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In this paper an algorithm is presented which rolves the

SUMMARY

linear programming problem. This algorithm combines the usual
phase one (getting feasibility) and phane two (getting ‘
optimality) of the Simplex or Dual methods into a single

phase. The algorithm degins with either a single aotivity
(colum) or a constraint (equation) and proceeds to add

;ithor activities or oconstraints one at a time, solving the
subproblems which arise for their optimal solutions. The

final solution is attained after adding the last activity or
constraint. The algorithm promises to be an efficient one and
has several advantages which arise from the information supplied

about subproblems, '
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SUMMARY

In this paper an algorithm is presented which solves the
linear programming problem. This algorithm combines the usual
phase one (getting feasibility) and phase two (getting
optimality) of the Simplex or Dual methods into a single
phase. The algorithm dbegins with either a single activity
(column) or a constraint (equation) and proceeds to add
either activities or constraints one at a time, solving the
subproblems which arise for their optimal solutions. The
final solution is attained after adding the last activity or
constraint. The algorithm promises to be an efficient one and
has several advantages which arise from the information supplied

about subproblems.
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THE CROSS—SECTION METHOD
An Algorithm for Linear Programming

INTRODUCTION
Both the Simplex [2] and Dual [6] metheds for solving

linear programming problems require two distinct phases. In
the first phase a feasible solution to the problem is found
and in the second phase an optimal solution is secured. This
paper develops a method for solving linear programming problems
which combines these two phaaea.' For this and other reasons,
which are examined in detail in Section b, 1t promises to be
more efficient than existing techniques. MRurthemore, it has
certain advantages which, apart from efficiency, make it superior
to the Simplex or Dual methods as now applied. These advantages
are due to the fact the method supplies, in addition to the
final answer, the optimal solution to subproblems constructed
by ignoring certain constraints (equations) or activities
(columns) of the original problem. This characteristic of the
technique permits one to compute without difficulty solutions
to problems which differ only in certain activities or constraints,
without solving separate linear programming problems. These
advantages are desoribed in Section 5.

The central contribution of this paper is a method of

going in one "step" from an extreme point (e.p.) feasible dual

’The author is indebted to Dr. George B. Dantzig for
posing a problem which inspired this investigation.
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solution’ of one linear programming precblem to an e.p. feasible
dual solution of another linear programming problem consisting
of the first problem with an additional constraint. This leads
to a technique in which an n-equation problem is treated by
optimizing in successively larger (more constrained) subproblems.
This technique 1is desoribed in Section 3. The Dual Method 1s
used to achieve optimization in each subproblem. Each time it
is achieved for a subproblem, another constraint is brought in
by our method, and the Dual Method is again applied. The
constraints are introduced in such a way as to obtain a better
bound on the value of the total n—equation problem (like an
iteration of the Dual Method, the step by which the constraint
is introduced drives the current value toward the optimal one).
In the first section we develop the geometric significance of
our method of going from one e.p. feasible dual solution to
another while adding constraints. In the second section we

derive the result algebraically.

1. OEOMETRIC MOTIVATION

Por concreteness, we shall always deal with a problem

requiring minimization. 7Thus, in the dual problem we shall

*In terms of (1) below, an extreme point feasible dual
solution may be considered to be a set of numbers (r,,...,7. )
such that for m indices, 11,...,im, we have =

‘a
11,

(Tl,...,Trm)k E _ci ‘0 k-l,a'ooo'm‘
\a
oy

while for the other n — m indices, the above equation holds with
"less than or equal" replacing the equality sign.
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always maximize. Our method requires that the primal problem
be in equation (as opposed to inequality) form. This is no
restrioction, since "slacks" can always be added to a problem
to put it in that form. Hence we take the problem to be that
of (1).

819X + 815Xy + ccc 4 8y X = by Xy 20, Lt =1,2,...,n

851Xy + 8pXy + ot 4 B X = by

8%yt Bpo¥p * ot * BggXy = by

min clx1 + c2x2 4+ o0 + °nxh

(1)

We define the "kth subproblem" or "k—problem," 1 ( k { n,
to be the linear programming problem which arises from (1) by
removing the last m-—-k constraints. We call an e.p. feasible
dual solution to the kth subproblem a "kth solution.”

