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Summary

In this paper we consider the problem of determining the
asymptotic behavior of solutions of linear d4ifferential-
difference equations whose coefficients possoss asymptotic
series.

Although the problem is considerably more complicated
than the corresponding problem for ordinary differential
equations, by means of a sequence of transformations we are
able to reduce the problem to a form where the standard
techniques of ordinary differential equation theory can be
employed.

We first transform the differential-difference equation
into an integral equation, then transform this integral
equation into an integro-differential equation. At this
point the Liouville transformation plays a vital role.
Although the guiding ideas are simple, the analysis becomes
formidable. For this reason, we have considered only some

of the more immediate aspects of the problenm.
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS
OF DIFFERENTIAL-DIFFERENCE EQUATIONS

Richard Bellman
Kenneth L. Cooke

l. Introduction

The asymptotic behavior of the solutions of linear

systems of differential equations of the fom
(1.1) x'(t) = A(t)x(t),

where x(t) 1s a vector of dimension N and A(t) is a

given matrix of dimension N with known behavior as t —-» + @,
has long been a subject of investigation, and an extensive
literature now exiltll. One of the most interesting cases is
that in which A(t) possesses an asymptotic power series

expansion,

Q0
- -
(1.2) A(t) nfoA“t .

For example, it is known that i1f the matrix Ao has
simple characteristic roots /\1,7\ - .,)\J, then with each
root AJ there is associated a solution xJ(t) having an

asymptotic expansion of the form

At r, @
(1.3) xJ(A) ~edt ZO cnt"'n, (°O =1),
N=

1For a thorough discussion and !‘urthex('jfcfcr‘ncea, refer
to Bellman, (1], Coddington and Levinson,
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where r is dependent on ‘1 and where the o are constant

n
vootou.J Purthermore, since these N solutions are linearly
inderendent, every solution of the equation in (1.1) is a
linear combination of these particular solutions. In the case
in which the characteristio roots are not all simple, similar,
but more complicated results exist. Also, similar, but less
precise, results are known if the relation in (1.2) is replaced

by the weaker hypothesis
(1.4) A(t) = Ay + Al(t) + Az(t),

where

S E ALl at < oo,
S Hag(e)]l at < oo;

or. (1], [ﬂv [7].
A corresponding theory for differe iial-difference

equations of the fom

m
(1.5)  x() = 2 A (0)x(E - o)

has been slow to develop, though a start was made in a paper
by Cooke, [6]. Asymptotic behavior of the solutions of

particular equations of the form

(1.6) x'(t) = 1lz"fo(u1 + Bi)x(t - “i)'
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where the Ai and B, are constant, has been atudied by

i
Yates, [8]. These two papers both contain quite involved
analysis. As a preliminary to the present paper, one of the
authors has devised an elementary method, of. (3], for dis-
cussing the equation in (1.5) in case the Ai(t) have
asymptotic power series expansions and all characteristio
roots of Ao are simple.

We shall present here a new technique which will enable
us to show that to each root of the characteristic exponential
polynomial there corresponds a solution possessing an
asymptotic expansion. The technique is applicable to
differential-difference equations of the form in (1.5) under
hypotheses like those in either (1.2) or (1.4). 1In case the
hypotheses are of the type in (1.2) and all characteristic
roots are simple, the expansion of the solution will be of
the form in (1.3). If the roots are not simple, it will be
of a form described below. The method is also applicable to
ordinary differential equations of the fom (1.1).

There are easentially two aspects of the problem dis-
cussed here. Pirst, one must establish the existence of a
solution associated with each characteristic root and having
an asymptotic expansion of the indicated type. Second, one
must prove that every solution is a linear combination of
the special ones found so that we lnow the asymptotic be-
havior of every solution. For differential equations, since

there are only a finite number of characteristic roots, the

second proof 1is trivial, but for differential-difference
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equations, for which there are infinitely many charaoteristic
roots, this is not the case. In the present paper, we shall
consider only the first aspect of the problem.

Throughout this paper, we shall deal only with the

scalar equation
(1.7) u'(t) + a(t)u(t) + b(t)u(t — ) = 0,

rather than with the vector-matrix equation in (1.5), in
order to hold the details, which are occasionally onerous,
within reasonable limits. However, the method to be used
needs no essential modification in order to be applied to the
equation in (1.5). Moreover, so that the fundamental ideas

of our method will be as clear as possible, we shall divide
the discussion into several parts, beginning with the simplest
case and taking up successively more complicated ocases. In
§2, we shall summarize various known results, which we need
later, concerning differential-difference equations with
constant coefficients. In §§3-7, we shall show how to find
the asymptotic expansion associated with a simple chareacter-
1stic root of the equation in (1.7), and in subsequen$
sections we shall extend the method to include multiple roots.
We shall also indicate some generalizations to more general
linear functional equations, and to nonlinear differential-
difference equations. Thase, however, will not be discussed

in detall.
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2. Differential-difference Equations with Constant Coefficients

In this sectien, we shall summarize various known ronultol

conserning the scalar equations with constant coefficients,

(2.1) u'(t) + lou(t) + bou(t-— w) = 0.

The characteristic function of this equation is the exponential
polynomial

(2.2) n(s) = 8 + a8y + bod_w'.

The characteristic roots of the equation in (2.1), zeros of

h(s), 1lie asymptotically along the curve

(2.3) Re(s) + log s} = log Ib,\,

i apart. This ocurve is

spaced an asymptotic distance of 2wuw
symmetric to the real axis, and is similar to an exponential
curve for large Isl. As |(sl—> o, with s on the curve,
the ocurve becomes more and more nearly parallel to the
imaginary axis, and Re(s)—> — 00. The roots a~e either real
or else occur in conjugate pairs (assuming a, and b, are
real), and on any vertical line there lie at most two roots.

The roots with non-negative imaginary parts can be put into

a sequence Ykn}, ns-=1,2,..., where Ro(hn) > Rc(hn+l).

lpor further detalls, refer to Bellman, (2], or Wright,

[3]» o]
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Finally, all roots are simple, except possibly that

ANa—1 - a, 1s a double root 1if the following relation
holds:

o{l+a,)
(2.4) byue 0" . 1.

The equation in (2.1) 1s satisfied by any sum o! the

form

At
(2.5) u(t) = Z p (t)e r
r

where ﬁﬁr] is any sequence of characteristic roots, p_(t)
is a polynomial of degree less than the multipliocity of Ar’
and the sum 1is either finite or is infinite with suitable
conditions to insure convergence. (Moots of multiplicity
greater than two are possible for more general equavions than
(2.1). The methods presented below apply to these more
general situations also).

Conversely, let (An} be the sequence of roots desoribed
above. Then any solution of the equation in (2.1) can be
represented by a series

o At
(2.6)  u(t) = z'e"p (t),

n=1
wherein pn(t) is a suitable polynomial of degree less than
the multiplicity of an. The prime on the sum indicates that

a term involving a root 7& with posit ve imaginary part 1s

At

to include both e pn(t) and its conjugate, which arises

from the conjugate root,.
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The asymptotic behavior of a solution of the equation in
(2.1) 18 fully described by the series representation in (2.6).
With each characteristic root A, of multiplicity m, there
are associated m solutions, olt, tozt, IR tm—loxt.
Conversely, every solution can be represented as an infinite
linear combination of these solutions.

The present paper can be regarded as a generalization of
the content of this last paragraph to differential-difference
equations with asymptotically conatant coefficients. We pro-
pose to show that with each root A of multiplicity m there
are associated m solutions of known asymptotic form. From
the above discussion, we see that there is one real root, or a
conjugate pair of complex roots, having a real part which

exceeds the real parts of all other roots. This root (or each

root of the conjugate pair) will be called the principal root.

It turns out that the demonstration is particularly simple for
a real principal root, and we shall acocordingly discuss this
situation first, later extending the method to the more

complicated cases.

0f fundamental importance to us is the fact that a

continuous solution of the equation

(2.7) u'{t) + aou(t) + bou(t - w) = f(t)

can be represented by means of an integral operator in terms
of the forcing function f(t) and the values of wu(t) over

any interval of length w, as follows:



t
(2.8) u(t) = u(ty)k(t —w) - bo(47 © u(t, k(t - ¢, — «at,
0—-(0

t
+({; £ty k(t = t))dt), € > t,.

Here k(t) is the unique function with these properties:
(2.9) (1) k(t) =0, — g *t<0}
(11) k(o) = 1,

(111) k(t) 48 continuous for t > O, and k'(t) 1is

continuous for ¢ P

(1v) k'(t) + aok(t) + bok(t -—w) =0, t>O.

This resul: is readily established by use of the

Laplace transform. Moreover, k(t) has a series expansion

@ A_t
(2.10) k(t) = z' o ® q(t),
Nel

where eaoch qn(t)- is a polynomial of degree less than the
multipliocity of An' Finally, for any positive integer N,

N At
(2.11)  k(t) = z:i o g (t) + Kk (t),
D=

where

(Re A6t

(2.12) |kl(t)| = Ofe ) as t—>o00, (& > O).
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We shall include here several lemmas which will be

useful in what follows.

lemms, 1, If w(t) is positive and non-decreasing,

u(t) > 0, v(t) 2 0, and all three functions are continuous,

and 1f

(2.23)  u(t) g w(t) *4{" u(t))v(t,)at,, a gt g,

then

(2.14) u(t) ¢ w(t) exp G/’t v(tl)dtl), agtgb.
a

To prove this lemma, observe that

u(t, )v(e,) u(t, )v(t,)
%Slﬁ{n &It)lﬂtlslﬁft—-%-n—l—)—l—dtl.

since w 18 non-decreasing. Let

u(t, )v(t,)
r(t) -‘{'t ‘l'ﬁlTl dt, .

Then
(2.15)  wu(t) g w(t)(1 + r(t))
and

r(t) = ELE&.‘(!SJ < v(t)(1 + r(t)).

It follows that
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(2.16) 1+ r(t) g oxp (,/’t v(tl)dtl) :
a

Comdbining (2.15) and (2.16), we get the desired result.

The remaining lemmas will be used to estimate the mag-
nitude of various integrals which appear in our discussions.
Most of them are proved by integration by parts, and all are
elementary in character. We have set them apart as lemmas,
and colleoted them in one place, for ease of reference.

Lemma 2, Suppose that o, > O and that £f(t) and

g(t) are real functions for which

ST 1e(t)l at < oo, /°° g(t)| at < oo,

Then

¢
(2.17) ({” g(tl)oxp{oltl +/t; 1 r(ca)d:,‘,}d:l
0

s o(l)oxp[olt +/t’t f(tz)dtz} as t —>o00,
0

Denote the integral in the left memdber uf (2.17) by

J(ty,t). Then
0’2 S%{ [s(t)] e 1
0

ot

S ce 12 /t7°° I;(tl)ldt’.1
0o

e t q
e * o(l) o(1)oxp{o1t +‘{; £(t,) ta}.
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Also

c tl et
[363:0)] g o, lstey) ot Fary oot S0 ey ) ety
o,t

ag L o(l) = o(l)oxp{clt +‘{” r(tz)dtz}.
0

Lemma 3. Suppose that ¢, > O and that f(t) and g(t)

are real, twice differentiable functions satisfying these

conditions:

(2.18) £f(t) and g(t) -0 as t >,
(2.19)  &(t) 40 for ¢ 3t

(2.20) g'(t) = o(g(t)) as t —=> oo,
(2.21) /@ rr(¢)dt < o,

(2.22) /% t(t)%at < oo,
(2.23) % |§"'-{-‘,1|4t < ©,
(2.24) /@ |ﬁ-t-%&'-§-§l|dc < 0.

Then

t
(2.25) 4" g(tl)oxp{cltl +(4’ 1 f(t2)dt2} at,
0 0

G (OII = o(l))g(t)exp{clt -1-[‘; f(t2)dt2}, as t > w®.,
0
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The conditions are satisfied, if, for example,
£(t) = g(t) = t™ where a > 1/2. To prove tLe lemma, we

rfirst note that by (2.20),

(2.26) 1im 2oKI&(t) _ o,
t—o>®

If we integrate by parts, we obtain

(2.27) ({’

t
t 1
g(tl)cxp [°1°1 +‘{’ f(ta)dta} dt,
0 0

- c'l'lg(t.)exp {olt +/t,’t r(tz)dtz} + oonstant
0]
- oIa [5‘(%;) + f(t);(t)] exp(clt +4t f(te)dta}
0

t
P c~l-2‘/t’)t (g" + gf' + 2g'f + gf‘?)cxp{oltl +/t) 1 f(tz)“g}“y
0 0

Since o, > 0, f(t)—>0 as t-—>o, and ‘(t)..t'°(1)'

g(t)oxp{clt +/t f(tz)dtz} —> 00 a8 t—w.
t
Q

Since g'(t) = o(g(t)), 1t follows that the first three terms

in the right member of (2.27) can be written as

c‘l‘lg(c)oxp{clc e 1 f(ta)dta}(l v o(1)).
o

Purthermore, denoting the last term in (2.27) by J(to,t),

we have
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bl w3 g
0

+ 28'f + 3f2fdt1

$ g(t)oxp{élt +U{7t f(tz)dt2}oxp{o - loglg(t)l
0

t t
- — r(t.)dt
1 3 /2 (t;) 2}

< t(t)cxp{olt +/” f(tz)dta]o(l).
0

Also, since g(t)cxp{olt +c/’t r(ta)dtz} is increasing for
t
0

large ¢,

lJ(é.t)i S 8{t)exp {clt q{t f(tz)dtz}
0

4‘2‘ (|§1| e 4 2[-’%'4 + r"’Jdtl

$ g(t)om(clt n[t f(tz)dtz}o(l).
0

This proves the relation in (2.25).

