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SUMURT 

In this paper am algorithm is presented which solvai tht 

linear prosranning problem. This algorithm oombinee the ueual 

phase one (getting feasibility) and phase two (getting 

optimality) of the Simplex or Dual methods into a single 

phass.  The algorithm begins with either a single aotirity 

(column) or a constraint (equation) and proceeds to add 

either activities or constraints one at a time» solving the 

subproblems which arise for their optimal solutions» The 

final solution is attained after adding the last activity or 

constraint. The algorithm promises to be an efficient one and 

has several advantages which arise from the information supplied 

about subproblems.    . 
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SUItURY 

In this paper an algorithm is presented which solves the 

linear prograsniing problem. This algorithm combines the usual 

phase one (getting feasibility) and phase two (getting 

optimality} of the Simplex or Dual methods into a single 

phase.  The algorithm begins with either a single aotivity 

(colunxn) or a constraint (equation) and proceeds to add 

either activities or constraints one at a time, solving the 

subproblems which arise for their optimal solutions. The 

final solution is attained after adding the last activity or 

constraint. The algorithm promises to be an efficient one and 

has several advantages which arise fron the information supplied 

about subproblems. 
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THE CROSS-SECTION «THOD 

An Algorithm for Linear Prograning 

INTRODUCTION 

Both the Simplex [2] and Dual [6] methods for folving 

linear programming problems require tiro distinct phases. In 

the first phase a feasible solution to the problem is found 

and in the second phase an optimal solution is secured. This 

paper develops a method for solving linear programming problems 

which combines these two phases.  For this and other reasons, 

which are examined in detail in Section 4, it promises to be 

more efficient than existing techniques. Furthe-more, it has 

certain advantages which, apart from efficiency, make it superior 

to the Simplex or Dual methods as now applied. These aovantages 

are due to the fact the method supplies, in addition to the 

final answer, the optimal solution to subproblems constructed 

by ignoring certain constraints (equations) or activities 

(columns) of the original problem. This characteristic of the 

technique permits one to compute without difficulty solutions 

to problems which differ only in certain activities or constraints, 

without solving separate linear programming problems. These 

advantages are described in Section 3« 

The central contribution of this paper is a method of 

going in one "step" from an extreme point (e.p.) feasible dual 

The author is indebted to Dr. Oeorge B. Dantzig for 
posing a problem which inspired this investigation. 
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solution of on* linear progruBBing problem to an «.p. feasible 

dual solution of another linear programing problem consisting 

of ths first problem with an additional constraint. This leads 

to a technique in which an n-equatlon problem is treated by 

optimizing in successively larger (more constrained) subproblems. 

This technique is described in Section 3* The Dual Method is 

used to achieve optimization in each subproblem. Each time it 

is achieved for a subproblem, another constraint is brought in 

by our method, and the Dual Method is again applied. The 

constraints are introduced in such a way as to obtain a better 

bound on the value of the total »-equation problem (like an 

iteration of the Dual Method, the step by which the constraint 

is introduced drives the current /alue toward the optimal one). 

In the first section we develop the geometric significance of 

our method of going from one e.p. feasible dual solution to 

another while adding constraints. In the second section we 

derive the result algebraically. 

1.  QBQICTRIC MOTIVATION 

For concreteness, we shall always deal with a problem 

requiring minimization, rhus, in the dual problem we shall 

In terms of (l) below, an extrem« point feasible dual 
soli 
such 

ution may be considered to be a set of numbers (T,#...,7 ) 
th that for m indices, l,,...,lm, we have 

iC •* x,2,...fm. 

while for the other n - m indices, the above equation holds with 
"less than or equal" replacing the equality sign. 
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always maximise. Our method requires that the prinal problem 

be in equation (as opposed to inequality) form. This it no 

restriction» since "slaoks" can always be added to a problem 

to put it in that form. Hence we take the problem to be that 

of (1). 

T «i12
x2 + *•• "*" ainxn " bl   xi ^ 0' 1 - 1,2, ...#n a.,x, 4- a. 

a21xl + ^^ ♦ '•' ♦ ^n^n "b2 
(1) •     • .    * 

.     • *    • 

.     • •    . 

»ml51!-»»^ + ■•• ******  ""m 

rain ^x. -♦- CgXg +•••-♦- Qn\ 

We define the "kth subproblem" or "k-probleffl," 1 ^ k ^ n, 

to be the linear programming problem which arises from (l) by 

removing the last ra-k constraints. We call an e.p. feasible 

dual solution to the kth subproblem a "kth solution." 

