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INTRODUCTION

The purpose of this investigation is to analyze the
effects of axlial and transverse acceleration on bearings of
various shapes which may be suitable for use in spring driven
timer mechanisms. The investigation considers the teasibility
of each bearing in terms of loads, stress levels, and friction
torques and indicates appropriate design and analysis tech-
nicques.

The conventional timer consists of a mainspring as an
energy source, a speed increasing set of gpur gears and pin-
ions on parallel shafts, and an escapement controlled by an
oscillating balance wheel., The case of the timer 1s fastenec
to the projectile and accelerations are imparted to the gears
and shafts through the bearings under investigation. The usual
orientation of a timer is with its shafts parallel to the axis
of the projectile and with the center of the timer housing
on the axis of symmetry.

Timer bearings are ordinarily subjected to two differ-
ent types of loading. The first, of short juration, results
from acceleration while in the gun tube and acts approximately
parallel to the axes of the shafts. During this interval
the mechanism may not be required to operate, but 1t must be
able to function properly as socn as the axial load drops off.
The second type of loading 1s caused by a radial acceleration
of increasing magnitude while the mechanism 18 in the gun
tube and of approximately constant magnitude during the flicht
of the projectile. The mechanism 18 required to fur.ction pro-

perly while under the latter loading.



The main part of this report 1s divided into four sections.

In the first cection bearings which can withstand axial load
are analyzed. Ten different combinations of srape and pressure
distribution are considered. Since it 1s likely that the mini-
mum bearing size will be limlted by axial load capacity, formulas
are derived 1in eaclh case expressing the required bearing size
as a functlon of 1itas pertinent ;;eometric parameters and the di-
mensionless a~ial cad.

These express'ons can te used in design in two ways. First,
if a particular ge-metry; has heen declded upon, they can be used
to find the minimui: bearin;; fize as determined by axial load ca-
pacity. Second, they can be used to see the effects of the var-
ious geometric par:meters upon bearing slze as determined by axial
load, and so will rerve as a culde in choosing the most sultable
shape and varamete 's. Throughout this section typicsl numeri-~al
values of load, ma.erial propertles, and geometric parameters
are used in tne fo-'mulas developed 1in order to give a physical
1dea of typical sl.es. Slnce some of the formuias developed are
represented by faj-ly complicated equatlons, many of these equa-
tlons are plotted .n order to determine the general trends of the
curves and to facl.ltate comparisons between the cases. Since
operatlior. while u.der azial load may be requircd, expressions
for the frictlion torrque are also ceveloped for cach of the ten
cases, Agaln typl-al numerical values are calculated in order to
zive an 1dea of th: orde-s of magnitude of these quantities and to

compare tnhe relatlire merits of the ten cases.
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In the second section of this report the bearings of Section I
are analyzed under transverse load. DBecause flat bearings can
withstand axial but not transverse load and because under trans-
verce load one normal pressure distribution is much more reason-
able than moet others, the ten cases cf Sectlion I reduce to four
distinct cases. They are: snherical bearings (solid and hollow),
torroidal bearings. conical bearings, and bearings with latitude
circle line contac:, In each of these cases fcrmulas for required
bearing silze as a unction of geometric parameters and applied
transverse 1oad are derived. Again typical numerical values are
calculated and 1t i1s found that with the load magnltudes u:;ed here
as typlcal, elther axial or fransverse load capacity may fix
the minimum bearing size. The one that controls depends not only
upon the ratio of maximum transverse to axlal load, but also
upon the type of bearing and the values of its geometric para-
meters, Again thece formulas may be used in two ways - for cal-
culating numerical sizes once the geometry has been fixed, and for
evaluating the effects of the various geometric parameters. Since
operation while uncer transverse load is a definite requirement,
expressions for the friction torque and typical numerical values
are calculated in each of the four cases.

Journal bearirgs sre investigated in the third section of
this report. These bearings could be used in conjunction with
one or two bearirge that have axial load capacity. An epproxi-
mate method 18 developed for calculating contact stresses in terms
of transverse load, bearing size, and meridian radius of cur-

vature., In addition expressions for friction torque are devel-

-3 -



oped. Again typical loading 1is considered and numerical values
are calculated for this loading.

In the fourth section of the report two topics are invesati-
gated., They are the estimation of typical loading and the inves-
tigation of the feasibility, for this application, of sharp

vee-jewel bearings as used in preciesion instruments and watches.



SECTION I

BEARINGS WITH AXIAL LOAD CAPACITY

There are three classes of bearing of this type. They
may be described as bearings with full contact, bearings with
thin ring contact and bearings with theoretical line contact.
A bearing from each of these classes 18 sketched in Figures
1l to 3.

A study of Figures 1 and 2 indicates that the surfaces
are initially con"orming - that 1s, in the unloaded condition
there i1s theoretical area contact. In addition, in order to
get cide thrust capabllity, and so eliminate the main disadvan-
tage of vee jewel bearings, (see SECTION IV), contact occurs
at radiil that are of the order of magnitude of the shaft radius,
This increases the eftective friction radius above that of vee
Jewel bearings and so izives the (unavoidable) penalty of
higher friction torque. However we want numerical values of
these parameters in order to evaluate an optimum design.

The various shapes will be considered only under axial
load in order to determine the required size. Just as for the
vee jewel bearing it 1s likely that the initial axial accelera-
tion will fix the size. Various normal pressure dlstributions
will be considerec for each shape. In addition friction torques
will be computed to see what would happen if the bearings have
to operate during the axial acceleration period. In SECTION II
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FIGURE I FIGURE II

; i
: - I ——
.'
SPHERICAL BEARING, CONVEX TORROIDAL BEARING, CONVEX
SHAFT, AND FULL CONTACT SHAFT, AND THIN RING CONTACT

FIGURE TII

SPHERICAL-CONICAL BEARING, CONCAVE

SHAFT, AND THEORETICAL LINE CONTACT
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these bearings will be considered under transverse loads only;
friction torques and bearing contact stresses will be computed
in addition to other quantities of interest for a particular bear-
ing.

Case 1 FLAT BEARING - WITH AND WITHOUT A HOLE - UNIFORM

PRESSURE DISURIBUTION - SIZING UNDER AXTAL LOAD

Defining 8 by

r
o
we et
{2) W
ﬂ(lo -y )
and
1/2
re o
(3) r = | 2

ol (1/‘9"51}

where ry and r_ are the inner and outer radil in inches, q,

is the meximum beering pressure in psi, and P 1s the axlal load
in 1b. Tt 1is reacily observed that the mirimum size bearing 1s
the one with 8 = » (no hole). Thus we define a reference out-

gide radlus as

1/
(4) ) bt

o :
O rei w qo
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FIGURE IV

FLAT BEARING

WITH A HOLE




and a dimensionlest relative bearin; size D as

r v

) D=T—-,-—“
(5 To ref

and get for the solld flat bearing

(6) D= 1

and for the hollow flat bearing

- 1/2
Q¢ =

T
(7) D = L:?—i i
The range of 2 of Interest 1s from 2 = o for the solld flat
bearing t> about 3 = ro/(ru - .lro) ~ 1.1 for relatively thin
bearings. (Anythiiy: thinner would require exccssive folerances.)

)

The bearin: relative size D = r“/(r of equation ‘7) va 1/8

o‘red
1s shown in Fiy. 5 on Pa,e 10 and tabulated in Table 1 on

Paire 14, 1Tt can be seen that the thinnest scction that would
be used (3 ~ 1.1) requires about 2.3 times the outside diame-
ter of a no-nwle scctlon for the s3me load P and desi :n normal
pressure q . Jn order to investilrkate typlcal sizeg take

P = 15.95 1b, (See Pa-e 114 of SECTION 1V.) Tt 1s

typical
more difficult to «8gtimate a ocd degli . n value for Q- The value

chosen should be bclow q_ = 285,000 psi1 (Page 108) since there

18 area contact in the undeformed pcsition now and the likeli-

hood 1ieg high of having much ;reater than average pressure at

-9 -



Bearing Relative Size (D = PO/PO ref.)
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local irregularities. Thus use q = 242,000 psi (Page 95)
for the relatively thin sections and q_ = 175,000 psi (say)
for others.

Then for thin sections

1/2 - 1/2
I S S 15-3; -
(ro)ref min = T q_ [ N 4 ), )] = .00459 1n.

V)

and for th. ~k sec*ions

~ i
(ro)ref, max m qoj

=,00539 1in.

The reference shai't dlameters are then

(d,)

o'ref, min = ,0092 in. for thirn ring contact
and
(do)ref, S .0108 in. for larger contact area.

For a ratio of ri/ro = 1/ ~ .6, the outside diameter would
be ~ 1.25 x 0108 .. .013%5 in. (see Table I), while for r /v, ~ .9,
the outside diame®er would be .5 2.3 x .0092 = .0212 L. (The
higher design stress 13 ugsed for the relatively thinner contact

area. )

= BLL RS
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Case 2  FLAT BEARING - LINEAR PRESSURE DISTRIBUTIONS-

SIZING UNDER AXTAL LOAD

For the relatively thin sections the uniform pressure dis-
tribution is quite reasonable. For the thicker ones, in order
to prevent corners from digging in, the bearings could be made
somevhat a3 shown %n the exagrerated sketch on Page 13, (Pig-
ure 6). The small axial clearaace shown prevents the outside
corners from takin:; all the load. When the load 18 applied the
two surfaces deform into contact, The resulting normal pressure
distribution then drops off with increasing radlus.

Thus consider the Trapezoidal Distribution with parameteir n

shown in Figure 7, Here the normal pressure 13 given by

I"-I‘i
(8) a(r) = q, - m, N

Vthen n = o, this reduces to the uniform distribution; and when
n =1, 1t reduces o0 a triangular distribution. The equation

of axial equilibrium gives

r=7r r
(9) P j “ap = | (2mrar) (@) (1 - e L)
- = Y - ﬂl -
rEory '1”1 ° To = T4

Integratinz, uslig the definition of bearing relative size D

(Equation 5), and simplifying gives

- 12 -
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FIGURE VI

Small clearance
| that 1s taken up
elastically as
the axial load

— £ r P
S | is applied
|

!

EXAGGERATED VIEW OF A FLAT BEARING

BEFORE THE AXIAL LOAD IS APPLIED

FIGURE VII
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TRAPEZOIDAL LOAD DISTRIBUTION

q(r) FOR A FLAT BEARING
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10 D ) =rd
( ) (8 ﬂ) 82 _ 1 +(r\/3Xl e 282)_1

Comparing this to Equation 7, Page 9 shows that 1t reduces to
that equation for n = o. The quantity (1 + g - 292) is zero
for f = 1 (the smallest value of 8) and gets smaller (more
ne~rative) for increasin- 8. Thus for any positive n between
O and 1 the denominator gets less and D increases as expected.

Some tabulated values are piven in Table 1 below.

Table |

BEARING RELATIVE SIZE D AS A FUNCTION OF BEARING RADIUS RATIO r

FOR THREE LINEAR LOAD DISTRIPUTIONS

Uniform  Tranczoldal — Triangular

g  Din=»o' Ln=.5) D (n=1)
w 1.000 1.2252 1.732
10 1.005 1.220 1.670
5 1.021 1.225 1.640
2 1.062 1.261 1.642
2 1.153 1.360 1.732
o/ 3 1.250 1.463 1.848
5 /4 1.670 1.940 2.40
10/9 2.295 2.66 3.28

T
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These curves are plotted in Figure 5 on Page 10. For typical

flat bearing sizes as determined by axial load we have for
B =1.667 (1/8 = .6)

Uniform (n = O) D =1.25
d.uteide D(do)ref = ,0108 D = .0135 in,

Trapezoidal (n = .5) D = 1.46
doutaide = D(do)ref = ,0108 D = ,0158 in,

Triangular (n = 1) D=1,85
d_,tside = D(do)ref = ,0108 D = ,020 1n,

and for 8 = 1.11 (1/8 = .9)

Uniform (n = O) D= 2,23
doutside = D(do)ref = .0092 D = ,0207 in.

Trapezoidal (n = .5) D = 2.66
doutside =s D&do)ref = ,0092 D = ,0244 in.

Triangular (n = 1) D = 3.28
doutside = D(do)ref = ,0092 D = .C302 in.

(see Page 11 for (d ) .¢)
= 18 -
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The trapezoidal distribution with n = .5 seems most reasonable,
Thus to summarize, we have for flat bearings with a trapezol-
dal distribution with n = .5 and for P = 15,95 1b. axial load
(Page 114), a design bearing stress q, = 175,000 psi (Page 11),
and a radius ratio 1/8 = ri/r-o = .6, an outside diameter of

d = ,0158 in, Also for a thin section flat bearing with

outsglde
the radius ratio now 1/8 = Pi/ro = ,9 and the design bearing

stress now q = 242,000 psi (Page 11), we have & = ,0244 1in.

outslde
Both of these s8izes are recasonable.

