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SUMMARY

Turbulent and precipitation conditions in the real atmosphere are
considered in their effect on the line-of-sight propagation of electromagnetic

waves. It is found that tropospheric scattering and phase scintillation

mechanisms place an interesting limit on the accuracy with which one may

determine the angular position of a distant radiator. Superposition of the

same perturbed signals gives rise to waveform distortion in communication

Theoretical expressions for angular power distributions and phase

systems.
Ray

error spectra are derived from phenomenological atmospheric models.

bending by cloud formations and rainstorms is also computed for representative

weather conditions.



I. INTRODUCTION

Tre present report summarizes the results of an investigation initiated
to answer the simple question: '"With what precision can one propagate micro-
wave electromagnetic energy along a line-of-sight path in the real itmosphere?"
Such a question arises naturally if one asks for tte ultimate accuracy of radio
location measurements or ultra-high speed communication techniques. One
car. imagine a variety of scattering and phase sbhifting mechanisms which
might operate in the atmosphere to produce angle of arrival problems, multi-
path propagation modes, signal phase scintillation, ar:d broadening of
received energy patterns,

This study was fortunate in that considerable attention has recently
been focused on the atmosphere in connection with beyond-line-of-sight
(scatter! communication systems. A theory of turbulence scattering has been
proposod(”’(z) to account for observed propagation anomolies. There has
subsequertly been initiated a thoroughgoing examination of the atmosphere
and its variations. In addition to the usual meteorological disturbances
(snow, rain, clouds, and dust), an atmospheric fine structure extending from
the very surface of the earth to ionospheric heights has thereby been uncovered.
This structure i8 measured as time and space varying concentrations of index

of refraction in the troposphere and free electron densities in the ionosphere.

(UH. G. Booker and W. E. Gordon, Proc. I1.R.E., 41, 284 (1950).
(Z)C. L. Pekeris, Proc. I.R.E., _3_5_, 453 (1947).



The present study has exploited phenomenological models for turbulence
and precipitation scattering which have beer fitted to such experiments. Effects
of clouds ard elevated layers are computed from estimated departures of the
index of refraction from its median values. In general, no attempt has been
made to determine the effects of signal attenuation, * ducting or uniform
horizontal layers. The essentia! output of the following calculation is: (1) RMS
phase error and scintillation spectra for single rays and for linear superposi-
tion of multipath signals, and (2) angle of arriva! variations for single rays
and angular distributiors for the scattered energy. No account is taken in
this report of the stratified nature of the atmosphere; only deviations from
the mean are considered. These results are computed for one receiving
antenna only, so that in order to predict performar.ce iimits, one must employ
the characteristics of the particilar system contemplated. This study
indicates two points rather clearly: (1) the atmosphere can be a limiting
factor in very accurate radio location schemes, and (2) attendent phase
variations imply a real distortion limit for ultra-high speed communication

systems,

II. TROPOSPHERIC TURBULENCE

The troposphere is in continuous turbulent motion, and is therefore
neither uniformly stratified nor homogeneously mixed. At a given instant
there are both horizontal and vertical fluctuations in the temperatur.,

pressure, and humidity about their respective means. One may think of

»
Except insofar as this is necessary to secure convergence (and thus proper
physical description) for wide-angle acceptance receiving antennae.



these micrometeorological disturbances as a turbulent boundary laver
phenomenon associated with motion of the winds over the earth's rough
surface. A detailed eddy decay schieme hLas been suggested whick imagines
these large scale wind-produced turbulence clusters to subdivide until their
size and energy are cventually absorbed in molecular friction. (3).(4) We
shall base our development on a purely phenomenological description of these
tropospheric variations. The statistical properties of the troposphere's

dielectric constant, and hence its index of refraction, are given by the

normalizecd space correlation function
<Ae*(rl) Ae(rz) >

selr) "'>

where ;)12 is the vector distance between points (1) and (2). &€ is the

(2.1)

-
p(rlz) -

/

variation of the dielectric constant about its mean. This function defines
the (normalized) cross correlation between simultaneous records of
dielectric constant taken a! two points a distance r apart. The atmosphere
is assumea to be isotropic and homogeneous, so that c(f')) is a function
neither of the direction nor the end points of 7.

(5).(6)

Limited tests tend to support the exponential correlation

U)F. Villars and V. F. Weisskopf, Phys. Rev., 94, 232 (1954). They have
given a fuller theory of turbulence scattering based on the Navier-Stokes
equation. Their paper also contains refecrences to the previous work of
Heisenberg, Batchelor, and others.

(4)P.B. MacCready, Jr., Jour. of Metcor., _12, 434 (1953).

(S)J.R. Gerhardt, C.M. Crain, and H. W.Smith, Jour. of Meteorology, 9,
299 (1952).

(6)0. Birnbaum, Phys. Rev., §£ 110 (1951).



p(f],) = e (2.2)

where lo is a measure of the scale of the turbulence.

Detailed measurements have shown that the isotropic assumption is
not strictly true; the scale length -lo differs in horizontal and vertical
directions, at least near the ground. Direct mealurement(7) has also shown
that this scale increases somewhat with altitude. Variations in the measure-
ments of scale length with location(7) and time of day ai 2 so large that it was
not considered worthwhile to use anything more sophisticated than Equation
(2.2)!8),

Using Eq.(2.2), Booker and Gordon(l) have shown that the power

scattered per unit solid angle, per unit incident power density, and per unit

volume is given by

2 3
Ae 2nl
< \()\ O) linz(i)

o(6, x) = — —

. 41110 2 2
Al o+ linz(-‘i
A 2

(-

(2. 3)

A\ denotes the wavelength of the incident radiation and % is the angle between
the incident electric field vector and the direction of scattering. 0 is the
angle included between the direction of incidence and scattering as shown in

Fig. 1.

W’C.M.Crain, A.W.Straiton, and C.E. VonRosenberg, Trans. .R.E., Vol.
AP-1, No. 2, Octoher, 1953,

(B)C.L.Staral, Jour. Appl. Phys., 23, 1152 (1952), has investigated the
effect of other assumptions for p(r) on scattering phenomena.
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A. Scattered Wave

We shall consider first the energy scattered into a single antenna by
off-axis turbulence clusters. The situation is pictured in Fig. (2) where the
multipath propagation mode is clearly exhibited. The scattered waves give
rise to an angular distribution of received power about the antenna's pointing
axis, as indicated. The ratio of the power received by the antenna along the
multipath (R + r) to that incident along the line-of-sight (Ro) for a scattering

volume dv is

ap, RZc(6,9)
= dv (2.4)
2 2

) o R . r
o

where o denotes the scattering cross section per unit volume per unit solid
angle. One may setR_ = R for reasonably ( <4°) narrow beams and long

range ( >1000m) transmission.

dP
8.2 5 (2. 4a)
P rz
(o)

The path difference between the direct and multipath ray is simply
x=R+r-Ro. 2.%5)

If one integrates (2.4a) over all volume elements satisfying this condition,
the result may be interpreted as a ''differential path difference power
density, " dPs = Q(x)dx . The ratio of the scattered-to-direct power received

with path difference x is thus:

Q(x)=5de6(x+Ro°R-r) ) (2.6)
2
Po r



where 6(z) is the familiar Dirac delta function.

