

- DDC

CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION CFSTI DOCUMENT MANAGEMENT BRANCH 410.11

LIMITATIONS IN REPRODUCTION QUALITY

ACCESSION # AT 607517

- I. WE REGRET THAT LEGIBILITY OF THIS DOCUMENT IS IN PART Unsatisfactory. Reproduction has been made from best Available Copy.
- 2. A PORTION OF THE ORIGINAL DOCUMENT CONTAINS FINE DETAIL Which may make reading of photocopy difficult.
- 3. THE ORIGINAL DOCUMENT CONTAINS COLOR, BUT DISTRIBUTION COPIES ARE AVAILABLE IN BLACK-AND-WHITE REPRODUCTION ONLY.
- 4. THE INITIAL DISTRIBUTION COPIES CONTAIN COLOR WHICH WILL BE SHOWN IN BLACK-AND-WHITE WHEN IT IS NECESSARY TO REPRINT.
- 5. LIMITED SUPPLY ON HAND: WHEN EXHAUSTED, DOCUMENT WILL BE AVAILABLE IN MICROFICHE ONLY.
- 6. LIMITED SUPPLY ON HAND: WHEN EXHAUSTED DOCUMENT WILL NOT BE AVAILABLE.
- 7. DOCUMENT IS AVAILABLE IN MICROFICHE ONLY.
- 8. DOCUMENT AVAILABLE ON LOAN FROM CFSTI (TT DOCUMENTS ONLY).

9.

П

PROCESSOR: CA

TSL-107-10/64

5

504

THE RAMO-WOOLDRIDGE CORPORATION Guided Missile Research Division

EXPERIMENTS ON THE VIBRATION OF THIN CYLINDRICAL SHELLS UNDER INTERNAL PRESSURE

by

Y.C. Fung, A. Kaplan and E.E. Sechler Report No. AM 5-9

15 December 1955

Aeromechanics Section

Approved moButon.

M.V. Barton

Ï

CONTENTS

SUMMARY		v
SYMBOLS		vi
INTRODUCTI	ON	1
SECTION I	APPARATUS AND PROCEDURES	2
	TEST SPECIMENS	2
	TEST SETUP	2
	INSTRUMENTATION	4
x	TEST PROCEDURE	5
	Frequency Spectrum	5 6 6
SECTION II	TEST RESULTS	7
	FREQUENCY	7
	MODE SHAPE	9
	DAMPING	11
SECTION III	DISCUSSION	13
	ACCURACY OF THE EXPERIMENTAL RESULTS	13
	THEORETICAL RESULTS	13
	AGREEMENT BETWEEN THEORY AND EXPERIMENT	15
SECTION IV	CONCLUSIONS	17
APPENDIX	INTERPRETATION OF THE DAMPING MEASUREMENTS	26
REFERENCE	S	30

ILLUSTRATIONS

Figure		page
1	Test Specimen, Pressurization System and Vibration Pick-up Buttons (11-Inch Cylinder)	31
2	Schematic Diagram of Test Set-up	32
3	Identification of Pick-up Buttons	33
4	Schematic Diagram of Instrumentation	34
5a	Comparison of Theoretical and Experimental Frequency Spectra for Model 11-001 at Various Internal Pressure	35
5Ъ	Natural Frequencies vs Internal Pressure, Model 11-001	36
6	Natural Frequencies vs Internal Pressure, Model 11-002	37
7	Natural Frequencies vs Internal Pressure, Model 11-003	39
8	Natural Frequencies vs Internal Pressure, Model 7-001	41
9	Natural Frequencies vs Internal Pressure, Model 3.5-001	43
10	Natural Frequencies vs Internal Pressure, Model 3.5-002	44
11	Frequency Response Curve of Model 7-001	46
12	Mode Shape Determination	47
13	Sharpness of the Oscillator Output as Measured by the Harmonic Analyzer	50
14	Sharpness of the Response of the 7-001 Cylinder at Specific Forcing Frequencies (p = 0.00)	51
15	Resonance Curves for 7-001 Cylinder	52

.

•

TABLES

Table		page
1	Frequency Spectra, Model 11-001	18
2	Frequency Spectra, Model 11-002	19
3	Frequency Spectra, Model 11-003	20
4	Variation of the Lowest Frequency with Pressure	20
5	Frequency Spectra, Model 7-001	21
6	Frequency Spectra, Model 3.5-001	22
7	Frequency Spectra, Model 3.5-002	23
8	Frequency Spectra of Model 11-001 with All Six Axial-Tension Control Bellows Inserted and Operating	25

SUMMARY

Experimental results on the frequency spectra, vibration modes, and structural damping of a series of thin-walled cylinders subjected to internal pressure are presented.

Within the estimated accuracy, the experimental results show good agreement with the features predicted by the linear theory of elastic shells.

 \boldsymbol{v}

SYMBOLS

-

P	internal pressure, pounds per square inch, gage
р _т	pressure in the tension control bellows, pounds per square inch, gage
m	number of longitudinal half-waves
f	frequency, cycles per second
amp	relative amplitude
N _x	tension in the axial direction of the shell, pounds per inch
N¢	tension in circumferential direction of the shell, pounds per inch
ρ	density of shell material
h	wall thickness
L	length of cylinder

INTRODUCTION

Recent studies (Refs. 1-4) on the vibration of thin cylindrical shells under internal pressure show several rather surprising results:

- The natural frequencies are arranged in an order which has little relation to the complexity of the nodal pattern.
- At small values of internal pressure, the mode corresponding to the lowest frequency is very sensitive to the variation of internal pressure. The nodal pattern at the lowest frequency changes rapidly with the internal pressure.
- 3. Beginning with the unpressurized case, the lowest frequency first increases rapidly with increasing internal pressure, then the rate of increase slows down until ultimately it varies with the square root of the internal pressure.

In orde • to verify these results, experiments were performed on models available at the time. Frequency data were obtained which give good correlation with the theory; but, owing to the small size of the models, only the simpler vibration modes could be determined with certainty. Those determined, 'owever, did agree with the theoretical predictions. An effort was made also to determine the damping characteristics of the model.

SECTION I APPARATUS AND PROCEDURES

TEST SPECIMENS

The models used for the tests (see Fig. 1) were cylinders with a 3.5-inch inside diameter, made of 24S-H aluminum alloy sheets (condenser foil) of three thicknesses--0.001, 0.002, and 0.003 inches, and three axial lengths--11, 7, and 3.5 inches. The material was furnished by Alcoa, and the cylinders were made by the Task Corporation, Pasadena. The cylinders were made by cementing the sheets together with lap joints in the axial direction. The two ends were cemented to rings which provided a seal for internal pressure.

