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ABSTRACT 



While investigating the Tsunami wave project, a numerical method 

was devised to solve the initial boundary value problem for the equations 

of the non-linear shallow water theory.    The case of one horizontal dimen- 

sion was considered in a domain bounded by a shore at one end, with the 

motion of the shoreline taken into account.   In addition, this method en- 

abled the incident wave to be introduced at the seaward end of the domain. 

The water was assumed to be at rest in the domain until the incident wave 

arrived,  and the bottom was assumed to slope uniformly. 

Tjfi 
¥ 

l - 



INTRODUCTION 



K. 

Some of the meat important and most interesting effects of water 

waves occur when the waves approach a shore and run-up on a beach. In 

particular the damage done by a tsunami is produced then.   Nevertheless 

this aspect of water waves has not been analyzed very extensively from 

a theoretical viewpoint because of the mathematical difficulties involved. 

However, in recent years some analytical methods have been developed 

which can be applied to the run-up problem.Llj    Therefore, we have 

applied them and have obtained various new results.    But these results 

are still mainly limited to waves of small amplitude because they are 

based for the most part on the linear theory of water waves.    To obtain 

results valid for waves of larger amplitudes we have turned to numeri- 

cal solution of the relevant partial differential equations by the method 

of finite differences.   The numerical calculations are performed with 

the aid of a high speed digital computer. 

In the first part of this report, we shall describe our analytical 

results.    The analysis underlying them is contained in Appendix 1 and 

some of it is also in £lj.    The objective of this part is to determine the 

amplification and run-up distance of time harmonic waves of any period 

approaching shore in water of arbitrarily varying depth.   Since the ana- 

lysis is based on the linear theory,  the results can be superposed to 

treat the run-up of waves of arbitrary wave form.    The results are 
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summarized in section 6 and graphed in figures 2-4. An analysis based 

upon the nonlinear theory is employed to determine the range of validity 

of these results, at least for long wave lengths. 

In the second part of this report, we shall consider the numerical 

solution of the run-up problem.   Since we are especially interested in 

tsunamis, which are long waves which develop large amplitudes, we shall 

base our study on the nonlinear shallow water theory of wave motions.    The 

long wave length of tsunamis makes the shallow water theory applicable, 

and the large amplitudes necessitate the use of the nonlinear form of this 

theory.    To solve the equations of this theory numerically, we first limit 

the region under consideration to that between the shoreline and some fixed 

boundary point far from the shore.    Then we devise a numerical procedure 

for solving the equations of motion within this region.    We also develop 

special methods for treating the motion of the shoreline and the boundary 

conditions at the fixed boundary poiut.    We start our integration with the 

water at rest and with waves incident from the boundary.    We continue the 

integration until some time after the waves have reached the shore and 

moved the shoreline up the beach and back down again, or even until this 

motion has happened many times. 

The numerical proceaure is general since both the bottom profile 

and the incident wave form can be varied and transient effects can be 

determined.    To check the procedure a uniformly sloping bottom with time 

harmonic incident waves was treated in detail.    The amplification factor 

was determined for various beach angles, wave frequencies and wave ampli- 

tudes and compared with the analytical results of the first part.  For this 
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purpose it was necessary to keap the incident amplitude so small that bore 

formation did not occur. Agreement between the analytical and numerical 

results was satisfactory only for low frequency waves. The disagreement 

is under study and further calculations seem to indicate that better accuracy 

is required in the numerical scheme. Smaller net spacing can be used for 

this purpose but it is more efficient to devise a higher order accurate 

difference method. 

Further steps to be taken in developing the numerical procedure are: 

to extend it to include the formation of a bore, its motion toward shore and 

its arrival at the shoreline.    The motion of a bore toward shore has been 

dealt with previously[Zj,  so only the problems of bore formation and 

arrival at the shore remain to be solved.    From the analytical point of view, 

methods exist to analyze the formation and motion of a bore as long as it is 

far from shore.   Analytical methods must still be devised to deal with the 

arrival of a bore at the shoreline. 
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ANALYTICAL RESULTS 



1.      Linear theory of run-up 

Let us define the run-up distance /""as the maximum horizontal 

distance which the water moves shoreward beyond the undisturbed 

shoreline.   According to the linear theory of water waves. 

