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PREFACE

In the design of phased-array radars, processing equipment and/or
radar power can be saved if sequential detection (multi-stage statisti-
cal test) criteria are used. This Memorandum demonstrates theoretically

in what sense Wald's sequential testing is optimal. The study is novel

z
:

in that it shows chat sequential testing is optimal in an intormation
theoretic sense.

The work was undertaken as basic research in technology applicable
to the design of electronically scanned radars of poteutial use in
ballistic missile defenscs. It is part of a continuing study for ARPA

on low-altitude defen:t against ballistic missiles.

[

Dr. Julian J. Bususgang, co-author of this Memorandum, is President
of SIGNATRON, Inc., Lexington, Massachusetts, and is a Consultant te

The RAND Corporation.
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SUMMARY

In this Memorandum some fundamental aspects of multi-stage tests
of alternate statistical hypotheses are discussed. Section II is
devoted to the formulation of the problem and the definition of the
quantities of interest. Section III demonstrates certain fundamental
equalities of the conditional distributions of the sample size which
occur in Wald's sequential probabilit; ratio test. These equalities,
which to the authors' knowledge have not been noted before, imply that
the terminal decision is a sufficient statistic for the estimation
of the true hypothesis regardless of the terminal stage. In Section IV
a further consequence of these equalities is demonstrated. Using
information theoretic ~oncepts, the rate of transmission of a statistical
test is defined and a test procedure, constructed to satisfy these
equalities, is shown to minimize this rate. The information theoretic
view of an alternate decision problem has been cuggested before, but
only for a fixed sample test.(l) The results in the Memcrandum provide
an alternate approach to the study of the optimality of multi-stage
tests of alternate statistical hypotheses and suggest a criterion for
designing such tests based on the conditional distributions of the

sample size rather than on the average risk.
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I, DEFINITION OF AN ALTERNATE HYPOTHESIS STATISTICAL TEST

As a general framework for alternate hypothesis statistical
tests involving a discrete sample we consider that there exists a
real valued Borel probability measure defined on igl Ri where
Ri = R, R being the real iinc. This measure is known up to a
parameter 8 that can have one of two values.* These valves for ©
form two hypotheses about the measur~ which are characteristically
denoted by H, (the nuil hypothesis) and H, (the alternate hypothesis).
Similarly, we shall denote the corresponding measures by PO and ul.
We assume alsoc that there exist a priori probabilities ™ and 1-T
that the me: sures are o and His respectively. Each possible
measure generates a stochastic process, QO or Ci’ with elements
x€& igl Ri called paths, which are sequences of real numbers.

In an actual statistical test there is some mechanism for
obtaining numbers called observations. We assume that they can be
obtained one at a time; obtaining the nl:--k1 observation will be called

I
the nl:--1 stage of the test. When the observations are written in

order Xj,...,X (we call the sequence of observations a sample) they

represent the first n values of a particular realization or path of

either the stochastic process (i, or the stochastic process 01. A

multi-stage alternate hypothesis test is a decision procedure that uses

*We consider that the measure underlying the sample is ome of
HG(G = 0,1, in order to cast our problem as one of parameter
estimation. However, by parameter estimation we mean more than
estimating a parameter that appears in a distributica function that
might generate the measure, like the mean of a Gaussian distribution.
We view the parameter © as an index for the two possitle values of

the measure.
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the sample to determine, subject to certain pre-established probabilitizs

of error, to which of these processes the path belongs. That is, it

or ..

determines whether the underlying measure is Bo 1

At each stage of the alternste hypothesis test one of three
decisions can be made: that the hypothesis Ho is true, that .e
hypottesis H1 is true or that another observation should be made.
Tiying to achieve maximum generality we impose on these tests only
two conditions: that at each stage these three decisions are
mutually exclusive, and that with probability one the test eventually
leads to the acceptance of one of the two hypotheses.

Tests will be said to have the same power if they have the

same error probabilities. The error probabilities are denoted as

foliows:
@ = probability that Hl is accepted when HO is true
B = is true

probability that Ho is accepted when Hl

For any alternate hypothesis test for which» a decision is
made at each stage, the coliection of paths that lead to the
acceptance of HO(HI) at the 115-ll stage is a cyliuder set in CFC%UQI.