Lemma 4. Suppose that o, > O and that f(t) and g(t)

are real functions for whioh

S (e(e)lat < oo, /“(g(c)( at ¢ ™.

Then



eV
2 e
-1k

t
({’“’ g(tl)exp{— c;ty +‘47 1 f‘(t:z)dtz} at,

0

- o(l)oxp{— c,t +/’t r(ta)dte} as t —> .
t
0

For

t —c, t
‘{"”c(tl)oxp{— eyt +({; 1 r(tz)dt,‘,} at,| g ce . /t’“’ le(ty )] Aty

< o(l)exp{—-— ¢t +‘{)t f(ta)dtz}.
0

Lemma 5. Suppose that ¢, > O and that r(t) and g(t)

are real, twice differentiable functions satisfying the

hypotheses of Lemma 3. Then
t
@ 1
({’ g(tl)oxp[— e ¢t +(4’ f(ta)dtz}dtl
0
-1

= (=c]" + o(l))g(t)oxp{— ot +<[t f(t2)6t2}, as t—» .
0

To prove this, we observe that for t sufficiently large,

t/2
\g(t)oxp{— oyt +({W f(t2)dt2}\ < c."°1 / = o(l),
0

by (2.26) and (2.18). Therefore, two integrations by parts
will yleld



- - cIlg(t)oxp{— o)t +({7t r(ta)dtz}
0

+ 0'1'2 ["(t) + r(t)g(t)] oxp{-— c,t +({;t r(cz)dtz}

14
—2 o o] " ' “r 2 - 1
+ 0y (4’ [g + gf' + 28'f + gf ]exp{ °1t1 +‘{7 t(tz)dtz}dtl.
0

t
Sinoce ;(t)oxp{- c,t + r(t,)dt } is decreasing for ¢t > t
1 z{; 2/%%2 e ‘o’
the last term in (2.28) “is boundsd by

oIzz(t)oxp{— c,t +‘4;" r(ta)dteJ({)““%:] + | 4 2‘-‘%4 + r"’)dtl
- g(t)exp{— c, t +‘47t f(tz)dtz}o(l).
0

Therefore (2.28) ylelds the stated conelusion.

Jerama 6. Suppose that M is real and not zero, and that

g(t) satisfies these oconditions;

g(t) teads monotoniocally to zero as t —> m,

6(t) A0 for tyt,,

g'(t) = o(g(t)) as t —»> o,

/e < B e <o
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Then as t — ®

t
(2.9) /% S le(t,)at; = — (407 g(t)e¥ (1 + o(2)),
(2.30) ‘[O Othl'(tﬂ“l - g(t)e¥%(1),

and

t
(2.31) 0<0°° o;ﬂ lz(tl)adtl = —-(§4Y’13(t)2e*”t(1 +0o(1)).

Proof. Since g(t)—> 0 and g'(t) —>» 0, two inte-

grations by parts yleld
1ut we vt
o :
4 o lg(t)ae, ....ﬂ.(.‘ai_._ﬁ_i'i%"__.

_1/00 yl i g8"(t,)dt,.

Since

n( )
% e Ygr(t)a | g Iste)) o | s LIPS

the relation in (2.29) is clear. Using a single integration
by parts, we get

1wt de)e¥t ) wey
LT lg(t))ar, - — Kltle ot 77 A CRLUY

from which the relation in (2.30) follows. The relation in

(2.31) 1s proved similarly.



Lewma 7. Suppose that g(t) satisfies the following

conditions.

(2.32) g(t) >0 for t 3ty &(t)=0(1l) as t—>w,

(2.33) x'(t)-O(s(t)3/2). £'(t) = o(g(t)?) as t—>o0,

(2.34) /" ®g(t)" %t - oo,

2 =
2.35) ey 1‘-—‘-—157, t) . at < oo, “i—(j}‘.‘,' YU at < oo,
: / g(t) * / g(t) ®

Given any real number n, it then follows that

t
(2.36) /% g(t;)ex R RA TR
b 1 9{/ 2 2] 1

- (1 o(l))s(t)“/?-xp{,/" ()7 %a| a o

Lemma 8. If g(t) satisfies the hypotheses in Lemms 7,

t
(2.31) /% s(tl)“oxp{—/ . z(t2)1/24t2}4t1

- (14 o(l))g(t)n—l/aoxp{—/t g(tl)l/zdtl} bt — .

The proof of Lemma 7 1s similar to that of Lemma 3,

After two integrations by parts, we have
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(2.38) (/"‘ g(t, )"expl,” *1 s(t, 1/2dt2}dt1

. {s(c)“/ 2_ (n- é)r(t)z(t)“} -x»{/‘ st )"/ 2at

1
+ constant + (n — ‘Q)J(toot):

where

Hegrt) =7 [(n = 226 (1) %(61)™3 + (e u4)™]
0

14
. prV 1 g(tz)l/zdtz}dtl.

Since g'(t) = a(g(t)B/z), the expression

s(t)“‘l/zexp{/’t gt )M 2t }

= 0 oxpV (n - '5) -8—:-:-:--)4: +, Nt g(tl)l/adtl}

approaches + 0 as t-—» + 00, and is therefore of higher
order than the constant in the right member of (2.38).
Furthermore,

&' (£)s(t)™ 2 = o(g(t)™V/?),

Therefore, in order to complete the proof we need only show
that

(2.39)  3ltgt) = o(1)a(e)™ el " (r) et



We oan suppose to is 80 large that
n- t 1
g(t) 1/2.,‘,,{/ &(t)) /2“1}

is an inoreasing function of t, since changing to arfects
only the constant in the right member of (2.38). Since

4’“ |"("-1)28(t1)—5/2 + s"(tl)s(tl)‘3/2|dt1 < 0,
0

by the hypothesis in (2.35), we therefore have
[3(t o) g 08(%)""1/2“9{/’ v/2 s(tl)l/edtl}
$ oz(t)"""/"exp[‘/" JCPRAUINENG
where
¢ 8'(ty)

t 1/2 1
Jl(t) = .!D{—‘[/Z g(tl) dtl = (n —2)42 HFITdtl

/
< oxp{- %‘(/z g(ty)" "’atl} :

}

By the hypothesis in (2.33), given any ¢ > 0O, there exists
a to > 0 such that

(¢t

eI G RS
s(t) < ¢ "o

Integrating this relation, we find that

—1/2

g(t) 7/ get, t oty
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and therefore that

11a < g(tl)l/zdtl - .

t-oo t/2

It follows that Jl(t) = 0(1), and thus that J(to,t/a) is
of the order indicated in the right member of (2.39).
Purthermore,

95t g s(t)"‘l/"-xp{/‘ g(tl)l/zdtl}o(l).

This inequality establishes the relation in (2.39), and com-
pletes the proof of Lemma 7.
The proof of Lesma 8 is similar, and is omitted.

3. Principal Root Real and Simple

We shall begin our discussion of the linear equation

(3.1) u'(t) + (ao + a(t))u(t) + (bo + b(t))u(t — w) = O,
in which
(3.2) a(t)—> 0 and b(t) >0 as t-—» 00,

by finding the asymptotic form of a solution corresponding to
the principal characteristic root A, which we shall assume
to be real and simple. The case in which the prinoipal root
is multiple, and that in which there are complex principal
roots, will be taken up in subsequent sections. Since A 1is

a simple root, it satisfies the relations
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(3.3) A+ oy + boo_“)‘ - 0,

(3.4) 1l — bowc-wh/ 0.

The first step in establishing the existence of a solution
associated with the rcot A 1is,as in the case of ordinary
differential equations, the conversion of the differential-
difference equation into an integrel equation. If we write

the equation in (3.1) in the form

(3.5) u'(t) + aou(t) + bou(t - w) a—a(t)u(t) — b(thu(t — w),

we see from the equation in (2.8) that every solution also

satisfies the integral equation

—)

t
(3.6) u(t) = u(ty)k(t — «) - bo({ 0 u(ty k(e — £, - w)dt,
0

_47‘ [t Ju(t)) + bl Ju(s, - W) k(t = ¢ )dt,,
0]

t >t

where t,. 18 arbitrary. Here k(t) 1s the sum of the

0o
residues of ot'h—l(s) at the zeros of h(s). Since the

residue at s = A 1is

QM. .)\t A

(3.7) RTUA)

l - bout-("

we can write
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(3.8) k(t) = c ™ & k) (%),

where kl(t) is the sum of the residues arising from zeros

of h(s) with real parts less than A. Henoce

(3.9)  lky(e)l gee*®, £ 50, k<A

where ¢ 18 a positive constant?. By taking u(t) = O over

the initial interval to-— w ¢ t < to, we find that there is

one solution satisfying the equation
(3.10)  u(t) =-/"" (ty)u(t,) + b(t, u(t -—w)]k(t ~ t,)dt
. tO P’ 1 1 & 1 1 1’
t D> to.

Moreover, since any constant times cAt is a solution of the

homogeneous equation

(3.11) u'(t) + aou(t) + bou(t - ) = 0,

there are solutions of the equation in (3.1) satisfying the

equation

(3.12) u(t) = cet —-{{’t [a(tl)u(tl) + b(tl)u(tl -m)] k(t — tl)dtl.
0
t > tg,

lThroughout this paper, the letter ¢ will denote a
quantity, not necessarily the same in any two appearances,
which is independent of t. Such a symbol has been called a
generic symbol for a constant. On the other hand, the letters
Cy,Ch,+0., CArrying numeriocal subsoripts, denote specific
c&nl ants, whose values remain unschanged throughout any one

section of this paper.




for arbitrary ¢ and to.

At this point we shall make the simplifying assumption
that b(t) = 0. This assumption, which will be dropped in §M,
enables us to present many of the principal features of our
method, while avoiding ocertain difficulties which require a
somewhat more complicated analysis. The integral equation

now takes the form

-A
(3.13) u(t) = ccAt~— co)tbézt [ tla(tl)u(tl)dtl
-oélt a(t) Ju(t, )k (¢ — t,)at, .

It is particularly important to keep these integrals
separate—the one containing the contribution of the principal
root and the other the contribution of all other roots—as
they will be found to have different orders of magnitude. If

we make the assumption that

(3.18) /"% ja(t)l et < o,

we can use (3.13) directly to show that wu(t) must be
asymptotic to a constant times ot However, (3.14) is a
more severe restriction than we wish to impose, and we there-
fore have to replace {3.13) by a more suitable equation. If

we let

(3 *’5) p(t) = -‘{t I(Cl)u(tl)kl(t - tl)dtlo
0



A
2

and differentiate the equation in (3.13), we obtain

(3.16)  w'(t) = Ap(t) = p(t)] ~ c;a(t)u(t) + p (t).

Letting
(3.17) wit) = u(t) — p(t),
this can be put in the form

(3.18) wi(t) « Aw(t) —-ola(t)w(t)<- cla(t)p(t).

The form of this equation suggests that we adopt a technique
useful in discussing the asymptotic behavior of solutions of

the differential equation

(3.19)  wi(t) = [A = oja(t)w(t) + £(t),

in which a(t) approaches zero a8 t —00. One of the most

powerful such technijues is the use of a Liouville trans-

formation of the independent variable, s = s(t), where

(3.20) () =,7% Aty)at,,
0

(3.21) Mt) = A— ola(t).

This converts (3.18) 1i.to the form

(t)p(t)
(3'22) %:' - '(.) v Olg(t)p ’

provided that Xt) £ 0 for t > t,. Every solution of the
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equation in (3.22) satisfies

(3.23)  w(s) = ce® — ol({;" o 1 .(;%1):(;1) ds,,

where s, and t, are related by (3.20). If we now return

to the original variables, we obtain

(3.2 u(t) = ae®(¥) 4 i) = 0 e®(V) /1t TV e e,
t
0

t >ty

The assusmption Xt) £ O for t > to 18 actually unnecessary,
since the equation in (3.24) can be obtained direotly from the
equation in (3.18) by use of an integrating factor, obviating
the need to divide by A(t).

Taking ¢ = 1, we have a solution of the equation in

(3.1) whioh satisfies the integral equation
—s(t, )
R I G e e UVAR I CRIICRLEY
0
t > to.