The method may now be indicated. Given & kth solution,
we attempt to find a k+lst solution in the following way.
Since the kth solution corresponds to a k—column basis (or
kth basis) and the k+lst solution will certainly require a
k+l—column basis, we attempt to find a single column which,
added to the colums of the kth solution, will provide a
lk+1st solution. If we assume for concreteness that the first
k columns o) (1) were in the basis of the kth solution, we

may then be said to search for a column i, 1 ) k, which will

make the basis, B ,;» indicated in (2) eorrespond to a k+lst
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8110 B35, By
8510 823  "TTiB5u 854

(2) Bevd =| 3 : :
a7 Brar Ry 814

8+, ?0%+1,2" T %1, k¢ Bkel,4

solution. In fact, there will always exist such an index 1
(sssuming there ex sts a solution to (1)). Geometriecally
this can be appreciated as follows: Consider a 2nd solution
to (1), and let m = 4 in that problem. This 2nd solution
corresponds to an extreme point of the convex polyhedron
indicated in Pig. 1. The two lines on which the point lies
correspond to the columns of the 2nd basis (for definiteness
we take these to be the first and second columns) and the
point is on the appropriate side (determined by the inequality
2

Z w8 c
12y T S0

and indicated by an arrow) of each of the other lines. When

the third equation is added to the problem, the lines become

planes and in particular the lines
Lo Ml o T |
F1%12 * ¥oRgo * %

of our 2nd basis become the planes

71811 + 12821 + 73&31 - 01

r.a
1718 + 1T2‘22 + 13132 o P
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The fact that we have decided to leave the two columns of the
2nd basis in the 3rd basis indicates that our 3rd solution
will lie somewhere on the intersection of the two planes which
the first two columns now determine. Our second solution is
clearly of this type but, thouzh feasible, it 1s no longer an
extreme point. Hence we move this point up or down along the
intersection of the two planes (we discuss later whether up

or down) until we nicet a third plane. (Our use of the word
"move" is purely rhetorical since the change will not require
a search but only a single decision.) This determines an

extreme point and becomes our 3rd solution.

an extreme point
,feasible dual solu-
/,f/ tion to the 2-problem

Pig. 1

2. ALGEBRAIC DERIVATION

We assume that we have a kth basis (corresponding to a
kth solution) and that we are looking for an index i which
will determine a k+1st basis of the form assumed in (2). The

dual variables corresponding to the kth basis are
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and by assumption
alj
() (egrepme- o) (50| 2| - cy S0 J = 1,2,...,n.
\ a; /

We wish to choose an index 1 which satisfies the condition

analogous to (&) for the k+last stage, or

=3 fllJ
/8110 ccceBypr By / 8,
(5) (cloczi" 'Dcklci) l : : : | — CJ g 0
\‘kl’ secaBper By B s
Bee1,17 0 Ba1, kBK41, 81, o

J - 1)2,.0.’n.

By etraightforward calculation the reader may verify that the
inverted matrix involved in (5), denoted B;il, is related to
3;1 as indicated in (6).

lyl : ali
©  An-l X x =B - (8L fepeen)
L k a,,
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Yk 2|
3 i - 1
a
(8p1, 10 ooy, i) (B T) ‘;1 ~ Bel,e

Applying (6), we can write (5) in the form

71\ %14
)- - t(3;1)< (31:---:zk) - t“'k-’-l,l""“'k-ﬁl.k)“:l)

0 ¥y 0 .I .11
X . 0 ; 0 E I
(°1""’°k’°1) ol + Y, + olil : ‘J-cd {o.
{ 'k»
Lo,ooc’oo zl’ooo.'ok 0/ O’oco’ot —]
Distributing the matrix multiplication over the three interior
matrices and collecting the — cJ with the first term, we get
the following three summands, after substituting some of the
values given in (6);
f gt T, 811
! - 3 - >
(8) (cl’....ck)(Bkl)< . == CJ = (cl.ooo.ck)(ﬁcl) . (81,...,Zk)
L ') 84

4 W A
(9) 01(310°-°ozk) . - tak+1,3(°1""’°k)(Bk ) .
ey Ny

(10) Y841, 5%

Combining (8), (9), and (10) and then substituting the values

for (zl,zz,...,:k) and t given in (6), we have this equivalent
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form of (7):
" ‘13\ 7
(1) [(oge-an dEH 1 <y
| 'y d
r /a}J\ 1
5‘1«1,1"“"‘k+1,k)(3;l)\\a' | = 8, g| | 1 /an> ]
k . - .
= . /aﬁ\ L(cl,...,gkuak )\a}.d - ey

| =1,{
L(&k_’_l’lr--: ak+l,k)(Bk )\akl = ak.q.l,ij

< o.

