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ABSTRACT 

A study of the forces acting on a hull as a consequence of the 

propeller action. Develops calculation forms for computing the dynamic 

forces and moments generated byp propeller operating in a variable woke. 

Describes a program for computing the shaft-bearing reactions resulting 

from these propeller forces. Presents a method of computing hull pressure 

forces resulting from the propeller pressure field. 

The various procedures are illustrated by numerical examples. 
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PREFACE 

Thli roport dotcribet tho principal effort of CONESCO under Contract NOb* 

77150 "Propeller Excited Hull Vibration»"; a previout report (F-101-1) presented a 

bibliography of tignificant published work In this field. 

In writing the present report, the authors have departed from the traditional 

form and have adopted an organization which, it is believed, will make the contents 

occeuible to a greater variety of readers. 

Thus, the report is divided Into two sections, the first of which contains a 

purely verbal description of the ffiain problems, the methods used for their solution, 

ond the significant results obtained. Thn second section contains the analytical 

development of these topics, but with greater continuity and clearer motivation than 

would be realized were the work presented os a series of appendices. 

The authon would like to acknowledge their indebtedness to Mr. F. F. Vane 

and Mr. A. R. Paladino of the Bureau of Ships; to Mr. R. T. McGoldrick of the 

David W. Taylor Model Basin; and to Dr. J. P. Breslin of the Davidson Laboratory, 

Stevens Institute of Technology. The Information and assistance received from these 

gentlemen contributed substantially to the preparation of this report. 

The authors are particularly grateful for the efforts of: 

Dr. O. K. Mawardi and Mr. M. Yildiz of CONESCO who 
contributed Appendix E on the interaction of a rigid wedge 
and a radiating dipole. 

Dr. E. H. Cuthill and Mrs. Y. Smith of the Applied Mathematics 
Laboratory, David W. Taylor Model Basin, who contributed 
Appendix F on the programming of the methods developed for the 
computation of propulsion train characteristics. 

II 



CONE SCO consultants In engineering science 

TAUE OF CONTENTS 

Page 

ABSTRACT i 

PREFACE il 

TABLE OF CONTENTS III 
LIST OF FIGURES vi 

LIST OF TABLES vil 

NOMENCLATURE lx 

INTRODUCTION 1 

SECTION I. 

1. The origin of the forces sustained by the propeller 4 

2. The magnitude ond distribution of forces on the propeller 5 

3. Transmission of propeller forces through the sea to the hull 10 

4. Transmission of propeller forces through the propulsion system to the hull 13 

SECTION II, 

1. FORCES DEVELOPED ON A PROPELLER WORKING IN AN IRREGULAR WAKE 

(a) Dynamic Effects due to Wake Variation 20 

(1) Effect of oscillations in stream velocity 21 

(2) Effect of harmonic gusts normal to stream 22 

(3) Effect of blade oscillations normal to stream 23 

(b) Calculation of Forces and Moments including Dynamic Effects 25 

(c) Numerical Example 37 

2. PRESSURES ON THE HULL DUE TO PROPELLER ACTION 

(a) Pressure Field due to a Rotating Propeller 39 

(I) Comparison of Breslin's approach with that of Gutln 39 

ill 



Wl» 

CONESCO comultanti in engine«ring scivnc« 

Page 

(2) Calculation on brais of moving force 42 

(b) Pressures In r» Field Containing a Boundary 48 

(1) A new generalized modal technique 4ÿ 

(2) Pressure on a wedge shaped boundary 50 

(c) Calculation of Pressures on a Rigid Plane Surface 51 

3. DYNAMICAL PROPERTIES OF THE PROPULSION SHAFTING AND THE 
PECULATION Of KAfcJNC RÊACTÎÜKS- 60 

(a) Matrix Treatment of FUxural Vibration 61 

(1) Transverse vibrations in one plane 62 

(2) Transverse vibrations coupled in two planes 69 

(3) Axial Vibration - coupled extensional/torsional oscillation 73 

(b) The Calculation of Bearing Reactions 78 

(c) Illustrative Examples 79 

4. CONCLUDING REMARKS 86 

Appendix A - Calculation of Fourier Components of Walce 92 

Appendix B - Calculation of the Thrust and Tangential Forces 
Developed by a Radial Blade Element Operating 
In a Steady Wake 97 

Appendix C - Calculation of the Vibratory Forces and Moments 
on a Propeller 111 

iv 



C O N E SC O consultants in engineering science 

Page 

Appendix D - The Effects of Pitch and Chordwise Lift Distribution 

on the Free- Field Pressures Generated by a Propeller 1 ]9 

Appendix E - Diffraction of a Dipole Field by a Wedge 125 

Appendix F - Programming of Calculation of Dynamic Properties of 
Propulsion Shafting ]42 

Appendix G - The Dynamics of a Rotating Shaft including 
Gyroscopic Effects 166 

Appendix H - An Estimate of the Fundamental Frequency of 

Propeller Blades in Water when the Hub is 
Rigidly Restrained 172 

Appendix I - Illustrative Calculation of Variable Forces ond 
Moments Generated by a Propeller 177 

REFERENCES 209 

0 

V 



C O N E SC 0 comultanfi In engineering science 

fifl- N0- LIST OF FIGURES Page 

Fig. 1 Lift Forces Developed in an Airfoil in a Pulsating Stream 8 

Fig. 2 Lift Forces Developed in an Airfoil by a Harmonic Gust 9 

Fig. 3 Wake Survey - Model 3801 27 

Fig. 4 Radial Variation of Longitudinal Wake - VC2-S-AP3 
11,600 Tons 20 

Fig. 5 Radial Variation of Tangential Woke - VC2-S-AP3 
11,606 Tons 29 

Fig. 6 Angular Variation of Longitudinal Woke - VC2-S-AP3 
11,606 Tons 30 

Fig. 7 Angular Variation of Tangential Wake - VC2-S-AP3 
11,606 Tons 31 

Fig. 8 Diagram of Angles 33 

Fig. 9 Coordinates In Study of Pressure on a Wedge 52 

Fig. 10 Pressures on Wedges caused by a Harmonic Force 53 

Fig. II Longitudinal Distribution of Pressures on a Plane Surface 
Generated by a Propeller 57 

Fig. 12 Transverse distribution of Pressures on a Plane Surface 
Generated by a Propeller 58 

Fig. 13 Force reactions at bearings 81 

Fig. 14 Moment reactions at bearings 82 

Fig. D-l Variables used In Study of Effects of Pitch and Chordwise 
Lift Distribution on Free-Fleid Pressures ]21 

Fig. E-l Diagram of Coordinate System used 128 

Fig. E-2 Frame of Reference used in the Evaluation of the 
Directional Derivative of Eq. (5) 135 

Fig. H-l Approximate Fundamental Frequency of a Propeller 176 

vl 



CON ESC O consultants în engineering scienc« 

Table No. LIST OF TABLES Page 

Table 1 Dl$placementsr Forces and Moments determined by Computer 83 

A-1 Schedule for Harmonic Analysis - 24 ordinates 93-94 

A-2 Schedule for Harmonic Analysis - Jó ordinates 95-96 

Calculation of Thrust, Torque and Efficiency 98 

B-2 Propeller Section Characteristics 99 

B-3 Designation Sheet for Instructions 10) 

C-l Calculation of Harmonic Forces and Moments on One Blade 112-113 

C-2 Harmonic Forces and Moments Generated by a Propeller 
working in a Non-Uniform Wake 118 

E~1 Diffraction Coefficients for Wedges 141 

1*1 Harmonic Analysis - Longitudinal Wake at 0.90R 177-178 

1-2 Harmonic Analysis - Longitudinal Wake at 0.60R 179-180 

l“3 Harmonic Analysis - Longitudinal Wake at 0.55R 181-182 

I“4 Harmonic Analysis - Longitudinal Wake at 0.30R 183-184 

1-5 Harmonic Analysis - Tangential Wake at 0.90R 185-186 

1-6 Harmonic Analysis - Tangential Wake at 0.80R 187-188 

1-7 Harmonic Analysis - Tangential Wake at 0.55R 189-190 

1-8 Harmonic Analysis - Tangential Wake at 0.30R 191-192 

1-9 Propeller Section Characteristics at 0.90R 193 

vit 



m, 

è í y.|Éíi-»: liiMitiiii'i!1' ;:i! ;i 

CONE SC O comultontt in «noirMcrino science 

Table No. 

MO 

1-11 

1-12 

1-13 

1-14 

1-15 

1-16 

1-17 

1-18 

1-19 

1-20 

1-21 

Propeller Section CharoOtcristics at 0.80R 194 

Propeller Section Characteristics at 0.55R 195 

Propeller Section: Characteristics at 0.30R ]9ó 

Calculation of Thrust, Torque and Efficiency at 0.9R 197 

Calculation of Thrust, Torque and Efficiency at 0.3R 198 

Calculation of Thrust, Torque and Efficiency at 0.55R 199 
m 

Calculation of Thrust, Torque and Efficiency at 0.3R 200 

Total Thrust and Torque of the Propeller 201 

Calculation of Harmonic Forces and Moments on One Blade 202-203 

Calculation of Harmonic Forces ond Moments on One Blade 204-205 

Calculation of Harmonic Forces and Moments on One Blade 206-207 

Harmonic Forces and Moments Generated by Propeller 

working in the Non-Uniform Wake 20a 

Viii 

i 



CONESCO consultants in engineering scionco 

NOMENCLATURE 

a - axial inflow factor in propeller hydrodynamics 

- cross sectional area of shaft 

a' - rotational inflow factor in propeller hydrodynamics 

A - a function of the Theodorsen parameter, k 

Ap - coefficient in a Fourier expansion 

b - one-half the chord length of a blade section 

B - a function of the Theodorsen parameter, k 

®n ~ coefficient in a Fourier expansion 

c. - chord length of a blade section 

- speed of sound 

C - complex Theodorsen function C(|c) = F(^) + i G(k*) 

d - axial distance of a reference point on the propeller blade face from a 

coordinate axis 

D - overall diameter of a propeller 

E - Young's Modulus of Elasticity - an elliptic integral 

F - a Theodorsen flutter function 

- axial force per unit length on propeller blade 

* a general force 

G - a Theodorsen flutter function 

- tangential force per unit length on a propeller blade 
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h - height of an airplane above a plane surface 

- motion of an airfoil normal to the stream 

If 1$ - Diametrical moment of inertia 

J - Polar moment of inertia 

K - Theodors en reduced frequency • 00 ^ 
U 

- wave number = 

I - length of a section of shafting between supports 

L - lift force 

Lç - steady lift force in steady motion 

M - a Theodorsen flutter function 

- moss of a concentrated element 

- moment in a propeller or a shaft (see page 61 vfor definition of components) 

n - propeller speed in R.P.S. - order number of a vibration 

N - a Theodorsen flutter function 

- propeller speed In R.P.M. 

p - pressure 

P - varying lift force on an airfoil subjected to flow variations 

Q * torque in a propeller 

- shear force in shafting 

r - radius of propeller blade element 

- radius vector 

R - tip radius of a propeller 
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s 

t 

u 

U - 

u0 - 

V - 

w - 

wg - 

W| - 

w, - 

*$y, z 

distance from the point of action of a harmonic force to a point where 

pressure is measured 

time 

displacement of shaft element 

stream velocity 

average stream velocity 

velocity of ship 

weight 

gust velocity^ normal to stream 

longitudinal wake fraction 

tangential wake fraction 

- coordinate axes - 

In propeller calculations 

X it along the axis 

y Is vertical 

2 Is transverse 

In shafting calculations 

X - vertical 

y - transverse 

z - along the shaft 

+ forward 

+ upward 

+ starboard 

+ upward 

+ starboard 

+ forward 
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- angle of attack of section, measured from zero lift orientation 

- shaft parameter \j 
EI. 

- angle of attack due to blade comber 

- angle of attack due to lift of nose and tail 

- solid angle of a wedge 

- bending rigidity, Els 

" angular location of blade element of a propeller 

- linear deflection of shaft 

- non-dimensional quantity used in propeller force determination 

- propeller blade section efficiency 

- angle of a propeller blade from the vertical 

- pitch angle of a propeller blade 

- angular deflection of shaft 

- mass of shaft per unit length 

- pressure intensification factor 

- non-dimensional quantity used in propeller force determination 

- non-dimensional quantity used in propeller force determination 

- mass density 

- ratio of harmonic to average stream velocity 

- solidity ratio of a propeller at a given radius 
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0 - hydrodynamic pitch angle of propeller 

- pitch angle of propeller lift line 

g - potential function 

Ÿ - advance angle of a propeller 

w - circular frequency - radians per sec. 

JX, - rotational velocity - radians per sec. 
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INTRODUCTION 

A problem of major interest In Naval Architecture is the prediction of 

vibrations In a ship's hull. The problem has two main aspects, viz. the estimation 

of forces exciting vibrations, and the response of the hull to this excitation. The 

present report is concerned with the former and, In particular, with the estimation 

of those forces which arise from the action of the propeller. While the report 

develops and presents several f riglnal contributions to the prediction of hull 

forces, its primary purpose Is to render existing techniques Into forms suitable for 

tl># practical calculation of those forces. 

Hull forces arising from the action of a ship's propeller can be divided into 

two main categories: 

(1) Those forces and moments generated by the propeller as It moves 

through the varying wake ond which ore transmitted to the hull 

via the shafting and bearings. 

(2) Oscillating fluid pressures arising from the moving pressure fields 

associated with the blades of the loaded propeller. 

Consider first the forces generated at the propeller. A method was 

developed (by Burrill) for the calculation of blade forces when the propeller 

operates In a wake which varies radially but which is uniform circumferentially. 

This method has been used to compute forces in a circumferentially varying wake 

by assuming that the forces developed at any angular position are those that would 

J 
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be developed if the local conditions of the wake existed at all angular locations. 
2 

Ritger and Breslln showed that this "quasi-steady-state" analysis is inaccurate 

since it neglects the influence of fluid inertia which delays and modulates the 

circulations appropriate to local wake conditions. Methods of treating these 

unsteady-flow effects have been developed by aerodynamicists in the study of 

wing flutter and their results are incorporated in the work reported here. 

Turning now to the transmission of propeller forces through the propulsion 

train, the literature shows that the dynamics of the shaft system has received a 

fair amount of theoretical and experimental attention. Many of the theoretical 

treatments have idealized the system into discrete masses and stiffnesses (i.e. 

lumped parameter analysis); however, some have treated the whirling of the 

3'4 propeller-shaft-gear ensemble with considerable generality (Jasper). The 

specific problem of the bearing reactions caused by oscillatory propeller forces 

has apparently not been considered in any detail. In the present report this 

subject has been dealt with in detail and a description is given of a program 

for machine computation of the dynamical characteristics of the propulsion 

train. 

With regard to the fluctuating pressures produced on the surface of the 

ship by propeller action, these are believed to be two or three times as large 

as the direct propeller forces In the case of a twin-screw ship, and of approxi¬ 

mately the some magnitude as direct propeller forces In the cose of single-screw 

2 
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»hips. Experimental determinations of these pressures have been carried out by 

. 5 6 7 
Lewis, ' Lewis and Tochmindji/ and Tachmlndjl and Dickerson.8 Within recent 

year* Ireslin ' » * has made advances in the theoretical study of such pressures. 

The problem is closely related to that of determining the noise radiated 

from aircraft propellers - a topic that was first considered by Gutin1^ in I93Ó 

and has since been studied by NASA personnel 16 at Lang|ey F¡e|d. yhe 

complexity of the problem when there Is a rigid boundary present makes it necessary 

to find pressures by first calculating the free-field values and then multiplying by an 

intensification factor which accents for reflections from the boundary . 

In the present report, the methods developed by aeronautical engineers are 

used in modified form. These modifications are primarily a neglect of elastic-wave 

effects which is justified on the grounds that the physical dimensions of propellers, 

tip-clearances, etc. are small in comparison with the wavelength of sound at 

the frequencies of interest. In addition, there is presented an original theoretical 

study of the pressure distribution on a wedge inserted in the acoustic field produced 

by a harmonically varying dipole. The wedge is intended as an approximation of 

the submerged surface at the stem of a ship. 

In Section I which follows, there is given a purely verbal description of 

these studies while Section II describes in greater detail the various derivations 

and calculations. 

3 
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SECTION 1. 

1. The origin of the forces sustained by the propeller. 

The simplest forces associated with the propeller are those due to geometric 

imperfections or lack of symmetry. Thus, static and dynamic mass unbalance will 

give rise to transverse forces and moments which rotate at shaft speed. Variations 

in pitch from one blade to another will result in there being different forces and 

moments associated with each blade, so that the complete array of blades experiences 

a resultant force and moment which w[ll again rotate at shaft speed. However, due 

to the precision with which propellers are currently mode, these forces are undoubted¬ 

ly smal I. 

A more important source of excitation arises from the fact that the propeller 

operates in a variable wake; thus, as a blade passes cyclically from regions of high 

velocity to regions of low velocity there will be a cyclic variation in the axial 

load on the blade. Also, since forces which lie In the plane of the disc will vary, 

there will be oscillating transverse forces. The axial and transverse forces will 

produce moments on the hub so that there will arise a general system of oscillating 

forces and moments on the hub viz. axial, vertical and horizontal forces, and 

axial (torsional), vertical and horizontal moments. 

A further source of propeller excitation - one that is not generally 

recognized - arises from the turbulent nature of the ship's boundary layer. The 

4 
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I 

wdc« In the region of the propeller li not conitant with time as is assumed in 

blade force calculations, but varies in a more or less random manner as large 

scale turbulent eddies interact with the propeller. Since the propeller will 

modify these random fluctuations with Its own periodicity, a harmonic excitation 

may be generated. While this source of excitation is mentioned here, the 

resulting forces and moments are not treated in the body of the work. 

2. The magnitude and distribution of forces sustained by the propeller. 

The calculation of propeller forces is normally carried out on the basis of 

an assumed distribution of the woke over the disc, this distribution being inferred 

from model tests on either the ship and propeller in question or another ship and 

propeller of approximately similar design. The calculations are of a quasi-steady- 

state nature, i. e. for any given angular position of a blade, the axial and 

circumferential wake components at a given radius are used to find the resulting 

'forward' velocity and angle of attack of a blade element at that radius; these 

quantities are then used to compute the elementary lift and drag forces which 

would be experienced by an element operating at these steady-state conditions. 

Since the wake is surveyed at as many as 24 angular positions with 4 radial 

points on each, and since the calculations are carried out for each of these 

96 positions, the computation of propeller loads is a tedious job. 

Aside from tedium, the principal defect of this method is that dynamic 

effects ore not taken into account. The force on an aerofoil con be considered 

5 
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to arise from the interaction of a uniform stream velocity and a circulating flow 

around the aerofoil. If the magnitude or direction of the incident stream changes, 

a new circulation will result and the force experienced by the aerofoil will change. 

Obviously, this new circulation will not be established instantaneously, but will 

require an interval (albeit quite short) to become fully developed, hence, an 

aerofoil operating in a rapidly varying stream will experience forces which may 

differ substantially (in both magnitude and phase) from those predicted by the 

quasi-steady-state analysis. 

Changes in the relative velocity between stream and propeller can also 

arise from axial and rotational movements of the propeller caused by axial and 

torsional oscillations In the shafting. 

Dynamic effects of the preceding phenomena can be accounted for by 

considering the three following topics: 

(i) A harmonic variation in the velocity of approach of the fluid 

to the surface. 

(Ü) Impingement of harmonic gusts acting in a direction normal to the 

orientation of the surface for zero lift. 

(ill) Harmonic translation of the surface in a direction perpendicular 

to its orientation for zero lift. 

The case of an aerofoil subjected to a harmonic velocity superimposed on 

17 18 
the main stream velocity was first considered by Isaacs, later, Greenberg 

6 
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presented a simpler solution that agreed closely with Isaac's work, and it is 

Greenberg's solution that has been used here* Fig. (1) illustrates the oscillatory 

forces predicted by Greenberg's formulae. 

Solutions (due to Theodorsen and others) exist for (ii) and (Hi) and ore 

most conveniently summarized in the volume "Aeroelastic¡ty,, by Bisplinghoff, 

Ashley, and Halfmon. ^ Formulae quoted in that work refer to the flutter of 

aircraft wings which have ailerons, tabs, etc. These formulae have been modified 

to correspond to the simpler, rigid, lifting surface represented by the propeller 

blade and have been used to evaluate the dynamic effects in question. The 

results ore summarized in Fig. (2). 

Turning now to the question of incorporating these results into the formal 

computation of propeller forces, this is accomplished in the following way: 

At any given radius, the woke variation can be expressed as a mean velocity 

with a number of superimposed harmonic (Fourier) components. The forces (due to 

the mean velocity) experienced by a blade element at this radius can be calculated 

and the contribution from each harmonic component of the wake can be found from 

these by relatively simple ratios based on the Fourier coefficient of each component. 

In this way the cyclic variation of thrust and torque (for an element of radius) can 

be computed for a given radius. If this procedure is repeated for a number of 

selected radii (at least 4) a quite detailed picture of the cyclic thrust and torque 

variation con be obtained with considerably less effort than the method previously 

7 
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outlined. 

Forms have been devised to facilitate this method of computation and their 

use is illustrated in appendices which follow Section IL 

3. Transmission of propeller forces through the sea to the hull. 

Since the forces experienced by the blades of the propeller react 

against the surrounding sea, there will be a time-varying pressure field at the 

stern of the ship. This pressure field has been investigated on the basis of 

potential flow in an incompressible fluid and as a problem of radiation through 

a compressible fluid. The former approach is best exemplified by the work of 

Breslin^' 10,11,12¡n wh¡ch a blade of the propeller is treated as a rotating line 

vortex which sheds a trailing helical vortex from its tip. The pressure at any 

point in the field due to an elemental length of this line vortex is computed, and 

the result is integrated over the whole line to get the total of all contributions. 

1 o 

The radiation approach was first used by Gutin10 who represented the 

force on a blade element as an oscillating potential dipole and proceeded to solve 

the wave equation and find the pressure at some distance from the radiating source. 

In both cases the field was considered to be without boundaries. 

The method of finding free-field pressures developed in this work is based 

on the potential solution of Lamb^* as used by GutinJ^ but with the wave character 

of the expression suppressed. The solution as then written gives the pressure in 

terms of a differential expression containing the X, Y, Z components of the 

1Õ 
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applied force and the coordinates of the point of application and the point at 

which the pressure is computed. The components of force are derived quite 

simply from the axial (thrust) and tangential (torque) components of the blade- 

element force, and the coordinates are of course the radial and angular location 

of the blade element. The pressure appears (after some approximations) as a 

Fourier series whose terms have multiples of the blade angle as arguments and 

hove power series as coefficients. These power series are functions of the coordinates 

of the point at which the pressure is being computed and, for locations at a reasonable 

distance from the propeller disc, are rapidly convergent. 

Since the blade-element forces con themselves be expressed os Fourier series 

of the blade angle, the pressure at a point becomes the product of two Fourier series. 

The terms of these various series are given in detail in Section II. 

An alternative method would be to calculate the pressure for a number of 

different blade positions and in this way obtain a description of the pressure 

variation as the blade rotates. 

In both of these methods, the total pressure at a point must be found by 

summing the contributions from all the blade elements. 

The fact that the blode~element forces have a chord-wise distribution is 

discussed in Appendix D ord can be shown to be a minor influence except in the 

vicinity of the propeller hub. 

The presence of a boundary (such as the ship's hull) con materially alter 

11 
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the pressure field, generally by Increasing the pressure over the value in the free-fleld- 

It Is believed that the most feasible method of determining the pressure on the boundary Is 

to compute the pressure that would exist If the boundary did not exist and to multiply this 

free-fleld pressure by a factor (referred to as the pressure Intensification factor and 

designated by p ) which gives the ratio of the pressure on the boundary to the free-fleld 

pressure for the particular surface under consideration. 

The value of the pressure Intensification factor, •p , Is an easily determined quantity 

only In the case of a rigid, plane surface of Infinite extent and in this case Is 2. The 

value ofp has been determined theoretically for sources located between two intersecting 

infinite surfaces having certain subtended angles of less than 1800 and for a source out¬ 

side an infinite circular cylinder 

Since many of the parts of a ship cannot be approximated by the shapes for which 

the pressure on the boundary has been studied, some attention has been given to surfaces 

that will represent the hull more adequately, particularly the narrow surfaces such as 

the section forward of the propeller in single screw ships, the rudders and the portion 

of the hull directly over the propeller in a single screw ship. 

The idealized representation considered in this study consists of an infinite, rigid, 

wedge inserted in the field produced by a sinusoidal force (represented mathematically by 

an oscillating dipole). The solution developed by M. Yildiz and O. K. Mawardi which 

is given in Appendix E represents an extremely powerful new technique for the treatment 

of wave propagation in partially bounded fields. 

To choose an intensification factor that includes the effects of dimensions on the 

wedge and integrates all the locations and orientations of the propeller force, will 

require more detailed study than time permits, in all cases, the Intensification factor 

)2 
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at the apex of the wedge is found to be equal to ( 1 +—JL n ) where ß is the solid 
2 n - ß 

ongle of the wedge« At points on the surface remote from the apex, it is probably 

adequate to take the intensification factor equal to 2 on the surface over which the force 

is acting and 0 on the shaded surface and this situation represents quite accurately the 

case of a skeg. 

Since the pressures generated by a propeller fall off rapidly with the distance from 

the propeller, much of the hull where the pressures are significatnt can be represented by 

either infinite plane surfaces or as an infinite wedge; hence, reasonably good estimates of 

the hull forces can be obtained by the integration of the pressures on these idealized sections. 