Case 3  FULL SPHERICAL BEARING- UNIFORM NORMAL PRESSURE

DISTRIBUTION - SIZING UNDER AXIAL LOAD

The radius of the spherical tip 1is R, r 18 the outside
radius of the bearing, o 1s the total half angle subtended by
the bearing, 9 18 a varlable anile, and r 18 a variable radlus

as shown in Figure 8., Ve have

(11) sing = r/R
and

Yo
(12) 8ing = T

- 16 -
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FIGURE VIII

FULL SPHERICAL BEARING WITH

UNIFORM LOAD DISTRIBUTION

FIGURE IX

q(e) = qcos8

FULL SPHERICAL BEARING WITH

COSINE LOAD DISTRIBUTION

TH T A
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Since the normal pressure distribution is hydrostatic (uniform),
its axial resultant equals that of the same uniform pressure
distribution over the flat bearing of equal inside and outside
diameter. Thus the bearing size 1s the same as for Case II

with B = @ and n = O (Page 14).

Case 4 HOLLOW SPHERICAL BEARING - UNIFORM NORMAL PRES-

SURE DISTRIBUTION - SIZING UNDER AXIAL LOAD

As noted directly above, the sizes are the same as for the
flat bearirg with the same radius ratio 8 = ro/r1 and n = O,

(Page 14).

Case 5 FULL SPHERICAL BEARING - COSINE NORMAL PRESSURE

DISTRIBUTION -~ SIZING UNDER AXIAL LOAD

Here q(e), the normal pressure, ia taken as

(13) q(s) = q  coss (0 <6 <a)

The equation of axial equilbrium gives (See Figure 9)

6 =a
(1)  Pefar=]  (Ra0) (2nr) (g, cose)(cose)

Using the definition of the bearing relative size D, elimina-
ting R and r with equations 11 and 12, and integrating gives

- 18 -
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aal/2 .
(15) D(a) = L%J

S“n';
"(1 — COSBq)

"
1,724

As a check, for small values of n this becomes

1/2 a - e
(16) o) = 3 2

which has the 1limiting value one. Since small a means essen-
tially a solid flat bearin; with a uniform load distributiocn,

this checks with the results for a flat bearing with 8 = =

and n = O,

A tabulation of this functlion and a plot of 1t are pgiven
in Table 2 and Fij;ure 10,

- 19 -
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Table 2

BEARING RELATIVE SIZE D VS BEARING ANGLE ~ FOR FULL SPHERICAL

BEARINGS WITH A COSINE LOAD DISTRIBUTION

& Din

C 1.000
10° 1.002
20° 1.022
30° 1.036
4s° 1.079
60° 1.136
90° 1.225

Since practical bearin;; an;les would have 90o as an upper
limit ard since the cosine distribution 18 reasonable, a solid
spherical (conforming) bearin; is at most 1.225 times the dia-
meter of a solid flat beari:n; for the same axial load and de-

si;-n stress,
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Case 6 HOLLOW SPHERICAL BEARING WITH COSINE NORMAL PRES-

SURE DISTRIBUTION - SIZING UNDER AXTAL LOAD

Equation 14 holds with the lower 1limit replaced by ay and

with g replaced by qo/c03q1, where r, and a, are related by

Ty
(17) 8in oy = y-

The integrated equation Lecomes

/2
J

= 1/2 sing ‘.COSQ
el |

<

-1/2
rcos3a1 - coss3'1_J

—

where ay and the radius ratio ¢ are related by

sing

(19) B = ETHEZ’

Some values of D vs. @ and n are tabulated below in

Table 3 and plotted in Figure 5.

- 22 .
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Table 3

BEARING RELATIVE SIZE D VS RADIUS RATIC R FOK FOUR BEARING

ANGLLS

n = 0° \This corresponds to the rlat bearin with a uniform

distribution of pressure)

s ay D{a, ay) = Dfa,?)
«® 0 1.000 (Soiid flat brg)
Pa; e 14
10 0 1.005
3 0 1,021
5 0 1.062
2 o 1.153
B/ 3 0 1.250
5/4 0 1.570
10/9 0 2.295
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10

5/3
5/4
10/9
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\11

.00°

0 n (@
@
N
o

- b -

D(a; 0.1 = D(Q,Q)

-

1.036{3011d sph. biy)
Pare 20

1.039
1.056
1.101
1.180
1.283
1.688

D(Cll Q.i) . D(C’-lp)

—

1.13b (Solid sph. brg.)
Page 20
1.14%0
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10

w  m

n

5/ 3
5/4
10/9

0.00°
5.73°
12.54°
10 1RO
30.00°
36.4°
53.2°
64.2°

D(rx1 ﬂi) f“p(ql,b)

1.2¢% (doliu sph. br; )
Pa_e 20

1.232

1.252

1.300

1.429

1.532

Case 7 HOLLOW TORROIDAL BEARING - UNIFORM NORMAL PRESSURE

DISTRIBUTION - SIZING UNDER AXIAL LOAD

(e1)

(22)

and

For this case

) J (a,

0

S

)(2nr)(Rdg){cHsn)
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FIGURE XI

?
l \h.{ 6\(

TORROIDAL BEARING
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Combining and carryirg out the integration gives the same 1re-
su’t as for the flat besrin;; with a uniform load and the same

inside and outside radil, namely

o 1/@

D = t:?gt_-] (See Equatlon 7)

(See cases 3 and 4 for similar results)

Case 8 HOLLOW TORROIDAL BEARINC - COSINE NORMAL PRESSURE

DISTRIBUTION - SIZING UNDER AXTAL IOAD

Here instead of Eqs. 20 and 23 we have

(25) qi6) = q  cosg
and
0 =a 7
(26) F "’J; -, dP_ 4., (3) alj (q, cosg)(2ar)(Rdg)(cosn)

respectively. Integrating; and using the definltions of D and @
(Egqs. S5 and 1) gives

(27) DiB,a) = [ == 2 T
‘s, :
(8-1)% (5)(A2950) + (o-1) (g + B2pe2)

sin n
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& Nl/e
As n approaches zero, this approaches r-?ﬁ—-— as 1t shoulu.
B® - 1-

Some results are riven below in Table 4 for 5 = 900.

Table 4

BEARING SIZE D VS BEARING RADIUS RATIO 8 FOR A TORROIDAL BEAR-

ING WITH A COSINE LOAD DISTRIBUTION AND AN ANGLE o OF 90O

a = 90° 8 D (g,90°)

(Jee P, 25 for a
sclid sph. brg. _
with a cos. dist.)

o 1,225

10 1.258
5 1.304
3 1ea 38T
2 1.548
5/3 1.695
5/4 2.31
10/9 3.22

Case 9 HOLLOW CONICAL BEARING - UNIPORM NORMAL PRESSURE

DISTRIBUTION - SIZING UNDER AXIAL LOAD

The same results hold as for the flat bearing with a uni-
form normal pressure distribution. This 13 included here Jjust

to et a case number and a sketch for reference (See Figure 12).

o) R
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FIGURE XII

/_\O

HOLLOW CONICAL BEARING
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Case 10 BEARING WITH THEORETICAL LINE CONTACT - SIZING

UNDER AXIAL IOAD

In the sketch, (Figure 13), the bearing has theoretical
line contact at a radius r,. The normal to the surfaces makes
an angle v with the shaft axis, Rl is the meridian radius of
curvature of the shaft, positive if the shaft is convex, as
shown, R2 1s the meridian radius of curvature of the bearin:,
also positive 1f the bearing 1s convex, as shnwn. The other

two principal radil of curvature, Ri and Ré, are always equal

and opposite to each other in sign as shown, as the mating sur-
faces co form in one direction. Rl and R2 may each be infinite

or nerative, but neither may be zero. The quantity Ro defined

by (See Eqs. 126 or 130)
(126) Fof *R

must be poaitive in order to have thecretical 1line contact

(RO = + = means the most conformity, Rj = + ¢ > o means the

least conformity). In terms of the notatlion of equations (119)

and (121) we have

110" 1,1 1,1 1 1
(119) A+B =3 ot =) o=
I

- 30 -
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FIGURE XIII
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BEARING WITH
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(120) B - A o %-rké -1

- o= R 1 {0

o 1/2
+ g - )
Hé -R =
1
1
= + PR
=0
and
1
B-A 2 Q_R6
(121) co8) = g = — — =11

The minus siyn has no significance and s0 9 18 cero, anc
we verify that the surfaces conform in onc direction,
Axial equilibrium gives the (uniformly distributed) nor-

mal force per unlt lengtn of contact es

(pm) (2nr_)(cosv) = P

or
'28) SR PCOSvilb/in of cir.)
‘ o)
The maxinmum bearing pressure per unit area is given by
ep
m
(128) 9% = na

- 32 -



General Technology Corporation

where a 18 the small half width of the contact area and is

given by

ru P Ro 1/2
(125) &= |—5p—
o
with Ro from Eq. 126 or 130, and EO from Equation 131.

Eliminating p,» @, and r_ from Eqs. 4, 28, 125, and 126

gives for the dimensionless relative bearing size D

pl/2 g 1/2 -
(29) D = 743 3]20 = r_E_] r?n gf cosv1
2(n) (qo) R, cosv ", W o -
For P = 15,95 1b. (P. 114)

q, = 285,000 puyi (P. 108 - This choice 18 for theo-
retical line contact)

Eo = 21 x 106 p3l (P. 108 - Sapphire jewel and steel
shaft)
we have
P1/2E°
D= -
2(")3/2(q )3/8 R_coBv
o o}

(29)

(15.95)172(21 x 10%)

(2)(3.145372(.285 x 106)3/2 R, cosv

{
w
o

l
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B Ro'ggsz

We see then that RO should be as large as possible for
small D (relative bearin; sizc) and 8o 8should cosv. This means
that from the point of view of minimum bearin; size as deter-

r.dned by axial load we want conforming surfaces (lar;e RO)

normal to the axial load (large cosv). For o typical bearin:

consider the spherical-corical bearing shown in Fig. 3. There

R = R
(@]
(30) a = Vv
and R = ro/sinq

Combinin~ Eqs. &, 5, 29, nu 30 gives for this bearing

. 31) D = ‘gga————d

From thls we see that the angle a should not be greater
than say 45Y for this type of bearing. This 1s not only rea-
sonable from a sizing point of view, but 1t also helps to
prevent excessive circumferential stresses in the conical mem-
ber due to the wedgin; action of the sphere in the cone,

For typical numerical slzes we have with

EO = 21 X 106 psi (P. 108)
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q, = 285,000 psi  (P. 108)

a = 45° (Probable design maximum)

) 5 rEo tanaﬂl/Q (21 x 106) tan 45° ,1/2 e
E"Qo J “(2) (3.14) (.285 x 106)J .

(do)ref 13 calculated on the basis of a line contact design
bearing stress of q = 285,000 psi.

Thus
1/2 1/2

[ g )3= 00843 1n.

+ O ’

o ref

d, = D(d_ ), op = (3.42) (.00843) = .0288 in.

This 18 not out of line with the values of do for conforming
bearings (See Pages 15 and 16).
As a check and to determine if the eliminated quantities

have reasonable magnitudes, we calculate these quantities for

this example.
d
B= 29 = 49§§§:= 014"
(28) P, = P = 292 = 250 1b./in
m  2mr_cosv ~ (2] {3.770) (‘OTUUT7§§;7FRJ B: 3k Uop
(30) R, —]7—- 1uuL .0203 1in.
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(31) D o w2OHOT L0497 - Q891 3 e
’ Ro cosv (.0203] (.707) ~ .014% y
2 p ’2) .2 Ox
- m _ b [ ) 2 55
(12“) a = nqo W'W 000559 1n.

(125) & o omToat? sik) (200) (.0203)-"¢
omE, (3.14) 721 x 10°) -

O

= 00055“ 111 .

As a comparison the cylinder enclosing the ocutermost limit
of contact has a diameter of d_ + 2a cosa = .0296 1in. for this
case., The sharp vee Jjewel bearin; has for this cylinder's dla-
meter (P. 119).

(2a') = 2(.00:10) = ,01032 {in,

typ

Thus for the same loads and materialis, but with the potentlal

ability to withstand transverse loads, we are acout .02 63 = 2,86
times as lar;ce, This 1s quite reasconable., (Note that this 1is

2.86 times as large as the enlarpged vee Jewel., It still ex-
ceeds commercial practice on Jewels, but the ratio 1s repre-

gentative.)
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BEARINGS WITH AXIAL LOAD CAPACITY - FRICTION TORQUE WHEN OPEKA-

TED UNDER AXIAL LOAD ALONE

Case 1 (See P, 7) The general expression for the fric-
tion torque on ar annular area of radius r and meridian len: th

ds, with coefficient of friction u, and normal pressure q 1s
(32) dT... = uq(2nr)(ds!(r;

For Case 1: q(r) = q,, ds = dr, and the limits of inte-

gration are r = ry and r = T Thus

=Ty Fo
Ten =L£ . der‘r) sz 2nuq rodr
1 i
2ﬂuqo 3 3
=3 brg7 - Ty

We define as a reference frictlion torque the torque on a solid
flat bearing: with uniform normal pressure distribution. Since

ry =0 and r_ z(ro) (Eq. 4), we have for thls case

ref

/ 2nu qO r -,3 o .
\3“) (Tfr)ref = ’T“" "ro)x'ef; = 'g (uP) (Po)ref

B 7 AR
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S

It then seems natural to define a reference friction radius as

SN e

r
(36) A= T—L
‘Pfr)ref
and
i
r
(37) P ™ oy

Using these definitions gives for A in terms of 8 (when Eq.7
for D(R) 1is considered)

(38) O PR
o ‘3/
(" - 1)——

As 2 approaches infinity this approaches 1, as it should for
the solid flat bearing. This function is tabulated below in
Table 5 and plotted in Figure 14,

- A8 =
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Table 5

FRICTION RADIUS RATIO A VS BEARING RADIUS RATIO 8 FOR A UNI-

FORM LOAD ON A HOLLOW FLAT BEARING

£ 013
: 1.000
10 1.016
5 1.058
3 1.150
2 1.348
5/3 1.530
5/l 2.26
10/9 2.28

From the plot we note that aA(8) increases more rapidly

than 0(R”) in the range of & of interest.

