
'I.

TECHNICAL REPORT ECOM-2474

ANALYSIS AND DESIGN OF CRYSTAL OSCILLATORS

S PART I

S* By

0i ERICH HAFHER

-ACOY OF J70 
__ . I L

H ,AR' D$. o ., d

0$

0 tMAY 1964: _ DDC

.
E

UNITED STATES ARMY ELECTRONICS COMMAND. FORT MONMOUTH, N.J.



*

DDC AVAILABILITY NOTICE

QUALIFIED REQUESTERS MAY OBTAIN COPIES OF THIS REPORT
FROM DDC.

THIS REPORT HAS BEEN RELEASED TO THE OFFICE OF TECHNICAL

SERVICES, U. S. DEPARTMENT OF COMMERCE, WASHINGTON, D. C.
20230, FOR SALE TO THE GENERAL PUBLIC.

The findings in this report
are not to be constfued as an
official Department of the Army
position, unless so designated
by other authorised documents.

(Detroy this report when it is no longer needed.

Do not return it to the origiatcr.)



TECHNICAL REPORT ECOM-2474

ANALYSIS AND DESIGN OF CRYSTAL OSCILLATORS

PART I

by

Erich Hafner

Solid State and Frequency Control Division
Electronic Components Department

DA Task No. 1P6 12001 A058 01 19

May 1964

U. S. ARMY ELECTRONICS LABORATORIES
U. S. ARMY ELECTRONICS COMMdAND

FORT MONMOUTH, NEW JERSEY



ABSTRACT

The approach developed in this report appears to satisfy all the major require-
ments that, must be placed on a unifying technique for oscillator analysis and design.
As demonstrated on specific examples, the conditions for oscillation in a generally
valid form can be processed to determine (a) the amplitude of oscillation in relation
to the characteristics of the active device, (b) the requirements on t1~e feedback net-
work to operate the crystal unit according to its specifications, (c) the changes in
frequency of oscillation in response to variations in any one of the circuit componentsI
and hence the values required for these components to obtain maximum stability, and (4)
the output power in proportion to the power dissipated in the cry'stal unit.

The key to this zpproach lies in a graphical method for solution of the oscillstor
phase equation in the impeJance plane. The impedance diagrams obtained thereby
open the way to a thorougta qualitative understaning of the cause-effect relationships
in oscillator performanc and provide the guidelines to bring the analytic expressions

/I

into a convenient form f',r quantitative work. Detailed discussions are carried out for
the Pierce oscillator and the bridged-T oscillator to illustrate the practical application
of the approach.
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ANALYSIS AND DESIGN OF CRYSTAL OSCILLATORS

1. INTRODUCTION

The literature on harmonic oscillators is very voluminous and for the most part is adequate-
ly referenced in textbooks on the subject. 1-4 However, in spite of the enormous number of
details that have been dealt with, it is generally conceded that the successful design of an
oscillator is still largely the result of very extensive laboratory experience.

This is believed to be due to the failure-of the theoretical work reported so far to provide a
conceptual framework which is readily assimilated by the serious student of the art and which
explains qualitatively the interrelatior of all the elements in oscillator circuits.

A rigorous theoretical treatment of the properties of a practical -oscillator circuit is possible
in principle only. The extraordinary complexity of the equations encountered prevents their
solution and interpretation in the general case. The success of any analysis of oscillators
therefore depends upon the judicious selection of the approximations that have to be made to
keep the problem tractable and upon the proper formulation of the analytic expressions in such a
manner that they are most susceptible to interpretation.

An oscillator is a physical system capable of one or more steady-state conditions that are
oscillatory in nature. Its behavior can be accurately described by a nonlinear differential
equation if its component values and the properties of the active element are known. In most
practical cases this approach is limited to systems with only one or two degrees of freedcm.
The differential equation can then be solved graphically by Lienard's construction 5 or, if the
static voltage current characteristic of the active element can be represented by a cubic
polynominal, by analytical methods. 6

Inherent in both procedures is the assumption that the operating point of the active element
is independent of the state of oscillations. In reality this is hardly ever the case and any in-
formation obtained from these methods concerning the transient behavior of the model, as well
as the steady-state amplitude of the oscillations, has to be modified suitably if this effect
should be accounted for. Since the major significance of these nonlinear oscillator theories is
in the qualitative description of the function of the active element during oscillations, the
additional complications just referred to do not diminish their fundamental importance for the
understanding of oscillators. Considering the limitations involved, no quantitative results
can be expected from this approach unless the differential equations are solved with the aid of
computers for specific situations. 7

The qualitative information provided by the nonlinear theories, however, covers all aspects
of the oscillatory behavior that can occur in a system with two or more energy storage elements.
In particular, they identify the factors that act to limit the amplitude of oscillations and illus-
trate how the energy that is dissipated in the circuit is replenished through the active element.
The waveform of the oscillator signal, i.e., its harmonic content, can be obtained by no other
means except by the techniques of the nonlinear theories.

While the harmonic content is important for its influence on the fundamental frequency, 8

the nonlinear theories do not appear adaptable to the type of analysis required by the circuit
'designer. The purpose of any desi ,n technique is to provide guidelines for the synthesis of a
passive network which will assure tlat first of all the behavior of the fundamental component



of the output signal meets the design objectives. Hence, the properties of the passive network
have to be analyzed and to do so it becomes necessary to approximate the nonlinear element in
the circuit by an equivalent linear element that faithfully reflects the action of the for1ner in
regard to the fundamental component of the signal. This then makes it possible to treat the
oscillator with the tools of linear network theory. Obviously, this approach will n longer
yield any information concerning the harmonic components of the signal directly.

The nonlinear theories provide the conceptual basis for the equivalent linearization of the
nonlinear active element, in particular they illustrate that the values of the equivalent
"linear" parameters must depend upon the amplitude of the signal. The fundamental comp.,n-
eat of the solution to the nonlinear differential equation can be shown 9 to satisfy a linear
differential equation whose damping term vanishes once the steady-state amplitude has been
reached. If no transit time effects are involved, this damping term contains the parameters of
the static current vs control voltage characteristic of the active nonlinear element. From it
the characteristic of the equivalent linear element can be determined, in principle, as a
function of amplitude.

This approach has not always heen followed consistently in the past and the appreciation
in the literature of the factors responsible for amplitude limiting within the context of the
equivalent linearization is frequently less than accurate.

There are notable exceptions, however. Plots of the effective ac current through the
active element vs the effective ac control voltage for a given set of operating conditions and
for a given frequency have been used very successfully for the discussion and evaluation of
oscillator and regenerative amplifier behavior. 10 A plot of this type is known as Moeller's
"Schwinglinie" 1' and replaces the static current vs control voltage curve in characterizing
the active nonlinear element. Though of impressive utility, this technique and its implica-
tions have frequently been ignored in the post World War II literature.

In recent years, however, another technique has been devised. Rather than plotting the
effective ac current vs the effective ac control voltage, Reich 12 chose to use the gm vs
effective control voltage curves to qualitatively illustrate several aspects of oscillator
behavior. Since the transconductance gm is the ratio of ac current to ac control voltage for
the fundamental frequency signal, the Reich diagram is essentially equivalent to the
Schwinglinien diagram and the discussions of oscillator performance can readily be translated
from one to the other. For oscillator design work, however, the Reich diagram is superior
because the effective gm is the quantity that actually appears in the analytic expressions.
in addition, since the g.. is one of the small-signal parameters appearing in the four-terminal-
network representation of a vacuum tube, the concept is quite easily extended to other activeelements, such as transistors.

With the properties of the active element adequately understood and its nonlinear ac
characteristics represented by appropriate "constants," it becomes possible to turn the
attention to the investigation of the passive network. Two areas are of interest: First, the
network should be such as to assure that oscillations occur, and occur with a predetermined
signal amplitude. Second, the frequency of oscillation must be as stable as possible and the
effects of variations in any one of the network parameters on frequen(y and amplitude should
be known.

The major part of this report deals with these problems. In spite of numerous attempts, it
has in the past not been-possible to develop a unifying concept that could readily be applied
to examine the cause-effect relationships in a large group of oscillator circuits under a variety
of conditions. Major cause of the difficulties is the extraordinary complexity encountered
when treating a practical oscillator network by the techniques customarily employed. The
approximations required to arrive at usable expressions reduce the actual network invariably
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to a skeleton model which makes it no longer possible to recognize its qualitative features on
a broader basis. As a consequence, some rather basic properties of harmonic oscillators, in
particular of those employing quartz crystals are only partially understood.

2. THE BASIC OSCILLATOR EQUATIONS

An idealized oscillator circuit is shown in the upper part of Fig. 1. The general im-
pedances Z 1 , Z. and :/3 form the feedback network and the electron tube supplies the energy
necessary to sustain oscillations. If the concept of the equivalent linearization is used, the
vacuum tube can be treated as though it were a linear element whose ac output current i1 is
proportional to the ac input voltage vg and 180 °out of phase with it

i I -gmv (1)

Since the tube, however, is actually a nonlinear element, the value of gm depends upon the
amplitude of the signal vg. We will assume that gm as a function of A, the amplitude of the
fundamental component of the oscillator signal, gives a steadily decreasing curve such as
shown in the lower part of Fig. 1. This assumption meets with the most dommonly encountered
behavior and does not impose a serious restriction on the developments of this report. The
value of gm., which represents the transconductance of the tube for infinitely small signals,
as well as the exact shape of the gm vs amplitude curve depends upon the type of tube and
the dc potentials on all the tube electrodes. However, this curve is independent from the
impedances Z1, Z2 , and Z3 in the feedback network except for the effect of these impedances
on the dc electrode potentials. Additional details concerning the effective transconductance
of a vacuum tube will be found in Appendix A.

The voltage vg in Fig. 1 is related to the input current i1 by the relation

Z1 Z2Vg 1 al (2)

ZS

with

Z8= ZI + Z2 + Z3 (2a)

The relation (2), because of (1), reduces to the condition for oscillations in the form

ZIZ 2

m Z" (3)

If we set

Zi = IZ i lei (i = 1, 2, 3, s) (4)

and separate the real from the imaginary part in (3), we obtain the two conditions

61 + 02 - = 77 (5)

=Zz l  gm < gmo (6)

Iz1lIZ 21



which have to be satisfied simultaneously for steady-state oscillations to occur. As further
explained in Appendix B, the ratio of the impedance magnitudes must be smaller than gmo"
The value of this ratio determines the g. which must be exhibited by the active device
during steady-state oscillations; and hence, it determines the amplitude of the oscillations by
way of the amplitude dependence of gm shown in the lower part of Fig. 1. If large amplitude
oscillations are required, it is necessary to make the difference (gmo - gm) as large as
possible. To obtain small amplitudes the opposite is true, of course.