(1) Phase Delay

Equation (2.6) may now be applied to predict an RMS phase error in a
sinuso:.dal voltage at the receiving antenna. The anomolous propagation
produces a linear superposition of scattered (and thus delayed) sinusoidal
signals, as pictured in Fig. (3a). The resultant phase error (a) so produced
may be inferred from the vector voltage diagram of Fig.(3b). The lag angle
between the primary voltage EO (assumed for the moment to be of constant
phase) and scattered voltage E(x) is 8 = 2nx/\ . Tke desired phase error a

is computed as:

2 5 - Ez(x) .2 j2mx
a” = sin” [=—\x ,
: Wi

i, C- Q(x) 2mx )
s>o ( ) 2.7)

in the approximation, E(x) <<Eo. Introducing Eq. (2. 6), the mean squared

o]
(o 2 N)

error becomes:

' @
</°Z> =5 dx sinZ (Z'-E(-)de ,?_(e_’zf_’_)_ 6|:x + Ro -R - ] ‘ (2.8)
’ ° N r

The primed volume integration restricts that process to the admittance angle
(i.e., beamwidt}l) of the receiving antenna. This step 18 a crucial one, since
widening that angle indefinitely would only serve to include all scattering
elements within sight, and so produce a d.vergent answer. The spherical
shape of the earth and limited (height) extent of the turbulence reduces such

an accumulation in actual! experiments. One must also consider the
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Superposition of Multipath Signals
(a) Principal Wave Plus Delayed-Scattered Signals
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attenuation of the scattered waves for a complete treatment. We shall avoid
such cousiderations by exploiting the characteristically smal! beamwidths
of radar receivers as a na‘tural cut-off.

To compute tte integrals eppearing in Eq./2.8), we erect a spherical
coordinate system on the receiving antenna's po:nting direction, as shown in
Fig.2. If B is the antenna beamwidth and L the transmission range through

the troposphere,

7 B oo I ¢} 2n =
(_02 = f dx s.ﬁ"(ﬂ’ﬁ){ dr f de sin® j de¢ 0(6,¢)6[-x - r(l - cos®)
= o A/~ o 0 L J
(2.9)
We must now exprese o(6,¢) in terms of 8 and ¢.
angy 2 2 \
- 2> .12 k ) 1 - 8in (8) cos (¢ - W)
ci8,0) = LSANTD 1007 AN 7L 2. 6l
A r 2mw 2 2
1 +2 ( Qo\' (* - cos8)
\ 7 .

e

The definition of the dielectric constant in terms of the index of refraction
(i.e., € = nz) and the N-unit notation, AN = (n - 1)106 are here utilized. All
but one of the integrations in Eq.(2.9) may be performed analytically if one
disregards altiturie variations inlo and ANZ — a procedure which is

certainly consistent with our other approximations

, 3 (1- sin(u))
2m U
9. \ o \
<\uz\ ~ QI/ANZ> 10 e (_o) j du —— g (2.11)

N A ° r 211,(2 , &

1 + u
AL
where
U » 2% 5 - camp .
{o

- 10 -
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2\
The ratio —2Z g plotted in Fig. (4) as a function of ané)/k for various
X
l-/lo-

(2) Angular Distribution

The angular distribution of scattered power about the receiving
antenna's pointing direction may be extracted from Eq. (2. 6) by integrating
over all path differences x. Again using an antenna-centered spherical

coordinate system.

, 2
20 N ® Q(x)
ul‘__:f dx

E IZ © P

§ 2

1 A 2n
= 7 dlcos®) § ar T dpoia. e, (2.12)
cosf o o

where o(6.¢) is given by Eq. (2.10). The angular power distribution is

recognized as the d(cos8) integrand in Eq.(2.12), so that

4 2
1 dP 2L nil 1 + cos (8)
:-] s _ L o\ ‘\ANz\ 10-12 _
( % )}
F:) d(cos8) e Zn,l(’) 2 2
1 +2 ) (1 - cos®)
A
(2.13)

where constancy of the scattering parameters, (o and \ANZ\ , over the

transmission path has again been assumed. The distribution, Eq.(2.13), is

plotted in Fig.(5) as a function of 6 for various 2"10/\ . In the region

0 <6< ; )\( ~ 10-3, the denominator is sensibly unity and the density equals
™
o

s K2 -
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2- ) For larger angles, it falls off rapidlv, reaching 1/4 at right

X
angles to the beam.

The result, Eq.(2.13), may bte further refined by including the effect
of attenuation of the scattered signals in reaching the antenna from the

(9

various volume elements. LaGrone, Benson, and Straiton ) have computed
the energy whkich is removed from a beam per mile with the same theory of

tropospteric turbulence scattering used here. Their result is

/ 4n -
-db 6983‘ \\0N> 10 12 K— = (2.14)

mile

In evaluating Eq. (2. 12) one should thus include a range-dependent absorgtion

factor
. ES Z/\/’ ds 51 d(cosa)derIZﬂd¢
IZ cosf o o ) q
’ . rr7oo4—Tr Law™> wtd KZN°
. (0, ¢) e L e (2.15)

The attenuation effect is almost completely negligible in this case, since
forward scattering is so favored by the cross section, Eq. (2. 3).

B. The Direct Wave

The preceding discussion was concerned only with the scattered wave.
As in any scattering problem, the resulting field at a point in space is com-
posed of both the direct and ecattered wave. In the present instance, however,
the direct wave cannot be written as a simple sinusoidal plane wave since it

has traversed a region of random and variable delay.

(Mour. Appl. Physics, 22, 672 (1951).




(1) Phase Delay

To compute the phase delay suffered in traversing a length L of

turbulence, we shall write the received electric field (ER) in exponential

form.(lo)

~ L -
R d AL
ER 2 ET exp \1211{50 —Ve

=

(2.16)

ET is the transmitted field strength and f the frequency. The velocity of
propagation (ve) depends on the dielectric constant and so is a function of
position along the path. If we separate a random portion from the dielectric

constant, e = e_+ /e, we can rewrite Eq. (2.16) as,

o
' L
12 Ae(L)] ,
ER=ET exp ‘L—EL+1f d.l_._e(_l. . (2.17)
A A Yo e,

The random part of the phase angle is represented by the exponent's second

term. Calling this a and taking the mean square,

2
L L /18‘(1’) AG(!)
o T 1 2
& “25 dflj a4, / ST > . (2.18)
x (o] [o] N\, €o eo

2
The integrand is just <'—%—'Zl > p(l’l = 1’2) by our definition Eq.(2.1), so that

one has

ﬂ2<,..‘£‘_€_ . L L r
B e | /
1‘8 \ = A g ‘5'0 dll i dlz exXp l'(/l - [2)/10] ’

(continued on following page)

(1005ee also J. Feinstein, Trans. I.R.E., PGAP, Vol. AP-2, 63 (1954).

- I8 =




2,2 2 12
8r°L° /ANSD 10 L
k14 O\ y \

Z

A £ %

for the mean square pkase deviation of the direct wave

(2.19)

To determine the time spectrum for this turbulence, consider a mass
of turbulent air moving with an average velocity v. Take a set of coordinates
also moving with the mass (i.e., at speed v). Measurements of fluctuations
in this moving svstem will give data from which the time spectrum can be
calculated. Unfortunately, such data are not available and in their absence
an approximate trcatment must be used. In the following we shall calculate
the time spectrum produced by a line-of-sight, rotating through a turbulent
air mass containing variations which are not changing in time relative to one
another. This is equivalent to assuming that the line -of-sight moves through
a characteristic length £, in a time short compared to the time of significant
change in the turbulence pattern. In Part IV we shall consider the analogous
problem of the line-of-sight moving parallel to itself. That this procedure
will yield useful results is suggested by some exper:iments performed by
Straiton and Smith.(l 1)

A rotating line-of-sight sweeps through an angle 6 = 76 in time T,

where 6 is the angular rate. (See Fig.6.) Defining a as before, one can write

(thaft + 7D i g, de'
a a C g )Y A y
\ : )\Z ‘jo 1'50‘ B |€|Z

‘De¥(x,,y,) De(x,,y )\
Nty B4 L2 (2. 20)

(n)A. W. Straiton and H. W. Smith, Proc. I.R.E., _3_8_, 825 (1950)