The method may now be indicated. Oiven a kth solution, 

we attempt to find a k-lst solution in the following way. 

Since the kth solution corresponds to a k^-column basis (or 

kth basis) and the k-flst solution will certainly require a 

k-t-l-oolunn basis, we attempt to find a single column which, 

added to the columns of the kth solution, will provide a 

l:+lst solution. If we assume for concreteness that the first 

k columns o* (l) were in the basis of the kth solution, we 

may then be said to search for a column 1, 1 > k, which will 

make the basis, B^., indicated in (2) correspond to a k+lst 
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(2) V: 

au. •12' ••••'lk'    1 

'21' »22. •••••aic« 
• 
• 
• 

• • 
• 

• 
• 
• 

•kl' alc2' '••'•kk*      | 

l21 

akl 

Ak+l,]'&k-fl,2' ,,'ftk-H,k' ak-H,l 

solution.  In fact, there will always exist such an index i 

(assuming there ex sts a solution to (l)).  Oeonctrloally . 

this can be appreciated as followst Consider a 2nd solution 

to (1), and let m - 4 in that problem. This 2nd solution 

corresponds to an extreme point of the convex polyhedron 

indicated in Pig. 1. The two lines on which the point lies 

correspond to the columns of the 2nd basis (for definiteness 

we take these to be the first and second columns) and the 

point is on the appropriate side (determined by the inequality 

and indicated by an arrow) of each of the other lines. When 

the third equation is added to the problem, the lines become 

planes and in particular the lines 

Vll + T2ft21 " cl 

Tla12 + T2a22 - c2 

of our 2nd basis become the planes 

¥i'ii + Vai + '3*31 " ei 

'1*12 + '2* 
22 + »3«32 " «2 
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The fact that wc have decided to leave the two columns of the 

2nd basis in the 3rd basis indicates that our 3rd solution 

will lie somewhere on the intersection of the two planes which 

the first two columns now determine. Our second solution is 

clearly of this type but« though feasible, it is no longer an 

extreme point. Hence we move this point up or down along the 

intersection of the two planes (we discuss later whether up 

or down) until we meet a third plane.  (Our use of the word 

"move" is purely rhetorical since the change will not require 

a search but only a single decision.) This determines an 

extreme point and becomes our 3rd solution. 

an extreme point 
feasible dual solu- 
tion to the 2-problera 

Pig. 1 

2.  ALQRBRAIC DKRIVATIOW 

We assume that we have a kth basis (corresponding to a 

kth solution) and that we are looking for an index i which 

will determine a k-t-lst basis of the form assumed in (2). The 

dual variables corresponding to the kth basis are 
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.'2'-  '   \x)   \ (3)     (*ifVg*• •'#Vfc) - (0 , , 

and by assumption 

-1 

•kj/ 

-C, ^0 J " ^ , c. / • • • f ri, 

We wish to choose an index i which satisfies the condition 

analogous to (4) for the k+l«t stage, or 

,all' ••»*"IIP#   *• Ik' -li 

(5)  (o1,c2,...,ck,c1) 
•kl*  ••'»•kk* ^ci 

-Cj^O 

(6) 

J *■ i» c # . . . , n 

By Btraightforwaxxl calculation the reader may verify that the 

inverted matrix involved in (5)# denoted BT"., is related to 

BT as indicated in (6). 

1      'A 
* 

'k 
^k-t-l 

\ 2-i # * » • $ 

x-Kl-{*k)\ : Vi «k) 
•ki/ 

» / 
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t - 

iii 
.-i -•^M   : !-».( 

("!••••»■*' • -t(Va.i'-"'»M-i.k)<V> 

a 
-1 11 

fak-».l#l
#,,,#alc^l,k)(Bk ' I    i   j   ~ Vl,! 

lkl 

Applying (6)#  we can write (5)   in the  form 
0 

I      (c1#. . .fCj^C^) 

/ 
/ 

10,...,0 0/       \z1#...f'^ 0 /       \0#...,0 

'A 
Fi 

DistribJting the matrix multiplication over the three interior 

matrices and collecting the - c with the first term, we get 

the following three sumands, after substituting some of the 

values given in (6)i 

' -1 
V 

Vj 
- c 

J 

lll 

.-1 - (c1,...#ck)(B^
x)^ : y(«1,...,zk) (8) (c1,...,ck)(^

x) 

