that, for each fixed value of & in this interval,

the following three assertions are equivalent:
(i) s 1is valid at a.
F S S

(ii1) (x"(a), u’(a)) = (x*(a), ux(a)) .

(i11) g (x*(@) >0, V i £

u?(a)zo, Y ies.
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Proof: (i)=> (ii). By continuity, (x*(a), u*(a)) e N(f*(ao)’

B*(ao)) for all a sufficiently near ao; by the validity of S
at a, part (i) of Proposition 1, and Corollary 1.2, one concludes
that (x*(a), u*(a)) satisfies (=S)a; since the solution of
(=S)a is unique in N(:_c*(ao), 3*((10)) for e In, assertion
(ii) follows.

(i1) => (iii). Because (x*(a), u*(a)) satisfies (5) through
(7), (iii) must hold.

(111)=> (i). Assertion (iii) and the fact that (x°(a),
u’(@)) satisfies (=5)a imply by the definition of validity that
S 1ic valid at a.

One more result must be established before a complete proof of
the Basic Theorem can be given,

Define a point of change of Bx as a point a' with the pro-

perty that there is no open interval containing «' such that
Bx = Bx' everywhere on that interval. A similar definition holds
for a point of change of Ax. 1In the sequel, the phrase "point of

change" is used to refer to either a point of change of Ax or of

Bx, or possibly of both.

Theorem 3 (Finiteness):

Assume that Conditions 1 through 4 hold. Then Ax and Bx

each have a finite number of points of change on [0,1].

Proof: GSuppose that PBx has a finite number of voints of

change on [0,1]. Then there is a cluster point a € [0,1] of

7
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these points of change. Let < a’ >, a’ e (0,1], be a sequence of

distinct points of ge of Bx which converges to a. Applying

Corollary 1.1 at av, we see that there exists an open interval
containing av such that Aavg AC B CBIV on this interval.

By the definition of a point of change of Bx, for each a” there

1

exists a number Bv contained in this interval and in ((:tV =

o’ +3) such that m’cas’c B’ Cm’ (note that B8' ise
proper subset of Ba“’). Clearly < Bv > - Qq. From Corollary 1.1
applied at a, we see that we have demonstrated the existence of
two sequences < a’ > - a, < Bv > . @, such that AESAD‘VE

ABVC BBVCBIvC.BE for all v sufficiently large. Since there

is but a finite number (2m) of possible sets which BBv or R’

could possibly be, we may assume, taking a subsequence if necessary,
that there exist sets B' and B" such that BBV = B"CHIv =Bl

for all .

"

Consider the function )_(B (ad) defined as in Theorem 2 applied

at . Since B" is valid at o and at all «’ and Bv, v

sufficiently large, _)EB (@) = x#(a) at these points. Take i€ B'-B".

Then g, (EB”(av))z 0 and g, ()_(B"(Bv)) >0, all v sufficiently
large, :nd gy (_)_c.B"(a)) = 0. OIn other words, we have shown that

a is a non-iso(l)ated zero of g, (EB"(CX)), and that this function is
not identically zero cn any openointerval about Q. But this leads

to a contradiction of the weli-known fact (Apostol, 1957, p. 518) that
the zeros of an analytic function which is not identically zero are

"
isolated, for by Theorem 2 and Condition 1 we have that g, (xB (@)
o

78



is analytic on some ojen interval ubout a. Hence the sugfosition
that Bx has an infinite number of points of change on [0,1] is

false.

A similar argument shows that Ax cannot have an infinite number

of points of change on [0,1].

Arplying the result of Theorem 3 to a given (Pa), define

0< ai < aé <+ 00 < aﬁ <1 to be the collection of all points of

change of Ax or Bx or both. As a matter of convention we take

aé = 0 and aﬁ+l = 1. From Corollaries 1.1 anc 1.2 we conclude that

arny se* which is valid at a, aj <a< a3+l, is also valid on the

entire closed interval [a', a' .]. 1In addition, it may also be

J° i+l
valid on other intervals, of course. Among the sets which are valid

at aé there are all those which are valid on [a! 1’ aj] or on

J
[aj, aj+l].

We are now in a position to prove the Basi- Theorem.

Proof (Basic Theorem): First we prove parts (i) and (ii). At

the beginning of each Step 2, (5,3)0 and S° satisfy (KT-1)
o o . ; ) 0
through (KT-4) at a, 5o that S  is valid at a and (x,u) =

(5*(ao), B*(ao)). Let J, 1< J <N+l be the largest integer such

that S° is valid on [ao, a&] (a& = ai =a® =0 is permissible

the first time Step 2 is executed). Applying Theorem 2 at each point

of [ao, a&], it follows that (:So)a has a unique analytic solution
) o

(§S (a), ES (a)) satisfying the left end-point value (5,3)0 on some

interval containing [a°, a&]. This solution satisfies (KT-3) and
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(KT-4) and equals (x*(a), u*(a)) on (a®, a&] by Corollary 2.1.

If a; =1, the solution of (P@) on [0,1) 1is complete. If

o o]
a; <1, however, (58 (a), BS (@)) does not satisfy (KT-3) and

(KT-4) for any a e (a aj 3+l)’ for otherwise by Corollary 2.1

© would be valid on [

applied at a!, S ], which would

J+l
violate the definition of J. Clearly the scalar a' defined in
Step 2 is precisely «', and (i) and (ii) hold.

Next we prove (iii). Any set S which satisfies (8.1) is valid
at Q', by Corollary 1.2 and the fact that (Eso(a'), Bso(a')) =
(x*(a'), u*(a')). Applying Theorem 2 at Q', we see that if S
satisfies (8.1) then (=S)a has a solution as stated on [a', a'+el]
for some € > 0. By Corollary 1.1 we know that at least on2 such
S, say S', is valid on [a', a'+e, ] for some O < €, S €5 by
Corollary 2.1 applied at a', (x §' (@), u (a)) satisfies (KT-3)
and (KT-4) on [a', a'+e] for some 0< e < €5 Since there is but
a finite number of sets satisfying (8.1) S' will be found after a
finite number of trials.

Finally, we prove (iv). It was established in the proof of (i)
that Step 3 is entered each time a point of change Q' 1is encountered
at Step 2 such that the current set S0 being used at Step 2 is not
valid immediately above Q'. It was established in the proof of
(iii) that Step 3 finds a set which is valid immediately above a'
ir a finite number of trails, and control is returned to Step 2 along

with the new valid set. By convention we have taken Q increasing,

and by Theorem 3 there is but a finite number of points of change on
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[0,1]: it follows that Step 3 will only have to be executed a finite

number of times before termination obtains.

Remark: At Step 2, @' need not be the next point of change aoove

ao, for §° may remain valid on an interval spanning several
points of change. The algorithm could be modified to require
So = Bdx at Step 2, so that a' would assume, in turn, the
values of each point of change of Bx; or one could require
s - ax at Step 2, so that a' would assume, in turn, the
values of each point of change of Ax. The minimum require-
ment (the one adopted here) is pa_c_s°;m at Step 2, and

seems more symmetrical and less arbitrary than either of the

extreme requirements just mentioned.

From the proof of the Basic Theorem, it is clear that the Basic

Conceptual Algorithm can be paraphrased as follows.

Step 1: By any convenient method, find the optimal solution
(x*(0), u*(0)) of (Po). set a® = 0, s° equal

to any set valid at a = 0, and (5,3)0 = (x*#(0), ux(0)).

Step 2: Solve (=S°)a as a increases above ao for its

unique continuous solution satisfying the left end-point
condition (zso(ao), Eso(ao)) = (5{3)0, namely

(x*(a), u*(a)), wuntil either a =1 or a point of
change a' of AXx or Bx is encountered to the right

of which So is no longer valid. In the first case,
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terminate; in the second case, set (5,3)0 = (x*(a'),

u*(a')) and go to Step 3.

Step 3: Among all sets valid at a', find one which is valid to

o

the right of a'. Call it S'. Set a°=a', s°=§',

and return to Step 2.

See Appendix B for graphical illustrations of this algorithm.
Now that the Basic Conceptual Algorithm has been theoretically

Justified, we take up computational considerations.

3. A Basic Computational Algorithm

In order to implement the Basic Conceptval Algorithm, it is necessary
to have a method of actually solving (=S)a as «a changes parametric-
ally. Only in certain simple cases is it possible or economical to
solve these equations analytically, and so usually numerical methods
must be used. We recommend Newton's method, or a variation thereof,
as an efficient means of solving (=S)a on a digital computer as Q
changes by small discrete jumps.

After proving the applicability of Newton's method, we state and
prove a Basic Computational Algorithm. Some necessary computational
refinements are then briefly indicated, with further details being

added in Appendix C.

3.1 Newton's Method

Newton's method is briefly reviewed in Appendix C. Under Conditions
1 through 4, it is easily seen from Theorem C.1l of Appendix C and the

proof of "heorem 2 that for each « € (0,1], Newton's method applied
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to (=s)aO is welledefinel und quuauraticully convergeni to (x*(ao),

u*(ao)) if 5 is validat a_  and if the starting roint (ﬁ,g)o is

in a sufficiently small neighborhood of (5*(00)’ 3*(00)). Since
(x*#(a), u*(a)) 1is continuous, by taking & small enough (5*((!0-&),
E*(ao-Aa)) is such a starting point. 1In other words, Newton's method
is applicable point by point. Does there exist 4&x > 0 such that a
computational algorithm can be designed using Newton's method to solve
(=S)a with &0 as a fixed step size throughout? The answer is
affirmative, and requires a proof that the size of the neighborhoods

mentioned above may be taken to be bounded away from zero.

Theorem L.13

Let Conditions 1 through 4 hold, let x € [0,1] not a point of
change be fixed, and let S be valid at ao.