=% -
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Geometry for Rotating Line-of -Sight
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where the first integral is taken along path .Pl at time t, and the second along
line PZ at T seconds later. Using Eq.(2.2) and measuring distance along the

line -of-sight from the origin, Eq.(2.20) can be written

, . 2/ A ay 8 2 L L
Camate + 1 = 41N 10 Cld_,fzd’
N\ 2 o
A
] a2 .4 ,
o I@&XD | = = V4 +4 - 244, cos® (221)
¥ \ L’ 1 2 172

It is convenient to assume that l..l g LZ » {(i.e., that the path is long comgared
to any changes in lengthj, so that Eq.(2.21) can be changed to polar coordinates
and integrated once to yield:

81r2(\AN2\ 10122 4 | 1
(o]
; de ¢

“a(t)a(t + 'r)\ ]
/ 2 *s

M J - sinl¢ cos®

5 N\

LAl - sin2¢ cos8

r I
L~1 - 8in2¢ cosB

Lexp|- exp
¢ ¢, cos¢ L Io COS ¢

,[’o cos¢ |l - 8in2¢ cos® 1 - 8in2¢ cos®
(2.22)
The first term is readily integrated again. If L/jo‘/\l, the last two terms
make significant contributions only for 8<<n/2 and ¢ ¥ n/4. One may put
m\2
(*-3)
sin2g 2?1 - &/ cosp =, (2.23)
g N2

and with the substitution

1 2] 2 ™
¢=_|_Z_C_°3_ —\Jy S her (2.24)
2 cos® 4

= b -




the second term in Eq. (2.22) becomes

V2(i - cos8) Ly

_ L~Jl - 8in2¢ cos®

L exp exp [—
(ﬂ/4d¢ Io cos¢ . L dey 4 J
K r ) 1 '
Io cosp—~l - 8in2¢ cos®. [o4cosa y -1
(2.25)
where
i "Z cos® o
Y = 1 . (2.26)

-~ 8(1 - cosb)
When L/,f;y)l and 8 <<n/2, one can put Y = co with small error. The integral

thus becomes

8L
R L 'IOIL
_Ii.joody - KOK ) (2.27)
’(o L /yz-l jo ‘Io

where Ko is a modified Bessel function of the second kind. The last term can

be treated in a similar fashion.

expl = _L_‘__Z_O L

|
'/o !- | oo exp[ ny] w

1 (o o]
. d :
| j; ¢ " /_yz =1 e "IBIL 'H / ziel
+_“_.1; lrx (.L@J.E)L_I (_LGJL_>+ Kl(%)“o(%) . (2.28)

o
26 | Vb 4

L“ denotes the modified Struve function. Combining all of these results, one

finds:

s @




o 8niA/aN®>10712

alt)a(t + 1) = —2 5)\2 (;o ) —|x (J_Ii> ( )
+K_, <£(E: >Lo @E) - K, @F)j (2. 29)

where 6 = 8r. When v = 0, Eq.(2.29) reduces to Eq.(2.19).

The spectrum may bhe found by taking the cosine transform of

Eq. (2.29)

~ Qo
W6 = ) dr cos2nfr la(tia(t + T)> . (2. 30)
-0

Upon substituting Eq. (2. 29) into Eq. (2. 30), the second term may be integrated
directly. The first term may be simplified by using the identity

(00}

N

% [ Kol ax| = K (1L () + K (a)L(2)

1 -

1]
z

r

The integral to be evaluated can then be written
2y ©w cosw,u [ 2 u
= du———l—I}-—rK(x)dx (2.31)
Le “o u T u

where wy = Z'nf—{)/ Lo . Equation (2.3]1) may be integrated once by parts to give

4131r A~ 00 cost

{7 duK_(u) " dt . . (2.32)
. o -
L o w,u t

By changing the variable in the second integral to y = t/wlu, the order
of integration may be reversed whereupon the remaining integrations may be

performed directly. The complete result is

< Bo 2




3 12 2\ 2
i 2 G

- 2 llog - . (2. 33)
- » —Z
228 | w, V1w

This is plotted on Fig.7.

(2) Fluctuations in Angle of Arrival

In addition to the ph.ésc delay suffered in traversing the troposphere,
the direct ray will exhibit a random variation in angle of arrival at the receiver.
This effect i analogous to the angular scintillations of star ima.gea“z) and is
produced by :iradients in the index of refraction at right angles to the ray path,
The equation governing propagafion of a ray through a variable medium

according to Fermat's prmclple is,(ls)

4P - gm =0, (2. 34)
dp v

where T is a unit vector along the ray, £ is the distance along the ray and n is

the index of refraction, Equ.ation (2.34) can be rearranged to read,

gg—z 4 1 ' * [ ]\ 2 35
"] 03(7)“ \t v (log () (2.35)

To evaluate these operations, introduce the decompositions:
- = ; .
N =%t N and vt =t +3, ‘. (2.36)

where ?o is the initial value of -t’,)( o is the mean index of refraction and is very

(12)s Chandrasekhar, Monthly Notices, Royal Astro. Soc., 112, 475 (1952).
See also H. W, Liepmann, "Reflection and Diffusion of a Li h_'K'ay Passing
Through a Boundary Layer,' Douglas Aircraft Co.,Inc., Rpt SM-14397, May
15,1952, for a discussion of a axmzlar phenomenon.

(13)13 Kerr, "Propagation of Short Radio Waves,' Rad. Lab. Series, Vol. 13
McGraw-Hi ll 1951, page 44.
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rearly equal to unity, and N1 is the variable part ofn.* To first order in e and

Nl (whick tmust be very small), Eqg. (2. 35) can be written,

N
. 2N, -7 2L, (2.37)
L

ad /df defines a differential angle {and direction) of ray displacement. Egquation
(2.37) gives this angle in terms of the gradient normal to the path; integrating
over the whole path gives the total angular deflection,

Le! us return to the rotating line-of-sight problem. Using cylindrical

coordinates {with the z-axis normal to the page), the orthogonal components of

angle deviation obrained from Eq. (2. 37) are:

, - (’Ldz AN, 2. 38)
z o  Jdz

~L ‘1 QNl
¢e :\'50 d)""z; 89 . (2.39)

The auto-correlations of these two functions are thus:

> (2.40)
2«

L L :
(ag (a2 2N "N> (2.41)
o o 2.0, \o8, a9

5N
dz

L L N
CHOLMUR R .Jf 44 _/S G

oz

1

\ o
<¢’G(tf¢g(t + T
1 2

Considering Eq.{2.40) {irst, we have by differentiating inside the average signs

in the definition of p,

-2
» N AN\ J plrp,)
1 1 2 12
<——a—j _ > = - <N 1> . ___{Z.__ (2.42)

s

1 SzZp s ()J

*In terms of N units, Nl = AN . 10

BEST AVAILABLE CCRY
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with T2 given by Eq. (2. 43) helow and § equal to z, - 2. In cylindrical
coordinates, the distance between two general points (1) and (2) 1s:

}

b |1aeE 2 - & |02
ria = !l *}.2 - Zjlﬂz cos(62-61)+(zz- "l) . (2.43)
Evaluating Eq.(2.42) in the x,y plane (zl =2z, = 0), one obtains
/3N aN dp(r,,)
% : : > = - <Ni"\ E i (2.44)
S8 *45/ imys0 Rz 2
zZ=0

Using Eq.(2.2) and taking 91 = 0, we have

- %L(":' +l§ - 244, cos(9)~l/2

e \
e L L e £,
Lo, (t)e (t+1’)\-=—§3——!~—° j’dﬂ f d’. SRR
i V4 B Y T e 1/2
o '11 +'12 - 2]1[2 ~080 |

(2.45)