We shall now show that the asymptotic behavior of wu(t)
can be deduced from (3.25), provided a(t) satisfies

conditions which enable us to apply Lemma 2 or Lemma 3. We

—a(t)

first establish that u(t)e is bounded as t — oo,

Prom (3.15) and (3.9) we have

(el g oot 7" lalt) (e )le tan
0
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and 1f we let

- (tl)
(3.26) m(t) = max lu(t, e [,
toSt St
we get
s(t, )=kt
(L) ¢ cm(t)ok‘([*’ la(t,)|e 1 1dt1
0

or

(.27)  [p(0)] g em(t)e 7 la(ty) -xp{u e
o)

t
1
= °1«{) a(te)dta}dtl.
0

ir /w \a(tl)\ dt, < ®, Lemma 2 at once yields
(3.28)  [p(t)] = m(t)e'%e(1) = m(t)e*(tlo(1).

On the other hand, if the hypctheses of Lemma 3 are satisfled

when f(t) = — cla(t), g(t) = |a(t)l, then
(3.29)  (p(e) g em(t)e®(P)ja(e)).

Prom (3.28), we have

v
0

-—s(t )
¢ 4 1 a(tl)p(tl)dtl\ S cm(t)({’w \a(tl)\dtl
0

and from (3.29) we have
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e °--.(t;l)l(t )p(t,)at,| g em(t) 7 al(t. )dt
o 1/PLE AN S ‘e 1 )4t

In either case, then,

~a(t,)
(330) ey /7%« alepaeydary| g ogale),
0

where the constant c2 is as small as desired i: we choose

t, large enough. Using these results in (3.25), we obtain

j(e)e (B <14 m(t)o(1) + ea(t).

Therefore, by choosing to sufficiently large, we can c3duce
(3.31) lu(t)l ¢ 20%(t) ¢ 2 to

By use of this inequality in (3.25), we can show that

~o(t)

u(t) approaches a constant as t —» ., First of all,

from (3.28) and (3.29) we get, respectively,

s(t)

(3.32) Ip(t)l g ce”’"’o(1)

and

(3.33)  Ip(e) g ce®ja(e)).
In either case,

/we—s(tl )a(tl p(t))de,

o

is absolutely convergent. Therefore, we can write (3.25) in



Lo
&

the form
4 Iy s(t) poo (1)
(3.34) u(t) cye + p(t) + o0 o{o ¢
t 2t

where

-s(t,)
¢y =1- oll{’“ o 1 a(t,)p(t,)at, .
0

If t, is sufficiently large, cg 4 0. It is clear from

(3.34) that

(3.35) u(t) = 030'(t)(1 +0(l)) as t—> 00.

In summary, we have proved the following theorem.

Theorem 1. Suppose that the principal characteristic

root of h(s) = 8 + ay + bod'“' lles at &8 = A and is real

and simple. Let a(t) satisfy one of the following two sets

of hypotheses:

1 /% (a(t)lat < oo;
II I(t)-—# O a8 t —>o00,
a(t) g 0 for tztop

a'(t) « o(a(t)) as t->om,

l(f-l )P(tl )dtln

/maa(t)dt < co,/“ la'(t)idt ¢ o0, 7P ‘%E-S-)Idt < ™.
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S
Then the equation
(3.36) u(t) + (ag + a(t))u(t) + bou(t — ») = 0
has a solution u(t) of the form
(3.37)  u(t) = oe®*)1 4 0(1))
- (1 + o(l))cxp{l\t ~ CIét a(:l)atI]
where clcAt is the residue of e“®ni(s) at s = 4,

(3.38) ¢, = (1 - bge )L,

4. Prinoipal Root Real and Simple (continued)

The key steps in the above method were the .epresentation
of solutions by means of integral operators, as in (3.13),
differentiation of this relation to yield an integro-differen-
tial equation, and the useaf a Liouville transformation to
yield an improved integral operator representation, as in
(3.25). We wish to show now %tnat essentially the same pro-

cedure can be used to discuss the equation

(4.1) u'(t) + (ao + a(t))u(t) + (bo + b(t))u(t — ©) « 0,

where we no longer assume that b(t) = O. As before, we
assune that the principal root 1s real and simple and lies at

8 = A. Instead of (3.13), we now have
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~At
(4.2) u(E) = calt = clc/\t({t « 1 [a(ey dulty)
0

+ bty Ju(t, - u)] dt, +p(t), t>t,,

where

(8.3)  p(t) = -({" 2ty dult)) + (e u(ty = k(8 — ¢, )at,.
0

This time, when we differentiate (4.2), we obtain an integro-

difference-differential equation

(4.4) u'(t) = Abdt) - p(t” -ol[a(t)u(t)
+ b(t)a(t — )| +pr(L), t>t,,

rather than an integro-differential equation. The proper
analogue of the substitution in (3.20) is not immeciately
obvious. This additional complication can be handled in the
following way. It is not unreasonable to suppose that the
solutions of (4.1) will have asyuptotic behavior of the same
general kind as solutions of (3.41), and in particular that
u(t) — u(t - a)c)” will be of lower order of magnitude than

u(t) 1tself. We therefore introduce the function
WA
(8.5) v(t) = u(t) — u(t — Je

and write the equation in (4.4) in the form
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(8.6)  u(t) = Nu(t) = p(e)] - ¢ [alt) + e (e)]u(s)
+ cld—“jx(t)v(t) +p'(t), t> ty:

We again let
(4.7) w(t) = u(t) - p(t),

so that

(8.8)  wi(t) = M(t) = o [alt) + ¢« b(e)] w(t)

+ cli—uik(t)v(t) - cl[a(t) + d—“)b(t)Jp(t),

t >t
We now make the Liouville transformation s = s(t), where

(4.9) s(t) '/c)t Mt )dt,
0

and

(8.30)  At) = A= o [alt) + & D(e)).

We obtain

oli_“ab(t)v(t) a(t) + é_“}b(t)

(L),
ACt) 1 T

(4.01) P -we

provided that XNt) £ 0 for t > t,. Just as in §3, this

leads us to the equation
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(4.12)  u(t) = p(t) + *(t) _ ¢ e’(t’)/t e-.(tl)[a(tl)
+ t
0

+ d—“}L(tl)Jp(tl)dtl

;-S(tl)b(tl)v(tl)dtl, tISiE,.

+ cecs(tn{’t
0
The assumption A(t) £ 0 for t to 1s actually unnecessary,
since the equation in (4.12) can be obtained directly from the
equation in (4.8) by use of an integrating factor without
dividing by A(t).
Bsfore we can estimate the magnitude of u(t), we must
obtain a similar representation of v(t), for it is necessary
to show that v(t) 41s of lower order than u(t). Prom (4.12),

we readily deduce
(8.13)  v(t) = p(t) = p(t — e + q(t)

o t,)
- oja(s),/’ ) )+ TR, ey
0

- cle"(t‘)(/’t e—s(nl) [a(tl) + 0"“)\>(t1)]p(t.l)dt1
t—w

+ oya(t),” e )b(t1 Je(t,)at,

o

+ ozgﬂ(t)& .“'(Cl)b(tl)v(tl)dtl, t >ty +w

where



(8.18)  q(t) = o®(t) _ GS(t=J+al

- 8ty _ _ Nt .
. {1 exp(wA /J_wh(tl)‘t;)}

We now impose conditions on a(t) and b(t) of the type
used in the preceding section. If

I/ ®u(t)at <o, /% p(t) at < o,

the proof in §3 goes through without any change. We therefore
concentrate on the case in which a(t) and b(t) satiefy
the following conditions:

II a(t), p(t)—> 0 as t—> 00;
a(t) £0, b(t) £0, for t to

a'(t) = o(a(t)), b'(t) = o(b(t)) as t—>oo;

S ad(t)at cw, /P jar(t)|at < @, /“,{-@lat < ®;
SO B <, P pr(e)at <o, /% BrdE|dt ¢ @
/T la(e)v(t)lat < @; ana

4.1 11 lt—lwal, 11 bt—-lw_l. 0 1.
(4.15) t:w_li.rt.’_l g_:@—‘Trﬂ_l sls

It follows from (4.15) that

(%.16) &a(tl)dtl - o(a(t)), /t’_: b(t,)at, = o(b(t)), t—> .

s
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It will be very convenient in what follows, whenever we
are using the hypotheses II, to let the symbol ((t) denote a
funotion, not necessarily the same in any two appearances,
which 18 O(la(t + W) + Ib(t + W)|) as t —> . whenever
we are using the hypotheses I, &£(t) denotes a function whioh
is simply o(l). Thus we have, under either svc of hypotheses,

(4.17) (/:_:)a(tl)dtl - €(t), b_ib(tl)dtl - €(t),

and
(4.18)  a(t) = g(t), a(t + ) = £(t), b(t) = €(t),
b(t + ) = E(t).

Note that under the hypotheses II, the product of two such
functions is absolutely integrable over the infinite interval.

In his notation, we have
(4.19)  A(t) = A + &¢t)
and therefore, from (&4.14},
(4.20) (t) - o*(®e(e).
Prom the definition of p(t) and the bound in (3.9), we get
el g 00 /% (lalsy +
0

—kt

+ lt:o(t:1 + w)l)!u(tl)\k 1

dt10



We now let

(8.21)  £(t) = a(t) + o N(t)

and

(4.22)  m(t) = max lu(t, )e Sy
£t St

Then

(4.23) lo(t)] ¢ cm(t)cktoéot El(t1)°‘p{FA - k)t1
o——i«)

= c1/ £(t,) }dtl

where €,(t) 1s a multiple of la(tl + o] o+ o(t; + w) .
Under the hypotheses II, a(t) and b(t) are of constant

sign for t > t,. Hence the function l(t) is differentiable
for t to-— , and satisfies the hypotheses of Lemma 3. It

therefore follows from Lemmna 2 or Lemma 3 that

(8.24)  p(t) = m(e)e"(Me(r), vy k.

From this last result, we also have

)
(h.25) %0 Pe(eple ey g a(e) /% e¥eary, by b,
o

where éz(t) is integrable. Purthermore, by (4.17),
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—s(t
(4.30) \v(t)o"'(‘)\ < ez(t) + c’z(t)/t" ® o 1)|b(c1)||v(t1)|m;1
0

—s(t

VX

where 62(c) denotes a partioular function of the type g(t).

)
1 p(ey )] (v(ey)aty, €2 8o + 3

Letting

(4.31) n(t) = max
£ oSt St

we then obtaln
(.32) (6] g eyt) + Eyleim(e) 1% Exley){blE )
0
+ n(t)eg(t)&(t),

from whish

—s(t)
(4.33) \"L‘%;T:) \ g1+ n(:){é“ E,(%,) Ib(ty )| 4ty

~n(t)E(t), t 2ty +«

If t, 1is sufficiently large, it follows that n(t) g o for

t 2> to, and therefore

(h.38) (o) g ce®Peyle), T2ty

From (4.28) follows
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(8.35)  u(e) goee®®), £yt —w.
Now that the bounds in (4.34) and (4.35) have been
established, the procedure in §3 can be used without essential

change to show that

(5.36)  u(t) = 0,6%)(1 4+ 0(1)) as t —oo.

3

We have therefore proved the foilowing theorem.

Theorem 2. Suppose that the principal root of

h(s) = 8 + L bod'“' lies at 8 = A and is real and simple.

et

(4.37) o) = 1/m'(A) = (1 - bgoe™ N2,
(8.10)  Alt) = A= oy [a(t) + e-“”b(z)] ,

(4.9) s(t) ..4‘ Nt )at,.
0o

Juppose that e(t) and b(t) satisfy one of the following
two sets of hypotheses:

1/ Clalt)lat <o, /' [p(t)lat < oo.
II a(t), >(t)—>0 as t —> o0,
a(t) £ 0, b(t) £ 0, for t 2ty

a'(t) = O(R(t)), b'(t) = O(b(t)) as t—wo,



‘/)oo aa(t)dt < oo,/wla'(t)[dt < ao,/. '%E-Slidt < o0,
/°° be(t)a: < oo,/)oo(b'(t”dt < oo,/°° |§{-g—lldt < o,

/7% ja(e)b(t)|at < oo,

l(t—[wl b(t — Lo
S R L BRI Rt

lim

Then the equation

(4 1) u'(t) + (ao + a(t))u(t) + (bo + b(t))u(t — <) = 0

has a solution u(t) of the form

(8.33)  u(t) = (V)1 4 0(1)) as t .

5. _Asymptotic Expansions
In the two preceding sectiuns, we have studied the

asymptotic behavior of a solution of the differential-difference

equation with "asymptotically oconstant" coefficients,

(5.1) u'(t) + (ao + a(t))u(t) + (bo + b(t))u(t — ) =0,

(5.2) a(t)—>0, bd(t)-->0, as t > o.

In this section, we shall suppose that a(t) and b(t) have
asymptotic power series expansions, and shall show that the

solution of (5.1) associated with the principal characteristie
root has a corresponding asymptotic expansion. The theorem to

be proved follows.
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Suppose that the principal root of

h(s) = 8 + a

simple.
power series expansions

o) 0

(5.3)
N=l
and that a'(t), b'(t), a"(t),

asymptotic power series expansions.