Then there exists a scalar r' > 0, which does not depend on
ao or on S, such that Newton's method applied to equations (=S)ao
is well-defined and quadratically convergent to (z*(ao), B*(OQ))

if the starting po'rt (i,g)o is in the (n+m dimensional) neighborhood

Nr'(f*(ao)’ 3*(ao)).

Proof':

1. We shall use the notation and observations immediately following
the proof of Theorem 3. To prove this theorem it is sufficient to
show that for each j (j = 0,...,N) there exists a scalar r(j) >0
such that the following assertions hold on N}(J) (5*(ao), 2*(a°))

: ' 1 ' ' .
for any fixed a € [aj’ aj+l] and any S valid on [aJ, aj+l]’
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terminate; in the second case, set (5,3)0 = (f*(a'),

u*(a')) and go to Step 3.
Step 3: Among all sets valid at a', find one which is valid to
o]

the right of a'. Call it S'. Set a° =a', s°=s',

and return to Step 2.

See Appendix B for graphical illustrations of this algorithm.
Now that the Basic Conceptual Algorithm has been theoretically

Justified, we take up computational considerations.

3. A Basic Computational Algorithm

In order to implement the Basic Conceptual Algorithm, it is necessary
to have a method of actually solving (=S)a as Q changes parametric-
ally. Only in certain simple cases is it possible or economical to
solve these equations analytically, and so usually numerical methods
must be used. We recommend Newton's method, or a variation thereof,
as an efficient means of solving (=S)a on a digital computer as «
changes by small discrete jumps.

After proving the applicability of Newton's method, we state and
prove a Basic Computational Algorithm. Some necessary computational
refinements are then briefly indicated, with further details being

added in Appendix C.

3,1 Newton's Method

Newton's method is briefly reviewed in Appendix C. Under Conditions
1 through 4, it is easily seen from Theorem C.l of Appendix C and the

proof of Theorem 2 that for each a e [0,1], Newton's method applied
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to (=S)ao is well-definel und quaaratically convergene to  (i*(a ),
u*(ao)) if S is valid at a  and if the starting point (x,u is
in a sufficiently small neighborhood of (5*(a0), 2*(00)). Since
(x*(a), u*(a)) 1is continuous, by taking &0 small enough (5*(ao'Aa)’
3*(ao-Aa)) is such a starting point. In other words, Newton's method
is applicable point by point. Does there exist &x > O such that a
computational algorithm can be designed using Newton's method to solve
(=S)a with &0 as a fixed step size throughout? The answer is

affirmative, and requires a proof that the size of the neighborhoods

mentioned above may be taken to be bounded away from zero.

Theorem 4.1

Let Conditions 1 through 4 hold, let a € [0,1] not a point of
change be fixed, and let S be valid at ao.
Then there exists a scalar r' > 0, which does not depend on
@ oron S, such that Newton's method applied to equations (=S)ao
is well-defined and quadratically convergent to (5*(ao), 3*(&0))
if the starting point (5,3)0 is in the (n+m dimensional) neighborhood

N, (x*(a)), u*(a)).

Proof':

1. Ve shall use the notation and observations immediately following
the proof of Theorem 3. To prove this theorem it is sufficient to
show that for each j (Jj = 0,...,N) there exists a scalar r(j) >0
such that the following assertions hold on Nr(J) (5*(ao)’ 2*(ao))

. [ [] 1 ' ' .
for any fixed a e [ad’ aj+l] and any S valid on [aj, °5+l]'
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(a) The left-hand side of each equation of (=S)Czo is
twice continuously differentiable with respect to
(x,u).

o((=8)a )

(b) The Jacobian S # 0.

(¢) Aa(x,u; ao,S) <L <1, where A(E’BWO'S) is a certain
upper estimate of the norm of the Jacobian matrix of the
iteration function derived by applying Newton's method

to (=S)<1o (see section 1 of Appendix C).

To see why this plan is sufficient, let r' = Min(r{0),...,r(N)},
let a_ e [0,1) not a point of change be fixed, and let S be valid
at ao. Then for some j tetween O and N we have that S is

] and a € [aj, a' .]. Applying Theorem C.2 of

J+l J+l

Appendix C, we see that Newton's method applied to (=S)ao is well-

] 1] 1]
valid on [aj’ Qi

defined and quadratically convergent to (5*((10), B*(ao)) if the
starting point (5,3)0 € Nr'(f*(ao)’ B*(ao)).
> 1 t
2. Let J be fixed, 0< J <N, let a € [aJ., aj+1], and
let S be any set which is valid on [aj, ajﬂ].
By Condition 1, the left-hand side of each equation of (=s)a0

is twice continuously differentiable with respect to (_’E’E) on some

open neighborhood of (x*(a ), u*(a)).

=" o
3((=s)a )
The Jacobian ————— # 0 at (x*(a), u*(a)) by the proof
o(x,u) — S TR

of Theorem 2. As a consequence of Condition 1, this Jacobian is con-
tinuous with respect to (x,u) on some open neighborhood of (x*(ao),
3*((10)). One concludes that the Jacobian does not vanish in some open

neighborhood of (5*(&0), g*(ao))-
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It can be shown in a straightforward manner (see Henrici, 196k,

p. 106) that A(x,u; ao,S) vanishes at (5*(ao), 3*(a3)). By Condition 1

this function is continuous with respect to (5,3) on some open neigh-

borhood of (5*(00), E*(ao)). One concludes that 4(x,u; ao,S) <1,

where O0< L <1, on some open neighborhood about (5*(ao), 3*(&0)).

Summarizing this part of the proof, we assert that (a), (b),

and (¢) hold on some open neighborhood of (5*(ao), 3*(ao)) when

o

5o

(a!

up>

(

1] 1
a_ € [aj, aj+1

Since

]
57 %41

1,

(E’E

is compact.

the image set

] and S 1is any set which is valid on [a&, a! .

J+1

(x*(a), u*(a)) is continuous on the compact set

): (x,u) = (x*(a),u*(a)) for same a,a! < a5a3+l]

J

It follows from the compa~‘ness of ' aad the result

of part 2 of this proof that there exists a scalar r(Jj) >0 such

that (a), (b), and (c) hold on Nr(j)(f*(ao)’ 3*(&0)) when

a € [a
0 J

1)

] and S 1is any set which is valid on [aj, a' . ].

J+l

When Conditions 1 through 4 hold, we define £, to be the minimum

1

distance between any two points of change on [0,1], and 12 to be

the length of the shortest of all the intervals Iao defined in Theorem 2

applied at every point of change on [0,1] with each set which is

valid at each point of change. Define £ = % Min[ll,lz}. Note that

(x°(a),

on Ia'
J

at a'.
J

u

up>

S(a)) is uniquely defined, by Theorem 2 applied at 05,

[a

3-1,an+7]

)

for any 1 <jJ< N and any § valid
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Theorem 4.2

Let Conditions 1 through 4 hold, let a' € {0,1] be a partic-
ular point of change, and let S be valid at a'.

Then there exist scalars r" >0 and 0 < ¢" <Z, which do
not depend on ' or on &, such that Newton's method applied
to (=S)ao is well-defined and quadratically convergent to
(fs(ao)’ Es<ao)) if a e [@'-£", a'+£"] and if the starting point

(x,0)° € Nu(x*(a), u(@)).

Proof:

1. Since there is a finite number of points of change .n [0,1]
and a finite number of valid sets at each, it is sufficient to show
that the theorem holds with r and £ possibly depending on a'
and S. This will be done by applying Theorem C.2 of Appendix C.

2. Let a' € [0,1] be a particular point of change, and let
S be valid at a'. It remains to demonstrate the existence of scalars
r>0 and 0</ 5 7 such that the following three assertions hold

S S . \ )
on N_(x (@), uw’(a)) when o e [a'-f, a'+e]:

(a) The left-hand side of each equation of (=S)aO is

twice differentiable with respect to (x,u).

o((=8)a,)
(b) The Jacobian —————— # 0.
(E)B)

(c) o(x,u; ao,s) <L<L

3, 1In view of the fact that (5S(a'), Es(a')) = (x*(a'), ux(a')),

we may argue as in part 2 of the proof of Theorem 4.1 that (a), (b),
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and (c¢) hold for @ = a' on some open neighborhood of (is(a'),
u’(a).

L, Sincc (5S(a), Hs(a)) is continuous on the closed interval
Ta', and therefore uniformly ‘continuous, one may assert the existence
of scalars r>0 and 0 < £ <7Z such that (a), b), (c) hold on
Nr(ﬁs(ao), Hs(ao)) when a e (a'-£, a'+L].

By specializing Theorem 4.2 to a = ', and recalling that
(Es(a'), Bs(a')) = (x*(a'), u*(a')) when & is velid at a', it
is evident that Theorem 4.1 is still true if @ is permitted to be
a point of change. Since (:.*(a), u*(a)) is continuous on [0,1],

it is uniformly continuous on (0,1], and one immediately obtains

the following corollary of Theorem &4.1.

Corollary k.1:

Let Conditions 1 through 4 hold, .et Qa_ e (0,1], and let S
be valid at ao.

Then there exists a scalar &' > 0, which does not depend on
a  oron S, such that Newtor's method applied to (=S)ao is
well-defined and quadratically convergent to (5*(ao), 3*(ao))
if the starting point is (5*(00-6), B*(ao-B)) and |8| <38,

0<a-8<1.

A similar arpument shows that Theorem 4.2 yields the following

corollary.
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Corollary h.2:

Let Conditions 1 through 4 hold,'let a' € [0,1] be a particular
point of change, and let S be valid at a'.