The methods used in integrating Eq.(2.21) may be applied here to yield

(bz(tmz(t +r)>= nCLNZ_\. 1612 . _1% [}(o(p\L-l(p\ + x_l(p)Lo(p)] (2. 46)

with

Le|r|
2,

p:

It will be noted that Eq, (2. 46) becomes infinite as T — 0; which is
to say, the mean square deviation of ¥ is infinite. This is simply a conse-
quence of our choice for the correlation function made in Eq. (.. ¢). Unfortu-

nately, Eq.(2.2) describes a (Markov) process which has no derivatives. This

need not disturb one unduly, since a spectrum can still be found from Egq. (2. 46)

by taking its cosine transform. The spectrum Wr(f) obtained from the cosine

- 23 .
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transform of Eq. (2. 46) is

2n - 10718 ANSD L +Y] 4 wzl
W (f) = - log (2.47)
. 4] wl

with W) defined as in Eaq.(2.31). This is plotted in Fig.8. This spectrum is
meaningful, except as the frequency f — . The behavior at large f is such
that L,_(;:odf W(f) diverges, yet the density at low frequencies is correct. Since
the data are too crude to indicate a better choice for p(r), we have tried to
extract the maximum amount of usable information from Eq.(2.2). A different
choice for p(r) might wel! give a spectrum whose integral converges, yet the
low frequency density would not be more trustworthy than that derived from
Eq.(2.47). One might thus be led to a false sense of security in calculating
the total mean square as a definite number; when, in fact, slight variations in
p(r), which might fit the data equally well, could produce large changes in
2>,

The auto-correlation of 2 and the corresponding spectrum can be

found by a procedure similar to that above.

Coglipglt + 1) > =2 10712 AN Bk E"—'*‘—} . (2. 48)
Ls ¥ /8
and
T P TN
Wlf) = L AN SRS , L : (2.49)
(9)° LA
1 +{ =
\ oL /

Equation (2.49) is also plotted in Fig. 8.
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C. Probability Densities

1) Total! Field Strength

in the dor-‘-va".on‘l\ of Fq.(2.3) it is assumed that the volume elements
to which the equation applies are large in linear dimensions compared to (’o .
When this is true the scattering from separate volume elements will have
random phasing. The total fie)d is the sum of these scattered fields and its
amplitude will be Rayleigh distributed. The direct ray has random phase but
constant amplitude. The sum of direct and scattered waves is then the sum of

a sine wave plus Gaussian noise and has the we!l known form,(H)(ls)

| =l 2

pil) » B opp|. B LR 1 'EP (2.50)
Q 2Q . Q

Here p(E) is the probability density of finding the sum amplitude E between E
and E + dE, Q :is tte total scattered power, P is the direct wave amplitude
and Io(x} is a mocified Bessel function of the first kind. The case P> Q.
which is of interest here, a'lows Ea. (2.50) to be reduced to

plE)T—4 __ exp-(E - P)2/2Q| . (2.51)

V2mQ

This shows that the received amplitude will be very nearly normally distributed,
with mean P and standard deviation Ql/z.

(2) Phase Angle Probability Densities

As just stated above, the phases of the scattered waves will be random,
i.e., ais uniformly distributed from -n to n. This must be combined with the

phase deviation of the direct ray. From Eq.(2.17), the total phase delay is

n4)Rice. Mathematical Analysis of Random Noise, BSTU, 2_4, 46 (1945).

(ls)Lawson and Uhlenbeck, Threshold Signals, Rad. Lab. Series, 24,
McGraw-Hill (1950).
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given as the sum of the individual phase delays in the turbulence clusters. The

6)

sum will be normally distributed by virtue of the central limit thcorem.“
This theorem predicts a norma!l density function over an infinite range for phase;
in the more usual case where phase is considered modulo 2n, the resulting

(17)

density function is

2>
<
pla)=—90, (2 €7 (2. 52)
2 \2n 2n

where 8, is a thetz-function. When (<r;2:")l/2 << 2w, this reduces to the

normal form

2
a

1 2 2<uz>
Van '<02>

The angle of arrival density for the scattered wave is given by Eq.

pla) = (2.53)

{(2.13). The ray deviation density will be normal in two dimensions (and
uncorrelated in those two dimensions).

D. Numerical Estimates

Some estimates have been made for the scattering parameters which

)

appear in the foregoing expressions. Very near the ground,(18 one finds

3(2) indicate that AN varies between

AN 2 10. Microwave refractometer flight
1/2 and 1IN units from several hundred to thirty-thousand feet. This altitude
range includes most of the tropospheric region in which refractive fluctuations

affect propagation. The correlation length ,(’o has a ground level value of 20

(rb)H. Cramer, '""Mathematical Methods of Statistics,'' Princeton University
Press, 1946.

(17)P. Levy, Societe Math. de France, Comptes Rendus, p. 32, 1938.
(18)c. M.Crain and J.R.Gerhardt, Proc. L.R.E., 40, 50 (1952).
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feet and increases rapidly to an asymptotic value of one or two hundred fcet.
Since the precise values of Xo and & N vary with both geographic location and
time, we shall choose the convenient averages: AN = 1/2 and '(o = 100 feet
We take our line-of-sight transmission path length L to be 10 000 feet and
assume an antenna beamwidth § of 3°. We sha!l also take A\ = 6 cm so as to
{later) validate *'he Rayleigh approximation and avoid the attenuation problems
characteristic of shorter wavelengths.

Contrihutions to the RMS phase error arise from both the scattered

and direct wave. Substituting the above parameters into Eq.(2.11) and Fq

<
a
sc
2
adncct

Scintillation of the direct wave is evidently the dominant effect here. This

(2.19). we find:

2.5 . 10-3 radians2 ,

and

6.3 - 10 ridsane” . (2. 54)

error represerts one-tenth of a cycle at 5,000 Mcs. thereby posing a genuine
problem for systems requiring high phase stability over the transmission path.

The spectrum of such phase fluctuations is of considerable interest
also. Since the characteristic turbulent self-motions (and hence doppler
shifts) are known only in terms of the qualitative picture of eddy degeneration
(Refs. /3) and (4)). we have computed spectra for a moving line-of-sight. We
have just considered a rotating path, the spectrum of which 1s given in Figure
7. A measure of spectral width 18 given by anlo/ L6 = 1. If one assumes that
the line -of-sight 18 rotating so as to track an aircraft flying 1,000 fps at an

altitude of 10,000 feet (overhead), 6 is approximately 0.1 radians/sec. Using

- 28 -



this with the parameters above, the effective width is 1.59 cps.
A somewhat different model is obtained by anticipating the result of
Part IV which gives the spectrum for a line-of-sight moving parallel to itself

through a stationary turbulence configuration with speed v. #

8173./AN2/ 10'17‘121.

1
Ww(f) = >\ - —
\Zv Cn[@z 3/2
1 +
v

One may identify v with a local wind speed, which blows the (stable) turbulence

(2. 55)

structure through the line-of-sight. This expression is halved when f = 0,122
v/ ’(o‘ so that with v = 20 ft/sec and ,eo = 100 feet, an effective (noise) band-
width B = 0. 02 cps is produced. Very near the ground, one has ’(o = 10 feet
eo that B =~ 0.2 cps.

The received power 1s also smeared over a small solid angle centered
on the line-of-sight. Off-axis turbulent clusters scatter energy into the

antenna according to the angular distribution, Eq.(2.13). This ratio is reduced
. T
2n 'lo 3

by a factor of four when 8 becomes 10'3 radians, which represents a

very narrow pencil of rays indeed.