It might be well to point out in this connection that an incidental change in any one of the
impedance magnitudes will change the value of the impedance ratio in (6) and hence cause gm
to change. Since, however, a variation in g,, can take place only if the amplitude of oscilla-
tions changes, the incidental variation in one of the impedance magnitudes will cause a change
in amplitude which can be quite appreciable if the slope of the gm vs amplitude curve is small.
In order to steepen the slope of this curve, particularly for low amplitude operation, one or
more of the dc bias potentials are frequently made a function of amplitude through the use of
AGC circuits.

While Eq. (6) determines then the amplitude of oscillation, Eq. (5) determines the frequency

at which the oscillations take place.

Since all three impedances Z 1, Z2 and Z3 in Fig. i and therefore Zs as well are, in
general, functions of frequency, one or more of the phase angles in (5) will also be functions
of frequency and the equation can be satisfied only at one or, more often, at several discrete
points. If there are several, stable oscillations will occur at that root of (5) at which (6)
requires the lowest value of gm.

Any analytic method to solve (5) is impractical for all but the most idealized circuits.
However, it is possible and indeed most instructive to solve this equation without any ad-
ditional approximations graphically in the impedance plane.

While this technique is by no means restricted to quartz crystal oscillators, we will use in
the following the Pierce and Miller circuits to illustrate the approach.

Before we go into it, however, we believe it quite useful to review in some detail the im-
pedance diagram of a crystal unit 13 because of its fundamental importance for crystal
oscillator operation and performance.

3. THE IMPEDANCE DIAGRAM OF A QUARTZ CRYSTAL UNIT

The familiar equivalent electrical circuit of a crystal unit with load capacitor is shown on
the upper right-hand side of Fig.. 2 and next to it, it is drawn again to identify the symbols
which will be used in describing its properties. Only the narrow frequency range of a particu-
lar crystal response is of interest and it will be assumed that X 1 the reactance of the motional
arm is the only quantity that changes appreciably with frequency in this range, i.e., X0 , XL
and R1 are assumed to be constants.

If the impedance Zx - R + jX of a crystal unit is measured point by point as a function of
frequency, it will be found to describe a circle in the R-X plane. Such an impedance diagram
of a crystal unit is shown as the heavily drawn circle in Fig. 2. It can be described by the
equation

R - R + (X-XO-XL) 2 = (")7
2R (f)
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The vector Zx 
= IZ.xeJx representing the impedance between the two terminals of the

crystal network t,.[ ws this circle in a clockwise direction as the frequency of operation is
changed upward through the raige of the crystal response. Each point of this circle corres-
ponds to a different frequency and a.peasure of the change in Zx with frequency can be oh-
taiiied by providing the circle with a frequency calibration.

This is the purpose of the set of circles drawn in Fig. 2 with thin lines. Each one of
t-se circles, which follow the equatien

o2  2 xo 2  2
R2 +(XXoX, + -X0 ) 02 ), (8)

belongs to a different value for X1 and hence to a different frequency. Those drawn into the
diagram, Fig. 2, are separated from one another by an equa increment in Xi, and hence by an
equal number of cycles, over a certain range of X1 around X1 = 0. Since the intercepts of
these circles with the impedance circle of the crystal unit identify tOe frequencies at which
Z assumes the corresponding values, a diagram such as shown in Fig. 2 provides a rather
illustrative picture of the behavior of the crystal impedance throughout the response range.

As an example, we will consider the effects of a variation in the load impedance XL.
From Eq. (7) and (8), it can be seen that any change in XL effects a simple translation of the
entire diagram along the imaginary axis. If XL and X0 are both capacitive as has been
assumed here, an increase in the magnitude of XL will cause the entire set of circles to move
downward. Consequently, since the frequency calibration on the impedance circle is not
affected, the frequency at which Zx has a given phase angle, say Ox = 0, will increase. Z.
will thereby move into a range of the impedance circle where the frequency calibration
becomes more open; and in an oscillator that should be frequency modulated, a given amount
of modulation in XL will cause a correspondingly smaller modulation of the output frequency.
On the other hand, if XL is made inductive, for example, by using a condenser and coil in
series in place of CL, the distance between the center of the impedance circle and the real
axis can be made quite small. Since now the resonance frequency of the network, i.e., the
frequency at which 0. = 0, is in a range of the impedance circle where the frequency calibration
points are closer together, the same amount of modulation in XL will cause a much larger
modulation of the output frequency.

/

To help avoid .a trivial trap in the use of the impedance diagram later on, it should be
emphasized that the impedance vector Z starts, of course, at the origin of the R-X coordinate
system, while the impedance circle touches the imaginary axis at X = Xo + XL.

4. THE PIERCE OSCILLATOR

In an oscillator such as shown in Fig. 1, the crystal network can take the place of any one
of the three impedances Z 1, Z 2 and Z 3. If it is Z 3 and the impedances Z1 and Z 2 are
capacitive, the resulting configuration is that of the well-known Pierce oscillator, shown
schematically in Fig. 3.

For the moment, it will be assumed that the impedances Z 1 and Z 2 have been chosen
initially and that it shall be det-nined if this configuration will oscillate with a particular
crystal unit and at what point on the impedance circle the crystal will be operated. According
to the condition (5), oscillations can take place only if 8., the phase angle of the sum vector
"IS = ZI + Z2 + Z 3 , is given by

0a 0 1 + 02 + 7T

5



We can plot, therefore, the impedances Z 1 and Z2 in the impedance plane and find the angle
(01 + 2 as well as 80 =  + 82 + 1800, such as shown in the left-hand diagram of Fig. 3.
Hence, for the phase relation to be satisfied, the sum vector, Z. must fall along the broken
line in the first quadrent.

To find the magnitude of Z., it is only necessary io first obtain Z 1 + Z2 and to use this
impedance as the origin for the impedance diagram of the crystLl network. This is shown tL
the r.ght-hand diagram of Fig. 3. The broken line circle denotes all possible values for Z3 ,
while Z. can only assume values along the line 0. = const. The intercept of these two
lines determines Z. and Z3. Apparently Z3, the impedance of the crystal network, must
always have an inductive reactance that is larger than the sum of the capacitive reactances of
Z1 and Z2 unless the resistive components of the latter are zero, i.e., unless 81 and 02
are both -900.

If the diagram has been drawn to scale, the length of Z. can be measured and the ratio gm

1z11"121

determined. If gm is smaller than g, oscillations will take plate and, from the gm vs
amplitude curve, the amplitude of these oscillations can be found. Their frequency follows
from the value of Z3 , together with Eq. (3). The latter, incidentally, will generally be found
much easier to ,sse, either in the form shown or solved for X 1, than most othar relations for
this purpose.

From the diagram in Fig. 3, it can be readily appreciated that, for example, a decrease in
X + XL will cause the inpedance circle to intercept the line 8 = const. at a lower point.
The magnitude of Z decreanes and with it the ratio gm, calling for higher amplituie
oscillation. Thiseffect, of course, becomes more pronounced as the curvature of the crystal
impedance circle increases either due to a larger value of R1 or a smaller X0. Drawing a ;et
of constant frequency circles (8) into the diagram of Fig. 3 provides, furthermore, a very Wirect
impression of the interrlependence of frequency of oscillation, crystal resistance R1 and load
reactance XL. It is well to take note of the fact that the constant frequency circles (8) are
independent of R 1

5. THE MILLER OSCILLATOR

If the crystal network takes the place of Z 2 in Fig. 1, we obtain the basic diagram of the
Miller oscillator as shown in Fig. 4. In order to explain the qualitative features of this
oscillator, we will assume now that Z1 and Z3 have been chosen initially and that we wish
to determine the impedance, Z2 in this case, which the crystal network is required to exhibit
during steady-state oscillations, provided oscillations are possible.

The phase relation (5) requires now

8 - 82 =7T + 80 (9)

Since, however, 82 and ql are, of course, not independent from one another, the problem of
solving (5) is now slightly more complicated, though not essentially different from the previous
case. In Section 4 we had to determine, at first, the loci of all values Z. for which (5) is
satisfied. This was done in the left-hand diagram in Fig. $ and the curve happened to be the
straight line 6s.= const. In the right-hand diagram of this Figure, we then found the actual

6



operating point as the intercept of this curve with the one describing those values of Z3 that
the crystal network is capable of assuming.

An identical procedure can be followed to solve (5) if Z2 is the unknown impedance.
Disregarding for the moment the physical significance of the 's, solving Eq. (9) becomes a
purely geometric problem. The solution describes a circle in the impedance plane. Part of
this circle is drawn into the left-hand diagram in Fig. 4. It goes through the origin of the,
impedance plane and through the end point of the vector Z I + Z3. A third point on this
circle is found most conveniently by assuming 02 900. According to (5), 0s is then given

7Tby 8- 1 -- which is readily obtained from the graph. The circle is then drawn through i,
2

these three points, however, only the solid portion of it corresponds to physically realizable
values of Z2 and hence Z.. In the right-hand picture of Fig. 4, the impedance diagram of the
crystal unit is shown superimposed on the graph just obtained, with its origin at Z + Z3".
Again the intercepts of these two curves iden'tify those values of Z5 and Z2 that satisfy the
phase relation and at the same time are permitted for the crystal network. 'Of the two inter- t4
cepts, only the upper one is of interest because it corresponds to a substantially lower value
of gin. If the latter is smaller than g o, the circuit will oscillate at the frequency at which
the crystal exhibits the required impedance Z2.

The diagram in Fig. 4 shows quite clearly that even though the impedance Z2 is inductive,
the crystal unit is still operated in its low resistive region. By no means should the fact that
the Miller oscillator is known as a parallel resonance oscillator be taken to imply that the
crystal unit is operated near its antiresonance point, i.e., in the high resistance range of its
impedance circle. If the crystal is operated correctly, that is, according to specifications,
the Pierce oscillator, as well as the Miller oscillator, will havethe same output frequency,
which is only a different way of stating that the crystal is operated on the same point of its L
impedance circle in both cases.

Considerations such as were made for the Pierce oscillator concerning the effects of a
change in series load reactance XL can of course easily be translated to apply for the Miller
oscillator. With slightly more effort, the graphical construction in Fig. 4, together with (7)
and (8), can be used to illustrate the effects of a change in X., such as introduced by a loadelement in parallel with the static capacitance of the crystal unit. XL may or may not be left
to go to zero.

The graphical constructions in Fig. 3 were based on the assumption that 'he terminating
impedances Z 1 and Z2 are known, whereas those in Fig. 4 require knowledge of Z 1 and Z3or Z2 and Z3 . In general, therefore, regardless of where the crystal network is, the procedure
followed in Fig. 3 has to be used to determine Z3 while that of Fig. 4 has to be used to
determine one of the terminating impedances.