+be® 1ies at

and b"(t)

8 «A and is real and

Suppose that a(t) and b(t) have asymptotic

e - iad -1
a(t) ~ Lat, b(t) ~ Zbt as t-—>0,

N=l

exist and have

Then there exists a

solution u(t)

of the equation in (5.1) with an asy™, *otie

exp nsion of the form

)
(5.4) u(t) ~ o'(t) I %t—n a8 t— o,
n=0
where each u_ 18 a oonstant, u, #$ 0, aid s(t) 1is de-
fined as in Q4. Consequently,
00
(5.5) u(t) ~ My T suwt™ as t—> o0,
n ——
n=0
where each uy is a constant, uy A 0, and where
-—COA
3+ ble
(5.6) P =« — _w] .
l - bowe
Proof. By hypothesis, a'(t), b'(t), a"(t), and b"(t)

have asymptotic power series expansions, which must by (5.3)

have the form
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1 2 1 2

5.7)  a(t)m b —B e, br{t) =g - B .,
(5.7) (t) =)= -l

a"(t)~ t—g b e, ()~ -~ __§ S
3 e R

It 18 clear that a(t) and b(t) satisfy the hypotheses of

Theorem 2. Hence
(5.8)  u(t) = «**)1 4 0(1)) as t->co,
where

(5.9) s(t) =‘{" Aty et ,
0

(5.10)  At) =2 — o [alt) + «o(t)].

If we write

8y b1
(5-11) &(C) = + az(t)t b(t) i + bz(t))

we have
s(t) = A(t —t.) - x~0/7t £ 4 a (t,) + c-“)b (t,)]|dt
0] t 1 2' "1 21 1°

0

Hence
e -n

(5.12) s(t) - M —rlogt ~ Z8t",
n=0

and
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@®
(5.13)  o®(t) _ T 5 5 tM,
n=¢

where the s are constants and s, £ 0. It is therefore
clear that (5.4) and (5.5) are equivalent results.

We shall use an inductive method to establish the
asymptotic expansion in (5.4). Pirst of all, we shall show
that

(5.18)  u(t) = .‘(”[uo +o(t™2)] a8 t—oo.

Prom (4.28) and (4.34), we have

(5.15)  [p(t)| sc-"”t"l.
(5.16)  [v(t)| g co®(t)e™L,
Therefore,
U<;°° e-’(tl)[a(tl) + d‘“}b(cl)]p(tl)dtl
and
0{7°° c_s(tl)b(tl)v(tl)dtl

0

are absolutely convergent, and the integral equation in (4,12)

takes the form
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(5.17) u(t) = 030'“) + p(t) + cle'(t){m e—.(tl) P(tl)

+ o—(";‘b(tl)Jp(tl)dt1

_ 020'(t )(4“ o—.(tl)b(tl)v(tl)dtl,

where

(5.18) c, = 1— clo/90° Q-‘(tl)[é + d-“gb]pdtl

3
o

—s(t,)
+ cz({,w e 1 bvdt, .
0

Ir to is suffiociently large, c3 A Q. Since the two
integrals in (5.17) are essily seen to be O(t—l), by

(5.15) and (5.16), it 18 clear that
(5.19) u(t) = e'(t)[c2 + O(t—l)],

which proves (5.14).

We propose to use (5.14) to obtain more precise esti-
mates of p and v than those in (5.15) and (5.16). Using
(5.11) and (5.14), we obtain
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(5.20)  p(t) = — aluO‘{: o'(t )“1 k(& = t))dt,
- bluozot os(tl—w)t'l'lkl(t — t,)at)
+ o(%(’)t c.(tl)t_1'2kl(t - t,)at, ).
Since
(5.21) iy (t)] g ce*® (k< A),

the last term in (5.20) 1is

(5.22) 0 kt(/}t B(t Htl —1-2“ ) O(Q.(t)t_2),

by Lemma 3. Tc estimate the first integral in (5.20), we

write

s(t,) _
(5.23) ‘{’t e tllkl(t - tl)dtl =J) + J2,

where
vy 8(%) )
(5.24) J -0{’ e ]k (b — ty)dty,
0
¢ a(t
(5.25) Jy = t/2 ~iy (t - tl)dtl.

Using (5.21), (5.13), and Lemma 3, we get
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(5.26) |3 g2 exp{-gt : s(%)} - o(e®(t)FHt))

for some £ > 0. On the other hand,
l(b—t )

(5.21) 9, /t/aT_'E_kl(tl)dtl
'(‘)/:/2 — [s(t)rs(t-t, ) B

1
Using (5.12), we find that

(5.28)  s(t) —8(t —t;) =At, +r 1n-£—}-£-;—rl(t,tl),

where

t
(5.29) lrl(t,tl)i S f.(f-{ 29k 0<% <t

Therefore

—A 6"
(5.30) oxp{l(t —t)) - -(t)} -e 1-¢) expry(t,t)).

From this it is easy to see that if 0 t, ¢ t/2,
xp{-(t - tl) - s(c)} is bounded as t —>® . In fact,

Atl tl -1 \
(5.31) e {1 - 'E—) oxp{l(t - tl) —8(t)y =1+ ra(t,tl)

where
ctl t
(5.32)  jrp(tit))| § <%= 0g % 3

Therefore
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oY) hio My
(5.33) J, / k(¢ Jo at,
-
:(t) o(/" /2 ky(t))t;0 tlatl).
Since ‘kl(tl)\ S c.+ktl'
oB8(t) —At

- —*r—/ ky(t)e 1dtl + o(e®(t) 2y,

(5.34) Jy = o,"e”(t')t“1 + O(QS(t)f_Q).

The equations in (5.26) and (5.34) provide an estimate of the
first integral in (5.20), and the second can be treated in

the same way. We therefore have
(5.35) p(t) = e'“)[;-l- + O(t“a)}

shere p, 18 a constant. It 18 clear from (4.18) and (5.12)
that q(t) has an asymptotic expansion of the form
(5.36) a(t) ~e*t) T Lt
N=1
where the q_ ~ are coastants. The relations (5.11), (5.16),

(5.35), and (5.36) can now be used in (4.13) to yleld an

improvad estimate for v(t). In fact,
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o )[ + c-“)b]pdtl

q(:)/““
= csq(t) - q(t)/ s 1)[ o—")b] pat,

- (%) %56‘1 + ot~ )]

Also

a(c)/t —‘(tl [ + e_“)b]pdtl

- 0(e*(®) /% T%ar)) - o(e®(t)¢2),

The other integrals in (4.13) are handled similarly, enadling
us to deduce from (5.35) and (5.36) that

(5.37) v(t) = ‘.(t)[;'g + o(t—z)] ’

where Yo is a constant.

Prom the above discussion, it is seen that a lknowledge
of the relation (5.13) enables us to improve the bounds (5.15)
and (5.16) on p and v 80 as to yleld the estimates (5.35)
and (5.37). On the other hand, (5.35) and (5.37) can now be
inserted into (5.17) to improve the estimate of u. Por

example,
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‘{’“’ o—.(tl)b(tl)v(tl)dtl n({’“’ [%-;9 + O(tI3):]dt1
1

b,v
= —%—9 + 0(€'a).

Clearly we now get

(5.38) u(t) = e'(t)[uo + -:—l- + O(t—a)] as t— 00.

It should now be evident that this process ocan be continued
indefinitely. Each estimate of u enables us to obtain im~
proved estimates of p and vl, and these enable us to
obtain an improved estimate of u. Consequently u(t) has a
full asymptotic expansion of the form (5.4), or, equivalently.
of the form (5.5).

Once we have established the existence of an asymptotic
relation of the form in (5.5), the values of the coefficients
wy and of the constant r can most easily be found for any
particular equation (5.1) by subatituting in (5.1) and
equating coefficients of like powers of ¢t.

6. Other Real, Simple Roots

We now wish to show that, associated with any real,

simple characteristic root A of

(6.1) u'(t) + (ao + a(t))u(t) + (b0 + b(t))u(t — w) = 0,

11t 10 necessary to carry out the expansions in (5.28)

and (5.31) to a greater number of terms in order to do this,
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not necessarily the principal root, there is a solution u(t)
having the asymptotic form given by Theorem 2 or Theorem 3.
As 18 true in the theory of ordinary differential equations,
it 1s necessary in this situation somehow to suppress the
influence of the roots having real parts greater than A,
which otherwise would dominate. We again start from the

integral equation

¢
u(t) = u(tglk(t — «) - bo‘{_iu(tl)k(t — &, — wdt,
0

'b{ot (a(t) Juley) + () Ju(t, - J]k(t = t,)at,,
0
t >ty

The solution which 18 zero for t, —<«wt (t, therefore

satisfies
== At -w - dt,,
u(t) U{Z F(°1)“(°1) + bt Ju(t, )]k(c t, Jat,
t >ty

and the solution which is equal to co)‘t for to -t to

satisfies

(6.2) u(t) = ce?t -‘/t)t [a(tl)u(tl)
0

+ bty Ju(t, —-gﬂ]k(t - t,)at,.

This time we write
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(6.3) k(t) = 0107\t + kl(t) + ke(t),

where kz(t) contains the finite number of residues of
.t.h-l(l) at zeros of h(s) with real parts greater than
A .« We have

(6.4) ey (t) g 0, 30, k<A,

el,’t.

(6.5) (X g oe®, t30, £>A

Therefore

(6.6)  u(t) = ce’t — clc"‘/t” a(t) Ju(e))
0o

=At

+ b(tl)u(%:1 - w)]o 1

dt]

=% Bleu(E) 4 p(eule) — )]k (8 — b ey
0
_‘{;t [‘("1)“(‘1) + bty Ju(t, - u)] k(t — t,)at,.

Each term in ka(t) is a solution of the equation

(6.7) u'(t) + aou(t) + bou(t - @) = 0,

Hence

(6.8) ‘{mo fa(ty Juley) + vty ule, - @) kp(t — ¢ )at,
0
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will also be a solution of the equation in (6.7), provided
the integral converges. Assuming this to be true, addition

0. this integral to the right member of (6.6) produces a nevw
integral equation

At At t
60 t - — t t
(6.9) u(t) 02. cl. ‘/t; [‘( 1)“( 1)
_kl
+ b(t, Ju(t, - u)]. at, + p(t),
t > to,
where P is ardbitrary and

(6.10)  p(t) = -/t” [a(ty Juley ) + b(egJu(t; — )]ky(t = ¢ )at;
0

+(4>oo [‘(‘1)“(‘1) + bt u(t, - w)] ko(t - ¢, )at, .

The solution of (6.9) satisfies

u(t) = c:,‘,c;\t +4°° [a(tl)u(tl)
o

+ b(t, u(t, - u)] kot — t,)at,,
to— o<t by
If we differentiate the equation in (6.9), we obtain
ur(t) = Au(t) = p(e)] = op[alt)u(t) + b(t)u(t - )]

+ p'(t).
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Letting
(6.11)  w(t) = u(t) - p(t),

(6.12) v(t) = u(t) — u(t - w)oM,
we get

wi(t) = Athu(t) + o6 Mp(t)v(t) — o f(t)p(L),

where
(6.13)  £(t) = a(t) + ¢ “N(¢),

(6.18)  A(t) = A —o [a(t) + «Mo(e)].

As in 9“, we let 8 = s(t), where

(6.15)  s(t) .U{9t Nt,)ae,,
0

and obtain the equations

Mt l"0) (o o]
60 6 L
(6.16a) u(t) = e +‘{’ [a(tl)u(tl)

0

+ bty Ju(t) —w)] k(t = t,)dt,,

to—wststo,
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(6.16b) u(t) = p(t) + o8(t) _ olo'(t)[t cﬂ(tl)t(tl)p(tl)dtl
o

+ ::20'(”47t o—.(tl)b(tl)v(tl)dtl, t 2 t,.
(o)

Prom (6.16), follows
wA
(6.17)  v(t) = p(t) = p(t — w)e  + q(t)

—s(t,)
- clq(t)‘[Mo A5 £(t, )p(t, Jae,
0

- 01..(”‘4)_2, 0--.(‘;1)t'(1:1)p(t1)dt:1

—l(tl)

+ c2q(t)‘{ob—“ o b(t‘.].)v(t'.l)dt;1

-(t
» 020'(t)(/b7_z . ( l)b(tl)v(tl)dtl, £ty +

where

(6.18) q(t) = 8(t) _ gs(t—dsun

It 18, of course, not clear a priori that (6.1) has a solution
for which the integral in (6.8) converges o~ which satisfies
the integral equation in (6.9) and (6.16). We therefore have
recourse to the method of successive approximations. By this
method we shall establish the existence of a solution of
(6.16) whioch 1is also a solution of (6.9). The equatiom in
(6.9) has been so arrenged that this solution will be found
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to be of order oAt, roughly, and therefore the integral in

(6.8) will be absolutely convergent and the solution of (6.9)
will also be a solution of (6.1). We define successive

approximations as follows:

(6.19) uo(t) - o'(t), t 2t —w

A t—t
(6.20a) %H(t) - e ( O) +‘{’°° [a(tl)un(tl)
o

+ bty Ju (t) - w)]kz(t — t,)at,,
to -0t to,

(6.200) (8] = p (t) + #%(E) _ g g8(t) pt ;7 l)f(tl)pn(tl)dtl
t
0

+ 020'(‘:)({” o—c(tl)b(tl)vn(tl)dtl, t 2 to
0

wherein we use the abbreviations

(6:21)  pp(e) = —/% [aledug(ty) « bleguy(e) = W) k(e = v )ay
Y
07 e dunle) ¢ BleJup by = G]ieg(t — ¢ )aey,

t 2 to

(6.22) vn(t) - %(c) - %(t -u)c“"‘, t 2ty
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Of course, it will be necessary to show that all the infinite
integrals in these definitions oonverge for each n. PFroa
(6.17) 1t 13 clear that

(6.23) vy (t) =p (t) —p (t - wye”t 4 a(t)

t-w0(t)
— clq(t)‘{ A rp dt,
0

We assume that a(t) and b(t) satisfy the hypotheses I or
II of Theorem 2.