(9) c^.-.^W  ; j-t^^^..^^)^)/ | 

*V \i 

<10)    tak^l,jci- 

Combining (8), (9)# and (10) and then substituting the values 

for (z,^,... ,zk) and t given in (6), we have this equivalent 
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form of (7)1 

(n) 
'U 

,-1 (e1,...,ak)(B^1)l    : 
"icj 

— c 

-1 
^ 

J1lM'lfl
#*-,'mlBflfk^15c \m     l~\+l,3 

!y- 
11 

11 7 («r-'^xV^J-0! 
Lfak+l,l^" 'tofl,lc^15c At^i ' ~ ^1,1 

L 

io. 

Thus the condition to be satisfied is of the form 

(12) J ■ 1#2^•.•,n, 

where the c. are relative oost factors for the Vcth subproblem 

and the a-, j - l,.,.,n, are the numbers which would be the 

relative cost factors for the kth subproblem if the coefficients 

of the next equation were taken as the cost form for the problem. 

Since B^ is a kth-basis, the c., J - l,..,#n, are all non- 

positive. Using this fact, the reader can verify that if there 

exists an a\ > 0, then an index 1, for which 

(13) 
öl  % 

a,  > 0 and -«I < —-    for all J auoh that a. > 0 
1        ä.  S, J 
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will satlBfy (12).  Similarly, If there exleti an a1 < 0, then 

an Index 12 for «hioh 

c,  cl. 
(1»)    a, < 0 «nfl -1 > —2 for all J iueh that a. < 0 

will aatlafy (12). We are precluded from choosing an index i 

for which a1 - 0 since (12) would not be defined.  This 

corresponds to the fact that the addition of suoh a ooluran 

makes B. . a singular matrix (without the necessary inverse). 

With this understanding# it is easily verified that any index i 

for which (3,2) holds must satisfy either (13) or (I1*). We now 

consider the impllcntions of a choice between (13) and (14). 

If in (3) we delete c. and let the column of b's in (l) 

play the role of the jth column in (3)« the left-hand side of 

that equation will represent the value associated with the 

k-t-lst solution which we denote V. ,. Reasoning similarly with 

(4) we can interpret the reduction of (3) to (11) as Indiesting 

that 

*i 

where F is defined analogously to a.. Sinoe we are Interested 

in maximizing in the dual problem, we evidently should 

ascertain the sign of F and choose our index i in such a way 
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that — is positive. Assuming that t f 0,    this is always 

possible, provided that the equations have a feasible primal 

solution. 

The reasoning is as follows: Let us pretend that the 

k-t-lst equation represents the cost form for the problem; 

F becomes the difference between the present value and the 

value which must be achieved to satisfy the k+lst equation. 

The a* become the relative oost fsctors. If B < 0, and 

*i 2 0' J * l«*..»n# we would have a feasible dual solution 

to a problem of minimization (in the primal) in which more 

"value" was required to satisfy equation k+l.  Since the 

valu» associated with the fessible duel solution is an upper 

b'Hind on the value which can be attained by a feasible primal 

solution, there can exist no feasible primal solution to the 

k+1-problem (end hence no such solution to the complete m~ 

problem). A similar argumer applies to the case in which 

F > 0 and a4 < 0, J - lf...,n. This gives the result and 

allows us to sf*y that the bound on the final optimal solution 

attained by bringing in the equation is no wors^ (and usually 

better) than the previous one. 

If b - 0, the k+lst equation is satisfied, along with the 
first k equations, by variables which correspond to a k-column 
basis.  In this case any column may be brought in which satisfies 
a« / 0.  If no such column exists, the k+lst equation is s linear 
combination of the previous k equations and can thus be ignored. 

Dr. Oeorge Dantzig has pointed out that the result in 
this section bears a close relstionship to the Parametric 
Linear Programming of William Orchard-Hays [7] *  Looked at 
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3*  AI/K)RITHM PRKSSNTATION 

Our method of introducing equations suggeets an algorithm, 

which will be discussed in this section, for solving linear 

programming problems. We propose to solve the m-equation 

problem by the following stepst Beginning with an (e.p.) 