The end rings were made of brass and were much heavier than the cylinders, thus ensuring circular cross sections at the ends. The end rings were free to move longitudinally and, to a certain degree, were free to rotate as a rigid body.

Figure 1 shows the test specimen, the pressurization system, and the vibration pick-up buttons. The front end of the cylinder was sealed by a solid nose. The end rings of the test specimen rested on a 2-inch-diameter central shaft which had holes conveying the controlled internal pressure into the cylinder. Nitrogen bottles were used as a pressure source. It was possible to control the internal pressure to within limits of +0.01 psi.

At the rear end of the test specimen, the end ring was fastened to a floating ring which was sealed against the shaft by a flexible bellows. To this floating ring were attached four bellows which were capable of exerting a longitudinal compressive load on the cylinder, and two bellows capable of exerting a tensile load on the cylinder. By controlling the pressures in these bellows, the axial stress in the cylindrical shell was controlled over a very wide range.

TEST SETUP

Figure 2 shows a schematic diagram of the test setup. The motion of the cylinder was excited by a round generator through a loud speaker. The

output from the speaker was so adjusted as to maintain a constant sound level of 70 db at a microphone situated about 2 ft from the cylinder. The speaker was placed about 2 ft on the opposite side of the cylinder. (Changing the speaker location and direction did not seem to have any significant effect on the frequence response.) During a resonant oscillation, the cylinder itself generated a considerable amount of sound. It would be desirable to maintain a constant level of the excitation; but this was not possible because the sound intensity from the sound generator and speaker was not a smooth function of frequency but was rather erratic. Since only the resultant of the sound generated by the speaker and the cylinder was kept constant, the excitation near the resonance condition was less than 70 db. In other words, the resonance peak in the frequency response curves of the cylinder oscillation were artificially reduced in amplitude. This fact must be remembered in interpreting the relative amplitude data presented later.

It was possible to maintain a 70-db sound level between approximately 100 to 8000 cps. Beyond 8000 cps, the output from the speaker dropped sharply. The natural frequencies of the cylinder were recognized through resonance.

The motion of the cylinder was measured by the variation of the gap between the cylinder and a number of brass buttons which rested on an inner tube of polysteyrene. The cylinder and the buttons were charged and formed individual condensers, the variation in capacitance of which was measured. The gap between the cylinder and the button was nominally 0.040 in under no-load condition; however, this spacing could not be controlled very accurately. Only the relative variations in output of a given button ware of significance, whereas the absolute values of the output by various buttons must not be regarded as too significant.

It was necessary to insert vacuum tubes right next to the brass buttons inside the cylinder; hence, in a continued run, the cylinder became quite hot to the touch. Buttons 1 through 13 were of 1/2- by 1/2-inch cross section; buttons 14 through 24 were of 1/8- by 1/8-inch cross section. Figure 3 shows the numbering of the buttons. For the 11-inch models, there were 24 buttons, with 10 buttons equally spaced along an axial line and two circles of 8 buttons each uniformly spaced. For the 7-inch models, only buttons 1-12 were used; for the 3.5-inch models, only buttons 2-11.

Figure 2 also shows the pressurization system. The internal pressure was checked by manometer and, much more sensitively, by a Honeywell-Brown read-out device which had been calibrated by a mercury micromanometer.

INSTRUMENTATION

Figure 4 shows schematically the instrumentation used in measuring the signal from the pick-up buttons. A selector switch was used because the instruments could read the signal from only one button at a time. After passing through an amplifier, the signal was observed in three ways:

- Oscilloscope. This showed the wave form, relative amplitude, and Lissajou curves between signals coming from any two buttons. Lissajou curves were recorded photographically by a Polaroid-Land camera, and were used to identify the vibration modes. In the last mentioned function, one button, usually No. 3, was selected as a reference and Lissajou curves with respect to the other buttons were recorded.
- 2. Harmonic Wave Analyzer. A Model 300A Harmonic Wave Analyzer, made by the Hewlett-Packard Co., Palo Alto, Calif., was used. It was a selective voltmeter, covering the audio spectrum from 30 to 16,000 cps. It had a voltage range from 1 mv to 500 volts, with an over-all voltage accuracy of ±5%. Selectivity was so set that when the deviation from the center frequency was 30 cps there was a drop of 40 db in response. Frequency was read from a Berkeley Universal Counter and Timer, Model 5510. This counter could also be connected to the sound generator to read the frequency of the forcing function.

4

3. Voltmeter. The signal could also be read directly from a voltmeter. It was found that a direct correlation existed between the voltmeter readings and the harmonic wave analyzer readings. Hence, whenever it was ascertained that the cylinder vibration frequency agreed with the speaker frequency, the relative amplitude of the cylinder motion was read from the voltmeter.

With respect to the measurement of phase relationship between the signals from the various buttons, a Type 405 Precision Phase Meter, made by the Advance Electronics Co., Passaic, N. J., was used at the beginning; however, its use was so time-consuming that it was discontinued later.

TEST PROCEDURE

Each series of tests began with the unpressurized case. The frequency spectrum was first determined, the phase relationship and mode shapes were then studied, and from time to time the damping characteristics were recorded. In several cases of the unpressurized cylinder, measurements on the frequency and damping were made both with and without the nose seal. No significant difference was discovered. Spot checks were made also on the effect of the longitudinal tension control bellows on the frequency and damping; when these bellows are unpressurized they should have little effect on the vibration of the cylinder. Experiments did show that neither the frequency nor the damping was appreciably affected by inserting or removing the bellows. Details of the measurements are described below.

Frequency Spectrum

During each run an internal pressure was selected and maintained constant. The sound generator was then tuned to give a 70-db sound at a low frequency. This frequency was measured by the Berkeley counter. When this exciting frequency was varied, the output from the pick-up buttons varied. In most cases it was quite easy to pick out a resonance peak either on the oscilloscope or on the voltmeter. But there were cases in which large responses occurred over a fairly wide band of frequencies, and it was somewhat difficult to decide which were the natural frequencies. Occasionally, beating occurred, as could be seen on the oscilloscope. There were also cases in which the wave form appeared complicated. These difficulties were disturbing at first sight, but after some reflection it appeared to be just what should be expected, because of the general behavior of a cylinder and of the effect of slight degrees of asymmetry that existed in the model. More detailed discussion will follow in a later section.

Mode Shape

1

At a resonance condition, the amplitude and phase of the signal from various buttons (with respect to button 3) were determined one by one. These were then plotted (see Fig. 12) to show the instantaneous geometrical relations. For simpler modes, it was possible to ascertain the mode shape. The determination was limited only by the number of pick-up buttons. Examples of Lissajou curves are shown in Figure 12. The signal from button 3 was chosen as the x-component, and that from the other buttons as the y-component. Plotting in the same way as before determined the mode shape whenever permissible.