There i8s a constant 03 > 1 s8such that

(6.24) o)‘(b-to) 24 o3o°(t), tp—wgt gty

We shall now prove that the integrals in (6.20a) and (6.21)

converge for every n, and moreover that

(6.25)  hu(6)l g 20g0%(%), t e - nao01,2,...,

(6.26)  Ivy(v) g 20,5, (t)e®(®), £y e, nao0,2,...,

where el(t) 1s a certain function of the type c(t). Prom



P-1470
8-28-58
-5b~

(6.19), the inequality in (6.25) 1s valid for n = O. Also

(6.27)  [vg(t)) = la(t)] = £(t)e®(%),

Hence the inequality in (6.26) is valid for n = 0 1if we
shoose Ez(t) 2 ﬁq(t)o“"(t)\. We now proceed by induction.
Suppose that the integrals in (6.20a) and (6.21) have been
shown to converge for n = 0,1,...,m — 1 and that the
inequalities in (6.25) and (6.26) have been shown to be
valid for n = 0,1,...,m. Under the hypotheses of Theorem 2,

we can use Lemma 2 or Lemma 3 to show that

(6.28) |/ {.(cl).a(tl) + b(t,)e
0

< oekt[t {,(tl)oxp{()\ - k)t - 01({7 ‘1 f(t. %dtl
0] 0

a(t -
)kl(t -t )dt'

< % o'(t’)ég(t), t 2ty

Similarly, using Lemma 4 or Lemmsa 5,

(6.29) (/’ {a(t.

s(t,—w

s(t 1

1)

+ b(tl) )}kz(t -ty

$ 3 1 o8(t), Jt), 2t

It therefore follows from (6.25) with n = m that the inte-

grals in (6.20a) and (6.21) canverge for n = m. Moreover,

s(t)

by using the bound (um(t)\ S 2030 and the inequalities

in (6.268) and (6.29), we find that



(6.30)  Ipg(t)| g 2050%(P)E,(0), ¢ty ¢,
Also, from (6.20a) we get, using the inequality in (6.29),

g1 (%)) g o}‘b_to) B 030'(”52(%), tg—wgt gt
Using the inequality in (6.24), this ylelds

(6.31) lug, 1 (81 g 20,0 y tgmwgt gty

since we can take t, suffioclently large that Ea(t.o) < 1.
Prom the inequality in (6.30), we deduce that

(6.32)

¢ —8(ty)
014 e t‘p-dt1 S Oy tzto,
0

where cy is as small as we please if to is suffiociently
large, and
—s(t

\
t 1
cl‘é.w. fpdt | S E5(t), €2ty + «.

(6.33)

Using the inequalities in (6.30) and (6.32) and the inequality

)vm(t)l < 20381(t)0'(t) in (6.20b), we get

(e g 2030'(t’)62(g) . o2t) c“el(t:)

+ 2|c21 030'(")‘4"” Ib(tl)\il(tl)dtl, t 2 to
0

If t is 80 large that

0
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(6.34)  26,(t) + oao31 + 2lay| /t"” (e ) (t)dE, <1, €2 tg,
0

it follows that

(6.35) |un+l(t)| g 2c3e 2 %o

Pinally, if we use the various inequaliti.s already obtained,

we get
(8] g 2500 ()Ey(e) o 2o 0™ eB (et
e alt)e®(®) e ee)e®t) 4o (r)e®(®)
+ 2o, 03[:(1:)0'(”‘{:” Pty )&t )dt,
+ 2], 030'(‘;)4: e I E (L )dty, &3t + w
and

g () g Mg (601 + o a1 (6 = o)l

$ ko3e'(t), to St Sty +t

By choice of El(t) and t.,, and use of (8.17), we deduce

that

(6.36) |v-+l(t)| < 20361(t)o'(t)' t >ty

This completes the inductive proof of the inequalities in

(6.25) and (6.26).
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Next, we prove that the sequence iun(t)} converges as
n->0o, uiformly in any finite interval in which
t2 to — w. In order to do this, we shall show that

(6.37)  lupyyit) — wy(e)l g @2 e8(8) oy 0 o,
na 0,1,2,...,
and

(6.38) vy, (6) = vo(e) g 2™2e € (£)eF) v 5 ¢,

n-0,1,2,... .

Since the proof is by induction, and very similar to that
Just given, we shall omit {t.
Prom (6.37) 1t 1s clear that the series

00
(6.39) ni:O[uml(t) ~ up(®))

is absolutely and uniformly convergent for t 1in any finite

interval in which ¢ 2 to - w, Let

6.4 - , -
(6.40)  u(t) xlxi:m w(t), t2t;—

6.4 - , :
(6.41) v(t) ;5:::00 vn(t) t 2t

Prom the inequalities in (6.25) and (6.26), we have

(6.42) lu(t)| ¢ 2030'(t), t2t—w
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(6.43)  Iv(t)l ¢ zc3el(t).'(‘), t )t

With the aid of these bounds, it is easlly seen that the

integral

(6.8) /t;“ [a(tl)u(tl) + bty Ju(ty - w)] ko(t — t))dt,
is absolutely oconvergent. We ocan therefore define p(t) as
in (6.10). The uniform convergence of the sequence {un(t)}
to u(t) enavles us to deduce that u(t) satisfies the
equations in (6.16). Thus u(t) is continuous for
t > ty —« and satisfies the equation in (6.9) for t ty:
Since the integral in (6.8) is absolutely convergent, u(t)
is also a solution of the differential-difference equation
in (6.1).

By using the bounds in (6.42) and (6.43), we can in the
usual way deduce the asymptotic form of u(t) from the inte-

gral equation in (6.16). We write

(6.48)  u(t) = °u'.(t) S °1°'(t)0{7°° ._'(tl) . e
- °20°(‘)‘/t’°° o—.(tl)bvdtlo
where
(6.45 ) cy « 1 - cloéooo cﬁ.(tl)[h ) d—ujb]pdtl
o)
+ °eu<)°° c—‘(tl)bvdtl,

bdet

1
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and obtain

(6.46) u(t) = ouo'(t)(l +0{(l)) as t -—>o00.

Furthermore, if a(t) and b(t) have asymptotic power

series expansions,

@® oo
(6.47) a(t) - zat™, b(t) ~ IbtT,

n=1 n=1
and if a'(t), b'(t), a"(t), and Db"(t) exist and have
asymptotic power series expansions, then the procedure of §5
shows that u(t) has an asymptotio expansion. In fact, the
equation in (6.16b) 1is identical in form with the equation in
(4.12), and the only difference in the discussion is caused
by the different fewm of p(t) as given by (6.10). It is
only necessary to add to the previous arguments an analysis
of the integral

J -/t’°° [alt)u(t)) + (e Ju(t) —w)]iy(t — ¢y )ae,.

For example, given that

u(t) - o'(‘)[u «o(t™h],

0

we have
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(o<} —l
I = '1“0({? ° t) k (t — tl)dtl
g(t -y
(o o} 1l —1
+ bl“Od: . ka(t 1)dt1

t
4 o(/t7°° c.( l)t'l""ua(t — t)dt) ).

The last term here 1s easily seen to be O(o'(t)/tz). To

estimate the first integral, we write

o %t) 0 ea(t’-t :

4 ) t) k2(t - cl)dt / (cl)dt1
(t) t)-s(t—t,) t, -1
. /0 Lo l] - £2) kp(t)at,

As in §5, this yields

- l(t )
d
4 ¢ tl 1 (t tl) t
o(t) —Ac o8(t)
—‘E""/ 2k2(t2)dt2 + o{Tm—).

t

The infinite integral 18 convergent because \k2(t)| < co&,

{ > A. 1t is thus clear that the entire discussion in §5 can
be carried through Just as before.
The results of this section can be summarized by saying

that Theorems 2 and 3 remain valid if A is any real, simple

characteristic root, not necessarily ths principal root.
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7. Complex Roots of Multiplicity One

We shall now show how to find the asymptotic form of a
solution associated with any simple root, real or complex, of

the equation

(7.1) u'(t) + (ao + a(t))u(t) + (bo + b(t))u(t — w) = 0.

Let the root in question be /A, and let

(7'2) °1 - 1/}"('\):
(7.3)  A(£) = Aoy [a(e) + b(8)e™ ],

(7.4) s(t) -04?‘ Aty et .
0

The results of §4 and §6 suggest that there will be a solu-

tion of the form
u(t) NJO.(t).

However, there 1s an additional difficulty in showing this
directly by the method used in {6, because Lemmas 3 and 5

cannot be applied to an integral of the form

oM A HOR /1 age) Juley) + b(ey)uley — o) (e Ais)tigy,

which can now appear in the expression for p(t) since there
are other roots with real part equal to the real part of M.
The simplest way to get around this difficulty is to make the

substitution
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(7.5)  w(t) - 2 (V)xey.
The equation in (7.1) then takes the form
(7.6) x'(t) + [ao + a(t) + /\(t)]x(t)

+ [bo + bt ) Ot F8(t) (v oy . o.
Letting
(7.7) £(t) = a(t) + b(t)e
we have
(7.8) B(t — ) — 8(t) = — X + cqof(t) - %olwzf'(t) + 0(r"(v)),
and

(7.9) olt—He(t) e"“’)[l + cpof(t) — 30700 (8) + o(£7(t))] .

The equation in (7.6) therefore can be written

(7.10)  x'(t) + [ao +a(t) + Mt)}x(c) + e“"[bo + o(:)]{ 1+ cyof(t)

— 3o 2%r(8) + 0(£"(2))]x(t = ©) - 0.

The characteristic equation for (7.10) 1is

(7.11) 8+ N+ ag e boo"“’“’*’*) -0,

fiom which we sxe that the tranasformation in (7.5) has trans-



lated all roots by the amcunt -~ A, In rarticular, the root
in which we are interested now lies at 8 = O, PFurthermore,

—u)
since ol(l — bgyoe ) = 1,

(7.12) ag + a(t) + Nt) + ‘—“)[PO + b(t)J[l + crot(t)

~ 36,0201 (8) + o(£"(¢))]

%‘— u)b

- “)ciub(t)r(t) - clwzf'(t) + O(bf' + £").

0

We shall denote a function of the type in (7.12) by the symbol
gQ(t), assuning the hypotheses of §a and §6 are satisfied.

Let us therefore consider an equation of the form
(7.13) u'(t) + (ao + a(t))u(t) +(bo + b(t))u(t — <) = O,

having a root at 8 = 0O and complex coefficients, such that

+b. =0 and such that a(t) + b(t) = £2(t), as in (7.12).