Y~ - ??.cot o, 1. 

Here ^W is the maximum wave height at the undisturbed shoreline and •» 

is the angle between the bottom and the horizontal at the shoreline, i. e. 

the beach angle.   Although the linear theory possesses solutions in which 

yjk is infinite, we consider them to be irrelevant for our purpose, and 

we shall deal only witi solutions for which *%is finite.   In finding ??m 

from the linear theory, we shall consider only time harmonic wave 

motions,   since other motions can then be treated by superposition. 

A time harmonic wave motion is characterized by an angular fre- 

quency tJ , a wave height far from shore, which we denote by a, and a di- 

rection of propagation.    We shall assume that the shoreline is straight, 

that the bottom is a cylinder with generators parallel to the shore and 

that the incident wavefront is parallel to the shoreline.    Then the motion 

is two dimensional     We describe it in terms of rectangular coordinates 

with origin at the undisturbed shoreline,  the positive x-axis being normal 

to the shoreline and lying in the undisturbed water surface and the positive 

y-axis pointing vertically upward.    Then the undisturbed water surface is 

the half line y=o,  x>o.    In these coordinates the equation of the bottom may 

be written as 

y = -H(x) 2. 

- 5 - 
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Since the shoreline is at x - o, we must have H(o) so and H'(o) = tanx. 

We shall also assume that the depth H(x) approaches a constant value 

far from shore,  so that 

lim       __, , 
X-.00 "<*> = » 3. 

The possibility that the depth is infinite far from shore is included since h 

may be infinite. 

As a consequence of linearity % is proportioned to the incident 

amplitude a so we may write 

^ =Aa 4. 

We shall call A the amplification factor, and shall attempt to determine 

it.   Once A is known the run-up factor R = >-/a is, from (1) and (4), 

R = A cot** 5. 

In order to treat non-harmonic incident waves, we must find in 

addition to A, the phase lag & between the occurrence of wave height 

maxima at points far from shore and at the shore for harmonic waves. 

Then we can use Fourier analysis to find the amplification for non- 

harmonic waves. 

- 6 



It is to be noted that both A and ^are independent of the frequency cJ but 

depend upon the beach angle  •<. 

r 
2.     Uniformly eloping bottom I 

An exact explicit solution of the wave amplification problem is known 

only for the uniformly sloping bottom, for which H(x) = x tan «c   It was 

first found by £. Isaacson ßjin 1950.    An account of his analysis as j 

well as a description of most other work on this problem, is given by 

J. J. Stoker (4J .    The incident wave height in the infinitely deep water 

far above shore is given by 

>?£(x, t) = a cos (tJt +/3x) 6. 

Here/3 = ft>  /g where g is the acceleration of gravity.    At the shoreline 

x = o the wave height for the finite solution is 

^(t) = (a%f)1/2ac08^t  -  -^2 + ^| 7. 

In obtaining (7) we have renormalized Isaacson1 s solution so that the inci- 

dent wave is given by (6) and we have corrected a misprint in his equation 

(3. 8) and the preceding equation. From (6) and (7) we find that the ampli- 

fication factor and phase shift are given by 

<9= »74-77*78 9. 

r 
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I 3*     Slowly varying depth 
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We now wish to determine the amplification factor and phase lag for 

bottom contour more general than the uniformly sloping one.   For this 

purpose we shall employ approximate solutions of the equations of the 

linear theory.   First we consider an approximat' >n which is appropriate 

when the water depth H(x) is a slowly varying function of x, i. e. when 

] (J6H)~*   dH/dx  «  /.    Then the geometrical optics method   5   yields an 

approximate solution which is good everywhere except near the shore. 

In this vicinity the linear shallow water theory yields a valid approxima- 

tion.    By matching these two solutions v/e determine the entire motion 

and find 

r 
! 