) Damping Characteristics

The sharpness of the sound generator, the sharpness of the cylinder response signal, and the frequency response curve near resonance were measured. The inference of damping characteristics will be discussed later.

SECTION II TEST RESULTS

FREQUENCY

Tables 1 through 8 show the frequency spectra recorded. In these tables, "f" denotes frequency in cycles per second, "amp" denotes relative ampli-:ude in millivolts read from the voltmeter or harmonic analyzer, and "p" is the internal pressure in psig, i.e., the pressure differential across the shell.

The model designation 11-001 indicates that the axial length of the model vas 11 inches and that the wall thickness was 0.001 inch. Similarly, 3.5-002 means a length of 3.5 inches and a wall thickness of 0.002 inch.

All tables, unless specifically mentioned, refer to models in which the .xial-tension and compression control bellows were removed. The frejuencies so observed are plotted as small circles in Figures 5-10.

Some footnotes must be added. In model 11-001, a large response at a requency of 175 cps was observed at all values of pressure p, and a maller response at a frequency of 555 cps was present at all values of p reater than 0.2. These responses were identified by the mode-shape eterminations from the Lissajou curves as the first and second rigid-ody modes (m = 1, 2; n = 1); they belong to a different category of vibration in which the inertia of the masses attached to the ends of the cylinder ecomes of importance, hence they are not listed in Table 1.

1 the model 11-002, a small response at a frequency of 172 cps was pserved at p = 0 and 0.10 psig; at a frequency of 760 cps, a large esponse was observed at p = 1.0, whereas, rather small responses ere observed at p = 2.0, 3.0, and 4.95 psig. Although no examination ' these mode shapes was made, it was assumed that they also corresonded to the first and second rigid-body modes, therefore, these freiencies have been omitted from Table 2. In Tables 3-8, all of the oserved frequencies were recorded.

gure 11 shows a continuous plot of the frequency response of cylinder 001 at a nominal pressure of 0.50 psig, with the axial-tension control bellows inserted, to the sound excitation whose resultant output was 70 db. There were areas in which the response was very large over a wide range of frequencies. These occurred when there were several natural frequencies in the same neighborhood. This figure is a simplification of the actual picture which contains many more little peaks and valleys in the frequency response curves. In taking the readings for Tables 1-8, these small bumps were neglected, except in Table 7, which was taken in greater detail.

Table 3 for model 11-003 and Table 6 for model 3.5-001 are briefer than the others. Only the most obvious resonances were recorded in these tables. The data in Table 8 refer to a model 11-001 in which the axial-tension control bellows were inserted and pressurized. This particular set of data and also those of Figure 11, however, were taken when nitrogen bottles as the source of pressure were not available, and the laboratory air line was connected to pressurize the cylinder. The control of pressure was very difficult under this condition, and it fluctuated beyond control. The data, therefore, can serve only to show trends in which the p-readings were merely nominal.

The following information is needed for interpretation of the data in Table 8. The net area of the tension bellows was 0.52 sq in., and the membrane tension in the axial direction induced in the cylinder wall was therefore

$$N_x = \frac{0.52 p_T}{3.5 \pi} = 0.0472 p_T$$
, lb per inch,

where p_T is the pressure in the bellows in psig. This should be added to the membrane tension caused by the internal pressure

$$N_{x} = \frac{pa}{2} \frac{\text{effective free end area}}{\text{cylinder cross section}}$$
$$= \frac{pa}{2} \frac{6.06.\text{inch}^{2}}{9.61 \text{ inch}^{2}}$$
$$= 0.552 \text{ p, 1b per inch}$$
$$= 0.315 \text{ N}_{\phi}.$$

The theoretical correction to frequency due to the pressure in the tension belows can be expressed most concisely in terms of the change in the square of the frequency, Δf^2 , where f is in cycles per second,

$$\Delta f^{2} = \frac{m^{2} N_{x}}{4 \rho h L^{2}} = 377 m^{2} p_{T},$$

m is the number of axial half-waves, and p_T is in psig. By comparing the figures in Table 1, it can be seen that the theoretical corrections are not large.

Each spectrum in these tables terminated at a reading beyond which the response signals were rather small, under which condition the determination of resonance became dubious.

Table 4 gives an illustration of an unsuccessful way of determining the lowest frequency, and it also shows a peculiar characteristic of cylinder vibration. In this test, the lowest frequency was determined at p = 0. The pressure was then increased in small steps, while the frequency was varied in small increments in such a way that a large response was held on the oscilloscope. It was thought that the lowest frequency, as a function of informal pressure, could thus be traced. These points were plotted in Figure 7 as a circle with a dagger. It was apparent that the frequency-pressure trace did not follow a single mode-shape line, but that it shifted to another mode as the operation proceeded without any obvious warning.

MODE SHAPE

Vibration mode studies were concentrated on the 11-inch models. Altogether more than 40 modes were identified for the 11-001 model. Figure 12 shows a few examples of the approximate determination of the vibration modes. The film recorded the Lissajou curves, from various buttons successively. The x-component was from button 13. The y-component was from other buttons arranged in the following manner:

A line in the second quadrant means in phase with button 3; that in the first quadrant means out of phase. The circuit for button 8 was open during the recording, hence the trace for that button appeared as a horizontal line. The attenuation for buttons 14-24 was 10 times smaller than that used for buttons 1-13.

As mentioned previously, the nominal distance of 0.040 inch between the shell and the buttons was not controlled. Hence the accuracy of the relative amplitude was not high and has only a qualitative significance.

Several examples of the Lissajou curves are shown in Figure 12 together with the mode shapes which were determined from them.

Results obtained from the harmonic analyzer, voltmeter, and the phase meter agreed well with the Lissajou curve determinations. For conciseness these data are not presented here.

Because of the complicated mode shapes (large n) for very thin cylinders at low pressure (p = 0, or 0.05 psi), the determination of the modes

was difficult with the relatively small number (24) of sensing elements used. At higher internal pressure, however, the modes corresponding to the lower frequencies were readily recognized.

All modes identified agreed with the theoretical predictions.

DAMPING

The sharpness of the frequency output of the sound generator, at specific settings, was measured. Some typical curves, chosen for several frequencies ranging from 500-4000 cycles per second are shown in Figure 13. The amplitude scale was arbitrarily chosen so that these curves appear to be more or less of the same height.

The sharpness of the response of the cylinder at a specific forcing frequency is shown in Figure .4. The frequency response, is the variation of peak response values with the forcing frequencies, is illustrated in Figure 15.