Transmission of propeller forcef through the propulsion system to the hull 

In Port 2. of this section there was described aimethod of calculating the cyclic 

variation of thrust and torque on the propeller. These forces, along with those arising 

from dynamic unbalance or from pitch variations in the blödes, can be represented by a 

general set of forces and moments acting on the outboard end of the tailshaft. Due to 

the action of these forces, the propulsion train will be excited into o state of transverse 

(flexural) and axial (torsional and extenslonal) vibrations, which, in turn, will produce 

oscillating reactions at the various bearings and will thereby excite the hull into some 

compatible state of vibration. 

Ideally, on analysis of the vibration characteristics of the propulsion system would 

take Into account the fact that it is coupled to another elastic system (in the hull), but, 

for the present, it is considered sufficient to treat the shafting, etc. as supported in 

elastic bearings which are supported by rigid foundations. 

The methods developed to treat the dynamics of the propulsion system can be 

described as foMoivs: 

(q) Transverse Vibration 
13 
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ns. 

If rhe standard solution of the equation of flexural vibration of a beam 

is successively differentiated and multiplied by appropriate constants, a series 

of four equations can be obtained which represent the deflection, slope, bending 

moment, and shear force at any section of the beam. These equations contan the 

inertial and elastic properties of the beam, the frequency of vibration, the location 

of the section, and four undetermined constants which are eventually determined 

by boundary conditions on the beam. If the equations are written in matrix form, 

there appears a relation between two vectors or column matrices, one of which 

has for its terms the deflection, slope, moment and shear, while the other vector 

is coirçjosed of the four undetermined constants. This matrix equation can now be 

manipulated to identify the four undetermined constants with known conditions of 

deflection, slope, moment and shear at some other point in the beam There now 

appears a fourth order matrix which relates deflection, slope, etc. at one point 

to corresponding conditions at another. This matrix, which conveniently summarizes 

the dynamical properties of the length of the beam lying between the points in 

question, has been dubbed a 'transfer* matrix, and the two vectors which it relates 

are feferred to as 'condition* vectors. Since the solution of a boundary value 

problem depends on finding a relation between two condition vectors, of which, 

part of each is known, it can be seen that such a solution requires that an overall 

transfer matrix be built up. To take a simple example of this process, consider the 

cose of a cantilever made up of a number of lengths of different cross-sections, 

14 
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moduli! of elasticity, and densities, the assembly being excited at some frequency 

with known moment and shear at one end. The individual transfer matrices for 

each span can be written down directly, and the overall transfer matrix is the 

cumulative product of these. This cumulative product provides the four equations 

whose solution gives the unknown deflection end slope at the excited end and the 

unknown moment and shear at the fixed end. If conditions of deflections, slope, 

moment or shear are required at an intermediate point, it is simply required to 

write down a transfer matrix which will transfer the (now known) conditions at one 

end up to that point and make the transfer, I. e. the multiplication. 

While discontinuities in the physical or material properties of the system 

are important, probably more importance can be attached to discontinuous changes 

In the condition vector at various points in the system. Such changes can be brought 

about by elastic constraints, concentrated masses, pin joints, etc. which produce 

discontinuous changes in one or more of the components of the condition vector 

(deflection, slope, etc.). In each cose the discontinuity con be assigned a 

characteristic matrix which contains terms representing the effects of inertia, 

elasticity, etc. depending on the nature of the discontinuity. This 'discontinuity* 

matrix can now be incorporated in the process of accumulation which yields the 

final overall transfer matrix. As before, the relatively simple solution of this 

overall transfer equation yields the unknown parts of the boundary condition 

vectors, and knowledge of the condition vector at an interior point (specifically, 

15 
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at a discontinuity) can again be found by transferring a boundary condition up to 

that point. 

Up to now, this discussion has been limited to those transverse vibrations 

which occur in one plane only. However, the more general case of cross-coupling 

between vibrations in mutually perpendicular planes can be treated by an extension 

of the ideas already introduced. In the discussion which follows, cross-coupling 

is always assumed to exist at localized places. Thus, there is specifically excluded 

that type of distributed coupling which arises from the gyroscopic action of a 

spinning shaft whose cross-sections rotate due to flexure. While distributed 

gyroscopic coupling is excluded, the localized coupling caused by discs attached 

to the shaft are not. 

To treat the case of cross-coupled vibrations, the concepts of transfer 

matrices, condition vectors, discontinuity matrices, etc. are still valid, but the 

order of these must now be doubled. Thus, a condition vector will now have eight 

components, viz. four for one plane and four for the other, while transfer and 

discontinuity matrices will be of eighth order (8x8). In the case of a circular 

shaft a transfer matrix for a uniform length or run will consist of two identical 

fourth order matrices arranged along the principal diagonal. The biggest difference 

between the one-plane and two-plane vibration occurs in the discontinuity matrix. 

In addition to the previous elastic and inertial terms, there will be new terms 

which relate the forces arising in one plane with displacements and accelerations 

1Ó 
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arising In the other. Force-acceleration terms appear when there is a rotating 

disc to provide gyroscopic reactions, while force-displacement terms appear 

when an elastic constraint does not have its principal axes lying in the planes 

used to describe the vibration, I. e. when a force in one plane produces a component 

of displacement in the other plane. 

Using these more general forms of the various matrices the methods of 

accumulating an overall transfer matrix can be carried out as before. 

At this point it is probably well to confirm the reader’s suspicions about the 

amount of numerical calculation involved. In only the simpler cases (involving, 

»ay, two or three bearings and vibration in one plane) is it feasible to carry out 

the computations with a desk machine. For a larger number of bearings and for 

vibration in two planes it is necessary to u.e automatic computing equipment; 

this is particularly true for vibration in two planes since phase differences between 

effects in these planes result in complex terms arising in various matrices. 

(b) Axial Vibration 

Turning now to the question of axial vibration, it can be shown that tho 

general matrix techniques already outlined c. n be adapted to the tm^ment of 

torsional and extensional vibrations. Taking the steady-state (sine and cosine) 

solution of the extensional wave equation, differentiating it once and multiplying 

by the cross-sectional area yields an expression for axial force. If this is taken 

together with the original solution for the displacement, the two equations can be 

17 
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written In a matrix form In which a column vector of two components (displacement 

and force) Is related to a column vector composed of the two undetermined 

constants of the solution. Once again, by appropriate manipulation, this matrix 

equation can be rendered Into a form which relates displacement and force at one 

point to corresponding conditions at another. The agent of this relation is a 

second order transfer matrix which expresses the dynamical properties (In extension) 

of the Intervening length of the shaft. 

If the torsional equation Is treated in the same way, there results a method 

of transferring angular deflection and torsional moment from one point to another. 

Discontinuities in extenslonal forces can arise at localized masses (e.g. the 

propeller) or stiffnesses (thrust bearing stiffness); discontinuities in torsional forces 

can arise at localized masses (again the propeller), while discontinuities in angular 

deflection occur at gears. 

In a ship's propulsion system, the propeller represents a very important 

type of discontinuity. It is responsible for the principal gyroscopic coupling 

between vertical and horizontal flexural vibrations and It produces coupling 

between extensional and torsional vibrations. The mechanism by which this 

latter coupling is produced has already been mentioned in the discussion of 

propeller forces. Thus, torsional oscillations will result in harmonic variations 

of approach velocity of the propeller blade with attendant oscillations of the 

axial (thrust) component of the blade force, while axial oscillations correspond to 

18 
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harmonic gusts across the blade and result in variations of propeller torque. These 

coupling effects are generally quite weak and for this reason they have not been 

treated in any detail. (There are mechanical systems other than a propeller shaft 

in which coupling between torsional and extensional vibrations is significant. 

One such example is the crankshaft of a multi-cylinder engine in which, for certain 

configurations of the crank webs, there can be a substantial coupling action.) 

The coupled toaional-extensional vibrations of the shoft system can be 

treated by combining the torsional and extensional matrix relations into a single 

fourth order matrix equation In much the same way that the two-plane transverse 

vibration expressions were combined. As before, the accumulation of an overall 

transfer matrix ond the solution of the resulting simultaneous equations completes 

the solution of the boundary value problem. 

A significant advantage of the techniques outlined lies in the fact that 

a fairly simple computer program can be written and applies equally well to the 

coupled transverse vibration problem and to the coupled tonion-extension problem. 

The only difference between the two lies in the individual terms of the component 

matrices. 

The derivations of the above techniques are treated in more detail In 

Section II of this report and form the basis of a computer program written by the 

Staff of the David W. Taylor Model Basin. 
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SECTION II 

1. FORCES DEVELOPED ON A PROPELLER WORKING IN AN IRREGULAR WAKE 

(a) Dynamic Effects due to Wake Variation 

Calculations of the thrust and torque experienced by a propeller 

operating in a variable wake are usually of a quasi-steady-state nature. Forces 

are computed for each angular position of the blade as if each blade element were 

operating in a steady stream whose velocity and angle of attack correspond to the 

local conditions in the wake. Since the fluid has appreciable inertia it may be 

expected that the circulation will not follow rapid variations in wake, consequently, 

there is good reason to question the accuracy of quasi-steady-state predictions of 

lift forces. 

The methods developed here to treat dynamic effects can be described briefly 

as follows. If the wake is described in terms of a Fourier series, the first (constant) 

term of this series can be considered to represent the true steady-state velocity 

experienced by the blade. The other Fourier components represent harmonic oscillations 

In blade approach velocity and harmonic gusts in a direction normal to the blade. 

Thus, the dynamic effects of the wake can be treated by finding the oscillatory forces 

developed on a blade which experiences harmonic gusts parallel to, and normal to, 

the main stream. There are two other dynamic effects associated with blade forces, 

20 
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namely, thote In which the blade velocity (rather than the stream velocity) contains 

harmonic components parallel to, and normal to, the main velocity. These are of 

importance in providing coupling between rotational and axial vibrations of the 

blades, and in providing damping of blade vibration. 

(I) Effect of oscillations in stream velocity 

Some attention was given to this problem by Von Karman and Burger^ 

and a solution is given for the lift of a two dimensional lifting element starting from 

rest. The case of on airfoil subjected to a harmonic velocity superposed on the mean 

17 1Ô 
stream velocity was first considered by Isaacs. Later, Greenberg presented a 

simpler solution that agreed closely with Isaac's work. In this note, Greenberg 

gives the lift force as 

p 2 k 
-L = 0 + a F) + a + G) co$ «> t + a (]+F) iin wt 
S) 7” 

2 

0 2 2 
— F coi 2 cut + 0 G sin 2 tu t 
2 —jr 

when the approach velocity is 

U = U0 ( 1 + a ,|n u>t) 

In these expressions 

L0 = steady lift at a uniform stream velocity, U0 

P * lift force, positive upward 

k * the 'reduced frequency' » b 

where b - — chord width 
2 

m ■ circular frequency 

11 
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F = J1 (Jl + + Y] (Y, - 

U| + + (Y, - 

G= Y) J) J° 

(J] + Yo)2 + (Y, - j^2 

The argument of the Bessel functions being the reduced frequency k, <&(k) 

and G (k) are the "Iheodorten” functions?2 

A plot of the coefficient of the first order sine and cosine terms of -p- 
Lo 

is given in Fig. (]), Since the second order harmonics have coefficients contain- 

2 
•ng a * they can be neglected on the grounds that a is a »nail quantity. On 

the same basis the first term becomes unity, leaving the harmonic part of the 

response to be two terms in quadrature. This con be put in the alternative form of o 

single harmonic term which is out of phase with the oscillations in the mainstream. 

Since the constant terms from the Fourier analyses of the axial and tangential 

wakes can be combined to give LQ, and the harmonic components (axial and 

tangential) can be similarly combined to give various values of a , all that is 

required is to calculate the steady force corresponding to L0 whereupon all the 

other (harmonic) contributions from variations in stream velocity con be calculated 

by th* above expression. 

(2) Effects of harmonic gusts normal to the stream 

The treatment of this problem is to be found in standard texts on flutter. 

22 
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19 
e.g. Aeree last ¡city14 or, "Introduction to the Study of Aircraft Vibration and 

23 
Flutter , The following equation is given for the lift force per unit length 

of on infinitely long airfoil: 

P = 2 n p U0 b wg jc (k) [ J0 (k) - i J, (k)> ¡ j, (k)|e ! “ f 

where, in addition to the quantities already defined, w is the amplitude of 

the gust velocity, C (k) = F (k) + i G (k), and it is understood that the real 

part of the expression is taken. 

This equation may be written in the form 

t# 

P = 2 n p U0 h w (M cos w t + N sin u) t) 

where M and N are functions of the reduced frequency, k. 

Since 2 n p U0 2 b a is the lift LQ corresponding to a steady angle of 

attack, a , (measured from the "no-lift" attitude of the airfoil), we may write: 

P _ w I 
—— “ (M cot ^ t + N sin tu t) 

Uo 

Values of M and N are plotted in Fig. 2 

Since the values of w8/uo con b® from the amplitudes of the Fourier 

components of the axial and tangential woke, the above formula yields the resulting 

oscillatory lift forces. 

(3) Effects of blade oscillations normal to stream 

It has been pointed out that blade oscillations parallel to, and normal to, 

the main stream will give rise to oscillatory blade forces. The former of these has 

apparently not been treated, but the latter is discussed by Bisplinghoff et al, 19 

23 
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Page 272 and by Scanlan and Rosenbaum,Page 395. 

When certain conditions on the rigidity of the blade are met, the lift 

force is given by the expression 
ft 

P = - n p b2 (U0 + h - ba 1 - 2 n p U0bC (k) £ UQ a + h + b - a) a ] 

where P = lift force, positive upward 

P = density of the fluid 

b = — chord width of the airfoil 

h - vertical displacement, positive upward 

C (k) = Theodorsen1* function = F (k) + i G (k) 

k = bœ = the 'reduced frequency1 

= circular frequency of oscillation 

U0 = forward speed of the airfoil 

a = inclination of blade to "no-lift" attitude 

For a propeller blade which does not twist/ a is constant and the above 

equation reduces to 

P = - n p b2 (h) - 2 n p u02 b C (k) £ a + h ] 

In this equation the quantity n p b* h represents the inertia of entrained fluid 

and is normally included in vibration calculations. 

The quantity 2 n p U2 b C (k) in the second term might be expected to 

represent the steady lift on the section. |t is not clear why this should contain 

24 
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G (k) where a is steed/. 

t 9 

The quantity 2 n p U0 b h C(k) = 2 n p U0 b h [ F (k) + i G (k) ] 

represents forces proportioned to# and for F (k), opposite in direction to, the 

velocity - hence It represents a damping term. The imaginary part of the 

expression represents a component of force which is proportional to the velocity 

h but ii out of phot«. 

Tho Theodors en functions F (k) and G (k) have been defined previously. 

G>) Calculation of Forces,.ond Moments including Dynamic Effects 

Calculations of forces and moments generated by a propeller in an 

irregular wake hove been carried out by several investigators. In 1935, Lewis^ 

gave a method of calculating bearing forces arising from the propeller action. 

The David W. Taylor Model Basin has developed a quasi-steady-state procedure 

based on Burrill's "Method of Calculation of Marine Propeller Performance 

Characteristics" ! This method was used in 1955 by Noonan, Knopfle, and 

Feldman in their calculation of propeller shaft bending stresses In the USNS LT. 

24 
JAMES E. ROBINSON. Breslin pointed out that all of these methods neglected 

the effects of fluid inertia and, in 1958, Ritger and Breslin2 considered these 

•ffrets. Their report considers fluid inertia only with regard to the cross flow 

and computes the variable thrust and torque but not the bearing forces and moments. 

The present work gives a detailed procedure for calculating the three com¬ 

ponents of variable farce and the three components of variable moment (for each 

25 



C O N E SC O consultants in engineering science 

order of vibration) from an experimentally determined wake variation. The 

Theodorsen effects in both cross flow and variable stream flow are included, and 

the assumption Is made that such effects will alter the variable lift forces in the 

propeller (modified as these are by induced flow, tip effects and centrifugal 

effects) in the same proportion that they modify the forces in an infinitely long 

airfoil. 

The first step in the calculation is to make a Fourier analysis of the wake« 

In general, some interpolation of experimentally determined values will be re¬ 

quired and this is most easily done by~radial cross-plots at different angular 

positions. A typical wake survey using a fine interval of 15° is given in Fig. 3, 

and the curves of longitudinal and tangential wake given in Figs. 4 through 7 are 

based on this survey. The sign convention adopted is such that a tangential wake 

opposing the propeller rotation is considered positive. 

When the wake has been determined by interpolation at the required 

positions the appropriate values are entered in the Harmonic Analyses Schedules and, 

by following the procedures detailed there, the harmonic content of the wake is 

determined. For single screw ships,wake determinations are usually made at angular 

intervals of 15° and for this scheme a 24-ordinate schedule is used. For multiple 

screw ships it Is common to use a 22 1/2° angular interval and for this scheme a 

16 ordinate schedule is used. Capíes of these are displayed (along with instruction 

sheets) in Appendix A, while the nwmerfcqj exompte*presented irv Appendix I 
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Illustrates their use. 

The second step involves the computation of the stead/ thrust and tangential 

forces resulting from the mean woke os given by the constant term of the harmonic 

analysis. This calculation Is based on Burrlll's method and uses the schedules and 

Instructions displayed in Appendix B. For the basis of the procedure and the many 

curves required In the calculation it Is necessary to refer to BurnII's original paper. 

For convenience, the calculation of forces per unit length of blade h carried out at 

0.3R, 0.55ft, 0.8R, and 0.9R, so that the harmonic analysis must be based on 

interpolated woke values corresponding to thaw rodil. By integrating the thrust 

force and the moment of the tangential force along the blade It Is possible to obtain 

a check with known propeller characteristics. 

Turning to the third step, we now have available the harmonic analysis of 

the wake and the steady values of the forces resulting from the average wake. It 

is now necessary to convert the amplitudes of the harmonic components of the wake 

to equivalent gust and stream fluctuations so that these can be used with Figure 1 

and Figure 2 to obtain the amplitudes of the oscillatory blade forces. 

This conversion (and the calculation of the forces) is accomplished In a 

routine manner by use of the schedule and instructions displayed in Appendix C. 

However, a word of explanation of the form is desirable. 

Using Burdli's nomenclature and referring to the sketch In Fig. 8, we 
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may write 

U2“ t V (I - w,) (1 + a) ] 2+ C (Jlr+Vwt) (1-0') ] 2 

tan 0 = V (1-W|) (1+a) 

( -a r+Vwt) ( 1-a* ) 

Diffarantiatlng the former gives 

2 U A U = 2 [V (1-W|) (1+a) ]V (1+a) ('- A w,) + 2[ (J^r + Vwf) (l-a'^l-a') V A 

h#nc* = (stn2 0 ) (- A w|) + (cos2 0 ) (V A wt) 

üí77Vwt) 

Differentiating the latter gives 

2 
0&0m ( fj r + Vwf) (1 -o1) V (l+o) (-W|) -V (1—w,) (l+o) (1-g1) V A wf 

t ( fi r+Vwt) (1-a*) ] 2 

A 0 « cos2 0 [ (tan 0 ) (- W|) _ (ton 0 ) (V ^ w^) 

(1 — W|) ( J1 r + Vwt) 

sin jD cos 0 - Wi — wt 

Wj J1_ r + Vwj 

Now, since ^ a » . A 0 and Vwt i* *mall 

A a » sin 0 cos 0 W| 
+ V a 

I - wi J1 «■ 

For the nth harmonic^ A wl " w|n' A wf * wtn* AU-UnandA°= an 
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where W|n and w^n are complex numbers. Hence 

= - sin2 0 

U 

wi 
cos 0 Vw tn 

w lo -fir 

and a n = sin 0 cos 0 wln + V 

1 - Wi. Jlr 
w tn 

These two effects together give a resultant lift force 

p= Lo |(M+iN) _oü_ + (B+iA) i¿n 
a ^ 

Hence Gn = G0 |(M+¡N) an % (&+¡A) Un 

L a “ 

and Fn= Fo j(M+iN) an + (B+iA) 

U -J 

Where Gn is the n,h harmonic component of the tangential force and Fn 

is the ntFl harmonic component of the thrust force. 

At the conclusion of the calculation form, the values of Gn and Fn and their 

moments are multiplied by integrating factors and summed to obtain the total thrust 

and tangential moments on the blade. The integrating factors contain a "Simpson's 

Rule" multiplier and the radial location of the section. 

Thus, the integrating factor for 0.3R is: 

(0.25 X R = the interval) x(l - Simpson's multiplier) = J-. R = JL D 
12 24 

Likewise the integrating factor for 0.8R is: 
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It should be noted that it would be possible to simplif ' this form slightly 

by not finding the values of the force per unit radius. How- rer, these values 

give an indication of the accuracy of the calculations and -o used in computations 

of the hull pmiure forces. 

The fourth step, namely, the summation of the force and moment contributions 

from all the blades, Is carried out using the form and instructions in the remainder 

of this Appendix C. Again, a word of explanation is desirable. 

The net harmonic thrust and torque ore simply the vector sums of the harmonic 

components for each blode. If oil the blades ore identical and therefore produce 

identioal components displaced from one another in space, then, for oil orders 

except multiples of the number of blades,this vector sum is zero. For orders that 

ore multiples of the number of blades the sum is non-zero. 

The vertical and horizontal forces and moments require further consideration. 

For example, the vertical force from one blade is G sin 0 where 0 is the angle 

of the blade to the vertical. G is express««! as the real port of the series. 

G » A0 + (A|+Bj I) e10 + (Afe + ty) e2i® +—► (A,, -t öfli) ein ® +. 

henee, expressing sin 0 as e1 0 - e“1'0 , the nth term of G sin Ö 

2i 

U Re OVA1) ,1 - Re + Bn. > M) 9 

21 2i 

When these quantities are summed over all the blades of the propeller there is a 
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vector cancellation for all orders except when (n+1) and(n-l) are multiples of 

the number of blades. Hence if there are s blades the value of the s^ order is 

Re As * Bs -, i 
AS+ I + BJ+ ,1 

T\ 
¡ s 9 

Similar reasoning applies to the other transverse forces and moments. 

(c) Numerical Example 

To illustrate the use of the computational scheme that has been described, 

the following example has been chosen. 

In May 1943, the David W. Taylor Model Basin made a series of tests on a 

model of a ship designated VC2-S-AP3. The ship has a single four-bladed screw 

of 20.5 ft. diameter and a very complete wake survey was made. The result of 

this survey at 11,600 tons is illustrated in Fig. 3, and all the computations made 

here are based on this wake description. 

The first step in the calculation is to make cross-plots for interpolating the 

wake survey as described earlier Figures 4 and 5 illustrate these while Figures 6 

and 7 show the interpolated values plotted against angular position. 

The second step - the harmonic anaiysis of the wake - makes use of the 

tabular procedure described in Appendix A and results in Tables I-I-4 describipg 

the longitudinal wake, and Tables l-5-8describing the tangential wake. The 

radial locations chosen are0.3R, 0.55R, 0.8R, and0.9R. 

The third step is the determination of the average thrust and torque intensity 
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at each calculation radius and makes use of the calculation forms described in Appendix B. 

Tables 1-9-16 demonstrate the procedure applied to the wake and propeller in question. 

It is advisable at this point to integrate these force intensities over the propeller blade 

m order to check with the (generally known) steady forces developed by the propeller. 

This Is done In Table 1-17. 

The fourth step is the computation of dynamic forces and moments from the now 

known average values and the harmonic components of the wake. Use of the methods 

detailed In Appendix C result, In Tables 1-18-20 for the 4th order forces ond moments. 

The summary of all the results finally appears in Table 1-21. 

The 4th order harmonic thrust, 05,048 pounds, Is about 29% of the average thrust. 

The 4th order harmonic torque, 93,051 pounds feet, is about 20% of the average torque. 

The 4th order vertical harmonic force of 1,327 pounds and the 4th order horizontal harmonic 

force of 1,149 pounds are about 1% of the average fhrust. The 4th order moments of 

23,840 pounds feet about the horizontal axis and 28,286 pounds feet about the vertical 

axis are about 5% oí kJ 6% of the average torque. 

The value of the harmonic thrust is about twice the value computed by Ritger and 

2 
Breslln but is about as much lower than the quasi-steady state values given by Ritger and 

Breslln os might be expected from the Theodorsen parameters. The values of harmonic thrust 

and harmonic torque are about twice those that are generally assumed in vibration calcula¬ 

tions. It Is believed that the large values of harmonic thrust and torque occur because the 

averaging effect of propeller blade width on the wake is neglected. One way to treat this 

would be to consider the average woke over the width of the propeller blade at each angular 

position. It might be, however, that the variations in lift would be more accurately repre¬ 

sented by woke variations at the leading edge of the propeller rather than at the center of 

the chord. In either case, the harmonic thrust and torques would be reduced. 
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2- PRESSURES ON THE HULL DUE TO PROPELLER ACTION 

(°) Pressure Field due to g Rotating Propeller 

(J) Comparison of Breslin's approach with that of Gutin 

Breslin treats the propeller as a rotating line vortex which moves 

axially, shedding helical line vortices from its ends. Taking the pressure induced 

at a point by an elementary length of these vortices, he then integrates over the 

complete length of the vortex line to find the total field at the point. Gutin, on 

the other hand, considers that a point on a propeller disc receives a pulse of 

force as the blade passes. This pulse can be considered as the cumulative effect 

of a number of harmonic force components, so that the pressure at some distant 

point is >he cumulative affect of the rodiated pressure from all of these harmonically 

varying forces. 

It is interesting to compare the results of these two approaches, based as. 

they are on different approximations to the solution of the flow equation. Breslin 

solves the steady-state flow problem neglecting all wave effects and obtains 

pressures from changes in flow velocities. This is justifiable since the frequencies 

of the excitation are low and because only those pressures in the vicinity of the 

propeller are of interest. In contrast, Gutin (who was concerned with far-field 

acoustic radiation from aircraft propellers) neglects the steady-state flow and 
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deals only with wave effects. 