6.. THE STABILITY RELATIONS

Principally for the purpose of demonstrating some of the features of crystal operation in an
oscillator, we have assumed in Sections 4 and 5 that it is the operating point of the crystal unit
that has to be determined while the other impedances in the circuit are known. However, one
problem in designing an oscillator is frequently to assure, by proper choice of the other circuit
components, that the crystal unit is operated at its specified operating point in order to obtain 1
frequency correlation. This means that the impedances Z1 and Z2 in the case of the Pierceoscillator or Z 1 and Z3 for the Miller oscillator have to be determined, together with the proper
values of XL and X0 , to obtain the desired operation. 1

7



The conditions for oscillation can obviously be met with a very wide range of circuit
impedances. In fact, it is well known that only the mqst rudimentary precautions have to be
taken to obtain a configuration that will oscillate somehow. The decisive question that has
to be answered is, "What are the optimum values of the circuit impedances for a given
application?"

For frequency control applications, the most pertinent criterion for the performance is
undoubtedly the degree to which the desired frequency of oscillation is maintained, It can
easily be appreciated from either Fig. 3 or Fig. 4 that any change in, for example, Z 1, will
require either Z2 or Z3 or both to change if the conditions for oscillations should again be
satisfied for the new value of Z 1, i.e., for Z 1  + A Z .

The relationship between the various AZ's can be found quite generally by differentiating
the condition for oscillation (3). We find,

US AZ 1  AZ 2  Agm

A- (10)
Zs Z, Z,2 gm

Because the Z's are generally functions of a number of parameters such as resistors, -on-
densers, and inductors, as well as of frequency, i.e.,

ZI = Zl (al1 , a1 2 , a 3,. ;w), (11)

the differentials are

AZ = - 1  -(12)
-atl - f, - ,

with like expressions for Z 2 , Z8 and AZ 2, AZ 3 , respectvely.

Each one of the Z's has, as a complex ,quantity, a magnitude and a phase angle

AZ JAZI&GAz • (13)

If (4) and (13) are substituted into (10), the equation can bc separated into real and imaginary
paets. The reul part of (10) determines the changes in gm and hence in the amplitude of
oscillation. The imaginary part, however, contains the equt ion for Aw, the change in
frequency. With AZ 8 = AZ 1 + AZ 2 + AZ 3 , which follows from (2a), the imaginary part of
(10) becomes

IAZI-,) - --IAZ 1 i - 0 1)
-' 8 sin (AZ ) + - sin ( IAZ II sin 0A Z

J z2 i IAZ2I (14)

1ZS1 s AZ2 - ) -- 2 -- (LAZ - 2) = 0

With (12) and (18), it is possible to compute from (14) the frequency shift Ac/w caused by a
given set of parameter changes (Aa). While the equation looks formidable in its general form,
it frequently reduces to quite manageable expressions when a particular circuit is being

8
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considered.

Using the diagrams of Fig. 3 or Fig. 4, it will be realized that each one of the terms in
(14) represents a phase angle change. For example, the second term is the ratio of that
component of AZ 1 which is normal to Zs to the magnitude of Z. and hence, represents the
change in 6; due to the action of AZ 1. Similarly, the third term is the change in 01 due to
AZ1 a.s.o. The information contained in (14) could have been deried in principle by
appropriately differentiating (5); however, the resulting equation wouid be of very limited
use and would again have to be transformed into the form (14) for practical application.
Nevertheless, the mere possibility is of great value conceptually in interpreting the relation
(14). For example, it demonstrates quite clearly that the sum of all phase angle changes
caused by AZ, and AZ2 must be compensated by an equal and opposite change in 0. due to
the action of a AZ3 of appropriate magnitude. The change in 03, the phase angle of the
impedance Z3 , does not enter the stability relation directly.

An important aspect of (14) is t!,e general type of design information thiat can be extracted
from it. We can use again the Pierce oscillator to illustrate this point.

In the case o6f the Pierce oscillator, Z3 represents the crystal network and 3Z 3 /c)w will
ordinarily be so large compared to DZ2/co and 6Zj/Dco that the later two can be neglected
compared to the first. AZ 1 anA AZ2 therefore represent changes in Z 1 and Z2 that are
caused by variations in any one or more of the parameters alk and a2k of (11). Since in this
type oscillator, Z1 and Z2 are nearly always the impedances of networks consisting of
several elements in parallel, it is more convenient to replace AZ 1 by IZ 12A 'y 1 land AZ 2
by Z2 12 lAY 2 [. If, in addition, it is assumed that the parameters of the crystal network,
ak, remain constant, Eq. (14) becomes

AO-DZs sin (OAZ 0s) +

1%11

1Z 1AY 11 sin(OAZ 1 - - AY 1I sin (O 1- 01) + (15)

+ z I 1AY 2 1 sin (&&.Z 2 - I-Z2 11AY 2 1 sin(OAZ2 - 02) 0

The first term in (15) can be transformed further by using an expression for the quality
factor of the crystal network that is valid over the entire range of the crystal response. Such a
formula for the crystal Q can be shown to be given by

Qo 2 Real Z3  '3 1

I

I
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With (16) and (0), Eq. (15) can be written in the following form:

MAo
- 2A o Qeff

= I Il IAYlsin (6 Zz -o) - IZillAYiIsin (66z - 6) +

1 iz21gI Iz21

+- I1 AY2 1 sin(OAz -6 °) -IZ21 1AY 2 1 sin(GAZ - 62)

whereby

Real Z8
Qeff = Qo 0 ZsI sin (6Az - OS) (18)

Evidently, a given set of IAY1I1 and lAY 2 Iwill cause the smallest change in frequency if Qeff
and gm are as large as possible and I z I1 and I Z21 are small.

Qeff is the effective quality factor of the crystal network in the oscillator circuit. It
always is sraaller than Q , the quality factor of the crystal network alone, with the factors
contributing to the degraion apparent from (18). A more extensive discussion of the effec-
tive quality factor will be given in Section 8, where it will be shown how the expression (18)
can be transformed to yield the information required in the design of a feedback network with
minimum Q degradation.

Z 1, Z 2 , and Z 3 are related to one another and the effective transconductance of the tube
by (6). The lower limit forl Z1 I and I Z2 is set by the available gno of the active device. To
obtain the highest frequency stability, therefore, requires that g is as close to gm as pos-
sible. This means by implication that the amplitude of the oscillations will be small unless
the gm vs amplitude curve is extremely flat. The latter, of course, is undesirable because of
poor amplitude stability as pointed out in Section 2. As the crystal frequency is sensitive to
amplitude variations, there is an optimum point of operation on the gr v" amplitude curve that
will give the highest frequency stability and this applies also if the shape of this curve is
modified by AGC action. Particularly in connection with AGC, it is important to note that the
frequency deviation Aol/co according to (17) depends actually upon the impedance magnitudes
and only because of (6) on the effective gm of the active device. AGC should be applied
sparingly so as not to roduce the operating point of the active device and hence the available
gm more than necessary.

It has been assumed so far that the parameters of the crystal network OL3k remain constant
while the terminating impedances Z 1 and Z 2 are subject to change. According to (17), it is
iinci ally the effective quality factor of the crystal unit that determines the sensitivity of the
oscillator frequency to thp variations in Z i and Z 2. An essentially different type of condition,
however, exists if AZ 1 

= AZ 2 = 0 is assumed and the parameters of the crystal network are
varied. In this case Eq. (14) reducer. to the equation

OAZ 3 - e =0 (19)

which stetes that Z 3 can only change along the line 6s = const. This latter fact can easily be
verified by using the diagram in Fig. 3. Since Z 1 and Z2 are assumed constant, 0. is not
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affected by a variation in any one of the parameters a3k and hence remains constant. A
specific example of the situation existing now has already been considered in Section 3 where
the effects of a variation in XL were discussed. It can be shown that the change in frequency
of oscillations in response to a variation of the parameters cx3 k is controlled primarily by the
capacitance ratio Co/C I of the crystal unit and is independent to a large measure of the
quality factor Q0.

We find, therefore, two genorally valid criteria for designing an oscillator for maximum
frequency stability. First of all, it is necessary to reduce to a minimum all those factors
which tend to degrade the Q of the crystal unit once it is incorporated into the circuit, i.e.,
Qeff as defined by (18) must be made as large as possible.

The second criterion derives from the fact that the frequency changes caused by a change fl

in any one of the components in Z3 are controlled by the Co/C 1 ratio of the crystal network.
A large ratio is desired if the resulting frequency change should be small. For optimum
stability, the Co/C 1 ratio should be kept as large as practical. To a large-extent this
criterion applies to the proper choice of the crystal unit to be used in the circuit, since gen-
erally, for a given Q., the crystal with the higher resonance resistance will have the larger
Co/C 1 ratio.

All the considerations made so far for the Pierce oscillator apply, with some modifications,
to the Miller oscillator as well. However, in practical applications, it will be found that the
latter is more difficult to design properly and, in addition, its impedance level appears to be
restricted to a rather unfavorable range.

7. GENERALIZATION OF THE OSCILLATOR EQUATIONS

When dealing with vacuum-tube oscillators, particularly those employing pentodes, the
approach taken in Section 2 might be found acceptable for most engineering applications
without much hesitation. The nature of presently available transistors, however, leaves no
choice but to examine the problem more carefully in order to determine how much of the
foregoing analysis needs to be modified and amended for it to apply to transistor oscillators
as well.

A perfectly general representation of a harmonic oscillator is shown in Fig. 5. It consists
of two four-terminal networks in a cyclic arrangement. Network I shall contain the active
element, or elements if more than one is used, while Network II contains.the ac feedback loop.
The load can be considered a part of Network II.

Within the concept of equivalent linearization, it is possible, using matrix theory, tu
completely characterize the small-signal performance of Network I by a set of four constants,
the most appropriate for the configuration being the a parameters. The input-output relations
for Network I are given by

v = all v2 -a 12 i2  i
= a2 1 v2 - a2 2 i2

It is important to emphasize that the parameters (ajk) are entirely independent from the
properties of Network II. Their values do, of course, depend upon the biasing conditions and J
upon the signal level in a manner similar to that explained in Sectiri 2 for gm. 5*
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The input-output relations for Network II are

v3 = 11 V4  a 1 2 14

i3 =a 21 v 4 - a 2 2 i4  (21)

Because of the cyclic arrangement of the networks shown in Fig. 5, i 3  -i 2, V3  v2,
i I = -i 4 and v 4 = v 1 must hold during steady-state oscillations. It can be verified quite
readily with (20) and (21) that for these relations to be possible, it is required that

1- a2 1 a.12 -a 12 a 2 1 - a22 a 2 2 a-- a 1 1 +(22)

with

= a a2 2 -a 2 a2 1 ; all a 2 2 -a 12 a 21

Equation (22) expresses the conditions for oscillation in general form, subject only to the
limitations imposed by the concept of equivalent linearization. It applies to vacuum tube and
transistor oscillators alike.