* [ ok
This cylinder set will be denoted by Cn \Cn .

We define

* ke * | ek
“a(n) (u (n)) = measure of C (C ) 6=0,1,
8 n n

The conditions imposed upon the tests insure that these measures
are well defined. For all tests of the same power (i{i.e., to which

there corresponds a specific pair (@, B)), we see that under

the two conditions imposed above
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i pz(n)ml-d,g by (n)=8, i by ()= and i' b (m)=1-8.

n=1 n=1 n=1 n=l
Thus we can define four conditional probability density functions

* ok
pe(n) and pg (n), 6=0,1. As an example we have

Jok K
P m Mo ™ My @
0 B — -3 = probability that Hl is accepted
Foke
5? o (m) at the nsh stage given that HO
n=1

is the true hypothesis

Lastly, we term the acceptance of H. decision zero, D,, aad the

0

acceptance of Hl decision one, Dl'
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II. IMPLICATIONS OF THE EQUALITIES p (n) = p (n) and p, (n) = p; (n)

We consider tests of the same power characterized by an (o, 8) and
are concerned with the completed tests and the decision to which thevy
lead, For a completed test we have knowledge about two random variables,
the stage at which the test terminates and wheth~. it terminates in
00 or D‘. This is the case regardless of what functions of the sample

are used to arrive at the decisions. By P(H1|Dj’ n) i,j=0,1 we mean

the probability that H, is the true hypothesis given that the test

i
th

ended at the m— stage with the acceptance of hypothesis j. The

probability P(He‘Dj, n) is th. a posteriori probability of the true

hyrothesis He in a multi-stage alternate hypothesis test. There are

four functions of this kind; an example is

*%
ﬂapo (n)

*% %%
napy (n) + (1-m) (1-B) p; (n)

P(H0|Dl, n) = (1)
So far we have attempted to portray alternate hypothesis
tests in their greatest generality; in practice it is ccmmon to use
a fixed sample or Wald sequential probability ratio test. In the
first case, p;(N) = p;*(N) = 1, g=0,1 where N is the pre-assigned
st..7e at which the test tervminates, In the latter case the functions
* %k
pe(n) and Pg (n) (i=0,1) n= 1,2,,., are generally difficult to
calculate. Experience indicates that unless the p;(n), p;*(n) can
be obtained trivially, as in a fixed sample test, their calculation
is a major and frequently unsolvable problem. It is useful to
consider when the conditional probabilities that the correct

decision was made would be independent of the stage at which the




test terminates. From the form of expression (1) it is clear that

this is the case 17 and only if

pp(m) = py(m), Py () = p) () (n=1,2,...,) 2)

We have the following theorem:

Theorem 3.1 The a posteriori probab.lity of satisfying eithe-
hypothesis in a multi-stage test of alternate hypotheses is independent

of the stage at which the test ended if and only if (2) is satisftied.

Proof:
Sufficiency is obvious from expression (1); for necessity we

notice that

p?(n)

%% = const,
Py (M)

Jk Wk
Since both Py (n) and Py (n) are probability measures, the constant

must be one,

We employ Theorem 3.1 to demonstrate the statistical sufficiency
of the terminal decision of an alternate hypothesis test, when the
test procedure is such that (2) is satisfied and the test is used to
estimate 9., The outcome of a specific test is a random variable
[ which takes on the values {Dj, n} j=0,1 ; n=1,2,,. . Let T
be a function of [ such that T (F = {Dj, ﬁ})- Dj' Statistical
sufficiency can be defined by the following statement: (Ref. 2)

"1f the conditional distribution of § given X=x depends only on

—— e —————— ne.
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T(x) then T is a sufficient statistic for §." Thus in the prcblem
of observing the random variable ' and estimating @, by Theorem 3.1,

the sististic T({Dj, n}) = D, is a sufficient statistic if and only

3
if (2) is satisfied.