To contare more clearly these two approaches it is desirable to consider 

the complete equations for irrotational flow and to explore the nature of the 

assumptions In both cases. The difference in the results yielded by both methods 

is then most easily demonstrated by considering the case of the pressure generated 

on the ground by a flying aircraft. 

The equations, are: 

Continuity: CT Jt + 
m 

Gonoralized Bernoulli equation 

(See Prondtl-Tietgen»",^ p. 12 

In thit, e is the speed of sour ! 

w is the fluid velocity vector 

I is the potential function of the velocity field 

p is the pressure 

U is the force function of the body forces. (This will be omitted 

since the only pressures of interest ore those that ore changes from 

the overage.) 

If the coordinate axes are taken to rotate with the propeller and the fluid 

is inconpressible than, since c »ha equations reduce to: 

+ w ■ grad p 
--e= U 

C * 

Jfl + w^ +p-U = f(t) 

* t 

in the fluid 
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These are the equations on which Breslin's solution is based. 

If the fluid is considered to be compressible but w so small that w • grad p 

2 2 
and ^ are negligible, then the equations become: C 

'.£p+is = 0and àî +p = f(f) 
c2 it 

and these are the equations on which Gutin's work is based. 

Turning now to the application of these two methods to the prediction of 

the pressure produced by a force located above a plane, the 'incompressible' 

solution (using the same basis as-Breslin's work) is given in Prandtl-Tietgens26under 

the heading "Transfer of Airplane Weight to the Surface of the Earth".^ 

This gives a pressure p =-~ where L is the total force, h is the vertical 
2 n sJ 

distance from the earth to the aircraft and s is the distance from the aircraft to the 

point at which the pressure is measured. 

Using (as Gutin did) the potential function developed in Lamb's "Hydrodynamics 

for a harmonically varying force in free space, we may write 

L ¿ e' w(t-s/c) 

P " " Tn Sx-s- 

In this, Le is the force acting at a point and the calculated pressure exists at 

a point whose coordinates are x,y with respect to the 'force' point. Obviously, 

S =Vx 2 + y2 

Carrying out the differentiation and noting that x = h the expression for 

20 
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prMKir* b>comt 

LH 

4* 
i<o (t-»/c + tan”^<u'i/c) 

Taking th# modulus oi fhis «xp rassi on and doubling to account for the 

prosonco of tho rigid boundory, wo Kovo p - ^ 2n$3 
1 

1 + to V, From this it 

2 
con bo soon that for low froquoncios, tho voluo of tho pressure approaches that 

given by tho incomprossibio solution. 

Some important features of tho pressure generated by a harmonic force 

.♦ * 

con bo recognized in the above example. For example, it can bo soon that the 

pressure foils off with ot least tho square of tho distance from the source, consequent¬ 

ly St Is important that tho forces oo.the propel 1er-tip adjacent to tho hull surface be 

accurately represented. Unfortunately this is the most difficult part of the propeller 

to represent well and the most poorly defined of the woke regions. 

/ 
y 

(2) Calculation on basis of moving force 

Since a previous part of this report has shown how the forces on an 
«o 

element of the propeller blade can be calculated, it is now possible to calculate 

the free-fieid pressure resulting from such elementary forces as they move with 

the blade. Also, since our discussion involves distances which are quite small 

compared with the wavelengths of sound (at the frequencies corresponding to 

ship propeller speeds), it is possible to ignore the wave character of the pressure 
.5 7. ; y 

>■ 

S 

. * s 

I 
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field and write the premire in the form P = - JL (F ^ +F à +F 
4rr xTx‘ y TT z~2~r S 

where Fx, F^, F,, are the components of the force andS is the distance from the 

force to the point at which the pressure is calculated. 

If the coordinate axes are chosen such that x lies along the propeller axis 

and ¡s positive in the direction of forward motion, y is vertical and positive 

upwards, then * will be positive to starboard for a right handed system. 

Let a propeller blade element rotate in the plane x = d and let the angular 

position of a blade be 0 with respect to the vertical, then the coordinates of the 

blade element at radius r of the propeller are 

1 

! 

1 
« » 
> 
» 

3 
e 

5. 

» 

'v: 

* 

X, = d 

y¡ = r cos 0 

C| = r sin 0 

The forces acting on an element are an axial force F end a tangential force G, 

hence the cartesian force components are 

Fx = F 

Fv « -G sin 0 ? 

Fz = G cos 0 

i 

\ 

4 
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Tim fr*«-fi«ld prossur« which results from the x-componeot Is 

„ „ JL __ x“<l 

“ 4,’ t^+O'-rco.Ojî +(z 

F 
n 2 (x-d) 

TT 
+ (^fili)2 + (* - i-^ln ¢)2 

-3/2 

where R Is the propeller radius. 

Let Zx-dV + i/ 
2 

A V 2 R2 
T 

er ~ / 

Then P 
V“3 (1-21 cos0 -24 sinÇ)"3/2 

For sufficiently lorge values of y and ^ and { will be small enough to 

make the sum of the harmonic terms less thon unity and the above expression 

can be expanded binomiolly, giving 

p - d2 
x 4nR2 

-3 
Zt- (1,() can» + Bn (Ç^) sinnO 

The coefficients of the Fourier series ore: 

\ -! 

A1 
I 

T (3Ç +3^4 )+----- 

1 i 3.6 
*2 9T TZ 

2_ y 2\ + 3.5.7.9 
iTv.i : õ <4* 

4 
444) "f 

• * 
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A3 = ï 
2 

3.5.7 
2.4,6 (E 3 -3K2) + m m m m 

A4 = 
1 3.5.7.9 
2 ^2.4.6.8 d 

4.trl > 2 
>>VL 

+ . - 

A 5 
_ } 

2 <r5-'0^ +5f4 

ek 

and 

B 1 

b2 

- 1 
2 

1 

2 

3 
T ¿ - rxr(3-S24+ 3i3) + 

44-(-2T Í ) + MiLl. (-« ? 3i - 8ÇÍ3) 
XT' 2.4.6.8 

B3 = 

b4 = 

1 
2 

1 

2 

3.5.7 
2.4.6. 

<-3*24+ ñ 

B5 = i 
0 2 

3.5.7.9 Mt3;+ 4T/3) 
5X0 1 ' 

3.5.7.9.11 (-5^^+10^243-/5) +. 
2.4.5.8.10 

etc. 

The pressure resulting from the y component of force is 

P = - G sin 0 
^ 4 n 

p 

(y- r cos 0 ) 
5 + (y-r cos C, - + ( * - r sin 0)3 3/2 

and that from the k component is 

P, 
« G cos 0 

4 n 

( b - r sin Ô ) 

Rx-d)2 + (y-r cos 0)^ + (b - r sin O)2 J 
3/2 
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ceding th**a fwo »color quantities gives 

ThrS u 3 
R 

( 1 - 2 Ç co. Ö - 2 ¿ »in 0 )“ 3//2 

G E 

4 «R 2 V 
L_ ( - ^ »in0 + ^ co. 0) ( 1 -2^ co* 0 - 2^ »in 0) -3/2 

One* again expanding binomial I v thi» con be written 

G _R 

4 n R2 V 
U » ¿ ) co* n Ö + Bp , ¿ ) Sin n Oj 

where Aq 31 0 

A : i 
t Í + ¿4 (i +Í3) + (-20^2^3 + 2^4^ +2^^ + -- 

A 
2 

5ît+ (4t3<+ i*TÍ3)+-“‘“ 
i 

A1 
3 

— (*l2t-t3) + 9 (9t4¿ + 6^2t3 -345) + --- 
2.4 2.4.6.8 

A' - 
4 

A' 
5 

(4^34-4lE¿3) + 
2.4.6 

ÍMiLÍ ( 5t44-io^243 
[2.4.6.8 

5 
+ 4") +. 

etc. 

and 8' 
1 

3.5 3 . . 2 

2 
5 -20£342+2r¿-') + -. 

I 
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3,5,7,9 
2.4.6.8 

(£5-10£3¿2 + 5Ç£4)+. 

The above expressions give the free-field pressure at some point in terms 

of the angular position 9 of the blade - which, for a propeller rotating at 

constant speed, represents the pressure as a function of time. Since the blade 

forces F and G are also known as functions of angle (or time), finding the net 

pressure at a point requires the formation of the product of the above Fourier 

series with the Fourier series representing the blade loads. 

Th «re is an alternative method of computing free-field pressures which 

might be somewhat easier to apply. In this approach, the blade forces would be 

computed for each radial section ot a number of different angular positions in the 

vicinity of the point at which the pressure is to be found. 

Summing the pressure contributions from all blade elements for each angular 

position of the blade ¡n turn will then give a description of the variation in pressure 

as the blade passes. If the process is carried out for a number of angular positions 
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oround the propeller disc, the total effect of a number of blades can be found by 

superposition. 

The decision os to which of the above methods is the more practical will 

hove to be based on trials of each on on actual case. 

In the preceding discussions it is assumed that the forces on a blade element 

con be considered to act at a point in the element. An improvement on this 

assumption would be to consider the blade element forces to have a uniform 

chordwrse distribution and to act on a line which, due to the pitch of the blade, 

is skewed with respect to the shaft axis. The effects of pitch and of lift distribution 

ore considered in Appendix 0. 

ft 

(b) Pressures in a Reid Contoining a Boundary 

Since the basic problem in hull vibration is the estimation of pressure on 

the hull surface it is necessary to find how the presence of such a surface affects 
* 

the free-field pressure. 

The method of images con be used to show that the existence of a rigid 

plane boundary effectively doubles the free-field pressure at the location of the 

boundary. This will only be true so long os the presence of the boundary does not 

materially alter the operation of the propeller. 

If two identical propellers operate with opposite senses of rotation, and, 

if they ore sufficiently for apart that the flow from one does not materially affect 

i.» .'♦n* |- • k.4 h- ■*.» f ; - ' - *• V***- I KI l . I- . i. H* ► «*l: . 
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the operation of the other, then there Is no flow across an Infinite plane located 

midway between the two propellers. Consequently, this plane can be made a 

rigid boundary. Since the pressure at this plane Is the sum of the pressures from 

the propellers It is twice the pressure generated In a free-fleld by one propeller. 

, The image method does not require that the 'mirror' plane bo parallel to 

the axis of the propeller but it does require the plane to be of infinite extent. In 

the case of a multi-screw ship it is probably acceptable to represent the hull by a 

plane surface, however, many of the more serious ship vibration problems occur 

where the reacting surfaces are not continuous flat surfaces. It is important to 

know whether or not it is possible to obtain reliable estimates of pressures on such 

surfaces as bossings, skegs, and rudders in terms of free-field pressures. Regier 

27 
and Hubbard made free-field measurements and measurements on plane and 

cylindrical surfaces near the tips of a rotating propeller. In general, these data 

seem to show that pressures on the cylindrical surface are 1-1/2 times the free-field 

values. The tests were carried out using a cylinder whose diameter was equal to 

that of the propeller and a tip clearance of approximately I of the propeller diameter. 
12 

Measurements on a flat plane gave the expected value of twice the free-field 

pressure. 

« 

(1) A new generalized modal technique 

When a non-planar surface is introduced into the pressure field, matters 

become quite complicated; the method of images becomes of limited value and con 
» 
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ooîy b« u*«d wifK *wcc«u in a r«*fricf#d clou of problwni. if th« boonding 

wrf«. c«npi*Nly oncloMt th* fluid and Hoi a 8#omotry that Und» iH«if io 

tfofmmi by on* of fh* »Mmdord co-ofd ¡not* »y*t*ms, probltm* of «loific wov* 

ocHon within th# fluid can b* )r*ot«d in t*rmt of th* ’normal mod**' which can 

•Xilt ¡n tH* tpoc*. Th*** mod« or* di»cr*t* and «ach mod* hat on asiociated 

chofOCt*mtic or 'natural ' fr*«ju*ncy, How*v*r# wh*n th* lurfec* do« not 

compl*t*ly «nciot* th* fluid, Í. *. th* fi*ld it only partiolly bound*df mod« 

ond fr«|u*nci*i or* no long« di»cr*t* but Hav* a continuou« ipectrum 
m 

Or. O. K. Mawardi and Mr. M iz of CONESCO hav* *xt*nd*d 

imonitonal «poce th* modal tochniqu* to th* com of a partially bounded thr**-d 

and hav* salvad th* specific probl«m of th* diffraction of *iostic way« by a wedge 

surface Th* wav* sourc* considered wa* an oscillating potential dipole 

which represent« a fluctuating fore* ^see lamb's "Hydrodynamics. *) 
20 

Th* d*v*iapiii*nt of this tochnlgu* Is quit* lengthy and is givan in d*ta|i 

n Appendix E. 

(2) Pres sur*« on a wedge shaped boundary 

The analysis described in Appendix E leads to an expression for th* 

pressor* amplitud* in the space exterior to a w*dg* shaped boundary and; is best 
* 

in th* form of a dimansianlMi ratio p . This function is th* ratio of the 

pra«ur* around th* w«dg* to the free-fieid pressure'that would exist if the wedge 

30 
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were obteni; it toke* the form: 

2 rr 

2n - ß 

( ikRw - 1) 

(:'ikRf - J) 

¡k(Rw-Rf) i ' co* 0' - r cm 0 I cm 0 

+ * a i * a n 0 n Ö un 0 - r un 0 cm —i—-cm —_J_ 
2 n - ß 2 n- Ö 

cm ( 0 - 0) »in 0 

n 
-i*-—Li— r »in Ô sin 0'cm n P »in. 

2n - ß 2 n-ß 
n0/ »in Ô* »in (0* - 0 ) 

r 1 cm 0' - r cot ô] cos 0 *+ *in0 '-rtinOcot (0-0'J oo*j(0* -0') 

»in 0* - r »in Ö »in Ô ' »in ( 0 - 0') tin ( 0* - 0' ) »in e*| 
- 1 

where Rw = fr^ + r'2 - 2 rr' ( 
Ti Tt 

cot Ô cot 9 + tin Ô tin 9* cot - cot -«--- 
2 n -ß 2 n- ß 

Rf 1^2 + c'2.2 rr' {cm 0 cos 0' + sin 0 »in 0’ CM ( 0- 0' ) 1 
1 
/2 

1 / 2 

where: ß ; r, 0, 0 ; r' , 0' , 0 1 ; ô , 0 /áre defined in! Figure ? 

k: 
0} 

Ü) = radian frequency of the excitation 

speed of sound in the fluid 

A graph showing the value of p for 0 special orientation and location of a dipole 

excitation is given in Figure JO, 

(c) Calculation of Pressures on a Rigid Plane Surface 

The calculation methods based on a moving force can be uted to find the 

pressures developed on a plane surface in the neighborhood of the propeller. While 

this may not satisfactorily represent a ship'* hull in the region around the propeller, 
« 

* 

the result* give some uteful insights into the nature of pressure dUtributions that can 

be expected, and allow some inferences to be drown at to the effects of clearances. 

The method of calculation it demonstrated in the example below which 
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Dipole 

‘l 

Location of 
pressure measuring 
point r, Ö, 0 
(where 0=0 or 2 n - ß) 
Location of Dipole 
r\ O', 0' 
orientation of Dipole 

#*, 0' 

ï 

Coordinates in Study of Pressures 
on o Wedge 

Fig. 9 
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I 
r 

Fig. 10 Pressures on Wedges Caused by a 
Harmonic Force 
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cof»¡d«n a propel Ur working wifh a tip cleoronc« of 0.20. Th« value* ï«e<J for 

G ond F or« thoM obtoin«d from th« VC2 iteody-stat« calculation* made in 

Appendtx. | of thi* report. 

CoruicUr flr*t th« pr«uur«» along a I In« formed by the intersection of a 

plan« containing th« prop«li«r disc and th« plan« surfoc« lying parallel with the 

prop«ll«r axi*. 

Recapitulating; 

Th« prouur« du« to thrust fore«* pc w F 
r¿\2 

. a-d . 1 

If 
•3 

co* Ö - 2Ísin ô| 
-¾ 

Th« pr««tur« du« to tang«ntÍol fore«*P q » G (-T»in 0 +¿co* 0) 
4 n Ri 

]-2^co* 0-2¿sin6 
-¾ 

y 2 " (# + (02 ’ (r? 

br 

& t m cr 

Choosing coordinates such that a " 0 . c * 0, gives b * 1,4R 

Th« abov« «•pressions hav« b««n previously «xponded in Fourier series and were 

soen to hav« th« following fourth order terms. 

P F F , a-d 
ï"*2 

1 

y 
(t4 -ítW) +--](.4i9 - .^8) 

f3 5,7 9 (-4^¾-4^t3) +-^¡i “ • “^í0) [2.4.6.8 J 
P G R 

7M TO 244 t3) ^40 * ¿44fc4-«s2*2+^)‘in4 ö 2 • ^ » ó 

♦ 

i 

4 

I ÍMr| r <+fS < . »-.• •«:#•••«• > K.eeV'tHi^Y y t* I rt*%4 ..6 .4 • W - e* 

* 
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Since there are 4 blades, these quantities must be multiplied by 4 to give 

the free-field pressure, also, since the presence of a rigid plane surface will 

double the pressure at the location of the surface, these expressions must be further 

multiplied by 2. 

Hence, 

p = lin „ •-L +r4) «+(í?3/ "tu3) 40 
4rtfr ^ y** 2.4.6.8^ 

L - |^í(^3í"4Çf)cos40-{Ç4-ó^?t4)sin4ôj 8G 
4hR: 

R 

V 

At the point 0.9R 

a - 0 

0.9 X 19" due to rake 

8.03 X ^ due to skewback 
nx 20.5 X 0.9 

= -17J - 3.18=-20.28" or-J.90 ft. 

b= 1.4R 

c * 0 

0 must be corrected for skewbock. The correction is 

8-0yi2 X 360 = 4.18° 
nx20.5 X 0.9 

The fourth order of this is 16.7° 

SÍ* US, -0.185 
IT TOS 

. b 
f R 

1.4 = 0 = 0.9 
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* (.0344 + 1.96+ .81 ) *2.804 .-.^-1.676 

Y * Lli ^.0;9 *0.449 ; C4 *0.0405 \ t * O 
2.804 ç J 

F0 - ~ 4660* G0 - 2080' 

Substituting tKese valuó* glvos 

P.9R = -L, (52.6 eos 46-239.3 sin 46) 
rjR¿ 

Ropoatlng this calculation for savoral other radial points on th« blades and summing 

tho results yields the total of all contributions to the surface pressure. The In-phase 

component Is plotted as point A In Figures IT and 12 while the quadrature component 

Is plotted as point B. 

The above calculations were carried out for a number of different locations on 

the rigid surface and Flguresl 1& 12 show the distribution of pressure on this surface 

(at the location of the propeller). 

Reference to Figure 11 shows the very different characters of the distributions 

of In-phase and quadrature pressures and emphasizes the importance of measuring 

phase In experimental déterminât tops of hull pressures: (In this connection an 

In-phase component Is one which has a maximum when a blade Is normal to the 

surface.) 

Curves of pressure appear to have roughly equal areas above and below the 

axis, consequently. If the fore and aft pressure distribution is the some at.all points 
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across the plane surface the net force on the surface could be zero. 

Surface pressures decrease quite rapidly with distance from the propeller. 

Fig.l 1 shows that pressures become negligible at a distance greater than one 

diameter fore and aft of the propeller, while Fig. 12 shows a slower decay in the 

transverse direction. In this case, pressures do not become negligible until at 

least two diameters away. 

The effects of hull clearance, surfaces other than flat and of planes inclined 

to the propeller axis are all worth investigation and methods developed in this report 
4« 

allow many of these questions to be studied. However, time does not permit that 

these questions be taken up under the present contract. 
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3* PYNAM1CAI PROPERTIES OF THE PROPULSION SHAFTING AND THE 

CALCULATION OF BEARING REACTIONS 

The flexible shofting of a ship's propulsion system will be excited into a 

state of transverse and axial vibration by the variable forces developed by the 

rotating propeller. This vibratory motion will give rise to reactions at the various 

bearings which in tum will excite the hull into transverse vibration. 

Tîie general treatment of the dynamics of a flexible rotating shaft includes 

the gyroscopic coupling action which is distributed along the length of the shaft, 

the effects of rotatory inertia about axes perpendicular to the planes of bending, 

and deflections due to shear. 

The analyses presented here ignore these effects and utilize the simple 

equation of a vibrating beam, however, the form of each analysis is such that 

these effects can be incorporated by allowing certain terms to become complex. 

In order to justify the adoption of the simple beam equation, Appendix G presents 

a novel treatment of the effects of including the inertial terms mentioned above 

and shows them to be of minor importance. 

Appendix K mokes a simplified evaluation of the effect of propeller blade 

flexibility. It is shown that, for frequencies in the excitation range of the propeller, 

the propeller behoves essentially as a rigid mass. 

In the present study, coupling between horizontal and vertical bending modes 
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is considered to orise at various discrete points. Thus, gyroscopic actions of 

attached masses (i.g. propeller, thrust bearings, etc.) will produce such coupling, 

as will anisotropic stiffnesses in the various support bearings. 

The nomenclature and sign conventions adopted in the flexural analysis 

are illustrated by the following: 

X 

momen+fc 

1*1* m Xî plane 

r 
o 

Ky in YZ: plane 

(a) Matrix Treatment of Flexural Vibration 

The following paragraphs describe the use of matrix method in 

shaft vibrations. Ó] 
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(1:) Tronivtrtt Vibration In one planet 

Daftnitlom: v = mo«/onlt length of »haft 

a> * 2 nf wheref - frequency of vibration 

E ^ Voanfl's modulus 

IB * moment of Inertia of section about diameter 

y » transverse deflection 

The differential equation has the form 

IJL + 
a*4 

d2y 

and admits the,steady-state solution Ye ^ f where Y has the form 

e,* a « 3* ° i* 
Y** A^e + A¿e + Ap + A^e 

In this, 0 1, °2 j a 3 ) a4 are roots of the reduced equation corresponding 

^ Y=0 

Thus deflection M Y * ^ (^1 * ' I* 1,2,3,4 

slope 

moment * 

& * í(aj A¡ e “î*) 
de 1 ' 

EI, EI, ff,2 v“*) 
-El, - - n 4,3 A, . °im) 



• • I*», K< .- . <l*»|K-nt-»v 4« ->i. >• »L>; »w»4w<K ? 
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which ecjuatiom can be written in matrix form a$ foîlowi: 
M 

defi. 

slope 

moment 

shear 

Th is can be written in abbreviated form 

When 1 = 0/ the vector By becomes ( By) _q i ,e. a vector of boundary 

conditions at the origin - while £ becomes the identity matrix 1. 
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^ ^ V * ”0 

. ond th« axprauion for ( may ba written 

O' <V.= ^ ‘“/».»O 
H«ik*, conditions of deflection, slope, moment, ond sheer at any point 

may be 'transferred* to another point by this transformation. 

THe 'transfer matrix' has elements which ore functions of the elastic 

properties of the shaft and the distance between the two points. The vector B will, 

in general, be discontinuous in * . For example, if the complete beam is divided 

into two sections which are connected by a spring-like member, there can be dis¬ 

continuities in slope and deflection; if the two sections are pin-jointed there will 

be continuity of deflection but a discontinuity in slope. 

If the beam is physically continuous, discontinuities in moment and shear 
* 

will arise at the location of a concentrated mast, or at a point where the beam is 

elastically supported or otherwise constrained. In such a case, the vector B can be 
* 

transferred up to the location of the discontinuity, the discontinuity added, and 
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the resulting vector transferred to the next point. 

Physical discontinuities in the form of abrupt changes in cross-section of 

the beam will result in changes in the ^and £ matrices. In such cases, the 

appropriate ^and £ matrices must obviously be used when transferring the B 

vector from one change of section to another. 

The utility of the transfer matrix is that it can provide a relationship 

between two points at which some of the conditions are known viz. the boundary 

conditions. This relationship will be in the form of four simultaneous equations 

whose solution yields the unknown conditions at the boundaries. In any given 

problem then, it is required to build up an overall transfer matrix which will 

include the effects of all discontinuities intervening between the two points at 

which some conditions are known. The method of doing this will now be described: 

' Form of the elementary transfer matrixt 

The four roots of the reduced differntia! equation are + a / + ' a 

(where a ^ " V“ ^ ) and, if the product is designated ft the form of the 

■ETs 
t matrix is found to be: 
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- (co» o * + co*h a *) ^ (*init*+sînh a*) 2 (~co*a * + co*h a *) 2^a3(sir> a* - sinh ca) 

1 1 tt l 
-{-»in « * + *inh «*) -—{cot a«ico»h a*) _L (*in ax + sinh a *} ~ 2 (cot 0 * -cosh a*) 
2 2 2 ßa 2ßa 

(“CO* a * + co*h a x) ßa *ir>h ax) fco» a x + c;o*h a x) * *'n ^ 

2 2 2 

3 (-»in «* - »Inh ax) ßa2 (cm ax - co»h a ^ a (tin ax - sinh ax) ^ 
T T T 

The treatment oi iiitconiinuitiet 

A» ha* been pointed out/ 0 »Haft which it physically continuous will 

experience discontinuous changet of bending moment and shear force at the 

location* of concentrated matte* or elastic constraint*. Let the condition vectors 

before and after a discontinuity be: 

6 

e 

M+ A M 

F +AF 

If both elastic and Inertial effects are involved in the discontinuity - say, 

a heavy disc located at an elastic bearing - the change in bending moment will 

have a component.(“ *4 “ 2 ® ) due to Inertial effects of the disc, and e component 

( ^32 ®) due to the angular stiffness of the bearing. The change in shear force will 
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have a component ( "m d'-u 5 ) due to inerflal effecis and a componenl {t?^S ) due 

to the linear stiffness of the bearing. Hence, the effects of the discontinuity can 

be characterized by the following matrix equation: 

k T 
(• 32 

k., - m . « 
(41 

2 
d“ ) 

Or, if the square matrix is designated by K and the condition vector before the 

discontinuity B, the change in B is KB. Hence, the condition vector after the 

discontinuity is ( I + K ) B where I is the Identity matrix. It can thus be seen that 

if a shaft is divided into n sections by ( n-1) discontinuities, the overall transfer 

matrix is: 

ÎT = Tn ( 1+ Kn.3) Vi ( 1+ Kn-2).T2 ( 1+ K,) T, 

where is the transfer matrix corresponding to.the j*^1 section of the shaft. 