If a feedback loop in the form of a 7r network is assumed, as suggested in Fig. 5, the
parameters (a ik ) are given by

I+ Z Z3 Aa =1

(a2 1'= 1 + Z'+ Z(28)(a ik) - Z; s "Z +Z 2 + 3

While every linear passive network can, in principle, be represented in this form and hence
the generality of the following considerations is not restricted by this assumption, in practical
applications it will be found convenient to base the analysis on the actual form of the feedback
network and to use the corresponding expressions for the A parameters. In this sense the
following discussions apply directly to all oscillators with only three essential nodes in the
feedback network and serve as guidelines for the analysis of oscillators with more complicated
networks.

The a parameters of a transistor are not wi-ely used and it will be more convenient to
express the equations in terms of the common emitter "h" parameters. The latter are less
abstract in their meaning and are usually%obtained by direct measurement. Again, the fact that
the common-emitter parameters are chosen here is only a matter of convention and does not
impose any limitations on the validity of the equations. The two four-terminal networks in
Fig. 5 can always be defined such as to conform to this convention.

The well-known relations between the a and h parameters are given by

12
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Ah h1 1  h12  2
(aik) h2 l h2  (24)C _/ Ah= hl 1 h2 2 - h 1 2 h2 1

21 h2 1

If (23) and (24) are inserted into (22), it will be found possible, after some re-arrangement
of terms but without approximations, to write the general condition for oscillations in the form

ZIZ 2  .
gm s = - 1(25)

and thus to reduce it to the basic equation discussed in the foregoing sections of this report.
The symbols in (25) are defined as follows:

h21 h 12  h 12
gm- 1 +- Z3 ) (26)hl h21 511

Z8 Z' + Z2 + Z8 (27)

1 1 Ah
- + - (28)

z i  Z hl

1 1 1
+ •(29)

Z2  Z2' h1l

It is observed that h 1/Ah in (28) is the impedance seen looking into the output of Network
I with its input short-circuited and that h I in (29) is the impedance seen looking into the
input of Network I with its output short-circuited. Since no approximations have been made in
the derivation of (25) other than those implied by the equivalent linearization, Eq. (25) applies
equally well if Network I represents any type of amplifier, no matter how simple or complicated
its structure.

To apply the methods of oscillator analysis developed for an ideal current generator to any
actual circuit configuration, it is only necessary to consider the short-circuit input impedance
exr well as the short-circuit output impedance of the amplifier as part of the feedback network
and to define the strength i2 of the equivalent ideal current gener'ator as -i 2 = gmvj with the
form of gm stipulated by (26).

The parameters of the active device are still separated from those of the feedback network
in the expressions (28) and (29). The advantage of dividing the oscillator into an active md a
passive network as shown in Fig. 5 is still retained therefore; namely, that the parameters of
each one can be measured independently from the other. Since there are no basic restrictions
on the manner in which the oscillator is divided into the two networks, this division can be
carried out so as to assure that the parameter measurements can be made in a convenient and
meaningful fashion. Frequently, this will require that part or all of the biasing network be
included in the active network.
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According to the foregoing, then, the active four-terminal network in an oscillator can be

represented by a simple equivalent circuit as indicated in Fig. 6. Within the concept of the
equivalent linearization, this representation is exact if gm is defined by (26).

The impedances h1 1 and h1 1/Ah in Fig. 6 depend upon the bias conditions and upon the
signal levels within the active network. In oscillators with minimum Q degradation, however,
the impedances Z ' 2 and Z ' I will be small compared to h 1 1 and h 1 /Ah and knowledge of the
values of the laLLer for extremely small signals will be adequate in most practical cases.
Their variation with signal level will frequently be negligible in calculating the parameters
of the feedback network. For the most general case, the direct measurement of h1 1 as a
function of bias condition and signal level does not present any undue difficulties, but a
similar evaluation of h1 1/Ah will not always be possible. Its value at other than extremely
small-signal levels will have to be approximated.

The effective transcanductance g- as given by (26) is also a function of the bias condi-
tions and of the signal levels within the active network. In most cases of practical signifi-
cance, it will be possible to approximate g by h2 1/h1 1 which can be evaluated directly.
Since only forward transmission is involvedhere, the signal levels within the active device
are defined if v1 and v2 are defined. Very frequently the dependence of h2 1/h1I on v2 is so
slight in the range of interest as to be negligible and curves of h2 1/h 1 1 as a function of the
amplitude of v, with the bias conditions at zero amplitude as parameters are adequate for
most design purposes. When necessary, such curves can readily be extended to include v 2
or some appropriate function of v2 as an additional parameter.

More substantial difficulties, however, arise if gm = h2 1/h 1 1 is not a valid approximation.
To include the term with Z3 in (26) requires that an iteration process be used in order to
solve (25) by the graphical techniques explained previously. Consideration of the amplitude
dependence of h 12/h 21 and h 12/h 1 1 is only possible in a very approximate manner.

The amplitude and phase relations in the general case are obtained from (25) by separating
the real and imaginary parts just as (5) and (6) were found from (3). They are"

0=o1 + 02 + 0 + (30)

Z81 =1gm < Ig.0 1 
(31)

whereby

gm = [g.Iej " (32)

Though the existence of a finite phase angle 6g does require some minor modification, the
graphical method explained previously is readily applied to the solution of (30). A finite 0g
3imply means that Z. the sum yector falls no longer on the line 01 + 02 + 7T = const. as
in Fig. 3, rather it must fall on' the line 01 + t92 + 7T + 09 = const. The effects of this
modification are most clearl3/ demonstrated qualitatively by using the corresponding diagrams.
For example, since 0 is usually negative, i.e., of the same sign as 01 and 02 in a Pierce
oscillator, it is notedlthat a 8 of proper value can cause 8 to become zero even if 01 + 02
is less than 1800. Under certain conditions, therefore, it is possible that a finite 0 will
result in improved oscillator performance. To identify these conditions, however becomes
increasingly more difficult as the number of variables increases and their relative tendency to
to change in value with time and environmental conditions is considered.
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8. THE GENERALIZED STABILITY RELATIONS

The fact that gm in (25) is no longer a real quantity in the general case also causes some
modifications of the stability relations derived previously in Section 6.

Since (25) is of the same form as (3), differentiating (25) leads again to the relation (10)
between the changes in the quantities Z 1, Z2, Z3 and gm, with only the definition of the
symbols altered according to the considerations of the preceding Section.

The imaginary part of (10) is now given by 1

IAZ,3IT~T sin (% z -0) +

+ T- sin(6A. 1 -8) - sin(OAZ 01) + (33)

IAz21 IAz21 IAgml
+ - sin (0 Az 2 -FZ) Iz21 sin ( 0AZ 2 -02) g mi] sin (Ag -g)

Evidently this equation is formally identical to the stability relation (14) for the idealized

oscillator, save for the fact that (33) contains the change in the phase angle O0 caused by a
given 6Ag. Of course, 0s now depends upon 0 according to (80) and g , Z 1 and Z2 depend I
upon the parameters of the active device accorling to (26), (28) and (2. Except for these
differences, which certainly must be kept in mind, all the factors considered during the
discussion and interpretation of (14) %pply equally well to the stability relation (38) for a
generalized oscillator.

Of particular importance is the fact that the expression (18) for the effective quality 2

factor remains unchanged with only the symbols redefined and that the two criteria established
in Section 6 for the design of an oscillator for optimum frequency stability are valid also in
the general case.

The expression corresponding to (17) now takes the form

2LICO I 1Z 11
---- ef,- -I ^sin(Z - 0) - IZllJAY, sin(AZ - 0) +SIgi 1Z21 1 1s(-

(34)
1 Iz21

+ g- - IAY 2
[ sin(OAZ - 01) - IZ2 IIAY21sin(8z - 02) -

Igm z] "

- sin (Og - 0g)
IgMI 9 g

9. THE EFFECTIVE Q1,ALITY FACTOR

Bpcause ot the fundamental importance of the effective quality factor for the proper opera-
tion of a crystal oscillator, it is quite necessary to bring the expression (18) into a form which
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can be used more advantageously in the design of a feedback network with the highest Qeff
possible. We will use the following definitions and relations:

G1 B 1

1= R, + jX 1  G j "-B- GZ 112 - jBI1Z112
G,2 +B,2 G1 2 +B1

G2 B (35)2z R,I + iX2 = __ _ =G21Z2 2  1 Z B22
+~~ X2 =02 + B2

2  022 + B 2

Z3 = R3 + jX 3  Real ZI = R3  (36)

IZ.1 cos 0. = R  + R2. + R3

Because of (36), which follows most readily from a diagram such as shown in Fig. 3, one
can write (18) in tie form

sin (OAz3 - 8 ) cos 8

Qeff = Qo R1 + R2 (37)

Ra

which still does not contain any approximations. With (35) and (31), one can obtain the
equally general expression

R1 + R2 IZ 81 z .1Z21
R3 - ( , Z (38)

which can be approximated by

R1 + R2 1 1z1 l 1Z21
- ( GzI z -)

if the major part of I Z8i is the resistance Rq of the crystal network. When (39) is used in
(87), this approximation will cause only second-order errors in the following expression for
Qeff

Qff= sin (A - ) cos (40)
I" o IZ l 'Z 2 1

1+ "( - + G2" )
Igm I 121 + Z11

Further transformations do not appear advisable in the general case. If G1, 02, R8 and gm
are given quantities, the optimum ratio 1Z1 I/ IZ21 can be determined from (40), -however,
the process is quite cumbersome since it is usually not possible to ignore the dependence of
the numerator on 01 and 02 according to (30). The form (40) appears to be quite suitable for
the use of an iteration process, carried out analytically or graphically in the impedance plane.
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A substantially more convenient expression for the effective quality factor can be found,

however, if, as is very often the case, it can be proved justified to assume

0Az 3  -0 0• (41)

The numerator in (40) then reduces to

Cos Os sin (OAZ 3 - 0.) cOS 2Os (42)

which can be approximated for reasonably small angles by

cos 2
8  1- 2&2 1 -(, +2 (

8 ~ 2 2

I -2(GI Z11 I + G2 IZ2 1)2  (43)

Because of (31):

R3 Iz1 Iz21
(GlZ1 l + IZ21) g + 02 + % ZI G2 ) (44)gm 21l

so that the expression (40) can be rewritten approximately in the highly useful form:

Qo-Qeff 1z11 G1  Iz21 G2 4G1G2R3-(-2RG) 7 (1 + 2.R3 G2 )

Qo IZ21 gm (Z 1 I g. gm
(45)

Except for terms that are small of higher order, -the relation (45) is valid if the assumptions
(41) are met and the phase angle Os is small enough for (43) to hold.