[ 
2/*MT-   .jai,v-\l/2 A = (~'*yU)llz      (Ko sinnVShKo +>8hKo) 

(mm cosh iöhKo 
10. 

! O*    !*-    ^3JfK(x)    -   K0] dx 11. 

\ In (11) K(x) is the positive real root of the equation 

K tanh y^KH(x) = 1 12. 

The constant Ko = K(oo) is the root of (12) with H(x) replaced by h-H(oo). 

\ The amplification factor A given by (10) depends upon the beach 

slope o* and the depth at infinity h, but it does not otherwise depend upon 

the manner in which H(x) varies between the shore and infinity.   However 

\ the phase lag dadoes depend upon this variation.    Both A and <^also 

, depend upon the frequency o>.    This dependence is best expressed by 
! 

saying that A and ^depend upon the dimensionless quantity /Oh.    As J&I 

becomes large, A tends to (2^"y£<) '    the value given by (8) for the 

8 
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uniformly sloping bottom.   Since that value is exact, this is a check on 

the approximate result.   Another check is the fact that the result (11) 

for <? coincides with the exact result (9) when H(x) = xtan«c 

When Bh is small, (10) and (11) yield 

A~(2£)l/2    (4/Sh)1/4, ^H«! 13. 

*~ JT -ft'1  ft*-112 -h1/2J dx.    /3h«l   14. 
4 '© 

The expression (10) would indicate that A vanishes when /3h is zero, but 

this unrealistic conclusion is not correct.   The results (10), (11), (13) 

and (14) are not valid when /ßh is small because then the condition that 

the depth be slowly varying is not satisfied.   Therefore we must now 

determine A and O when /3h is small. 

t 
(/ 

I 

* 

i' 
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i 4.     Shallow water 

The condition that Ah. be small implies that the water depth is small 

compared to the wavelength.   In that case the wave motion can be described 

by means of the linear shallow water theory.   From 'that theory we find 

A = 2 + 2 /3b + 0(/62) h«l 15. 
0=0^3/2) h«l 16. 

The constant b in (15) is given by 

b=       (x £H"X -h-1J dx 17. 

Since usually H(x) 5 h, it follows that b is positive.    Therefore A increases 

with increasingyfih from the value A=2 at ySh = O.    The values A=2 and 

O - o occur in reflection of waves from a vertical wall, as we see by 

setting   « = 7^j2 in (8) and (9).    Thus the results (15) and (16 show that 

iovjS- o, a beach of any contour reflects like a vertical wall. 

When j$h is large, the linear shallow water theory yields, when o* is 

small, 

A~<2*7-<)1/2   (4,3h)1'4 A»l       18- 

0~%-/3in J"*[H-1'2-h-1/2]dx /8h»l      19. 

The results are the same as (13) and (14).    Thus the linear shallow water 

theory yields results which for/3h>>i, match with the results for slowly 

varying bottoms, when the latter are expanded for /3h«\  .   This is the 

kind of agreement which is always obtained when two different asymptotic 

expansions of a given function are compared in a region of common validity, 

This agreement is another check upon our results. 

10 



5.    Shallow water - an example 

In the preceding section results for A and O were given based upon 

the linear shallow water theory, for the cases /3h<< 1 and /3b »1    . 

No general result is known for intermediate values of /3h.    Therefore we 

shall now consider a particular bottom profile for which the equations of 

the linear shallow water theory can be solved explicitly for all values of 

Z3h.    This bottom slopes uniformly at the small angle  o*  from the shore 

down to the depth h and then it is horizontal.    (See figure 1.)   For it we find 

A = 2 [jl(Z<K"ltfö + jfc^"1 ^3h)]    "1/Z 20. 

(9=cx'1ißh   -tan   "!    Ji(2~-l^r) 
Jo(2o<-lffi 21- 

When these results are expanded for /3h small they agree with (15) and 

(16), while for /5h large they agree with (18) and (19). This agreement 

provides a further check on our results. Graphs of A versus Sh. based 

upon (20) are shown in figure 2 for several values of «H. 