It is common to sperk of a statistic as being sufficient for
the estimation of a parameter of a stochastic process when the
statistic is a function of the observations of the process. Herec
the statistic is a function of both the observations and the test
procedure which is chosen, It is clear that when an alternate
hypothesis test procedure is chosen. and the outcome of this test
procedure is used as an estimate for the parameter, that considerable
information about the parameter contained in the observations might
be lost. The point of view that we take in this Memorandum is that
we are studying the outcoue of a multi-stage alternate hypotheais
test, and not the composition of the sample. The only utilizable
information that these tests convey is the decision that they lead
to. Thus it {s important to know when the terminal decision is a
sufficient statistic with respect to the true hypothesis. The fact
that (2) implies sufficiency of the test statistic establishes the
significance of the equalities (2).

We now show that (2) is satisfied by the Wald test. (This is
also true for a fixed sample size Neyman-Pearson test which satisfies
(2) as a trivial case.) Since the Wald test employs the likelihocd
ratio, it is necessary to introduce additional assumptions on ko

and to insure that this ratio extists. The likelihood ratio at
B

stage n is a function of the firs:. n observations of a particular




sample path

dul(xlt x2’°°‘) xn)
Qbo(xl, x2:'°°» xn)

This function exists as a Radon-Nikodym derivative as long as by is
absolutely continuous with respect to oo
The Wald sequentizl probability ratio test is a multi-stage

test of alte .nate hypotheses that continues as long as

dpl(xl,..., xn)
< ¢0(x1a°°': xn)

B < A {A>1, B<1l are constints) (3)
and ceases with the acceptance of Ho if the left inequality is
violated and with the acceptance of Hl if the right inequality is
viclated.

There is a fundamental approximation used in connection with
Wald tests that is frequently referred to as ''neglecting the excess
over the boundary". This approximation consists of assuming that
when the sequential test terminater there is equality at either the
left side or right side of (3). The approximation becomes exact
when the sample paths are continuous with 1nd;pendent increments and
when the probability density function for the value of each increment
is continuous.

It is well known that with this approximation B is taken to
be TE_ and A is taken to be -;ﬁ.

-a o

In the terminology of this Memorandum, Wald's approximation

consists of saying that for those paihs which lead to DO(DI) at the
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rt-'il--1 stage
du s (X500, %) du (Xyy000, X )
1'71 n’ _ B ( 11 n o (%)
duo(xl,..., xn) \dpo(xl,..., xn)

and that this is true for all n. We will assume that for all paths
* %k th
in Cn (Cn ) the likelihood ratio at the m— gtage is constant, but
that the constant can be different for each n. Our assumption is
meaningful whenever Wald's assumption is. Of course since we
consider more general measures there are cases where the assumption
will not agree with reality. The following theorem shows how
important the assumption is and displays some of the special

properties of the Wald test.

Theorem 3.2 Assume that

dpl(xl,..., xn)
dpo(xl,..., xn)

* hk
is constant for all paths in Cn and Cn , and consider alternate
hypothesis tests in which the function of the obgservations at the

h
mE— stage that is used to perform the estimation is

dulfxl""’ xm)
dpo(xl,..., xm)

Then (2) is satisfied if and only if the test is a Wald test.

Proof:

ek
Suppose we have a Wald test and (x ce xn,...) CCn , then

1’°




d“l(xl""’ xn) 18
du.o(xl,..., xn) o

*k
Integrating over Cn we have

[ ey ) 1 [ g0
C;; &G G Mo - CQ* 0
n n

i ook o *
so p; (n) = Py (n). A similar result holds for paths in Cn.
*% *% *% = %%
Now let Py (1) = p0 (n). Then Hy (n) = L= ko (n).
o

We write this as

r dul(x) r
1B o (
g* duo(x) d“O(X) I o) ()
Cc C
n n

where by x we mean the cylinder set represented by (xl,..., xn,...).