Thus the condition to be satisfied is of the form

- a‘ -
(12) ng-'lc J-l’apooo’n'

a

i

where the EJ are relative cost factors for the kth subproblem
and the EJ, J=1,...,n, are the numbers which would be the
relative cost factors for the kth subprobhlem if the coefficients
of the next equation were taken as the cost form for the problem.
Since B, 13 a kth—basis, the EJ, J=1,...,n, are all non-
positive. Using this fact, the reader can verify that if there

exists an Ei > 0, then an index 1, for which
- c
B e 1, B
(13) 8 >0 and -l (2 for all J such that &, >0
) | a a
J 1,
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will satisfy (12). Similarly, if there exists an a'i { 0, then

an index 12 for which

|

¢ 5 _
{0 ana )2 for all J such that &, < O
aJ ai

(14) 312

2
will satisfy (12). We are precluded from choosing an index i
for which & = 0 since (12) would not be defined. This
corresponds to the fact that the addition of such a column
makes B  , a singular matrix (without the necessary inverse).
With this understanding, it is easily verified that any index 1
for which (12) holds must satisfy either (13) or (14). We now
consider the implications of a choice between (13) and (14%).

If in (5) we delete ¢y and let the column of b's in (1)
play the role of the Jth column in (5), the left-hand side of
that equation will represent the value assoclated with the
k+1lst solution which we denote V. +

k+l®
(4) we can interpret the reduction of (5) to (11) as indicating

Reasoning similarly with

that

B

8y

(15) Vo1 "% 5 9
where b is defined analogously to KJ. Since we are interested
in maximizing in the dual problem, we evidently should

ascertain the sign of b and choose our index i in such & way
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that ;L»is positive. Assuming that b ¥ O,' this is always

a
poasibio, provided that the equations have a feasible primal
solution.

The reasoning is as follows: Let us pretend that the
k+lst equation represents the cost form for the problen;
b becomes the differ:nce between the present value and the
value which must be achieved to satisfy the k+lst equation.
The HJ become the relative cost factors. If b {( 0, and
EJ 20, J=1,...,n, we would have a feasible dual solution
to a problem of maximization (in the primal) in which more
"value" was required to satisfy equation k+1l. Since the
value associated with the feasible dual solution is an upper
bsund on the value which can be attained by a feasible primal
solution, there can exist no feasible primal solution to the
k+l-problem (and hence no such solution to the complete m—
problem). A similar argumer’ applies to the case in which
P ) 0 and EJ {0, J=1,...,n. This gives the result and
allows us to sry that the bound on the final optimal solution
attained by bringing in the equation is no worse (and usually

better) than the previous one.

*

If b = 0, the k+1lst equation 18 satisfied, along with the
first k equations, by variables which correspond to a k—column
basis. In this case any column may be brought in which satisfies
ay ¥ 0. If no such column exists, the k+lst equation 1s a linesr
combination of the previous k equations and can thus be ignored.

MDr. George Dantzig has pointed out that the result in
this section bears a close relationship to the Parametric
Linear Programming of William Orchard-Hays [7]. Looked at
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3. ALGCRITHM PRESENTATION
Our method of introducing equatlons suggests an algorithm,

which will be discussed in this section, for solving linear
programming problems. We propose to solve the m—equation
problem by the following steps: Beginning with an (e.p.)
optimal solution to a one—equation subproblem, we will int:roduce
another constraint. This can be done, because an e.p. optimal
solution to a problem corresponds to an e.p. feasible dual
solution. Our method derives an e.p. feasible dual solution

to the 2-problem, and using the Dual Method we achieve an
optimal solution to this subproblem. We are then in a position
to introduce another constraint, giving a three—equation
subproblem. We continue in this way until we have brought in
the last equation and used the Dual Meticd to find an optimal

(cont'd from page 10)

in this 1light, the application of the method corresponds to
moving the right—hand side of a k+lst subproblem "parametrically"
from

by b,

b, b,, |

: to | |

by by /
B+ bk+1 bk+1

Our approa:h differe from Parametric Linear Programming ir that
we do not necessarily begin with an optimal situatisn and do

not seek to maintain optimality. PFurther, the movement indicated
above is carried out not "parametrically" but in one step.
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solution to that ultimate subproblﬂn.'