Most frequently the values of G1, G2, g and R3 are already determined once an active
device and a crystal unit have been selectr, leaving the ratio Z 1 I/IZ21 in (45) to be
adjusted for minimum degradation. Evidently this requires

IZ112 _ G2 1 + 2R 3G2

1Z2 12  G1 1 + 2R301

The minimum value for (45) is then given by

!2o-Qe~f P tr 4G1G2R3

Dmin = = A IG2 (I1  + 2R 3 G1)(1 + 2R 3G2 ) +
Qo in. g. gm (47)

Among the interesting features of (47) is its dependence on R3, the resistive component of
the crystal network. As R3 is decreased from some large value, the Q degradation becomes
eventually independent of R and the use of a crystal unit wi th a still lower R3 will not result
in an improved effective quality factor. Moreover, a crystal unit with a very low resistance has
a correspondingly low C/C, ratio and its use would violate one of the general design criteria
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established before; namely, that Co/C 1 should be as large as practical. In a sense, the value.
of Dmin for R3 - 0 can be considered a figure of merit of the active device.

Evidently, there is an optimum value for R3 and even without going into a detailed analysis
of the complete stability relation, it can be assumed that in most cases R3 should be just large
enough so as not to contribute appreciably to the Q degradation. Usually this requirement can
be met with a fairly wide range of R3 values.

A specific example will illuminate this point further. Using a 2N700 transistor, one might
find 0, = 10-4 mho, G2 = 10.2 mho, gm= 4 x 10-2 mho. The minimum Q degradation Dmin
(R3) as a function of R3 can then be found from (47), e.g., Dmin (0) = 5%, Dmin (50) = 7%,
Dmin (100) = 8.5%, Dmin (150) = 11.5%. Hence, there is evidently little to be gained from
using an R3 below 50.Q with this particular set of values, and even an R3 as high as 1500
might still be considered acceptable in some cases.

The conditions for oscillation (5) and (6), or, in the general case (30) and (31) specify the
magnitude of the product I Z1 I I IZ2 while the requirement for minimum Q degradation leads to
a value for the ratio I Z 1 1 / I Z2 1. Together, therefore, these relations are sufficient to deter-
mine the impedances Z 1 and Z2 required by an oscillator with optimum frequency stability.
Since in a large number of applications, it will not be necessary to solve the general expression
(40) for the optimum ratio Z1 [/ IZ 1, the relation (46) becomes the most important result of

this section. It permits the rapid evaluation of the optimum ratio I Z1 I/ I Z2 1 which can then be
used in (31) to find IZ1 1and IZ21. 

If the resulting Q degradation is low enough, the phase angles 6 and 0. will frequently be
close enough to 7/2 to 'permit the approximations IZ I I X 1Iand )Z 2 1 - I'X21 so that the
conditions (31) and (46) can be further simplified to

1X 12 • G2 (1 + 2R 3G2)- (48)
Ix212  G1 (1 + 2R 3G 1)

R3

gm = I (*9)

With X1 and X2 determined from (48) and (49), it only remains to choose XL in Z3 such that
X1 + X2 + XL equals the reactance of the load capacitance specified for the crystal unit to
be used and the design of the oscillator is essentially completed.

One !actor, -however, -has not yet been considered explicitly; namely, the power dissipation
in the various components.

10. DRIVE LEVEL AND OUTPUT POWER

During steady-state oscillations, -the voltages and currents in an oscillator circuit have all
to be related to one another in a very definite manner, -and hence their relative magnitudes are
firmly established. In fact it is precisely this relationship that leads to the conditions for
oscillations, no matter how they are formulated. The absolute magnitude of the voltages and
currents remain undetermined unless the amplitude dependence of the nonlinear elements is
known. The left side of Eq. (22), for example, is a function of the transistor parameters (aik),
all of which depend upon the amplitude of the signal. Normally there will only be one set of
values (aik), assumed at a definite value for the signal amplitude, for which the right side of
(22) is zero; for any other amplitude, it will be larger or smaller than zero and the conditions
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for steady-state oscillations are not satisfied. An accurate calculation of this critical
amplitude is possible in principle if the parameters (a' ik) of the passive network are known
and the parameters (aik) of the active device are available as functions of signal amplitud..
Such calculations would obviously be quite complicated and, because of the inherent sources
of error, are very likely not justified even in extreme cases.

A more practical approach can be taken if the phase angles of the impedances Z I and Z 2
as defined by (28) and (29) are in the order of or less than 100. It is then possible to
approximately consider Z1 and Z 2 as independent of amplitude, using nominal values for h11
and Ah or values measured in an impedance bridge at approximately Lhe desired amplitude
if increased accuracy is required. This leaves gm or Ingm 1, respectively, as the only
amplitude dependent quantity in (25) and hence in (31). gm as defined by (26) can most fre-
quently be approximated by h2 1/h 1 1

Using reasonable care, it is readily possible to adjust the parameters of the feedback
network such that the impedance ratio I Z !/ iZ 1I I Z2 1 falls within 10% of a predetermined
value. If, therefore, a curve such as indicated in Fig. 1 has been found experimentally and
the g corresponding to the desired amplitude of oscillations determined, the amplitude
actualy obtained can be in error by an amount that clearly depends on the slope of this
curve. Particularly at low amplitudes, a 10% error in the ordinate of this curve will generally
be found intolerable and the desired amplitude has to be obtained by manual or automatic
fine adjustments of the bias conditions of the active device of-by adjustments in the feedback
network.

It was stated before in Section 7 that the active network in an oscillator is most
appropriately characterized by the gm vs input voltage curves with the bias conditions as
parameters. Hence, the input voltage to the active device assumes a special role, and all
other voltages and currents in the oscillator are best referred to it, using the conditions for
oscillation whenever necessary. These conditions are clearly not required to compute the
rf power dissipated in the elements of the passive network.

For the following considerations in this section, we will again use the basic circuit
diagram shown in Fig. 1, keeping in mind, however, that the impedances Z1 and Z 2 now
include, respectively, the effective output and input impedance of the active device. We
will assume also that the harmonic content of the oscillator signal is negligible. If the rms
value of the input voltage V_ is known, the power Pk dissipated in the impedance Zk
(k = 1, 2, 3) can be computed to

iz2 + z31
P 1 =- -1 ilV92p1= ' ,z2 12 G1

P 2 
= G2 ;-g 2  (50)

R 3

3 "-Z 2 12  g

The effective value V of the voltage across Z1 is given by

iz2 + z312 22. (51)1z212
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Normally the load will be part of Z, and the power delivered into the load can be computed
from P 1 for any particular case. For the present purpose it will suffice to consider P 1 as
synonymous.with PL, the power into the load. If the crystal network is Z3 and the only
resistive component in this network is due to the crystal unit, P 3 will be the power dissipated
in the crystal.

Since the ratio of the power delivered to the load to the power dissipated in the crystal
unit is frequently of considerable concern, -we will derive now an expression for P 1/P 3
that very clearly illustrates the influence of the various circuit parameters on this ratio.
From (50)

P 1  G1  2(52)~ 3  - 1z2 + z312 (9.
P3 R3

In the general case, -the magnitude of the vector Z2 + Z3 is best obtained from diagiams such
as used for the graphical analysis of the phase relations (30), which of course will be very
similar to the ones shown in Fig. 3 or Fig. 4. If, however, the phase angle of Z2 is close to
900 and the phase angle of the sum vector Z. close to zero, -we can set approximately

Z2 + Z3 R3 + j(X 2 + X3) R3 - jX 1  (53)

since, under these conditions X 1 + X2 + X, 0. With (53) and (49), which also holds
under these conditions, -the power ratio (52) can be written as

P1  1 1 x11-= G R3 + - " (54)P3 gm 1 21

In a well-designed oscillator, -the Q degradation should be kept at a minimum, -that is, the ratio
IX1 1/ IX21 is given by (48). Hence,

P= G1 R + 1+2R 3 G2
P3  R + (55)

is the expression for the power ratio in a Pierce-type oscillator whose components are ad-
justed for a relative maximum in effective Q. G1 and G2 are the conductances of the termin-
ating networks Z 1 and Z 2, respectively, and R3 is the resistive component of the crystal
network.

Using again'tle approximations that lead from (52) to (55), one obtains in a similar
manner the followifig expressions:

P 2  G2 IX2 1 I 1+2R3GI

P3 Vg m 1 i[Gl gm 1  1+2R 3  (56)

X72 I ( 1 + 2 R 03 G21)(58)

gm X2 1 ) VgmR3 G(1 +2R 3 01) vg GI(1+2 R3 G1)
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\ It will be noted that even if the major part of the conductance G1 is the load, the output
power from a Pierce-type oscillator is only a small fraction of the power dissipated in the
crystal unit and any attempt to increase this fraction will result in increased Q degradation,
even under optimum conditions. Since, however, the Q degradation can be made extremely
small, the Pierce-type oscillator is ideally suited for applications where maximum stability
is required. The relations (55) through (58), together with (47), will be found useful in a
given situation to reach an acceptable compromise between output power and Q degradation.
Other type oscillators, such as the bridged T oscillator discussed in Appendix C, have to
be used when high output power is of primary importance and the lower stability can be
tolerated.

11. THE DESIGN OF THE FEEDBACK NETWORK

The detailed equations. developed in the preceding sections are based on a feedback
circuit in the form of a 7r network. The expressions derived apply most directly to
oscillators whose feedback network is physically arranged in this form with the conven-
tional Pierce oscillator as the simplest representative of this class. As an illustration,.
we will now go through some of the considerations that have to be made in the design of a
Pierce oscillator.

We will assume that we are given a specific transistor and a specific crystal unit and
are supposed to design an oscillator of maximum frequency stability.

To get a first orientation, one will start with 0e simplest equations available, using
manufacturers' published data for the parameters of the transistor and thG crystal unit to
obtain a rough approximation for the elemei-t values in the feedback network and the
corresponding signal levels. From this one can determine if the use of the simple equations
is justified, i.e., if the assumptions made in their derivation hold in the case considered, or
if the more complicated relations will have to be dealt with. Once a typical gm vs amplitzide
curve is available, it can also be determined if the signal level is high enough for the
nonlinearities in the transistor to be adequate for stabilizing the amplitude at the desired
value, or if it will be necessary to use AGC or additional nonlinear elements in the circuit.

For example, a 2N700 transistor operated at 2 ma in the frequency range around 5 Mc
typically has the following parameters: h,, = 1000, h2 1 

= 4. A 5-Mc fifth overtone crystal
unit typically has a resonance resistance of 130M. If the capacitors and inductors to be used
in the feedback network are assumed to be essentially lossless, we find from (29) and (35)
that G2 

= 1/h1 l = 10 mho. G1 will be determined principally by the power delivered to
the output amplifier. We will assume G = 10-4 mho. 'f we set gm h2 1/h1 1 as a first
approximation to (26) and if we assume this quantity to be real, we have all the information
necessary to compute from the condition for minimum Q degradation (48) the ratio 1X1 I/IX2  .
and from the condition for oscillation (49) the product IX . IX2 1 and hence to determine
IX, Iand IX2 1. We find 1X11 =246Q, IX2 1 = 18.2Q. The resulting Q degradation is 11%
according to (47).