The most striking features of all the curves shown in Figures 13-15 is that the half-band width in frequency did not seem to vary much with frequency range and internal pressure; nor did it vary much with insertion or removal of the axial-tension-control bellows. The results from the harmonic analyzer and the voltmeter appeared similar, although there were some differences in the details. These differences were well within the experimental accuracy and cannot be analyzed with certainty.

To interpret the above result, an analysis was made (see appendix) of the expected half-band width as a function of the sharpness of the forcing function, the damping characteristics (transfer function) of the cylinder, and the resonance characteristics of the harmonic analyzer. It is concluded that the balf-band width of the transfer function is about equal to that of the harmonic analyzer. The structural damping coefficient, g, as ordinarily used in flutter analysis, does not remain constant; instead the product, gf, does remain nearly constant for a wide range of frequencies. The experimental results may be summarized as

gf = 6 cvčles,

where f is the frequency in cycles per second. Since gf is ordinarily identified as the viscous damping coefficient, one may say that the damping characteristics of the model were of a viscous nature. More precisely, if $\mathbf{1}_n$ represents the nth normal mode of the cylinder, the Lagrange equation of motion for free oscillation may be written in the form

$$\ddot{\theta}_{n} + c_{n}\dot{\theta}_{n} + \omega_{n}^{2}\theta_{n} = 0, \qquad (c_{n} \doteq 2\pi f_{n}g)$$

where ω_n is the natural frequency corresponding to \emptyset_n . Our experimental results seem to show that c_n is a constant for all values of n.

7

SECTION III DISCUSSION

ACCURACY OF THE EXPERIMENTAL RESULTS

The uncertainties of the experimental results came mainly from the pressure control. In most runs (each spectrum required about two hours) the internal pressure fluctuated within limits of ± 0.01 psig. In a few cases, a variation of ± 0.02 psig was tolerated. The latter cases occurred on days of very hot weather during which control of the pressure appeared to be more difficult; these cases are readily reflected in the shortness of the spectra in Tables 1-8. (Fewer data were taken under these conditions.)

Determination of the resonance condition was difficult when there were several natural frequencies crowded together or even coincident. The difficulty was further accentuated by the resolution of a single theoretical natural frequency into two because of the small asymmetries of the models (the contribution of the seams and other geometric and dynamic irregularities). Examples can be seen in Figures 15(a), (f) and (n). Generally the small peaks in the neighborhood of a large resonance peak were not recorded.

Repeated tests on different days of testing for nominally the same test conditions revealed that an uncertainty of approximately 1% in frequency should be allowed.

THEORETICAL RESULTS

Theoretically the vibration modes of the cylindrical shells can be identified by the nodal lines of the radial displacements. A pair of integers, (m, n), specifies a mode in which there were m longitudinal half-waves and n circumferential waves or 2n circumferential nodes. The nodal lines for radial displacements are not lines of absolute rest. for tangential displacements take place along these lines. Accordingly there are three frequencies associated with each vibration pattern. The lowest frequency is associated with the mode with predominantly radial motion. The two higher frequencies are associated with the same radial pattern, but with larger circumferential and longitudinal displacements. The higher frequencies are at least about 20 times higher than that of the predominately radial mode for cylinders whose geometrical dimensions approach those of the test models.

Curves of frequency vs. internal pressure for each nodal pattern cross and recross each other. Curves of frequency at a given internal pressure for various axial wave lengths also cross and recross each other. As a result, the frequency spectrum appears highly irregular. Several modes may have the same or nearly the same frequency. Beating at a certain frequency range is, therefore, to be expected.

The theoretical results for "freely supported" cylinders are plotted in Figures 5-10. The solid curves refer to m = 1, the dotted curves to m = 2, and the chain dots to m = 3. Frequencies for m > 3 are not plotted here. The bending modes, n = 1, are also omitted from these plots, since in these modes the masses attached to the ends of the cylinder contribute significantly to the frequencies; whereas, for $n \ge 2$, the end masses, if rigidly connected, are of small influence. The theoretical curves in Figures 5-11 are based on Reissner's results (Ref. 3). A comparison of Reissner's approximate expression with the more complicated and exact results (Ref. 4) shows that the error is small for large n, but for n = 2 an error of the order of 5 to 10% might be expected, the exact error being dependent upon the ratio of the radius to the axial wave lentgh. All of the approximate frequencies are higher than the exact theoretical values.

The theoretical curves in these figures are computed for freely supported ends. The actual end conditions of the test specimens were somewhere between freely supported and clamped. Reference 2 shows that, for an unpressurized cylinder, p = 0, the frequencies for the clamped ends are higher than those for the freely supported ends, and these frequencies can be estimated approximately by replacing m by (m + c) in the formula for the freely supported ends. The constant, c, lies between 0.2 to 0.4. The theoretical effect of the end conditions on frequency in the pressurized case has not yet been determined. It seems evident that the theoretical values for the frequencies of the test specimens should be higher than the freely supported curves shown in Figures 5-11, the error being largest for m = 1. On the other hand, the apparent mass of air was neglected in the theoretical curves. If it were included, the frequencies would be lowered. These factors of opposing influences have not yet been evaluated theoretically.

Tobias, in Reference 5, shows that the effect of small asymmetries in the cylinder is to resolve a single natural frequency into two nearby values. If a given steel cylinder, which in engineering practice is always dynamically unsymmetrical, is excited by a small electromagnetic excitor, the peak does not necessarily occur under the excitor. When the excitor is rotated around a circumference of the cylinder, two locations, usually 90 degrees apart, can be determined at which the amplitude is the largest and at which one single peak at resonance is observed at each of these locations. The frequencies at these two locations are more or less different, depending on the degree of deviations from dynamic symmetry. For an excitor located at any other position, two peaks appear in the frequency response curve, usually one larger than the other. If the asymmetry is large, these peaks move sufficiently apart to appear as two distinct peaks.

The phenomenon referred to by Tobias makes an experimental determination of the natural frequency by resonance somewhat difficult. Some of the extraneous frequencies that appear in Figures 5-10 are undoubtedly due to this origin.

AGREEMENT BETWEEN THEORY AND EXPERIMENT

The experimental results certainly showed all the important features predicted by the theory. In examining the numerical agreement, it should be remembered that an error of $\pm 1\%$ in observed frequency and a variation of ± 0.01 psi in internal pressure (for shorter spectra, a variation of ± 0.02 psi) should be allowed. The discrepancy between the theory and experiment arises from several sources. The . ost important is probably the end conditions. So far only the freely supported ends have been studied theoretically for the pressurized cylinder. It seems worthwhile to evaluate the theoretical effects of other end conditions. The error caused by the shallow-shell approximation could be removed on the basis of existing theory, but the laborious computation was not attempted in writing this report. The dynamic asymmetry is probably responsible for some of the extraneous points recorded on Figures 5-10, also for some of the deviations between the experimental and theoretical values. Some of the other experimental points that do not fall on any theoretical curves may perhaps be explained by higher values of m because curves for m > 3 are not plotted in these figures. Curves for m > 3 would appear at higher frequencies. Thus, in Figure 10, the left upper corner would have been covered by curves of this category.