Since the various transfer matrices can be written down from knowledge of the 

length, diameter, and elastic modulus of each section of the shaft, and the K 

matrices can be formed from knowledge of the elastic properties of the bearings, etc., 

the formation of the overall transfer matrix can be carried out directly. This overall 

transfer matrix relates the boundary vectors B0 and &n and part of each of these 
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It known from th* 'and conditlom' of Iha thoft . 

Toka for axompla tha co$a 

Free end 

no moment 

no shear 

Mq ond F0 being known 

-0 

fO 

The transfer relation Bn * tT B0 can be expanded ond partitioned as follows 

hi *12 j *13 *14 

*21 *22 I *23 *24 

*31 *32 j *33 *34 

*41 *42 I *43 *44 
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Or, in terms of sub-matrices 

A n 

0 

which give A0 and A n in terms of the known 0 as fallows: 

A 0= - r2] 1 r22 o 

A n= (- T n r2]~] t22 + r12)50 

Hence, Bo and Bn are now known completely and the shear and moment 

reactions ( i.e. discontinuities) at the jth bearing are given by the ¡,h discontinuity 

vector viz: K¡ [ T, ( 1+ K¡., ) 1%., ( 1+ K¡.2 ) . . . . T, ] B0 

If a complete knowledge of conditions in the interior of the shaft is required, it 

is necessary to transfer B0 to various locations between the bearings. • 

The specific way in which the tf matrix is partitioned will, of course, 

depend on the actual boundary conditions imposed on the shaft. Also, it is 

apparent that the $ matrix is frequency dependent so that the behavior of the 

beam has to be investigated separately for each frequency. 

(2| Transverse vibration coupled in two planes 

In general, a ship'* propeller shaft will exhibit flexural vibrations in 

r 11 r 12 

21 r22 

69 



CONESCO conuillonlî în engineering science 

both the vertical and horizontal planes with coupling between the two planes 

arising at the propeller and at elastic supports. As stated earlier, the distributed 

coupling due to gyroscopic actions of the shaft itself will not be considered here. 

Let (Bx) Ä = vector of conditions in the x e plane at the point z 

(By) * = vector of conditions in the Y * plane at the point z 

A single transfer relation can be written in terms of sub-matrices: - 

which con be re-ordered into the form 

The arguments advanced previously will still apply and vectors may be 

transferred to discontinuities, the discontinuities added, and the result transferred 
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to ofher points. 

The major difference arising is in the nature of the matrix which characterizes 

a discontinuity. This matrix (which will be designated the matrix) must 

include stiffness terms which couple deflections and rotations in one plane with 

forces and moments in the other plane. In addition, gyroscopic coupling demands 

the incorporation of matrix elements which couple rotations in one plane with 

moments in the other. 

If the elements of the jQi vector are allowed to become complex (to take 

care of phase differences), then, including the time dependence, the condition 

vector may be written: 

V 
0 , e 

X 

0y . 

Fx- 

V 
My. 

iu>t I 

Î 0) t 

Jut 

i Cüf 
5 

Í cut 
t 

¡cut 
I 

i a>t 
t 

i^t 

If 1^ is the moss moment of inertia of a disc (e.g. propeller) 

location, and the spin velocity of this disc on Its axis is , then 

at some 

rotational 
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velocities 2 ond 3 about axes normal to the spin axis will produce moments 

liAtflZ oncl Id -Til -A3 In planes normal to those containing JI3. 

Thus, rotations 8X and 8y, with their corresponding rotational velocities i u»0x and 

Î *0^ will produce the following moments: 

X * 

tnoir&rtfr 

ï 

DISC ROTATES CLOCKWISE LOOKING IN Z DIRECTION 

The gyroscopic moment in the y» plane can be written as -ig0v and 
A 

that in the x* plane as + ig8y, where g is a coefficient representing the product 

(Id A4- 

If the shaft is supported in a bearing with anisotropic stiffness there will 

be terms coupling a translation in one plane with a force component in the other, 

and coupling a rotation in one plane with a moment in the other. At this time 
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it is assumed that there is no coupling between translations and moments, or between 

rotations and forces, however, such a case can be handled by incorporating appropriate 

terms in the matrix. 

In general then, when both inertial and elastic coupling appear at a dis¬ 

continuity - e. g. a propeller and bearing close together - the ( r+K) 
matrix will have the following general appearance: 

0 0 

kgj-nijW ^ 0 '53 

0 k64+i9 

71 o 

k82-ig 1-84-¾° 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

The procedure to be followed in building up an overall transfer matrix is 

the same as before. This now leads to eight simultaneous equations whose solution 

yields the unknown parts of the boundary conditions. The procedure for finding 

the bearing reactions is the same as before. 

(3) Axial Vibration - coupled extensional/torsional oscillation 

Since torsional oscillations of the propeller shaft will result in variations 

73 



C O N ES C O consultant« în engineering science 

In opprooch velocity of the propeller, there will be on attendant fluctuation of 

the axial (thrust) component of blade force. Also, axial movement of the blades 

will alter the effective angle of Incidence and will produce oscillatory components 

In<the blade torque. Both of these mechanisms serve to couple the torsional and 

extemlonol modes of vibration of the propeller shaft. 

Coupled vibrations of this type can be treated by matrix methods similar 

In character to those used in the preceding discussions of flexural vibrations. 

■ 2. 2 
Thus, the extensional equation = p admits 

' 1? E ' 
a steady state solution of the form Ueiwt where 

T 1* Y.j* 
u * Cje + C2e 

and r 1, Y2 ore roots of the reduced equation corresponding to 

2 
+ P|> U •= 0 dPu 

Hence, axial displacement = € = U = SscjeTi* i = 1,2 

axial force * a = E a - Ea ^ Yi ci e 
3* i 

In this, E = Young's modulus 

a ** area of cross-section of shaft 

p * density of shaft material 
* 

« * 2 nf where f * vibration frequency 

U * C * axial displacement of shaft croSs-section 
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By argument* similar to those used prevIou*Iy/ we may write 

Ear2J 

which is again of the form B = T B 
•• Mm 

The transfer matrix T* can be written in the form 

where Y = 

in a similar fashion, the equation governing torsional oscillations 

^ 0, = ^ G = shear modulus 
a *2 g òí2 

cosY* J_ sin Y* 
Hoy 

-EaYsinY* cosY* 

0 

admits the solution 9 e'œf where 9 =Cje^* + €26^2* 

11/ t 2 r00fi reduced equation corresponding to 

d2 9 + 

dlTT s =0 
G 

Hence, if Jt - polar moment of inertia of shaft crow-section 

0 = angular displacement 

r - torque 

*1 _ 1 ' 

Js^tl J*G¿2 

Ci 

£2* 
L • 

1 

JiGC] JjG 

-1 
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Thi* i* again of tKa form BL ~ BQ whara can ba written 

In tha transformation* shown above, the torsional and extensional modes 

ore, of course, uncoupled. The axial contraction which accompanies torsional 

deflection (and which would constitute a distributed coupling) has been ignored. 
e 

However, coupling which arises at discrete points con be taken into account by 

combining the two transfer .relations as was done in the cose of coupled flexural 

vibrations; thos;- 

cosy « 0 

0 cos£c 

-Eaysln Y» 0 

1 sinr* 
Eay 

0 

cot Y* 

-J,G£ sinS * 

The ( I+K ) matrix which carries the condition vector past a discontinuity 

involving inertial and elastic effects will be of the following form; 

1 

0 

a3j+ib3i 

a4l+ib4l 

0 

1 

°32+‘b32 

a42+'b42 

0 

1 

0 

0 

0 

0 

1 
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The complex sub-matrix in the lower left hand corner of this will have 

terms of the following types: 

The 3, I term represents axial force contributions that are dependent on 

axial displacements. It will have a real part made up of a stiffness term (e.g. 

the stiffness of the thrust bearing) and a mass term (e.g. the inertia force of a 

disc which is proportional to times the displacement). An imaginary term will 

arise when the discontinuity is the propeller. This is due to the fact that a 

t 

harmonic axial velocity will alter the attack angle of the blades, thereby producing 
«* 

harmonic fluctuations in the thrust and torque. These fluctuations, being velocity 

dependent, will be in quadrature with the displacement - i.e. the former will 

contribute an imaginary term in the 3,1 position, while the latter will contribute 

an imaginary term in the 4, 1 position. The 4, 1 position represents torque 

contributions arising from axial displacements and may have a real term corresponding 

to stiffness coupling between rotation and extension. 

The 3, 2 and 4, 2 positions may have real terms arising from stiffness effects 

but will have imaginary contributions from the propeller action. Thus, torsional 

oscillations of the shaft result in harmonic variations in the blade approach velocity 

with attendant oscillations in thrust and torque. The former will produce an 

imaginary term In the 3, 2 position and the latter an imaginary term in the 4, 2 

position. The 4, 2 term will also have a real contribution resulting from angular 
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acceleration* produced In the disc. 

The theoretical description of thrust and torque oscillations produced by 

harmonic velocities In the blades is not in a condition to let the results be con¬ 

veniently incorporated in this work. 

Another type of discontinuity of interest in the propulsion train is that 

which occur* at the reduction gear, if It is assumed that there is no axial sliding 

between the gears, there will be no discontinuity in the axial displacement £ ; 

however, the other three components of the condition vector will change discontinu- 
«* 

out!/. If the mass and polar inertia of the low speed gear are Mj and respectively 

and thole of the high speed pinion are M2 and J2, the gear ratio being R, then the 

vector after the discontinuity is derived from the vector before by multiplication 

by the following matrix which plays the role of an ( X + matrix. 

10 0 0 

0 R 0 0 

- u,2(M]+M2) 0 1 0 

0 -wVJ2R+Ji \ 0 ± 

l Tj R 

0») The Calculation of Bearing Reactions 

To calculate bearing reactions, the various transfer matrices and 

discontinuity matrices are formed and the cumulative product described in the 
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preceding paragraphs is obtained. The resulting four equations containing known 

boundary conditions ere solved for the unknown boundary conditions. Starting at 

one end of the shaft the boundary conditions (now completely known) are transferred 

up to and beyond each discontinuity. There then results a pair of condition vectors 

for each discontinuity - one before and one immediately after. The difference in 

each pair gives the discontinuous change in the elements of the condition vector. 

In the following paragraphs there is described a simple numerical example. 

(c) Illustrative Examples. 

For the most part, tno application of these methods to the calculation 

of bearing reactions in an actual ship presents no great problems. However, there 

is one major exception. While the various lengths, diameters, etc. necessary to 

form the transfer matrices can be taken directly from drawings, the information 

necessary to form the discontinuity matrices is less easily obtained. In particular, 

the estimation of bearing stiffness is quite difficult. An accurate estimate of 

bearing stiffness would take account of the contributions from the bearing material 

(wood, phenolic, rubber, white metal, etc.), the bearing housing, and the struts, 

pedestal, or other supports which connect the bearing to the floors and plating of 

the main hull structure. In addition, the main hull structure has some flexibility 

which contributes to the effective stiffness of the bearing. Jasper and others 

have devised simple formulas for effective bearing stiffness; however, while these 
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formulo* ore extremely useful and convenient, there is still no thoroughly satisfactory 

method of computing stiffness. 

The example chosen for calculations in this report is relatively simple ond 

does not demonstrate the full capacity of the program. However, it is useful in 

that the numerical results con be easily compared with intuitive ideas about shaft 

behavior. The system considered consisted of a shaft some J17 ft. long with a mass 

representing a propeller at one end while the other end was free. Two flexible 

bearings were located 595 in. apart with one of these bearings placed 96 in. from 

the propeller. The shaft dimensions and bearing flexibilities were based on values 

ehoien by Jasper^ to represent the shafting of the US5 FORRESTAL (CVA 59). 

The system response was calculated over the frequency range of 100 to 500 

cpm. i. e. slightly more than the speed range. Since it was shown earlier that the 

forces arising at the propeller are of shaft order (unbalance, etc.) and multiples 

of blade order, a calculation that includes twice blade order would have to cover 

frequencies up to 5000 cpm. 

Figures 13 ond 14 illustrate the response of the system to a unit vertical 

force at the propeller and it can be seen that the first resonance lies at(u= 28 rad/sec 

(approx. 270 rpm.). Figure 13presents the force reaction at each of the two bearings 

while Figure Î4 presents the moment reaction. Table 1 gives the numerical 

results calculated by the machine for w ^ 24 ond is given here to illustrate the 
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interpretation of the various signs, it will be recalled that the sign convention 

adopted was such as to make 'upward' displacements and shear forces positive, 

and 'anticlockwise' rotations and moments positive, in Table 1 the deflection 

at the first bearing is negative (i.e. downward) producing an upward {i.e. positive) 

force at the bearing yet the calculations show a negative change in shear force. 

The reason why on upward force produces a negative change in shear force is 

clear from the following diagram. 

reaction 

Since the shear forces quoted always refer to the force on the right-hand 

end of a beam element,the values calculated refer to the heavily outlined arrows 

on lhe diagram. 

In practice, the sign of the shear change or change in bending moment at 

a discontinuity can be ignored since the sense of the force or moment will be 

obvious from the deflection or slope at the point in question. 

As would be expected, the reactions are rapidly attenuated as the distance 

from the bearing to the propeller increases and the main reactions (off-resonance) 
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occur crt the first bearing. 

NOTEs THE PROGRAM AS WRITTEN USES A DIFFERENT ORDER OF THE 

ELEMENTS OF THE COLUMN VECTORS TO THAT USED IN THE 

DERIVATIONS. SHEAR FORCE AND MOMENT ARE INTERCHANGED. 

THIS STEP WAS TAKEN TO PRODUCE A CONVENIENT SYMMETRY 

OF THE ELEMENTS OF THE TRANSFER MATRICES. 
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4. CONCLUDING REMARKS 

The objecf of this study has been lo apply the available scientific 

information in the fields of structural vibration, acoustics and hydrodynamics 

to the problem of propeller excited hull vibration in ships. In the process of 

doing this, some advances in applied mechanics have been made. This report 

presents the following accomplishments of the study: 

. (a) Methods for computing the dynamic forces and moments that are 

generated by a propeller working in angularly varying wakes have been 

developed. These methods include the effects of the fluid inertia upon 

the amplitude and phase of the generated forces - the "Theodorsen 

effects’*. Forms and detailed instructions ore given so that the 

calculations may be carried through with a minimum of effort by design 

engineers. 

(b) A method for computing the free-field pressures generated by a propeller 

has been developed, ‘'»is method, since It is based upon the-pcessura 

generated by moving forces, does not require corn ions for the inter¬ 

actions between sources,and utilizes the actual load distributions on 

the propeller blades. 

(c) Analyses have been made of the effects of pitch and of lift distribution 

oqross the blade width upon the free-field pressures generated by a 
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propeller. 

(d) A theoretical study of the pressures generated on the surface of a wedge 

having a small solid angle that is inserted into the pressure field 

generated by an oscillating dipole is presented. This original work 

is an important step in evaluating the pressures on the hull - as 

distinct from the free-field pressures. 

(e) Dynamical equations have been developed to determine the reactions 

in the bearings of the propeller shafting as a consequence of the harmonic 

forces and moments at the propel I er. These equations include the coupling 

between mutually perpendicular planes of motion that result from gyroscopic 

action in large masses and from anisotropy in the bearings. The staff 

of the David Taylor Model Basin have programmed these equations for a 

digital computer. 

(0 Equations have been developed to evaluate the gyroscopic effects of 

uniform shafting. These equations have been used to show that it is 

proper to neglect these gyroscopic effects in the calculations of ships' 

propulsion shafting. 

As is usual in a study of this type, there are many facets of the problems 

that will require further study before the solutions are complete. Among these 
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ma/ be listed the following: 

(a) A stud/ of the effects of blade width upon the fluctuating forces 

produced by high frequency stream and gust variations. 

(b) The Theodorsen effects that apply to a blade that is moving 

harmonically in the direction of the stream. 

(c), A more complete study should be made of the effects upon the free- 

A 

s 

field pressures of blade pitch angle and of lift distribution along the 

blade (also on the face and back of the propeller). Ways of incorporating 

these effects in a reasonably simple calculation should be included. 

(d), The intensification factors for various surfaces should be investigated. 

These studies should include: 

P'' (1) Further studies on the wedge 

(2) An Infinite circular cylinder (information on this exists but 

is not in a useable form) 

(3) An infinite elliptical cylinder 

(5) A torus or a parabolloid or a hyperbolloid of revolution 

(Ó) An ellipsoid 

Each of these studies represents a substantial amount of work. 

In addition to these, the theoretical work should be utilized in a 

procedure by which a designer can determine the intensification factor at a 

A 

s 
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A 

point on a ship's hull. 

X (e) A study should be made of the effects of structural flexibility at 

the boundary upon the intensification factors. 

(0 Since the stiffness of the bearings has a very important effect upon 

the accurate calculation of shafting bearing reactions, methods of 

determining these stiffnesses (both laterally and rotationally in^wo 

perpendicular planes) in struts, and stern tubes should be developed. 

The results should be checked by experiments. 
*# 

(g) The report contains a procedure for estimating the lowest natural 

frequency of the propeller blades. This procedure should be compared 

with experimental determinations. A method of calculating the natural 

frequency of propeller blades with a higher degree of accuracy should 

be developed. 

(h) |t was not possible, within the limitations of this contract, to fully 

test the computer program for determining bearing reactions. This 

program should be applied to a system that will utilize its full 

capabilities. Careful attention should be paid to assuring that the 

i Input information completely and accurately represents an actual 

/ system and the results compared with experimental data. 
) 

The methods developed during this project now make it feasible to study 

many factors influencing propeller vibration that was not practical to study in the 
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pait. Some of fhe»e ore lilted below: 

(a) In the experiment* nn propeller vibration run by Profeisor Lewi* in 

the paif, he ha* computed the value* of the propeller forces generated 

by irregular wake* and compared them with the forces that he 

determined experimentally. In general, the amplitudes of these 

force* agreed reatonably well, but the phase* showed poor agreement. 

It would be desirable to find out whether including the "Theodorsen 

effects" would give better agreement between the calculated and the 
m 

experimentally determined force*. 

0») The possibilities of reducing the vibratory forces generated at the 

propeller by variation* in design should be itudied. These Studie* 

should include: 

(1) The effects of skewback and rake. 

(2) The possibilities of shaping the hull in such a manner os to 

change the higher orders of wake variation enough to reduce 

the propeller forces. 

(3) Is it possible to obtain both low vibratory forces and high 

propulsion efficiency? 

(c) The design factors that influence the forces transmitted to the hull by 

the pressure field surrounding the propeller should be investigated. These 
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studies should include: 

(1) The manner in which hull clearance effects the hull forces. 

At which point on the propeller is hull clearance most 

important? 

(2) What is the influence of the propeller blade shape (rake and 

skewhack) upon the hull pressure forces? 

(3) What is the effect of the inclination of the propeller axis to 

the hull on the forces and moments generated? 

(4) Will local hull flexibility in the vicinity of the propellers 

have an influence upon the vibratory energy transmitted to 

the hull? 

(5) Recognizing that the pressure field from the propeller has a 

wide variation in phase, is it possible to shape the hull in 

the vicinity of the propellers in such a way that the hull 

pressures from the propeller will cancel? 
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Appendix A 

Calculation of Fourier Components of Wake 

On the following pages, tobies are given for determining the 

harmonic coefficients for a periodic curve based upon 24 ordinates 

(15° interval) and 16 ordinates {22 1/2° interval). These tables are based 

upon the Runge method of harmonic analysis. A discussion of the method 

and its limitations is given by Manley.^® Most woke surveys appear to 

be made in 15° or 22 ]/2° intervals. If however, a 20° interval is used, 

a harmonic analysis form using Ï8 ordinates that has been developed by the 

Bureau of Standards^ may be used, and if a 7 1/2° interval is adopted, 

a form based upon 48 ordinates is given by Den Hartog.30 

The use of these tables is self-explanatory and they are applied to 

a specific example in Appendix I. 
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SCHEDULE FOR HARMONIC ANALYSIS 

24 ORDINATES 

y 

0 

(12) 

1 

J23L 
2 

(22) 

3 

(21) 

4 

(20) 

5 

(19) 

ó 

(18) 

7 

(17) 

8 

(16) 

9 

(15) 

10 

(14) 

II 

0?) 

Sum:c 

MLi. 

c 

0 1 

(II) 

2 

(10) 

3 

(?) 

4 

(8) 

5 

Í7i 1 

■Sumía 

MLL *0 

d 

0 1 2 

(»0) 

3 

(9) 

4 

(8) 

5 

(Ti 

.Sum: a 
M£:h 

e 

0 

(3) 

1 

(5) 

2 

(4) 

Sum: k 

f 

0 

(3) 

1 

(5) 

2 

w 

Sum; rc 

Dlff:n 

a 

0 

(3) 

1 

(5) 

2 

(4) 

Sum:o 

Diff:o 

h 

0 

(3) 

1 

(5) 

2 

(4) 

Sum:q 

Dlff:r 

Table (q) 
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SCHEDULE FOR HARMONIC ANALYSIS 

ló ORDINATES 

y 

0 

-J8]_ 

-¡-- 

(15) (14) 

3 

(13) 

4 

(12) 

5- 

(H) (10) 

—7- 

(9) 

-Sum: c 

Diff: d 

C 

0 

(4) 

1 

(7) 

2 

(6) 

3 

(5) 

Sum: c 

Diff: f 

d 

0 

—Ë)_ 

1 

—(7) 

2 

(6) 

3 

(5) 

Sum: a 

Diff:h 

Table A-2(o) 
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Appendix B 

Calculation of the Thrust and Tangential Forces Developed 
by a Radial Blade Element Operating In a Steady Wake 

The method of calculating the variable forces and moments developed by 

a propeller Is based upon the determination of the changes In the steady forces 

acting on radial elements as they are subjected to the varying flow caused by 

wake fluctuations. The first stepjs the determination of the steady elemental 

forces and a method for doing this has been developed by Burrill. ^ Since the 

method is somewhat difficult to follow without detailed study of the paper, and 

since the objective of this calculation is different from Burrlll's original purpose, 

a new calculation form was developed. This is presented in Table B-l and 

detailed instructions are given for the use of this form. A determiniatlon of 

Propeller Section Characteristics is required by this calculation form and Table B-2 

is used for this purpose. Table B-3 Is a designation sheet used with the instructions. 

It is necessary to refer to Burrlll's paper^ in using this form. 

The application of the calculation forms to a specific example is given in 

Appendix I. This appendix also includes a check upon the calculation obtained 

by integrating the elemental forces over the propeller. This calculated result is 

compared with the propeller characteristics as determined by Model Basin tests. 
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CALCULATION OF THRUST, TORQUE & EFFICIENCY AT 
X * r/R = J = V/Nd = 

Dlom 
Pitch 
V. (W|, 
N 

S3 

S3 

S3 

«3 * 

KjsC# s 

t = 
c = t/c = 

■* 
oLnt > 
ti.-- 

& 
e- 

O + ft0 + ^v,T 
*_ 

tániMT/Try» 

Go « 

.E» 
ôo-^p * 

*1 1 

^ a e.-ot, 
i 

kc 
4m f 
Tau A 

# 

t*»i ^ 

(i-MSA““» 
L_Hl!_ 

/a+ti 

*,* = 

ct = 

Si_ 
Cl. - r 

C>OXlN 

ACo¿ 

C,*- 

?Cl= 
C L * 

= 

•y * 

c«*M» 

îmi^ Hu 0-*r) 

Ki* , 

it* « Ka 
y t< * (i y 

n . JL . tC> „ 
’V »w TJ» * 

Té* <P 
Cl> ^ * TfcHl+Vt) 

X 
CJ% p n ^ 

fii ^ CÄ KÄ 

F * Cr *r 
t 

Table B-l 
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PROPELLER SECTION CHARACTERISTICS x * 

.90 . 80 . 70 .00 . 50 . 40 . 30 . 20 .10 
■.-.. Chord » C -- 

• 1 
^.(Theory) = ^ j X] + f2 /3 + f3 ^ + • • ' -fl9 X]^ 

Station 
Position 
from 
L. E. 

Y 
ins. 

Multi¬ 
pliers 

fbf2 etc. 

Functions I 
(fjxx^fc. 

Xi o:o5C 5.04 
X2 0.10c 3.38 

0.15 C 3.01 
y4 0.90 C 2.87 

0.25 C ? R1 
xA 0 30 C 7 84 
X7 0.35 C 2.92 

.>¡8 „ 0.40 C 3.09 
^9 0.45 C 3.37 

yio 0.50 C 3.64 
^11 0.55 C 4.07 
y1? 0.60 C 4.64 
y13 0.65 C 5.44 
Xu 0.70 C 6.65 
y15 0.75 C 8,59 
y16 0.80 C 11.40 
y17 0.85 C 17.05 
yl8 0.90 C 35.40 

M9 0.95 C 186.20 
z 

Theor*ticaI “ 

Actual ct0 = 

Nosa - Tall Slopa 

I 
7^3 

X Theoretical <A0 
Note rise - Tail rite 

Chord 
X 57.3 

X 57.3 

Table Br2 
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SPECIFIC INSTRUCTIONS FOR THE USE OF TABLE B-l ENTITLED 

"CALCULATION OF THRUST, TORQUE AND EFFICIENCY" 

For Designafion of De*ign of Propeller, Speed and Draft, 

Location of Section 

® ®/© * ,® 
(4} From Propeller Design, 

From Propeller Design ot the radios under consideration. 