We have also investigated the angle-of-arrival fluctuations which the
direct ray experiences. The exponential correlation, Eq.(2.2) produces an
infinite RMS deviation because of its cusp-like behavior at the origin. In
general, the spectrum widths for deviation of the rays is of the same order of

magnitude as that for the phase variations. It would be of great interest to

F 9
f 2
df W(f) = <1 > . :
" direct
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repeat the foregoing calculations when a better correlation function is establisted

on physical grounds.

ii. RAINFALL

The theory of multipath transmission through singly scattering media
developed in Part Il may be exploited 0o discuss rain-produced scintillation
errors as a racar beam traverses a precipitation area. The drops will be
idealized as perfect c:electric spheres. The entire signal perturbation thus
results from cliss.cal scatiering and no phase disturbance of the direct wave
is considerec. When these results are combined with appropriate meteorologi-
cal data, the theory predicts toth angular distributions and phase error
frequency spectra for the received power.

A. Static Multipath Effects

Our description begins with an expression ‘or the scattering by a
single droplet, a3 llustrated in Fig. 9. Since the rairdrops are considered
spherical one must deduce ke ratio of scattered-to-incident power for a
spaere of radius a and dieiectiric constant €. This quantity kas been computed

(19)(20)

by classical electromagnetic theory in many places We shall see

presently that most raindrogs are less than 2 millimeters in diameter, and,
since we consider microwave propagation, one may pass directly to the

Rayleigh limit (2ma/\ << 1),

Ug)D.E.Kcnm Propagation of Short Radio Waves, MIT Rad. Lab. Series,
New York, McGraw-Hill, 13, 445 (1951).

(ZO)J.A.Stratton Electromagnetic Theorv, New York, McGraw-Hill, p.563

(1941).
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S(R) _ )\2 le -1

Sinc. 4"2 ) RZ |e +2

2 4
<Zﬁ) Isinz(ﬂ ¥ cosZ(G) cosz(’)] .
\ .

(3.1)

representing reradiation by the drop as an electric dipole. The scattering
cross section per droplet per unit solid angle is obtained by multiplying this
ratio by 4er2. To compute the scattering cross section per unit volume,
which appears in the multipath density Eq. (2. 8), one must estimate the number
of drops per unit volume in each radius interval (da). Rigby and Marshall have

(21)

fitted the exponential function Eq. (3.2) to meteorological experiments.

=c - exp -|—

b | (cm)(cm™)

dadv

dN [Za drops (3.2)

S inc.

C

S (R)

1T

Figure 9
Scattering of a Plane Wave by a Spherical Drop

Their normalization constant c is roughly 0.08 and the ''drop scale size

parameter, ' b, is given in terms of the rainfall rate P. (measured in milli-

meters per hour), by

IZI)E. C.Rigby and J.S. Marshall, "Modification of Rain with Distance Fallen, "
Scientific Rpt. MW-3, MacDonald Phys. Lab., McGill University, Jan. 1952.
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RO.Zl

b= (em) . (3. 3)

4]

Table I correlates R and b with familiar precipitation intensities.

Table 1

Rainfall Rate Versus Drop Scale Size

Rain Type R b
Drizzle 0.25 mm/ hour 0.018 cm
Light Rain 1.00 " 0.024 "
Moderate Rain 4.00 " 0.033
Heavy Rain 10.00 0.040 "
Very Heavy Rain 16.00 o 0.044 "

" 20.00 " 0.046 "
F 25.00 = 0.048 "
e 30.00 i 0.050 "
" 50.00 0.055
£ 100.00 = 0.064 "
e 150.00 . 0.070 "

Expression (2. 8) for the static multipath power distribution may now
be computed by combining Eq.(3.1) and (3.2) and averaging over all drop sizes.
0o ' ! 2w 2 4
8. .. e 28/% § 4r (a6 aine (" ag 4ma® F_l| (1’2)
% o o e +2 A
i =2 2 2. 1. [
* | 8in"(¢) + cos (8) cos (¢) I 6Lx -r(l - cose)] . (3. 4)
o )
A spherical coordinate system erected on the receiver's pointing direction has

been used to write out the beam-li mited (primed) volume integral (see Figure

10). For a narrow beam, one may disregard the entrance disparities between
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extremne rays of the multipath reception cone which is tantamount to restricting

the radial integral by Rl Sec(9) <r<R2 Sec(9).

Plane
Wave

Figure 10

Coordinates for Scattering by Rainfall

(1) Phase Delay

With Eq. (3. 4) and the superposition of Figure 3, one computes the RMS

phase error in a sinusoidal voltage received at the origin as:

"/\.0.2> dx sin (an) Q(x)
o

o 9b3<2“b\ f 46 sind [1 + cos (e):}

e-liz
e +2

(continued on following page)
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4R 4R

1

2
8in (SecB - 1) sin Sec® - 1)
Ry - Ry [ A } A ( J

{ cos(0) 4n/ N\ 4/ \

[
i
i
-

(3.5)

The trigonometric terms may be ignored in comparison with the viewing thick-

ness (R2 - Rl); and the dielectric constant (e) assumed constant to our

approximation.

CuB> %3(2_@)“
o \

€ -1
e - 2

2
‘ - (R, - R)) 3 (p)

Jd denotes a beam shape factor,

g : .
J(ﬁ) = f 93._8_12.(_8_). [l + COBZ(O)J ,

o) cos(0)

A (32 for <1,

(3. 6)

(3.7)

Our result indicates that <u2> varies about as the seven-tenths power of the

rainfall rate and directly with the square root of the total number of participating

droplets. This latter dependence is characteristic of incoherent scattering

processes and might have been anticipated from the original assumptions. To

provide numerical estimates for Eq. (3.6), we note that the dielectric constant

of water varies from e = 78.5 - il12.3atX =10cm to 34.2 - i35.9 at )

cm for t = 18°C.(lg) The corresponding values of

to £ .9206, and we shall choose the average value 0.925.

=1.24

range from 0.9286

In Figure 11, we plot

<q2>/€f . (RZ - Rl) for various wavelengths (\) and rainfall rates (R). From

those curves we read for X\ = 6 cm and R = 100 mm/hour (i.e., a very heavy

rain),

19D E. Kerr, op. cit., page 610,
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Figure 11
RMS Phase Error for Scattering by Rainfall
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N

iR, -R)). (3.8)

et a5 100 m

. o .
A rvpical antenna beam B = 4 and rainstorm, R

> - RI = 1000 meters predicts,

Gpms X175 1072 radians . \ (3. 8a)
This error s an order of magnitude larger than the scattering effect of static
tropospheric turbulence derived in Part II. The sensitivity of Eq. (3. 6) to T
{R, - R;) and the rainfall rate (R) encourage one to estimate local meteorologi-
cal conditions with some care before attempting precision measurements.

(2* Angular Distribution

An angular distribution of power about the receiving antenna's pointing
dircction ig predicted by the foregoing theory. If one integrates expression

{(3.7% over all path differences (x), the total scattered power becomes:

12

3 B o0 . R,Sec® 2w o _ 112
— = f 40 sin((}}c)n da ce'&a/b Lf' 2 dr J’ de¢ 4wa2 le__i*
= e) o +2

7 Rlsece o €

<

4
. <.%.“—a-> [sinz(qs) + coaz(B) cosz(ga)] . (3.9)
|8 -

The angular dependence of this scattered power is recognized as the integrand

of tte cos{B) integration.

. 4P an®i6):  simby’ 3 1 + cos’(e) _
2 5 - = ¢ < ) b° (R, - R}) |=———— |~ (3.10)
PO d (cos8) 2 ) cos(8)

The angle-dependent factor is plotted in Figure 12, where a relatively flat
distribution for small beamwidths is exhibited. Increasing values of this

function for large 8 are due to the inclusion of an ever-increasing number of
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scatterers —the number going to infinity as near horizontal viewing is included.
A realistic consideration of attenuation effects rectifies this problem. We shall

continue to use the natural cut-off of narrow beam antennae.