11 
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! 6.     Summary of analytical re stilts 

The results (10) and (15) determine A for practically any bottom 

profile for both large and small values of y0h.   Similarly (11) and (16) 

i determine G.    The bottom must have a small beach angle and a finite 

slope everywhere.    The range of /3a not covered by these results is 

relatively small,  since it is a range throughout which the linear shallow 

water theory is applicable.    The example treated above indicates that 

I this range lies between .05 and . 15 for «= ^720    and between .05 

and .25 for *»<- ^**/10.    As o-cincreases,  the gap widens while as °* 

1 decreases it shrinks.    For a bottom with very large slopes, the gap 

may be rather large. 

Our results indicate that A increases monotonically from the value 

2 at /Oh. - o to a maximum at /ßh. = 1 and then steadily diminishes to 

the asymptotic value (2"7y/&<)l'* at /3h - oo.    The maximum value of A 

is about 10% larger than the asymptotic value.    Only a small portion of 
I 

the rising part of the curve of A versus vßh is not covered by our general 

results.    Graphs of A versus  /Oh for several values of   *c are shown in 

figure 2,  based upon (10). 

Since our results are based upon the linear theory of water waves, 

they are applicable only to waves of such small amplitude that even after 

amplification,  their wave height is small compared to their wavelength 

and to the depth.    An explicit criterion for the range of applicability of 

the results for ySh small can be obtained by utilizing the nonlinear shallow 

- 12 - 



water theory near the shore line, where the wave height it greatest.   That 

theory shows that our results (10) and (11) are correct for /3h small 

provided that the incident amplitude a satisfies 

a)  Aa. K   c*  , or equivalently b)   a r   o<   =    1        22. 
' A h /3hA    u)*K 

Here A is given by (10).   Graphs of the right side of (22b) as a function 

of a)are shown in figure 3 for several values of     •*.    When (22) is 

violated a discontinuity or bore forms at some distance from shore and 

travels toward the shore.    For large values of /Oh there should be 

corrections to our results as /3* increases,  even in the absence of 

bore formation. 

13 - 



NUMERICAL  RESULTS 



1,     Formulation of general problems 

We introduce dimensionless variables:   t, time; x, length; h(x.t) 

andH(x), water depths; u(x, t), water velocity.    These are related to 

the previous dimensional variables, which are now denoted as t, x, h, 

etc. by the scaling: 

x = xL, t = t-Jk u = u y/gD, 

h = hD, H = HD. 23. 

For convenience we choose the scales L and D such that the dimension- 

less undisturbed water depth, H(x),  satisfies: 

H(o) = 1   ,   H( 1) = O. 24. 

With this convention the water initially occupies x <  1     and a uniformly 

sloping beach is given by 

H(x) = 1-x. 25. 

In dimensional variables the slope of such a beach is then tan<x   = D/L. 

(Note that now figure 1 should be reversed and shifted.) 

The nonlinear shallow water theory equations become, in the 

dimensionless variables (23), 

ht   +    (uh)x   =   O 26. 

nt    +    (1/2 u2)x = Hx - h^ 27. 

If the shoreline location at time t is denoted by   € (t) then since the water 

depth is always zero there 

h ( f (t),  t) r. O. 28. 

14 



In addition the velocity of the shoreline must be equal to the water 

velocity at the shoreline and so 

4-J^-=U(f(t),t). 29. 

Equations (28) and (29) are the boundary conditions to be imposed on 

the moving shoreline. 

To facilitate computations we consider only the motion in 

0 - x - 5 (t) for t >0.   If the flow at x=o is alwayi subsonic this can 

be done by specifying an appropriate wave incident from x < o.   Intro- 

ducing the local round speed,    c = 7h, the equations of motion (26) and 

(27) can be put into the characteristic form: 

(u+ 2c)t   + (u + c) (u + 2CJX = Hx 30. 

(u - 2c)t + (u - c) (u - 2c)x = Hx 31. 