8 * ®0
We shall show that there is a solution whichk is asymptotically

zonstant. The kernel function associated with (7.13) now has

the form

(7.14) k(t) = 2yt C0 + kl(t) + kz(t),
where
(7.15) I "F 0] " T=% ¢

and
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(7.16)  Jiy(t) g ce*, x <o,

(1a7)  lyle)l g eeft, £,

and where 0201/”t represents the contribution of the other
root lying on the imaginary axis. (For higher order equations,
there can be more than one othe:r, but for an equation of the
form in (7.13), there are at most two roots on any vertical
line, both of them simple.) As before, we have solutions

which satiafy

(7.18) u(t) = ¢ + ce At —O<Ot P(tl)u(tl)
0

+ bt Ju(t, - o;]k(t —ty)dty, t oyt

Assuming that the integrals

(7.19) K“ la(tyulty) + bty Jult; —w)ldt,
0

and

(7.20) ‘{’m la(e Ju(t ) + bt Ju(t, — ) [yl — ¢ )lat)
0

are convergent, we can replace the integral equation in

(7.18) by
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(7.21) u(t) = 1 -34?‘ P(tl)u(tl) + b{tgu(t, - u#]kl(t<— t,)at,
0

+¢[® [a(tl)u(tl) + b(tl)u(tl - m)] ka(t, e tl)dtl

+ cloévoo[g(tl)u(cl) + b(tl)u(tl-— aﬁldtl

—14t
+ c2o%ﬂt0<o°°|}(tl)u(tl) + b(tl)u(t1 —tu)]. # ldtl,

t 2 to.
The corresponding equation for to -—wgtg tO is

(7.22) u(t)

1 +U<Z°° P(tl)u(tl) + bt u(t, -.a»]kz(t- t,)at,
3 clo<7°°[g(tl)u(tl) + v(e) Jult, -gﬁ}dtl
0

+ cze%’tyéaoo[g(tl)u(tl) + b(tl)u(t1 —<»)]e

If we put

(7.23) v(t) = u(t) — u(t =),

we can write

(7.24) a(t)u(t) + b(t)u(t — ©) = i.(c) + b(t)]u(t) — b(t)v(t),

t 2 T-o.
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We now define iterates un(t), n=20,1,2,..., as

follows:

(7.25)

ug(t) = 1, 2ty -

(7.26) w o (t) =1 +‘[°° [a(tl)%(tl) + b(tl)un(tl-w)Jka(t,—tl)dtl
0

+ cl[4;°° [a.(cl)un(tl) + (6w (8)-v)]at,
Lt poo “1x%y
+ o e ([ [a(tl)un(tl) + 5(t) Ju (t—w)) e dt,,
0

(7.27)  w,(t) =1 -[‘[a(tl)un(tl) + 06w (8=<) iy (-t )ae,
0

+ t)m’:‘(tl)“n(‘l) + b(tl)%(tl—u)Jke(‘;«—tl )at,

+ cl(/t°°° @t u (t)) + b(ty Juy (t)—]at,

—iut
+ c2.§//f-<{°° [a(tl)un(tl) + b(tl)un(tl-—w)]o w ldtl,

tzto.

We shall now show that there is a function El(t) such that

(7.28)

|\.\n(t)\ < 2, 2%~ n=0,1,2...



(7.29) v (t)l ¢ 25(t), t 2ty n=0,1,2,...,

and such that the infinite integrals in (7.26) and (7.27)
converge. From the definition in (7.25), it 1is clear that
the inequalities in (7.28) and (7.29) are valid for n = 0.
We now proceed Ly induction. Suppose that the integrals in
(7.20) and (7.27) have been shown to be convergent for
neO0,l,...,u—1, end thet the inequalities in (7.28) and
(7.29) have been shown to bs valid for n = 0,1,...,m.

Then from (7.24) we find that
(7.30) la(t)u () + b(t)u (t — )| ¢ 2@m(t) + b(t)]

+ 2[b(t)] £, (t),

(7.32) [alehug(e) + be)u (v — )] g £5(8), ¢ 2t

where Ei2(t) denotes the produot of two functions of the
type ¢€(t). It follows that the integrals are convergent for

n = m, Moreover, by Lemma 2 or J,

(7.32) 4‘ a(tyu (t)) + bleJu (t] —w,f i (t = t,) at)

g o /T LB )e lar (b)), (k< o0)

and by Lemma 4 or 5,
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(7.33) /t"" [a(e) Jug(ey) + vt (e, — )l fiy(t — ¢))lat)
Al
< o[t({’” e%(t)e lat, g e(t) (£> o).

Also, by Lemma 6,

(7.34) oy’t[“ [n(tl)un(tl) + b(tl)u.(tl - oo)] c—wldtl

= &(t)o(1).
Finally,
(7.35) /t’°° Ja(ey up(ty) + bty Ju (b — w)lat;
.l/t7°° e2(t))at, = o(1).
It is therefore clear from the definitions in (7.26) and
(7.27) that
(7.36) (ugyr(t)] €2, €3 t5—

provided t is sufficiently large. Moreover, if we use

0
the abbreviation

-n(t) N a(t)un(t) + b(t)u_(c - ),

we have
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(7:37) vy (8) = =,/ 7% w(ty )i (6 — ¢y )ty
0

t—w
*,{’o Wt )iy (8 = w—ty)at,

+4°° w () )ko(t — t))at,

(o <]
- - 'n(tl)k2(t: - - t:l)dt1

¥ czc§“t0{7°° nn(tl);-gbtldtl

—1ut
- caoir“(tf"‘))‘é_: '-(tl). ¥ 1dt1

t
-c w (t,)dat t >t — w
1/|un1 1“2’

The first six integrals in the right member of (7.37) are
all £(t), by the inequalities in (7.32), (7.33), and (7.34).
The last is

- °1z/;i w (t))dt) = — 0w (£ —5) = o(£)(t)).

(0 << o).

It follows that if él(t) is properliy chosen and to is
sufficiently large,

(vml(t)l < 261(t), t 2ty +
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Since
(Va2 (O g 11 (0D + lup (6 — o) &,
oSt Sty— 9
we have
(7.38) (Va2 (8)] g 2(61(%)), © 3 t,.

This completes the inductive proof of the relations in (7.28)
and (7.29).

The rest of the proof is very similar to that in §6, and
we shall omit the details. The sequence {un(t)} convergss

uniformly to a limit function u(t) for which

fu(t)l g2, ¢ 2t — "
Iv(t)) g 25(c), ¢ ¢,

This limit function satisfies the integral equations in (7.21)
and (7.22). Since

a(t)u(t) + b(t)u(t —w) = [a(t) + b(c)] u(t)
- b(t)v(t) = £(¢)%,

the infinite integrals in (,.19) and (7.20) are convergent,
and therefore u(t) 1s a solution of the equation in (7.13).

From the equation in (7.21), it 1s evident that
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u(t) =1 + 0(1). Moreover, if
=1 - = —N
a(t) ~ zat, b(t) ~ Zbt™, a +b =0,

Nel n=l

we can in the usual way show from (7.21) that

= -

u(t) ~ = u t

n=0
Taking account of the preliminary transformation in (7.5),
we see that we have proved the following theorems, which
include Theorems 2 and 3 as special caaes.

Theorem 4. Let A be any simple root of the

characteristic function h(s) = 8 + a, + bge . t

—wA -1
)

’

¢y = LAN(A)-(I-b&w
Me) = A — oy falt) + & b(t)],

s(t) -/‘ At )at, .
o

Suppose that a(t) and b(t) satisfy one of the following

two sets of‘glpothQIOI:

I /°°|a(t)|dc<oo, /oolb(t)ldt<oo;

4 a(t) and b(t) tend monotonically to zero as t — 00,

a'(t) - o(a(t)), b'(t) = o(b(t)) as t —>o0,



2b0s
-7
S ® aBeat <o, /% ar(e)|at < @,

S < o,
J® vit)a <o, /P b (8)]ak < oo,

/= o < =
/" ® la(t)p(t)(at < oo,

1im “"‘ =1, 1lim Eﬁﬁéﬁ-l, 0g g 1.

t—»>00 t—-00

Then the equation

u'(t) + (ao + a(t))u(t) + (bo + b(t))u(t —w) = 0

has a solution of the form

u(t) = o'(t)(l +0(l)) as t—> o0.

Theorem 5, Let A be any simple root of the

characteristic function h(s) = s + a, + bod_k'. Suppose
that a(t) and b(t) have asymptotic power series

ognanlions

s -n % -
a(t) ~ Zat™, b(t) ~ Z b tT,
n=1 n=1

and that a'(t), b'(t), a"(t), and Db"(t) exist and have

asymptotic power series expansions. Then there exists a
solution ™(t) of the equation
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u'(t) + (ao + a(t))u(t) + (bo + b(t))u(t =) = 0

with an asymptotic expansion of the form

@
Attr T
n=0

u(t)~ e

e

where each W, is a constant, ug # 0, and

a + bld-‘A
r-—-———-——:m.

8. Multiple Characteristic Roots

We now wish to examine the nature of a solution corres-

ponding to a multiple root of the equation

(8.1) u'(t) + (ao + a(t))u(t) + (bo - b(t))u(t —w) = 0,

or more generally, the nature of a solution of a vestor-
matrix equation of the form

(8.2) x'(t) = .;'Ai(t)x(c -

’1):
1i=0

where the corresponding characteristic equation has a
multiple root. It turns out, as might be expected from a
knowledge of the corresponding situation for ordinary
differential equations, that the expansion of a solution
corresponding to a multiple root is not as simple as that of
a solution corresponding to a simple root. An idea of what
to expeot can be obtained by consulting the paper of Yates,



who showed that a solution of the equation with linear

coefficients,

m
(8.3) x'(t) = 1;-:o(u1 + Bi)x(c - c.)i),

corresponding to a double root A, takes one of the forms
(8.4) x(t) = o:’.“l/a(l +0(1)),

x(t) = ctT(1 + o(1)) + e,

x(t) = ¢ log t(1 + o(1)) + c,

where r and a are constants depending on the equation in
(8.3), and whare the c's are constant vectors.

Results of a similar type occur in the theory of
ordinary differential equations. For example, it is lmownl

that the equation
(8.5) u'(t) + a(t)u(t) = 0
in which

(8.6) a(t)mn?lant—n (a, #0),

has two solutions of the form

(8.7) u(t) ~ tl/“e“tl/a T unc"n/z,
n=0

1
Cf. Erdelyi, Asymptotic Expansions, Dover Publicaticns,
IYIO., 1956' p' 63'
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The asymptotic series in (8.7) contains powers of t_1/2

rather than powers of t.

We begin by showing how the method of the Liouiville

transformation can be used in ascertaining the asymptotioc

form of sclutions of ordinary differential equations with
multiple characteristic roots, since we propose to show in
later sections that the same technique is of great usefulness
in discussing differential-difference equations. L3{ us
therefore consider a second order differential equation, with
asymptotically constant coefficients, for which the
characteristic equation has a real double ro0ot. Such an

equation has the fom

2

(8.8) u"(t) - 2[; + al(t)]u'(t) + [. + az(t)]u(t) - 0,

where we suppose that al(t) and az(t) are real and

(8.9) a (t)—>0 a,(t)—>0,

as t — o . The characteristioc equation, 02~— 2AS + a2 « 0,

has a double root at s = a. As a first step, we shall
translate this double root to the point 8 = O. To do this,
we sl.all use the following lemma. These and the subsequent
lemmas may be found in P], Chapter ©.

Jemma 4. The substitution

(8.10) Uus=yv oxp{— %‘/’t’ p(t)dtj



be
2
s

tranaforms

(8.11) u" + p(t)u' + q(t)u = 0

into

(8.12) v + b(:) ~3pr(e) - F(0)3v - o

This lemma can be verified directly. Wwhe. applied to

the equation in (8.8), it results in an equation of the form
(8.13) v'{t) — b(t)v(t) = O,
where

(8.14)  b(t) = — ay(t) + 2ma,(t) — aj(t) + a (t)°

The function b(t) will approach zero as t —> o, but
will not in general be integrable over the infinite interval.
We therefore make a Liouville transformation, as in the
following lemma.

Lemma 10. The change of varilable

(8.15) wsa /" a(t,)dt,, a(t) >0 for ¢t t,,
t —
0

transforms

(8.16)  u"{t) + a(t)2u(t) = 0

into
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(8.17) dau a'(t u=0.

a(c) d-
This lemma 1s also easy to verify. Let us assume that
b(t) #0 for t ty- Then if we apply Lemms 10 to the
equation in (8.13) we obtain

2
8.18) 4y .,s8ldvs ., .0
( prc e

where
(8.19)  o(t) = Ip(e) V24 (2 b(t)}l/z.

Once again we use Lemma 9 to eliminate the middle term in
(8.18). The result is the equation

(8.20) % +[F14 £(s)|w = 0,

where

H(t) | <
o2 - (0 -3{EE

In many cases, the fur .tion f(s) will be integrable over
the infinite interval. Moreover, the two charactaristic
roots of the equation in (8.20) have been separated.
Assuming that f(s) 1is integrable, we next transform the
equation in (8.20) into an integral equation, using the
following lemma.

Lemma 1l. Let 9, and u, be linear independent

2
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solutions of the equation

(8.22) u'(t) + a(t)u(t) = 0

for which the Wronskian

‘ 1 %
(8.23)  wW(uj,up) = | .

Ul Ué

for all t. Then every solution of the inhomogeneous

oguacion
(8.24) u'(t) + a(t)u(t) = r(t)

satisfies an equation of the form

(8.25) u(t) = clul(t) + ogua(t)

+(4’“ [a(8)uy(ey) ~ uy () Jup(e) (e, D, .
0

Writing the equation in (8.20) in the form

(8.26) s+t W=- £(s)w,

and applying Lemma 11, we find that every solution satiafies

an integral equation

i
(8.27) w(s) = 0101' 4 026_1' + ﬁ%oﬁ7° [o e L
0
_ ot )]r(sl)w(al)dll,
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or

oHl - a—( e )J f('l )\1(.1 )dll.