Average lortgitudinal wake at the rodius. From harmonic analysis of the 

wake survey. 

(7) Ship speed x ( 1-W| ) x 101.33 - in ft/min. 

(§1) From Propeller Design - in R.P.M. 

® <Maximum thickness of the section. 

I® Length of chord of section. 

© ® ^ ® 
(^2) As indicoted; B = No, of blades., C * (Í0) , r - radius of action of section 

in some units of measurement as C. 

^ao/ A correction to relate the theoretical value of the angle of attack for 

zero lift in a uniform airfoil of infinite length to that obtained by experiment. 
• / 

Voigt abtomtd from Fig« ó ( iobtütd Fig* 7 Sn poptr )* Max* Comber corresponds 

« 

hfi*-'M" '•i i y 
,, - , n i v: i ' H-s , i .. .....,- • ■* • u ,.y , »4», j'k• ti. .. 

•J k ’ V->i SS tJ - ' 1 
. * .«ly, 

>!•>• . 1-- »• •• -kN, - u -1. 



in 
CALCULATION OF THRUST, TC 3UE & EFFICIENCY AT 

X = r ’A = © J = V/Nd =© 

DIam = W 
Pitch *= g 

Va (WI = ©) = S 
N 55 & 
rj.jj UiüL ;; = © 

Ks * 0 

Kj*.s © 
K34 * @ 

fer ^ ) 
A 

CttHg 

@4© 

^<3 

'*© 

t = (9) 
t/c = @ 

c « Od 
® s 

<Ant * s-\ z 
tdLM Ô-TAnrs c<8) e - 

0 + *0 * 
,.A*e m"R3)*(U¡} * -¾ B0 * 

n.nO«T/TrXa (5í) 4>* $ 

*1 “(^7 -W 
¢1 s e0-oc, 
a ■ <|>-tp 
£ * <p -t-p 

KE X 5m 
ton â 

7¾ 

*» 

«»»CiKcSi«^ tín^ô 
ta*\ tf» 

0-^)¾ “ «i 

_© 
© 

® 
. „*at_ ist 

C4,° ::^(0.52,-0.¾¾) > © 

° ;© 

C^opT 

Çk_ 
Ct, - CCofr 

w 
M 

'OHlN 

ÛC 
D9', S1&_ 

Wi 

@ 

îct=!4.®@ 

Cl * 

Cu« 

*Y r 

^ 11 
© 

Co»[Y}* Ä 

=_©_ 

k4.k¿a. @ 

‘ - w<r^ 

n*Ä ‘4f> » «A 

Clt, n T*h (♦♦Y) 

© 

® 

\ i 
C. * p n D 

• © 

C * CxKÍ 

« @ . 
r «CrV 

» ® 

Designation Sheet for Instructions 

Table 8-3 
101 



CO NE SC 0 corwilfonti In engînMrîng icî«nce 

fo maximum y In prop«!!#r **cIIon charaderltHc* celculaHon. f/c correspondi 

i» ©. 

It a corr«ctio*i to th« thooretical (lope of the lift curve of a uniform airfoil 

of infinit* length to give agreement with experimental reiulti. The value 

of thli It obtained from Figure 7 (mislabelled Fig . 6 in the paper}. 

(ß) A theoretical value of the angle of attack for zero lift Is obtained from the 

Propeller Section Characteristics calculation form. Table B-2, for the section 

of Interest . 

(Jó) ¢5) corrected by experiment at indicated. 

(J/) This value Is determined at the bottom of th* Propeller Section Characteristics 

Calculation, Table B-2. 

(J?) As indicated: — 

® fon”1 P_ 

@ »um as Indicated. 

It It necessary at this point to moke a small correction to the no lift angle of attack 

that is caused by the Interference in the circulation around the blades caused by a 

cascade effect. This correction Is obtained from Figure 15. The value of a is given 

by (¡2) . However, th* value of 0° is not known and must be estimated. Fortunate¬ 

ly, th* correction resulting from this cause Is small and so an estimated value of 0° 

may be used. To obtain this,pass down to determining t . 
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@ 

©A © os indicated, 

tan“^ (2j) as indicated. 

Since 0 = 0O - al/ it may be roughly estimated as follows: 

a] is roughly ( @ - @ ) (0.52-0.2x) 

0 is roughly (|o) - a j 

With the value of 0as determined by this side calculation enter Figure 15 

to find a preliminary value of Kg30. 

The value of the cascade correction to the zero lift angle now follows as 

indicated on the form. 

4) as indicated. This is 

6) This is (¡25) - (22) as indicated. 

(£?) An empirical value for the angle of attack from the zero lift value is given 

by @ (0.52 - 0.2 ® ) as is indicated on the form. 

The value of aj is now refined by a trial and error correction procedure as indicated 

on the left side of the form. 

as indicated 

as indicated, 

as indicated. 

At this point, a factor is introduced to account for the finite length of the propeller 

blades and the spilling of the circulation over the blade tips. This factor is based 
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í 

áRi- 

Ipä 
mmi. 

© 

® 

© 

© 

upon cornplîcatad fheoreficol calculaHon* which are summed up in Figures 2 and 3. 

(3]) For the value of & , (30) , and the value of x, (?) , enter Figure 3 

or Figure 4, depending on the number of blades, to determine the value 

ofKc , © . 

tan 

sin © 

Since C2 required for the next calculation, it is necessary to ascertain 

its value. To do this, d correction caused by the airfoils being in cascade, 
*4 

and applied to the slope of the infinite airfoil lift curve, must be determined. 

This is given by Figure id as a function of 0°, © t, and <t, © . 

/For Ogival, round-back, Sections see paragraphs at the end of these 

InstructionsJ^. 

The value of Cj i*: 

c2 * 2x57.3 36.48 

K j x it x e* Kgj 

The value of «2 0* indicated Is 

» tan 

Found by entering Figure 2 or 3 with 

at this point to also check Kfl aQ, 

there has been any significant change in its value, 

-d- ® > ® ® / @ as indicated. 
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Using a 3, it is now possible to find an improved value of by 

the procedure outlined. The approximate amount of the change re¬ 

quired to improve a j is determined by the indicated formula 6 aj = 

( ® - @ > © / < © * ® )• 
This differential correction to «] j (Tf) f is added to the previous 

value, (¾) , and the whole procedure repeated. Generally, this 

will give a value of «3 =a ^ but if not, the procedure is repeated 

again until agreement is reached. 

When a] is determined, all of the flow angles and corrections are determined. 

Now the forces corresponding to these flows are computed. 

/For Ogival, round-back, Sections see paragraphs at the end of these 

instructions^. 

Cl = Ksj< 2 n X a, X Kgt = © x final a 1 x 

3TT TÏÏ7Z 

This lift coefficient is increased by the cascade effect and the amount of this 

is related to the drag coefficient of the section as shown by Burrill's paper. The 

procedure for evaluating the drag coefficient is given on the left side of the form. 

^For Ogival, round-back. Sections see paragraphs at the end of these 

instructioQi,/? The optimum lift coefficient, Cl opfv i. e. the lift 

coefficient at which the drag coefficient is a minimum, is computed by 
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th* uie of Figure 9 in which the curvet ore entered with the */0, (f^ , 

and the location of the maximum camber, i. e. the location of the 

maximum value of y, at given in the Propeller Section CharacterUtici 

Calculation. The value of K] taken from theta curvet it multiplied by 

y i max/c to find Cl opf. 

/"For Ogival, round-back, Sections see paragraph* at the end of thete 

InttructionjL7< The difference between the uncorrected lift coefficient 

and the optimum lift coefficient it obtained at indicated. 

/ For Ogival, round-back, Sections see paragraph* at the end of thete 

Instructions^. Corresponding to CLcpt ^er* ** a minimum drag coefficient 

whose vahe it: 

CD min-0.0056 + 0.01 t/c + 0.10 ( ^ }2 + K9 

The value of IC2 in this relationship Is determined from Figure 10 as 

determined by the position of the Ç camber from the leading edge, the 

amount of center-line camber and the thicknets ratio, L . 
c 

/ For Ogival, round-back, Sections see paragraphs at the end of these 

Instruction!,^ To this minimum Cp Is added an additional quantity that 

is given by K3 (Cl - Cl ) , where K3 is given by Figure 11 or 

Figure 12. 

/For Ogival, round-back, Sections see paragraphs at thé end of these 

InstrvctloniT* In addition to the above there is an additional drag 
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resulting from the cascading of the blödes. The magnitude of this drag 

coefficient 

A ag X Cl 

5773 

© 
© 

© 
© 

© 

© 

@ 
© 

The total drag coefficient is the sum of the previous values 

= © + © + © 

It is now possible to compute the correction to the lift coefficient for 

for cascade effect. As shown in Appendix III of ßOsrill's paper,this is 
«• 

6 Cl = ~ Cp tan ß Kj , äCl = -L © x final value ©x (© 
2 

= Cl + à as indicated. 

The tangent of the drag ongle, r , is defined as !EE ^ 

cl e 
Knowing the tangent, {© ,y , may be determined. 

The angle of the resultant force on the blades is the sum of 0+Y as 

indicated. 

Since the amplitude of the resultant of the lift and drag coefficients is 

Cl/ cos y » cosy I* determined as shown. 

For transferring the lift and drag forces into thrust and torque forces the 

tangent ( 0+y ) is determined cs Indicated. 

Likewise: stn ( 0+y ). 

Q , a coefficient used in the computation of the force coefficients is 

determined as indicated s rr^ © 3 © 
Yl 
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The quonHty, a , is used !o evaluoie ihe slream velocity to the airfoil 

In terms of the propeller velocities and is confuted as shown 

( @ - gi) i ® 
a) + CT @> 

1 - a' = 1 - 

Kq'/ the force coefficient for the tangential force, is computed as shown 

@ @) 2 '1 • 2 2 ( i + © ‘ ) w: 

Kq1/ the torque coefficient, * Kq1 x = ($]) x @ 

2 

ton ( 0 + y* ) 

Efficiency check.: n - |^r= 

tan 

tan ( 0 +t) 

To compute the actual force on the blade, a propeller constant 

C5 « p tr D is required 

For salt water, p * ^* 1*99 

© I fl si « 2=; in r.p.s. 
60 

D* (J) In feet. 
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© The tangential force per foot of propeller blade length at the radius 

being studied = C5 Kq' = ^6) (6l) . 

The thrust force per foot of propeller blade length at the radius being 

studied = C5 Kp = ^56) ^52) . 

When working with Ogival sections, the characteristics of the sections are defined 

more simply than for airfoil sections. Thus it is possible to determine the lift and 

drag coefficients more directly. The calculation procedure is modified as follows: 

© c2 = 

© q. 

_2 X 57.3 h _36.48_ 

K* tw+ Kfl, (1 -0.02a) (g) @ @ x (1-0.02 © ) 

K, Kgj 2tr a (l-0.02a)= (g) x © x © (1-0.02 © ) 

57.3 " 9,072 

^5) , not applicable. 

© Determine aKgj-a0 +Acg 

= © X @ - © + @ 

With this value, enter Figure 14 at the proper value of f/c, © , and 

ascertain Cq¡, © . 

@ The above drag coefficient is determined with respect to the flat face of 

the blade. To refer the drag coefficient to the hydrodynamic pitch line 
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i'tM.WH/V'H«*’' .»■-'ÍIMI-I»fff«■■'•> 

ît î* ntCMtory to odd a correction factor 

- CL.0 0 * Kg* ï « ^5 

- © © <>- @ > *S^3 
@ Airead/ included In @ 

The remainder of tho calculation procedure ii unchanged. 
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Appendix C 

Calculation of the Vibratory Forces and Moments on a Propeller. 

Using harmonic analyses of the longitudinal and tangential wake and the 

determination of the steady thrust and tangential forces on radial elements of 

the propeller, a form (Table C-l) is given for the determination of the vibratory 

forces^nd moments on a blade arising from the wake variations. Detailed 

instructions for the use of this form are included. The determination of the 

vibratory forces and moments on the whole propeller from these blade values 

Is accomplished in Table C-2. 

The application of these forms to a specific problem - the determination 

of the 4th order forces and moments on a VC2-S-AP3 Propeller - is illustrated 

In Appendix I. 
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mM 

SHIP SPEED 

ON ONE HADE - SHEET 1 

_ORDER, n 

RPM PROP. DIA. O. to 

0.30« 0 «5 « n «ne 0.90« 
Fi. Ft. Ft. 

... wu 

'-wl._ 

3. VZ/lr 

i *_ 

5. t 

6. Sin2 4 
7. Co*2 4 

8. '/< Sin 4> cotf 

9. U » (l-a^VÎÎTûn^rLr 

10. UaJ« chnrA c. 

12. WLn 

13. Wtn 

u. wi V(l'WW 

15. Wtn V/r^-r 

16. 14 + ÎÏ5I 

17. V* Sin 4* coif fïil 

18, M+î N (Fin .21 

19. Fît] X fiel 

20. Sîn2 4 W1V 1 *'WLo} 

21. cot2 f Wtn V/n r 

22. Í2Í - 20 

23. B + i A (Fla.l ) 

24. Í221 X (23l 

25. IBÎ + Î24l 

26. Go 

27. Fo 

28. Gn “ I26Î * J25l 

29. Fn » ® X M 

30. Grt Rmultonl + ond»_ 

TobU C-1 (a) 
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CALCULATION OF HARMONIC FORCES A MOMENTS 

ON ONE BLADE - SHEET 2 

_ORDER, n 

SHIP SPEED PROP. DIA. RPM n 

0.308 0.55R 0.80R 0.90R 
_Ft. Ft. Ft. Ft. 

-32.-Skcwback °_ 

-33 -Skewbock - phase 0 

-3ii...-?nTef._Hne - R + 

35. ^n-ref. line - R + Z. 

-3a..^n-ief .-linc -Re -f lm 

37, ^n-rtf. line - Ro-«- lm 

-38. IntearaHofi Contfanf 

39. f (Gn) 

-40.f (Fn)_ M» 

41. f (fGnl _ 

.42, f 1' F„l 

-43,_jjGn)_ 

-4fL_LÜ 

45. F *r Gn1 

46. f (rFn) 

Table C- 1(b) 
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Specific Imtructien» For th* Calculation Of Vibratory Force« And Moments 

On a Propeller Blade 

(CITE refer* to the form entitled "Calculation of Thrust, Torque and 
Efficiency" - Tcble B-l at the radius under consideration) 

JX. ** 2 rtx foP* u) =n4%radius of section, r,^= ^ . j 

1. From harmonic analysis of the woke - alto used in CTTE, 

2. As indicated. 

3. V* (ship speed knots) O-W^) (1.689) 

4. - angle of attack, a , in radians j^2) in CTTE.-f 57.3. 

5. Final value of @ in CTTE. 

6. Square of final value of (^2) in CTTE. 

7. 1 - ¡U . 

8. As indicated. 

9. (l-a*) is @ in CTTE, I + tan2 0fs given in © in CTTE, A and 

r from previously listed values. 

.IQ. - © in CTTE. 

11. [lO j X <u (from hooding) /2 x [ 9 | - This is the Theodorsen frequency 

parameter. 

12. From the harmonic analysis of the longitudinal woke at the radius of interest 
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and for the order being investigated. The real port is the cosine component, 

the imaginary part, the sine component. 

13. From the harmonic analysis of the tangential wake. 

14. 

15. 

20. 

21. 

@ ■ 0 
0 *□ 

as indicated, 

as indicated. 

16. As indicated. 

17, j 8 I X J 16j as indicated, this is ar> . the ratio of the nth order 
- a 

variation in angle to the steady angle of attack of the section. 

18. M and N are taken from Figure 2 at the proper value of the Theodors«n 

Function, 0- 

19, A$ indicated, this gives the ratio of the nth order variable lift to the average 

lift for the variations in angle of attack due to wake. 

0 
0 

0 as indicated. 

X I 151 os indicated. 

22. As indicated - this gives the ratio of the nth order variation *n stream velocity 

to the average stream velocity. 

23. B and A are taken from Figure ] at the proper value of the Theodorsen frequency 

parameter -0 
24. As indicated - this gives the ratio of the nth order variable lift to the overage 

lift for the stream variations caused by the variable woke. 

25. As indicated - this gives the ratio of the total nth order lift variations to the 
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average lift for both gust and stream variations. 

26. G0 taken from CITE @ . 

27. F0 taken from CTTE © . 

2B. As indicated - this is the nth order variable tangential force per unit radial 

distance. 

29. As indicated - this is the nth order variable axial force per unit radial distance. 

30. The values of thrust and tangential forces are those at the center of the chord of 

the blade section. When the blade is skewed, this center of the chord falls off 

of the reference line and the thrust and tangential forces for the section must 

be corrected for the shift in phase. This is done by changing to amplitude and 

phase angle adding the corrected phase angle and then returning to real and 

imaginary components for integration. 

n 

32 Skewback ongle = of cent<!ir of chQf<1 from ™fcrence linc K 5^ 3 
r 

(if the offset is in inches, then r should be in inches. 

33. This is n times the skewback - n is the order number. 

34. and 35. 0is decreased by the skewback angle. 

35, Gf A « Result Gn cos 0 G lmn s Result Gn sin 0 
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37. Fren = Resuli Fn co* 0 Flmn = Reiult Fn *in 0 

38. At 0.30R, the integration factor is D/24. 

At 0.55R, the integration factor is D/ó. 

At 0.80R, the integration factor is 7D/120. 

At 0.90R, the integration factor is D/15. 

39. and 40. These are [só) and | 37 J each times 38 

41. and 42. These are j 39| and | 40 J each times r. 

43.44. and 45. The quantities in^he columns are summed giving real and 

imaginary terms. 

^ ^ ^n) '* order variable axial force on the blade. 

5: f (r Gn) is the total nth order variable torque on the blade. 

^ f (Gn) and 2 f (r Fn) are functions used in the determination of the 

horizontal and vertical forces and moments generated by the blade. 
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Appendix D 

The Effects of Pitch and Chordwise Lift Distribution on the Free-Field 

Pressures Generated by a Propeller 

In the body of the report, the pressure in the free-field resulting from - 

axial and tangential forces concentrated on a line at the center of the propeller 

blade Is developed. This appendix investigates the free-field pressures that a 
•4 

radial element of a blade generates when the pressures are distributed along the 

chord rather than concentrated at a point. Although in some cases the errors that 

result from the concentrated load simplification may be large, the more exact 

treatment is difficult to apply and is not considered to be adviseable until other 

uncertainties are reduced. To simplify this analysis, it is assumed that the 

thrust and torque forces at each racial section are uniformly distributed as 

pressures over the chord. 

Because the propeller is rotating about its axis and because of the pitch 

of the propeller, It is desirable to designate locations on the propeller in 

cylindrical coordinates. To remove the rotation from the problem, as rar as 

possible, choose a blade reference line (usually the center of the section) and 

let the angle between this line and the y,vertical, axis be 0. ' Designate a location 
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on the blöde by the radius r and the angleftmeasured from this biade reference line 

Let the angle of the leading edge of the section be 6q and the total subtended 

angle of the chord, i^h* Let 0represent the pitch angle of the section. Let 

the X coordinate of the blade reference fine at the radius r be d. These 

quantities are shown in Figure 0-1. The cartesian coordinates of the point on 

the propeller blade become: 

X * d + r* tan 0 

y “ r cos ( ft +d) 

r sin ( 0 + 0) 

The pressure at a free-field point, a, b, c, caused by an elemental 

thrust force F d 6 is 

Pp “ 

rr 

_!_ 1É!. 
4n 6 

a-x 

where S ** ^ (a-x)^ + (b-y)^ + (c-i 

The pressure at a, b, c developed by the thrust forces acting over the 

whole section is: 

F /° {a~d-r tangí) dft 

^ tj-l ^(a-d-ròtan 0)^ + |[b-r cos (0 + 6 )J ^ + Jc-r sin ( Ô + ) J | 
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Thi* ralotlonshlp moy ba normollzad by dividing each distance by R 

To Integro»« this equation, the sines and cosines of in the denominator 

ore expanded In power series of ft to the second power of ft and then by use of the 

birsorruisi theorem, ibe entire denominator is expanded so that it appears in the 

numerator as a power series of ft . 

Thus: 

cos ( 9 + *) » cos 9 cos 6 - sin 9 sin ft 

6 2 
“ O - y ...) COS 9 - (ft+ ...) Sin 9 

sin (9 + ft) * sin 9 cos ft+ cos 9 sin ft 

ft2 
" ( 1 - -j- + • •sin 9 + (ft + ...) cos 9 

and letting (*££¡1.'t + (jr)^ + (~)^ + (J1 )^ 3 K R/ R R 

br „ a cr - /• 

yi2R2 ^2 r2 
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the denominator becomes 

j ^ 2 cos 9 - 2_f i-' ^ sin 9 

+ £- 2 < ( 1_) tan 0+ 2 sin 0 - 2 02j£ cos «J ft 

+ £ (i.)2 tan2 0 cos 9 + ^ 2jJ sin 9^ ft2+ 

Expanding the donominatar to the minus 3/2 power by the binomial theorem 

gives the following expression for free-field pressure due to F 

Pc = 

F 4nR2 (1-2S cos 9- 2j$ sin 9 )^2 
Ea-d , r 6 tan 0 

ôo-éch 

3A‘+ B8tTA2]‘2ldS 

where: 

a =. L ,1 tan 0 + 5 sin 9 - í cos 9 
j)2 " ^^ 

1 - 2£ cos 9-2^5 sin 9 

i / \2 2 
B = ^ j tan 0 + cos 9 + sin 9 

1 - IJ- cos 9-2^5 sin 9 

and where fL = - öch (the reference line is at the center of the section) 
° 2 

a-d 

PF = F R 

4 nfr^U^ ( 1-2J cos 9 - 2^5 sin 9 ) '2 7, 

[-+ iff - I B+ ta2+ +- ; 
J23 
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Following a similar procedure. It can be shown that the free-field pressure due 

to the distributed tangential force, Gn Is 

4rtR2 W (I~2 Jcoe 0 - 25 sin Õ ) ^2 
3/ {-Jsinö cos 0 ) 

+ [.ln»(Í3 + 3>At Bri|jA2) 

+ CO.» (-1Í+3SA -§}»*pA2)] j 
In both cot#*, tha praiiura li that dua to tha concantrotad loading plus a correction 

factor proportional It should ba recognized thot Is not smoll and 

that tha highar powars of « ch con only ba neglected if their coefficients are 

tmaSI • For propellers whose blades ¡ust fall to overlap in the axial projection 

ell 38 120® “ ~ rt for a three bloded and 90^ =* for a four bloded propeller. 

Checks at critical locations, where the pressure is desired near the 

propeller and the pitch angle is large^wiil show that the coefficient of is 

not always small and negligible. However, it becomes of lesser importance as 

the distance from the propeller increases and the present state of the art of 

computing hull forces generated by the propeller does not justify the complications 

Introduced by the more complete treatment. 
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Appendix E 

Diffraction of g Dipole Field by o Wedge 

by 

Muso Yildiz and 

Osman K. Mawardi 

• 1. Introduction 

The determination of the diffraction pattern of a wedge in a dipole field 

is of interest in several situations of practical importance. One such situation, 

which instigated the work described here, is the study of forced vibrations of 

the hull of a ship induced by the water-borne pressure fluctuations set up by the 

propeller It was shown by Lamb^® that in the investigation of wave phenomena, 

a fluctuating force may be represented by an oscillating dipole of the same frequency. 

Accordingly, a reasonable estimate of the pressure fluctuations on the ship's hull 

and also in the vicinity of the propeller, con be made by considering the 

idealized situation of a dipole source close to a rigid wedge of infinite extent. 

The general problem of the diffraction of plane sound waves by a wedge 

has been discussed at great length in the technical literature. The procedure 

125 



CONESCO comultoníí In engineering »cianea 

commonly foi lowed In the treatment of these diffraction problem» moke» use 

of many valued solutions of the Helmbolz wave equation. Thi» fundamental 

idea originally due to Sommerfeld^ has turned out to be a very powerful 

technique for the study of two-dimensional diifraction problems. In the cose 

of three dimensional diffraction problems, however, Sommerfeld1» approach Is 

not applicable, and on alternative method of solution for the diffraction field 

of a wedge had to be explored during the project. 

The method that was used waijactually developed by Kontorovitch, 

Lebedev, Titchmarsh, Weyie ond others,^ and makes use of the spectral repre¬ 

sentation of Green's functions. A common drawback of such spectral representation 

It that It yields infinite series which are slowly convergent. To remedy this 

difficulty, a number of artifices, like the saddle point method of integration, 

are usually introduced to facilitate the calculations, in this report. It has been 

possible to obviate the above-mentioned difficulty by deriving a closed form for 

the diffracted field which considerably simplifies the computations. 

The present investigation is divided in three parts, in the first part, an 

expression is obtained for the derivation of the dipole field from a Green's 

function. The determination of the appropriate Green's function constitutes the 

bulk of the second part. Finally, in the third part, the pressure distribution on 

the surface of the wedge is discussed. 

2, Statement of problem 

The general problem of the diffraction of a dipole field by a rigid wedge 
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can be visualized as a "forced" exterior boundary value problem. This means 

that the diffraction pattern can be estimated from the solution of the forced 

0) 

In the above equation $ stands for the velocity potential, and k, the wave 

number, Is the ratio of the radian frequencyco to c, the velocity of sound in 

open space. The term^.(r ') on the right hand side of (1) is the density distribution 

function for the dipole sources. The position vector r/ is reckoned from the edge 

of the wedge (Fig. ß-1). 