)
s r (g)= I+ Cos® @
Cos 8
@
2.0 e — 1 1 1 1
o 10° 20° 30° 40° 50° 60°* ¢
Figure 12

Angular Distribution of Rainfall-Scattered Power

B. Scintillation Spectra

In the foregoing we derived an expression for the RMS value of the
multipath phase error. Of equal importance is the frequency spectrum of the
phase scintillations. The anomolous signal is compounded from the scatterings
by thousands of raindrops (n the beam. Time variations of the phase error
may be regarded as the composition of Doppler frequency shifts from the
individual droplets moving relative to one another in changing order. We may

anticipate the magnitude of these frequencies from the Doppler relation:

. .



&f = u/c fo . For relative drop speeds of one meter per second and fo = 5000
mcs, Of = 16 cps and such a scintillation is evidently of some importance in
precision measurements.

We first resolve all drop velocities along the pointing (z) direction of
the antenna, as shown in Figure 12. If the incident plane wave meets a drop
at dv with speed u, the drop's motion away from the incident wave lowers the
incident frequency (seen by the moving drop) by an amount u/c fo . The drop
reradiates this shifted frequency at an angle 0 to the incident beam thereby
causing an increase fo u/c cos(B8). The net frequency change during the
scattering process is A0 f = fo - u/c - (] - cos8). We shall construct a joint
path difference-frequency power spectrum for the multipath signal scattered by
the volume element dv at (r, 8, ¢) moving with speed u parallel to the incident
beam. By using the analytical device introduced in Eq. (2. 6) of Part II, one
may show that the ratio of the scattered-to-incident power with path difference

between x and x + dx and signal frequency between f and f + df is given by:

Qe 0, 2 'dv R
x,{)_ ‘f’ da Nla) J’ du P(u,a) -4 gla;r,8) 6/x - r(l - coseﬂ
o ) r

P L
o

nle

: 6|:f - Io - fo (1 - cosG)] . (3.11)
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Figure 13

Drop Velocity Resolution for Doppler Shift Analysis

A prime on the volume integration restricts that process to the radar beam.
P(uia) denotes the conditional probability distribution for a velocity component
u parallel to the antenna axis for drops with radius a. We do not know this
density a priori, and its determination is the central problem of this section.
We shall see presently how one may infer P(ula) from other propagation
experiments —notably, backscattered (echo) fluctuations from rainfall.

The integrations of Eq. (2. 54) may be performed with relative ease
if one assumes P(u'a) to be independent of drop size (a). Such an assumption
is probably warranted if the relative drop motion is due to local gusts and
turbulent conditions in the rainfall area.* Ina C. W. phase comparison system,

the scintillation frequencies are given by excursions from the carrier frequency

l"It is also possible to obtain a Doppler shift from the differential speeds with
which drops of different sizes fall. This effect can be calculated from Stoke's
law for the fall of spheres in a viscous medium. We shall return to thir case
later for comparison.
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fo , 8o that the frequency spectrum is a function of v= { - fo . Inserting the

appropriate forms for N(a) and o from Eq.(3.2) and Eq.(3.1) respectively, one

finds:
R 2n
Qlx.v) P duP(u) (* da c ¢-23/D P s 2
b s T Tl S de sin(6) dr de¢
p P L oo sy o

r 2 . 4
. 41:32 le - 1] kz"a) (sin2(¢) 1 cosZ(Q) cosZ(O))}
<[_ !e + ZI A |

. 6[x -r(l - cosG)j] -8 U - fO%(l - cos(G)-’ . (3.12)

S

(1) Phase Delay

If one uses this expression to compute the phase error, the frequency

spectra for az emerges without further effort.

o)
<°2(v)> f dx it (2"") Q(x, v)

o A P
o

g '
" c sin(0) 2
— (R, - R,)g(\) — dé ——— [l + cos (8)
2 2 1 f { 1 - cos(0) ]

Pl v ] (3.13)
jfo(l - cos(9) _]

The frequency dependence of the forward scattering is apparent from Eq.(3.13).
Since the velocity distribution's argument c/f (1 - cozsﬁ).l is large for the small
values of (1 - cosB) inherent in a narrow beam, the net effect is to relegate
most of the scintillation power to small frequencies. g(\) denotes a wave

length-dependent term arising from the drop radius averaged cross section.

- 40 -



g(\)

—
We assume |

[0 0) , ﬂZ 4
f da(“-za/b) 4w € - 1| Zna)
(6} e + 2 A
4 2
0.08 4nb° (z“b> £ -1 . (6):
A 'e +2 27

4
lb3 (an) :
2 A

e

e + 2

rate R by Eq. (3. 3).

(3.14)

« 0.925, as before, and b is given in terms of the rainfall

To determine the function P(z), we shall fir st exploit experimental

data on spectral analysis of precipitation echoes.

Figure 14

Echo Process for Moving Drops
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Figure 14 exlibits the backscattering process for a moving drop. A plane wave
sent out by the antenna 8 radians off-axis enjoys a frequency shift u/c cos9,
both on reception and reradiation. The appropriate variation of Eq.(3.11) for
the backscattered amplitudes is

R(’"" fdaN(d,feupu,a)" L op 5. (a)
r

0

. 6[)( -r(l - cosG)] ) |:1'- Zfo%cose] . (3.15)

An amplitude scintillation spectrum may be deduced from this form by inte-
grating over (x) and substituting the appropriate backscattering cross section
from Eq.(3.1).

|2

/ @ !
< Bz(v)> =P 5- da N(a)‘hra2 o= 2ma ) du P(u)
N ° e+ 2| \ A / o

R, 2n ©
. fdesn(O)f drf d¢‘) dxble-r(l-cosﬁﬂ
()
o

- 6w - 2 -1 cos(Oﬂ

Q) "€
p ,
= Pg(\)n(R, - R,) = f de tan(e) P(—S2_ | . (3.16)
fo o Zfo cos(0)

The spectrum normalized to unity atv = 0 i1s simply,

p
f’de tan(6) p[

2f cos(8)
Gv) = — . (3.16")
P(o) -€n cos(p) |
L J
The small (<4°) values assumed for B permit one to replace cos8 by unity in

9

Eq.(2.61) and thus extract P(z) from within the integrand.
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il

S]] P[o] Glz) . (3.17)
2f

iat’s Y8

This important relation permits one to infer the velocity distribution of rain-

drops from the experimental* e ho fluctuation spectra G(z). In Figure 15 we
reproduce the measurements of Goldstein and others“g) for A\ = 9.2 cm, as

measured on three occasions. These cu:ves give just the normalized (Doppler)

frequency power density of the backscattered amplitudes, G(..).

10,
L
|
08!
06
>
s> |
04!
.L
02 }7 {
0. —~ . A h oSS L J
0 40 80 120 160 200 240 280
v IN CPS
Figure 15

Power Frequency Spectrum of the Fluctuations of
Precipitation Echo on 9.2 ¢cm as Measured on Three Occasions

x
Note that Eq.(3.17) is independent of the beamwidth (B) used in these
experiments.

(9p E. Kerr, op. cit., page 576.
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Our integral expression (3.13) for the phase error may now be combined with

Eqs.(3.16') and (3.17) to yield:

sy :
Ca®w)) = IR, - R)glh) . < Plo) ¢~ S22l
\ 2 . f o 1 - cos(0)

; [1 + cosz(Oﬂ : c[_ﬂ’-——] : (3.18)
1 - cos(0)

The remaining integration has been performed numerically using the values for
G(.) given by Figure 15. In Figure 16, we plot the normalized* spectrum for
several beamwidths (). These curves emphasize the concentration of power at
low frequencies.