From the relations (54) or (55) through (58), we find: P1 /P 3 .= 6 x 10 "2, P/Pe * 1.3 x10 2,
P3  5V 2, 217. Hence, if the drive level of the crystal unit shouldbe - -i 10Po 1owsa P 6 x 10 -8 watts, P 1.8 x 10-8 watts, Va = 1.15 x 10 volts, and
watts Iit fil0 that PIts
v' ,"= 2.4 x 10 -2 volts. At these low voltage fevels, the transistor, by itself, is very nearly a
linear device. Although it is possible to achieve steady-state oscillations under these conditions
even without AGC, merely by careful manual adjustment of the bias conditions, the amplitude
stability is generally not adequate. We have to conclude that the oscillator will require some
form of artificial level control if the crystal power P. should not exceed 1 microwatt.
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Regardless of how this level control is accomplished, it will bring about a modification of
the active device parameters, which has to be considered. In most cases, AGC will principally
affect the gmvs amplitude dependence, leaving G1 and G2 unaltered. The absolute value of
gm for the desired signal amplitude can usually be adjusted over a wide range by adjusting the
operating conditions of the active device and, as stated previously, should be adjusted to as
high a value as practical.

For the present purpose we will assume that the values of G1, G2 and gm are not
appreciabl altered by the level control mechanism and continue to regard the values for
1XII and NX21 found above as valid first-order approximations.

After these preliminary steps, it is now necessary to determine if the circuit does satisfy
the conditions for which the approximate relations are valid. The relation (48) can be used
whenever the conditions (41) are met and when 0s is small enough for the expansion (43) to
hold.

0AZ 3 in (41) is the angle of the tangent to the impedance circle of the crystal unit at the

point of operation (see Fig. 2 and 3) and it will be close to ±90 ° if X0 + XL is very much
smaller than the diameter of the impedance circle X 2/R I If necessary, a parallel coil has
to be used to resonate with CO at the operating frequency to assure that 0/z3 is indeed

nearly ±900 so that the first condition in (41) will rarely ever limit the validity of the
simplified equation (48).

The second condition in (41) pertains to the active device and the extent to which it is
met has to be determined by actual measurements. It has to be kept in mind that gm is
defined by (26) and that the app.:oximation gm = h2 1/h 1 1 is valid only if the correctiol. terms
involving h 12 are negligible. For the 2N700 transistor at 5 Mc and 2 ma, these correction
terms cause an error of less than one percent and the phase angle 0g is less than 3'. The
second condition (41), therefore, can also be considered satisfied in the present example.

The error in the expansion (43) is about 2.5% if es = 100 and increases to 15% for
8 = 200. With G = 10- 4 and 1XI1  = 246f as found before, 01 - ±88.50 while G2 - 10-2

andX 2 = 13.2flgive 02 -±82 .. 50 so thatO s =61 + 02 - 7T = ±90, well within the range
of values foit which (43) is acceptable. In the present example, Eq. (48) can be used without
serious error in place of (40), or (18) in the most general case, to determine the ratio of
I z I/ I Z2 1I required for minimum Q degradation.

In a like manner it can be shown that only negiigible errors are incurred in the present
case if (49) is used instead of (31) as the condition for oscillation.

With the validity of the approximate relations established, it is obvious that better
approximations to IX1  and IX21 can be obtained if the parameters of the particular active
device and the particular crystal unit on hand are used in the expressions (48) and (49).
This may be found necessary or desirable for high precision applications even if fine adjust-
ments are often made on the oscillator itself.

So-called parallel resonance crystal units, i.e., crystal units intended to operate into a
capacitive load, such as in a Pierce oscillator, are adjusted during manufacture such that
their impedance circle, (see Fig. 2) crosses the real axis at their nominal frequency if the
load capacitor CL is 32.gbf. This value of CL, though not significant by itself, is laid
down by international convention to provide a universal reference for frequency correlation
between crystal manufacturer and crystal user. There is one point on the impedance circle,
therefore, where the crystal has to be operated to exhibit the correct frequency. Because of
the frequency dependence upon drivelevel, the crystal will exhibit this frequency, even if
operated at the correct point on the impedance circle, only if the power dissipated in
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the crystal has the value specified for it.

From the diagram in Fig. 3, it can be seen that in a Pierce oscillator with given values of
Z I and Z 2, -the crystal is operated at that point of its impedance circle at which it crosses
the line 0s = const. To obtain frequency correlation, it is necessary that

X + X2 + XL - IZ, Isin 0, = X (32juf) (59)

and that the power dissipated in the crystal has the specified value. The load capacitor CL
in series with the crystal has to be adjusted to satisfy this condition.

The relation (59) identifies, incidentally, that quantity, namely, IZ.1sin 0 that is
responsible for the miscorrelation in frequency observed when crystal units with a wide range
of resistances are substituted in an oscillator, i.e., crystal units whose impedance circles
have widely different diameters. Evidently, -if Z 1' Z 2 and XL should remain constant in
this case, frequency correlation can be maintained exactly only if either 0, is zero or if the
crystals are modified, for example, by a series resistor to always give the same 1Z8 1. In an
oscillator designed for optimum stability, Os will be as small as possible and a certain
amount of variation in I Zs I may frequently be found tolerable, provided the concomitant
variation in cry~tal drivelevel and output power is acceptable also.

While compromises may be required in the general case, it will evidently always be
possible to determine those values of IX1 ], IX 2 1 and XL, or more generally Z 1, Z 2 and XL
for which the sacrifice in performance is at a minimum. In doing so, the graphical
solutions of the phase relation, such as illustrated in Fig. 3 or Fig. 4, will be found a very
valuable tool in visualizing the cause-effect relationships between the various impedances
involved, while the actual calculations of the numerical values can nearly always be
carried out analytically.

It will be noted that at no point in the entire analysis so far has it been necessary to
specify how the impedances Z 1 and Z 2 determined in this manner are to be realized physically.
In fact it has not even been necessary to specify whether X1 and X2 are to be capacitive or
inductive reactances; it is only required that 01 and 02 are either both positive or both
negative.

A number of factors have to be consideed in determining how the impedances Z1 and Z 2
thus specified are to be realized physically. First, -they have to provide a do path for
biasing and one of them, generally Z 1, has to include the loading effect due to the amplifier
stage following the oscillator. Second, their frequency dependence must be such as to
prevent oscillations at any but the desired frequency. It is this latter requirement that
ordinarily rules out the possibility that 01 and 02 be both positive in crystal oscillators.

The preferred way of biasing a transistor is through a large resistance in the emitter path
and very small resistances in the base and collector paths. 14,15 Hence, if Z1 and Z2
consist each of a parallel L-C combination, the inductors provide very low resistance dc paths
for biasing, besides, incidentally, improving the noise performance of the oscillator. If
overtone crystals are used, one of these L-C combinations must be resonant above the
frequency of the next lower overtone so that its reactance at the frequency of this overtone is
already positive while the reactance of the other L-C combination must still be negative.
The other L-C combination must have its resonance frequency below the fundamental mode of
the crystal to prevent oscillations at any one of the overtones below the desired one.

At the frequency of the desired overtone, both L-C combinations will then be capacitive.
*The actual values of the L's and C's necessary to meet all these requirements will generally
be found to be in a reasonable range and to meet the additional requirement that no
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oscillations be possible at frequencies below the lower of the two resonances, where both
reactances are positive.

To avoid any oversight during these final steps, it will be found good practice to check
the frequency stability of the completed design with the aid of Eq. (34).

While the questions regarding the design of the feedback network can most often be
satisfactorily resolved by following the approach described, the active device will require a
considerable amount of attention for high precision applications even if it, will rarely pose
difficulties in the design of general purpose oscillators. Of principal concern is the fact that

as defined in (26) usually ha a phase angle , that, even when it is small, is subject to
change due to a large number of causes.

12. EXTENDING THE THEORY TO OTHER TYPE OSCILLATORS

Throughout the main body of this report, we have restricted the detailed discussions
principally to those oscillators that have the crystal unit in the top section of the 7- network.
Although this covers a fairly large class of circuits, it is admittedly a configuration Lhat is
most easily analyzed by th- present teehnique. The more important. circuits in this category
are the Pierce oscillator and the CI meter circuit, as well as the transformer-coupled
oscillator and their various modifications.

Common to all of these circuits are three and only three essential nodes in the feedback
network.

More complicated feedback circuits car., as linear passive networks, always be trans-
formed into equivalent 77 networks, b t the vrjui alent impedances are generally not iadepen-
dent from one another and are often physically nut realizable. While the conditions for
oscillation can be expressed formally through the same equations which applied for the three
node circuits, the interpretation is frequently so difficult that there is no practical advantage
to be derived from it. Rather, such circuits are best treated by deriving the a! parameters of
the feedback network in terms of the inmpedances Zk as th,, actually appear between the
various nodes. If the active element is then assumed at first to be an ideal current generator,
the condition for oscillation involves only the parameter a .) 1' i.e., the transfer admittance of
the passive network and the resulting equation will have the smallest numbef of terms
possible with this type oscillator. By proper grouping of the terms, an expression that
resembles (25) can often be obtained and the developments of the three-node oscillators can
be used as a guide in the analysis. The treatrment of the bridged-T oscillator in Appendix C
illustrates this procedure.

For transistor oscillators, the approximation of the active device by an ideal current
generator is rarely adequate and additional complexities have to be expected. Nevertheless,
reasonably simple relations can frequently be obtained by expanding the basic approach.

The cardinal rule here, as in treating any oscillator, is to represent the impedances
between the network nodes in general terms and to introduce their resistive and reactive
components only if it can no longer be avoided and only after a clear qualitative picture of
their respective roles has been obtained. There is absolutely no need to use the R's, L's
and C's of the actual network elements during the analysis. Within the framework of the
equivalent linearization, these elements serve no other purpose in the oscillator than to
physically realize the resistive and reactive components of the respective impedances, and
their values can be determined accordingly at the very end of the analysis.
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It wili be found in practical applications that the very large number of oscillator circuits
known to the art can be rduced to a few basic types whereby the major difference between
oscillators within one group is in the physical realization of the network impedances, 'the
ground connection, the position of the load, or in the active device. Nearly all of the
cormmonlv used oscillators in the HF and VHF range have a feedback circuit either in the
form of a w network or a bridged-T network.

13. CONCLUSIONS

Assuming only the concept of the equivalent linearization to be valid, a rigorous and
complete analysis of crystal oscillators can be carried out with comparative ease if the
network impedances are represented in polar form and the geometric constructions in the
impedance plane are used as a guide for the development.

The results of such an analysis make it possible to select the type of feedback network
bes suited for a specific application and to determine those values of the network com-
ponents that will assure optimum performance.