The required solution of (1) must be continuous throughout the region 

exterior to the wedge except over a prescribed region V which coincides with 

the positions of the dipole sources. The velocity potential must have a vanishing 

gradient in the direction of the normal to the surface of the rigid wedge. The 

solution must also satisfy the Sommerfeld's radiation criterion^ 

(2) 
in the exterior region as well as on the surface of the wedge. 

It is convenient to introduce the Green's function for the exterior region 

of the wedge. This Green's function G (_r, j;' ) satisfies the inhomogeneous 

V1G(r.r')+f.lG(r.r')«-S|r-r') (3) equation. 

where jrand^r * are the usual notations for the position vectors of a test point 
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0 ¡oe rom of coord ¡not« system used. 
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and source respectively. When the regionV*over which the sources are 

distributed reduces to a point, the solution of (1) con be deduced at once from 

that of (3). 

This is shown in fhe following manner. 

The density distribution function^ (rj of a point dipole can be written as 

ÿ(c')=lim ' A (£'+&£')-&(C*) 
I Ac l^o I Ar'l 

i.e., the resultant of two point sources of equal strength but opposite polarity. 

In the limit ofj^ r'J tending to zero 

y(r')= A ÍS !c-r')) (4) 

where A is the strength of the dipole source ond > , is the directional derivative 

taken along the dipole axis. The differential operator ^ affects r1 only. 

From the linearity of the differential equation (3), it follows at once that 

^(r)=A2i.Q(r,r') <« 
The determination of the Green's function consequently completely defines the 

problem. 

3- Green's function for the exterior domain: 

The domain exterior to the wedge consist* of the region of space inside a 

sphere of very large radius R, centered at 0 {Fig. E-l) from which the wedge 

has been subtracted. Because the boundaries of the wedge are easily described 

by spherical coordinates, these coordinates are Introduced as Indicated on 

129 



CON ESCO consultants In «ngínoorlng science 

Fig. Enl .It is seen that the wedge is defined by the two semi-infinite planes 

(P*0 and ¢) =-|3 whose line of intersection is the polar axis. 

The starting point of the argument is an old theorem discussed by 

Moccuvitx^ which allows the expression of a Green's function in n dimensions 

as the integral of the product of n Green's functions in one dimension. The 

essential points of the proof are reproduced here for convenience. 

It is known^ from the theory of functions that ony arbitrary function sub- 

|ect to minor restrictions can be expanded in a series of orthogonal functions 

which form a complete set. Accordingly, one can express the Green's function 

j > of the wave equation in two dimensions ( ) by means 

In th« obw« relation is on aiganfunction of the differential equation 

£((p)=0 P) 
into which the wave equation separates. The relation (6) may be interpreted 

as an expansion of ) In (^) with coefficients 

Gg( £ > ^ It also turns out that G^( ) is 

the Green's function for the "separated" differential equation with separation 

constant 

From the theory of spectral representation36 it con be shown that 

(8> 
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where Gn Is the Green's function for Eq. (7) and where the contour Integration 

Is taken over the \ - plane. The variable^ stands for the elgenumber of (7). 

By using Cauchy's theorem, one can write by Inspection as a result of (6) and 

(8) ' / Gé(s.4'A)G,¡(?i,ij5 \)<j\ (¢) 

The same line of arguments can be extended to three cilmenslons which proves 

the origina! theorem stated above. 

Now the three elementary Green's functions which are appropriate to 
«4 

the wedge problem are obtained from 

■> 

r* i*. ‘ fr(rVi)+^ 
)Gr»4ir^)) (10) 

öd 

, i -V ^!n0^r —— 
and kin© ö© ÒB 

^ -S (12) 

In the above equations K, , and K*. are separation constants. The constant \/ 

is written as (ri-t-l ). (13) 

Since the wedge is rigid, the gradient of all Green's functions in die 

direction of the normal must vanish. This leads at once to the expansions in 
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orthogonal functions 

Q . ™sk^ h»\ (¿Tr;PZÉ2) o«p<:Zir-ß 
V A,, sin)\ >(Zrr~ßj 

(14) 

r - r^A+oP), 2*.-n (CO% )PL„ co^ ©> 
b® nvúij^íx^-xjff 

o^e^n' 

ood 

^r’K' |if^r<)C(Kr>), r ^ 

wh*ro |n ood stood for tho sphorical c/ündncal functions of order n. The 

general expression for the Green's function is by analogy to (9): 

f (r,*,o GAiG^XX) 

The factor rr'appears ¡ o the above equation because of the normalization 

condition^ for the ^ function which requires that 

Alio tho polos of tho intogrond of (17) occur for 

V = 
míf jms O, . 

(15) 

(1Ó) 

(17) 

1 

and for oil Intogral valúas of n. Tho astimotion of tho rosiduas of (17) was made 

by Marcuvltx3* for a situation similor to the ana considered here. Following a 

(18) 

(19) 
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similar technique one finds that the resultant Green's function becomes 

oo 

Zr£p zir- 
/,..,-.-.i 

tkTT 

COS CM W-fi)- 

___ ^n+i-üJll 
n « M V ¿ir-iS )/ 

Tlx.tl 

X £ V°5e)P"^°s e')-j (ir) f\ (%.r') 
rn.fr 
m I iiH'lii« 

»ifr-ji 

WJsJT Til- 7n IT 
(20) 

In fhe above exprejiion is Neuman's factor which is —J-*— v 
(Z-Ò )' 

TL L X OTh,/ 
The above series can be written in closed form by analogy with a 

70 c It (f* -» 0 
standard expansion07 for Q_ ~ ~ j. which is explicitly 

Ic-r'l 

çj-tfc i gxp [r't r/~¿rr/(g«»Qtote,'tfcinet,r'ec<>s^()-^,)]> 

/r r/ ¿Tr' []»"+r,,'-¿rr'(c«« ÓCíídVíi'neíilnd'c^sí^-^j ^ 

M. n«>n. ^ (21) 

yP-rlfSiéhí (ir)kln (kr') 
' (bum T'+Wv 
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Äy inspection, the two series (20) ond (21) bear a great deal of similarity to 

each other and it can be shown that the expression for (20) can be written In 

closed form as 

seA &V-¿rr-(^9 oeW«« )f (?o) 

Prw*»»'» distribution 

The distribution of the pressure on the hull can be obtained from Eq. (5). 

The directional derivative in spherical coordinates is given by the general expression 

where o< ,e< ,ot are the direction cosines of the dipole axis referred to a primed 
f A j 

frame shown in Fig. E-2 , and the polar axis of which is r‘. 

From elementary considerations the direction cosines of the primed frame 

with respect to the unprimed frame is given by the table indicated below. 

X y z 

•V 
sin&'cosfi' sinö'sin^, CO&0' 

V COt&CQif' CoSÔ#5/n^ -54a e 

-Sin Cos (fi 0 
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ï 

Figure E-2 

Frame of reference used in the évaluation of the 
directional derivative of Eq. (5), 
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Ü Ei «oiy, but laborious, to derive the coefficients ex, ^ or^ «j starting 

from th* value of the direction cosines of the dipole axis referred to the unprimed 

frame. These are found to be 

stn@ c©$<^ * sin© $ta$* ; cos 0* (25) 

Now th# required cKS are as ihown below 

<Xf «s cosQ co$Q*+ sin Q*sin, ß*cos 

cK^æ-coiô^sinÔ^ Stn ß*co$&'cos ((jî~(f) (26) 

and eXj a* sîrt0 s'mÇfi-Cj)). 

The general relation for the pressure distribution is then 

X Q^^^Jorir-r(co$&cosO'-r <iTi.Qs\nQ‘coi]¥^ cosinlL) 
V Zir-ß Zir-^J 

— ok, r^StnôCOiô'cosîlÉ. cos ^4' — COS 05^0^4- 
1 ^ 271--(3 ” (27) 

+ ÎÛ2 s]n& sînA1 jin 

when we have written 
J- 

P æ Sin© S/nOCOslÍ^. (28) 
1 ^ ^ ZTT-iS 
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It is convenient to reduce the results to a normalized pressure which gives 

an indication of the extent of the distortion of the dipole field by the wedge. 

Accordingly, a diffraction "coefficient"^ is introduced. This coefficient defines 

the ratio of the pressure chi the wedge to the equivalent free-field pressure due to a 

dipole placed at the some position. 

In a similar manner one finds the expression for the free-field of a dipole 

to be 

íe^^r'-r(coi & 

— r^sínfl eos eos© sín 0^-^r sin© sm0'jín(<í 

in which we have set 

^ -¿r r'(c .5 efosôVstnÔsînô'cos^-^^jJ^ 

Upon substitution of the explicit values of the direction cosines from (2Ó), 

Eqs. (27) and (29) become, after some algebraic manipulations, 

-i» = (r'ceso1-rco*B)^ù + 
Tw z^(5 

-h fr'sine-r ifn£ cc>s^^~ ^-4,) s«’n. @+cos^)+- 
^ ¿tr-jS N 7 

4. Siníin&sírL&'cosTlÉ. sm ZIJl } , 

(29) 

(30) 

(27) 
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similarly 

-p ss. e r'cos 01+ 
'Z Zr q* 

•+-^r,si»L0,“”rsÍTx0C£tâ('^-^>/^ 0 (29) 

-"r,ä.inO,|l sm0 '¿nQ1 -§') 

We now consider a number of special cases for which the dipole axis orientation 

is 

5} parallel to the edge of the wedge 

it) parallel to one face of the wedge but perpendicular to the edge 

in) perpendicular to one face of the wedge 

For case i) we find that 
¥ -ft 

@=0 ;<p it undefined 

= cos O' 

C*i= - sin 0' 

c*3= Q 

the corresponding coefficient is 

/ (zr-f)Ywj 
When the dipole is situated on a line perpendicular to the wedge surface (i.e. on the 

y axis), <t/*& mÏÏ' . Uodér this assumptiofî,^t/ > / are the corresponding 
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values of Kr for Q . More explicitly they are 
I Z 

KMiI = [rVr'--Zrr'„n e (33) 

and 

i f''--Zf*i"'sJ(34) 

For case (ii) we also find that 

©"; ^-0 

^/= sin© cos 

C^x= cos©/cos0/ 

= ^ sin0/ 

The indexai/, is thus in general for this case: 

i /77y 

iO ' 

is mu> in general lar rni» au»c: 

Çc^-0 g ¿¿fa-*}) r^ 

f«) (¿te,-) J 

) (35) 

¿ir-(3 

where 

■Ç =:. rsín©cosíIj^. cos2I¿_ i <TT , / ^ 
. — rsin^Sírv© 

¿ir-ß 2ir-pJ T 

îin. ô'cos^ (¿sinJZtLjj^cpsÿ,' £rsíns' 

-r sínO sin' & sira^^fnO 
-y 
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Wh«n«v«r the dipol« I* placad on th«y axl*, i. e. <j—& becomes 

S'- ..2ir (**•< \ 
¿ir-jSVC,. )V&%riJ 

ß) 

Finally, for co*e (Ui), w« hav« 

CÀ, = sinö *in fi' 

0^2,^ cosG^ln 

CXj * cos <P 

which lead* to a corresponding valu* of the index 

~ ZT-ÇYJ (iffyrl) 

f^zz ( sin. ó f f'sine»-r s'm0 cos <^S—"I 
J J r L 2ir-fi ¿v- PJ 

4.JH. r cosi'si-nO1 

21T-& 7 P 

(36) 

(37) 

Sin ^[rV'ne -rsin-O ^Si»ie^eV.n(^') 

-j-l 
. 
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Here «again when we place the dipole on the y axis, p reduces to 

M - 
111 “A Y*«,/ IJ ' T 

\ / I Si 

rr^ nV 
¿(ur^ 

ô Í*À 
(38) 

The dependence of pon some selected values of the dimensionless parameter^ Is 
r 

shown in the table below: 

Values of pas a function of^ for the values of 0and 0' indicated and for 
r' 

0 * = 0, 9 * = 0' =9= 1 ß - 15° 

^ 01 — jf 0==0 01 - ÿ 0=2 n- ß0*=l,n0=O 0'=-^n; 0“ 2n -ß 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.8 

1.0 

0.415 

0.425 

0.75 

0.95 

1.427 

1.781 

1.980 

0.362 

0.262 

0.24 

0.21 

.206 

1.04 

1.193 

1.385 

2.015 

1.04 

0.91 

0.70 

2.157 0.424 

Table E-l 
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Appendix F 

Programming of Calculation of Dynamic Properties of 
Propulsion Shafting 

For those who are interested in the programming of the calculation 

of the shaft bearing reactions, the following notes supplied by Dr. Elizabeth 

CuthMi of the David Taylor Model Basin are given. The engineering analysis 

from which these notes were developed is in the section of the report on the 

dynamical properties of the propulsion shafting ( pages 60 through 85 ). 
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Calculations Performed in GVC I (Preliminary) 

A. Option 1. Flexural Vibrations in a Plane 

1) Initial Calculations 

First the moment of inertia 1^ for each section is calculated using 

in 
where 

„44 
" K - d¡ ) zr 

d0 ¡1 the "outer diameter" of the section, 

dj is the "inner diameter" of thç.section. 

Then the bending rigidity ß for each section is also computed using 

(2) ß = El, 

where E is the modulus of elasticity of the section material. Finally, the parameter 

ã is calculated 

(3) a = 
O! 

ye 
wherep is the density of the section material, and » is the excitation frequency. 

2) Calculation of the Elements of (I + K^). 

The elements of I + K^, the discontinuity matrix to be used at the start 

of section n can be computed directly from the Input data and the current value being 
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uMd form , L«. 

(4) I + 

r 

k^-.ämW 

0 

> 

for n “ 1, 2, 3, 

V 

. .N + 1. 

0 

0 0 

1 0 

0 1 

3) Coleulotlon of the Element* of T ^ 
«.....». ... .....UIMM— * 

The element* of the tromfer matrix for lection n Involve the 

foliowing combination* of trigonometric ond hyperbolic function*: 

f] (a i 1} == (*înh a 1 + *in a I ) /2 a 

fj (a / I) 65 (*lnh ai - sin al) /2 a^ 

(5) fg (e , 1) “ (co*ha 1 + co* al) / 2 

^ (® / 1) * (co*ha 1 neos al) /2 

where 

] il the lection length, ond 

with agjven by equation (3). The*# expression! ore approximated as described 

below. Pint the maximum value of i\i* determined *o that 
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(It h assumed that (\ <£ 5.) Then the following approximate expressions for the 

o 
functions f], Í2/ fg# fjj defined by equations (5) are in error by less than 10 

Then for ¡ = 0, 1, 2, lot l¡+i =21¡ with 10 = -|~v The following 

recuriion relatiom based on the double angle formulas can now be used to obtain 

( a, 1), f2 ( a, l), f3 < a, O» f4 (a » 1) where I = : 

f] ( a, lj+j) = 2 f| ( a, 1¡ } f3 (a , 1¡) + a f2 ( o f 1 j) (» * lj) 

f2 ( a, Ij+l) = 2 Í2 (o / 1¡) f3 (« / 1|) + fl ( <*, 1?) U 

& 
f3 (a ' li+l) = 1 + 4 a f1 (a » l|) f2 V 

^4 ( «/ l¡+l) * ^ ^3 ( 0 / 1¡) U (° / I;) 

With the availability of approximations to these functions and of values for ß 

and a (labelled ßn and an) for section n, the elements of the transfer matrix T^ for 
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«ectîon n con now b« colculofetí. In lhe expression for given below, 

ori8 i0 represent the value* of fj (0 , 1), (0 ' ^ 

f3 ' 1 )}f4 (* r 1) rtipectiveiy for the nfh »ectîon. 

/* 

(8)T 

» 

a4f (n) 
a n f2 

f|(n) 

f3(n) 

1 f (») 
~ 7 

ßn 

1 , W 

11 (n> 

ßn 

1 , (n) 

ßn 

B 4 (n) 4 <") f (n) 
-ß“ f’ 'Vnf4 V n n 1 

a 4 f (n) 
?n "n U 

4f (n) 
2 

f (n) 
3 

\ 

4) Calculation of the Cumulative Transfer Motrices ^ and ^ 

let sW =* {Ajj^ ) represent the tran*fer matrix relating the iolution 

vector following the diicontinuity at the »tart of section n, n ^¡>1, to the vector 

representing the initial conditions, and Tio^ = {tj¡*n) ) represent the identity 

matrix for n = 1, and the transfer matrix relating the solution at the end of section 

n to the vector representing the Initial conditions. The elements of the cumulative 

transfer matrices ore computed using the matrix relations: 

(9) 

S W - ( I ♦ K W ) T (n-l) 

T (ft) * T (n) $(11) 
■ 

for n * 1, 2, ..., N 
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and finally for the end of the last section: 

s (N+l) =k(N+!) Tiw) 

These matrix relations arc equivalent to the following set of relations: 

where 

6 when i = ¡ 

0 when i 
V- 

for i,¡ = 1,2,3,4 
n = 1,2,.. ,,N 

for ¡,¡= 1,2,3,4 

5) Calculation of the Initial Conditions and Solution Vectors 

Let the vector representing the initial conditions be given by 

/ 

"V” = 

>) ' 
X 

oO) 
X 

(1) 

Mx0) 
^ X ^ 
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and the conditions at the end of the last section by 

\ 

(N+l) 

1 

/■ "N 

(N+l) 

0. 
(N+l) 

(N+l) 

(N+l) 
Mx 

Then suppose that the boundary conditions specified are a¡^, a.^# bej, b^, 

where i^ and I2/ ®1 ancl e2 ari9 taken from the set of indices 1, 2, 3, 4. 

Then '13 and 14 con be appended lo the indices ij and i2 *0 »hat I, , i2 , ¡3 / ¡4 

represent a permutation of the indices 1, 2, 3, 4. Let P¡ represebt the permutation 

matrix such that 

% 

al 

02 

a4 
\ ✓ 

*\ 

'i, 

'2 

'3 

ai 

Similarly, let e^ «2 # «3 r *4 011,0 t•P^*,en, a pormutation of the indices 1,2,3,4 
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and let Pc represent the permutation matrix such that 

Now S (NH) 

A 
D1 

b2 

b3 

b4 

r ^ 

be, 

e2 

e3 

e4 

has been so defined that 

<N+1) _ s (N+l) ~*(I) 

or equivalently, 

p = P s(N+l) p.-' Pit10 e e i 1 

Thus 

(N+l) (N+l) (N+l) (N+l) 

hej =ieii, ai] + S«1'2 a'2 + îel‘3 0i3 + Sel'4 

01) 

(N+l) (N+l) (N+l) 

~ **2h ali + **2!2 a<2 + ‘«I'S ai3 
siN+,) 0. 
®1'4 •4 

giving a system of two linear equation in two unknowns, aj^ and a¡^ , the other 

entries bej , b^ ajj being the end conditions supplied as input^ind the 

elements s¡.^^ » I = ®1 » «2 ' ¡ b*>ng elements of the transfer 
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matrix S (N+Î) 
. Therefore, these equations can be solved for a* and a* . provided 

O ''t 

matrix of thtlr coafficiaots it non-tingular giving a full set of initial conditions, 

oii of fh* alamantt of tha vector * . Now the set of solution vectors 

(°) for n =* 1, 2,..., N+1 can be computing uting 

(12) 
-£("> * s (n) ^0) 

In addition, the solution vectors ft just ahead of the discontinuity at section 

n for n » 1,2,..., N con be calculated using 

03) •~J(nl.5) (n) -Hi) 
è » T Ä 

The program is set up so that once theefeirrènkof and are available, 

a number of sets of end conditions can be used and the corresponding solution 

vectors obtained. 

B. Option 2. Coupled Flexural Vibrations In Two Piones 

1) Initial Calculations 

The moment of inertia ls, the bending rigidity ß , and the parameter "a 

are computed for each section using equations (I), (2), and (3), respectively. 

2) Calculation of the Elements of (I t K^). 

The elements of I + K^n) , the discontinuity matrix to be used at the 

start of faction n can be computed directly from the input data and the current 
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value being used forco , i.e 

(14) |+Kin} 

(n) 

Ó1 

k(n) 

71 

k(n) 

81 

\ 

where 

0 

0 

1» 
52 

62 

(n) 

72 

0 

0 

1 

0 

k(n) 
53 

0 

0 

0 

1 

<(n> 
54 

¿n).co2 l(n) \c{n) 
Ó3 

kW-»^ kM 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

10 0 0 

k(n)+ iG(n) 0 10 0 
64 

0 0 10 

Gw kw kW.«2i,(,,) 
84 

ld 0 0 0 1 

G<n) = id n» 

3) Calculation of the Elemente of 

Tbe elements of , the transfer matrix for section n, involve the 

combinations of trigonometric and hyperbolic functions given in equation (5}, and 
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05) T, 

they are calculated In the same way at for Option 1. Using the notation of 

equation (8), the matrix for the current option is give» by 

r 

(n) 

w 
'3 

o4f (ft) 
n{2 

0 

0 

-% oV"1 n 

^ nan^4 

0 

0 

f W 
! 

'a'"' 

0 

0 

4f(n) 
-ßnan4 

(n) (n) 
n “n’2 ß a f 

0 

0 

r(n) 
To 

o 

o 
4 (n) 

-ßa f, 

0 

0 

f3<n) 

0 

0 

? a4f4(n) 

3 .S1"’ 

if2(n> '-k 
ß 2 ß n4 

/f‘n) ^,(n> , f w 
Í 4 ß" -,- f2 
« « Pn \ 
0 0 / \ i f (n) 
0 0 ß-r4 

0 

0 

in) 
f3(n> -o4f2 

f3(n) 

\ 

f3(n) 

-f,(n) 

4) Calculation of the Cumulative Tronsfer Motrices and 

Utlng the same notation as for Option (1), the elements of the 

cumulative transfer matrices and are calculated using the matrix 

relations (9). However, in this case K, and therefore S and T may have 

complex elements, i. e. the elements of these matrices appearing in equations 

{]0), in particular k[j , t¡j , and s¡j may all be complex numbers in this case. 

Alto, the matrice* are of order 8 so that the range of indices i, j is the set of 

1,(-) 
Mi 

1,,(-) 

0 

0 

- 0Vn) 
(n) 

f3 J 
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Integers from I fo 8, Inclusive. 

5) Calculation of the Initial Conditl Ions and 

For this 

'en by 

7* (D 
Q 3 

option, the 

r 
ai 

a2 

Solution Vectors 

vector representing the initial conditions 

a5 

a6 

a7 

V 
conditions be 

r 
NH) 

38 
/ 

given by 

’s 

'1 

b4 

=8 

A 
6 (*') 

\(,) 

o (I) 
y 

F 0) 
X 

M,<'> 

F<') 
/ 

Myll) 
à 

6 (î^l) 
X 

e (N+i) 
X 

Ä y(N+i) 

0 (N+l) 

c (N+l) 
X 

Fy^') 

My(^') 
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Now, suppose that the boundary conditions specified are a¡j , ajj , a- , a. 

^ ^e] i ke2 • * ^e4 ' w^*r<> '1 , ¡2 » I3 » '4 '•a subset of the 

integers 1, 2,..., 8 and similarly for e^ , e2 / «3 /64- Note that the 

elements of S need not be real. Now in a manner analogous to that used in 

Option 1, a set of four linear equations in four unknowns can bo obtained which 

has os its solution the remaining initial conditions, a¡^ , a;^ , a¡^ , a¡g where 

i] , ¡2 / “’i Is r*Pr***flts some permutation of the indices 1, 2,..., S. Once 

the initial vector ^ M has been obtained, equations (12) and03) can be used 

to calculate the solution vectors for each section. 
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Preparation of Input for Applied Mathematics Laboratory Problem 199 
(Code designation: GVC I) 

PRELIMINARY 

The input cards required for GVC I are of the following 

four types: 

Title 

General data 

End values 

Section and discontinuity data 

A description of the contents of each of these sets of cards is 

given below. Sample input slieets are attached. 

A. Title Card 

This card should have a 1 punched in column 1. Columns 

2 to 72 are at the disposal of the problem proposer for the 

identification of his problem. It is recommended that the date 

be included with this identification. 

B. General Data Card 

Up to 9 items can be specified on this card. They include: 

1) N: the number of sections, 

2) : option number indicating type of problem, 

3) Mg! option number indicating whether JT , the 

speed of shaft rotation, or values of the ratio 10/jTl are given. 

4) ujj (ratf/sec. ): The lower limit of the range of 

excitation frequencies to be used, 

5) co2 (rad/sec. ): The upper limit of the range of 

excitation frequencies to be used, 

6) Au)(rad. /sec. ): The interval to be used for incrementing 

the excitation frequency, 
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TJfKrad. /sec. ): the speed of shaft rotation or up 

to three values of ^/XL- 

The permitted values of are 1, 2, 3 and each Indicates 

a type of problem to be solved. The types of problems are given 

below: 

Mj « 1 Indicates that flexural vibrations are to be studied 

in a plans, 

Mj * 2 indicates that coupled flexural vibrations in two planes 

are to be studied, 

Mj * 3 indicates that coupled torslonal-extensional 

vibrations are to be studied. 

The permitted values of Mg are 0, 1, 2, 3. These have the 

following meaning: 

Mg 111 0 Indicates that a value of XL is given, 

Mg > 0 indicates that Mg values of ^/SL are given. (Note 

that Mg £ 3, so that a maximum of 3 values of the ratio ^/XL can 

be specified. ) 

C. End Value Cards 

Up to four end value cards can be included. The first contains 

information as to which end conditions are given for the left end of 

the shaft and the real parts of their values. The second contains 

the imaginary parts for these values. If the Imaginary parts are 

aero, the second card need not be Included. The third and fourth 

cards contain similar Information for the right end of the shaft. 