optimal solution to a one-equation subproblem, we will introduce 

another constraint. This can be done, because an e.p. optimal 

solution to a problem corresponds to an e.p. feasible dual 

solution. Our method derives an e.p. feasible dual solution 

to the 2-problera, and using the Dual Method we achieve an 

optimal solution to this subproblem. We are then in a position 

to introduce another constraint, giving a three-equation 

subproblem. We continue in this way until we have brought in 

the last equation and used the Dual Hetaod to find an optimal 

(cont'd from page 10) 

in this light, the application of the method corresponds to 
moving the right-hand side of a k^lst subproblem "parametrloally" 
from 

/  bl  .     /bl 

f   :  l to 

5 + ^1/     \ "k-H 

Our approach differs from Pararaetrie Linear Programming in that 
we do not necessarily begin with an optimal situation and do 
not seek to maintain optiaality.  Further, the movement indicated 
above is carried out not "parametrically" but in one step* 
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aolutlon to that ultimate aubproblem. 

There is oily one difficulty to Le co.ieldered with respect 

to this procedure.  It is possible for all of the m possible 

one-equation subproblasia to fail to have an (s.p.) optima: 

solution although the entire »-equation problem is quite 

unexceptional (i.e., has optimal programs).   In this case we 

employ a trick due to Beale [l] and begin by oonsidsring a 

fictitious equation, 

n 
(16)     2 x. ■► t - M, 

l-l 1 

where N is a very large positive number (thought of as larger 

than the sum of the x for any feasible primal solution, though 

in fact there may be no such nunber).  If we assign t a zero 

cc t this 1-problem has an (s.p.) optimal primal solution, 

We could have proposed in place of this procedure that 
the dual of the original probier, be considered the primal 
problem and the above procedure followed. This would lead to 
maintaining feasibility in the original problem and successively 
adding activities (columns). This important possibility is 
discussed in Section 3. 

•e 
An example is shown below. Each equation is devoid of 

feasible dual solutions as a 1-problem but together they are 
1. solution is xl  - 0'  x2 - 2,  x3 

«i ^ 
x3 

'1           ! -1 0      - -2 

'2            1 -1 -1    - -3 

min   -1    2   -1 
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and hcnoe wt are in a poiltlon to Initiate our procedure.  The 

addition of (16) to the original problem does not diminish 

(henoe does not change) the set of feasible primal solutions 

to the problem if this set is bounded. It does, howover, 

ensure that the set of feasible dual solutions is nonempty, 

and henoe» by the Duality Theorom [k],  it guarantee5 the 

existence of a solution (which our algorithm will find) to the 

modified problem.  If the dual yariable assooiated with (16) 

ever becomes zero (as it usually will early in the procedure), 

(16) can be Ignored thereafter. However, it is possible that 

in the optimal solution this dual variable is not zero. This 

indicates that the set of values of feasible primal solutions 

to the original problem is not bounded below (i.e., the 

original problem had an infinite solution). 

> 

4. KFFICIKNCY IN COWTUTATION 

We turn now to considering the efficieney of our proposed 

algorithm. If we were to introduce one equation after another 

without attempting to find optimality in each subp rob lern, we 

would eventually reach an e.p. feasible dual solution to the 

entire problem.  Thus our result would be similar to that 

attained by a phase one algorithm for the Dual Method. However, 

because we would have introduced constraints in such a way as 

to increase the value of the dual solution, we might expect to 

If the artificial equation is required, the e.p. feasible 
dual solution will be associated with a slightly more constrained 
problem. 
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be somewhat nearer the optimal solution than would be the ease 

if we had followed a phase one procedure.  Neglecting this 

advantage» we might consider the Introduction of equations 

in our algorithm to be analogous to a phase one technique. 

Hence we might cooqpare the number of multiplications required 

to introduce the entire set of equations by our method with 

the number of multiplications required by some phase one 

procedure. The number of multiplications we require is, of 

course, not dependent upon whether we pause to optimise in 

the But problems or just pass quickly from one to the next. 

Having made the above comparison, we will then go on to 

compare the number of multiplications which might be necessary 

to reach optlnutlity in all the subproblems with the nu8ü)er 

usually required to perform a phase two (i.e., reach optima Illy, 

assuming feasibility) with the Dual or Simplex Method. 