[ ] —8 1 [}
(8.28) w(s) = ci8 + 0,8 " + ?0{7
0
depending on the sign in (8.26). If f(s) 4is absolutely
integrable over the infinite interval, and if s —> o as
t > 00, it 1is easy to show from these equationa by a now

familiar argument, of. [1], that there are two solutions

(8.29)  wy(s) = ¢**(1 + 0(1)), wy(s) = ¢ (1 + 0(1)),

or

(8.30)  wy(s) = €®(1 + 0(1)), wy(s) = e (1 +0(1)),

as the case may be. From these results, it is easy to write
down the asymptotic form of the solutions of the equatien in
(8.8).

We should like to illustrate these remarks by considering
the case in which the coefficient function b(t) 1in (8.13)
has an asymptotic power series,
(8.31) b(t) ~ o}?bnt““.

n=1l

It ie neceusary to divide the discussion into three caases,
according as b, =b, =0, b, =0 and b, ¥ 0 or by 4 0.

1 2
In the last case, the Liouville transformation has the fomm
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s m42\b1|1/2t1/2 ;;;lnt_n (lo = 1)

br(t)l %~ p(t

It is readily seen that f(s) = o(t-l) - 0(6—2). Therefore

the above method shows that there are solutions of the form

+18 % -

wis)~ e " I c_8 (o, > 0)
n=0 B 1
or
)
wis)~ ® 3 cni_n (b < 0).
n=0

Since v(t) = w(s)|b(t)] /%, we obtain

12

2(—b,t
tl/“d: 1 ) z unt—"/a (b1 ¥ 0).

(8.32) v(t) ~

Incidentally, once the existence of an asymptotic
relation of the form
1/2 @
v(t) ~ t%P* 1 4z unt"‘/el
n=1 |
has been established, the values of the coefficients w, and
the parameters a and 5 ocan most easily be determined by

substituting in the differential equation in (€.13) and

equating coefficients.
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If b, =0 and b, 4 0, the Liouville transformation

1

has the form
o

1/2 log t ~ I snt"“.

s — (b,

n=0
In this case,
1
f(s) = — + f2(l)
Mba\
where
. o o -ns/|b,) 3/2
fz(s) ~ ZetT ~ Ioe ‘
n=1 n=1

The transformed equation has the form

(8.33) :—?’2 ¥ c_,%l == f,(8)w

where

L (1/2
1+1r2\ .

03-

The upper and lower signs in (8.33) are to be used according

as b, > — 1/4 or b, < - 1/4. It follows that there are

solutions of the form
+C,8 ®© —nl/\bz\ 1/2

(8.34)  w(s) =& 3 Zone e

or
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1/2

+ic.8 @ -ns/|b,|
"3 2 |
’ b2 < .- uo

(8.35) w(s) = e Zce
n=0
The form of v(t) 1s readily deduced from these relations.

On the other hand, 1if b, =—1/4, then ¢, = 0, and from

3
the equation in (8.33) we get

(8.36) w(s) =e; +c8 +0£°' (s - 8y )t (8 Ju(s, )as, .
0

It can be shown that there are solutions of the form
(8) =1 +0(1) and w(s) = (1 + o(1))

and therefore

(8:37)  v(t) = 721 4 0(1)) ana v(t) = %2 10g t(1 4 o(1)).

Purther terms in the asymptotic expansion can be found by
closer examination of the equation in (8.36), using the
knewn form of fz(l).

Finally, if 'bl =0, b, =0, the Liouville transfor-

2
mation 18 not needed, and should not be used inasmuch as the
integral in (8.15) will not approach oo as t— 00. In
this case, we work directly with the equation in (8.13).

Applying Lemma 11, we obtain

(8.38)  v(t) = o) + eyt n{”‘ (t = t))o(t) )v(e, as,.
0

Since
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(8.39) /®tin(t) at

is convergent, it 1s not hard to deduce from the equation in
(8.38) that there are two solutions v, and v, having the

forms

(8.40) v, =1 + 0o(1), v, - t(l + o(1)).

i

The estimates in (8.40) can be carried out to as many terms
as desired. (Some of the terms contain logarithms, in
general.)

The method sketched here is applicabls not only when the
coefficient in (8.13) has an asymptotic power series
expansion, but alsc when it is an arbitrary power of t,
log t, or ot, or a combination of these. It may some-
times happen that f(s) 1in the equation in (8.20) 1s not
integrable, but that one or more repetitions of the trans-
formation employed will yield an equation of the type in
(8.20) in which f(s) 1is integrable.

9. The Liouville Transformation in General

The extension of the Liouville transformation to linear
systems of higher order is the following. In place of an

n-th order equation, consider a vector-matrix system
(9.1)  F = a(t)x.

Let hl(t),hz(t),...,AN(t) be the characteristic roots
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of A(t) assumed distinct for ¢t > ty. Let, under this
assumption, T(t) be a matrix which reduces A(t) to

diagonal form, i.e.,

/Al(t)
(9.2)  TH(E)A(E)T(t) - My(t) :

Aylt)
\ e

Make the change of variable
(9.3) x = T(t)y.

Then (9.1) becomes
(9.4) G- [THOAe)T(E) - T (v)]y.

One may elther use this form or make the further changes
of independent variable

(9.5) s =/ % At))at,

dependent upon the solution that i1s being examined.

This method has been used by Cesari, [k] , and Levinson,
[6} , to study the stability and asymptotic behavior of
solutions of linear systems. The infinite-dimensional
character of differential-difference equations forces us to

use a different approach.
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10. Multiple Roots of Differential-difference Equations:

Principal Koot

We shall now show how to obtain the asymptotic form of a
solution, corresponding to a multiple root, A, of a

differential-difference equation of the form

(10.1) u'(t) + (ap + a(t))u(t) + (by + d(t))u(t —w) = 0,

In this section, we shall suppose that A 1s the principal
root, and later we shall consider an arbitrary multiple root

A . The characteristic function for the equation in (10.1)
is
—o
(10.2) h(s) = 8 + ap + bye .
Since

(10.3) h'(s) = 1 — boud"“‘,

there is at most one multple roet, and if there is one, it is
a real double root given by A = — a, -1, me technique
sketched in §8 for differential equations suggests that we
should begin by translating the root to the origin. This can

be accomplished by the substitution

(10.4)  u(t) = oM'ul(t).

We may as well suppose, then, that the equation in (10.1) has

a double root at 8 = O, 1in which case
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(10.5) h(0) = aj + by = 0,
(10.6) h'(0) = 1 — by = 1 + agw = 0,

After a ahort calculation, we find that the residue of

otaﬁ—l(l) at @ = 0 has the form c, + c,t, where
2 2 2 2
1 3bdu 3 2 bd» w

Following the procedure in §3, we find that there are solu-
tions of the equation in (10.1) which satisfy the integral

equation

(10.8) u(t) =c + c't — 01(4" [aCt)ulty) + bty Ju(t) — w)] at,
0

- caoélt (t — tl)[a(tl)u(tl) + b(t) Ju(t, —-gqjdgl

+ p(t), ¢t 2 to)

where

(10.9)  p(t) = —(4’“ () Jult) + (e Juley — )]k (€ - ¢ )ae,,
0

t2 to.

The constants ¢ and o¢' are arbitrary. Since all roots
except 8 = 0O 1lie to the left of the imaginary axis,



(10.10) W, (t)l g oe®, k<o, t 0.

As in our previous work, we extract a differential equation
from (10.8) by differentiation. This time, two successive
differentiations are required. We obtain

(10.11) u"(t) — p"(t) = — ola'(t)u(t)~- clb'(t)u(t -w)
- ola(t)u'(t) - olb(t)u'(t -w)
- oza(t)u(t) - ozb(t)u(t - w).

In §h, at the corresponding point in our discussion, we

put
(10.12) v(t) = u(t) — u(t — w)

and replaced u(t —w) by u(t) — v(t). The success of this
technique was contingent on the fact that v(t) was of lower
order of magnitude than u(t) 4itself. If this unadormed
technique is tried in the equation in (1C.11), one finds that
the proofs cannot be carried through in all cases. The
reason for this is that the ratio v(t)/u(t) may not be of
sufficiently small order as t-—> oco. In order tc handle all
the cases in which we are interested, primarily those in which
a(t) and »(t) have asymptotic power series expansions, we
therefore find it essential to use a more refined analysis.
In the last terwm in the right member in (10.11), we write
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(10.13) wu(t —w) = u(t) —»u'(t) + ul(t).

The point of this is that b(t)ul(t)/u(t) will, in general,
be of sufficiently small order, whereas b(t)u'(t)/u(t) will
not. It is not necessary, in the cases in which we are
interested, to use a similar expansion of the terms

p'(t)u(t — ©) and b(t)u'(t —w). If we now use (10.12), we

obtain the equation

(10.14) u"(t) — p"(t) = — cla'(t)u(t) - clb'(t)u(t)
+ clb'(t)v(t) - cla(t)u'(t)
— clb(t)u'(t) + olb(t)v'(t) - cza(t)u(t)
- cab(t)u(t) + czub(t)u'(t) - cab(t)ul(t).

We let
(10.15) w(t) = u(t) — p(t),
and obtain

(10.16)  w'(t) + [ola(t) + opb(t) = othb(t)]
+ [cla'(t) + olb'(t) + ca(t) + c2b(t)Jv(t)
- Pl(t) + '1(‘)1

where
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(10-17) Pl(t) - cll'(t)p(t) - °1"(t)P(t) = cll(t)p‘(t)
= ¢;b(t)p'(t) — ca(t)p(t) — e d(t)p(t) + com(t)p'(t),
(10.18) vl(t) - clb'(t)v(t) + clb(t)v'(t) - ozb(t)ul(t).

We now use Lemma 9 of §8 to eliminate the term containing
w'(t) 1in (10.16). The substitution

(10.19) w(t) = x(t)r(t),
where

(10.20) r(t) = oxp[—-%(/’t {cla(tl) + olb(tl) - czub(tl)}dtq

leads to the equation

Pl(t) + Vl(t)

(10.21) x"(t) — g(t)x(t) = 263

where
(10.22)  g(t) = = op[a(t) + B(t)] = Z[o,8'(t) + e1v'(t) + cp b1 (t)]
+ %[cla(t) + o d(t) - oéDb(t)]a.

The equation in (10.19) corresponds to the differential
equation in (8.13), which we discussed in detail in case

o0
b(t) ~ I b t™",
n=1
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We found 1t necessary to divide the discussion into three
cases, according as b, = b, =0, b, -0 and b, $ 0, or
by A O. In the first case, we worked directly with the
equation in (&.13), but 1in the other two cases we employed a
Liouville transformation. The equation in (10.19) will be
handled in a similar way, but under general hypotheses
similar to those used in §u. In this section, we shall state
the general hypotheses required and the conclusions reached,
and we shall also discuss the application of these gsneral
results to equations whose coefficients have asymptotic power
series. In §ll, we shall prove the general theorems. In §l2,
we shall outline the extension to non-principal roots and to
roots of higher multiplicity.

In our general theorems we shall deal with functions

g(t) eatisfying one or another of the following four sets of

hypotheses:

(10.23) t%g(t) = o(1),

(10.24) &' (t) = o(g(t)),
(10.25) /% t(g(t)]dt < oo.

II
(10.26) g(t) = ¢ t“"’(l + O(t—l)).
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(10.27) g(t) = o(1),

(10.28) g(t) /O for t 2 tor

(10.30) /’°° )g(t){l/th - 0, /’°° \&(t)] dt < oo,
2 .
(10.31) /A% J—ubral a1 t ¢ ®, mil-—‘—-% t ¢ 00.
g |s(t)) / |&(%)l ®

Iv

(10.27) g(t) = o(1),

(10.28) g(t) O for t 2 to,

(10.32) g'(t) = o(&(t)®), g"(t) - o(s(t)3),
(10.33) (/”” \g(t)|dt = oo, /°° |‘(t)|3/2dt < ™.

In every case we also ask that
(10.34)  1im ‘Q“TTTQ -1, um E(t- sf) _ 1,

for every number x(, 0¢ ;fs i

If g(t) has the form

— % -
gt &, # O,
n_O‘n » ¥

glt) ~ ¢t

g(t) satisfies these hypotheses for the following values of a:



S
=

L a> 2
II a=2
IIT 1 <acg2?2
Iv %(asl.

We intend to prove the following theorem.

Theorem 6. Suppose that the principal root of

h(s) = 8 + a, + boi'm' lies at s = O and is a double root.

Consider the equation

(10.1) u'(t) + (ao + a(t))u(t) + (bo + B(t))u(t =) =0

in which a(t) and b(t) are twice continwously differenti-

able. Let r(t) and g(t) be defined as in equations

(10.20) and (10.22), respectively. Then we have the following

results:

(1) Ir g(t) satisfies the hypotheses in I, if a(t),

b(t), and g(t) satisfy the equations in (10.34), and 1if

(10.35) a(t) = o(t™), b(t) = o(t7}),
a'(t) = 0(t™2), b'(t) = 0(t72), a(t) + b(t) = o(t™2),

then there exist two solutions of the equation in (10.1) having

the asymptotic forms

(10.36) wu(t) = (1 + o(1))tr(t)

and

- —

(10.37)  w(t) = (1 + o(1))r(t),
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respectively.