The specific conditions are represented by the code numbers 

given In Table 1. 
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TABLE 1 

Code Number 

1 

2 

3 

4 

5 

6 

7 

8 

Qüantlty 

S (in): deflection in x-dlrectlon 
X 

0x: slope in x-z plane 

Sy(in): deflection in y-direction 

6y: slope in y-z plane 

F (Ab): shear in x-direction 
X 

M (¿b-in): moment in x-z plane 
X 

Fy(ib): shear in y-dlrection 

My( ib-in): moment in y-z plane 

Thus if the left end is a free end, the end conditions are 

F = M =*F =M =0, and columns 7 to 10 of the first end value 
x X y y 

card should read 5628• The real parts of the four left end values 

would be given as zeros and the second end value card would be 

omitted since the imaginary parts vanish. Further examples are 

given in the sample problems. 

D. Section and Discontinuity Data Cards 

The specific data required for each section depends on the 

type of problem being solved. The particular type of problem to 

be done is specified by the value of on the general data card. 

The data required for each of the three types of problems permitted 

is described below. 

The data required for each section is given on a set of cards. 

The number of cards required in each set depends on the type of 

problem being solved. Each set of cards starts with cards containing 

the discontinuity data required at the beginning of the section and ends 

with a card containing the data for the section. Each card contains 

a card number which Includes the following information: 
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type oí problem 

n : section number 

C : number oí the card In the set of cards for section n. 

Data for the last section must be followed by a set of cards on 

which the indicated section number Is the Integer following the last 

••ctlon number. A subset oí these cards contain the discontinuity 

data to be used at the end oí the last section, and the last card of 

this set is blank except for the card number. This card is interpreted 

as a sentinel card indicating the end of the data. 

Type 1 Problem (Flexural Vibration in a Plane): 

For a problem of type 1, a set of three data cards must be 

supplied for each section of the shaft, with one additional set oí 

data carda ior the end section as already indicated. The first two 

cards specify the discontinuity data to be used at the beginning oí 

the section; the third card specifies the data required for the section. 

Each of these cards has an appropriate card number as already discussed. 

In addition the first card (C*l) of a set contains the following data: 

m ( ib-sec /in): the mass of the disc which is 

attached at the beginning of the section, 

1^( lb~*#e2 - In ): the diametrical mass moment 

of inertia of that disc. 

The second card (02) of a set contains values for the following 

quantities: 

These are entries in the K matrix 
described in Section HI. 



The third card (C=3) of the set contains the following section data: 

X (in): the length of the section, 

do(in): the outer diameter of the shaft section, 

d.(in): the inner diameter of the shaft section, 

E(£ b/in ): the elastic modulus of the section material. 
2 4 9 

^>(2b-sec /in ): the density of the section material. 

Type 2 Problem (Coupled Flexural Vibration in Two Planes) 

For a problem of Type 2 a set of six data cards must be 

specified for each section of the shaft with one additional set of cards 

for the end section, as already indicated. The first five cards 

specify the discontinuity data to be used at the beginning of the 

section; the sixth card specifies the data required for the section. 

Each of these cards has an appropriate card number as already 

discussed. In addition, the first card (C=l) of a set is of the 

same form as for a type 1 problem i. e. it contains values of rn and 

V 
The second card (C=2) of a set contains the following entires 

of the K matrix described in Section in. 

k5P k52’ k53’ k54’ 

The third card (C=3) contains the following entries of the 

K matrix: 

k6P k62’ k63' k64‘ 

The fourth card (04) contains the following K matrix elements: 

k71' k72* k73’ k74’ 
Finally, the fifth card (0=5) contains: 

k81' k82' k83’ k84’ 
The last card (0=6) of a set is of the same form as the last card 

of a set for a type 1 problem, 1. e., It contains values of 
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T%Pe 3 Problem (Coupled torsional-extensional vibration) 

For a problem of type 3, a set of four data cards must be 

supplied for each section of the shaft, with one additional set of 

data cards for the end section as described above. The first three 

cards specify discontinuity data to be used at the beginning of the 

section, and the fourth card of a set contains the data required 

for the section. Each of these cards has an appropriate card 

number as already discussed. In addition the first card 

(C * 1) of a set contains 

m( lb-sec /in): the mass of the disc attached to the 

beginning of the section 

lb-iec2-in ): polar mass moment of inertia 

for cross coupling between rotational velocities 

and extensional forces (see definition of K matrix in Section in). 

The second card (C=2) contains entries for the K matrix: 

k31' k32’ k41* k42 

The third card (C=3) contains values of the following quantities 

when there is a geared discontinuity: 

E: ratio of speed of high speed shaft to speed of low 

speed abaft 

mass of the gear for the high speed shaft 

J^: polar mass moment of inertia of the corresponding gear, 

mass of the gear for the low speed shaft 

polar mass moment of gear for the corresponding gear. 

Finally, the last card (04) contains In addition to the data 

required for problems of other types: 

•í» d0» 

the quantity 

G( 1 b/ln2) the «hear modulus of the section material. 
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Appendix G 

The Dynamics of a Rotating Shaft including Gyroscopic Effects. 

Let M be the moment at some point y in the shaft; M will be the complex quantity 

My + IMX where M* and My are the moments in the XZ and YZ planes respectively. 

Let Q be the transverse shear force, i. e. the complex quantity Qy + iQx . Let + 

be the inclination of the shaft (to the Z axis) at the point £ ; this can be written 

at the complex quantity ty + i where, for small excursions, + y is the 

inclination (to the Z axis) of the projection of the shaft In the YZ plane and 

refers to the projection in the XZ plane. 

If 11( » y + lx) is the displacement of the shaft at a point ^ and P represents 

the mass density of the material, the first equation of motion is 

where a » crow-section area >Q 
ST 

-m Pa 
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The second equation of motion is 

d M + Q + 1 (J pJl} ¿JL 5T" vr = p 1 

where J is the polar moment of inertia of the shaft cross-section and I is the 

moment of inertia about a diameter - for a circular section J = 2 I. The term 

on the right is contributed by the rotatory inertia of the section while the 

imaginary term on the left is the gyroscopic contribution, hence is in quadrature. 

The sign of the latter term will depend on the sense of rotation of the shaft. 

Assuming small excursions and ignoring shear deflections we may write the bending 

relation in the complex form M “ E I ..It. where t = 
T* 

Combining the preceding rJatiom leads to the differential equation 

4 2 34 
r.TàiL+f>0^U+i(JPXL)^U.^-PI>U »0 
El sr* Ï13T "STS*2 77W 
which may be written as: 

£-4 + 1 P P2-^) y*4 

where r ^ 

T72 

p a and ^ = 
FT E 

>tà*2 

- ß d Ti. =* 0 

In a steady state vibration of the shaft 

* i » t 
H. * r e* 
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SubifiMing fhi» info fhe differenHal equation leads to 

d4r 

d 
ß2 {(^2-2^/1} ¿j2 r - w2 ç2r «g 

dT? 

Now r it the complex function of * , y {«) + | x {*). |f ^ funcf!ons 

y(e) ond *(«) are of different chorocter^ this will imply that the beam will 

*foon Into a skewed or twisted curve. However, since all the coefficients in 

the above equation ore reel, tubstituting y (e) + I x (■) into the equation and 

•qwotln« real and imaginary portt to zero leads to Identical equations for 

y(«) and x(«), hence if y(*) and x(«) satisfy the same boundary conditions they 

must then be identical or differ by (at most) a multiplfcotlve constant. Hence, 

the beam must deform Into a plane curve and lie in a plane which rotates about 

the « axis. It Is interesting to note that, In the differential equation for r, the 

ryrosccptc term 2 0 2 «efi appears in combination with the rotatory Inertia term 

ß 2 ® 2 os a coefficient of the second derivative. This meant that gyroscopic 

effects can be included very simply by using a "corrected« moment of Inertia of 

the cross «section I 

Consider the whirling of a shaft of length L with simply supported ends. 

The boundary conditions and the equation are satisfied by the expression 

r *In where Vcon adopt the values J,2,3,etc. 

Substituting this in the equation leads to 

(jp)4 ( -^2. )2 - «2ï2 -o 
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C O N E S C 0 consultants In engineering science 

If gyroscopic and ro^afory Inertia terms are dropped so as to give the 

simple beam equation,the equivalent frequency equation would be 

- C32£2 = o 

If the frocHonal change in criHcal ipaed infroduccd by the inclusion of 

gyroscopic and rotatory Inertia terms istj i .e. a) = ä ( i + f), then, substituting 

this expression for » into the first equation and subtracting the latter gives 

e - 

(2h-I) 
Om 

(*f5-)2 (1-h) +Í 2 

where h is the ratio , 

25 , 
For first order whirl , h * 1 and é = ( " ß V 

2 T“ *Y"' 

Now 
12¾2 

ITo (■ 
radius of gyration ^ ^ 
ength of beam -) 

? 

i 
hence Ç (ynr|)‘ 

For a typical example, consider a shaft whose length/diometer ratio is 20, i.4. 

T * ■qq * The first critical speed ( V * 1 ) involves an error of (-^ )* 

I.e. approx. .08%. 

ÍLiu 
Ò«4 

It is of interest to compare the equation of motion derived here (viz. 

* l2 - p2 iV, -0) 
>'J 5Til* jirj,2 
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with those derived by N. H. Jasper v¡2 

KAG 

KAG 

^ x - 

a« 2 
M» 

.JjL ~tx 

O •• 

**■ rx - a X ==0 

+ Ny + E + P J,/l Vy “ p x 1,3 0 

KAG 

KAG 

^ Y 

ly - JÜ1 
è *2 a « 

+ Py-Pay «0 

+ Nx + EI ^- ^-a» » "P1 » a° 
yïl y 

(NOTE: Jasper's notation has been altered to conform with that used here.) 

Setting the external loads Px Py Nx Ny equal to zero and combining 

these relations in pairs gives: 

f* 1¾ ♦ El à3*, tPJAà2*)r -„lA3*, -o 

ï? Th îtÂI 

PC + E I i3*^ - pJSll2*x - P J>3*y .0 

^t2 yüi> à* b* ^t2^B 

Multiplying the first of these by I, adding to the second and replacing y + ix by 

1t<»nd + i Yx by * gives 

E 1 lÜt + p0 Ija + * ( P J JL ) - p I h\ - 0 
& ^ 3t^, 
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whence, by replacing ^ by , we get 

A * H2 ¿ *' (2p2Ji) Iji, - 
à*4 s »2 

2 4 
P JL2± * 0 

it2¿*2 
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Appendix H 

An btimof* of th« Fundomenfal Frequency of Propeller Blades In Water when 

the.Hub Is Rigidly Restrained 

This section develops on equation for estimating the lowest natural 

frequency of a ship's propeller blades in water. It Is assumed that this frequency 

U the some as that of a cantilever beam of a uniform cross-section (the same as 

that of the propeller blade at 0.2R ) fixed In a rigid hub at 0.2R and loaded with 

its weight and Its entrained water at 0.7R. The entrain«! water is taken as that 

of an elliptical disc having a major diameter equal to the radius of the propeller 

and a minor diameter equal to the maximum blade width. 

An emperical formula for estimating the weight of conventional propeller 

blades (maximum error ln 11 propellers Is 1/2% ) U: 

Weight of blade (beyond 0.2R) 

* 65 MWR t D2 (BTF « D + t ) 

where: 

0 Is the propeller diameter. In feet. 

MWR is the blade mean width ratio. 

3TF is the blade thickness fraction, 

t is the tip thickness (extended line of back) In feet 
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To find the magnitude of the entrained water, use is made of relations 

20 developed by Lamb u on Page 154. 

The kinetic energy of the water surrounding an elliptical disc moving 

in a direction normal to its surface is: 

2 T = V3 n pb2 c2 U2 

where: 

T1/( b2 sin 2 9 + c2 cos2 9 ^ ® 

T is the kinetic energy of the fluid. 

p is the fluid density, 

b and c are the semi-axes of the ellipse. 

U is the velocity of the ellipse. 

Since the kinetic energy of the equivalent mass of water moving 

with the disc is 1/2 Mwt \ß, the value of the entrained mass is: 

M^rpb2c2 ^^{b2 sin2 9 + c2 cos2 6 ) /2 d9 

The integral in the denominator may be expressed in terms of a complete 

elliptic integral of the second kind (commonly designated as the function £ in 

Tables J 

"/2 „1A /2 ,2 1/ 
/ (b2 sin2 0 + c2 co»2 0 ) d 9 = c J [1" 0" -v, ) l!n ® 3 d 9 

S r\ ^ 
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Th« vaiuos of th« semî -axas can b« expressed In terms of the diameter 

and mean width ratio of the propeller. 

For elliptical blades, since the maximum blade width Is 2b 

MWR - 0.842 X 2b/ D (Ref. 40 Po8e 157) 

Hence b- 1.188 MWRtR 

o» 1/2R 

The mass of the entrained water becomes: 

^enf “ 4/3 np ■ I0« MWR)2 . ( 1/2)2 R4 (l/2 R e) 1 

° 2.952 p MWR2R3 

E 

and the total mass of the proputler blade plu* entrained salt water become*: 

M « 16.2 MWR (BTF + 0.5Í) R3 + 5.88 (MWR)2 RS/E 
R 

The next evaluation Is for the moment of Inertia of the root cross»section. 

blade thickness at 0.2R » 0.8 BTF (2R) + 0.2t 

blade width at 0.2R » \l 1 -(L3)2 x 2b 
v 0.5 

= 0.8x2 x 1.188 (MWR)R 

= 1.90 (MWR)R 

An approximate formula for the moment of Inertia, I, of an airfoil 

section about a longitudinal axis through the center of gravity Is: 

I* 0.04Ó width x thickness 3 (Ref. 41 Page 287) 

- 0.358 (MWR) (BTF + 0.125 Í ] 3R4 
R 
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These values may now be substirutod in the relationship for the natural 

frequency based on the assumptions that are initially stated. Thus, 

ml 

where n is the frequency in cycles per second 

E' is the modulus of elasticity of the blade material taken as ló x 10^ 

for manganese bronze. 

I is the length of the cantilever beam, taken as 0.7R-0.2R = 0.5R 

When these values and the mass and moment of inertia are substituted in this 

relation, and the blade tip thickness is assumed to be 0.01R then the following 

relationship is obtained: 

5570 /(BTF + 

V (RTF + 

0.00 125)3 

(BTF + 0.005) + 0.3Ó4MWR 

E 

A plot of nR for various values of MWR and BTF is given In Figure H-l. 

175 



í 



VC2-S-ÀM - 17^H»?nf40éToM 

SCHEDULE FOR HARMONIC ANALYSti 

24 ORDINATES 

LonqÜudlnql Wok» at 0.90R 

y 

0 

J!2L 
1 

J23L 
2 

J22L 

3 

{21} 

4 

(20) 

5 

(19) 

6 

(18) 
7 

(IT) 

8 

(*ó) 

9 

(15) 

10 

(14) 

II 

i1?) 
0.81 0.48 0.35 .27 0.20 .14 0.09 .08 0.07 :07 0.07 0.09 
pr80 0t55 0t36 .25 0r 17 f13 0.11 .09 0.08 .08 0.08 0,12 

Sum:c 1.Ó1 1.03 0.71 0.52 0.37 0.27 0.20 0.17 0.15 0.15 0.15 0.21 

Diff.d 0.01 -.07 -.01 0.02 0.03 0.01 -.02 -.01 -.01 -.01 -.01 -.03 

c 

0 

(6) 

1 

(II) 

2 

(10) 

3 

(?) 

4 

(8) 

5 

(7) 

1.Ó1 1.03 0.71 0.52 0.37 0.27 

0.20 0.21 0.15 0.15 0.15 0.17 

iumm. 1.81 1.24 0.8Ó 0.67 0.52 0.44 

MiL 0.56 0.37 JUL 0J0 

d 

0 

.(6) 

1 

(II) 

2 

(10) 

3 

(?) 

4 

(0) 

5 

(71 

0.01 -.07 -.01 0.02 0.03 0.01 
-.02 -.03 -.01 -.01 -.01 -.01 

Sum: g -.01 -.10 -•02 0.01 0.02 0 
0.03 -.04 0 0.03 0.04 0.02 

• 

0 

(3) 

1 

(5) 

2 

(4) 

1,91 1.24 0,86 

0.67 0.44 9.02 
Sum: k 2.40 1.09 1.39 
Diff: 1 1.14 0.80 0.34 

f 

0 

(3) 

1 

(5) 

2 

w 
1.41 0.82 0.5Ó 

0.37 0.10 0.22 

Sumir. 1.78 0.92 0.78 
Diff:n 1.04 0.72 0.34 

S 

0 

(3) 

1 

(5) 

2 

(4) 

-.01 -.10 -.02 

0.01 0 0.02 

Sum : o 0 -.10 0 

Dîff: d 1 
•

 o
 

KJ
 

-.10 -.04 

h 

0 

(3) 

1 

(5) 

2 

(4) 

0.03 -.04 0 

0.03 0.02 0.04 

Sum:q 0.06 -.02 0.04 

D!ff:r 0 -.06 -.04 

TabU 1-] (a) 
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Va-S-Af»3 - I7,55KK«I1>^>4 Too* 

SCHEDULE FOR HARMONIC ANALYSIS 

24 ORDINATES 

Longitudinal Wake at 0.8ÛR 

y 

0 

-Mi 

1 

(23) 

2 

(22) 

3 

Í2I) 

4 

(20) 

5 

(19) 

ó 

(18) 

7 

(IT) 

8 

(16) 

9 

(15) 

10 

(14) 

II 

(•?) 
.77 .48 .30 .27 .19 .15 .10 .08 .07 .07 .08 .11 

,7? ,?7 .?8 .2?; .17 .14 .12 .10 .09 .09 .09 .16 

Surmc 1.05 .74 .54 .30 .29 .22 .18 .16 .16 .17 .27 

Hl£Ld -.09 -.02 0 .02 .01 -.02 -.02 -.02 -.02 -.01 -.05 

c 

0 

(6) 

1 

(II) 

2 

(10) 

3 

Í91 

4 

ffi) 

5 

(7) 

JLÄL 1.05 .74 .54 .36 .29 

,22 .27 .17 .16 .16 .18 

-Sutme 1.77 1.32 .91 .70 .52 .47 

JMlL -UL r7? .57 .38 .20 .11 

d 

0 

J6L_ 

1 

JiL_ 

2 

JfiL. 

3 

(9) 

4 

(8) 

5 

(7) 
-.01 -.09 -.02 0 .02 .01 

-.02 -.05 -.01 -.02 -.02 -.02 

-.03 -.14 1 
•

 o
 

C
O

 

-.02 0 -.01 

MLh .01 -.04 -.01 .02 .04 .03 

f 

0 

0 

(3) 

1 

(5) 

2 

(4) 
1,.77 1.32 .91 

.70 .47 .52 

Sum: k 2.47 1.79 1.43 

Mil 1.07 .85 .39 

f 

0 

(3) 
1 

(5) 
2 

(4) 
1.33 .78 .57 

.38 .11 .20 

Sumiü 1.71 .89 .77 

Diff:n .95 .67 .37 

8 

0 

(3) 

1 

(5) 

2 

(4) 

-,03 -.14 -.03 

-.02 -.01 0 

Sum :o -,05 -,03 

DlfFia -.01 -.13 -.03 

h 

0 

(3) 

1 

(5) 

2 

(4) 

.01 -.04 -.01 

.02 .03 .04 

Sum:q .03 -.01 0.03 

Diff:r - .01 -.07 -.05 

Table 1-2 (a) 
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VC2~S»AJ>3 - 17.55KN.- ! I #60Ó Tom 

SCHEDULE FOR HARMONIC ANALYSIS 

24 ORDINATES 

Longitudinal Wake at 0.55R 

y 

0 

J2) 

1 

J23LJ 

2 

J22¡_ 

3 

i2!) 

4 

(20) 

5 

(19) 

6 

(18) 

7 

(17) 

8 

(16) 

9 

(15) 

10 

(14) 

II 

(13) 
JO .52 .44 .38 .32 .25 .18 .14 .13 .14 .17 .28 

—lZQ. ,45 .34 .28 .23 .20 .17 .14 .14 .15 .37 

Surmc 1.40 1.16 0.89 0.72 0.60 •
 CO

 

.38 .31 .27 .28 .32 .65 
Diff-d 0 -. 12 -.01 0.04 0.04 0.02 -0.02 -0.03 -0.01 0 1 .02 -.09 

c 

0 

_£él_ 

1 

iíl)_ 

2 

(10) 

3 

(?) 

4 

(8) 

5 

(7) 

1.40 1.16 0.89 0.72 0.60 0.48 

0.38 0.65 0.32 0.28 0.27 0.31 

Sutrum 1.78 1.81 1.21 1.00 0.87 0.79 

,9? 0.51 0.57 0.44 0.33 0.17 

t. 1 

d 

0 

-Í6L-. 

1 

üü__ 

2 

(10) 

3 

(9) 

4 

(8) 

5 

(71 

0 ..-..12 -.01 0.04 0.04 0.02 
-.02 -.09 .02 0 -.01 -.03 

Sum: g -.02 -.21 0.01 0.04 0.03 -.01 
-.03 -.03 0.04 0.05 0.05 

e 

0 

(31 

1 

(5) 

2 

(4) 

1.78 1.81 1.21 

1.00 0.79 0.87 

Sum: k 2,78 3.60 2.08 

JM¡! 0.78 1.02 0.34 

f 

0 

(3) 

1 

(5) 

2 

<4) 
1.02 0.51 0.57 

0.44 0.17 0.33 

S.um;,4 1.46 0.68 0.90 
Diff:n .58 0.34 0.24 

9 

0 

J3L_ 

1 

(5) 

2 

(4) 

-.02 -.21 0.01 

0.04 -.01 0.03 

Su.m:o 0.02 -.22 0.04 

Diff* -.06 -.20 -.02 

h 

0 

(3) 

1 

(5) 

2 

(4) 

0.02 -.03 -.03 

0.04 0.05 0.05 

Sum:q 0.06 0.02 0.02 

Diffrr -.02 

co 
O

 • i 
1 -.08 

TableI-3 (a) 
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SCHEDULE FOR HARMONIC ANALYSIS 

24 ORDINATES 

Longitudinal Wake at 0.3R 

y 

0 

(12) 

1 

(23) 

2 

(22) 

3 

(21) 

4 

(20) 

5 

(19) 

6 

(18) 

7 

(IT) 

8 

(16) 

9 

(15) 

10 

(14) 

II 

i!31_ 

0.67 0.61 O.dl 0.65 0.69 0.59 0.50 0.50 0.50 0.60 0.95 0.95 

0.65 0.76 9r$<? 9,38 9,27 JLZ1 
Sum:c 1.32 1.37 1.19 1.26 1.34 1.17 1.00 0.88 0.77 0.95 1.45 1.67 

MU. 0.02 -0.15 0.03 0.04 0.04 0.01 0 0.12 0.23 0.25 0.45 0.23 

c 

0 

Í6) 

1 

(II) 

2 

(10) 

3 

(?) 

4 

(8) 

5 

J2U. 
1.32 1.37 1.19 1.26 1134 1.17 

1.00 1.67 1.45 0.95 0.77 0.88 

Sum* e 2.32 3.04 2.64 2.21 2.11 2.05 

MLL 0.32 -.30 -.26 0.31 0.57 0.29 

d 

0 

(6) 

1 

(II) 

2 

(10) 

3 

(?) 

4 

(8) 

5 

(7) 

0.02 -0.15 0.03 0.04 0.04 0.01 

9 0.23 0.45 0.25 0.23 0.12 

Sum: a 9,0? 0,08 0.48 0.29 0.27 0.13 

MU 0.02 -.38 -.42 -.21 -.19 -.11 

e 

0 

(3) 

1 

(5) 

2 

(4) 

2,32 3.04 ZM 
2.21 2.05 2.11 

Sum: k 4.53 5.09 4.75 

MkL 0.11 0.99 0.53 

0 

0 

(3) 

1 

(5) 

2 

(4) 

0.02 0.08 0.48 

0.29 0.13 0.27 

$um;o 0.31 0.21 0.75 

Dlffio -.27 -.05 0.21 

f 

0 

(3) 

1 

(5) 

2 

(4) 

0.32 -.30 -.26 

0.31 0.29 0.57 

Sum: rr 0.63 -.01 0.31 

Diff:n 0.01 -.59 -.83 

h 

0 

(3) 

1 

(5) 

2 

(4) 

0.02 -.38 -.42 

-.21 -.11 -.19 

Sum:q -.19 -.49 -.61 

Diff:r + .23 -.27 -.23 

Table M (a) 
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VC2-S-AP3 - 17.55KM - 11,606 Ton* 

SCHEDULE FOR HARMONIC ANALYSIS 

24 ORDINATES 

Tangential Woke afr 0.9R 

y 

0 
(12) 

1 
(23) 

2 
(22) 

3 
(21) 

4 
(20) 

5 
(19) 

6 
(18) 

7 

(IT) 

8 
(16) 

9 

J5L-J 

10 

mJ 

II 

Ü3L- 

1 16 20 20 19 16 11 10 7 5 3 -6 

4 -13 -14 -12 -17 -16 -14 -12 -11 -10 -9 -5 

Sum:c 5 3 6 8 2 0 -3 -2 -4 -5 -6 -n 

MLi - 3 -22« 32 36 32 25 22 18 15 12 -i 

c 

0 

(6) 

1 

(II) 

2 

(10) 

3 

(?) 

4 

(8) 

5 

(7) 
5 3 6 8 2 0 

- 3 -11 -6 -5 -4 -2 

Sum: e 2 -8 0 3 -2 -2 

MLL 8 14 12 13 6 ? 

d 

0 

(6) 

1 

(II) 

2 

(10) 

3 

(?) 