One may also compute a phase angle spectrum by nns. .ering the
detailed motion of individual drops. Imagine an ensemble >f drops falling
through stagnant air under gravity. The viscous drag force predicts greater
fall speeds for heavy drops than for light ones. Extremely small spheres

(a < 0.008 cm) obey Stoke's law for steady state terminal velocity, **

v z—-—gal—-1|" —
3 Py ] Cp

Very large drops are relatively unstable and tend to break up into smaller ones
during long descents. The intermediate region is of some interest for this

study, in view of the drop scale sizes listed in Table I. Fortunately enough,

4 e o)
Normalized so that f d» <02(w)\ = l.

o
8
CD denotes the drag coefficient, Pa the air density, Py the drop density; a is

the drop radius and g the acceleration of gravity.
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{ A
Gunn and Kinzer'zz' have measured the terminal velocities of drops with diame -

ters in the range 0.01 <D “0.68 cmmn. Their results may be summarized by an

approximate formula,

via} = x[n 1 c'ﬂ (3.19)

with K = 1020 m/sec and A = 5.04 cm.l.

The corditional probability density
P(uja) for the distribution of velocities with fixed radius (a) may be given

explicit form in terms of Eq. (2.19).

Plula) = 6.3 s . v(a)] (3.20)

Y

If the angle between the local vertical (i.e., R ) and the antenna's pointing
direction is denoted by y, then u = v cos(y). Equations (3.13), (3.19), and

(3.20) may then be combined to give the phase angle spectrum:

2 P 2/2mx\ A0 - S
) = f dx sin (—)J’ daN(a)J" du 6[\1 sec(y) - v(a)-J
o A o o

g R, 2n
. f de s'n(O)J’ drf de¢ o(0, ¢;a) 6[)( - r(l - cos@)
(o] Rl (e]

) 6[1: . fo%(l B cosg)]

14n2(o.08)(R2 -Rl)—c—- L8 1| J’ 8a's’
] e + 2

4 e-(Za/b)

. <%i) . via)

(ZZ)R.Gunn and G. D. Kinzer, Jour. of Meteorology, 9, 243 (1949). Their ex-
periments were performed under 760 mm pressure, with a temperature of
20°C and relative humidity of 50 per cent.
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The scintillation frequency (7)) persists in the (drop-size) integration condition,

via)> S¥ __secly) (3.23)

fo 1 - cos(B)

If the curve-fitted function (3.19) is inserted, the (origin-normalized) phase
spectrum becomes:

(o) a6 e-(Za/ b)

& -ANa
Flv)= 2 .t . (3.24)
[0 o) a6 e-(Za/b)
[faate
® i-9" =
with
9 =lln[l .vc . __sec(y) ] (3.24")
A L Kf, (1 - cosp
It is clear from this form that all frequencies greater than
v 1 B f cos(y)(l - cosp)
“ max " o A
are eiiminated in Eq.(3.24). We may estimate this cut-off by assuming:
o _ oad -
Io = 5000 mcs, cosy=0.4, =4, K= 10" m/sec, so that W o ® 16 cps.

The quotient (3.24) was computed numerically for moderately heavy rain,

R = 4 mm/hour and is displayed in Figure 17 for the range 0.01< v < 16 cps.
Rather less realism may be associated with this model than the

radar-precipitation echo approach. This statement is based on the common

experience that heavy rainstorms are fraught with turbulent gusts, each

probably sufficient to dominate the laboratory result (4. 19). It would be very

valuable, however, to perform a controlled experiment measuring line-of-sight
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and echo scintillations simultaneousl!y within the same rainstorm. Such a test
could criticize the result (3.16') and perhaps give information on the mixture of

turbulent and free-fall drop motion within rainstorms.

C. Ray Bending in Rainstorms

In addition to scattering off-axis energy into the antenna, a rainstorm
will act as a prism and bend rays passing completely through it. If the drop
sizes are small compared with the wavelength of the incident radiation, the

equivalent index of refraction for a collection of perfect dielectric spheres
13> e
3
n = l +2nma”N . (3.25)

Here a is the sphere radius and N the number of spheres per unit volume. One

may use Eq.(3.2) to average this expression over all drop sizes.

o> a1 0.2bt (3.26)
For a heavy rain R = 10 mm/hour , b = 0.04 and
1 -6
~1+=-10", (3.27)
) x
8% 3
The bending at entrance and exit of a ray passing through such a region can be

computed with standard techniques.

When the drop spacing is small compared with the wavelength, one must
exploit a detailed picture of the scattering processes. H.C. Corben(z” has
performed such an analysis and concludes that the essential factors in Eq. (3.25)

are preserved. He finds that multiple scattering may be disregarded for most

applications.

(ZB)Private communication, August, 1954,
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IV. CLOUDS

Index of refraction data for clouds are notably sparse. From meteor-
logical measurements and aircraft gust load experience. However, it is known
that the interiors of cloud formations are very turbulent and contain relatively
large index fluctuations. Extensive circulation and mixing is known to take
place witk.n clouds, in addition to over-all movement and structural rearrange-

(24)/25)

raents. Both directional and turbulent currents of very dense water

vapor suggest a ''tighter' correlation than that found in free air. Records of

(26)(27)

refractometer flights through clouds substantiate this, and indicate that
the scale of turbulence is probably of the order 10 to 20 feet. These same
records suggest that RMS excursions of the index of refraction may be as large
a3 10 or 20 N units. Such results characterize a turbulent medium far more
active and influential! for microwave frequencies than was considered in Part

1I. We shall therefore undertake a separate determination of propagation

through cloud structures.

(24).1. S. Malkus and C. Ronne, Wood't Hole Oceanographic Institution, Ref.
No. 54-18, March, 1954.

(ZS)J. S. Malkus and R. S. Scorer, Wood's Hole Oceanographic Institution, Ref.
No. 54-5, January, 1954.

(Zb)C. M. Crain, A. P. Deam, and J. R. Gerhardt, Proc. I.L.R.E., ﬂ, 253
(1953).

@) G. Birnbaum and H. Bussey, Journal of Research, 51, 171 (1953).



A. Cloud Scattering

We may estimate the effect of (uniform) turbulence scattering in a
cloud layer* of thickness L with the results developed in Part II. Consider a
cloud at mean distance R from the receiver as shown in Figure 18. Expressio:

(2.11) yields:

Y ® : R+L p Zn
'\02/\. " { ap i (i‘ﬁ") JR‘ drjo‘ 40 .in(O)S; de 5(8,¢)

~
-6C-r(l-cose)].

2 [l _ 8inu 1

™ \3 U

$< ‘> L aNt> 101 gy v J (4.1)
o

\ 2 2
[Hz_dg.u]

with
U= N r1 - cosﬁ]
"4

o -

We shall return to a numerical evaluation of this expression for the relevant

cloud turbulence parameters in Part C.

B. Direct Wave in Clouds

(1) Phase Variation

We shall exploit the general method of Section II B to calculate the
phase shii. n the direct ray due to turbulence within a cloud. It will be

assumed that the turbulence pattern within the cloud is stationary with respect

3
Layer scattering has also been considered in connection with beyond-line -of

(29)

sight propagation(za) and the scintillation of galactic radio waves.

(ZB)W. E. Gordon, Proc. Conference on Radio Meteorology, Univ. of Texas,
November, 1953.

(29E, c.s. Megaw, Nature, 166, 1100.
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Figure 18
Scattering by Cloud Layer

d=7tV
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Figure 19

Geometry for Line -of -Sight Moving
Parallel to Itself
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to the cloud. The line-of-sight sweeps through this pattern, either because of
the cloud's over all motion or due to an actual translation of the propagation
path. The initial line-of-sight is denoted by 1’1 , and T seconds later by 'FZ'
The space interval between the two points ']l and /Z is d = vr where v is the
velocity of the cloud and/or path (see Figure 19).