Since we assume that

du, (x)
duO(X)

ook
is a constant for xetcn , it frllows that

du  (x) o

for all tests that lead to D1 at the ot stage. A similar result

* *
holds if pl(n) = po(n). Thus the test is a Wald test and the

theorem is proven,
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It is obvious that for any alternate hypothesis test of fixed
sample size (2) is satisfied., This shows the importance of the

assumption of the constancy of the likelihood ratio for proving the

converse of Theorem 3.2.
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III. INFORMATION THEGRETIC APPROACH

By regarding a statistical test of alternate hypotheses as a
pr blem of transmitting messages over a noisy channel and by defin-

ing the information rate per decision we are able to provide addi-

tional insight into the nature of these tests. In particular, we

are able to interpret the optimality of the Wald test from the in-
formation theoretic point of view. We first restate the basic

€))

formalism of information theory.

let X, Y and Z be three discrete random variables which occur
together and let {%i} i=l,..., £ be the set of the L possible
b
different values of X {yjf j=l,.«+, m be the set of the m possible

different values of Y and {zk} k=1,..., n be the set of the n

possible different values of Z.

occurence of X, for X, yj for Y and Z, for Z by P[X-xl, Y-yj, z‘zk}.

The joint entropy of X, Y and Z is then defined by

1,m,n
H(X,Y.Z) = - X P[x-xi, Y-yj, Z-zk} log P[x-xi, Y-yj, z-zk] (6)

i,§, k=1

The logarithmic base in this expression and in those that follow

is the same but is otherwise arbitrevy; the choice of the base

corresponds to the choice of a unit for measuring entropy and is

usually base 2. A change in the logarithmic basc introduces only

a mutliplicative scale factor which is uf no congsequence in this

work.

defined by

Denote the prcbability of the joint

The joint entropy of X and Y and the entropy of X alone are

A *M“*WWJ
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£,m
H(X,Y) = - E: P {X-xi, Y-yjllogP[X=xi, nyjw (7)
i,j=1 ) .
and
£
H(X) = - z P [X-xi]logP[X=xi] (8)
i=1

in which P[X=xi, Y-ij is the joint probability that X=xi and
Ysyj and PLx=xi] is the probability that X=xi.

Suppose that an information source can, by some random mech-
anism, generate one of two messages which are indexed O and 1. The
index of the message actually generated at a particular time is
taken as the random variable X. The entropy H(X) is said to measure
the amount of information contained in a message generated by that
source. If the information source feeds a noisy channel, the ieceiver
at the output of the channel receives the message corrupted by noise.
The receiver decodes the message, i.c., estimates whether X was 0O
or 1. The estimate of X made by the receiver is the random variable
Y which has the same two possible values as X. The entropy H(Y) is
said to measuire the amount of information generated by the receiver.
The rate of transmission R(X;Y) is detined as the sum of the amount
of information generated by the source and the amount of information

generated by the receiver minus the amount of information cormon to

both the transmitter and the receiver

R(X;Y) = H(X) + H(Y) - H(X,Y) (9)
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If the channel is so noisy that the variables X anc Y are independent,
HQX,Y)= H(X)+H(Y) and the rate is zero. If the channel is not noisy
at all, X is the same as Y, HX,Y)= H(X)= H(Y) and R(X;Y) is equal

to H(X). In effect R(X;Y) measur.s that part of information generated
by the source that must reach the receiver in order that the receiver

generate an amount of information H(Y). The quantity H(X)-R(X;Y) is

called the "equivocation" of X given Y and measures the amount of unwented

information reaching the receiver that is generated by channel noise,

Next, these basic concepts of the information theory are applied
to statistical tests of alternate hypotheses. We have two distinct
hypotheses H, and H which occur with a priori probabilities T and
1-1, The random variable X is the index of the true hypothesis so
that P[x=0]=ﬂ and P[xalj-l-ﬂ. The statistical test can terminate
with the acceptance of the hypothesis H., which is the decision D

0 0’
or with the acceptance of the hypothesis Hl which is the decision Dl'
The random variabie Y is the index of the accepted decision. If «
and P are the specified probabilities of errors, we have
a = P[Y=li x=o} and B = P[Y-Ol X-l]. The particular stage N at
which the test can terminate is also a random variable depending
on the particular sample and on the test procedure. The relevant

conditional probabilities that the test will terminate at a particular

stage n are denoted by

pg(n) = P[N’n‘ X=0, Y-OJ
pt@)‘quﬂXﬂ,Yﬂd (10)
Pg*(n)= P[N-nl X=0, Y-l]

Py (n)= P[g-nl x=1, v=1]
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where n is a positive integer.