Then there exist scalars 8" >0 and 0 < £" < Z, which do not
depend on &' or on S, such that Newton's metnod applied to
(=S)ao is well-defined and quadratically convergent to

(f’(a ), BS(O‘O)) if a e [a'-£", a'+£"] and if (5*(050-6),

o
E*(ao'5)) is the starting point and [8| < 8", 0 < a-&< 1.

3.2 The Basic Computational Algorithm

Using the results of the previous subsection, we can design a
computational counterpart of the Basic Conceptual Algorithm by using
liewton's method to solve (=S)a as Qa increases by steps of size
XY, A useful idealization is obtained by assuming that there is no
computational error. In view of the quadratic nature of the convergence
of Newton's method, it is no less plausible to assume tnat Newton's
method converges to an exact solutio1 of (=S)a when it theoretically
should converge.§/ An annotated flow chart of the Basic Computational

Algorithm is given in Figure 1.

Theorem 5 ¢
Assume that Conditions 1 through 4 hold, that there is no compu-
tational error, and that Newton's method converges to an exact solution

of (=S)a when it theoretically should converge.

§7 This assumption is strictly true only when fl and f, are quadratic

polynomials and all constraints are linear, in which case (=S)a is a
set of linear equations in (5,3) and Newton's method therefore leads
to an exact solution in a single iteration.
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Then there exict € >0 and Ax > O such that the Basic Compu-
tational Algorithm is well-defined and will terminate with J&x =

in a finite number of computational steps.

Proof: Put
€ = % Min (u".l*(aj)]
SJ
2
By construction, € > 0. By the uniform continuity of u;(a)
(1 =1,...,m) on [0,1], there exists a scalar 5, > 0 such that

Ia-ajl <8, implies |u§(a)-u§(a3)| <e (1=1,...,m) for any J
(j = 1,...,N). Put

N Min g (x*(a'))

23, 1=y

1<y
At & By

I/\

By construction, €, > 0. By the uniform continuity of gi(g*(a))
(i =1,...,m) on [0,1], there exists a scalar 5, > 0 such that

Ia-ajl <&, implies |[g, (x*(a)) - si(ﬁ*(aj))l <e, (1=1,...,m)

2
for any J (j=1,...,N).

Put e* = Min[el,e )} and 2a* = 1/K, where K is the smallest

2
integer satisfying K > 2/Min[6l,62,6',5",2"}. In view of the Basic
Theorem, to prove this theorem it is sufficient to show that for these
choices of € and & Newton's method is well-defined and sure to

be convergent as stated in Steps 2 and 3, and that the trials . Step 3

must lead to a success.

89



At each application of Newton's method during Step .0,

uJ-l)

’ —

(xJ-l

= (x*((J-1)a@), u*((J-1)2a)) and 5° is valid at

@ = (J-1)aa. 1f 8° is valid at JA®, then since dax < &' we
have by Corollary 4.1 that Newton's method is well-defined and con-
vergent to (x*(J&x), u*(Jaa)). If s° 1is not valid at JAQ,

then since o* < £" < Z there must be exactly one point of change
a' <1 on [ (J-1)2, J&x]; but s® is valid at a', sx < 4",

and Sa* < &', so by Corollary 4.2 Newtor's method is well-defined
and convergent to (_)_(SO(JM), BSO(JAG)), and Step 3 is entered. By
the choice of ¢*, A= Ad' and B = Bx'. Corollary 4.2 again applies,
and ensures that Newton's method is well-defined and convergent to
(}_S(Jéa), ES(J!_G)) when AC S CB. The trials are sure to lead to
a success because some set which is valid at Q' must also be valid
at JAx, since d' is the only point of change on [(J-1)&x, J&x].

A word is in order about the consequences of taking € and &XX
different from e* and Aa*. This is of considerable practical
importance, since €* and Aa* cannot be calculated beforehand.

It is possible to give a detailed discussion of the difficulties
caused in the Basic Computational Algorithm by "poor" choices of ¢
and &, but we shall 1limit the present discussion to a few general
remarks.

It is clear from the proof of the theorem that when € = ¢*, any
M < Mox* will doj in fact, to every €, O < e < e¥*, there exists
x#(e), © < oo*(e) <%, such that the Basic Computational Algorithm

is well-defined and computationally finite when € and & are used
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Step 1

Step 2

Step 3

P

Solve (Po). Put (ﬁo,go,so) equal to a
solution of (KT-1) through (KT-4) at a=0

|

Put (xJ'l,uJ'l)=()_cJ,1_.1J) Choose step size &x > O
Put J = J+1 Choose € > 0
Put J = 0

o 1

(Ié Joa > l@ Itera‘ce from (§J ) to
I_Y:s (x",u ), the solution+ of
0
Terminate (=s%9)Ja a, by ?‘Jewton s method
(S°'s STILL vaLID AT Jaed)
‘ ~ ] Yes
Write | Is g (x') >0, Vi ¢s° and \po
(x*(JAa) u*(Jaa)) J o -
9 uy 20, Vi es5™? R
= {x ,u) (8° 1s wer
VALID
2T Jax)
. J=1
Put A = (i: uy > €}
- h—
and B = (1i: (le)<e}

J“ 7]
Choose S such that AC SC B
and S not tried before at the

current value of J

put s° = §

. I

Iterate from (xJ 1, th) to (x N ), the

solution® of (=5 )JAx, by Newton's method
/ 1s g.(x°) >0,V i £5 and \ o
Yes | i=" =" 2

J
(THiS 7218 o \ui 2 0 VLENS /(T“" TRIAL wAS WeT
SUGQ.SSpuLL: s'f: SvecessauL 5 S 1S w~Vor
VALID AT Fae ) VALID AT Tox)
Figure 1

Flow Chart of the Basic Computational Algorithm

* The notation used here is contradictory of that used elsewhere
o o

in this work: (EJ,BJ) actually means (_)SS (Jox) ,ES (Jax)) at

Step 2, for example.
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ani " < Aa*(e). Thus ¢ ard 2a necd not be exactly e* and
Ny*  in order for the algorithm to be applicable. In general, however,
the following qualitative assertions hold: (a) when € is too small,
there may be too few candidate sets at Step 3, i.e., there may be no
set satisfying ACS CB which is valid at J&x, so that Step 3
cannot be successfully completed; (b) when € is too large, there
may be too many candidate sets at Step 3, resulting in an excessive
number of triels before Step 3 is successfully completed and possibly
in the break-down of Newton's method (lack of convergence or lack of
existence of the required inverse matrix) for the trial sets which
are not valid at JAx and do not satisfy the hypotheses of Corollary 4.2
applied at the point of change just before JAa; (c) when A 1is too
small, the algorithm is applicable but requires more executions of
Step 2 increments in @, thereby reducing the efficiency of the algorithm
for a user who would be satisfied with knowing (x*(a), u*(a)) for a
coarser grid of values; and (d) when Ax 1is too large, Newton's method
is apt to be ill-defined, or divergent, or convergent to the wrong
solation of (=S)J&x, and it could happen that there is no set satis-
fying Ags C B which is valid at JAXx, so that Step 2 cannot be
successfully completed.

It is evident that € and 2 must be selected by trial and
error. A more powerful approach would be to modify € and Ax adaptively
as the computations proceed: one would provide for monitoring the number
of iterations used by Newton's method each time it is employed and also
the number of candidate sets at Step 3, and the basic strategy would

be to increase s and/or decrease € when the algorithm is making
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pood progress und to decrease la and/or increase € when the algorithm
encounters difficulty. Such an apnroach was applied successfully in the
design of the machine code used to solve the parametric problem of
Chapter 1IV.

In addition to the possibility of increasing computational effi-
ciency by adaptive selection of € and &, it is possible to greatly
improve computational efficiency by using refinement, bordering, and
partitioning methods for the inverse matrix required by Newton's method.
A discussion of some of these devices is given in Appendix C. These
devices, or others like them, should be incorporated into any machine
code for implementing the present algorithm , or the number of matrix

inversions required would probably preclude the use of Newton's method.

L.  Further Study of Step 3

Step 3 of the Basic Conceptual Algorithm involves a certain amount
of trial and error: at the point of change a', try different sets
S which are valid at a' (i.e., A' CS CBr') until one is found
which is valid to the right of a'. When Bx'-Ax' 1is a singleton, then
no erroneous trials will be made at Step 3; for there are only two
eligible sets, one of which was found at Step 2 not to be valid to the
right of a'. When Bx'-Ax' contains many constraint indices, however,
many unsuccessful trials may have to be made before a set which is valid
to the right of «a' 1is found. It is therefore of interest to appraise
how serious a difficulty the trial and error nature of Step 3 is likely

to be, and to consider some ways of ameliorating this potential stumbling

block.
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It is possible to argue heuristically that Bx'-Ax', which may be
reterred to as the set of degenerate constraints at @', will ordinarily
consist of only one constraint. Let ao € [0,1] be fixed, and assume
that Conditions 1 through 4 hold. From the sufficiency of the Kuhn-
Tucker Theorem, it follows that 5}(ao) also is the optimum solution
to the problem

Maximize f(f;ao) subject to gi(f) 20, Vien .
X

In other words, all constraints except those of Aao are redundant.
The fact that some of them, namely those of Bzo-Aao, happen to be
exactly satisfied at 5*(00) can be viewed as an "accident." It seems
more likely that a redundant constraint will be slack at 5*(00), as
those of M-B:O are. If ao is not a point of change, we conclude
that Bzo-Aao is likely to be empty (Bzo-Aao = f§ implies that there
is exactly one valid set at ao). The set BIO-AaO is sure to contain
at least one constraint, however, when ao is a point of change, for
as a traverses the unit interval continuity dictates that the only
way a constraint can make the transition from slack to active or con-
versely is to pass through Bx-Ax. Unless there is strong interdependence

between different constraints, not more than one or two constraints are

likely to be involved in such a transition at any given point of change.