There is only one difficulty to bte considered with reszpect
to this procedure. It is possible for all of the m possidle
one—equation subproblems to fail to have an (e.p.) optimal
solution although the entire m—equation problem is quite
unexceptional (1..., has optimal prograna)." In this case we
employ a trick due to Beale [1] and begin by considering a

fictitious equation,

n
(16) I x, +t =N,

1=

where M 13 a very large positive number (thought of as larger
than the sum of the X, for any feasible primal solution, though
in fact there may be no such nunber). If we assign t a zero

co:t this l-problem has an (e.p.) optimal primal solution,

*

We could have proposed in place of this procedure that
the dual of the original probler. be considered the primal
problem and the above procedure followed. This would lead to
maintaining feasibility in the original problem and successively
adding activities (columns). This important possibility is
discussed in Section 5.

’.An example is shown below. Each equation is devoid of
feasible dual solutions as a l-problem but together they are
not. An optimal solution 1is X, = 0, X, = - {8 x3 - ],

Xl 12 X3
T 1 -1 0 = -2
1 -1 =1 = -3
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and hence we are in & position to initiate our procedure. The
addition of (16) to the original problem does not diminish
(hence does not change) the set of feasible primal solutions
to the problem if this set is bounded. It does, however,
ensure that the set of feasidble dual solutions is nonempty,
and hence, by the Duality Theorem [4], it guarantees the
existence of a solution {which our algorithm will find) to the
modified problem. If the dual variable associated with (16)
ever becomes zero (as it usually will early in the procedurs),
(16) can be ignored thereafter. However, it is possible that
in the optimal solution this dual variable is not zero. This
indicates that the set of values of feasible primal solutions
to the original problem is not bounded below (i.e., the
original problem had an infinite solution).

4. EFFICIENCY IN COMPUTATION

We turn now to oconsidering the efficieney of our proposed

algorithm. If we were to introduce one equation after another
without attempting to find optimality in each subproblem, we
would eventually reach an e.p. feasible dual solution to the
entire problcm.' Thus our result would be similar to that
attained by a phase one algorithm for the Dual Method. However,
because we would have introduced constraints in such a way as

to increase the value of the dual solution, we might expect to

'Ir the artificial equation is required, the e.p. feasidble
dual solution will be associated with a slightly more constrained

problem.
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be somewhat nearer the optimal solution than would be the case
if we had followed a phase one prooedure.' Negleoting this
advantage, we might consider the introduction of equations

in our algorithm to be analogous to a phase one technique.
Hence we might compare the number of multiplications required
to introduce the entire set of equations by our method with
the number of multiplications required by some phase one
procedure. The number of multiplications we require is, of
course, not dependent upon whether we pause to optimize in

the subproblems or Jjust pass quickly from one to the next.
Having made the above comparison, we will then go on to
compare the number of multiplications whioh might be necessary
to reach optimality in all the subproblems with the number
usually required to perform a phase two (i.e., reach optimality,
assuming feasibility) with the Dual or Simplex Method.

At the k+lst stage, two sets of k dual variables must be
computed in our algorithm, one set corresponding to the true
cost form and one set corresponding to the pretense that the
next equation is the cost form. This requires 2k2 multiplications

»

Only two approaches to the problem of construeting a
phase one procedure for the Dual Method are known to us.
lemke in [6] proposes that a Simplex Method phase two be
performed on & problem which he describes. G. Dantzig in [3
suggests, instead of a phase one for the Dual Method, that the
Dual Method be applied to & problem related to the original
one for whiech an @.p. feasible dual solution is immediate and
that the Simplex Method be used, after the Dual Method has
found the optimal solution, to go from the optimal solution
of the related problem to the optimal solution of the original
problem.
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in all. Applying these sets of dual variables to the (n-—k)
columns not yet in the basis, in order to compute the EJ and
EJ, requires 2k(n—k) multiplications. Determination of b
requires k more multiplications, and a number of ratios not
exceeding n-« must then be computed.. Hence the transition

requires less than

(17) 2k2 + 2k(n-k) + k 4+ n -k = 2nk + n

multiplications. Summing (17) as k goes from O to m—1 will
indicate the number of mulciplications necessary to bdring in