Equation (30) determines u + 2c along the positive characteristics, 

dx/dt = u + c, which,  as t increases,  enter   x>o   from  x< o.    Thus 

u + 2c may be specified on  x = o.   If we assume that the linear theory 

is valid for   x < o  and that H(x) = const = 1 there we can write the general 

solution of the linearized shallow water equations as 

u = F(t-x) + f(t+x)   / 

i 32. 
h - 1 = F(t-x) - f(t+x) ) 

In the linear theory we use c =   /h = 1 + (1/2) (h - 1) and thus 

u(o,t) + 2c(o,t) = 2   [l+F<t)J . 33. 

- 15 



We shall use (33) as the boundary condition imposed at x=o.   The 

significance of the function F(t) is clarified in (32); i. e. it is the 

incident part of the linearized wave motion for   x < o. 

Initially the water is taken to be at rest, that is 

h(x, o) = o,   u(x, o) s o in o Sx £ f (o) s 1. 34. 

In summary the problem posed above is: to solve the nonlinear 

shallow water equations (26) and (27) in   o 5xjf   (t) for   t >o   subject 

to the boundary conditions (28) and (29) on the unknown boundary 

x = \ (t), the boundary condition (33) on  x=o and the initial conditions 

(34).    The motion of the shoreline is also to be determined.   In this 

study we only consider motions in which bores are not present. 

- 16 



2.     Numerical method 

The numerical method is a modification, of the one employed in [z\ . 

We use uniform spatial net,   XJ = jAx, and a time net, tfc + js tfc+Atfc, 

determined by the stability and smoothness conditions to be imposed below. 

If we denote by  f^= )(ty) the position of the shoreline at time   t^ 

then we define X .,* as the net point for which: 

X +    ^x       _       c      < x *   3 ^x 35. 
s(k) + —J—    <       Jk   5    s(k) ♦ T' 

The calculations for t^+i  are then naturally divided into three types 

at different net points,  as follows: 

A)   interior points:       xj 1 x; 5 Xg/^%    ; 

Bo)   incident wave: x0 ; 

Bs)    shoreline motion:   Xg/^v and f j^+i 

In the interior we use the conservation difference forms of (26) and (27) 

employed in   JZ}  .    Thus with the net points denoted as in Fig 4a the 

flow quantities at interior points A)are computed by: 

h (P) = h(Ll)+h(R' )      *'k    fu( R.)h(R' )-u(L' )h(L' )~1 
2 24x    L J 36. 

u(P) = u(L')+u(R') . J^k_ | [u2(R')-^(L')]+ £(R, }.h(L ,,]^ +4tkH. (x.} 

- 17 - 



The stability of these difference equations is insured by requiring the 

Courant condition:       4tk 5 min  f Ax ] 
P'    V.  |u(P')|   + M&")' 

From (33) we recall that u+2c is specified at the point P in the 

incident wave configuration of Figure 4b.    By (31) it follows that u-2c 

is propagated  along the negative characteristics, dx/^ = u-c.    Thus 

if iuf < c     a difference form of (31) can be used to compute   u-2c 

at P in terms of known data.   Specifically we write 

a 5 u-2c, b s u-c 

and center the x- and t- differences at the center of the net rectangle 

in Fig. 4b to get 

(,._4ik_fJ 
/l+4~-b')   la(P')-a(R)]   +2 4t   H'(4x/2) 

a(P) = a(R') +1 £ L± J  L. •     37. 

Ax 

Here    b = (l/2)(b(R) + b(P')) is the value of b used at the center.    Com- 

bining this result with that in (33) we get finally: 

h(P) * -jL-fatP, - 2   O+Ftt^)^ 

38. 
u(P) = -±-ja(P) + 2(l+F(tk+1))J 

In Fig. 4c the netpoints entering into the deter nination of the 

shoreline motion are indicated.    The dotted line R1 R represents the 

mo-ing shoreline.    The unknown quantities are u(P), h(P), u(R) and 

T(R).    The equations of motion,  (26) and (27) hold at P and R. 