Remark: The last observation bringsup an interesting point regarding

the testing of new mathematical programming algorithms. Often
a new algorithm is applied to a number of problems whose data

were generated '"randomly" in an effort to gain computational
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experience quickly and to judge the efficiency of the algorithm.
In our case this procedure would very like.y lead to results
biased in favor of our algorithm. The reason, of course, is
that "interdependence" between constraints is less likely to
occur when problem data are generated randomly tnan when problem
data derive from real applications; the result is that Step 3
will rarely require any erroneous trials for problems with

randomized data.

The above heuristic argument, although somewhat comforting, does
not preclude the possibility of Bx'-Ax' being quite numerous (by
Condition 4, Bx can be composed of at most n constraint indices,
and so BX'-Ax' could have up to n constraints). Faced with this
possibility, one may follow two main courses of inquiry. One may
attempt to construct methods of perturbing (Pa) so as to ensure that
Bx-Ax consists of only one or two constraints at each point of change
(see Markowitz, 1956, p. 125, and Zahl, 1964, p. 156). Alternatively,
one may attempt to devise rules for deciding in what order the trials
should be made at Step 3 (the Basic Conceptual Algoritlm is ambiguous
in this respect) so as to tend to keep the number of erroneous trials
small. We choose to follow the second course of inquiry, because
(a) this type of investigation is conspicuously lacking at present
(for a notable exception in the context of a related problem see Theil
and Van de Panne, 1960), and (b) the second course of inquiry must be

undertaken before the need for perturbation can be established.
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4.1 Preliminary Remarks on Determining the Order of Trials at Step 3

We begin by establishing some terminology. Suppose that Step 2
has ended with the point of change a' < 1. Let a'+ be a point between
a' and the next largest point of change. If S is valid at a' but
not at a'+, the unique continuous solution of (=S)a satisfying the
left end-point value (x*(a'), u*(a')) violates either (KT-3) or
(KT-4), or possibly both, as Q increases above @'. In other words,

§ "causes an alarm" as Q increasesg/ above @'. A violation of

(KT-3) is called a feasibility alarm, while a violation of (KT-4) is

called an optimality alarm. By continuity, the set of feasibility alarms

must be contained in Bx'-S, and the set of optimality alarms must be
contained in the set S-Ax'; hence all alarms are from Bx'-Ax'. Since
S is not valid at a'+, by Corollary 1.2 either (S-Bx'+)} # § or
{Aa'+ - S} # P. The set S-Ba'+ will be called the excess of S at
a'+, and Ax'+ - S will be called the deficiency of S at a'+,
Clearly the smallest change in S which will result in a set which

is valid at a'+ 1is to delete its excess and add its deviciency. The
number of constraint indices of (Ax'+ - S} U (s-Bx'+} 1is therefore

a measur~ of the minimum distance,ig/ which we denote by d(S), between

S and the collection of all sets which are valid at '+.

2/ Since x?(a) and u?(a) are analytic functicns, there is an € > 0
such that each component of (g(ﬁs(a),gs(a)) has constant sign on
(a',a'+e). It is in this sense that we Hefine the alarms caused by

S "as a increases above a'."

EQ/ The distance between a set C and a set D, where C and D are
both subsets of M, can be defined as the number of elements in the set
(c-D} U (D-C}. It is readily verified that this d« finition meets all of

the usual requirements of a distance metric and hence makes a metric
space out of the set of all subuets of M.
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Figure 2 is designed to help the reader v.isualize the various
sets mentioned above for a hypothetical case, and it will be convenient
to refer to it occasionally during the rest of this section. Each dot
represents a constraint--fifteen in all. The constraints in § are
circled to distinguish them from the others. Constraints 6, 8, and
10 are labelled '"g" to signify that they are potential feasibility
alarms (Bx'-S), and constraints 7, 9, and 11 are labelled "u" to
signify that they are potential optimality alarms (S-Ax'). The
deficiency of S at a'+ is precisely constraint 6, and the excess
is constraint 11.

Can one guess, by observing which feasibility and optimality
alarms S causes as @ 1increases above @', what changes can be made
in S 1in order for it to be valid at a'+? It is tempting to con-
jecture that any constraint (in §S) which yields an optimality alarm
should be deleted from S, for it is well-known (e.g., see Wilde, 1962)
that a dual variable may be interpreted as giving the marginal decrease
of the value of the objective function with respect to an increase in
the "right-hand side" of the corresponding constraint. Similarly, it
is tempting to conjecture that any constraint (not in §S) which yields
a feasibility alarm should be added to S 1in order that it remain
satisfied as @ 1increases above Q'. If this line of reasoning were
correct, then by deleting the constraints which yield optimality alarms
and adding those which yield feasibility alarms, one could obtain from
S a set which is valid at «'+; for the optimality alarms would

coincide with the excess of S and the feasibility alarms would

97



2 2and1d

*DOTOJITO I8 § UT SJUTBIFSUO) :330N

_ +,0d

—+.d<..fﬂm._ _‘ +, 0V

7 [ T

n 3 n 3 n g
® ® e @ o O, e ® ©® © ® ©
AN 1T 0T 6 8 L 9 q K ¢ 2 T
i p
+,04-S S=+,0¥

+,0 38 S JO SS3dX{ +,0 238 S Jo Aoustdorgad

98



coincide with the deficiency of §S. Unfortunately this is not the case,
because the interactions between constraints which are degenerate at

a' have been ignored. It is therefore possible to construct simple
examples (see Appendix B) for which there are false and silent alarms.
By a false alarm we mean & feasibility alarm which is not from the
deficiency of S at a'+ and not from the set of degenerate constraints
at a'+, or an optimality alarm which is not from the excess of S

at a'+ and not from the set of degenerate constraints at Q'+. By

a silent feasibility alarm we mean the absence of a feasibility alarm
from a constraint in the deficiency of S at a'+, and by a silent
optimality alarm we refer to the absence of an optimality alarm from a
constraint in the excess of S at a'+. In terms of Figure 2, a

false feasibility alarm would be an alarm from constraint number 10, a
false optimality alarm would be an alarm from 7, a silent feasibility
alarm would be the absence of an alarm from 6, and a silent optimality
alarm would be the absence of an alarm from 11. Note that the alarms
from the set of constraints which are degenerate at a'+(Bx'+ - Ax'+),
if any, are immaterial— for the presence or absence of these constraints
(numbers 8 and 9 in Figure 2) for a trial set does not affect its
validity at a'+.

The above remarks indicate that not very much information about
what constitutes a valid set at a'+ can be gleaned from a trial which
fails at Step 3. Evidently the statement of Corollary 1.1 that
Ad' C A'+C Ba'+ C Bx' is about as strong a statement as can be made.

As has already been pointed out, this is already a very strong statement
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‘n the likely event that there are only a few degenerate constraints at
a'. Yet when a trial set fails at Step 3 there is one clue to the
identity of a set which is valid at a'+ that can be salvaged: at
least one of the alarms given during a failure is from the deficiency
or excess at Q'+ of the trial set. In the next subsection we shall

prove this fact. The result will then be used to devise an ordering

of trials at Step 3.

4.2 Sharpening Corollary 2.1

Lemma 6.1:

Let a' ¢ [0,1] be a point of change, let S be valid at a',
and assume that Conditions 1 through 4 hold.

Then there exists a convex set X' DX and an open interval
containing and symmetric about &' and contained in Ia' such
that, for each fixed value of «a in this interval, is(a) is
the optimal solution of

Meximize f(x;a)
X € x'

subject to gi(f) 0, Vie(s-sal

g.(x) >0, viesa,
+ . S
where S a Cl(i ¢ S: ui(a)‘z 0}.

Proof: Arguing as in Proposition 5 and using the continuity of

Bs(a) and the fact that Es(a') = u*(a') > 0, one obtains (here we employ
- m

the notations of Proposition 3) that Max Eu(ai(f(i;a) 4—2: u?(a)gi(z)))

- 1
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is negative on X x @' and continuous on some open region containing
this direct product set. By the compactness and convexity of X x a',

it follows that the hessian of the Lagrangian function f(x;a) +

m
2; ui(a) 31(5) is negative definite on some open convex region

i
X' x I'a' containing X x a'. In view of A.3, the Lagrangian function

must be strictly concave with respect to x on the open convex set
X' for each fixed value of a ¢ I'a'.

Now ﬁs(a') = x*(a') e XCX', Y open; since Es(a) is con-
tinuous on 1 @', one obtains that 5s(a) € X' for all «a sufficiently
near '. Since the gradient with respect to x of the Lagrangian
furnction vanishe:s at 5S(a), we conclude by A.6 that 5S(a) is the
global umaxim.n of that function on the convex set X' for any fixed
@ sufficiently near @'. Using the fact that ui(a) =0, Yi¢gs,
and gi(ﬁs(a)) =0, V ie€eS, one obtains, for any fixed a suffi-

ciently near ', that

(14) f(3(@); @) > f(xa) + % WS(@) g,(0), v xex

m
Since ), ui(a) gi(§)~2 0 for all x such that gi(f) =0, Vice [S-S+a],
1

and gi(ﬁ) >0, vie S+a, where S'a Cli e s: uf(a) >0}, the

conclusion of the lemma follows from (14).

Remark: An easy proof of this lemma can be constructed from the Kuhn-
Tucker Theorem when all constraints are linear; in this case
X' may be taken to be E". When all constraints are linear,
specialization of the Kuhn-Tucker Theorem reveals that (=S)a
are necessary and sufficient conditions for a maximum of f(g;a)
subject to gi(i) =0, VY 1icesSs.
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Remark: The region X' may be taken to be contained in the open region

mentioned in Condition 1.