Considering their simplicity, the 7T network and the Bridged-T network are by far the most
important configurations for the feedback circuit in crystal oscillators and the majority of
need can undoubtedly be satisfied with either the one or the other, in conjunction with a
suitable active device. Many more basic configurations, however, are possible and to
provide a broader Iasis for the circuit selection, the pertinent relations describing the
performance of at least several of them have yet to be derived and catalogued.
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APPENDIX A:

THE EFFECTIVE TRANSCONDUCTANCE gm

The total plate current of a vacuum tube is a function of the actual values of all the
electrode potentials. 16 For the present purpose we will assume that transit time effects are
negligible and that the plate resistance of the tube is infinitely large. If the control-grid
voltage E. is composed of an ac component eg, superimposed on a dc basis voltage Vb, i.e.,

EC = vb + eg,' (A-i)

the total plate current i as a function of EC can be developed into a Taylor series:

i = f(vb) + f'(vb) eg + 1/2! f' ' (Vb) eg2 + 1/3! f' ' '(Vb) eg 3 + ... (A-2)

This expansion holds quite generally and is shown principally to emphasize the fact that
the coefficients of the various powers of eg are functions of the bias voltage vb and of all the
other electrode potentials. For brevity we will write (A-2) as

ip = io-a eg-a2eg2 + j3eg 3 + -." (A-3)

with the definitions of the symbols obvious from a comparison of the two expressions.

Figure A-1 shows two examples of curves representing plate current vs control-grid
voltage as they might be obtained from static measurements. By determining the value of the
function and its derivatives at the point of operation, it is possible in principle to find the
values of i0 , a, a 2, 8 a.s.o. in (A-3) that hold for this particular value of vb.

If an ac voltage eg in the form

eg = A cos cot (A-4)

is applied to the grid, the plate current i p will, according to (A-3), have the form

a2 3 a2
io - - - A 

- (a -  6 A  A cos2wot + - A3 cos3 wt+ ''~ 2 4" 2 4
(A-5)

All even powers of eg contribute to the dc current and only the odd powers of e contribute
to the fundamental component of the signal. It must again be emphasized that 19, a, a 2 and
,6 in (A-5) are functions of the bias voltage and of all the other electrode potentials. If, as is
almost always the case, the bias voltage 'or any of the other electrode potentials are functions
of the dc current through the tube, every one of the parameters in (A-3) will depend upon the
amplitude of the applied signal whenever the coefficients of the even powers of eg are not

17zero. 1

In Fig. A-1(a), there is only one value for vb, namely at the inflexion point of the curve,
for which a 2 will be zero. Unfortunately, a behavior such as sketched in Fig. A-1(a) is
rarely, if ever, found in actual devices. Nearly all vacuum tubes, operated normally, have a
static characteristic of the type sketched in Fig. A-1(b); an evaluation of actual curves
shows that for most values of vb, J8 is very small compared to a 2 and can be either positive
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or negative.

From (A-4) and (A-5), it is seen that the ratio of the fundamental component of the plate
current to the ac component of the grid voltage, if the latter is a pure sinusoid, is given by

gm = a - 3 8A 2  (A-6)

and represents the effective transconductance of the tube for the fundamental component
signal, i.e., its equivalent linear transconductance. 18 According to what has just been
explained, however, a and /3 are implicit functions of the signal amplitude that we
approximate by

a = gmo - Ka2 A2

/8 = / o - K2  A 2  (A-7)

whereby K and K2 are constants determined by the manner in which the dc electrode potentials,
including vb, depend upon the dc component of the plate current. gmo and /30 are evidently
the values of a and /3, respectively, for infinitely small signals. For the transconductance
of the tube, as defined in (A-6), we obtain the expression

gm = gmo - Kca2 A 2 _ !6 A2  (A-8)4

which shows clearly its dependence on the amplitude of the signal.

Since K in (A-8) is a function of the dc biasing circuit of the tube, it wiI obviously be
extremely difficult to determine the g.t vs amplitude curve for a particular device from the
static voltage current characteristics. However, it is readily possible to measure gm and
its dependence on amplitude directly by observing the fundamental component of the plate
current in response to a sinusoidal input voltage of known amplitude. Rather simple
techniques are available to carry out such measurements directly. 19

An extension of the considerations given here to transistors will show that completely
analogous situations exist in all active devices.
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APPENDIX B.

THE NONLINEAR OSCILLATOR

To clarify the influence of the nonlinearities in the active device and their equivalent
linear representation on oscillator behavior, we consider the circuit shown in Fig. B-1.
This oscillator, though still readily tractable analytically to the extent intended, has
sufficient similarity to a quartz-crystal oscillator to provide a valid description of the major
performance aspects of the latter.

The transformer in Fig. B-i has a windings ratio of 1:1 and unity coupling. It presents
an inductive reactance eoLl to the circuit and provides the 1800 phase shift required by this
configuration.

The differential equation for the ac grid voltage eg is

R3  _L 1  d
e'g + L 3 + W ° 2 eg d ip (B- 1)

L eg9w 0 eg LC 2 dt (

whereby

L L1 + L3

1 1 1
- - +- (B-2)

C C2 C3

0 LC

Since the total plate current ip is a function of eg, such as dealt with in Appendix A, a
rigorous treatment of equation (B-i) would require to take note of the fact t&hati7a, a2
and 8 in (A-3) depend upon the amplitude of e and hence are also functions of e . Such
a treatment, which definitely should be carrie'out to properly describe the initiaf'transient
behavior of an oscillator, has apparently never been reported and in fact will not be required
for the present purpose. We are interested mainly in the steady-state solution of (B-i) and
therefore are justified in assuming io, a, a2 and 18 to be constants.

During steady state, eg will be, if it is different from zero, a periodic function of time that
can be developed into a Fourier series. Its shape can be determined with arbitrary precision
by substituting this Fourier series into (B-i), together with (A-3), and solvingthe system
of equations that results from applying the principle of the harmonic balance. - 0 However, if
the harmouic content in the plate current is very small or if the feedback network in Fig. B-1
is such as to prevent these harmonic components to reach the grid, or both, eg will be very
nearly a pure sinusoid and we can write

eg = ego + O(nw) (B-3)

whereby O(nw) are harmonic terms small of higher order and

eg o  Acos cot (B-4)
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It can then be shown by combining (B-3), (B-i) and (A-5) that ego is the solution of the
following differential equation:

e"90 + LC 2  _1 a 4+ co6 ego  0 (B-5)

which can alternatively be written with (A-6) as

ego + - I- grn ;go +  =O e o 0 (B- 6)

L1 C2 R3

While this eouation was derived here mainly to describe the first approximation to the steady-
state solution of (B-1), it is general enough to illustrate qualitatively a number of important
aspects of oscillator behavior. In fact, the solution of (B-6) .

ego = A e"Y t cos.coot (B-7)
/

with

L 1 C"-- -(B-8)

is an excellent piecewise approximation to the actual behavior of the grid voltage if the change
in amplitude with time is very slow compared to the period of the oscillations. 2  Obviously,
steady-state oscillations require that

C2 R8

7 T- - -gm =.O (B-9)

It will be observed that.this condition is identical to the condition (6) in Section 2, -as, of
course, it must be since

02R3 Iz 8 1
- IZ1I IZ- I (B-10)

as seen from Fig. B-1. The phase relation, incidentally, forthis circuit is 81 + 02 - 8s
= 0 rather than = ±7because.of tje.1- 00 phase shift due to the transformer.

Since gm depends upon the amplitude of the oscillations, the steady-state amplitude can
be evaluated from (B-9) if this. dependence.is known. It is clear from (B-7) that the amplitude
of oscillations will increase if gm is larger than C2 RA/L 1 and will decrease if it is smaller
than this quantity. For the oscillator to function properly, it is required that gm decrease as
the amplitude increases which, in turn, requires that K and a 2 in (A-8) have the same sign
and that f8 be negative. The latter is not always the case in vacuum tubes and depending-.. '
upon the relative magnitudes of the two terms, the gmvs amplitude curve occasionally rises
at first until it is forced do wnl te higher order terms in A as 0.2 and 83 are again functions
of amplitude. Actual measurements., however, show that gm does decrease monotonically
with amplitude in the large majority of practical cases.
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It is seen further from (B-6) that C 2R 3/L 1 must be smaller than gmo, the transconductance
of the device for extremely small signals, for oscillations to start from noise impulses, i.e.,
from extremely small amplitudes. The rate of increase of the oscillations is strongly
dependent upon L 1/(L 1 + L 3 ) while the final amplitude is independent of this ratio. Hence, if
the R3 L3 C3 branch in Fig. B-I represents !t crystal unit resonant at o o and L, and C2
are adjusted such that co 2 = /L 102, the same amplitude of steady-state oscillations will
be reached if this crystal is replaced by a resistor of value R3 . This fact is, of course, the
basis for the substitution method for determining the crystal resistance. 22 The time required
to reach the final amplitude, however, is shorter with the resistor by the ratio of the respective
circuit Q's.

- 4

:L C'?

eg L 3

FIGURE B-I. Skeleton Model of a Crystal Oscillator
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APPENDIX C:

THE IDEALIZED BRIDGED-T OSCILLATOR

A bridged-T oscillator with an ideal current generator as the active element is shown in
Fig. C-1. According to the comments in Section 12, it is best in this case to use the general
condition for oscillation (22) that now reduces to

1 - a12 a 0 (C-i)a1  21
g)

since only a1 2 is different from zero for the ideal current generator. a2 1 can readily be
found 23 for the bridged-T network and, after some rearrangement of terms, the condition for
oscillations is obstained in the form

ZS( + Z4) + 1= 0 (C-2)ZjZ2

with

Zn = ZI + Z2 + Z

If we introduce an auxiliary vector

1 iC-3)A = --- + Z4

much of the same techniques used previously can again be applied to analyze the performance
of this oscillator. We will restrict our comments here, however, to only a qualitative
description nf some of the more important aspects of its behavior.

Separating the real aid imaginary 'arts of (C-2) gives, with (C-2" the following
conditions

1Z1 IZAI
---- = 1 (C-4)Iz lHz 2I

O.,, + 08 = 0 1 + 0 2 + 7 (C-5)

As the simplest representative of this type oscillator, we consider the circuit shown in Fig.
C-2. The impedance Z3 of the parallel circuit formed by RL, C,, L3 is most conveniently
expressed in t!,- orm

RL RLp
Z3  R3 + jX3 = -

1 +p 2  1+p 2

with

38



P-Q 1--- ; Q3-- -2 - L3 (C-6)

W32 1
L 3 C 3

In this circuit 61 02 - 7T/2 and the phase relation (C-5) reduces to

0 A .. 0S = 0 (C-7)

If the crystal unit should be operated at series resonance and gm has zero phase angle, 0 A
will be zero and the condition for oscillation requires 0 s to be zero also, i.e., the circuit
formt,' by C1 , C2 and Z3 must he at resonance:

X1 + X2 + X3 =0 (C-8)

The reactances of C, and C2 must satisfy in this case the condition

;x1 lx21 + R > I + R4) (C-9)

R 3  / 0

for steady-state oscillations to be possible. R4 theieby is the resonance resistance of the
crystal unit.