Case 2 (See Page 1° ) 1In Eq. 32 q.r) is given by Eq. 8,

ds = dr, and the limits c¢{ inte;ration are 1, and r.. Thus

we et for the friction torque

0 '-10 "P(' , S I‘i 2
Tep =), OTpp{r) = | (2n){q )1 - mp——g=)rtar
) ”i © 1
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Bearing Relative Size D and Friction Radius Ratilo

3.20

FIGURE XIV

—~
»
4

o

0 o a2 v 4 oD .6 <7/ .8 .9

Reciprocal Radius Ratio 1/8 = ri/ro

BEARING RELATIVE SIZE D AND FRICTION RADIUS

RATIO VS. RECIPROCAL RADIUS RATIO 1/8 FOR

A HOLLOW FLAT BEARING WITH A UNIFORM PRESSURE

DISTRIBUTION
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r -
. r ok S (. _ b G 1 =
i, 3 AU B e L
The dimensionless friction radius ratic A becomes
1 3“7/)1‘4’ © l it .‘L/""I'A

"‘() A"a ) 25 ,D:f R = 03'.1 - - 3 A
(40) 8, A\ » ), ;3' B G

where D{2,n) 1s riven by Equaticn 1C. Rather thian plot this
we evaluate it for a typical case. Taking n = .Y [trapezoi-

dal istribution) and 8 = 1.667 w2 have (See P. 14)

1l

D(1.667,.5) 1.463

and

i

8(1.667,.5) = (1.463)3  .556)

il
—
=~
&

We compare this to A(1.667,0) = 1.530 (P, 29) and see that for
the trapezoldal distribution the friiction radius increases Ly
a factor of 1.74/1.53 = 1.14 over that for a uniform distrilu
tion with the same axial load, desi;n bearin; stress, and rcdilus

ratio.

Case 3 (See P. 16) In Eq. 32, qif) = q_, ds = R?7, and
the 1imits of integration are £ = 0 and A = a. Thus we get

for the friction torque
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where r(g) and R are related to § and « by Eqs. 11 and 12.

Integracirn: gives

3
r
' - o Ta 8in 24°

and the dimensionless friction ratio becomes

(42) 5(a,D(n)) = D3 [—3% _ 3 8in2q"
b -2 sing; 4 sing;J

where D = 1 for this case. PFor a typical slze take o = 300.

Then 4(30°) = 1.08. So for o = 30° the friction radius for

this case 1s 1.08 timey as high as for a flat beartn,_.

Cagse 4 <(See P, 18) Only the 1limits of integration change

from Case 3. The lower limit becomes 9 = 14 gaving



3
r ; " gsin 2a
- o) ra 3in 2qg P in
(43) Tre =AW == 13 - Tt m ot U
The dimensionless “riction iratio becomes
\ 3 3 N sin 2q sine
(Ly Ma,ay,Dia,a, i) = Do—mse B TERCR T
1 1 ¢ Sing: i - e

In kEquatlion 44, D 1s the same as for a flat hearin with uni-
form normal pressure (Eq. 7) and Qg A and 2 are related by

Eq. 19, For a typical size take

a = 90° and 8 = 1.667

Then
(19) 8in a; = & olma = (.6){1) = .6, o, - 36.8°
ara
D3 = (1.250)3 (F. 1b4;
and

p = {1.953)(1.5;(1 4081 = 4,12

This 1is high, but a uniform riormal pressure dlgtribution from

ay = 36.80 to a4 = 90O tIves o large friction offect from that

O 5 a .
part of the 2arc near A = GCY witn 1ittle or n. effect on the
axial load. We should expect fhe cosine normal oresdsure dis-

tribution of Case 6 to yive mere realistic valiec here,

-3
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Cage 5 (P, 16) Here

a(e) = g, cose
ds = R dg
r = R s8in9
i = R osira

and Eq. 32 tzcomes

dTp,  «)(g, cced;(21R 31n0)(R dg)(Rsing)

The limits are § = O and 3 = . Thus

p a)
T = dT = 1q 21H3 sinee co88 d§
"b 0

or -

1 C-) [ ——— -
(h5) gy G
The dimensionless fricticn radius ratlo becomes

(46) A

where D(a) 18 given by Ec. 15 and 1s tabailated on P. 20.

For numerlcsl values teke o« = 900, Then
: 1/2
2
Dia) = [#, = 1.225 (P. 20}

AY

ab £{90%) = 1.638
L uy
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Thus the solid hemispherical bearing with a cosine normal pres-

sure distribution has only 1.225 times the outslide dilameter

of a flat bearing of the same capacity, but has 1.838 times as

much friction %orque.

Cage 6 (P. 22)

limit becomes a, where 8in a, = ri/R 'Eq. 17).

torque becomes

J

Q
Ter =~L dTp.(8) “j;
1 1

uqo 2"R3 2

EBEEI-__ s cogn 4dn
or
2muq . r
o "o 1"
The friction radius ratio then becomes
3 (1 - :’1'3)
3
(u’8) A(B) D: 0.1) = CoB ,11

For typical numerical values take q = 90O and /8 = 1.667.

(P. 25) a, = 36.8° and D = 1.532 glving

SR

Here q/a) = q, cosg/cosay and the lower

The frictlon

Then
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p3 (1 -1

\ o3 _.532)30 - .6%) | 5 o

COSai .8

Thus the size 13 1.532 times that of a solid flat bearing,

but the frictlion torque 1s 2.52 times as much,

Case 7 {P, 25) Here

(20) q.8) = qg
(21) reg) = ry + R sing
gn(j r - I‘i
(22) R 2. 2
sing

The 1imits of integratiun are 9 = 0 and 6 = q, and ds = R de.

The friction torque thus becomes

N
1

=X " .
T, =J;~ 8T, ") xj; (W)iq,){2n)(ry + R sin3)

o R do

which upon 1integration gives

A43) Tfr = 2nuqu rriem + 2 riﬂ(l - ¢c8y)

+ R2(g _ 810 217

2777 i
The friction radius rati. then becimes

~ 45 -
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1
3z L )
( a _ 811’12@)
2 \ a |
sina -

For numerical values in a particular case take q = 90° and

8 = 1,667. Then

D = 1.250 (P. 14)

and

3 2(1 - 0
8 = (1.250)3 [(3)(.4) By + (.6)(.4)

n _ O
He W]

A= 1.250° (1.42) = 2.77

We see that the combination of a uniform prossure distribution
and o = 90° glves large weight to friction on the outer arc
length that is nearly parallel to the centerline (AB in the
sketch, Fig. 15) and so tends to make the friction torque high.

Case 8 (P. 27) This is the same as Case 7 except that
(25) af8) = q, coss

The friction torque is then

. .
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FIGURE XV

EFFECT OF LARGE NORMAL

PRESSURES NEAR ¢ = 90°

= U8 -
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a 5
Tep = [ 9Te(8) = [ ()(a, cosa)2n)

(r, + R 5118)°R do

which upon integration gilves

' 2m a R [r,° st R atn?, 4 2 3103
(51) Tpp = 2m QR [ry® sing 4 ry R 8in%y 5
The friction radlus ratlo then becomes

_p3f 10
(52) b =D7 11 - =

3

Note that even though Eq. 38 can be put into this form, D/g)
in Eq. 38 18 given by Eg. 7 while D(B) here 4is ::iven by Eq. 27
and is larner.

For the numerical values in a particular case take o = 90°
and 8 = 1,667. Then D(g,a) = 1.695 (P. 28) and
a(8) = (1.695)3 1 - .63] = 3.81. Comparing Cases 4, 6, 7,

and 8 with 8 = 5/3 and a = 90° ives

D(8 = 5/3, a=90°) a(5/3, 90°)

Case 4 - Hollow sph. unif. pres. 1.250 4,12 (P, 43)
Case 6 - Hollow sph. cosine pres. 1.532 3.52 (. 46)

Case 7 - Hollow torr., unif. pres. 1.250 2.77 (P. 47)
Case 8 - Hollow torr, cosine pres. 1.695 3.81 (r. 49)
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The uniform pressure assumption 18 seen to be more conservative
as regards friction torque for the spherical bearin;, but not
for the t rroidal bearin,; and the cosine pressure assumption

is more c nservative as rezards size for both cases. The cosilne
pressure assumptiocn is more reallstic for both shapes and with
this we see that for the angle 1 = 90o and &« = 1.667 the hcllow
spherical bearin. has both smaller size and lower friction than

the holluw torroidal bearin,..

Case 3 (P. 28) Here
qir) =q

dr/cosv

aa

and the limits of integraticn are ry and Ty The friction torque

becomes

r r

o o

- £ 258 \ y( 9 v

Ter _l; Peptr! _J; u(qo’(‘?"r"‘cow’(I>
i

it

which upon inte;ration _ives

3 _ 5.3

enuq_ (r -7
(53) T E o o i
fr = cosv 3

The friction radius ratio becomes

- 50 -
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(54 n = D (1 -'LE} coiv
8

Thus while the size of this conical bearin; 1s the same

asg for a flat bearing, the triction torque increases by a fac-

. 1
rtor ot .
cosv

The largest v used would probably not exceed 450 due to
the wedging that would occur, Thus for v = 45° and
A =1,667, A = 1.414 times that of the flat bearing with
the same 8 or (See P. 39 for 1.530).

b (R =2 v=245% = (1.4} (1,530} ~ 2,17

case 10 {See P, 30) In this case the normal forces are

all acting at the rodlus r, so that
U = 4 \
lfr = \u)(pm)(2nro,\ro,

Using Eq. 28 for P glves

(155) Tfr = yP I‘O/COS\)

The friction radius ratio then becomes

(56) A

A0

co8v
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For the spherical-conical bearin; shown in Fiy. 3, (P. 6) with
the numerical values of Pages 34 and 35, we have (See P, 35

for D)

/\‘ 59 g— ——.&Lnlﬂ = 7.214
cos L5C

While this seems hirh note on P, 36 that this bearin;; is about
2.5€ times as larpe as a fla‘ beariny with the same materials

anc¢ axial 1~ad capacity.

In all of the cases above we are probably not too worried
about hilgh friction torques due to axial loads a3 these loadc
are only acting a relatively short time and the mechanism may
not even he requlred to operate durlng; the axial acceleration
interval. The results above are included mainly for complete-

ness,
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SECTION 1I

TRANSVERSE LOADING ON BEARINGS WITH AXIAL LOAD CAPACITY

General Procedure

A reasonable distribution of normal forces will be assumed
for each of the bearing shapes, and the fricticn torque and
transverse force will each be found in terms of the maximum
normal ccntact pressure. This will allow the friction torque
and maximum contact pressure to be expressed in terms of the
transverse applied force.

Cagses 1 and 2 - Flat Bearings

These flat bearinys cannot resist transverse load. They
were analyzed because they provide the most resistance to axial
lcad and so form a standard for the other bearings, and tecause
they can be used in conjunction with journal bearings which
are studled in SECTION TIT,

Cases 3, 4, 5, and € - Spherical Bearings - Hollow and

Solid

Only one normal pressure distribution will be considered
for spherical bearings under transverse load. Solid bearings
will be considered as a special case of hollow ones., Figure 16
shows the bearing and the parameters of interest.

The normal pressure has been taken to be & function of the
latitude ani le A and the longitude angle %, As a reasonable
distribution for initially conforming surfaces such as these

we assume
- g8l
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FIGURE XVI

uq (e, ¢)dA

&4 -
shaft/bearing udN

P
transverse
1 bearine

SPHERICAL BEARING FOR

TRANSVERSE LOAD ANALYSIS
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0.1_<_9f_a
sing

(57) Q(e, 4) = qo aTre cosh

-F < < g

This distributicn 1is sketched in Fig. 16 as a function of 8
for # = 0. For any other % between - g-and g-the variation
with 2 18 the same, but all values are scaled down by the fac-
tor cos 5, The longitude of maximwn normal pi'essure i1s taken
behind the plane of the transverse applied load by an acute
angle y as shown., At a rixed latitude ¢, the pressure is as-
sumed to drop off harmonically with longitude ¢ from this
maximum value, Simlilarly at a fixed longitude #» the pressure
is assumed to vary harmonically with o, being maximum when A
18 maximum. The angle y 18 caused by the transverse resultant
friction force as will be seen below.

The angles and radll are related by:

(11) r = R s1ind
(12) i = R sing

and the radius ratic & is

r
/ - 8ing _ "o
(19) Ala) = 8lna, T,

The differential element of area 1s
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(58) dA = (Rdg){rds)

The friction torque due to the anormal pressure q(A) on the area

dA 1s

(59) dTrr = HQ<91°)(GA)(r(9)) = (U)(dN)(r)

which, when equations 11, 12, 17, 57, and H£ are used can be writ-

ten as
ug, sine cos:(Rdt)(Rsined?)(Rsing)
ging
or
3
uq,
(60) dT.(8,”) = O O _ (gindg cosd) dods
r
8in '~
Then the friction torque beccmes
f=a ¢ = %
'%r=f J e 9T 8 %)
=1y ™= -3
or
(61) Trr (qo,a,ai) =
2uqor03icosai sin2a1 - c087 sineg + 2(cosa1 - cosa)3
381n 4

56 -
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In order to find q, in terms of the transverse load applled
to the bearing we must find the transverse components of dN

and dFr and write the transverse equations of equilibrium.