Theorem 6 ¢
Let a' € [0,1] ve a point of change, let S be valid at a',
and assume that Conditions 1 through 4 hold.
Then there exists an open interval containing and symmetric about
a' and contained in Ta' such that, for each fixed value of
in this interval, the following three assertions are equivalent:
(1) s is valid at «a.
(11) (S(a), (@) = (x*(a}, u*(a)).
(111) g (x°(@)) >0, V¥ 1 ¢ (Ax-S)

uf(a) >0, Y1ie (s-mj.

Proof: The equivalence of (i) and (ii) and the fact that (ii)
implies (1ii) are known from Corollary 2.1. To complete the proof of
the theorem, it is sufficient to show that (iii) implies (ii) on the
interval mentioned in Lemma 6.1.

Assume that (iii) holds for some fixed value of @ in the interval
mentioned in Lemma 6.1. Using the assumption that u?(a) >0,

v 1 € (S-Bx}, and applying Lemma 6.1 with s'a = (s-Bx}, one may

assert the existence of a convex set X' DX such that xs(a) is an

optimal solution of

(15) Maximize f(x;a) subject to g, (x) = 0, V¥ i e (BxMs)

% e X'

gs(x) 20, ¥ ie (s-Bbo) .
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Using the assumption that g (53(0)) >0, Y 1ie (A-S], we have

5(

i

that x (a) 1is feasible in

Maximize f(x;a)
X € X'

(16)

subject to gi(_ng) 0, Yie (BaNsj

g, (x) >0, v1ie (s-Ba]V (aa-s) .

Since the feasible region of (16) is included in that of (15),
_{S(a) must be an optimal solution of (16).

It follows from A.4 and A.6 and the fact that (x*(a), u*(a))
satisfies (=Ax)a that x*(a) is optimal in

(17) Maximize f(x;a) subject to g,(x) 20, Vi e Ax.
x €X'

Since the feasible region of (16) is included in that of (17), and
since x*(a) 1is feasible in (16), x*(a) must be optimal in (16).
That is, both x*(a) and is(a) are optimal in (16); thus
f(x*(a);a) = f(fs(a) ;). Because §S(a) is feasible ia (17), therefore,
we finally have that Es(a) is optimal in (17). Since (17) must have
\

a unique optimal solution by A.2, l(s(a) = x*(a). This implies, by

Condition 4, that Es(a) = 1_1*((1). Thus (ii) holds.

The significance of this sharpening of Corollary 2.1 is that
it rules out the possibility that all alarms are either false or from
the set of degenerate constraints at Q'+ when S 1is not valid at
a'+. That is, at least one alarm is from the deficiency or excess

of S at a'+.
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4.3 Modification of Step 3--Determining the Order of Trials

Suppose that Step 2 hus ended with the point of change a' < 1.
Designate the set of alarms which are given by So (the set used
during Step 2) as Q increases above Q' by T. Applying Theorem 6
at a', we know that at least onc of the alarms is from the excess
or deficiency of S° at Qa'+. Unfortunately, we do not know which
one. A logical way of proceeding at Step 3 is to modify S° by one
constraint at a time for each constraint in T, 1i.e., try the sets
S° + 1 for each 1 € T, where the symbol s® + 1 means s° Ui
if 1 ¢8° and s%1 if 1 ¢ s° This notation is designed to
avoid having to distinguish between feasibility and optimality alarms.
In other words, add the constraints which were feasibility alarms to
So and delete constraints which were optimality alarms from So one
at a time until each alarm has been heeded individually. Note that

So +1i, 1 e T, 1is valid at a' since all alarms caused by a set

which 1s valid at &' must be from Bx'-Ax'. Hence So +1i, 1T,

satisfies (8.1).

When T has been exhausted by this first generation of trials,

at least one trial set, say So + io’ is one unit of distance closer
to a valid set at a'+. If d(So) = 1 then So + io is valid at
a'+ and Step 3 has been successfully completed. If d(So) > 1 then

a(s® & io) - d(s%-1> 0, and a second generation of trials is

necessary. At each first generation trial, let Ti denote the
alarms due to So i i, 1 € T. At the second generation one should

try So +1+J forall 1 €T and all J € Ti' The symbol s° +1i+
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means (s° + 1)y J if J£8°+1 and (s® + 1)- § ir JeS°+l. Applying

Theorem 6 at @' with § = s + io, we see that at least one of

the alarms due to S° * io is from the excess or deficiency of

s + io at a'+, but we do not know which one. Hence at least one
o

of the sets S~ + io r*Jdy JeT

is one unit of distance closer to
o

a set which is valid at Q'+. Designate one such set by g° i io + Jo'

If 4(s°) = 2 then 8°+ i, J, isvalid at a'+, and Step 3 has

been successfully completed. If d(s°) > 2, then d(So + io + Jo) =

d(8%)-2>0, and a third generation of trials is necessary.

The third generation of trials is constructed in a manner analogous
to the preceding generations, and so on for the higher order generations.
If at any trial a set is encountered which has been tried before, it

may, of course, be discarded.

At each generation the distance from some trial set, and perhaps

several, to the collection of all sets which are valid at a'+ is
decreased by one unit. Since d(S®) is finite (in fact it is bounded
by the number of constraints in Bx'-Ax' minus the number of constraints
in Bx'+ - Ax'+), after a finite number of generations of trials a

set which is valid at a'+ will be obtained--after exactly d(s°)
generations, in fact. The nearest valid set is, it will be recalled,

s° Plus its deficiency at a'+ minus its excess at a'+. These rules

are summarized below.

Order of Trials at Step 3

1. Let T denote the alarms which are given by s° as &

increases above a'. At the first generation of trials,
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2.

Etc.

try s° +1 for each 1 € T. Let Ti denote the set of

alarms which are given by S° +1, 1T, as @ increases

above a'. If T, =@ for some i* ¢ T, then S° + 1w

i
is valid at a'+, and Step 3 has been completed; otherwise,

go on to the second generation of trials.

At the second generation of trials, try g° +1+3 for

each 1 e¢eT andall JeT

x Let Tij be the set of alarms
which are given by S° +1+J3, 1T and Je Ti’ as Q
increases above a' . If TiJ =@ for some i* ¢ T and

j* € T,,, then 5°+ 1% + g% 15 valid at @'+, and Step 3
has been completed; otherwise, go on t@®a third generation

of trials.

(omit any sets which have been tried preyiously.)

Since the only modification of Step 3 being suggested here is a

more complete specification of the order in which the trial sets are

to be considered, and since this order has been shown to lead to a

successful completion of Step 3, the assertions of the Basic Theorem

still apply to the Basic Conceptual Algorithm with Step 3 modified as

above.

If these rules are to be incorporated into the Basic Computational

Algorithm, .hen in order to ensure that Theorem 6 —and hence the above

rules=~applies, it is necessary to take & less than one-half the

length of the smallest of the intervals of Theorem 5 applied at each

point of

change.
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We do not hold that the order of trials suggested here is the most
efficient order which can be devised. However, the following advantages

are to be noted:

(1) Each unsuccessful trial helps to determine the order of

successive trials.

(2) The suggested order of trials always leads to the (unique)

valid set nearest S°.

(3) A valid set is foundi after exactly d(So) generations of
trials. In this sense search termination is predictable,

although not a priori so.

(4) s° 1is deformed one constraint at a time from trial to
trial, so that the computational machinery is upset the

least amount possible.

54 Some Extensions

5.1 Linear Equality Constraints

Let the constraints of (Pa) include some linear equality
constraints. It is clear that if each such constraint is written as
a pair of inequality constraints (i.e., if the pair 81(5)12 0,
'gi(f) > 0 is written in place of 81(5) = 0), then Condition b never
holds. Fortunately, it can be shown that a simple modification of
the Basic Conceptual Algorithm obviates this difficulty: always include
the linear equality constraints in So at Step 2 and in the trial
sets at Step 3 (ignore any optimality alarms that such constraints may
give). If all of the constraints happen to be linear equalities, in

fact, Step > would disappear entirely.
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5.2 More General Parametric Froblems

With appropriate modifications of the four conditions, it can be
shown (Geoffrion, 1965) that many of the results of this chepter apply
to any one-dimensional perturbation of

(Pp) Maximize f(x,}) subject to 3(:_(,2). >0,
X =

where the parameter p = (pl,...,pk) varies over a convex set P in
Ek, f(x,p) 1is continuous in (x,p) and strictly concave in x for
each p e P, and 81(5’2) (f < 1,...,m) is concave in (x,p). By
a one-dimensional perturbation of (PE) we mean a parametric problem
of the form

Maximize f(x,p' + a(p" - p'))
X

subject to g(x,p' +a(p" - p')) 20

for each value of « € [0,1], where p', p" ¢ P.
It is evident that (P_p) is general enough to include many of
the parametric problems of interest to those who wish to perform

sensitivity analysis on concave programming problems.
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CHAPTER IV

An Illustrative Example

A simple model of a firm will be used to illustrate the manipu-
lation and solution of & decision problem under uncertainty by means

of the techniques presented in the preceding three chapters.

1. A Decision Problem Under Uncertainty .

Consider a hypothetical firm which produces and sells n products
in an imperfectly competitive market. Assume that the cost of producing
and selling each unit of product 1 is ¢y dollars per unit, and

that the total dollar revenue accruing from the sale of Xy units of

product 1 is ri(xi) = (ai+biB'di)xi + (di/ki)ln(kixi+l), where
a;, d;, k, are positive scalars, Zn(+) denotes the natural log,
and B 1is a price index. The interpretation of ri(xi) becomes clearer
if one examines dri(xi)/dxi = ai+bia'di+di/(kixi+l)' Since !
dri(O)/dxi = a,+b.8 and dri(w)/dxi = 8,+b,B-d,, we see that price
gradually decreases from ai+biB (notice the linear dependence on
the price index) to ai+biﬁ-di dollars per unit as production increases
without bound. The value of ki determines the rapidity of the price
decrease, and it is easily shown that a proportion 0 < t <1 of the
total possible price decrease d, is achieved at x, = t/(l-t)ki.