18 - 



However (26) is identically satisfied as x ~> f, i. e.  at R, by virtue 

of (28).    The fourth equation is furnished by (29).    Using this we 

write (27) at x=  f   in the form 

du(   at(t),t)  =Hx<f(t))   - ISt ( f (t).t). 39 

We difference equation» (26) and (27) in an implicit form essentially 

centered at P while (29) and (39) are integrated from t^ to tjt+j by the 

trapezoidal rule.    The resulting equations are implicit and nonlinear 

and are solved by iteration.    The form and order in which they are 

used is: 

J(R) = f(R-, + ^k [u(R) + u(R')] 40. 

h(P) = h(P') - ^^ i^__     [ 0 - u(L)h(L)] 41. 

u(R) . u(A' ) * Jp.ßi , J k)+H' , J m . hx(R' ,.h^R)]       43 

In (43) the quantities h,w(R' ) and h^R) are computed by extrapolating, 

to R' and R, h-difference quotients at times t^ and tjc+j,  respectively. 

The iterations start by taking u(R) = u(R') in (40).    The value of    I (R) 

thus computed is used in (41) and (42) to obtain h(P) and u(P).    These 

iterates are then used in (43) to compute hx(R) and hence u(R) which 

completes one cycle.    The iterations cease when the total change in 

magnitude of all four quantities is less than a specified tolerance. 

42. 
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It is assumed that the difference equations (40) - (43) and (37) 

when adjoined to the system (36) do not alter the stability condition 

previously imposed     This seems to be borne out by the computations 

which have been run in some problems for several thousands of time 
r 
f 

steps.    The time step is also restricted so that the shoreline will in 

general not move more than half the spatial mesh width in one time 

step; that is in addition tc the Courant condition we impose 
i 

| 

4tk     < ^ X 
2 |u(R)| 

If at the end of a time step   J . ..   =   C(R)  > X ,.»,« +   «/,, we then 
! 

set s(k+l) = s(k)+l and interpolate u and h between P and R to get 

data at the new net point, (x8+j, t j^+i ).    This interpolation is done at 

most every other time step as a result of the above restriction on  A t. 

f 
When the shoreline recedes a similar procedure is employed and net 

points are discarded. 

- 20 - 



3.     Results of Calculations. 

All of the calculations to be reported used the uniformly sloping 

bottom profile represented in (25). A series of problems was run in 

which the incident wave function in (33) was of the form 

F(t) = a sin*K. 44. 

The amplitude,   a,  and frequency,   cJ, were varied in these problems. 

Each case was run until at least ten full period waves had reached the 

I shoreline.    Most significant transient effects on the motion of the 

shoreline seemed to be absent after about five or six periods. 

Since in our dimcasionless variables the beach angle is "ft*I4 the 

water height at the beach is equal to the displacement of the shoreline, 

F (t).    If the maximum steady state positive shoreline displacement is 
1 

denoted by   f 0 then the amplification was calculated to be 

; A= fo/a 45. 

A list of values of the amplifications thus obtained is presented in 

I 
Table 1.    In Fig.  5 these values are plotted against the theoretical 

values of equations (10) and (20) for the special beach angle ««for which 

tan ex = 11iQ.    The abscissa is<*> = ^3h/o< and we see that the agreement 
i 

is fairly good in the range   o5o)  <3. 3.    However,  the numer»   ally 

determined amplification then falls off rapidly and for cJ > 5 no reason- 

able values could be determined.    This loss of accuracy for «J>5 suggests 

that the calculations become less accurate as «^increases and may explain 

the observed discrepancy.    Calculations with finer meshes and possibly 

higher order accuracy are being considered. 
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APPENDICES 



1.     Analysis. 

A method for obtaining an accurate approximation to the velocity 

potential <P(x,  y) of a time harmonic motion in water of slowly varying 

depth is presented in [5J .    Since the complex wave height 7}[x) = i<Jg   <p(x, o), 

that method also yields ^ .    In the two dimensional case it leads to the 

following expression for two waves going in opposite directions. 