From the symmetry of q(6,%) about the xz plane we see
that the distribution q(e,») has zero Y component. Its X

component is given by

b=q. & = g
(62) - X, ==j;=a1J§ -3 (q(e, ¢)dA)(8ina)(coss)

vhich upon integration becomes

2
"Tq, T,

(63) -X, = .E;_I_g—-[(coeai sineq1 - cosq sinza)
Sin-a g

+ 2(cosa1 - cosa)]

The symmetry of q(9,%) atout the xz plane also gives zero er

component of the friction force. 1Its Yrr component 1is given

by

7
(64) -Y, = q{e,?)dA cosd
T

which upon integration becomes
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2
™ Ty

(65) - Yo = -I;;ggg [(a - ai) - % (8in 2q - 81n2a1)]

The equilibrium of forces parallel to the xy plane then

glves

1/2
2 2
(66) Ptr.l breg. [é“xn) +( "Yfr) j

and

B Yfr

(67) tan y = ED o

which can be used to express y in terms of the geometric quan-
tities o and ay and the coeficient of friction uy. Of more in-
terest, however, 18 the relation between Ptr.l brg. and Q0

which can be written as

maqr® 1/2
(68) Be ) brn [;;n%f—]L(Az(a,ai) + uPB%(a,ay) ]
where
(69) A(a,a1)= % [ﬂcosai sinaq1 - cosg sinzq)
+ 2(cosay - cosa)?
(70) B(asay) =7 T(a - a4) - 5(sin2 - sin2a,)]
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and

(70a) tany = ﬁé

To make the results dimensionless we introduce a reference

transverse outside radius (ro) such that the transverse

ref. tr.’
load on one bearing divided by the area of a semicircle of this

radius gives q,- Thus

[2Ptr. 1 brg. ﬁ1/2= rPtr. shalt"™

n qo ol - 11 qo -

1/2

(71) (ro)per. tr, =

(Note the similarity in form to Eq. 4, P. 7) Then we define

the transverse size ratio as

r
(72) D, = <
tr vy )per.tr.

(Note that D p=1fora = 90°, ag = 0°, and q(8,%) =q,; and

e
compare to Case 3 where D = 1.)

-

Using these definitions Equation 68 becomes

3 1/2

™ sin-y
(73) D = 5 o 9:T7?]
2(A° + u“BY)
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Next a transverse friction radius is introduced by

Ler.1 brg.
u P

(74) Tep. tr., ™
tr.l brg.

and a reference transverse friction radius by

(75) Ter. ref.tr. = g'(ro) ref. tr.

A cylinder of radius r, and length h with uniform pressure q,

over half of 1its circumference has a friction torque of Tfr

= uq nr hr, and a transverse load of P, 4 DRate q,(2r h).
Its transverse friction radius 1s then r,, .. vl Tfr/(“Ptr )

= nro/2. Both (Po)rer, tr. and Te.  nof. tr. are quite artificis
Finally, a transverse friction radius ratio Bt is intro-

duced as

Tfr.l biy.

r r
(76) - T8, G, - fr.tr. =5 -
tr. lbrg. "o rer

A =
tr, E- r, ref.

- i e

=&
™

rfr.ref.tr.
combining these definitions with the exprressions for Tfr and
Ptr. in terms of 9, gives

(77) b,,. = [ ’.
25" n2 sing A2 + u2B2 ] LDtr.J
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TS o'

or

(78)

ehecadl Tecimocogy Covpenitdon

8 cosy ;.
Mp = T (L)

n- sina

when Eq. 67 1s used.

and

For numerical values consider the 4 cases:

a=90° with R = » and 8 = 5/3

a = 30° with 8 = » and 8 = 5/3

where u = .17 (P. 122),

(g = 90°% a = =) (Full solid hemispherical bearing)

(69)

(70)

- no
0.1“0

Alasng) = £ ({0 - 0) +2(1 - 0)3

= .333

uB(a,aq) = L ((§ - 0) - 5 (sinn - 81n0)]

= 22T = 0667

tany = $2 = 200

)
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(70a) y = 11.33%° = ,198 rad.
cosy = ,980
1/2
3 s 1,2
: sin-~ 4 co8qN
(73) D, = LAy - —17 = R
127 TAT ¢ "uB) ]
1/2
1 ..980,"
- e (23
1.414 °~
D, = 1.217
a = 90°, R = 1,667 (Hollow hemispherical bearing)
ay = 36.8° (p. 2¢)
Ala,ay) = £ 1((.8)(.6)% -0} +2(.8 - 0)7 = .314
wB(a,cy) = <L [(F - .642) - 3 (0 - 81n73.6°)" = .0599

H]

tany

15972 = 291

y = 10.8° = .188 rad.

cosy = .984
D o1 .98 12 1 eno
¢r = T.01F FT3) =

This small increase indicates that the section frm 9 = 0
to 8 = a4 = 36.8° does not carry much transverse load when

o = 90°. This seems reascnrable.
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1 = 30°, § = » (Solid bearing with outside half angle of 30°)

'11 =
Ala,ny) = [(0 - (.865)(.5)%) + 2(1 - .866)1 = .00859
ug = 3L ((F - 0} - (.5(s1n60° - 81n0°)] = .00387
tany = f8%§§§ = 451
y = 24.23°
cosy = .9]1

1/2 1/2 3/2
oo TSRt oan®s T [ i (50 - 28

o
]

(This relatively high value of D, . may control sizing. Check

below. )

a_= 30°, A’ = 1,667 (Hcllow bearing with outsice half angle of 30°)
ag = 17.47° = .305 rad. (P, 24)
A = & T(cos17.47° sin® 17.47° - .2165

+ 2{cos 17.47° - .866)1 = .00790

il

uB = < (F - .305) - .5 (866 - s1n34.94°)1 = .00308

_.00308 _
tany = 00730 T . 390
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y = 21.30

cosy = ,021
931 Wl/z 3,/2
Doy = [ Brow | ratdy - 2.7

The relatively high values of Dt* for @ = 30o may control siz-

ing. To check this we o to the definitions of Dtr and D to cet

N
&

) . rPaxial destgn (@o)tr. design "
Maximum allow- design (Pt }T faa 'q ) axlal -
able for axial reloua e © desiin
loading to con-
trol sizing

(78) (D

Er
siyn

Using the numerical values:

= 15.95 1b. (P. 114)
= 8,87 1b. (P 124)

Paxial design

Pyr total design

9y axial design = 272,000 pxi (P. 95)

(0)4p. gestgn = 242,000 psi (P. 95) noting that

the bearing must allow rotation under the transverse load),

gives for the four cases ccnslidered:

= G =
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ay = 0; D(a,qi) = 1,225 (cosine load P. 25)
.. r15.95 _ 242,000 /2 1/2
Dir. max, = 1:225 _578; ?H?LUDUJ = (1.225)(1.80)
allow
(17)
Dip max. = 1-225(1.3k2) = 1.642
allow.

Thus the sizing is controlled by the axial-loading for this
bearing and loading. (Dtr = 1.212 (P, 62))

& s 9001 8 = 1~667

oy = 36.8%, D = 1.532 (cosine load P. 25)

Dir max, = 1532 11.342) = 2.06

allow.

Here the sizing 18 still controlled by the axial load.

(D = 1.250, P. 62)

(% {48

=0, D =1.036 (coslne load, P. 24)

2]
e ‘1.035) (1.342) = 1,390
allow.
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q = 30° 2 = 1.667

ay = 17.47°, D = 1.283 (P. 24)

Nt (1.283)(1.342) = 1.723

In these last two cares the transverse loadin; definitely

controls sizing (Dtr = 2,58 and D = 2.71 respectively,

tr.
Pages 63, 64),

The main general conclusion about the relative suiltability
of shallow (g = 300) spherical bearings 1s then that the desiyn
axial load must be much hisher than the design trai.sverse loads,
In any particular design of course. the actual load ratios may

depart from those that were used here,.

For the numerical calculation of A, we have (Eq. 78):

g =90° 8 == cosy = .980 (P, 62)

&

fp = Spie980) (1.212) _( 795)(1.212) ~ 96w
' ]

(1)

@ = 90°, R = 1,667 cosy = .984 {P. 62)

.
bep = 8 (.284) 11.250) _ [ 798)(1.250) = .998
J6h n (1)

a = 30°, A = » cosy = .911 (P. 63)

- 66 -
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-8 (.011) (2.38) _ (5,48)(2.58) = 3.82

A
n  {.5)

tr.

a 5_39?L,8 = 1,667 cosy = .931 (P, 64)

.931) (2. :
Mep = f—z-i(?g-}l—»ill = (1.51)(2.71) = 4.09

These results indicate less friction torque when q = 909

than when o == 300, and also only a very small increase in
friction torque for hollow spherical bearings over solid ones
with the same outside angle.

It would be of interest to have a numerical value for the

operating fricclion torque. Let us conslder the case:

We have D, = 1.212 (P, 62) and also that the axial load-

ing controls size (P. 65). If we had sized on the basls of

transverse load, we w.uld et a 8li htly smallier bearin :

/

(71) \1

i

)o)tr. sizling \Utr.) \Yolpef. tr,

2] -p PLP. shaf't ﬁ1/2
~ Ttr Tnlq ) J
: o’desa, tr.

Usin; the numerical values of P. 64 ;ives

- 67 -
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. 12
(ro)tr_sizinc = (1.212) {’T3TTH§T§£?TUUUT j = [1,212)(00342)

= ,00415 in,

(do)tr. sizing .0083 1n.

For axial load sizin_ (See PP. 11 and 25):

dO = D*do)ref.
= (1.225)(.0092) = ,01126
Trhe friction rad:ilus for transverse sizing 1s

(Tep Jer. s1zing™ Bor.5(Torer. tr,= (-964)(1.571)(.00342)

r I ne
fr.tr. sizing = 09218 in,

and (kEq. (4)
Fer)erp,

Tfr.tr. 2 brg, M ‘Ptr) Zluca i

(.17){6.87)".00518)

il

& 0106 1b. in.

fr.tr. 2 brg.

Comparing this to (2) (.0120} = ,0240 in. 1b. on P. 95
shows some theoretical advantage to the hemispherical conformin

bearing over the cylindrical journal bearing,
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Cases 7 and 8 TORROIDAL BEARINGS

Using the notation of the sketch (Figure 11) on P, 26
we have, corresponding to Equations 11, 12, and 57 (8 18 the
longitude angle as on P, 5¢):

ginn

(78) q(e,8) = q, gy co8* (0 <8 <)
n "
("gf_ "_Eg)
21) r =1, +R sino
and
{ ‘l =3
122 ) r, ry + R 3inn

The differential element of area dA 1is
(79) dA = (Rda)(rdé) = (Rda){r, + Rsina) d*

The friction torque due to the normal pressure q(6,%) on the

area dA 1is

) =y dNr = nqe, %) dA(a,d)r{e)

whilch, when the equations above are used, can be written as

. sing
dTp. (6,%) = uq, gy~ cos® (Rdg)(r, + Rsing)

a# %ri + Rsine)

or as
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3 1
(81) Ty, = . q"ar° il “). [ 31,’2‘2“ sineg
sin ¢« B

+ %—(1 -%—)sina 81n°g

+ (1 - %)2 sin391(coa§)db an

The friction torque then becomes

or
1
2uq.r 3 (1 - ) rsin?
(82) T..\qQ ,Ra) = 29 rs n °‘(1 - cosa)
fr:vo’*? sinuo, | 8
2 sing 1y,a 3in2q
+ —"1r-- ( -'a)(§‘- -1r—“)
2
- _) (3_ 3_ cosy - cosa3ain 1)-1

The Yn component of the transverse load 1s zero because

of the symmetry of q(e,%) about the x axis (% = O)., The X,

component 18 given by

= O =



oo

4

30
NE

(83) - X, =Jw Jz . Lala,*) dA)(sine)(cos?)
) O=O & B - g

which, upon integratior becomes

(84) X = -—O o B f8ina ,u | sin2q)

/ 2 2 1 2 B
+ (1 - E)(g -3 co8ag =~ 3 co8n sin q)J

The symmatry of£q(#n, *) about the x axis rives zero Xep

compornient of the frictlion rorce. The Yfr component 1s given

35, - Yfr = | ifagie,d dAY cos?

n I’afl —1)
(86) U= - L reing 081 )
! - r = h“ - i —8—-‘—' - CO%A
celiny
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The equilibrium equations, 66 and 67, then give

: 1 .
nq.r.” 11 -3l 5 > o =1Uxe
(87) p e e AT ER (g, e) + W8 FR(a,a)”
tr. 1 brg. o 25
and
>’)5I ta.nY - }-éﬁ
where E and F are defined by
(89) E{a,8) = [ E%Qg,;% - glﬁgg. + {1 - é)(% - % cosn
- % cusa singa)l
and
sing _ 1l,, 8in2 A
(90) F(a,8) = [ =g {1 - comsa) + (1 - 3)(F - 37=2) |
Using the definltlons >t D, and & .., and the results above
gives
(91) D = o H?PE§Q_.__”“ Wlf?
L1 ) 0 ) %) ?Tg J
il - =) (ET - T FT)
Q
and
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/ 1y . 8ing
(92) hon = r-ll "R Er ¥ 14D, ..)
- tr T 2 172 Tt

- ~ ls
n 8ina (Ea 3 usz)

Ae a partial check note thet as 2 approach2gc = the right side <f
g2 apprcachas tiwe vicht side of 77 o G, = .. and the right
Blde of ! a-praachk~8 the riaw stea of 73 for 2y = 0). Thus
the limliting behiavior as ti.2 torrojdal bear::. bacomes a s8olid
spherical bearin—: checks.