The simpler vibration modes that can be identified with the test equipment all agree with the theoretical predictions.

SECTION IV CONCLUSIONS

It appears from the foregoing that the experiments and the theory, as presented in References 1-4, are in reasonable agreement. For cylinders with freely supported ends, Reissner's approximate frequency expression is adequate for prediction at high internal pressures for all values of n, and at lower internal pressures for $n \ge 3$. The effect of other end conditions on the frequency should be a worthwhile subject for further research.

The experiments reveal the complicated nature of cylinder vibration and point to various difficulties in obtaining accurate data. Without a theoretical background, it is virtually impossible to understand the mass of frequency readings. Furthermore, whether a mode will be strongly excited or not in a resonance test depends entirely on the method of excitation; consequently, important modes may be overlooked in a specific experimental arrangement. This points to the extraordinary importance of theoretical calculations in the cylinder vibration problem. On the other hand, the experimental results presented in this report show clearly that the magnitude of the response has no simple relation to the order of the frequency in the spectrum. Thus a very large response may occur at a frequency which is several times the lowest one and which is of a large order in the spectrum. Hence, in engineering applications of the cylinder vibration theory, it is imperative that the calculations be not stopped at the first few lowest frequencies, but that the whole spectrum in the frequency range of interest be examined.

Table 1. Frequency Spectra, Model 11-001.

])

4.95	amp	•	7	10	16	10	0 0 0 0) a	y v	20 %	30	4	4 F	н с Г	20) (°.	3 0,	20	0										
11 D	Ψ.	0011	5011	1239	1663	2176	2610	3116	3156	\$174	3457	36 39	3700	2002	4188	4602	4735	5222	C 31 C 31 C 31										
3.50	amp	2.4	₩ ª つ •	1 4	တ	18	8	24	(oc	24	22	28	202	- L - L	202	46	28	- -	 H								-		
וו בי	f	1467		(433	1758	1883	2250	2436	2769	3018	5251	3560	3819	3937	4030	4383	4624	5360											
2.00	amp	42	3 0	0	12	28	28	18	44	22	48	20	55	32	45	28)												
n H	μ	1114	1 1 1 1		1845	2067	2375	2760	2886	3207	3444	3598	4013	4223	4367	4747		-			-							-	
1.00	amp	10			2	10	22	ى. م	34	24	30	30	50 2	44	16	34	24	64	40										
н Ц	44	872	100		1134	1210	1340	1520	1697	1823	2042	2165	2673	2739	2949	3029	3178	3511	4225										
0.50	amp	74	0		40	32	85	20	34	26	28	98	35	32	32	40	38	52	18	22	40	 						- • • • • • •	
) = d	f	756	1080		1154	1231	1386	1430	1470	1552	1669	1676	1768	1934	2118	2256	2283	3373	3805	4466	4658								
. 20	amp	18	10) - 	4	16	22	55	20	60	42	50	42	50	60	25	60	40	42	185	58	40	30	20	32				
p = 0	44	534	566	1000	170	8533 853	937	1068	1122	1/43	1188	1276	1344	1408	1488	1583	1713	1794	1983	2162	2238	2308	3077	5145	5372				
. 10	amp	80	120		0	08	30	16	30	28	32	36	36	28	88	28	150	100	60	30	25	60	45	20	20				
p = 0	ч н	465	528	577		673	687	732	863	885	206	925	941	959	1059	1073	1092	1138	1158	1177	1261	1356	1465	1480	1517				I
. 05	amp	22	30	~	3 .	74	<u>2</u> 0	12	14	4	20	4	28	42	24	38	28	72	90	145	80	65	85	48	65	30	46	80	48
p = 0	ч	354	392	л 10		- 2Q - 2Q	600	635	681	733	260	816	841	931	944	954	985	666	1040	1051	1076	1100	1165	1185	1218	1260	1330	1343	1450
0	amp	280	150	175		230	100	30	80	45	20	100	000	20	20	15	20	30	30	20	20								
ቢ ቢ	f	216	247	277		514	337	355	379	445	454	549	578	604	660	712	1019	1132	1170	1727	1771								
																			18										

p = internal pressure, psig f = frequency, cps amp = relative amplitude, reading from voltmeter, mv

Note: A large response at f = 175 was observed at all values of p. A smaller response at f = 555 was present at all values of pgreater than 0.20. These responses were identified as the first and second rigid-body modes (m = 1, 2; n = 1) (see Fig. 12a)

()

)

,

į

,

ł

Table 2. Frequency Spectra, Model V:-002.

i

95	du	80	0 7 7	80	2 2 7	44	20	61	0	1	20		2	~	11	σ	سور با مر	e.														
p = 4.	fā	1:71	1274	1667	1830	2011	2096	2114	2141	2333	2393	2434	2568	2785	3029	3437	3524	4											******			-
. 00	amp	41		06		1 01	9	24	10	25	38	30	yan Yan	00	- Lŷ	10	5	0)											- 1784		
p = 3	J	1040	1115	1573	1607	1696	1876	2429	2464	2490	2654	2918	3:85	3320	3504	5754	3906	4571	 			-										
. 00	amp	33	202	62	58	28	02	18	44	40	0	ر ت	22	48	30	25	2	25	Ľ	10	~	~	01	17	5	•						
p = 2	4	941	948	1107	1280	1 587	1423	1552	1558	1046	1759	1795	1840	1920	2057	2282	2439	2591	2709	2842	2894	3479	3650	3763	5352				-			
.00	amp	06	74	29	120	28	46	160	85	5	50	50	77	0	4	6	17	42	16	ري 2											. <u> </u>	
n L L	*+4	763	822	1014	1106	1134	1156	1208	1340	1544	1696	1713	1733	1894	1958	2075	2121	2472	2866	4865												
0.50	amp	16	28	65	*	44	22	19	23	1 30	35	42	25	30	25	62	24	13	22	20	4	17	25	16	11	24	10	ۍ ۲	ъ	00		
p = (44	639	662	818	855	950	96 i	1027	1048	1149	119.	1211	1276	1301	1314	1444	1456	1491	1590	1697	1715	1768	1 799	1866	1945	1970	1998	2060	2191	2396		
0. 20	amp	23	10	31	Ļ	6‡	8	13	43	20	32	20	 	10	10	14	23	50	110	22	0	6	~	11	11	25	14	21	11	00		
) = d	f	500	511	525	570	615	681	200	740	774	962	919	933	94 i	666	1042	1074	1102	1 į 99	1304	1396	1425	1458	1500	1553	1755	1814	1849	1901	2363		
0.10	amp	06	\$	62	2	48	24	30	22	20	16	<u>,</u>	۲ م 	30	35	26	17	0,2	120	40	18	13	35	-8	12	9	∞	16	19	26	10	2
) = d	فهبو	420	488	550	645	662	969	713	817	911	950	975	1027	1064	1072	1080	1103	1.129	1162	1244	1290	1317	1328	1401	1468	1483	1586	1754	1801	1888	2320	2421
0	amp	100	95	35	42	58	120	80	30	<u>3</u> 1	18	22	တ	တ	10	22	100	50	5	5												
ρ ,	પ્ન	318	498	517	537	566	623	620	690	710	2.0	767	867	895	1040	1086	1139	1227	1598	1861												