At the k-flst stage, two sets of k dual variables must be 

computed in our algorithm, one set corresponding to the true 

cost form and one set corresponding to the pretense that the 
2 

next equation is the cost form. This requireu 2k multiplications 

Only two approaches to the problem of constructing a 
phase one procedure for the Dual Method are known to us. 
Lemke in [o] proposes that a Simplex Method phase two be 
performed on a problem which he describes. 0. Dantzig in (31 
suggests, instead of a phase one for the Dual Method, that the 
Dual Method be applied to a problem related to the original 
one for which an e.p. feaaible dual solution is imnediate and 
that the Simplex Method be used, after the Dual Method has 
found the optimal solution, to go from the optimal solution 
of the related problem to the optimal solution of the original 
problem. 
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in all.  Applying these sets of dual variables to the (n-k) 

columns not yet in the basis« in order to oonpute the e. and 

a", requires 2k (n-k) multiplications. Determination of H 

requires k »ore mult Ip 11 cat lone, and a number of ratioi not 

exceeding n-k must then be computed.  Hence the transition 

requires less than 

(17) 2k2 ♦ 2k(n-k) -fk + n-k-ank-t-n 

multiplications. Sunning (17) aa k goes fron 0 to *~l will 

indicate the number of mulciplioations necessary to bring in 

all m equations. Hence we have 

(18) 2 2nk 4 n - 2n ("V^ ^ «an - n«2. 
k-0 B 

Counting run multiplications for a Simplex or Dual Method 

iteration, we interpret this result as the equivalent of 

m Iterations. It seems reasonable that no phase one procedure 

can be consistently faster than this. For example, it would 

require at least m iterations to remove m artificial vectors, 

if these were used in a phase one procedure. A phase one 

procedure that involved an auxiliary Simplex or Dual problem 

would alao require at least ra iterations most of the time. 

The ratios c ./a. need only be computed when a. has the 

sign of F. 
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lf we nay judge by computing experience.  We conclude, 

therefore, that the introduction of equations by our algorithm 

compares favorably in speed with a phase one technique as 

well as having the advantage mentioned at the start of this 

discussion. 

The comp&rlsor. of a phase two technique with the Dual 

Method iterations necessary for our algorithm to reach 

optimality in every subproblem is best carried out in geometric 

language.  Geometrically our proposal reduces to considering 

certain cross—sections of the polyhedron of feasible dual 

solutions. At the kth stage the cross—section considered 

lies in the coordinate "face" determined by r. - 0, 

1 ■ k+1, k+2, ...» m.  (In other words, the or^sa-section 

considered is the one achWed by Ignoring the last m-4c equations.) 

Our algorithm then uses the Dual Method to optimize in that 

cross-section. When no better bound on the optimal value can 

be achieved in the cross-eection, another equation is 

introduced (this operation also improves the bound) and the 

Dual Method is again applied. The cross-section now lies in a 

coordinate face determined by r, - 0, 1 ■ k^2f k4-3# •••* m. 

In this "higher dimensional" cross-sectlcn our algorithm 

prohibits us from considering any "vertices" (of the cross- 

section) which are associated with lower values of the dual 

This statement is appropriate as a coaaent on Lemke'e 
method for constructing a phase one procedure (see previous 
footnote).  It is difficult to determine the effect of 0. B. 
Dantzig's proposal. 
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thjin have been already achieved. Hence we consider a truncated 

croae—section. It is our expectation that achieving optiaality 

for the previous subproblem and introduolng the next equation 

as we do (so as to achieve a better bound) will truncate the 

next cross-eection radically, BO that few Iterations will be 

required to regain optimallty. This expectation is one-half 

of the argument that our algorithm provides a good alternative 

to a phase one technique. The other half of our argument 

centers on the fact that, whatever the number of iterationa 

required to achieve optimallty for each subproblem may be, 

these iterations often concern a relatively small basis and 

hence Involve fewer multiplications than a Simplex or Dual 

Method iteration. Tor example, let us consider the possibility 

that it requires two Dual Method iterationa at each stage to 

achieve optimallty for the subproblem. In this case, counting 

kn multiplications for a Dual Method iteration In a k-equatlon 

problem we would require 

2 2kn - 2nmt5^1) - 2n - nm(m -H) - 2n 
k-2 * 

multiplications. This result is somewhat less than the 

equivalent of nn-l Simplex or Dual Method iterations. With     * 

the m iterations required to introduce the equations included, 

our entire algorithm would take the equivalent of approximately 

2m Simplex iterationa and would probably be about on a par 

computationally with the techniques in use. 