The autocorrelation of the phase shift is computed as in Eq. (2. 20),

with the correlation (space) interval defined by:

£, - /(/z )%+ v (4.2)

Therefore:

2. .-12 2~ L L (4 - X )2 i (vf)z-l
4n” 10 c<aAN"D> / 2 ")
j d11£ d’/Z cxp[—

2 ° -
: 2

a(t)a(t + 1) > =

I LR [ V5% + (w)z] )

j dx(L - x) exp'l-
2 |

I\ - ,%
2

The change of variable yZ =1+ gives:

(vr)é

a(t)a(t + v) >=

1 /2

sn"'lo“z<anz>/§ r'/v|7|1.> V1418 (vr)?
vy -1

S’ dy—X
IV

A

. exp[. 1]!.12’] (_v_[_r_>2 p\/1+L2/(vr)zdyyexp[- il:_l_ﬂ}

(4. 4)
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If L//o >> 1, the upper limit may be relaxed to infinity with small error and
the second term neglected in comparison with the first. The integration may

then be performed analytically.

8n’ 10.12<ANZ>12 vir|L viT| .
0 K [ — \ (4. 5)
¥ £ l £ 7/
(o) (o]

where Kl is the modified Bessel function of the second kind. One may verify

aft)a(t + 1) >

that this expression recduces to Eq. (2.19) when v = 0. The cosine transform of

Eq.(4.5) yields the power spectrum

’ (4. 6)

gn’ lO'lZ(ANZ>,(f L \ *
- = (‘/
v

)‘2 ( 4"21,2 12)3/2
o
] 4 —
ve

which is plotted in Figure 20.

(2) Angular Deviations

A ray passing through a turbulent cloud is perturbed in two ways in
that it; (1) is bent on entering and again on leaving, and (2) suffers a random
deviation of its direction of propagation due to the cumulative effect of the
turbulence within the cloud. These two effects will cause the apparent source
seen through the cloud to wander about; much as a source of (visual) light
viewed through an inhomogeneous window pane apparently changes position as
the line of sight traverses it.

Figure 21 pictures an idealized sharp boundary for a typical cloud.
The angle of incidence Oi and refraction Oo are measured with respect to the

cloud's local normal to the boundary. Snell's law relates these angles.

- 55 .
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Geometry at Cloud Boundary
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n, »inei =n_ sineo . (4.7)

Since the effect of diffuse boundaries is quite small, one may put

°o=ei -y (4.8)

where ¥ is the (small) deviation produced at the boundary, and

6

né:ni+ AN10O (4.9)

Since AN~ 10, we may expand Eq. (4.7) to the first order in AN and Y.

-6 A ¥
¥ = oN10° tane, ¥ AN10C6, (4.10)

Here we have recognizea that n, is very nearly unity. If we assume that the
cloud moves through the (stationary) line-of-sight with velocity v, the auto-

correlation function for ¥ is

<pWp+n> = AN® AN+ > 1072 o mo i+ 1>, (4.11)

- N1 < 2> R 2.12)

where p(r) is given by Eq. (2.2) and R(r) is the normalized autocorrelation of
the angle of incidence Oi e

We know very little about the detailed appearance of cloud boundaries
(i.e., Oi) so that we assume for convenience that R(r) = p(r). We shall show
later that this choice has little significance in considering the total deflection
caused by the cloud since the interior dominates over the boundaries. The

spectrum for Y due to the fluctuating boundary is thus:

10012 AN 2

W) = N/ l . (4.13)
A"
< Tr.21;2){.2).2
N
2
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The deviation produced by turbulence within the cloud must be added

to Eq.(4.13). We choose the situation shown in Figure 19 and tt = rectangular

coordinates oriented with the z-axis along the initial line-of-sight and the

x-axis along the direction of cloud motion. The ray deviations are:

L 9N,
¢ = ‘S dz ) (4.14)
x (0) dIx
and
L Z‘)Nl
¢ = Cdz R (4.15)
LA A dy

so that the corresponding aut>correlations become

L L 3N aN
1 1
<{¢x(t)¢x(t+f)\= fdzlfdzz/ > > !/\' , (4.16)
(o] (o] X u x.2
and
N 3N
i ll l!\ . (4.17)

L L
p (g (t+7)>= (°dz J’dzz<
Ny Uy ° 7 dy ll dy 2

Using Eq. (2.42) and the rectangular representation for the interval r2:

r, =/ ey - x by, -y (e, -2 (4.18)

one can average the gradients in Eq. (4.16) and Eq. (4.17) as,

2 2 —
3N 3N d“p 1 dp\ 1 dp
. 1 ING _<Ni{§ ) b — |, (4. 19)
2
du | du | e dn2 fz dn/ T AT,
where u = x or y, and z =X, - X Ory, -y, respectively. We shall actually

compute Eq.(4.19) for Xy = X| = VT, y, =y = O¢ and with expression (2.2) for
p(r).

- 58 -



<Nf) L L (v1')z
< AP (t+7) > = - S0 J dz, J dz, :

o ° ° (VT)Z + (zz - zl)

——exp(-—/vﬂ +(z -z) )

exp (-l—\/(\.r-r)z + (zz - zl)z )
’(o
* J
\/(71')2 + (zZ - zl)7

exp (- -l—ﬁvﬂz + (zz - zl)z
'(o

u (4.20)
2 2
\Avﬂ + (z2 - zl)
The integration techniquen of Section II B may be applied here to yield:
-12 (ANZ> L., /vid\ vl viT
e ) (t+T)>=2.10 = K (=3 )< 3 ¥v
i Vs o\4 b 2
o o o o
(4.21)
The cosine transform of this expression gives the spectrum as:
2 2.2
<41r jof )
=12 - A 2 2
wif) = 210 S AN >L v (4.22)

ZZZ 2
)
l+-——
v

which is plotted in Figure 22.

Using the same procedures, one obtains from Eq. (4.17)

=99 .
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g

(o]

-1 2
<o e b+ > - 2 . 101 AN L K, (A;-lll_) , (4.23)
(o]

the spectrum of which is also plotted in Figure 22.

-12 2
w(g) = 2710 < AN“D>L 1 (4.24)
v 4ﬂ2 Zf?. 1/2
vZ

The remarks made in Part IIB concerning the divergence of integrals over
these spectra apply here also.

Note that the coefficients of Equations(4.13), (4.22), and (4. 24) all
contain factors which are of the same order of magnitude except that Eq. (4.13)
involves 10 while the others have the factor L. We have consistently assumed
that L >>1° so that it is primarily the interior of the cloud and not the refraction

at the boundaries which contributes to the deflection of the ray.

C. Numerical Estimates

Cloud parameters are conspicuous by their absence in the experimental
literature. To illustrate the foregoing results however we shall assume 410 =

1/2

20 feet, L = 5000 feet, \ = 0.2 feet, andl:<ANz>] = 10. The mean square

phase deviation due to scattering is obtained from Figure 4, with § = 4° .

2 N _ 3.2
lag > =107 rad” . (4.25)

The corresponding direct wave result from Eq. (2.19) is:
2 -2 2
<°direct5 =10 ° rad” . (4.26)
Clouds thus constitute an important source of phase deviation for any propagation

process.
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Half power bandwidths for the spectra can be calculated as before.
Two different physical situations present themselves. One can imagine the
line-of -sight moving through a cloud because of the tracking of a fast moving
target. In this case a velocity of 500 fps is quite reasonable. With the above
assumptions this yields a bandwidth of about 3 cps. On the other hand, if we
consider a stationary line-of-sight with a cloud drifting through at v = 20 fps,
one obtains a bandwidth of about 0.12 cps. The preceding estimates apply to

phase deviations only. Bandwidths for the angular deviation will be comparable.
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