p = 0.00	p = 0.10	p = 0.50	p = 0.99	p = 1.48	p = 2.00	p = 2.72
387 453 563 631 660 725 757 784 .864 951 1054	440 452 529 542 648 697 764 852 1031 1382 1398 1604 1678 1968 2211 2398 3854	583 666 788 1108 1182	736 854 1041 1108 1182	776 857 883 1008 1173 1200	849 910 965 1144 1194	931 957 1098 1176 1207
p = 2.98	p = 3.22	p = 3.51	p = 3.96	p = 4.50	p = 4.95	
954 984 1142	968 1006 1212 1420	988 1198 1232 1478 1552	1014 1083 1212 1503 1564	1040 1240 1611	1054 1176 1217	

Table 3. Frequency Spectra, Model 11-003.

.

No amplitudes were measured.

Table 4. Variation of the Lowest Frequencywith Pressure.

р	f	P	f
0.0 0.1 0.21 0.30 0.40 0.50 0.85 0.99 1.15 1.33 1.48 2.00	387 440 491 527 560 583 680 703 729 757 776 840	2.72 2.98 3.22 3.51 3.96 4.50 4.95	931 954 968 988 1014 1040 1054

		1		r		·····			·····		
p	= 0	p =	0.10	p =	0.20	p =	0.30	p =	0.50	p =	1.0
f	amp	f	amp	f	amp	f	amp	f	amp	f	amp
376 412 429	110 90 80	609 648 707	15 40 60	775 1013 1435	18 40 40	834 966 1063	15 10 20	961 1223 1375	7 42 120	1194 1258 1435	20 40 40
462 552 594 622	75 150 60	841 1225 1281 1321	25 25 17 27	1467 1541 1616 1723	25 35. 28 35	1206 1257 1358 1430	30 15 15	1468 1525 1751	46 75 90 76	1450 1634 1646	29 175 40
646 661 674 706	70 115 65 25	1437 1510 1615 1782	33 14 17 50	1940	10	1491 1523 1626	30 10 50	1875 4042	25 15	2096 2269 2386	170 40 80 25
715 727 750 812	20 33 42	1900 1958	35 20			1694 1773 1836	30 60 36			2524 2634 3136	25 30 25
833 913 967	35 20 13									3197 3894 4510 4839	40 40 100 60
1620 2379	40 7									5472	25
p =	2.00	p =	2.89	p =	3.50	p=	3.92	p =	4.95		
f	amp	f	amp	f	amp	f	amp	f	amp		
1395 1488 1567 1719 2017 2289 2306 2598 2654 2902 3248 3652 3676 3996 4809 5847	250 360 70 90 90 40 20 50 40 85 90 95 200 70 200 40	1532 1614 1712 5356	50 72 120 3	1653 1777 1872 2212 2235 2602 2999 3244 3446 3863 4286 4410 4502 4775 4830 5235 7631	190 35 520 260 20 70 50 70 50 70 50 70 140 25 40 130 60 60 35	1698 1937	85 60	1813 2159 2586 3066 3316 3390 3873 4033 4033 4479 4569 4732 4954 5015 5167 5207 5304 6183 7559 7889	500 210 30 60 30 28 120 80 60 50 38 70 140 60 45 25 50 20 10		
	$\begin{array}{c c} p \\ f \\ 376 \\ 412 \\ 429 \\ 462 \\ 552 \\ 594 \\ 622 \\ 646 \\ 661 \\ 674 \\ 706 \\ 715 \\ 727 \\ 750 \\ 812 \\ 833 \\ 967 \\ 1620 \\ 2379 \\ \hline p = \\ f \\ 1395 \\ 1488 \\ 1567 \\ 1719 \\ 2017 \\ 2289 \\ 2306 \\ 2598 \\ 2654 \\ 2902 \\ 3248 \\ 3652 \\ 3652 \\ 3656 \\ 3996 \\ 4809 \\ 5847 \\ \hline \end{array}$	p = 0 f amp 376 110 412 90 429 80 462 75 552 150 594 60 622 60 646 70 661 115 674 65 706 25 715 20 727 33 750 42 812 15 833 35 913 20 967 13 1620 40 2379 7 $p = 2.00$ f amp 1395 250 1488 360 1567 70 1719 90 2017 90 2289 40 2306 20 2598 50 2654 40 2902 85 3248 90 3652 95 3676 200 3996 70 4809 200 5847 40	p = 0 $p =$ fampf37611060941290648429807074627584155215012255946012816226013216467014376611151510674651615706251782715201900727331958750428128121583335913209671316204023797 $p = 2.00$ $p =$ fampf13952501532148836016141567701712171990535620179022894023062025985026544029028532489036529536762003996704809200584740	p = 0 $p = 0.10$ fampfamp37611060915412906484042980707604627584125552150122525594601281176226013212764670143733661115151014674651615177062517825071520190035727331958207504281215833359132096713162040237977 $p = 2.00$ $p = 2.89$ fampfampf13952501532156770171212017199023944023062025985026544029028532489036529536762003996704809200584740	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 5. Frequency Spectra, Model 7-001.

p = (0.50	p = 1	1.00	p = 3.00		p = 4.95		$\mathbf{p}=10$		p = 13		p =	16
f	amp	f	amp	f	amp	f	amp	f	amp	f	amp	f	amp
1477 1538 1898 2474 2622 2800 2849 5735	40 20 19 100 30 50 25 20	1776 2136 2374 2539 2625 3044 3282	80 20 20 90 115 60 80	2402 2668 2982 3651 4054 4400 4816 5941	210 85 80 25 30 170 25 60	2961 3308 3707 4136 5136	100 30 35 75 25	2580 2928 3127 3302 3840 4433 5735 6198	70 40 170 50 45 150 35 10	2598 2912 3255 3616 4195 4886 5619	40 30 220 70 130 40 25	2570 2904 3372 3875 4575 5957 7965	45 30 120 120 80 20 30