For numerical values note that for' 8 = « we pget the same

results as fcr the spherical bearing. Thus consider the two c&as:s

@« =60°% 8=5/3 and & = 30° 8 = 5/3

a = 90°, 8 = 5/3

- . 0
(89) Bx®. 3 =| 2%- MR IS0 - L6)(5 cos 90°

.- % cos 90° ain2 900)}

.91

(u = .17)

S
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3 1/2
(52) 4 ”r 2 01/2]
(.4 { 738% + (.17)°(9147

= 1,822

As we should expect, the cut off gpherical bearin; resists traas.

verse load more efficlently (p. 62, D, = 1.250), because its

fal>
inner edge makes a greater angle (36.8° in this case) to the
transverse load than does that of the torroidal bearing

(0° 4n all cases).

8 r (.4) (.738) + .6) (LO14) 7 ..
(92) By = | | 1.322
) 750 S

- 1.651

!

Comparing this to A, = .998 (P,66) for the hollow spherical
bearing with the same 4 and ¢, shows tha' f{or the same 1load anc
stress the torroidal has more f{ricticon primarily due to Its

greater size.

- o Q.—:2
Q 30) ’ 2

E(30°, 1.667) = .0205
F(30%, 1.667) = .058:

1/2
(E2 + ,°F°) .0228

it
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D¢y = { (1374:3%38) 11/2 e

b = S | sH).0205) + (.3)(.0584)7 . 75
tr 2 ¢ 5) L0208 .
= .75

Arain the torroidal bearir '8 less efflcient in resisting trans-

8e : = D P, BU) ¢ rt , gL
verse loads (Dtr.sph. ./l, ‘P, ALY and for the same 1nads

and stresses has a greater rictlon radius (A = 4,09 P, O

t:-.oph.

case 9 CONICAL BEARI{G

For this case we assumne the normal pressure distribution

r322 gketch Plg, 12 (P. 29)):

ca7) q'x,%) = q_ con’ b, 2o 2 F

The differential element o czrea io

‘ __ ,-9.1:_ , <
94) g cosv) ‘T d*)

The friction torque due Lo the oummul pressure q.r,%) on the

arca dA is

(9%) AT (e SRS =5 § RN P = L 8 A R, )
or

;' 1 . q r Ir d= ;oA
9() d‘]ff' VI 'b) = ’]“A‘-C(!S,, ‘—E‘-j—{;;-‘“) 1)

'fh2 total friction torque is ther.
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n
r=r_ =5 uq, cosd r® drds
: -]
fr.1 brg. ry = - g. CO8vV
or
3
2y q, r
i = 2= - =
(97) £, 1 brg. 3 cosv ( ;3)

The Yn component of the transverse load 1s agaln zero

by symmetry and the xn component is given by

m
I“'fo ¢=2' ,
- X nj;=r J; I q(%) dA sinv cos?
1 ]

which upon integration beccmes

2
nq, T, tanv 1
(98) . xn - T (1 = ;g)

The Xfr component of the friction force is a;zain zero by sym-

metry while the Yfr component 1s given by

N o]
- Y. =) J1 i g(%) dA cos?d
fr Jr==r1 %

which upon integration becomes

= 76 =
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K qonr02 1
(99) “Yrr = Tooay (' -2

The equilibrium equations 66 and 67 give

nq.r : 1/2

Sle) 1 v/ 4.2 e
(100) Ptr. lbrg.-’rc—o-s—‘:(l --é?)\ﬂin\)'f‘ll )

and

(101) tany = E‘I%G

Using the definltions of D and 4 with the above results

Er tr
glves
1/2
_Tr 2 co8v "
(102) Dy, = 72
1 20 5
[l = -1;) (8in“v + u°)
B
and
(1 - lﬁ Jep!
(103) .= 28 B
4 3 2 1 5 5 1/2
T (1 - —EJ (8in“v + u<)
=}
, ol
For numerical values uge v = 45Y, and « = i’ taking w = .17 as

usual; then

- 77 -
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Co_r (@ (cosus®
tr L}
(1 - .62) [(.700)2 + (.17)172
- L745
and
\ 16 (1 - .63) (1.745)
t = - >Em——e

Foaf (1 - .6°) (.727)
= 1,581

These 8s8eem in line with tre other numerical values.

Case 10 Bearing with Theoretical Line Contact Using Figure

13 of P, 31 and the longitude angle %, we assume a transverse nor

mal force distribution of

1b. m . n
(104) p(#)= Py €08%  —5r oI, ( SE SR )

The arc length on which this acts is

(105) ds = r_ dt

so that the differential friction torque becomes

aTp. = wp(#) (ds)(r,) = 'y p_)(cost)(r )(das)(r )

- 78 -
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The total friction torque is then

2
(106) T, =L AT, = 2w, T,

» = n
g \
- X, =J; _ g P cosb)(rO d®)(sinrv)(cos*)
or
(107) - X =5 (p, r, 8lny;
The Yrr component of transverne force is iven by
n
ne
- Y. = u'P_cosd)(r ds)(coss)
fr J_ g Tn ¢
or
umwp I
m o
(108) - Yo = 2_-_
The equilibrium equacions 66 and 67 then give
1,/2
, o . - - -
(109) Per 1 T 5 D, T (8in®y + )

- 79 -
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and

(110) tany = 3%53

Using the definitions of Dtr and 4 2 with the results above

t

zives

r q -1/2
(111) Dy . = o o

r o L J
L2 2,172

p, (8in°v + u%)

and
8 (0,
(112) fop = = > 12
nS (8inv + )

Eliminating a between equations 124 and 125 gives

" Roqo2
(113) Py = ————
Eo

Using the last equation to eliminate P fron the expression

above for Dtr gives

(114) D

[}

—
= Nl
5oh;n
0::10'-S

; 1/2
]
(81n%v + %)

If r, has been determined with axial 1oad sizing, Equations

4, 5, and 29 ¢1ive

- 80 -
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Pax1a1 Fo

ial load . 2 )
7 g?zgng o em ((qo)axial) Ro St

(115) r

while with radial load sizing equations 109, 124, and 125 give

(2 Pepo1 vrg.) Eq

(110) (ro)transverse - 5 o > o 172
load sizing n“ q " R (8in"v 4 u )

To determine whether sizing 1is contrclea by axial or trans-

: \
verse loading we take the ratio of (Po’axial oa Mz over

(ro)tr. 1rad sizing and see whether 1t is greater than ore or less

than ore. Thus

(
r'o)a.x.Lal load P ((q.) )2
(117) sizing axial _ y 9% /tr. design )
| (ro)transverse Pir.2 brgs. (e} )2
10ad sizing \%o/axial design
1 /"2
r jﬁingv +A92l7 "
2 CO8V J

If this ratlo 18 set equal to one we can solve for an "optimum"
angle v for thils type of bearing, 1in the sense that the bearing
has equal strength in both directions, Thls dces not necesgsartil;
give the lowest friction torque, or the best angle v from a

wed;sing point of view however, and should be used with ca.tior.

- 81 -
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To see what happens let ug take a particular numerical case.

Taking

axial = 15.95 1lb, (P, 114)

= ,'7 X
Ptr.Q org. 3,87 1b. (P. 124)

using the same degign preasure q, for axlal lceading and transgversae
loading, and setting the loeft hand side oy Eg. 117 equal to one

gives

1/2

1, (81n® =
1= (1gege) ip Bt u)

co8v

For u = .17, we get v = {7.4°% which 1s so clcse to 45° that we
can consider v to have teen 350 and axial load sizing Lo have

controlled. Equation (111) then gives

8iD._
L5 g

“tr 2 < 50 5~T7§. Pt (Dtr)
r< (8in” W57 + 17°)

Using the data of PP, 34, 25 4n Equation (114 .1ves

D (21 x 106)(,014u) /2
tr v ]
( 2 2
(3.14){285,000) (.0203)(.707° + .17°)
cr k.2

and
Atr = 1,112(4,72) = 5,25
which are in line with these quantities for the other bearinss

considered. _ 82 .
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SECTION 1Il

JOURNAL _LARINGSE

Having rejecred vee jewel bearings on the basis of thelir
transverse flexibility (see SECTION IV), we are left with two
ceneral types of bearliyrs;, Journal bearinge, and combined tucust
and transverse bearings. The possibility of the use <f a jour-
nal bearing for the forwaré bearing, and in cciijunction with a
thrust bearing for the aft beariny will now be considered.

A cross sectional view of a Jcurnal bearing is shown in
Filg. 17.

A cylindrical shaft ¢t dizmeter ds(in.) turns in part of
a torroldal jewel with insile diameter dg + ¢ (1n.) and meridian
radius Ry (in.). As a limiting case the bearing may be cylin-
drical (RB = o) and the axial clearance snown may not exist or
may be repiaced by some provision for withstanding a small thrust
load. (Bearings with appreciable thrust capabilities are trea-
te¢ separately in SECTIONS I and II.)

Contact Stress Analysis

The limitations cn d& R and P that are imposed

s’ "B’ .l bEg:
by contact stress consliderations will be consiuered first,

When two convex bodies with finlte principal radii of cur-
vature Rl, Ri, R2 and Ré arc brought into contact, the locus of
all points on the surfaces that are initially the same small
distance 2z apart, measured normal to the common tangent plare,
is the elliptical curve wi'.h the equation

>3j -
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FIGURE XVII

e U5 —a | E - Radial clearance
F*r. I brs,
r##ffﬂﬂ
|
| Bspﬁihf
D, \_ 1
e Raidiial ccrner
clearar.ce
SHAFT

TYPICAL JOURNAL BEARING

AND NOMENCLATURE

- 54 -
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(118) z = Ax° + By°

where x and y are cartesian coordinates in the tangent plane,

A and B are given by the solution of

1 ,1 1 1 1
119 A+B-= + + + )
ard
2
(120) B -A=5T(g -3 +2(g -2 - 2v) cos2y
-1 Ry 1 Ry 2 R,
2 .1/2
+(}]i' "“}'1) !

ard where § 18 the angle between the normal planes containing

é- and é-. (See for example Timoshenko and Goodier, Theory

1 2
of Elasticity pp. 377-382.)

When the bodies are pressed together, the boundary of the
contact area is & small ellipse with major and minor axes
determined by the force, the elastic constants of the mater-

ials, and by the quantifty 3 where

B - A
(121) cosg = R

The Hertz contact stress theory will not be valid unless
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the major and minor axes of the ellipse of c.ntact are small

!
compared to the smallest of Rl’ R], RQ, and Ré,
For the case of two long cylinders with parallel axes

1 = ®» Ry = o, the ellipse (118) becomes two parallel

lines, (B - A) benomes egual to (B + A), ¢ 18 zero, and the

4y =0, R

surface of contact becomes a rectan;;le of long finite lengsth
and shecrt width compared Lo Rl and Hg. I “re end effects are
neglected and the applied load i3 uniformly disteributed along
the length, a valid limicing solution (for 2 . 0) 1is obtained.
However, 1in general, as 9 approaches zero, the two surfaces bec.me
more and more nearly conformin; in at least orne direction, the
major axis of the ellipse of contact beccmes lar;se compared to
the smallest radius of curvature, and the contact stress theory
becomes invalid. Thus the case of two long cylinders with parai-
le]l axes and load uniformly distributed alcny their lengith becomes
the only valid limiting case of countact stress theory as 9§ ap -
proaches zero.

For the bearing under consideraticn we have the two surfaces

conforming in the circumferential diraction for approximately

half the circumference but we do not have a uniform distribution

of load along this common clement, The end effects are [sradual

however, since the conforming surfaces turn smocothly wlth respect
to the direction of the applied force. /Wth a roller of finite
lencth pressed onto another the end effects are not nepligible

and the solution 18 only vaild away {rom the e€nds.)

- 86 -
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FIGURE XVIII

Shaft ¢
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1, 2 1 2 2 ]l
= o -=) +2(3)( -+ - ) (1)
- 88 3'3 dg ¥ ¢ RB
bl .o 1 )f_jl/e
dg te RB 3
I & el 2 ] T
= Y Do) ~ ) + | o - )
2 3 Hs + ¢ Ré 1
2 r C _ 1 j
=T, Td ¥ e T PRy
1 -
0 r c _ N
PR S

i) RB 18 very larye the two surfaces conform in two direc-
c/d 1
tions. If not, 3;"+ = 15 ne;ligible in comparison to zng-and

cosg = 7 1. The minuvs si;'n has 1o slinit'icance and so n ap-
proaches zero in thils case for the small radial cleararces re-
qiired in a precision mechanlsm of this type.

For an approximate solution we procede as follows. The
conforming direction i3 the circuaferential one. We assume,

as an approximation t. the pressire distributicr. in this direc-

tion, a cosine variaticn with ancle. Thus (see Figure 18)

- BY -
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(122) p(d) = p, cos?