I- we denote the (short-run) resource and other constraints
(inciuding x >0) by g(x) >0, then assuming that the firm can
sell all it produces the profit maximization problem is

n

Maximize 2 (a.i + biB - di)xi + (di/ki)zn(kixi +1) - cy X,

subject to g(x) >0.
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We shall assume that all functions and coefficients are known except
the price index B, which will be regarded as a random variable with

a known cumulative distribution function ¢(B).

2. Circumventing Uncertainty by a Vector Maximum Reformulation

In order to circumvent the uncertainty attending the objective
function of (1), we elect to employ one of the approaches considered
at some length in Chapter I: a vector maximum reformulation using
the expected value criterion and the maximum .05-fractile criterion
(some fractile o’her than the .05-fractile could be used if desired).
Assume that ¢(B) 1is continuous, strictly increasing on the entire
real line, and that its mean is zero (if the mean is not zero, it
can be incorporated into the ai). One derives that the mean and

.05-fractile of the objective function for fixed x are, respectively,
n
fl(f) = 12; -d -c )x + (di/k ) 2n( kix + 1)

£,(x) = ¢ (§)+o'1(os) 2 b,x, if 3 bx, 20

i"f -

n
fl(g) + o-l(,95) Z:l b,x, 1if Y b.x, <0.
| =

In place of (1) we consider the vector maximum problem
"Maximize" fl(f)’ f2(§)
(2) 2

subject to g(x) >0 .

The efficient outcomes of (2) are to be computed and plotted (as in

Figure 3 below) so as to present a "tradeoff curve" between the two
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criteria. A decision-maker then subjectively determines a point on
the tradeoff curve, and implements the corresponding optimal production

schedule.

5.  An Equivalent Parametric Programming Reformulation

The hessian of fl(f) is a diagonal matrix, with 'kidi/(kixi+l)2

on the diagonal. When x >0, the assumed positivity of ki and

di irplies that this hessian is negative definite. By A.3, therefore,
fl(zc_'; is seen to be strictly concave on the non-negative orthant.

An enumeration of cases shows that fg(i) is also strictly concave

on the non-negative orthant when 0'1(.05) <0 and O'l(.95) > 0.

In view of our assumption that the mean is 0, it is reasonable to
assume that this last condition holds. Assuming further that each
constraint function is concave, we conclude that Proposition 6 of

Chapter II appl..cs.i/ Hence to find all efficient solutions of (2)

it is equivalent to find the optimal solutions of

Maximize (1°a)fl(§) + afa(z)
(3) z
subject to g(x) >0

for each value of & 1in the unit interval.
Consider (3) with a fixed. The presence of the logical con-

dition in the definition of f, makes the solution of (3) somewhat

2

lf It is easy to see that Proposition 6 still holds if the fi

assumed to be strictly concave on X, and not necessarily on En.

are
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awkward. One approach is to solve the pair of problems

Maximize (1-a)f (x) +a(f (x) + ¢"7(.05) 3 b,x,]
X

() subject to g(x) > 0

U bx 20

Meximize (1-0)f (x) +alf (x) + 0"5(.95) T b,x,]
X

(5) subject to g(x) > 0

L byx, <0.

The optimal value of (3) equals the larger of the optimal values

of (4) and (5), since the feasible regions of (4) and (5) are merely

a dichotomy of that of (3). We shall avoid this complication, however,
by requiring of our numerical example that bi 2 0 (1 =1,...,0);
since x > 0, this condition implies that }} b,x, >0, and therefore
(3) may be rewritten as

© Ma.ximize (1-a) £, (x) +alf (x) + o"1(.05) Lb,x,

subject to 5(5) :2 .

L. Solving the Parametric Problem

We shall solve a numerical example based on (6) with n =4

and m = 7. Table 1 gives the numerical data for the objective
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function, and the constraintsg/ are:

Xizo, i=l,...,u

-.lel -.lea -.0)41(3 -cOth + 2 Z O

-l X, -4 X, .1 x3 -l X, + 20> 0

- 2 2 2
-.01xl -.01x2 -.o.lx3 -.0lx, + 15>0.
i=1 i=2 i=3 i=U
8 10.0 12.0 10.5 11.0
‘ni 0.063k4 0.0950 0.6740 0.7540
ey 8.0 10.0 8.5 9.0
dy 2.50 2.55 2.20 2.25
ky 0.12 0.13 0.045 0.050
Table 12/

It is further assumed that B 1is normally distributed with zero
mean and unit variance. Hence O'l(.OS) = -1.6k4.
It is clear, since k,,b, >0 (i =1,...,4), that £, T,
and 8y (1 =1,...,7) are analytic on some open region containing the

non-negative orthant. Because Lhe constraints are concave, therefore,

E/ Each Xy represents hundreds of units of product i. The last
three constraints are to be interpreted as constraints on three
resources, which we refer to as resources A, B, and C respectively.
Resources are measured in thousands of units.

2/ The units of the coefficients are such that fl and f2 are in
thousands of dollars.
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Condition 1 of Chapter III is satisfied. Since resources are limited
in all real problems of this type, Condition 2 is not restrictive,
and in fact holds for the feasible region of our numerical example.

It was observed above that the hessian of f. 1is negative definite

1

on the non-negative orthant, and the same is true for f 8o that

2!
Condition 3 holds. We shall not bother to verify whether Condition &
is satisfied by our numerical example.

A version of the Basic Computational Algorithm for solving (6)
was coded for the Burroughs B5000 computer. No attempt was made to
optimize program efficiency beyond the incorporation of a simple
variable step size f‘eature (see the last two paragraphs of section 3,
Chapter III). The results of the computation are presented in
Figures 1, 2, and 3. Figure 1 is a graph of the optimal production
schedule, ﬁ*(a) , as & function of Q. Note the markers at the
following values for «, each of which is a point of change marking
an execution of Step 3: 0.6024, 0.7819, 0.8338. Since no false or
silent alarms are encountered at any of these points, Step 3 is
executed in each case with no erroneous trials. Figure 2 precents
graphs of u*{(a) and gi(_:g*(a)) (1 = 5,6,7). Note that the dual
variables (or "shadow prices") u*{(a) (1 =1,...,4) are not graphed,
since they are identically zero on [0,1], and that it is not necessary
to graph the non-negativity constraints. Figure 3 is a plot of the
efficient outcomes associated with the two criterion functions--a
tradeoff curve. It shows, for example, that production plan x*(0.807)
guarantees & profit of at least $32,700 with probability .95 and an
expected profit of $79,100.
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APPENDIX A

Some Properties of Convex Sets and Concave Functions

Aset S in E" 1is said to be convex if (Ax'+(1-A)x") € §
whenever x',x" € § .and 0<A<1.

A function f(x) which is defined on a convex set S is said
to be concave if f(Ax'+(1-A)x") > Af(x')+(1-A)f(x") whenever
x',x" € 5 and 0 <A < 1. If the first inequality holds strictly
whenever x' # x" and 0<A<1, f(x) 1is sald to be strictly

concave. The function 'f(i) is said to be convex or strictly

convex according as f(§) is concave or strictly concave. When the
convex set S 1is not specified explicitly, it is implicitly taken
to be the entire space.

The following properties of convex sets and concave functious
are used in the text. The proofs, most of which follow easily from

the defiunitions, may be found in Fenchel (1953) or Zoutendijk (1960).

Al If gi(i) (i = 1,...,m) are concave functions on E",
then [5: gi(f) >0, i=1...,m}] is a closed and convex

set.

A.2 Any local maximum of a concave function on a convex set is
also a global maximum over that set; a strictly concave

function can have at most one local maximum.

A.3 A twice-aiffrrentiable function defined on a convex set S

is concave if and only if its hessian matrix is negative
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A4

A.5

A.6

AT

semidefinite at each x € S. If the hessian is negative
definite at each x € S, then the function is strictly
concave (the converse is not true in general, but does

hold when the function is a quadratic polynomial and S = E").

If fi(i) ({ = 1,...,k) are concave functions on a convex
set S, and u, >0 (1=1,...,k), at least one v, >0,
k
then ?uifi(f) is concave on §; 1if fi(gs) is strictly
k
concave for some i such that uy > 0, then ? uifi(z)
is strictly concave.

A concave or convex function on a convex set S 1is con-

tinuous at every relative interior peint of 3.

If f(x) is differentiable and concave on a convex set S

and vxf(fo) = 0, 50 € S, then f(zo) > f(x) for all

Ees.

The Theorem of the Separating Hyperplane asserts that if
S and T are two convex sets in En with no interior
point in common, then there exist an n-vector v £ 0 and
a scalar ¢ such that }) v;s; Se <y v,t, for all

s€8, teT (see Karlin, 1959, p. 398 for a proof).
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APPENDIX B

Graphical Examples

We shall illustrate the Basic Conceptual Algorithm by considering

three examples of the form

Maximize « 3 ( ) + (1-a) ; ( e
=\Xy -y E “\Xy - &y
(B-l) X 1 ?

b+ b

subject to 51

120, iil,.-.,m.

The first example in well-behaved in the sense that there are no
false or silent alarms (see section 4.1 for definitions of "false"
and "silent" alarms), whereas in the second and third examples such
troubles do occur.