Table 6. Frequency Spectra, Model 3.5-001.

f amp f amp	f amp	f amp	f amn
	1047 75		
924 22 945 80 959 21 1032 340 1012 580 1044 160 1077 280 1136 240 1167 20 1219 240 1410 34 1256 70 1493 16 1373 130 1667 16 1419 90 1720 16 1626 50 2060 10 1671 125 2141 10 1696 40 2310 140 1764 90 2325 90 1898 30 2365 110 1924 30 2385 140 2087 25 2481 200 2131 50 2547 180 2277 50 2614 80 2352 125 2670 60 2394 80 2749 160 2463 50 2773 170 2527 170 2823 85 2550 150 2930 60 2622 90 3189 70 2670 200 3282 30 2699 50 3423 70 2783 180 3506 100 2834 280 3572 80 2869 20 3710 60 2949 70 3866 35 3046 40 4214 20 3257 110 <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>11661201196300124450130140143335014857015399016357517406020194021363021818021944023656023982602469602525202672200272880277310028532802943110300840311330332490425985513545553440567225</td><td>1 248 130 1270 80 1303 200 1316 110 1454 110 1633 30 1716 100 1790 40 2101 80 2226 90 2352 110 2446 30 2541 160 2696 30 2731 50 2781 150 2824 250 2844 220 2877 280 3053 50 3130 30 3309 50 33130 30 3309 50 33130 30 3309 50 33130 30 3417 30 4470 60 4659 70 4773 40 4969 110 5116 40</td></t<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11661201196300124450130140143335014857015399016357517406020194021363021818021944023656023982602469602525202672200272880277310028532802943110300840311330332490425985513545553440567225	1 248 130 1270 80 1303 200 1316 110 1454 110 1633 30 1716 100 1790 40 2101 80 2226 90 2352 110 2446 30 2541 160 2696 30 2731 50 2781 150 2824 250 2844 220 2877 280 3053 50 3130 30 3309 50 33130 30 3309 50 33130 30 3309 50 33130 30 3417 30 4470 60 4659 70 4773 40 4969 110 5116 40

Table 7. Frequency Spectra, Model 3.5-002.

err in r r i i i i

4

r

141 · 🧌 I

p = (0.5	p =	1.00	p =	3.00	p =	4.95	p =	10.0
f	amp	f	amp	f	amp	f	amp	f	amp
f 1396 1467 1540 1581 1767 1794 1864 2065 2253 2456 2538 2644 2768 2816 2845 2914 2960 3062 3112 3208 3149 3208 3149 3208 3252 3493 3571 3692 4225 4511	amp 150 30 80 80 105 40 35 30 25 30 20 95 100 130 150 320 125 50 20 35 30 32 50 110 40 35 105 105 105 105 105 105 105 10	f 1661 1830 2277 2325 2616 2783 2886 3046 3202 3239 3326 3476 4284 4830 5164	amp 420 40 200 250 50 115 190 20 40 200 150 20 40 200 150 20 40 200 150 20 40 200	f 2215 2405 2438 2626 2847 2972 3124 4037 4102 4129 4167 4378	amp 170 290 70 50 200 260 100 30 30 90	f 2538 2942 3054 3266 3603 5115	amp 260 300 110 210 30 40	f 2712 3028 3179 3289 3621 4004 4047 4472 4520 4556 5500	amp 64 240 130 60 120 140 40 240 160 20 140
4821 5004 5170 5657	20 20 20 20 20								

Table 7. Frequency Spectra, Model 3. 5-002 (Cont'd).

19

.,

p = 0		$\mathbf{p} = 0$		p = 1.0		
$p_T = 30$		$p_{T} = 60$		p _T = 60		
f	amp	f	amp	f	amp	
301 386 422 434 537 617 699 778 800 1159 1517 1606 2919	30 30 20 20 25 10 40 30 20 20 6 6 8	246 305 350 380 400 439 577 607 663 701 831 905 1164 1553 2335	60 80 40 20 20 30 10 10 20 25 20 10 10 10 10	874 969 1044 1194 1233 1291 1330 1423 1521 1729 2123 2366 2556 2947	6 15 20 50 20 40 110 20 100 6 15 8 6 5	

Table 8. Frequency Spectra of Model 11-001 with All Six Axial-Tension Control Bellows Inserted and Operating.

APPENDIX

INTERPRETATION OF THE DAMPING MEASUREMENTS

Measurement of a Forcing Function by the Harmonic Analyzer

Let the forcing function be described by the bell-shaped curve

A exp
$$\left[-\frac{(\omega-\omega_1)^2}{2\lambda}\right]$$
, (1)

where A and λ are constants and ω_1 is the peak frequency. Let the response characteristic of the harmonic analyzer be described by

$$B \exp \left[-\frac{\left(\omega - \omega_2\right)^2}{2\mu}\right], \qquad (2)$$

where B and μ are constants and ω_2 is the frequency to which the analyzer is tuned. The reading of the analyzer is therefore approximated by the integral

$$F_{1}(\omega_{2}-\omega_{1}) = A B \int_{-\infty}^{\infty} \exp\left[-\frac{(\omega-\omega_{1})^{2}}{2\lambda}\right] \exp\left[-\frac{(\omega-\omega_{2})^{2}}{2\mu}\right] d\omega. \quad (3)$$

Letting $x = \omega - \omega_1$ and $a = \omega_2 - \omega_1$, then the above integral becomes

$$F_{1}(a) = A B \int_{-\infty}^{\infty} \exp\left[-\frac{x^{2}}{2\lambda} - \frac{(x-a)^{2}}{2\mu}\right] d\omega$$
$$= A B \int_{-\infty}^{\infty} \exp\left[-\frac{1}{2}\left(\frac{1}{\lambda} + \frac{1}{\mu}\right)y^{2} - \frac{a^{2}}{2\mu}\left(1 - \frac{\lambda}{\lambda + \mu}\right)\right] dy$$
$$= A B \exp\left[-\frac{a^{2}}{2(\lambda + \mu)}\right] \int_{-\infty}^{\infty} \exp\left[-\frac{1}{2}\left(\frac{1}{\lambda} + \frac{1}{\mu}\right)y^{2}\right] dy,$$

where

$$y = x - \frac{a\lambda}{\lambda + \mu} = \omega - \frac{\mu \omega_1 + \lambda \omega_2}{\lambda + \mu}$$

Performing the integration gives

$$F_{1}(a) = A B \sqrt{\frac{2\pi}{\frac{1}{\lambda} + \frac{1}{\mu}}} \exp \left[-\frac{(\omega_{2} - \omega_{1})^{2}}{2(\lambda + \mu)}\right]. \quad (4)$$

It is interesting to note that, if both the forcing function and the transfer function of the harmonic analyzer appear like bell-shaped curves, then the reading from the harmonic analyzer, as a function of the frequency deviation ($\omega_2 - \omega_1$), is a similar bell-shaped curve, and the standard deviations of these three curves are, respectively, λ , μ , and $\lambda + \mu$.