The rate R(X;Y,N) of information per decision, i.e., the amount of
information which must reach the receiver in order that the estimate
Y of X can be achieved with error probabilities a and P at the Nsh

stage 18, by ¢n extension of (9)
R(X;Y,N) = H(X) + H(Y,N) - H(X,Y,N) (11)

The equivocation of X given Y and N, which measures the amount of

information required to estimate Y at the Nsh stage, is
H(X) = R(X;Y:N) = H(X)Y)N) = H(Y’N)

Substituting in (11) from (6), (7), (8) and (10), we find that

R(X;Y,N) can be written in the form:
R(X;Y,N) = Q(T) - @ (—Li?ﬂ) - (I-C)Q(§)+ o[7.1-9,8,pp @) .3 () |

+ c-n,a,l-B,p:*(n) ,pt*(n)] (12)

in which Q(t) = -t log t-(l-t, .iog (1-t), Q = (1-a)7 + B(1-7) and G(-)

is a function expressing the dependznce of R{X:Y,N) on the terminal

stage,
Gi-ﬂ.l'a.B,P;(n),pt(n)J =
. J ) . R
-9 { [ e B ] oy [ L0 A + B0 |
n=1
- * 1 * LN
+ an Po(n) log pg(n) + “—;")' p,(n) log pl(n/} ('3

The sum of the last two terms in (12) is in effect R(N;X‘Y).

" |
—




Eachk term of the summation in (13) is of the form -Q(gltr+32t2)

+316(t1)+32§(t2) whe.e 81>0’82>0’8I+82-1 and §(t)=tlogt is a
continucus convex functicn. We assume that o<k and B<k so that
g,tr+32t2 lies between tl and tz. It follows that each such term
is strictly positive and is zero if and only if p;(n) = p:(n) and
p;*(n) = p:*(n) for all n. When a test procedure is used such that
both of these conditions are satisfied, the minimum value of

R(X;Y,N) over all possible tests of power (o, P) is achieved and

we have

Min R(X;Y,N) = Q(m)-0 Q(l—(;“ n) . (1-0)0(1‘35 n) (14)

= H(X)-H(X|Y).

An alternate form (14), obtained by rearranging the different terms,

is

Min R(X;Y,N) = Q()-m Q(1-0)-(1-m)Q(B)

= H(Y)-H(YIX).
These results are expressed in the following theorem:

Theorem 4.1 Among all the procedures for conducting a statistical
test of alternate hypotheses, the procedure which is designed to
satisfy the conditions p;(n) = p:(n) and p;*(n) - p:*(n) for all n
rcquires the minimum rate of information to attain the desired
probabilities of error o and B for any a priori probability n and

l-n. This minimum rate is given by (14).

-

ot i U o bl e AP g,
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Corollary 4,1 For a sample consisting of independent and identically

distributed variables, the Wald test requir:s the least rate of infor-
mation to attain the desired probabilities of error ¢ and 8 for any
given a priori probabilities n and 1l-7,

This Corollary follows from the fact that by Theorem 3.1 the
Wald test satisfies the conditions of Theorem 4.l.

An interesting qualitative arsument can be based on Theorem 4.1.
It is plausible to s'ppose that the amount of information in a sample
is a monotonically increasing function of the average sample si :e.
This assumption together with Theorem 4.1 implies that the test pro-
cedure designed to satisfy the conditions of Theorem 4.1 requires, on
the average, the smallest average sample size to provide a statistical
test with the power (4, B).

The result (14) also implies this additional Theorem:

Theorem 4.2 When the test procedure is designed to satisfy the
* * *k *ek
conditions po(n) = pl(n) and Po (n) = Py (n) for all n, the rate of

transmission R(X;Y,N) dces not depend orn the terminal stage N.

Proof:

We observe by writing out R(X;Y) in terms ¢ and g8 that
Min R(X;Y,N) = R(X;Y).