?7(x) = (Ksinh2/3KH +/3KH)"1/2 coshyÖKH (A+ exp [i^ K(x)dx]  + 

A_ expf-y3J^K(x)dxj|      1. 

Here A, and A_ are constants and the other quantities have been defined 

in the text.    For x large,  so that H(x) »h, we may rewrite (1) as 

^(x) = (K0sinh2
/aC0h+/3K0h)-1/2cosh  KQh  j^exp [y0£(K-Ko)dx] 

fi/3K0xJ  + A. exp [-i/3J^K-K0)6x Jexp f-i/3K0x]| 2. exp. 

= a exp^-yÖK0xJ +   a+ exp £i/3KQxJ 

The constants   a   and   a.   are defined by this equation,  w  ich represents 

a wave of amplitude   a   approaching the shore at   x=o   and a reflected 

wave of amplitude   a+  traveling away from shore. 

Near the shore/ÖH «   1 and (12) in the text yields   K^-J^H)1/2. 

Then(l) yields 

7!M*i4flWmU4U+*xp[-</&fZfcH-l'*dx] +A.exp[-i/31/2jSH-l/2dxj|3 
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v ■ r. 

Since   H(x) = x   taiWnear shore,  (3) becomes 

Both (3) and (4) yield an infinite value for *f at x=o, but they are not 

valid there.   This is because (1), and therefore (3) and (4), are 

asymptotic forms of ?f valid for /3H large, but at the shore H vanishes. 

Therefore a different asymptotic form of *f, which we may call a 

boundary layer expansion,  is needed near the shore. 

If °* is email the linear shallow water theory can be used to find 

near the shore.    When we set H(x) = x*<,  since«fis small,  it yields 

For large x,  (5) becomes 

Upon comparing (4) with (6), we find that they become identical if tan« is 

replaced by«*   and if A. and A_ are related to >-?    by 

y^Q = A+ (2^-r)1/2 e1**4   =   A. (277<*r)1/2   e ^4 7. 

When (7) holds,  the solution (5) valid near shore matches the solution (1) 

valid away from shore.    Upon using (2) to express A   in terms of the 

incident amplitude   a, we obtain from (7) the wave height at the shore 
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f >7   g , q fr-)1'2   (KQ .inh^Knh   ^/3K»h)1/2 

1 exp(-ijbt+|T-/3  J(K-K0)dx| 8. 

r 
3 The amplitude and phase of (8) yield the amplification A and phase 

lag ^given by (10) and (11) in the text. 

When the water is shallow compared to the wavelength, which is the 

case when /JH(x) << 1, the linear shallow water theory is applicable. 

In this theory ??(x) satisfies the equation 

(HJ*xt   V^= ° '        x  t ° 9' 

An asymptotic solution of (9) for yöH large and  Hx   small is given by 

(3), which is not valid near the shore.    The solution (5) satisfies (9) 

near the shore.    Upon matching these two solutions as in the last 

paragraph, we obtain (18) and (19) in the text.    For small values of 

/3H, we solve (9) by expressing ??(x) as a power series in/Si   The 

details are given in  [l] and the results are contained in (15)-(17) in 

the text. 

To treat the example of section 5 we use the linear shallow water 

theory (9).    A solution of that equation in the constant depth region 

x^h cot«*-,  where H(x) = h,  is given by the last form of (2) above. 

A solution in the uniformly sloping region  o<x<h cot**«' is given by (5). 
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f. 

At the point  x=h cot«* we require fy(x) and the horizontal velocity 

to be continuous, from which it follows that >?   is also continuous. 

Upon imposing these two continuity conditions on (2) and (5) we can 

determine both 10 and a+ in terms of the incident amplitude   a. 

For small•«when cot*r Ä?*<"    the result for >7   is 

-1  ,  

'Po- lO. 
o(ZoClJßh) +iJ0

1(?.*<"1^h) 
1 

By taking the amplitude and phase of (10) and recalling that J     = -    ., 

we obtain (20) and (21) in the text. 