From (C-6), it is observed that X3 and R3 are related by

X3 = pR3 • (C-10)

The conditions for oscillation (C-8) and (C-9) can be solved for X1 and X2 , and one finds for
the circuit in Fig. C-2

x _ p R3 (1 + q)

CC1 2 (C-I)

X2  I "---R 3 ( 1 - q)
wC 2  2

q I- 4 (2. + R4) (C-12)

p2 R3  gm

Whenever the relations (C-11) are satisfied, oscillations will take place. Aside from the fact
that q must be real, there are no restrictions on pand R3. Hence, the conditions for
oscillation yield only two relations between the seven oscillator parameters C1, C2, L 3, C.I,
11L, R4 and gm. They can evidently be satisfied over a very wide range for either of
these parameters. This again emphasizes tie well-known truth that it is not at all difficult
to assemble a configuration that will oscillate somehow.

i

39'



Since, however, the conditions for oscillation above leave the problem f oscillator
design vastly underdetermined, additional relations between the parauietera ap be chosen to
satisfy additional requirements that might be piaced on the oscillAtor.

As a specific example, it will be assumed that the principal design objeptives are
high-frequency stability and high output power for a given crystal power. The additional
relations between the circuit p.-ameters have to be formulated such that those requirements
are met. This will be illustrateu in the following paragraphs.

The ratio of the power dissipated in Z3 in Fig. C-1 to that dissipated in Z4 is, quite
generally, given by

P 3  1z112 Real Z3
(- = (8-)

P 4  1ZS12 Real Z4

If the dominant resistive element in Z3 is due to the load, and in Z4 is due to the crystal
unit, (C-13) can be used immediately to determine the output power to crystal power ratio.
The absoiute power dissipated in either the load or the crystal unit depends upon the
difference between gm and gmo and is determined by the amplitude dependence of gm.

Considering (C-8), (C-9) and (C-11), together with the fact that Z1 and Z2 in Fig. C-2
are purely reactive, the ratio (C-18) assumes in the present case the form

P3 gm + R4 .- +.q (C-14)
P 4 R4 I -q

If gm and R4 are given quantities, it is evidently desirable that q be as close to one as
practical, in order to obtain a large power ratio. This establishes the first of the additional
conditions.

The stability relation in general form is found from (C-2) through differentiation as

AZ 1 + AZ2 + AZ3  AZ1  AZ 2  AZA
.... z - -- + - = 0 (C-15)Z8 Z, Z2 ,Z A

Its imaginary part contains all the information required to determine the relative change in the
frequency of oscillation, A&/c, in response to small variations in the circuit elements. A
procedure very similar to that used in Sections 6 and 8 can be followed to bring the resulting
expression into a convenient and instructive form. The fact that a specific circuit configura-
tion, namely that in Fig. C-2, is to be dealt with now can .be taken advantage of to simplify
some of the steps. In the following, each oi the terms in (C-15) will first.be discussed
individually, and then their imaginary parts will be collected.

The impedance Z3 is defined by (C-6). As a vector in the impedance plane, Z3  Z3 (w)
follows the circle shown in Fig. C-8 which is described by the equationL L

( -2!) + X2 = (! (C-16)
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This can readily be verified by eliminating the frequency variable from R3 and X3 in (C-6).

From Fig. C-2, it is apparent that Z 3 is a function of C3, L3 , RL and co. According to
the'relation (12) in Section 6, Z3 has four components, which are found from (C-6) by
differentiation

~Z3  AL 3  *0

3.3 AL3  -R 3 3  
L  e j ot  (C.17)

3 L3

AC 3  n3 W3  2 ej t  
(C-18)

8CW 2  C2  3

Iii

-aZ3 ARL
'8 R" L -- R3 -R ej  (C 19) :

R3 Q3  (C-20)

whereby

- (C-21)tan Ot  2 p -- ( i

2p
2p (C-22)tan On - i-' (cs I

The phase angles 0 t and on are, respectively, the pha angles of the tangent and the,
normal to the impedance circle for Z 3 , as indicated in Fig. C-3.

The expression (C-20), it will be noted, leads to formula (16) in Section 6, where
2 2 is assumed.

The impedance Z. is found, as illustrated in Fig. C-4, by adding vectorially Z1, Z 2 and

Z 3. Evidently, since 01 = 02 - and 0. = 0 is assumed in the present case, it follows a

that

Za = R3  (C-23)

when the condition for oscillation (C-8) is fulfilled.

With Z1 and Z2 purely capacitive as in Fig. C-2, the terms in (C-15) containing AZ 1 and
AZ 2 present no difficulties. AZ 1/Z 1 and AZ 2 /Z 2 are both real and give no contribution
to the imaginary part of (C-15). AZ 1/Z 5 and AZ 2/Z .are, because of (C-28), both imaginary
and with (C-11) can be written as

AZI ~ ACZ = j 'e(I + q) .+ A==I

J (C-24)
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z- - 2 ( -q) (C-25)2 C2)

The impedance ZA is defined by (C-3). Its construction in the R-X plane is illustrated
in Fig. C-5. Evidently, ZA follows the impedance circle of the crystal unit, translated by
11. The change in ZA with frequency is solely due to the change in crystal impedance with

gm
frequency and one finds

-3Z4 AW 61
AZA - A = 2R 4 Qo-C-el 4 (C-26)

whereby 6 AZ4 is equal to the phase angle of the tangent to the crystal impedance circle at
the operating frequency.

If the crystal unit is operated at series resonance and gm is real as assumed in the present
case, OA equals zero. The relative change in ZA with frequency becomesA qulszro Te eate hA ge ZA wt rqec eoe

-ZA 2Aw Q eff e ZAZ4 (C-27)

ZA

with

R4
Q eff Q0  (C-28)

-- +R 4

All The individual terms in (C-15) Wre now known and their imaginary parts can be

collected to determine the frequency chang_ as a function of small variations in the

circuit parameters. With proper grouping, the finds

+ Q3 (1 =2 sin O t + 2 Q.ff sin OAZ +

AC 1  C Q AW2 AC ARL

+q)-~ ~ .(-q IQ 3 ( +-RCq)- + I q) T, 2 C- sin Ot + - sinon = 0

To obtain the highest stability requires obviously that the coefficient of be as large

as possible and the coefficients of the circuit parameter variations be as small as possible.

In crystal oscillators the dominant term in the coefficient of A is (2 Qeff sin OAZ4).o

To bring OAz4 clkae to 90*, it may be necessary, particularly ixt VHF frequeiacies, to
resonate the capacitance Co of the crystal unit with a parallel inductor. The effective
quality far :or Qeff depends, according to (C-28), only upon R4 and g.. Unlike the situation
in the Pierce oscillator, it cannot be improved by ajpropriate choice of the elements in the
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feedback network.

The values of the network parameters are, nevertheless, of considerable importance in
determining the frequency stability of the oscillator. The coefficients of the circuit parameter
variations in (C-29) are controlled mainly by p and Q3. This becomes even more evident if
one notes that

sin Ot  p 2 +I

sin 0= 2
p 2 +1 (C..30)

which follows from (C-21) and (C-22). The influence of q on (C-29) is weak because 0 < q < 1,
as seen from (C-12).

The stability relation (C-29) and the expression (C-14) for the power ratio contain three
parameters, namely p. Z3 and q, which can be assigned specific values such that the
performance of the oscillator has the desired characteristics. The expressions for p and Q3
in (C-6) and the expression (C-12) for q, together with the conditions for oscillation (C-11),
provide five equations to uniquely determine the values of the five circuit elements C1, C2 ,
L3, C3 , and RL in Fig. C-2. While the values for p, Q8, q, g. and R4 can, in principle,
be selected independently from one another, practical considerations will nearly always
limit their range.

Assuming that all the parameter variations in (C-29) are unrelated to on another and that
their relative magnitudes ACt/C 1, AC/C a.s.o. are about equal, it can be seen that A o/oa
will be smallest when p is near unity. n act, for p.= 1 the frequency is independent of AC 8
and A L8 . The pre( se value of p becomes less critical for low values of Q3.

It is concluded that high stability of the oscillator frequency and a high power ratio
require p = 1, a low value of Q3 and, because of (C-14), a q close to unity.

According to (C-6), R3 
= RL/ 2 for p = 1, and the equations for the values of the circuit

elements in Fig. C-2 can be written as follows

L - q2 + R4)

RLcoL 3 =

coC3  1 Qs- 1 (.1
L8 Q3 1

WC 1
RL(1 + q)

1

OC2 R ,-q)
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In order to reduce the effects of stray elements, it is generally necessary to avoid operation
at very high impedance levels. With gm and R4 given it will frequently be found advisable,
therefore, to start the design by choosing a reasonable value for WcL3 and to determine RL
such as to arrive at an acceptable compromise between the demands for low'Q 3 and a small
value for (1-q).

The equations (C-31) will yield the proper values for the network elements. However,
final adjustments are always best carried out on the oscillator itself. The most suitable
parameters to be used are L3 and/or C3 as indicated by the stability relation (C-29). This
fact can be illustrated with the aid of Fig. C-3.

The impedance Z3 ( ) of the RL, C3, L3 circuit in Fig. C-2 moves in a clockwise
direction around the circle in Fig. C-3 as the resonance frequency 03 of this circuit is
lowered by increasing L3 or C3 or both, while RL remains constant. As Z3 (co) passes
thereby the point (1) on the circle, the phase angle Ot goes through zero and, consequently,
sin Ot in (C-29) changes its sign. The frequency of oscillation will go through a minimum
at this point. Since the condition p = I requires that the RL, C3 , L3 circuit be operated
at the pcint (1), this frequency minimum provides a convenient criterion for the fine tuning
of C3 and/or L3. Retuning of C1 and/or C2 is required if the minimum frequency does not
occur at the resonance frequency of the crystal unit.

It is apparent that the tuning of the oscillator becomes rather critical if enough
performance requirements are imposed to completely specify the oscillator circuit, as is the
case in the example just given. Whatever th- application, however, the relations (C-14)
and (C-29) will always be found useful to arrive at an acceptable compromise in the design.

It must be emphasized that all relations in Appendix C were derived under the
assumption that the active device is an ideal current generator. The extension of this
development to transistor oscillators will be reported elsewhere.

Z3

FIGURE C-1. Idealized Bridged-T Oscillator
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FIGURE C-2. Typical Configuration of Bridged-T Oscillator Network

tO

Z (W3)

sR

FIGURE C-3. Impedance Diagram of RL.-C3-L3 Parallel Resonance Circuit
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FIGURE C-4. Diagram Illustrating GrotphicaI Construction of Zs Z= + Z .
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/ SECTION OF
CRYSTAL IMPEDANCE
CIRCLE

FIGURE C-5. Diagram Illustating Graphical Construction of
Impedance Z 4 Defined by EquatioI (C-3).
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