This theorem is a complementary result of the notion of
sufficiency discussed in the previous section., Another result which

is less obvious can be stated in the form of the following Theorem:

Theorem 4,3 Consider two different test procedures which have
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probabilities of error less than 0.5. If these test procedures
require the same rate of information per decision [but only one
procedure is designed to satiafy (2)7 the procedure that satisfies
(2) cannot have probabilities -f error (o, B) both larger than the
corresponding probabilities of error of the cther test, This holds

for any a priori probabilities m and 1l-m.

Proof:

Let o’ and B’ be the probabilities of error of the first and
second kind of the test that satisfies (2) and 4 and B the corres-
ponding probability of the other test, The information rate per

decision of the tect that satisfies (2) is by (14)

! - ’ _l‘ﬁ' “\_:—_ ‘: a'
R’ =Q(n) - p Q( a7 } (1-G )Q(l-n'")
in which

o' = (l-¢’)n + g’(1-m)

The information rate of the other test is given by (12)., Since
both rates are assumed to be equal and the G(°) functions are

positive, we must have

1- y .
Q) - o Q(—Q" n) - (l-n)Q(-l‘Ea n) <Q(n)-o'Q(1—,3‘- n)- (l-n')o(ff-;m)
(15)

Suppose we assume that

0.5>a’' 2 &

(16)
0.5>8" 28
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This assumption implies the following inequalities (sze Fig., 1)

- - ! ?
0 < S}?fi n< Sl;g—l n<n< f“—j

&
1-0 ms n<l

1-0

|

for any 0 < n < 1, Let Pl’ P{, P, P, Pz

y = Q(t) corresponding to (l-g)n/p, {l-g')n/0 n, a'n/(1-07),

be the points on the curve

an/1-0. Since Q(t) is continuous, concave and non-linear, the

cheo=d P{ Pé lies above the chord Ple except when both equality

signs in (16) hold and the chords coincide. Suppose R and R’

are the points ca the chords Ple and P{ Pé corresponding to tarr.
Then P lies above R’ and R’ lies above R except when g=o’ and
B=B‘, in which case R and R’ coincide. Let PR be the distance

from P tc R, The inequality (16) therefore implies PR 2 PR’.

T T T AT ROFTOT TP

But the left-hand side of (15) is the distance PR and the right-
hand side of (15) is the distance PR’. Thus (15) represents the
inequality PR < PR’ which therefore cannot be acuaieved under

coendition (16). Conversely the inequality (16, contradicts (15).
y = Qft) .

A

(o} 1-a 1-a' a' a 1
— — W ” ” w
1-Q -

(] Q

Tig. i--uveomatricai 2elationships for the Proof of Theorem 4.2
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IV. CONCLUSIONS

It is important to notice the difference between the usual
communication problem and the decision problem. In the communication
problem the channel is specified, and one desires to isaximize the
rate of transmission. This is achieved through the coding of messages
which is said to match the information source to the channel. The
maximum rate of transmission (with respect to all the admissible
sources) that can ve achieved for a particular channel is known as
the capacity of the channel, By contrast, in the decision problem
the experimenter assumes a priori the hypotheses HO and Hl, out
not the test procedure; thus the information source rather than the
channel is specified. The test procedure (i.e.; tﬁe test statistic
and the decision regions) that plays the part of the channel can be
chosen by the experimenter. The probabilities of error deterwmine
the amount of information which must ue generated by the receiver.
The relevant design problem is now to select that test procedure
that requires least information to complete the test, i.e., that
minimizes the rate of transmission. We might consider this as the
problem of matching the channel to the source.

We find that the Wald test not only minimizes the average
risk but also minimizes the rate of transmission independently of
the a priori probabilities. The proof of the optimality of the
Wald test in the sense of minimum average risk applies only to the
alternate hypotheses tests on identically distributed, independent

(4)

sumples. It is suggestive to apply the Theorem 4.1 tc the

design of wulti-stage statistical tests of alternate hypotheses



even in the case of correlated and non-identically distributed
observations by requiring that the test procedure be constructed

to satisfy (2). This rule of construction would determine the
boundaries of the proper decision regions which need not be parallel
lines. Another extension of Theorem 4.) applies to the design of
multi-stage statistical tests of multiple hypotheses where by
analogy to the case of two hypotheses, the optimum decision rule
would be specified by the relevant equalities among conditional

probabilities at each stage.
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