Problems of the form (B.l) are among the simplest which can be
subsumed under the present theory: both objective functions are
quadratic and linearly separable, and the constraints are linecar.
The fact that false and silent alarms can occur for such problems
seems to render unlikely the existence of a special class of (Pa)
for which false and silent alarms cannot occur.

The examples to be given are presented and analyzed graphically
rather than numerically because (B.l) is readily amenable to graphical
interpretation when n = 2 (the case considered here). Let a be
fixed. When § is a consistent set, i.e., when Xg = {x: 3}51 +
b, =0, Vies) # @, it follows from the Kuhn-Tucker Theorem that

(=S)a is necessary and sufficient for a maximum of the objective

function subject to x € XS. From the circularity of the level
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curves of this particular objective function it is evident that this

constrained maximum is just the point of XS nearest to the uncon-

A
strained maximum x(a) = ac' + (1l-a)c.

2) with two constraints

Each figure is drawn in x-space (n

0, the unconstrained

(m=2). The loci of 81(5) = 0, 32(5)
maximum g(a), and the constrained maximum x*(&) (the heavy line)
are drawn, as well as certain features pertaining to the points of
change. Light lines representing the projection of lg(a) onto the
feasible region are also drawn; in view of the circularity of the
level curves of the objective function for fixed «, these lines are
in the direction of the gradient of the objective function at 5*(a).
The gradients of the constraints point into the feasible region.

From (=S)a we see that the dual variables express minus the
gradient of the objective function at fs(a) as a linear combination
of the gradients of the constraints in S. The signs of u?(a)

(i € S) are easily determined by visual inspection of the figures.

The first example is presented graphically in Figure B.1l. At
a = 0 the unconstrained maximum 2(0) is interior to the feasible
region. Thus the constrained maximum x*(0) equals 2(0) and
Bo = ¢, which implies that Ao = ¢ since Ax CBx for all a.

We are obliged to let S° = @, for the empty set is the only valid
set at a = 0 (recall that S 4is valid at a if and only if
Aagsgaa). Step 1 is complete. Step 2 demands that we solve
(=f)a as « increases above O until an alarm is given, i.e.,

until 5¢(a) leaves the feasible region or u?(a) becomes negative
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for some i. The last alternative (an optimality alarm) cannot happen
for §° =@, for (=f)a requires B¢(a) = 0. Only the first alternative
(a feasibility alarm) can occur. Equations (=f)a are easily seen

to be the conditions for an unconstrained maximum. Since .2(0) is
interior to the feasible region for 0 <a < al, no alarms are given
on [0,0)5 (@), @) = (1#(@), w(@) = (R0),0) end Aa= Bae g
on [o,al). At al the unconstrained maximum happens to be on the
boundary of the feasible region, but beyond al it violates the first
constraint, i.e. (sé)a leads to a feasibility alarm for 81 Just
above al. Thus al is the point of change which completes Step 2,

and (Pla), wPla)) = (x¥(a), w(e)) = Rley),0), &0, = 4,

B, = (1), since a. <1, we go to Step 3. Two sets are valid at

1

a: § and {1}, The former was seen at Step 2 not to be valid

above al, and so the latter must be. Control is now returned to

step 2 with 8° = (1).

To execute Step 2 for the second time we must solve (=(1})a as «
increases above al until an alarm obtains. These equations are the
conditions for a maximum of the objective function subject to the
first constraint being exactly satisfied. As @ increases above
a §l(a) moves along the portion of the boundary determined by
the first constraint; since minus the gradient of the objective
function at 5l(a) is expressed as ui(a) times the gradient of
8, it is geometrically clear that ui(a) grows increasingly positive

as  1increases. Hence no alarms are given until a2 is passed,

when the second constraint begins to be violated. We have
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fl(a) = x*(a), ui(a) = uT(a) > 0, ui(a) = ug(a) .0, Ax=Bx= {1)

2). Since a, <1 1is the point of change at which Step 2

is completed, we go to Step 3. Now Ax, = (1} and K, = (1,2}, so

on (al,a

that (1) and (1,2} are valid at « since the former was seen

Y

not to be valid just above « the latter must be. Control is

2)
returned to Step 2 again, this time with §° = (1,2)}.

Step 2 now requires that (=(1,2})a be solved as a increases

above a2 until an alarm occurs. These equations are the conditions

for a maximum of the objective function subject to both constraints
being satisfied exactly. Since the intersection of the two equality
constraints determines a unique point, 51’2(0) is constant for all
a. The projection lines of g(a) onto the feasible region and the
interpretation of the dual variables make it clear that Bl’z(a) >0

D2 1,2 1,2
on (a ,a5), u) (a5) =0, u, (a5) >0, and u] (a) <0,

2

ué’e(a) >0 for a>a In other words, an optimality alarm occurs

3

for the first constraint just above « so that Step 2 is complete

3
at that point of change. Going to Step 3, we see thet Aa3 = (2},

Ba3 = {1,2); since the latter is not valid just above a3 the former
must be. Control is returned to Step 2 with s° = (2].

At Step 2, (={(2})ax must be solved as «a increases above a}.
Reasoning as before, we see that (2} remains valid on [a3,l].
Hence ﬁe(a) = x*(a), Ax=Bx= (2}, ui(a) = 0, and ug(a) >0
on (a3,1].

This completes the solution of the first example. A summary

appears in Table B.1l. Note that there were no false or silent alarms,

and no erroneous trials at any Step 3.
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The second and third cxamples are presented graphically in
Figures B.2 and B.3. The summaries which appear in the corresponding
Tables B.2 and B.3 can be constructed by following the lines of
reasoning illustrated in the above discussion of the first example.
Nevertheless, certain of the entries are reasoned out below. The
second example is designed to show that false feasibility and silent
optimality alarms can occur, the third to show that false optimality
and silent feasibility alarms can occur.

The second example is very much like the first, except that the
unconstrained maximum happens to pass through the vertex of the feasible
region. At Q= a,: -’5*("‘1) = g(al), Lo f, and B = (1,2}.
At Step 3 one must solve (=S)a for a Jjust above al’ S wvalid at

a until a set which is valid just above al is found. The four

l,
sets @, (1}, (2}, and (1,2) are valid at a,. If one tries g,

it is clear that 5¢(a) = g(a) violates both constraints as «a

increases above « and also that only (2} is valid just above

1?
al. Hence there 1s a false feasibility alarm for 8y» for 8, is
not in the deficiency of ¢ and is not degenerate just above al.
See the second line of Table B.2. If one tries (1}, (=(1)})@ are
the conditions for a maximum of the objective function subject to the
first constraint being exactly satisfied. It is evident that zl(a)

violates the second constraint above « i.e. a.feasibility

l’
alarm for 85 obtains. Since minus the gradient of the objective
function at El(a) is expressed as ui(a) times the gradient of

g u}(a) is seen to be positive above @ . Thus no optimality
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alarm obtains for 8y whicn means, in view of the unique validity

of (2]} above a, and the fact that g, is in the excess of (1)

just above « that (=(1))a leads to a silent optimality alarm.

1?
See the third line of Table B.Z2.

In the third and last example, the unconstrained maximum again
happens to pass through the vertex of the feasible region. At a = al,
we have 5*(al) = 3(al), Koy = g, and B, = (1,2}). The valid sets

at a are @, (1}, (2}, and (1,2). The only set which is valid

1

Just above a is (2}). 1If one tries (1} at Step 3, il(a)

evidently remains feasible. Since g, is in the deficiency of (1}
Just above a, we see that (=(1)})a 1leads to a silent feasibility
alarm, as recorded in the third line of Table 3.3. If one tries

(1,2}, 51’2(a) must remain at the intersection of the two equality
constraints. It is graphically clear that minus the gradient of the
objective function at ﬁl’z(a) = E*(al) is represented by a negative
linear combination of the gradients of the constraints as Qa increases

above Q so that optimality alarms occur for both constraints.

l,
Since g, is not in the excess of (1,2} and is not degenerate just
above al, a false optimality alarm registers for the second con-

straint. See the fifth line of Table B.3.
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Figure B.1
Valid Sets Feasibility and Opti- Deficiency and
0] mality Alarms Due to Excess of S
at a: S S Just Above « Just Above «
Feasibility | Optimality | Deficiency | Excess
[0,a,) ¢
¢ (1} None (1) None
&
(1} None None None None
(@) ) (1)
(1) (2} None (2} None
%
(1,2) None None None None
(a05) (1,2
(1,2} None (1) None (1)
%
(2} None None None None
(0t5,1] (2)
Table B.1l

RS R g R
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V.8, (x*(@,))

Wigo(x*(@,))

2 (a) ® xk(a,)

Figure B.2

2(}) =0

Valid Sets Feasibility and Opti- Deficiency and
a mality Alarms Due to Excess of S
at a: S S Just Above « Just Above «
Feasibility | Optimality | Deficiency | Excess
) (1 ,2]37 None (2) None
(1) (2) None2 (2} (1)
%
(2) None None None None
(1,2) None {1} None (1)
(ay,1] (2)
Table B.2

l/ False feasibility alarm for gl

2/ Silent optimality alarm: no optimality alarm for u

lo



c x*(a,) = X(a,) = x*(0)
inc 1 =\ =
V.&o(x*(@))) V.8, (x*()))
2(1)
Figure B.3
g (x) = 0 g,(x) = 0
Valid Sets Feasibility and Opti- Deficiency and
a mality Alarms Due to Excess of S
at a: S S Just Above « Just Above «
Feasibility | Optimality | Deficiency | Excess
1
g (2} None (2) None
(1) Nonex/ (1) (2) (1)
%
(2) None None None None
(1,2) None {1,2]-2-/ None {1}
(a,1] (2)
Table B.3

E/ Silent feasibility alarm: no feasibility alarm for g,

E/ False optimality alarm for Uy
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APPENDIX C

Computational Devices

i, Newton's Method

Newton's method is based on using successive linear approximations
for solving systems of nonlinear equations when good first approxi-

mations of the solutions are available. In order to solve the system

fl(f) = 0
(c.1) fo(x) = 0
fn(jf) =0,

where x is an n-vector, Newton's method is the recursion

s (17
k+1  k £,(x%)

» k=0, l, 2, s e

where io is a given starting point. The stated inverse must
exist in order for (C.2) to be well-defined, of course. We denote
the right-hand side of (C.2) by E(ﬁk). F(x) 4is the iteration
function obtained by applying Newton's method to (C.1).