Since the resultant of this distributed load must equal

P we have

transverse 1 brg.

& e ”
| B g /dB ds o1
Ptr.l brg. SL o g_(Pm COB‘)\-Z— d@) co8d = pm =5
or
4(p )
- tr. 1 brg.
(123) P, = =t

Next we compute the maximum contact pressure Q, (%%L) between

two cylinders with curvatures in planes normal to their con-

forming direction of lT =-% and 4%-= 1 which are pressed toge-
Ry R, Fp

ther by a uniform force per unit length in their conforming di-

rection of p_ (%%L). This gives

e Pn
ma

(124) q, =

where a 1s the (small) half width of the (ceformed) rectangle

of contact and 1is given by

4 a R 1/2
(125) a = { s ..

-0 -



and

(126) =i+
Rs "Ry Hg

while En 1s coumputed from Equation 131 Page 101, SECTION IV,
(See for example Timoshenko and Goodier, PP, 381-2.)
"inally we c¢cn3idey that the value of g . calculated in

this manner for an equivelent cylinder of <urvature lf pressed

i

% = 0 by a uniform load per unit

onto a plane o1 curvature

and ¢_ as above) 1is

length of P calculated from P s

tr.1 brg.
a good approximation to the maximum value of contact pressure
q, that ctuelily exists. Because of the saucoth variation of
p with % and the reasonableness of the assuned cosine dis-
tribution, the writer feels that this soluticn will gilve
results of c¢rdinary engineering accuracy, 1.e€., no greater
error wiil be Introduced thai that due to tolerances on RB
or estimates of Ebearing for example,

Equations 127, 124, and 125 can be combined to give an
if we

expression {fcr the minimum value RB {or Ro

min.
want to allocw Tor the possibility of the shaft having non

min,

zero meridiar curvature) in terms of the trensverse load,

Ftr.l bre . end the material properties. This gives

(127) R S S e

9]
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The differential friction torque, d'I‘rr , 18
. ‘dB
dTrr = (pm cos5,.u,\zr)
Summing up all these differential torques from 4 = - g-

to & = g-, and using Eq. 123 to eliminate p_ pives

. % 08‘2
(128) Tfr.l bre :i[ - pm(zr) g cosd dé

D

7 \
=u P brg.‘??'(

a4+

In this analysis the meridian section of the bearing has
been assumed to be convex with RB as 1ts radius of curvature.
This effectively ;zives the shaft a simple support, 1.e., one
not capable of applying an end moment., if RB 1s incireased
so that the shaft and bea:r 'ng coiform Jn the axial direction
also, then the bearing is :apable of exerting an end moment
on the shaft, and for a glven dd the eghaft btecomes stiffer.
While this increase in stiffness i3 an advanta;,e, it would
be balenced out by two disadvancages:

1. Instead of theoretical line contact in the undeformed
state and contact over an area with one small dimension in
the deformed state, there 18 theoretical area contact. The

usual effect of this is to increase the number of small sur-

= 92 =
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face irregularities that are elastically {say) pushed out of
the way each revolution and to thus increase the coefficient
of friction.

2. When the bearing 18 exerting a bending moment on the
shaft in addition to a net transverse load, the normal forces
producin;; friction are larger than the net transverse load
by twice the quotient of restraining moment over effective
bearing length. Thus in PFigure 19 the ncrmal forces on the

ghaft, which produce friction, are increased from P

tr.1 brg.
P : Mx‘est
for the simple support to tred brg.'* ._1:;;;*; for the

restralned support.
Thus 1f a Journal bearin;; i1s used, there should be theore-
tical line contact in the unload2d state (slmple support).
Equation 128 shows that the smallest shaft diameter pos-
sible gives minimum friction. The lower limit on shaft dia-
meter for this application is about d, _, =~ =.20 in. (Any-
thing less would not be stiff enough.) For a transverse load

on one bearing of P = 4,43 1b. ({seec Page 124) this

tr.1l brg.
gives an average shear siress of

P !
S L gl 143 — = 14,1000 psi
' .185 @ 1.785,(.020)

For a bending arm {see Figure 17, P. 84, of one diameter the

nominal bending stress at the fillet 1s
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FIGURE XIX
A _
tr. 1 brg.
> M=0
A
\A
SIMPLE SUPPORT
A
B| _
Shear = Ftr. 1l brg.
Mrest. F + Mrest.
tr. 1 brg.
eff
B
B
]
RESTRAINED SUPPORT
B
Mrest.
reff.

DIAGRAM SHOWING INCREASED NORMAL

FORCES WHICH OCCUR WHEN A SHAFT

SUPPORT CAN APPLY A BENDING MOMENT
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@ntra.,. recanecdo B et luan

32 M _ (32) (4,43 x ,020)

nom, bending — d83 (3.1“)(.020)3

S

= 113,000 psal

While this hiyrh nominal bending stress is not desirable, 1t 1s

not completely out of the question either. However, we use

ds = ,025 in,

in the calculations that rollow, tentatively assuming that
the increase in friction torque 1s more acceptable than the
difficulties assoclated with the smaller shaft. Thus with

typical values of

4,43 1b, (P, 124)
d_. = .025 in, (P, 95)
q, = £5).285,000) = 242,000 psi {arbitrari-

ly recuced 15% because of the larger nominal size, see pp. 10&

and 134.)
u o= .17 (P, 122
we have
T =z - ,ds‘ ":Li»
fr.1 brg. M “ie 1l brz. 2w/
typical
,025, /4

= (17,0 4.43) ior=) (x—ppp)
= 1,17,(4,43,1.01592,

.0120 in. 1b.

It
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Thie does not compare too unfavorably with the friction
torque of a vee Jewel bearing that is turning under 1ts rated
axial lcad {.00825 in. 1b. on P, 123}, but the present torque
acts during the entire flight of the projectile.

52
o

\ 4 £
{1 = L
(127) Ro minimum n? -

_ (4)(21 x 1o°)_u.u§%
(3.14)° (242,000)° (.025)
(See P. 108 for E )

= ,0258 1in.

Using a straignt shaft gives

RB min. Ro min, -0258 1n.

This 1s drawn approximately to scale in Figure 20 using a
bearing length of 1.5 x - T The minimum radial corner clear-

ance 1s then

' ~ == r { = RL/e |
Min., Rad. Cor. 1., = FB min, _l i L B min )J

= 0258 [1 - cos {sin” 1 {.75)( ,-925.:»

(.0258)

- 9 f! -
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FIGURE XX

4—-—ds—-——-1 r

Minimum radial
corner clearance

CORNER CLEARANCE

o7 -




.0258(.313)
.00807 1in.

li

il

which 18 qulte reasonabi.. The approximate half width of

concvact 1is

) 10 & ) L’
R i Ty S
L, 8] 0 l - \1) E; ds ")
1/2

. [_g.pgb'am.ug) q

d

(21 x 10°)/.025) -

o
it

.000595 1in,

This compares to a = .,00517 as the radius of the c. ntact
circle of a vee bearing under design axial load (P. i19).

It 18 less than the other value because the other dimension
of the area of contact is finite and about 7one-half the cir.-
cumference, The advanta;;c of a small value of a here 13 only
in minimizing the required smoothness of contact surface,
i.e., there 1s no reduction in frictlion radius wlth a as

for a vee bearing.
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SECTION IV

CONTACT STRESSES IN CONVEil'l(ONAL VEE JEWEL BLARINGS IN INSTRU-

MENTS AND IN THE PROPOSED APPLICATION

A. Analysis of Contact Stresses 1n a Vee Jewel Bearing

Consider the vee pivot and Jewel shown in Fipure 21. Let:

P = force pushin: them together (1b.)

Rl = bearing radius, assumed spherical (in.)
R, = pivot tip radius, assumed spherical (in.)
E, = bearing modulus of elasticity (psi)

E, = shaft modulus of elasticity (psi)

The stresses will be calculated using Hertz contact
stress theory for two spherical bodles. (See Timoshenko and

Goodler; Theory of Elasticity, PP, 372-377.)

The two spherical surfaces detform 8o that contact occurs

over a circle of small radius.

Let:

a = radius of circle of contact (in.)
Ry, R, = radii of the balls, positive if convex vin. )
Vis Vp = Poisson's ratio for the two materials

Then (Equation 219 of reference)
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AKALYSIS QOF COLNTACT STHESSES

IN A VEE JEWEL BEALIIL:




) s
1 - v, °© 1 - v '=3
: .. 3n r 1 2_ 1 =1
e e (BT g 2
L 2 R' R'
1 2
Defining RO and EO by
: 1 1 1
*130) 5 = - F
R; Rl H2
and
1 1-\)12 1 vz")
{ .
0 1 2

( - .l_
132)  a={ g

The pressure distribution cver the circle of contact 1s hemis-

pherical with a maximum pressure at the center. Let
q, = maximum pressure on contact area (psi).
Then (Equation 218 of referaence;

(133) q. = =

2na



Points remote from the contact area 'say the centers of the
balls or in this case the deflection of the gear with respect
to the case due to pivot deformation) approach each other by

n " inches) where (Eq. 219 of ref.) 3 18 given by

/1314) a = { S L

Using Eq. 132 gives
a2
(135) a = R;

The maximum shear stress occurs at a depth below the
surface of about .47a (See P. 3756 of Timoshenko and Gwoaler

or P. 41-2 of the Handbook of Engineerirg Mechanics.) and

for Poisson's ratio of .3 teor both materials s (iven by

(136) Tmax. = 31 4,

where

Tmax. = Mmaximum shear stress ‘psi.)
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These formulas assume:

(1) That a 18 small compared tolRl|and|R2|

(2) That the material remains elastic

In order to determine the allowable material properties

(in particular « ) we consider loads and sizes that are

max.
the 1imits of conservative design practice.

The Richard H. Bird & Co., Inc., Catalog of Precision

Jewel Bearings, states:

The glass jewel can be used successfully where the

weight of the moving element is of the order of 750

milligrams or less. Sapphire jewels should be consldered

when the weight of the moving element exceeds this amount."

"Hard Glass -
Young's Modulus - 12.7 x 10‘6 psi."

{obviously a misprint)

"Synthetic Sapphire -
Compressive Strength - 300,000 psi,

Maximum Bendin; Stress - 94,000 to
100,000 psi. Varies with angle of

stress."
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The dimensions of a typical standard 1lass vee Jewel 1irc:
"0.D. = ,070 in,
Thickness = ,040 1in.
Angle = 80° (total included)
Depth of Vee = ,012 - ,018 in.,"

The Bird catalog also states "A radius ratic (Jewel
radius to pivot radius) of 2.5 or 3.0 to 1 1is acceptable."
In addition the catalog of the Industrial Sapphire Co.,
Quakertown, Pa. lists:
"Synthetic Sapphire -
Compressive Strength - 300,000 psi. @ 77°F
Young's Modulus - 50 to 55 x 106 (dependent
on position of crystal C-axis)
Modulus of Rupture -
30°C - 40 to 130,000 psi.
540°C - 23,000 to 50,000 psi."

The Bird catalog also lists as its standard sapphire
vee Jewel with the largest radius RB:
"Part No. RB 303035
0.D. = .,120 in.
Thickness = 0,125 1n.
Angle = 110° + 5°
Radius = .009/011 1in.

Depth = .030/.035 in."

i
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From this limited information we infer that the

typical practice are:

For Glass

El w JR.T % 106 psi.

P = 750 X A
limiting e ¥ W5k x 109

= (_)(“165 1b.

R. . . = - ,0040 in.
1 typical

R2 typical = ,C015 1in,

(Take v = .3 and assume E2 = 30 x 106

For Sapphire

95 1imiting = 300,000 psi.

By wptea) 525k 106 nsi.
Rl typical = - .010 in.

R2 typical = .0035 1n,

6

b,
mg.

psi.)

(Take v = .3 and assume E, = 30 x 10" psi.)

Usinz the formulas above gives:

For Glass

limits of



. 1 - vl. 3 L=,

- ______1
G.79 x 10Y
a = I 35_11.9_ .1.‘/ 3 = 5‘-_'\"_%_‘ ;.:.00165)_( _()Oel—l‘qi jl/j
= (9,79 x %)

= [ .303 x 10"1211/3

= ,0000672 in,

a _ .0000672  .o72 .
R-P = —-m—- "I‘S‘* = .3“48 (WhiCh 18 amell enouh
> © A ; .4\9 6
= %—- = ;.L\lzg...:].(—:;{;_,/._ = ].82 X 10‘ .,Llyi.
o) 2.4 x .0~
_3kum.  3)L00168) _
ol T - I = g,z
%32122?“ on a (3. 14)1.672 x 1671

= 174,000 psi.



AN I

Tmax. 1imiting = -3 %o 1am, = (-31)(174,000)
typical

= 53: 900 psi.

The smallest radius R2, and therefore the largest a, 1imiting

for a given load and R1 s 83 R2 = ,0012 in. This corresponds

to a ratio of ;gg§g = 3.33 which is just outside the limit-

ing range of 2.5 to 3. Using this value o. R2 glves:

1 1 1 1 1 1
= + = + = 583 =
Rg RI Hé .00I2 " T, 0080 .001718

o
I

P T
- (.672 x 1071 =3OLTL8 T (672 x 107%)(.8945)

Il

9% 11imiting = 17#,0002 _ 174,000
extreme (.8945) -8

= 217,000 psi.