all m equations. Hence we have

m-1
(18) > 2nk +n=2n BSUB Lo oo e,

k=0

Counting nm multiplications for a Simplex or Dual Methed
iteration, we interpret this result as the equivalent of

m iterations. It seems reasonable that no phase one procedure
can be consistently faster than this. Por example, it would
require at least m iterations to remove m artificial veotors,
if these were used in a phase one procedure. A phase one
procedure that involved an auxiliary Simplex or Dual problem

would also require at least m iterations most of the times,

*The ratios EJ/;J need only be computed when iJ has the
sign of b.
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if we may Jjudge by computing exporiencc.' We conclude,
therefore, that the introduction of equations by our algorithm
compares favorably in speed with a phase one technique as

well as having the advantage mentioned at the start of this
discussion.

The comparison of a phase two teshnique with the Dual
Method iterations necessary for our algorithm to reach
optimality in every subproblem is best carried out in geometric
language. Geometrically our proposal reduces to considering
certain cross—sections of the polyhedron of feasible dual
solutions. At the kth stage the cross—section considered
lies in the coordinate "face'" determined by T, =0,

1 = k+1, k+2, ..., m. (In other words, the cross—section
considered is the one achiwed by ignoring the last m—-k equations.)
Our algorithm then uses the Dual Method to optimize in that
cross—section. When no better bound on the optimal value can

be achieved in the cross-—section, another equation is

introduced (this operation also improves the boundj and the

Dual Method is again applied. The oross—sesction now lies in a
coordinate face determined by LA 0, { = k+2, k+3, ..., m.

In this "higher dimensional" cross—secticn our algorithm
prohibits us from considering any "vertices" (of the cross—

section) whioch are associated with lower values of the dual

.Thil statement is appropriate as a comment on Lemks's
method for coustructing a phase one procedure (see previous
footnote). It is difficult to determine the effect of Q. B.
Dantzig's proposal.
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than have been already achieved. Hence we consider a truncated
cross—section. It is our expectation that achieving optimality
for the previous subproblem and introducing the next equation
as we do (so as to achleve a better bound) will truncate the
next cross—section radically, so that few iterations will be
required to regain optimality. This expectation is one-half

of the argument that our algorithm provides a good alternative
to a phase one technique. The other half of our argument
centers on the fact that, whatever the number of iterations
required to achieve optimality for each subproblem may be,
these iterations often concern a relatively small basis and
hence involve fewer multiplications than a Simplex or Dual
Method iteration. For example, let us consider the possibility
that it requires two Dual Method iterations at each stage to
achieve optimality for the subproblem. In this case, counting
kn multipliocations for a Dual Method iteration in a k—equation

problem we would require

m
z ?m-anmigill—%-nm(m-o-l)—%
k=2

multiplications. This result is somewhat less than the
equivalent of m+l Simplex or Dual Method iterations. With
the m iterations required to introduce the equations included,
our entire algorithm would take the equivalent of approximately
2m Simplex iterations and would probably be about on a par
computationally with the techniques in use.

It 18 obviously possible that it will take somewhat more
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than two Dual Method iterations to achieve optimality for each
subproblem. It is relevant to point out that the new variabdle
x, introduced into the basic solution at the k+lth stage
always enters at a nonnegative level. It is derived in a

straightforward menner to be

(19) x, =

P ot

which 18 nonnegative since 51 is always chosen to be of the
same sign as b. Of course the k+lst solution may not be
optimal when the kth solution is, because any of the first k
variables may become negative. The new values of the first k
variables (primed) have the relationship to the old values
indicated in (20).

1 e} ~ 11
® ;

; Dol -1
(20) L . = (B,")

Xy Xy i 31

In any case, the nonnegativity of Xy allows for the possi-
bility that as the equations are brought in an optimal solution
is maintained from the kth to the k+lst stage (without the

use of any Dual Method 1tcrationa).'

*

A related question to which the answer is definitely in
the negative asks whether there always exists some ordering of
the equations which will allow them to be brought in one by
one while the kth solutions remain optimal at each stage. A
counter—example is given below. Depending upon which equation
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5. ADVANTAGES IN APPLICATION
In this section we discuss the flexibility and advantages

of the algorithm proposed. We begin by presenting three types
of situations in which the algorithm would prove useful.