It 5 s obviously possible that it will take somewhat more 



P-1490 
9-16-58 

than two Dual Method itormtiorui to achieve optlmallty for each 

■ubproblom. It it rolevant to point out that the new variable 

x1 introduced into the basic solution at the k+lth stage 

always enters at a nonnegative level. It is derived in a 

straightforward manner to be 

(19)    Xi - I- 
al 

which is nonnegative since ä, is always chosen to be of the 

same sign as S. Of course the k+lst solution may not be 

optimal when the kth solution is« because any of the first k 

vaiiables may become negative. The new values of the first k 

variables (primed) have the relationship to the old values 

indicated in (20). 

/v 
(20) 

Xl /»U 

" f K1) 
i«k/    W    ai      \»ki 

In any case« the nonnegativity of x. allows for the possi- 

bility that as the equations are brought in an optimal solution 

is maintained from the kth to the k+lst stage (without the 

use of any Dual Method iterations). 

A related question to which the answer is definitely in 
the negative asks whether there always exists some ordering of 
the equations which will allow them to be brought in one by 
one while the kth solutions remain optimal at each stage. A 
counter-example is given below. Depending upon which equation 
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5.  ADVANTAQS3 IW AFrUCATIOH 

In this seotion we discuss the flexibility and advantages 

of the algorithm proposed. We begin by presenting three types 

of situations in which the algorithm would prove useful. 

A. A firm has listed the constraints whioh, it feels, 

might apply in a given problem. It recognizes that if certain 

constraints prove too restraininc in terms of the optimal 

value, they might be altered or removed by some "nonlinear action, 

such as acquisition of more land or plant facilities, etc. Our 

recommendation is to place these alterable constraints last, and 

to use the cross—section method to achieve an optimal solution 

to the subproblem P, consisting of the other k constraints, and 

thereafter, for each alterable equation, to altercate bringing 

in the equation by our method and reaching optimality in that 

»c-t-l-equation subproblem by the Dual Method, in order to gauge 

the difference between the optimal value of ? and the optimal 

value of the subproblem consisting of P with an alterable 

(cont'd from page 18) 

is considered initially, column one or column 4 is introduced 
into the basis. However, neither of these columns appears in 
the only optimal solution to the problem. Thst solution is 
x - 0, Xg - 4/3, x3 - 4/3, x4 - 0. 

xi ^ *3 x4 

Tl i 1/2 iA 1/8 1 

'2 1/6 1/" 1/2 1 1 

mln -1 -1 -1 -1 
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equatlon added. This will Indicate the restraining effect of 

any single alterable equation on the set of unalterable 

equations. 

B. A firm has listed the inequalities which it feels 

might apply in a given problem but recognizes that most of 

them are probably not constraining in an optimal solution. 

Rather than work with the entire set of inequalities« as would 

be necessary by a straightforward application of the Simplex 

Method, the firm should place at the end those inequalities 

which, in its judgment, are thought to be unimportant and 

then proceed to apply the technique indicated in Section 3 

(after adding slack vectors). A check on the rate at which 

the optimal values to successive subproblems decrea«e should 

provide a good indication of how restraining the latest equations 

are. When the values cease to decrease, the firm might want 

to assume that the remaining equations are not constraining. 

In this case it would have only to check the feasibility (in 

the other inequalities) of the optimal solution to the last 

subproblem considered. Assuming that the constraint.* could 

be satisfied, the firm would have an optimal solution, without 

the labor involved in handling an oversized matrix. 

C. A firm might be interested in a bound on the optimal 

value of a given linear progranning problem. It might feel 

that if the optimal value v were greater than some v0, it 

would be pointless to follow some course of action associated 

with the problem. In this case, the procedure advised in 
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Sectlon 3 would glv# succesalv^ly better lower bounds as each 

■ubproblem wme considered. If the lower bound indicated by 

some subproblem surpassed VQ# the firm would know that the 

course of action considered could not be followed unless at 

least one of the constraints involved in that optimal sub- 

problem were altered or removed. 

The advantages discussed so far exhibit the virtues of a 

method which adds equations one at a time while completely 

solving the induced subproblems. These advantages would have 

their counterpart in a method which adds activities (ooluans) 

one at a tims while completely solving the subproblems which 
* 

arise. In order to get such a method we have only tc apply 

the procedure we recormended in Section 3 to the uual of the 

original problem.  Such a procedure maintaina feaaibility of 

the intermediate solutions to the original problem and henee 

provides upper bounds (according to our conventions)# as 

opposed to the lower bounds utilized in example C. Furthermore, 

it allows one to alter activities, with all the advantages 

analogous to those described in examples A and B for changing 

equations. 
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