Thus q, 1imiting ~ 200,000 psi. 1s reasonable for glass with

a hardened steel pivot.
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For a Sapphire Jewel

1 1 1l 1 1 1
el i, S e % 1

[ 1 N 1 "

5 5
30 x 10°  52.5 x 107~
y 91 . 1

19.11 x 10° 21 x 10

b

In this case we take q as known (at something

o limiting
s8lightly less than 300,000 psi: say 285,000 pei.) and solve
Equations 132 and 133 for P.

R 2

-—3 o0
T ¥
(@)

B mewamm -

(137) Plimiting =
13

3
[2" %, limiting-

2
" (3)(.00437) ] .
. -101
_ )1 x 1% . [1.92 x 107
B 3
ri3) 23 T1.675 x 10°6"

(2)73.14)(285,000) -

-20
600 x 10— = .00784 1b.
.7 x 10

a4 3
4

A0



1/3
Lok B U7 e (e oapakL. 00537)
& =) [ (1) (2. x 10°) :

-12 ~%/3
J

& [ 1.502 x 10

= ,0001145 1in.

gé o lééﬂé = .0327 (which is small enough)
2 (1.145 x 10~% i -6 ,
a =& - (1,145 x ,3) = 2.44 x 10”
o 5.37:x 10

As a check,

/ ( i
q, =~ -3, = (1.5)(.00784) T = 285,000 pst.
B (3.14)(1.145 x 10™7)

¥

Thus for a limiting sapphire jewel pressure, q, limiting

= 285,000 pei. and for the standard bearing with the largest
radius of curvature (minimum stress for a given load) the

ratio

P1imiting sapphire _ .00784 _
Plimiting glass -001E5

Estimation of Loads on the Bearings

In order to calculate the loads on the bearing in the
projectile 1t 18 necessary to know the maximum axial and

radlal accelerations of the pivoted mass.




€
It

. 2 - - T >
]

e o,
]

<i
i

3radial

L -
JUCIC ) . LT L \ i J4'd ULULL

axial acceleration of c.g. of shell (1n./sec2)
ang. vel. of shell about its axis (rad./sec.)
lead of rifling (in./rev.)

gas force on shell, average (1bs.)
area that gas pressure acts upon (1n.2)
gas pressure, average (psi.)

weight of shell (1bs.)

moment of inertia of shell about its axis

(ibs. sec® in.)
outside radius of shell (in.)

radial distance from centerline of shell to
centerline of a shaft in the mechanism (1in.)
acceleration of gravity {1n./sec.2)

length of barrel (in.)

axial velocity of center of gravity of shell
(in./sec.)

radial acceleration at the centerline of pi-

voted shaft (1n./sec.2)

Use the following as typical data:

W=
P =

b=

A o S R

=2

35 1b.

17,000 psi. (assumed constant)
S 1in.

12C in./1.5 rev. = 8C in./rev.
120 in,

+375 in.
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Then

A=nre = (3.14)(3)% = 28.3 1n.2

To calculate the shell moment of inertia assume that all 1its
mass 18 concentrated at a distance k = 2.5 in. from the shell

centerline. Then

Equating the work done on the shell in time dt to 1ts change
in kinetic energy (assuming that lcsses are taken care of

by the choice of P) gives

= LW P/, g5y _ (21 .1 (W2
PAvVdt E-E-[(v + dv) (V) RS- (g k<)

[(w + dw)? - o]

-

i BT o= ‘
—g[vd\ FK wde |
But
2 _aw -
w =1V zf-and dw = . dv
80 that
"
PAdt=—g~rdv + K2 (Em) a7 ]
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or since a = I

(138)

The maximum velocity {muzzle velocity) 1s

Yy

(139) V. = (28L)

and the maximum angular velccity ‘the spin speed during fli;nt)

is
(140) w =V

The radial acceleration ci the pivited mass during flight

s then

(1)  a, -

Using the assumed typical veliues (ives

%axial _ PA_ ) (17,000)({28.3)
= I e . D
Wil o+ f.--;‘l;u , (35) 1 + .2_._--?..:‘._.__2&2._1
T 0 <
= 13,300
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and

L2 / _ 1,2
v = (og ’ =0 2 . < {
V (2a L) ((2)!/13,300 x 386)(120))
= 35,30C in./sec,
= 2,920 r't.,’sec,
which seems reasonable a8 a muzzle velocity.
= 2r . ac 6.28 _ ,
Voax. = vmax[f’”‘(j"loo) o 2,76C rad./sec.
a = (w___ b = (2,760)2 {.375) = 2.85 x 10°
radial ‘T max. ! ) ‘ o
in./sec.

®radial
3

2,850,000

7.400

In order (o calculate the plvcted w2iht assume that a typi-
cal gear has:

0.D. .383 1n. = D

li

Thickness = ,0242 in. =t

L

Wt. Denslty

i

L3 Ak fins T = W
Then the ear welyrnt =.v) ‘volume) = [.3)(.785 x .3832¥.O242)

Typ. rear wt. = ,000383% 1b,

L=



aClie el Tedhieloyp o o Tation

For the heaviest gear use:

Hi

0.D. L4496 in.
t = ,0515 1in,

y = .3 1b./4r.3

o - 2
; i} 4l
Heaviest gear wel ht = {.000839)[ L%%%% j[;%%%é 1 = ,0024%,
. t. o N - lb.

Allowin;: for pinion and uiaft welgpht rives.

wpivoted typ, .0012 1b. (say)

wpivoted — .0030 1b. (Bay)

The axial load P applied to the aft.,- bearing is then

(142)

)

i

=
el

{l

. ! AN = 15 -
o o ,0012)113,300) = 15.95 1b.

or

= {.,0030){13,300) : 39.9 Ib.

et

Pmax. ~ "max.

From Equation 132 /for a fixed RU and E_ r egulvalentlly

for a given bearin:)
(143) a = 'yw) &

where primes denole loadg and dtacngions In the proojectile
and no primes denote these quantitles 1n typical insturments
with 1limiting loads.

/

Similarly from Equation 137 (for a fixed R, and EC\
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. ' - P' .'1/3
(144) Q= 9, | p .
Since
1
5 ‘11/3 ' (= 1/3 1/3
[ o y %%63§u) = (2,035) = 12.68

(p = .00784 1b. for sapphire bearing
with the highest rating)

the maximum contact pressure in the bearing would be

1/3

 typ. =9 | g~ ) = (285,000) (12.68)

3,610,000 psi.

]

(See P. 108 for qo)

which of ¢ urse 1s excesaive,
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B. Required Size of a Vee Jewel Bearing That Can With-

———ns @ @ - - =¥ e N 8 . B s e

stanc Th

—— .+ - v -

From SECTION XV A, b. 101 we have

v (v

~Axial Acceleratlon.

1 1 1
(130) - o)
HO Hl i,
. e
/131 1 LR Lo-vg
v13%, B 1 — T
0 i ro4
PR
(132) ad = IBITQ
0
(133) q = -&
© 2nag

In these equations we can regard the materlals and load as

given and then solve fcr the reguirecd sizes,

Using the strongest combination (sappnire and hard steel)

we have

T .
g o= — 5  +Pase 108,

o} 21l x 1

9 1imiting © 285,000 psl. {Page 108,

= 39.9 1b. /Pare 114)

Pryptcai = Pnax.

= 116 -



Jeneral Technology Corporation

Taking the ratio of !R1| to !Re! as (Page 105)

R

1 0100
R—l =<5 = 2.86
l 2 .0035

¢2ives for RO

145) R ool 2 _p 1
145 o "R FE; = T
2
=Ry ——T—g1m0 = - 5B Ry
y M R St

Eliminating a between 132 and 133 and solving for RO

rives
- 1/2
we P E
O
L 3/2
0
or (using 145)
1/2
2 P/ E R
(147) R =(4) (3)3' = N T =
1 3 on . e ¢ HE
0
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Ay P2 E_ R
(lb’(’) Rl = ———372-—'—- (1 + R; )
9,

Using the numerical values above

_ (L4b)(25.95)172 (21 x*;Oé)(l - 2.86)

! typical 6.3
(.285 x 107)

= - 452 1n,

As a check

Z1,2
= (-.010) T l%gggn U= - 452 1n.

where P = ,00784 1b. for the sapphire bearing with the high-

Ry typ. = R

est rated 1load.

1/"2
r__39.9
l max.. ( -.010) '— Tuﬁm] =R - ,71“ in.

o
u

R = - R {.538) = (.452)(.538; .243 1n,

o typ. 1 E¥Pe

li

.384 in.

R, max. = - Bl max. (.538) = (.714)(.53€)
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R

Ro typ. = "éTg%E' - égg% = .158 1n,

R
1 max. 14
Ry max, = ZTH6 25~ 250 in.

1/3
PR 1/3
3 0 (3, 15.95 x .243,

"t - (H"E;') " (g 21 x 100

6.1/3

= (.1381 x 10")
= ,00517 1in.
a
typ. _ .00517

R_ZE_ = ‘*128“ = .0328 (See P. 109 for a check)
2 typ.

which is small enough.
As a check and in order to see how a varies we have from

Equation 133 (keeping q, fixed by adjusting RO)

, : 1/2 1/2

84, = (3—§ZEL) a = <%§53§n> (.0001145)
(148) = (45.2)(.0001145)
= .00515 1in.
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C. Friction Torque Developed on a Vee Jewel Bearing

That 1s Required to Allow Rotation During the Axial Accelera-

tion Period

Neglect the effects of the transverse loading for sim-

plicity since 1t 1s due primarily to w°b rather than gb

(¢ = g%)(see P. 113). The transverse loading becomes signi-
ficant near the end of the axial acceleration period and re-
mains significant during flight. It is therefore treated
separately.

The deformed surfaces are essentially plane with a hemis-

pherical pressure distribution given by

_ 2 J1/2
(149)  alr) =q, (1 - 55 ]
a

-

where:
r 18 the variable radius (in.)
a 18 the outside radius of the contact circle (in.)
q, 18 the contact pressure at the center (ps1) and
q is the contact pressure at radius r (psi).
Letting
p = coefficient of friction
d

Tfr = friction torque on an annulus of radius r and
thickness dr (in. 1b.)
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Ty, = Total friction torque (in.1b.)
we have

2 .1/2
aTe,, = 1 q(r)(2nr dr)(r) = 2nuq [ [ ig-] r2dr

Integrating from r = 0 tor = a glves

r
=~ m=m ] 2 .1/2 2
3 fa r- r r
T,.. = 2n a 1 - d(=) (See Pierce
fr W, .,E. [ ac 4 g '8 ‘45 p.21)

Using Eq. 133 to eliminate a gives

)1/2 P3/2

3/2
(151)  Tp, = ()(R)  (n " 172
o]

Thus if the bearing must rotate while axial acceleration 1s
occurring, the friction torque gces up as the %-power of axial
load P for a fixed design qgye

For the largest radius standard sapphire bearing under its
1imiting load we have (P. 108)
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P = ,00784 1b.
q, = 285,000 psi.

Taking u = .17 (half way between .15 and .19 listed as typi-
cal in the Richard H, Bird catalog) gives

1/2 _3/2

3/2
Ter. largest = (&8 (n)

std. brg. q
under its maximum load

Loo784)3/2
= (.407)(. -
(.407)(.37) (285, 000) /2

2 (.0592)1.0006g9)
(534)

= 8,98 x J.O'8 in. 1b.
As a check

a3 = 1.502 x 10712 (P, 109)

Equation 149 gives

2 2
Top = ud, a3 % = (.17)(285,000)(1.502 x 10712y 3;%5_
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= 8,96 x 10"8 in.1b,

If the load is increased to Pt = 15,95 1b

ypo

3/2
EYp. )

P
Ter. vearing reqa. = Tfr largest ( =

to withstand acc. std. brg.
(typical wt, shaft)

with q, kept constant. This gives
' 8y, _15.95 ,3/?
Ter. typ. = (8.98 x 1077)( 758733 )
- (8.98 x 109)(9.15 x 10%)
= ,00825 in. 1bo.

for the typical shaft and

3/2
T fr. max., = (8-98 X 10-8)( .3 .9 )

- (8.98 x 10°%)(36.35 x 10%)
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'
Tfr. max. - .0327 1in, 1b,

for the heaviest shaft. In order to decide whether these torques
are acceptable or excessive, we perform the following rough cal-
culations.

The shafts are driven from the mainepring shaft through

pinions on the shafts. Using a pinion radius r = ,058 in.

ptyp .

and r shaft = .106 gives as the tangential force

p heaviest
required to overcome only its own aft bearing friction:

T
= fr’ t!EO = .0082 o
Fean. typical T —.3?;52 .142 1b,
P typ.
and

T

fr. heaviest ,032
Ftan.heaviest = 71851 = .309 1b.

rp heaviest

These forces may be compared to the total transverse force

acting on the shaft due to spin of the projectile:

a
rad. max.
Firansverse = "typ. — g = (.0012)(7,400) = 8.87 1b.
inertia
typ. max.
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and ;

) Zrad. max. _ ( 0030)(7,400)

= (Wheaviest g

Ftransverse
inertia
heaviest max.

= 22,2 1b. (See Pages 113 and 114 for
these values.)