For small angles «<the amplification  A  becomes large.    Then the 

linear theory of water waves fails to be applicable unless the incident 

amplitude is small enough.    Tc analyze the effect of larger incident 

amplitudes it is necessary to use a nonlinear theory,  at least near shore 

where the wave height is greatest.   Since the depth is small near shore, 

the nonlinear shallow water theory can be used there.    Away from shore 

the linear theory can be used and the solutions given by the two theories 

can be matched together.    For a uniformly sloping bottom G.   F.   Carrier 

and H.  P.  Greenspan [6J found a periodic solution of the nonlinear shallow 

water equations.    If we replace their parameters   a   and 10   by 

nQ   =<*<lo a/4 and se = 4*<//3,  we can rewrite their solution far 

from shore in exactly the form (5) multiplied by COSGH.    The constant 

>?0 still denotes the maximum wave height at the shore.    Since their 
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solution is of exactly the form (5) far from shore, matching it to the 

linear theory yields exactly our previous results (10) and (11) in the 

text for   A   and & .    However,  their solution is valid only when their 

constant    .< 1.   Since   a = 4^ /•*!    =/3>?  <=K~2 , this condition 
O 1 

becomes ^?0 < e>< //<3 Upon setting   >7    = Aa,  this becomes 

/3a. <<x A"1 which is (22) of the text. 
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2.     Figures. 

Captions for Figures 

Figure 1.    A profile of a bottom which 

slopes from the shore at angle **down 

to the depth   h,   and then remains of con- 

stant depth. 

y 

o 

-h 

h cot 
-»* 

Fig.   1 

Figure 2.   Graphs of the amplification factor   A   as a function olfih. 

for various values of the beach angle**.    The curves labelled MA1" 

are based upon equation (10) and apply to any gently sloping bottom 

profile.    The curves labelled "A2" are based upon equation (20) and 

apply only to the bottom profile of figure 1.    For each small value of*c, 

the corresponding curves "1" and "2" agree with each other over a 

region below    h = . 25.    Curve "2" should be used to the left of this 

region and curve "1" to the right. 

Figure 3.    Graphs (fcTA)~    as a function of ejior various values of 

the beach angle ■*.    The curves are based upon equation (10) for A. 

According to equation (22),  the amplification factor A is given by 

equation (10) only if   a/n<(«J A)"   .    When this condition is violated, 

the linear theory does not apply and bores will form.    Thus these 

curves give the maximum value of a/n,  for each value of o, and u>, 

for which figure 2 can be used. 

fe 

I' 
I 
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Figure 4a.   Net point configuration for differencing the equation of motion. 

4b.    Net points entering into the incident wave boundary condition. 

4c.    Net points for determining the shoreline position. 

Figure 5.    Comparison of numerically determined amplifications 

with the theoretical formulae (10), labelled Aj,   and (20), labelled 

A?, for a uniformly sloping beach with angle ®r= tan~* 1/10.    The 

numerical values are those from Table 1 for an incident amplitude 

a/h = -004. 
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Figs, 4a, b, c 
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3.        Tables. 

Table 1 

Computed amplification of an incident wave of the form F(t) 

a nintJt, for indicated values of cJand a. 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Incident amplitude, a 

Frequency, ej .002 .004 .008 

0.625 2.5 2.4 2.4 

1.250 4.1 4. 1 4. 1 

1.768 5.4 5.3 5.3 

2. 165 5,5 5.5 5.5 

2.500 6.0 6.0 6.0 

2.795 6.6 6.6 6.6 

3.062 6.7 6.8 6.8 

3.307 6.1 6.3 6.5 

I       3.535 5.4 5.5 5.7 

3.953 4.3 4.4 4.4 

4.330 3.4 3.2 3.8 

4. 677 2.7 2.7 2.8 

5.000 ? 2.2        | 2.4 

5.303 ? 1.9        1 1.5 

5.728 ? 1.4 1.5 

6.124 ? ?          ; 1.2 
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