A. A firm has listed the constraints which, it feels,
might apply in a given problem. It recognizes that if certain
constraints prove too restraining in terms of the optimal
value, they might be altered or removed by some "nonlinear action,
such as acquisition of more land or plant facilities, etc. OQur
recommendation is to place these alterable constraints last, and
to use the cross—section method to achieve an optimal solution
to the subproblem P, consisting of the other k constraints, and
thereafter, for each alteradble equation, to alterrate bringing
in the equation by our method and reaching optimality in that
k+l—equation subproblem by the Dual Method, in order to gauge
the difference between the optimal value of P and the optimal
value of the subproblem consisting of P with an alterable

(cont'd from page 18)

18 considered initially, column one or column 4 is introduced
into the basis. However, neither of these columns appears in
the only optimal solution to the problem. That solution is

xlgo,xe-u/B, 13-4/3,&‘-0.

i il
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equation added. This will indicate the restraining effect of
any single alterable equation on the set of unalteradble
equations.

B. A firm has listed the inequalities which it feels
might apply in a given problem but recognizes that most of
them are probably not constraining in an optimal solution.
Rather than work with the entire set of inequalities, as would
be necessary by a straightforward application of the Simplex
Method, the firm should place at the end those inequalities
which, in its Jjudgment, are thought to be unimportant and
then proceed to apply the technique indicated in Section 3
(after adding slack vectors). A check on the rate at whioch
the optimal values to successivs subproblems decreass should
provide a good indication of how restraining the latest equations
are. When the values cease to decrease, the {irm might want
to assume that the remaining equations are not constraining.
In this case it would have only to check the feasibility (in
the other inequalities) of the optimal solution to the last
subproblem considered. Assuming that the constraints could
be satisfied, the firm would have an optimal solution, without
the labor involved in handling an oversized matrix.

C. A firm might be interested in a bound on the optimal
value of a given linear programming problem. It might feel
that if the optimal value v were greater than some Vo it
would be pointless to follow some course of action associated

with the problem. 1In this case, the procedure advised in
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Section 3 would give successively better lower bounds as each
subproblem was considered. If the lower dbound indicated by
some subproblem surpassed Vo the firm would know that the
course of action considered could not be followed unless at
least one of the constraints involved in that optimal sub-—
problem were altered or removed.

The advantages discussed so far exhibit the virtues of a
methed which adds equations one at a time while completely
solving the induced subproblems. 7These advantages would have
their counterpart in a method which adds activities (columns)
one at a tims while completely solving the subproblems which
aria;. In order to get such a method we have only t¢ apply
the procedure we recommenxdied in Section 3 to the uual of the
original problem. Such a procedure maintains feasibility of
the intermediate solutions to the original problem and henece

provides upper bounds (according to our conventions), as

opposed to the lower bounds utilized in example C. Murthemrmore,

it allows one to alter activities, with all the advantages
analogous to those described in examples A and B for changing

egquations.



P-1490

9-16-58
22—

REPFERENCES

Beale, E. M. L., "An Alternative Method for Linear Pro-

gramming,”" Prooceedings of the Cambridge Philosophical
Society, Vol. 50, ¥art ¥, I95%, pp. 5%3:523.

Dantzig, G. B., "Maximization of a Linear Function of
Variables subgcot to Linear Inequalities,” in T. C.
Koopmans (ed.), Activity Analysis of Production and
Allocation, Cowles Commission Monograph 13, John Wiley
and Sons, 1951.

Dantzig, G. B., Notes on Linear Programming: Part VII —
The Dual Simplex Klgorithm, The orporation, Research
Hemorandum EEZIZ7U, July 3, 1954,

Gale, D., Kuhn, H. W., and Tucker, A. W., "Linear
rogramming and the Theory of Games," in T. C. Koopmans
{cd.), Activity Analysis of Production and Allocation,
Cowles Tommisslon Monograph 13, John Wiley and sons, 1951.

Koopmaris, T. C. (ed.), Aotivity Analysis of Production
and Allocation, Cowles UTommIsslIon Monograph 13,
Joha Wiley and Sons, 1951.

Lemke, C. B., "The Dual Methoed of Solving thes Linear
Programming Problem," Naval Research logistics Quarterly,
Vol. 1, No. 1, March, 1UH%,

Orchard-Hays, William, "Revisions and Extensions to the
Simplex Method (with Sidelights on Prograsming Techniques),"
Econometrica, July, 1955.