Therefore these friction torques are not excessive in the sense
that they will cause excessive bending stresses in the shafts,
since the bending effect du2 to the friction torques 18 so
much less than that due tc the transverse inertia forces,

Before accepting the possibility of rotation in a bearing
during the axial acceleration period we should consider that
a, the radius of the contact circle, is 45.2 (see P, 119)
times as large here as for the largest standard bearing.
Thus for the same angular speeds, the rubbing velocities are
45.2 times &8s large. This may not be acceptable.

So consider the situation from the point of view of re-
quired mainspring energy. The time t (sec.) that the pro-
Jjectile spends under acceleration ( in the barrel) is (see

PP, 110 and 112)

- oL /2 [ (2) (120) M2 Poota: oo
a (386)(13,300)

av, axial

If the shaft 1s rotating at n rpm it makes gg-revolutions while

under axial acceleratiop. The frictional energy lost is then
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nt
Erriction ™ (Tfr) (55) in. 1b. per shaft.

Assuming a steel mainspring with 50% energy storage efficiency
and a maximum design tensile stress of 180,000 psi. gives as

the energy per unit volune

2 2
S
: 80,000)
U/vol. = (.50)(1/2) —BEX:_ . (25) (120,000
30 x 106

= 270 in. 1b/in.3
Assuning a mainspring volume of 80% of a cylinder ¢ inch long

and 1.4 inches outside diameter gives as the avallable stored

energy
U = (=2} (.8)(.25)(.785) (1 y)2
stored voI./\:Ctl.e2/t. :

= (270)(.308) = 83 in. 1hb.

The energy lost in a shaft of typical weight 1s

nt _ (.00825) n (.00683
Eep., typ. = Ter. B0 ° o) 3)

6

= ,94 x 10° x n in. 1lb. per typ. shaft

(See FPages 123 and 125 for these values.)
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Assuming a speed of 20 rpm for the fastest typical weight
shaft gives

6

E x 20 = ,0000188 1in. 1b.

fr. fastest typ.
wt. shaft

= Q4 x 10

Clearly then energy loss during the initial acceleration per-
iod is no problem.

However, the product of muzzle velocity (2920 f.p.s.)
(P. 113) and barrel time (.00583 sec.)(P.125) 1s 20 ft. (two
barrel lengths). This represents & maximum error in range if
we have assumed that the timer started when firing was ini-
tiated and it actually starts when the shell leaves the bar-
rel. Thus while the calculations above indicate that a beér-
ing that can withstand the axial acceleration loads can also
allow rotation during the axial acceleration period, as a

practical matter this may not be desirable.

Friction Radius of Vee Jewel Bearing

Since

2
(150) Top ™ WY, a3 B-
and the normal force is

(133) P = —g—
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if we define the friction radius r,, (1n.) by

T
b 4
(153)  rop = -

we have
(154) Pon = %% a=,588 a = ,294 (2a)
for this hemispherical pressure distribution. PFor

a = ,00516 in. (P.119)

ren = .588 (.00516) = ,00304 4in,

which is extremely small for a shaft and beering subjected

to an axial load of 15.95 1b.
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D. Effect of Transverse Load Upon a Vee Jewel Bearing

Consider the enlarged view of the vee bearing shown in
Pigure 22, Assume ths’ the bearing is exerting a force on
the shaft that supplies all the axial acceleration and half
of the transverse acceleration, From PP, 112 and 113

Tyr1ay = 13,300
g

(3)( x8d.maxy . (d)(7,400) = 3,700

Thus the resultant force makes an angle a with the shaft
centerline given by (Fig. 23)

1

-1 2 ®%rad, max. _ .. -1 00 _ o

q = tan = tan r%%w 15.53
axial

Assuming temporarily that the forward bearing only applies
a transverse restraint to the shaft, and that the resultant
force exerted by the aft bearing remains normal to the bear-
ing surface gives the geometric picture shown in Figure 24,
The pivot rises and remains parallel to its original position
8o that contact occurs at the angle a to the shaft center-
line. In terms of R, and R, (P.99) we can calculate the off-
set e(in.) and the rise r (in.)
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FIGURE XXI1I

VEE JEWEL BEARING

FIGURE XXIII
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.-

rad. max.

axlal

ACCELERATION VECTORS
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FIGURE XXIV

—-= = Offset e (in.)

¢
* \

Rise r (ir.) \

VEE JEWEL BEARING SHOWING OFFSET

DUE TO RADIAL ACCELERATION
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e = ( |R1| - |R2| ) sing
r=( !Rll - '32| )(1 - cosq)
Numerically we have (see PP, 118 and 119)

e =(|R] - lRal } sing = (.452 - .158)(1 - cos 15.53°)

= ,0798 in.

r = ( IRI! e IRQI )(1 - cosa)

(.452 - .158)(1 - cos 15.53°)
.01076 1in.

Since these are hoth excessive, consider the helping effect
of friction, which was ignored in the above calculations,
! Coefficients of pivoting friction are given in the R. H. Bird
i catalog as varying between .15 and .19. When we are relying
on the friction to help withstand the transverse load it 1is
reasonable to use y = .12 as8 a conservative design value.

The corresponding angle of friction & is then

1 1

$ = tan™ u = tan™" .12 = 6.85°
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and the resultant force would act 6.85° from the normal to
the contact surfaces, Since the resultant force must act at
an angle q = 15.53° to the shaft centerline, the contact angle
with friction, Qg s is given by

Qep = a - b = 15.530 - 6.850 = 8,68°

. (lnll = |321) sina,, = (.452 - .158)(sin 8.68°)

= 0443 in,

e = (] -[R] )1 - cosagy)
= (.452 - ,158)(1 - cos 8.68°)
= ,00335 in.

This offset is still completely unacceptable. It has been
computed using the large axial load of the initial acceleration
period and the transverse load that exists during flight.

It should be noted however, that as the axial load decreases

the offset increases s8till more.
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E. Summary of Conclusions About the Suitability of Vee

Jewel Bearings

The axial load required to accelerate the mass carried
by a typical shaft of this mechanism is about 15.95 1b., (P. 114)
while the strongest vee jewel bearing typical of standard
commercial practice can operate under a load of only .00784 1b,
(P. 108). Since the required radius of curvature increases
with the square root of the axial load for fixed elastic
properties, radius ratio, and limiting stress (see Equation
147), this means that the jewel radius of curvature must in-
crease by a factor of 45.2 to become .452 in. (P. 118). The
radius of the contact circle also increases with the square
root of the load (P.119) and becomes .00516 in, on the typi-
cal shaft,

Vee Jjewel bearings with these increased radil and asso-
ciated dimensions are not presently made commercially. It
does not appear that there 18 any severe technological limit
assoclated with this increased size, but rather that there
18 no present commercial demand for such bearings. Aside from
greatly increased cost the only design 1limit that the writer
can see associated with the larger bearings 18 to require a
somewhat lower (say 15%) design maximum compressive stress to
account for the greater chance of imperfections and the ef-
fects of higher rubbing speeds in the larger bearings.

The friction torque of these larger bearings, even while

operating under maximum axiai load, 1s still very small, pri-
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marily because the radius of the contact circle 1s only .00516
in. (P. 119) and the effective friction radius is then only
.00304 in. (P, 128).

The severe Yimitation on the use of the vee Jjewel bear-
ing in the present application 1s the presence of relatively
high transverse loads of approximately 4.43 1b. per bearing
(p. 124) during the time of operation due to the spin of the
projectile, and the necessary offset of at least some shaft
from the projectile axis. An excesslve shaft offset under
load 1s required to change the direction of the normal to the
contact surfaces from its original direction parallel to the
shaft axis to a direction with a component transverse to the
shaft. Thus, neglecting friction, and {avorably assuming
that the initial high axial force remains, we get a calcula-
ted offset of .0798 in. (P. 132), while considering both
friction and the favorable effect of high axial force, only
reduces the calculated offset to .0443 in, (P. 133). Both
of these values are excessive in the precision type mechanism
under consideration, and both would have to be increased to
account for the reduction in axial load after the initlal ac-
celeration period.

Thus to summarize, vee type bearings cou.d probably be
made to withstand the axial loads and to give low friction
in operation, but have to be rejected because they cannot apply

sufficient transverse constraint to the pivoted parts.

- 135 -



e

3
%

General Technology Corporation

SUMMARY AND CONCLUSIONS

In this section the results and conclusions of the inves-
tigation are summarized and briefly discussed. More complete
discussions are given in the body of the report.

In the first part of Section I, formulas are developed
for sizing bearings which have combined axial and transverse
load capacity when axial load c .ntrols sizing. Ten cases are
considered as follows:

Case I Flat bearing-uniform normal pressure distribution.
(This bearing has no transverse load capacity but is included
since 1ts axial load capacity serves as a convenlent reference
value ard since 1t can be used in conjunction with a journal

bearing)
Case II Flat bearings with linear normal pressure dis-

tributions.
Case III Full spherical bearings with a uniform normal

pressure distribution.

Case IV Hollow spherical bearings with a uniform normal

pressure distribution.
Case V Full spherical bearing with a cosine normal pres-

sure distribution.

Case VI Hollow spherical bearing with a cosine normal

pressure distribution.
Case VII (Hollow) torroidal bearing with a uniform normal

pressure distribution.
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Case VIII (Hollow) torroidal bearing with a cosine nor-

mal pressure distribution.

Case IX Hollow conical bearing with a uniform normal
pressure distribution.

Case X Bearing with theoretical line contact along a
circle of latitude.

In each of these cases an expression 1s derived giving
the dimensionless outside radius ratio (the ratio of the re-
quired outside radius to a reference outside radius as ce-
termined by axial load) as a funct’on of the dimensionless
geometric parameters that describe the bearing and the dimen-
sionless parameters that fix the loading.

As would be expected, the smallest required size for any
shape occurs when the inner radius is zero, and the required
size increases with increasing inner radius. In addition a
uniform pressure distribution gives the smallest required size,
irrespective of shape. The more reallistic pressure distribu-
tions, which drop off with increasing rddius, require a lar-
ger size and do depend upon bearing shape. Thus for example
we see that the shallow spherical bearing (a small, see P. 10,
Fig. 5) requires & emaller size, under axial load, than its
deeper (q large) counterpart. Figure 5 also shows that the
deep hollow spherical bearing with a between 60° and 90°,
and with a (reasonable) cosine pressure distribution, requires

about the same size as a flat bearing with a (reasonable)
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trapezoldal load distribution (n = .5). Since the deep spherical
bearing has transverse load capacity and the flat bearing does
not, their similarity in axial load size for realistic load dis-
tributions 18 a strong point in favor of the deep spherical bear-
ing. An additional result of interest 1s that the deep torpoi-
dal bearing with a = 90° requires a larger size than the deep
hemispherical bearing with a = 900.

Another interesting result 1s that with theoretical line
contact (Case 10) the required size of bearing is only about
three times that of a bearing of similar materials and design
stressed but with theoretical area contact. This indicates that
further careful conslideration of bearings with theoretical line
contact 18 warranted,

In the second part of Section I, equations for the friction
torque and the dimensionless friction radius ratio are developed
for the 10 cases of the first part when the bearings are operat-
ing under axial load alone, Since this operation occurs over
such a short interval, if it is required at all, the choice of
bearing shapes or parameters would not be influenced very much
by the requirement of low frictlon torque under axial load.
However, the order of magnitude of friction torques in these cases

is of interest, and they are not excessive.
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In Section II the bearings of the first section are analy-
zed when they are operating under transverse load. Because
the flat bearings cannot take any transverse load, and because
one normal pressure distribution was much more reasonable than
most others there are only four distinct cases. Tley are:
spherical bearings (hollow and solid), torroidal bearings,
conical bearings and bearings with latitude circle line contact.
In each of these cases formulas for the dimensionless bearing
slze as determined by transverse load capacity and for the
dimensionless friction radius ratio under transverse load are
derived. Numerical values are calculated and it is found that
with the load magnitudes used, either axial or transverse
load capacity may determine the required bearing size. The
one that controls depends upon the particuaar type of bearing
and the value of its geometric parameters. This approximate
balance of the size requirements is good in that the axial
load does not demand increased size which will give increased
friction when the bearing 1s operating unde:r transverse load.

Another result of interest is that the deep spherical
bearings (a = 90°) have less friction torque than shallow ones
(a = 30°) of the same transverse load capacity and radius ratio 8
(see PP, 66 and 67). 1In addition the spherical bearings have
somewhat less friction than the torroidal bearings of the same
angle a and radius ratio g (see P. 74). The conical bearing
(P. 75) and the line contact bearing (P. 78) also have rea-

sonable typical sizes and friction torque under transverse
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load and furthur consideration of both of these bearings 1is
warranted,

In Section III methods of analyzing journal bearings for
contact stresses and frictinn torque in terms of load are de-
veloped and some numerical results are obtained. The two con=
clusions of interest are that these bearings are feasible
and that a simple support will create less frictlon than a
restrained support.

In Section IV methods of computing contact stresses and
friction torques for a vee bearing are presented., It may be
noted that since the theory applies to a spherical shaft end
in a larger radius spherical socket, a separate ball may be
used to replace the shaft end, Design equations are developed
for sizing these bearings under axial load and these equations
are applied to jewel bearings. The feasibllity of using stan-
dard jewel bearings under the axiai acceleration loads is also
investigatec and it is found that bearings much larger tian
those that are presently made commercially are necessary.

It is also found that these bearings cannot withstand the high
transverse loads, Expressions for the friction torque are

also developed for these bearings under axial load.
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