Measurement of the Cylinder Response by a Voltmeter

If the forcing function is again represented by equation (1), and the transfer function for the cylinder response by another bell-shaped curve with "standard deviation," ν ,

$$C \exp\left[-\frac{\left(\omega-\omega_{3}\right)^{2}}{2\nu}\right],$$
 (5)

then the over-all response of the cylinder to the forcing function is given by

A C exp
$$\left[-\frac{(\omega - \omega_1)^2}{2\lambda}\right]$$
 exp $\left[-\frac{(\omega - \omega_3)^2}{2\nu}\right] =$
A C exp $\left[-\frac{(\omega_3 - \omega_1)^2}{2(\lambda + \nu)}\right]$ exp $\left[-\frac{1}{2}\left(\frac{1}{\lambda} + \frac{1}{\nu}\right)z^2\right]$ (6)

where

$$z = \omega - \frac{\nu \omega_1 + \lambda \omega_3}{\lambda + \nu}$$

The reading of the voltmeter is the integral of this over-all value of ω , or

$$F(\omega_3 - \omega_1) = A C \sqrt{\frac{2\pi}{\frac{1}{\lambda} + \frac{1}{\nu}}} \exp \left[-\frac{(\omega_3 - \omega_1)^2}{2(\lambda + \nu)}\right]$$
(7)

Thus the reading of the voltmeter as a function of $\omega_3 - \omega_1$ is another bell-shaped curve with standard deviation $\lambda + \gamma$.

Measurement of Cylinder Response by the Harmonic Analyzer

On this measurement, the harmonic analyzer is tuned to the frequency of the maximum response to the cylinder vibration for various values of the forcing frequency.

From equation (6) it is seen that the frequency for maximum response of the cylinder is that for which z = 0. When the harmonic analyzer is tuned to this frequency, then its transfer function becomes

$$B e^{-z^2/2\mu}$$
, (8)

and its reading becomes

$$F_{2}(\omega_{3} - \omega_{1}) = A B C \exp \left[-\frac{(\omega_{3} - \omega_{1})^{2}}{2(\lambda + \nu)^{2}} \right] \int_{-\infty}^{\infty} \exp \left[-\frac{1}{2} \left(\frac{1}{\lambda} + \frac{1}{\nu} + \frac{1}{\mu} \right) z^{2} \right] dz$$
$$= A B C \sqrt{\frac{2\pi}{\frac{1}{\lambda} + \frac{1}{\nu} + \frac{1}{\mu}}} \exp \left[-\frac{(\omega_{3} - \omega_{1})^{2}}{2(\lambda + \nu)} \right].$$

Thus, for this case, the reading of the harmonic analyzer as a function of $\omega_3 - \omega_1$ is again a bell-shaped curve with the same "mean deviation," $\lambda + \nu$, as was obtained with the voltmeter.

Conclusions

Experiments indicated that all three measurements have roughly the same band width, i.e., $\lambda + \mu = \lambda + \mathcal{V}$. The implication is that $\mathcal{V} = \mu$.
To estimate μ , we note from the Instruction Manual of the Hewlett-Packard Model 300 A Harmonic Wave Analyzer that the band width for an attenuation of the voltage to $1/\sqrt{2}$ of the resonance peak (which approximates μ) is about 6.5 cycles. The average measured band width of the frequency response curves at an amplitude ratio of $1/\sqrt{2}$ appears to be about 5-6 cycles according to the data presented in Figures 13-15. These results indicate that the forcing function (oscillator) has a much narrower band width than either the analyzer or the cylinder. Hence we may conclude that the transfer function of the cylinder, being a bell-shaped curve, has a band width of approximately 6 cycles at $1/\sqrt{2}$ amplitude ratio, regardless of the frequency range. Since the damping coefficient, g, ordinarily used in aircraft engineering, is equal to the band width at $1/\sqrt{2}$ amplitude ratio divided by the natural frequency, the experimental result shows that the g-values so determined will vary with frequency. In other words, the damping characteristics of the test specimens cannot be expressed as a constant structural damping coefficient. The result can be expressed by saying that

$$gf = 6 cycles,$$

where f is the frequency in cycles per second.

REFERENCES

 Arnold, R. N. and Warburton, G. B., "Flexural Vibrations of the Walls of Thin Cylindrical Shells Having Freely Supported Ends," <u>Proceedings of the Royal Society</u> (London), Series A, Vol. 197, 1949, p. 238.

ß

- Arnold, R. N. and Warburton, G. B., "The Flexural Vibrations of Thin Cylinders, " Journal and Proceedings of the Institution of Mechanical Engineers (London), Vol. 167, 1953, pp. 62-74.
- Reissner, E., <u>Non-Linear Effects in Vibrations of Cylindrical</u> <u>Shells</u>, Ramo-Wooldridge GMRD Aeromechanics Section Report AM 5-6, August 1955.
- Fung, Y. C., On the Vibration of Thin Cylindrical Shells Under Internal Pressure, Ramo-Wooldridge GMRD Aeromechanics Section Report AM 5-8, September 1955.
- 5. Tobias, S. A., "A Theory of Imperfection for the Vibration of Elastic Bodies of Revolution, " Engineering, Vol. 172, 1951, p. 409.

-NOTE: SECTION IS ROTATED TO SHOW SKIN TENSIONING BELLOWS ASSEMBLY

B

. 002 . 003

-11" SKIN .001

٠K

Sound Generator

1

Schematic Diagram of Test Set-up

32

m 11 t

17

11

•

1

1

-

.

141

....

4

1

4

4

فيبدر

зl

Fig. 4

Schematic Diagram of Instrumentation

ŧ

12(a). Record 12 11-001, f=550, p=0.1 Records 28(p=0.5), 35(p=3.5), 43(p=4.95) are identical

12(b). Record 29 11-001 f=763 p=0.50 Fig. 12. Mode Shape Determination

12(c) Record 37 11-001 f=1439 p=3.5

12(d), Record 40 11-001 f=2288 p=3.5 Fig. 12 Mode Shape Determination

)

•

12(e) Record 44 11-001 f=1669 p=4.95

12(f) Record 45 11-001 f=2256 p=4.95 Fig. 12 (cont'd) Mode Shape Determination

.

~,b

9 **

۰.