There are numerous versions of conditions under which Newton's
method can be graranteed to converge. The following theorem is

typical.

Theorem C.1 §

Assume that fi(i) (1 =1,...,n) 1is continuously differentiable

i%%l does not

on some neighborhood of x¥*, and that the Jacobian
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vanish at x¥*, where f(ﬁ*) = 0. Then Newton's method is well-defined
and quadratically convergent to x* if the starting peint ‘50 is

ih a sutficiently small neighborhood of x*.
See Householder (1953, p. 136) for a proof.

Qualratic ¢..nvergence of the sequence < ﬁk > (k=0,1,....)

to f* means that (hcre ”'” denotes the Euclidean norm)
Ix* - x|
lin T = & constant 0.
k= [[x777 - x*[|°

By way of contrast, linear convergence would mean that

lix® - x]

|

lim
kﬂm

= a constant £ O .

Evidently the quadratic convergence of Newton's method is a highly
desirable feature. The price one pays for it is the necessity of
evaluating an inverse matrix at each iteration, and having to have
a good starting point. " To ameliorate the first disadvantage, at some
expense of speed of convergence, approximate inverses can be used.
Often one can achieve a substantial net gain in computational efficiency
by judicious application of this idea (see, for example, Ostrowski,
1960, and Householder, 1953, ». 136).

For the purpose of proving Theoremsl.l and 4.2, we find it more

convenient to employ
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Theorem C.2 ¢

Let x* satisfy f(x*) = O. Assume that there exists a neigh-

borhood Nr(z*) on which the following three assertions hold:

(a) The functions fi(f) (i =1,...,n) are twice con-
tinuously differentiable.

(b) The Jacobian
o(x)

Then Newton's method (C.2) is well-defined ana quadratically
convergent to x* if the starting point 50 is in Nr(f*).
This theorem follows from results given in Householder (1953,

p. 135) and Henrici (1964, p. 101).

Remark: The square-root expression in (c) is an upper estimate of

the Euclidean norm of the Jacobian matrix of F(x) (see

Faddeeva, 1959, p. 121).

For reference we record the recursion equation of Newton's method

applied to (=S)ao. We have, for k = 0,1,2,...

k+1 H pt i vx(f(g(_;a) +%} uy gi(g))

(€= 3)
Yl | DO g5 (x)

where H =‘7i(f(§;a) + E: u, gi(f)‘, D is the matrix whose rows
S

are Yz;gi(f) (1 € 8), and u; and g, are the vectors obtained
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by deleting from u and 5(5) the components not in S; all quan-
tities on the right-hand side are evaluated at ao and (E’Es)k

Note that the equations u, = 0 (i £ S), which are a part of

(=S)ao, have been omitted from the recursion because they are already
solved.

In order to have a compact notation for the square-.root expression
in (c¢) of Theorem C.2 specialized to (=S)ao, we denote by A(x,u: ao,S)
the square-root of the sum of the squares of all the elements of the
Jacobian matrix of the iteration function appearing ir (C.3) (i.e., of
the Jacobian matrix of the right-hand side of (C.3) considered as

a vector-valued function of (5,28)).

2. Convenient Partitions of the Inverse Matrix Required by Newton's

Method

Let
-1

H D"

mE L

D {0
1
be defined as in (C.3). Under our conditions, it is easily verified
that
- - - - l - - -

D it - v it (ontp®) T tont i 1pt(prtpt) -t

(Cc.b) SRR O IO Tt o e i LT et e .
DioO (oi™0%) 1ot i -(oi~1p%) "t

Let there be s elements in S (by Condition 4, s < n). The
inversion of the n+s by n+s matrix has been reduced to the inversion
of two matrices, one n by n (H) and the other s by s (DH-lDt),

and to several matrix multiplications.
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Whereas the size of H remains constant no matter what S 1is,
the dimension of DH-lDt does vary with S, for during Step 3 rows
are added to and deleted from D as S changes. It is advantageous
to use bordering methods to pass from an available (DH'l t’).l to
the next when S 1s changed at Step 3. We shall consider the case
in which one row is added to "the bottom" of D, and also the case
in which the last row of D 1is deleted. Results similar to the
following can be derived to cover the addition or deletion of an

arbitrary row, and also multiple additions and/or deletions.

If one row d 1is to be added to D, then

|
D =+ pH™3p® :Dﬂ'ldt
-1, t R I R e s
Ho(p® td] g = [ty -
d di" "D” ! dH d
P AN
F(DH-J_Dt)-l .« d% : Qd .
dRd” ! dRd
AL U Y ey, )]
i ;
2 { 1/dra®
dRd ;
where Q = -(DH'lDt)'lDH'l and R = Bt H'lDt(DH'lDt)’lDH’l.

Note that Q@ and R are immediately available from (C.4)

Let D be written

and let (DH-lDt)-l be written



wnere T5 is b by ' (i.e., T, i5 a scalar). Il row d is deleted

5
. . N R N T - 1
rom Db, thea (DD s ny - T, T2/T5.
|
518 A Refinement Method for Approximate Matrix Inverses ?

Suppose that A 1is a square matrix whose inverse exists and is

desired to be found, and that an approximate inverse Bo is available.

The error inherent in Bo causes the matrix I-ABo not to vanish.

Ifi/ ”I-ABO” < L<1, then the recursion

B. = B + Bk-l(I - AB

k k-l )’ k= l, 2’ e

k-1

i LY LR IRERG v

converges to A'l, and the considerable rapidity of the convergence

is apparent from the estimate
-1 | 2k
IB, - A7l < HlB Il L%/(2-1) .

See Faddeeva (1959, pp. 99-102) for further details on this
method, which is due to H. Hotelling. i

It is clear that this device can be used to great advantage

in maintaining an arbitrarily accurate approximation to H'l as Q

increases (for the 2lements of H, and therefore of H'l, are con- {

tinuous functions of @ on the unit interval), and also to

(DH-lDt)”l so long as S stays the same.

l/ We define the norm ||Al of any n by n matrix A as

Max Other norms could be used, but this one (the

> a, |
a, .
1<J<n i=l 1

t

so-called "p = 1 norm") is particularly convenient for computational

purposes.
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Whereas the size of H remains constant no matter what S is,
the dimension of DH'lDt does vary with S, for during Step 3 rows
are added to and deleted from D as S changes. It is advantageous

= t).l to

to use bordering methods to pass from an available (DH
the next when S 1is changed at Step 3. We shall consider the case
in which one row is added to "the hottom" of D, and 2ls» the case
in which the last row of D 1is deleted. Results similar to the
following can be derived to cover the addition or deletion of an

arbitrary row, and also multiple additions and/or deletions.

If one row d 1is to be added to D, then

]
D -1 Tpeipb ! pwtat
Dl D RO I st e e i P
H (D" 1 d”) B 3
d dH "D° | dH d
€ I il =
((DH-lDt)-l L &d d% : Qd -
dRd~ ! dRd
o B e - e e En e EE. e bl
t :
99;{ | 1/dra®
dRd ;
where Q = -(DH'l t)'lDH'l gfid R = Ko - H'lDt(DH'lDt)'lDH'l.

Note thet Q and P are immediately available from (C.4)

et D be written

and let (DH'l t)"l be written



where T, 1s Loby ! (i.e., T5 is @ scalar). Il row d 1is deleted
ST e =

i'rom D, thea (DIH Jl) 8 ll - 'l,‘? PE/Tj'

Dl A Refinement Method for Approximate Matrix Inverses

Suppose that A 1is a square matrix whose inverse exists and is
desired to be found, and that an approximate inverse Bo is available.
The error inherent in Bo causes the matrix I-ABo not to vanish.

Ifi/ “I-ABOH 5 L <1, then the recursion

B B +B I-AB k=l’ 2, LI )

k k-1 k-l(

1)

converges to A'l, and the considerable rapidity of the convergence

is apparent from the estimate
-1 2k
I8, - a™*ll < liB_Il L/(12-1)

See Faddeeva (1959, pp. 99-102) for further details on this
method, which is due to H. Hotelling.

It is clear that this device can be used to great advantage
in maintaining an arbitrarily accurate approximation to H'l as Q
increases (for the elements of H, and therefore of H'l, are cone

tinuous functions of & on the unit interval), and also to

(DH'lDt)'l so long as S stays the same.

el ae r et InoTa |All of any n by n matrix A as
n
Max > laijl' Other norms could be used, but this one (the
1<j<n i=l
so-called "p = 1 norm") is particularly convenient for computational

purposes.
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4,  Formulae for d(is(a), Es(a))/da

It may be shown by implicitly differentiating (=3)a that the
following additional conclusions can be added to Theorem 2: for

Qa e Iao,
d(§s(a))/da = - R{Z L, (%) -vxfa(z))
a(u(@)/da = QEZE, (%) -, L,(x))

where R and Q are as in section 2 above and all quantities are
evaluated at (zs(a), B:(a)).

These formulae are of possible interest for the purpose of
facilitating the convergence of Newton's method, when fairly large

step sizes are being used, by extrapolating to better starting points.

Note that R and Q are immediately available from (C.4).
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