4 

(8) 

5 

(7) 

-3 29 34 32 36 32 

25 -1 )2 15 18 22 

22 28 46 47 54 54 

miLk 

00 30 u£_ -11— 18 10 

f 

0 

(3) 

1 

(5) 

2 

(4) 
8 14 12 

13 2 6 

Sunr.fr 21 16 18 

Diffrn -5 12 6 

e 

0 

(3) 

1 

(5) 

2 

(4} 

2 -8 0 

3 -2 -2 

Sum: k 5 -IQ -2 

MLL -1 -6 2 

h 

0 

(3) 

1 

(5) 

2 

(4) 

-28 30 22 

17 10 18 

Sum 41 40 40 

Diffrr -45 20 4 

9 

0 

(3) 

1 

(5) 

2 

(4) 

22 28 46 

47 54 $4 

Sum:o 6? 8? 100 
DIffüD -25 -26 -8 

Table 1-5 (a) 
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! VC2-S-AF3 - 17.55KN,- ]1/gD4 Ton» I 
f • 
t 

¡ 

î 

. > SCHEDULE FOR HARMONIC ANALYSIS 
i 

! 24 ORDINATES 

Tangential Wake ar 0.8R 

Y 

0 

J2L. 

i 

(23) 

2 
(22) 

3 
(21) 

4 

(20) 
5 

(19) 
ó 

(18) 

7 

(17) 

8 
(16) 

rÿp5 

(15) 
10 

(14) 
11 

(1?) 

_U 20 21 20 17 13 10 7 4 2 -7 

4 
i-P -13 1-16 -17 -16 -15 -14 -12 -Il -9 -3:-' 

Sum:c 5 ^4 7 5 3 1 -2 -4 -5 -7 -7 -10 

Dîff:d -3 2d 33 37 37 33 28 24 I9J 15 11 -4 

«— 
% 

i 

c 

0 

-fdl-| 

1 

(II) 

2 

(10) 

3 

(9) 

4 5 ! 

(71 
5 4 7 5 

i 

M 

3 1 

-2 -10 - 7 -7 -5 -4 

Sum ia 3 , ¿ 0 .2 .2 _3 

Diffîf 7 14 14 12 8 51 

d 

0 

fó) 

1 

(II) 

2 

(10) 

3 

(9) 

4 

(8) 

5 ( 

_ (TL. i 
-3 26 33 37 37 33 

28 -4 11 15 19 24 

fl * O 25 22 44 52 5â 57 1 
1 pi • r i * n "31 30 22 22 18 1 9 1 

e 

0 1 

(5) 

2 

(4) 

mii 3 -6 0 

-2 -3 -2 

ISum: k 1 -9 -2 

1 Dîff; 1 5 -3 2 1 

f 

0 

(3) 

i 

(5) 

2 

(4) 
7 54 14 

12 5 8 

Sum iff 19 19 
22 

Dlff:n -5 9 6 

9 

0 

(3) i 

1 

! <5) 

2 

(4) 

25 1 22 44 j 

52 57 56 

Sum * o 

DlffîD -27 -35 -12 

h 

0 

(3) 

i 

(5) 

2 

W 

-31 30 22 

22 9 18 

Sum:q -9 ?9 40 
Dîff:r -53 '21 JJ 

Table I-b (a) 
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•II». S. d».-- 

VC2-S-AP3 r 17.55KN.-11,604 Tons 

SCHEDULE FOR HARMONIC ANALYSIS 

24 ORDINATES 

Tangential Wake at 0.55R 

y 

o 

JZU 

1 2 

J22L 

3 

i2iL_ 

4 

JM» 

5 

09) 

ó 

.03) 

7 

(17) 
8 

(ló) 

9 

(15) 

10 

(141 

II 

(13) 
2 7 13 15 15 14 13 10 6 2 -2 mf ! 

..,.á , -sá.. --.ß , -12 -15 -J5 -14 -13 -11 -9 —6 +4 
Surmc .8. —1— ? 0 - 1 -i -3 -5 -8 -3 
MLd . -il.,., _2L_ 30 29 27 23 1 17 li 4 “11 

c 

0 

JéL_. 

1 

Xll). 

2 

■(1Q) 

3 

(9) 

4 

(8) 

5 

(7) 
8 1 5 3 0 - 1 

r-l -3 "O -7 -5 - 3 

áumüi. .-7 ..,. --2- ”3 -4 -5 - 4 

JMlL 9 4 13 10 5 2 

d 

0 

-Í4). 

1 

ill.). 

2 

(IQ) 

3 

(9) 

4 

(8) 

5 

(7) 

- 4 13 21 27 30 29 

27 - 1 1 4 11 17 23 

iymia ■_23.. 2 25 38 47 52 

JMJi -31 24 17 ló 13 ó 

e 

0 

(3) 

1 

(5) 

T'-. 
2 

(4) 

_7 -2 -3 

-4 -4 -5 

Sum; k 3 -ó -8 

DiffiL -11 2 2 

9 

0 

J3L- 

1 

(5) 

2 

(4) 

23 2 25 

38 52 47 

Sumió 61 54 72 

D¡ff:n d5j -50 -22 

f 

0 

J3) 

1 

(5) 

i *** 

(4) 

9 4 13 

10 2 5 

Suíhííi 19 ó 18 
Diff:n -1 2 8 

h 

0 

(3) 

1 

(5) 

2 

(4) 

-31 24 17 

ló ó 13 

Sum : a -15 30 30 

Diffrr -47 18 4 

Table 1-7 (a) 
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VC2-S-AP3 - 17.55XH. - 11,606 Toni 

SCHEDULE FOR HARMONIC ANALYSIS 

24 ORDINATES 

TonqenHal Wake ot 0.3R 

Y 

0 

JI2L. 

1 

J23L. 

2 

(22) 

3 

(21) 

4 

(20) 

5 
(19) 

ó 

(18) 

7 

(17) 

8 

(IÓ) 

9 

(15) 

10 

(14) 

II 

(131 
9 -10 -7 -3 + 1 7 + 11 7 + 1 -ó -11 -4 

•t* 8 ♦f4 0 1 0 -8 -10 *9 -7 0 + 10 +21 

Sum: c 17 -ó -7 -2 1 -1 1 -2 -6 -ó -1 17 

MLÂ 1 -di„ -7 -4 1 15 21 16 1 8 -ó -21 -25 

I C 

0 1 

ill) 

2 

(I ft) 

3 

(?) 

4 

Í8) 

5 

(71 

.17 -à -7 -2 1 -1 
! 17 -1 -ó -ó -2 

Sum:c J8 li -8 -8 -5 -3 

MLL ló -23 -ó +4 +7 + 1 

d 

0 

JéL_ 

1 

ÍH) 

2 

m 
3 

Í9) 

4 

(8) 

5 

(71 

i -14 -7 -4 1 15 

21 -25 -21 -ó 8 16 

lumia _22_ -39 -29 -10 9 31 

MLh. 
O

 
C

N
 

i + 11 + 14 +2 - 7 -1 

6 

0 

(3) 

1 

(5) 

2 

(4) 

19 11 -8 

-8 -3 -5 

Sum: k 10 3 -13 
Mil 26 14 -3 

n 
i8 

0 

(3) 

1 

(5) 

2 

(4) 

22 -39 -28 

-10 31 9 

Sumió 12 -8 -19 

Diffíp 32 -70 -37 

f 

0 

_13L_ 

1 

(5) 

2 

(4) 
16 -23 -ó 

4 + 1 +7 

Sum; nr 20 -22 + 1 
Diff: n 12 -24 -13 

h 

0 

(3) 

1 

(5) 

2 

(4) 

-20 + 11 + 14 

+4 -1 -7 

Sum:q -16 +10 +7 

Diífir -24 + 12 +21 

Table 1-8 (a) 
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CU*r A. 

« • û fei* 
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VicTwr^ Stilp 

PROPELLER SECTION CHARACTERISTICS x =1 * Û.SSK 
R 

.90 . 80 . 70 . 00 . 50 . 40 . 30 . 20 .10 

-Chord = C -► 

■^Theory) = r (f| * f2 V f3 y3 * • • • -f|9 y19> 

Station 

Position 
from 
L. E. 

Y 
ins. 

Multi¬ 
pliers 

fl»f2 etc- 

Functions 
(fixy^tc. 

n 0.05 C û-Sà 5.04 
n 0.10 C I'VL 3.38 

_ .0.15 C /.88 3.01 

y4 n.?n c £.»*. 2.87 
^5 0.25 r. 2 81 

_ 0.30 C 2. • 2 84 

- y7 0.35 C 4.3Í* 2.92 

_Zb_ 0.40 C h.llo 3.09 

.y9 0.45 C L. 2.? 3.32 

yio 0.50 C Î..2.I 3.64 

_Lll_ 0,.55 C 2..08- 4.07 

-.111_ -0.60 C /.76- 4.64 

-h2_ 0.65 C 1.78- 5.44 
yu . -0.. 70 C I.ÙD 6.65 
y15 0.75 C 1,1? 8.59 

—y]6 0.80 C I.l£ 11.40 
M7 0,85 C O.TO 17.05 

y18 0.90 C 0.6«/ 35.40 

- y!9_ -0.95 C 0.32. 186.20 

r izs-'li 

Theoretical 0t6 = £_ „ ^ i Jl 

Actual ct0 « K*. 

Noso - Tail Slope = 

X Theoretical oL0 

Nose rise - Tail ,rise 

Chord 
X 57.3 

O-kH X 57.3 
bfr.lS 

O .5-3 S' £. * 3 
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o,1 * (T»*4“'k>^)T^n(^-»Y) 
l*»T*>*f 1intt+Y) 

.33H7 *• -84^0 j. 0' |^0 j 
„ o.«, 

(I*«. ) - X 0.8¿7? 

K^tC^C > Ö.0O7V 

,6.ú1YÍ7 »(.ti7»)v(|.U«)(.LUl) -yÍSf 

s O. 0H71Y 

H. a K¿ a P.P^Y. 
o. 

»¿».osioy 

-‘‘Ä--15-*B-t?Sr^— 

C# * p nx Tí 

»t.YyO.iy'Cí.o.fJ1 

» iv(*rsr 

4 » c5 k¿ 

* 

* l.bVt 

TobU 1-16 
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Total Steady Thrust and Torque of the Propeller 

Radius F 

0.3R 1,640 

0.55R -.,207 

0.8R 5,290 

0.9R 4,687 

Integr. f(F) 
Const. 

1.7083 2,812 

3.4167 14,374 

1.1958 6,326 

).3667 6,406 

29,918 

G rG 

1,424 4,3/9 

2,851 16,065 

2,515 20,623 

2,041 18,818 

Total force on 4 blades = 119,672 pounds. 

Total Torque on 4 blades = 451,000 pound feet. 

The model basin test gave a thrust of 121,000 pounds and a torque 

of 455,000 pound feet.24 (Pa9e 12> 

The slight increase may result from the thrust and torque of the sections 

adjacent to the hub. 

Table 1-17 

f(r.G) 

7,481 

54,889 

24,661 

25,719 

112,750 
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CAICUIAÎION OF HARMONIC FORCES & MOMENTS 

ON ONE BLADE - SHEET 1 

ORDER, n 

SHIP SPEED H.55“^.PROP. D1A. ^o-S' RPM ITS Q ^.luy ^ ^H.<S^O 

0.30R n «r O.fiOR 0.90R 
a.OTSFt. 5-.437 5"Fr S.ïo Ft. 9.22.5" Ft 

w 
1-.- Lü _ o.sr*5^ 0.31/ O.Í37 0.331 

1-W 
-2._ : Lû _ o -Vo 1 o.bsr*? <!^ • ? ét 3 O. 747 

-3. V/fLr 6.*1732. O-WlS o.lbTl o.3oar 

i ^ D, IS-iV o.oír .V o.owr 0.0 34?. 

5. <P 31.2! * ■sB.br0 LI.SV 0 

6. Sin^ ‘f O.Z^IS o.usry o.lhlb o. i3rv 

7. Cos? 'P û .t,azS 0,?3I t. O.Ï370 ö *V ¿V t 

8. •/«vSin'p coi <¡P ST, ils1' îM-rfr 9. vro 

9- U= n-a'Jv'l+Wf ilr wg.bva, 10-2-32. 7^.12.1 

10. blarta r.hûrdr c . ins’' 5-.477 ' S*./47 ' V.OiS"' 

11. Frca.Dammeter c ^/zLJ l.voi 0 -701/ 0.&32. 

12. WLn .oSH; -.033 -oo7 ¡ O ~.o/o; .003 -,0051 

13. Wtn -.Oii. -.¿sv.- -.aii. -.007; -.01/ ,02.3( - OO? .030^ 

14. WlV11"'*'1-«) ». avt .(iSTj -.ovr -.0/0 ¡ 0 10'M .00*/ -.oo7 i 

15. Wtn V/n_r ~.ö7t ».Ôi7 ^oioi -.0 33 .ofcri ‘“‘.ÛÎ-t .01^ 

1Ó. [Ï4| + 1Î5I -.ajrri -.air -.030* -.033 .oxri -ou 

17. ‘A Sin4> cosf flál ~.7n -.liii “.‘/ûi ”• 141 i -.313 .VJ*/; -.ÎOV’ . V47 ; 

18. M+i N (Fia.21 .osV .m i ^iri .313 » 100 y .H7 3 O 

19. ÍÍ7l X iï8l ~.ooï -.uoi -.asir -.aii -.1*0 .mi —.o7f .HMj 

20.Sb2^WU/ 0¾) -oír .o£«(; -.013 -.oo¿i 0 -,oe*i .00/ -.ool*’ 

21. coj2 f ^ rn V/ /1 r ~0ts -.11¾¾ -.010 -oi^i -.otï .OSli -.OU • 0V6 ^ 

22. 12ÏI - 120 .alo iVt>\ *-.oo7 -.otii -.ow .oîOj -.oU .oS'Tj 

23. B + I A (Fia.1) I.S1S .7iro; 1.523 .¿if* /.5« .iro; 1.444 .»03\ 

24. m X Í23Í .2(.7 -.00 3 -.Olii -.alV .oirii -OH? -iHti 

25. n*9i + 124) • 14 i .oí?; **• ofc 1 “.IMS'; -.til >^3j -«nr 

2Ó. Go I.Wt«/ ï.srri t, nr 4 rOH / 

27. Fo *1 .V4 M,3o7 r,i,7o V/4.V7 

28. Gn = Í2¿j X f25]-„. 347 Si 4 -nv -531 rer; -374 

29. = Í27Í X M VÍ0 4«¡ "IH -4U¡ -/»4 « 'voi -ttH 1 Î.4 f i 

.30. riRe*uHont+anale 112 133.331 42.V i/e.3Y’ 
^ F UtV 133.33* m3 l/v.iv* 

Table t-18(a) 
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CALCULATION OF HARMONIC FORCES & MOMENTS 

ON ONE BLADE - SHEET 2 

TkiVd ORDER, n 

SHIp SPEED O.SSk* PROP. DIA, ^¢,5, RPM 7 Q V.lb? uj 

f—- 
0.30R n ssp 0.8OR 0.90R 

3.07S- Ft. S. ¿375-Ft. Sr.tü Ft. 9.2iX Ft. 

-32, Skewback °_ ¿•¿1 " V.tï' % 

_33.,. Skewback - phase ° 
-- 

b.Il* ^,xv Q 

-,34-.Gn-ref. line - R + ¿- 
— 

Jl4.tT 4Î-9 laS.tíò 

35. ^n-ref. line - R + :bi^ 
• 

146.H lor.ïü 
s* 

_3á,_^i-ref, line -Re + lm 369 - 17V -vui • Ht Í b 4 -Pô 6eo Í 

~3?— fn^xeLL¡jae~=_R.^ 4- lm HiO fcí 1 -ÎS7 -éîli -97Ö 1302.1 •i?o Ii7? ; 

38, Intearation Constant 3.‘/<6? M^Xg' 1.3, 467 

_35, f (Gn) ÎIS" /tmi -XX/ ?VOj -Ul ¡¡••toi 

f {fn) 3t7 Siv' -tTr -MtO -X33 /S'í'Xi 

-4L, f (r Gn)_ 13? a -33X1 tiitj -HXIÎ toiS'a -î-'VS 7xix; 
42, f tli9 lfca¿ 1l-o¡ -?x// ii,747i -9917 1 

43. f( Gn) -loi 3 Sovil 

44,-- f(Fn)_ -U.OY Slií i 

_4¿._lÍLGq)_ -9093 ÍlrfúQl 

4ó. f (r Fn'l -¿^499 

Table l-18(b) 
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CALCULATION OF HARMONIC FORCES & MOMENTS 

ON ONE BLADE - SHEET 1 

FourTVv ORDER, n 

SHIP SPEED n.rtifr.. PROP. DIA. Zo.x’ RPM ? S' 0 S'-/¿S' ^ 

n :mR 0.55R ñ.ROR CL2ÛB_ 
$.ols Fk S'. ¿37 JT Ft. «'•¿o Ft. I.US Ft. 

w 
\ I ft 

1-W ? Lft 

Tt V/i\r 

A . ^ ... i* - 

55 
'î 

\ 

A <5?n2 4> < 

7. Tos2 r 

8. S!n <P cos 

9. 11 = il-n'Wl+wto lYr 

ÏO. blad® cKftfd. r.. 

11 . Fred.Dammec W/21J I.IoL O.VH3 

12. WLn .oil. **.034 s .o.Sr? .lo*/ “.00«i .10? -.ooli 

13. Wtn .930 .olHl .0/0 .0*4 i .00) ■oí*l -.OOV .01? ¿ 

,! wl./d-w,.«,) ,oS£ -.aiol . 1^7 ~0t7i -■'»'-i .»39 

15. Wtn V/n.r .04^ ,oS\ ) .02.3 .034¡ .ooi .053 i -.0/3 . ÕXi i 

ló. fl4l + fTsl Jit .o3>9i • IS 0 .»3? .09/j t 1 2~í» .o97.¡ 

17. */«1 Stn cos4 16 .317 JoS'. .Vol .102. i 1./98- .3¿9j i-w JL^ÍÜ- 

18. M+i N (Fío.2) -.10 3 . Z.»oi .»»/ .171 i .7.92. .37^ 

¡9. ÍTtI X IÏ8] -,OSH .oiii .ObZ ,2.3ai ,Z1S .302.» .Hi7 

70. Sin24>WLn/ .o^.^ .03ij .03V -.OOJTi .OU -.002. i .01? -oo/.; 

21. cos2 <0 ^tn V/ /1 r .Pit • oili .on •0U¡ • oo3 •oyyi -.01/ .tíYÍ-i 

22. Í2TI - 20 .oil -oil -.017 <Albi oso .ovil 

23. B + ! A ÍFÍo.n iSoi MVj I«S10 .S'JT'fj' I.S30 .513 i /.vWy 0.1I3; 

24. Í2?l X I23I .01/ .0/V| -.•si »0i3j .04/ ( -•o4t .044 ! 

25. n9i + l24l *1 û ,0T®¡ ,010 .III «34¿4 • US .Sil i 

26. Go b *£1 l.Sif l.oHf 

77. Fo % H,U)1 £,110 Htbil 

M. Gn - 123 X l25l -01 
• 

loot 2.9 7ad; SSt 9f3i 74^ étsrj 

29. Fn = 1271 « (25l asi HI ;io4¿ f920¡ nsv líoSi 

c* 
30. RmuI»ont + anal«. lOlO SVSL* lost Hl.ssc 

^ÍXO SY.IS* 2.379 Hi.rf* 

Toble I-I9(a) 
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CALCULATION OF HARMONIC FORCES & MOMENTS 

ON ONE BLADE - SHEET 2 

ORDER, n 

SHIP SPEED PROP, DIA, RPM & n ^ if 

... 
j 
* -0.30R n 44R 0.80R 0.90R 

30 7^ Ft. ^.637^ Ft. ».¿O Ft. Ft. 

_3-2.._Skcv/bock 2..21.0 HJŸ6 

33. Skewback - phase ° y.VV0 

_24—^n-ref, line - R ^ lola w/.i? /¿34 

35. ^n-ref. line - R ^ ¿iro Vy.fci* 2-37 7 
r- 

-3¿.. n-ref. line -Re + Im -lb looi 2-7 7ä>; bvi. ir/6 j 733 HSI i 
F -3Z.—1 înp - Re+ Im   ~3Sr US’S ilob ¡ I^Sb n/j-j ^/V/ /0 34j‘ 

38. Intearation Constant o .'JSVI ¿•‘/tl? 1-3 447 

39. f (Gn) VJTj 7 7 2.4T6j til 7 7ij' 1473- ¿/4 j 
-40. f £n) -Sí tw U S77?; /?v / U)¿7 ; 4744, /V/3 s 

4L f (’On!_ -¾ 7 ívvyJ ¿Ts'r fi-ool j »I.7A3 

42. f Jr Fnl -roo ¿01 4 srô? lt,3cüi /•y(i77 /4,^4 43,793 H.oUi 

43. f ( Gnt U73 1399. 

44. f { Fn) W779 7¿vy4 

45. f < r Gn) H.iTt'i 

4Ó. f (rFn) 4 //777 

Table 1-19(b) 
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CALCULATION OF HARMONIC FORCES & MOMENTS 

ON ONE BLADE - SHEET 1 

ORDER, n 

SHIP SPEED PROF. DIA. ZùiS' RPM Q K.lhX ui l/0.yy 

.0 308 0 5SR n ßnt? ! n onp ¡ 
—. . £‘.4575’ - 8.ÎLD Ft 3.US Ft 

aJÜ._ 

Vr _ 
tf-— 

tß 

-i_¢- 
- r-—-— 

Sin2 «F __ —^r- 
\ * 

JL - Cc»? 4> 

JLÂÍ«* Sin <P cotf 

LI » U»Q') /l+Tnn2^ fl¡r 

ML. blüdfi chord c_ 

Fraq.paramefer r ^/?l 1 ä.Wfl aast /»5752. I .OSH 

12. WLn “OOÏi -.0¾.^ ".OVO ~0!i,’ -■OH, “.Olli 

J.3.w.n ;_ • OOL “Olli -.mV -.01/4 -OO7 .00/i -0 12 .OO&'i 
M. wi^d-Wu,) ./oí ".OIÏ i ~.oV2. -.013 -.o« -. 017 i -.olV -, 0 Î? 1 

-lât...Y/ On-C_ .eoV .ovo,’ “Oií. TOU.’ -.01? t OiD«3»i -oVo . 0 c/, i 

it'.M + M. ./01 -.os?; -.07 V -.0»; -.071 “ 0/Y¿ “.o7V • ool«' 

-i2->.y* Sin.41 cosf íTél .til -.17 S' -.¿ni -.«»it -ubi -.feil . OS'Sj 
-IS..MH N fFio.2> -.m. .0Sr¿; -.001 .illi .¡Wû .l&ii .13/ ,/Hlj 
19. ÍT/l X.ii8l •“.ovV .asS¡ • OV2_ -.11 ö “• 174.1 -. lv¿ “ oll S 
20. Sin2 4> WLn/ (1‘WLo) -1007 i -iOt/ - 00) j -ooS - ooii -.ooí - BOt V 

2L~£Ci?.^ Wtn V/n r .Obi -.OiVi “OÎ.S -ois'. -oi\ .0©lj -o¿4 
• 

• J 
22. Í21 - I#) “■.ove -.0174 -on. -.007,' -.eis* -i04s' 10ãí 1 OtY i 
22*.fi •>• i A (0g.J)_ |.5T«0 in os; 1 t&i t mo*; /^0 0.470; .JT1S 1 Vi?i 
24..Í221 X j2l_ “01/ -.OTij -eOOg - Oiî\ “.oll -00/i -osx * OlV J 
25. ira + Î24) eíí ~°vj .07»/ -.1301 137 !7?i -.lot 

— ~ *. 
-OV?j' 

24.,.Go _!¿íáí_ l^SI l.SiS 1,0 V/ 

2jL-...Fa.. f/ ► Ví> v,eo7 £,l*)0 4,6S7 

28. Gn » 12¾ X l2Sl -10? 2lkL. tu -¿7| i -iVi -vvxj -11«/ -?4 ; 

22^Ia..«_5¾ X B -uî> -i, Vi ii r -ÍV7Í •US -13t j’ * ■/«/// - /** 
^.1—.iiRfiitfltgnH- anale SU lll.ll* ¿¿I fStvi-t* 

1 IIS ui.tl* j VÎ-S ISt.i'l* 

Table !-20(a) 
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CALCULATION OF HARMONIC FORCES À MOMENTS 

ON ONE BLADE - SHEET 2 

F.'Çfc ORDER, n 

SHIP SPEED \1SSK. PROP. DIA. RPM ?y f) 118 ^ HO.W 

! n.30R 0.55R O.SQR 0.90R 
1 3.07^ Ft. Í637Í Ft. S'.iO Ft. 9.24Í Ft. 

32. Skewbgck 2.,17.0 V,/Sr° 

33. Skewback •• abase 0 n. »o % 0 

.34. ^n-ref. line - R + 4L 5-6 3 4if.//° 64f /67.76* 

35. ^n-ref. line - R + /12? IX/.IJ* IVi? /fc?,7i* 
G -Só^-Lfn-ref. line -Re + Im -loi "Sl.i 2.11 -37/i -W2«/ -SlOj "to? 147 j 

—3Z-_.^n-fAf. lino - Re+ Im -a?> ~6Vi Si/ -Efiû -7V2¡ -1 il? 27?; 

38. Infearafion Constant i.Utbl 1, /"îjr? /.3447 

39. f <Gn)_ -o / 77.1 -146?; -so? -WY2.J -S30 »7 Ci' 

40. f ^n)_ -toi /04 2> -loti -Srfti; -Ho? yû7 ; 
-4L f (r Gn’l -Î.W -iM7a VOS»/ -7/V6Í ~^IS1 -74Í-3 /tu; 
42. f.(.r Fn) -tfciii -/0^34. -S33S- -71.76; -n,ii3 37J?; 

I 43. f ( Gn) -7ol -ISÏÏli 

44. f ( Fn) '¿Voy.; 

45. f < r Gn) mi- 

A6. f (rFn) "i N^lïj 

Table I-20(b) 
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