(2) If g(t) has the form im I(, 1f a(t), b(t), and

g(t) satisfy the equations in (10.34), and 1if

(10.35) a(t) = o(t7L), b(t) = o(t™1),
a'(t) = 2(t7%), »r(t) = o(t72), a(t) + b(t) = o(t79),

then there exist two solutions of the squation in (10.1) of

the form

(10.38)  u(t) = (1 + o(1))r(t) [g(t)] /"

1/2 1/2

L }

(10.39)  u(t) = (1 + o(1))(g(t) ™ r(t) 10g ¢
LA i
u(t) = (1 + o(1))(g(t)] "> %r(t) |

(3) If g(t) satisfies the hypotheses in III, if a(t),

b(t) and g(t) satisfy the equations in (10.34), and if

(10.40) a(t) - of [g(t)|¥?), b(t) - o(la(t)*?),
ar(t) - o([g(t)]), b'(t) = of [g(t)}),
a(t) + b(t) - o(\g(t)}),

then there exist two solutions of the eguation in (10.1)

having the form
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(10.4)  u(e) = (2« o(1)) 6(e) T e(e) expe /" s(tlﬂ/?atl}.

(4) If g(t) satisfies the hypotheses in IV, if a(t),

b(t) and g(t) satisfy the equations in (10.34), and 1if

(10.42) a(t) = o(|g(t)(), »(t) = o(lg(t)l),
ar(t) = o(1e(t)23), br(t) - oflg(t)>?),

then thers exist two solutions of the equation in (10.1)

haviglftho form

(10.43)  u(v) = (1 + o(1)) ()] 7V r(e) expls /" (t,)¥ 2

The proof of Theorem & will be given in Qll below. In
the meantime, we wish to 1llustrate it by discusaing thu most
interesting special case, that in whienh a(t) and b(t) have

asymptotic power series expansions

@® (e @)

(10.44) a(t) -~ za t™, B(t) bt "
l]-l o nsl

Then
o -

(10.45) g(t) v =Z e
n-lgn

where

(10.46) g =—c,(a, + b)),

1 . 1 c
g8, = — cy(a +b,) + »¢,(a;+d)) « by + g(c,a,+c,b)—2b, )
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stc. Assuming that a'(t), a"(t), p'(t), and b"{t) also
have asymptotic power series, we can deduce the asymptotic
form of solutions from Theorem 6. Pirst, if a, + b ¥ O,

we use part (4). Here

7

exp116/0t g(tl)l/edtﬁ - expii 2(glt)1/2;-{o + o(t_l/z)}.

)

Also
Nt)-:tr% +O(fdu,

where
/ 1
(10.47) r = — ?(Clal + ¢ib) - czubl) - .

Hence, there are two solutions of the form

1/2)

)tr+l/“ axp{1 2(g,t) J.

(10.48)  wu(t) = (1 + o(1)

On the other hand, if + b, = O, we have

&, i

2

B, = — 02(82 + b2) + by + bJ.

If g, £ 0, we apply part (2) of the theorer. Since now
r - b, we obtain, from the equation in (10.38),

bl+l/2ra s _ 1
’ 82 ]Il

(10.4)) u(t) = (1 + o(1))t
where

R
(10.50) a = (g2 + K) .



Ir &, = - 1/4, we obtain, from the equation in (10.29),

b 1+1/ 2 b1+1/ 2

(10.51) wu(t) = (1 + o(1))t log t and u(t) = (1 + o(1))t

Pinally, 1if g -8 = 0, 1t follows from part (1) of
Theorem 6 that there are two solutions of the form

1+b b
(10.52)  u(t) = (1 +o(1))t 2, wu(t) = (1 + o(1))t L.

It will be clear from the proof in the next section that
further terms in these asymptotic expansions can be obtained
by using the techniques of §5. This will be discussed
further in §12. In the meantime, let us state in a theorem
the results obtained here.

Theorem 7. Suppose that the principal root of

h(s) = 8 + a, + boc-“' lies at s = 0O and is a double :oot.

Suppose that a(t) and d(t) have asymptotic power series
expansions

@® @®
a(t)~ Zat™, b(t)v I bt T,
n=1 n=1

and that a'(t), b'(t), a"(t), and b"(t) exist and have

asymptotic power series expansions. Let

g = — 25 (a, + b)),
-1 1
g = — 20 (32+b2)+3—(51+b1)+b1

+ 111"%‘1 + %‘1 - 2"1)2'
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r = %(2bl - a,),

1/2
qQ = (82 + %{)

Then the equation in (10.1) has solutions with the following

asymptotic forms:

u(t) = (1« o(1))e" M Rempis 2(g)0)V3], g A0,

bl+l/2:a 1
u(t)-(l+o(l))t ’ 81'0: 8:\/‘01 ‘2%_'“’
b,+1/2 '
u(t) = (1 + o(1))t 1 4 log t{ 1
’ Sl‘oi 82'_'1;;
b,+1/2 {
u(t) = (1 + o(1))t ! |
bl+l
u(t) = (1 + o(1))t
b /) ‘l"o; 82"0-
|

u(t) = (1 + o(1))t

/

It should be kept in mind that in Theorems © and 7 we
have supposed that the double root has been translated to

the origin.

11. Proof of Theorem on Multiple Principal Moot

We shall begin by proving part (4) of the theorem, since
this is the most difficult in the sense that it is the only
part of the proof in which the expansion in (10.13) is

essential. The discussion in §8 indicates that we should make

a Liouville transformation, 8 = s(t), where
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(11.1) s(t) -C/)t}g(tl)\l/%tl.

™is introduces a new real variable s (not the complex
variable in (10.2)). It is evident from the relations in
(10.33) that 8 > + @ a8 t - >+ w. The equation in
(10.21) 48 transformed into

2 , p.(t) + v, (t)
dx g (t) dx 1 1
11.2 + AT -
( ) a8 = 2 (t)) Ge r(t)|g(t)l

|8

where the upper signs are to be used if g(t) > O and the

lower signs 1f g(t) ¢ 0. (By hypothesis, g(t) ¥ O for
t 2 to). The term containing dx/ds is now eliminated by

the substitution
(11.3)  x = y(s)|g(t)|7/%.

The resulting eQuution is

2 po(t) + v (¢)
1.4 d Ty ey T 1
(11-4) Z:E 71 mit)e r(c)lg(e)l >
where
(11.5) l§~i-“ = L LH e
%1 1'2 Ig(t)] Y ylg(r)l

If g(t) >0 for t > tor 1t follows from Lemma 11
that every solution of the equation in (ll1.4) satisfies an

integral equation
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(11.6)  y(®) = oy + 050_'

> —( )
+ %‘{” . 1 o " ][sl(tl)y(-l)
0

pl(tll + Vl(t )
r(t,)e(t, )3/1‘

where 8, and t, are related as in (11.1). 1r g(t) ¢ O

for t 2 t,, we have, instead of (11.6),

(11.7) y(s) = cuoia + 056—1’

1(s—8,) —1(e—s,)
*}lIogM e Yo lMsl(tl)y(al)

r(vy)\e(e )12 L

Since the discussion of the ecuation in (11.6) and that of

the equation in (11.7) are very similar, it will be enough to
give only the formsr. If we return to the original variables
by means of the substitutions in (11.3), (11.1), (10.19), and

(10.15), we obtain in place of (11.6) the equation

(1:.8)  u(t) = p(r) + oyr(s)g(t) 2 4e®(%) osr(u)g(c)"‘/“."(‘)

+ r'(t.)g(t)_'l’/‘“eu(t)(/qt e—‘(tl)n(tl)dt1

o

_ r(t)g(t)—l/mo—.(t)‘/}t "(tl)

% n(tl)dtl,
0
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where, for the sake of abbreviation, we have let
v3/4
g(t)3/ g, (t) py(t) + v (¢)

o) - ar(t)g(e)/

{ult) = p(t)} -

Here s(t) represents the function defined in (11.1).
We propose to use the equation in (11.8) to show that

there are solutions for which
u(t) = r(e)e(e) V2201 4 o(2)),

as stated in Theorem 6. The procedure to be used is similar
to that in 9“, but more complicated in detail. We begin by

deriving an expressinn for v(t) from (11.8). If we let

(11.10)  q(t) = r(t)g(t) 2/ Hexs(t),
(11.11)  aq (t) = r(t)a(t) >/ %ex8(t) _ n(t — 0)g(t — oy 2/ bets(t=)

we obtain

(11.12) v(t) = ap(t) + cqu+(t) + oSAL(t)

+

—s(t,) '
AQ+(t)‘{;Mc (% n(t, )at,

+

t,)
q+(t)aéi:);-e( 1 n(tl)dtl

l(tl)

- Aq_(t)‘{""“o n(t,)at,
0

- q_(t)({’-: o.(tl)n(tl)dtl.
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Also

(¢

(11.13) wu'(t) = p'(t) + c“q]'_(t) + osq'_(t) + q_‘}(t’-)‘{;t o_. 1)n(t'.l)clt'.1

- ql_(t)/t:t 0‘(tl)n(t1)dtl.
From these expressions we get
(11.14)  — uy(t) = v(t) — am'(t)
- ap(t) —ap' () + oy[aq,(t) —wq(t))]
¢ oglaats) - oe(s)

(t,)

+ [Aq+(t) - c.:q‘;_(t)] (4’ "“"o_. n(t, )at,

0
t
+ [a,(¢) -uq;(t)]/b’_lo_‘( 1)“(‘1)“1
o 8(ty)
- [Aq_(t) —mql(t)]({”'_ o'( 4 n(t, )at,
o

v
-fate) - uq_-_(t)]‘é_:o'( l)n(tl)dtl.

Pinally, from the equation in (11.13) we get
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(11.15) v'(t) = ap'(t) + c“Aqi(t) + °5AQL(t)

Aq;(t)aﬁ’”‘“’e—'(tl)n(tl)dt

+ to 1
-8(t,)
+ q;(t)uéll e 1 n(t,)dt,
- Aq;(c)(t7 ""o'(tl)n(cl)dtl
0
s(t,)
_ QL(t)Uéit,' 1 n(t,)dt, .

Since 8'(t) = g(t)l/z, r(t) = 1/2[cla(t) + 02(1 -~ uﬂb(t)]r(t),

+ 1—w r{t)
(11.16)  g)(t) - q(v)]— 220w UUm(E) @T0e) v
- - 2 Lg(t)

From the hypotheses in (10.32) and (10.42), it follows that
(11.17) gi(t) - ;i(t)o(zl/z)-
Moreover, by the Mean Value Theorenm,
ha (6] = = oqy(t =« ) = q (¢ = who(a(t = /)M,
0 < £l

Since a(t), b(t), and g(t) all satisfy the relations in

(10.34),

(11.18)  aq(t) = q+(t)0(t(t)1/2)-
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Since a' = 0(g), b' = 0(g), &" = 0(g°), and g' = 0(83/2).

it can be deduced from (11.16) that

(11.19)  qj(t) = q (t)o(g).

Hence

(11.20)  aq/(t) = q (t)o(&),

and

(11.21) aq(t) —wq!(t) = q (t)o(e).

Prom the definition of p(t) 1in (10.9), and the

inequality in (10.10), we find that

7

p(e)] g c-"‘f‘ {;aul) + (e ) ha(e))]

0

—xt
+ )»(cl)||v(cln}. y

J

dtl L)

Let
u(tl)
(11.22) m(t) - max L
cogtht q+(tl)
(t) ")
m = RAX
. toSt <t |, (8 )8(t )12

Then since |a + b| and |b] are 0(g),
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P(‘)\ S c.kt+8(t)3ml(c) " m2(f-)M)ts(tl)y“._‘ktlr(tl)dtl-
0]

The lntegral is of the form in Lemma 3, with g(t)3/“ in

place of g(t) and

£(t) = —-%{cla(t) + o1 = wb(t))] .

Prom the hypotheses in IV and (4), it can be verified that

the conditions in Lemma 3 are met. Hence
(11.23)  Io(e) g ca® Pg(e)  e(e)im (6] 4 my(t)
- cq (t)g(t)im(t) + my(e);.
By differentiating the equation in (10.9), we also find that
(11.24)  p'(t)] ¢ oq (t)g(t)im (&) + mp(t)
and
(11.25)  [ap(t) g cq,(t)g(t)m(t) + my(e)],
Hence
(11.26)  [py{t)] g eq,(t)8(t)?fmy(t) + mp(c)} .
Since

(11.27) g (¢)] ¢ ca(t),
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by the hypotheses in (10.32), we can deduce from the equation

in (11.9) and the inequalitiss in (11.23) and (11.26) that

(11.28) [n(t)} ¢ cg(t)j/ao'(t)inl(t) + mz(tm

\ v,(t)
+ C

lr(t)s(t)l/“,'

Using this inequality in (11.8), we get

u t (o] + M
—L—Lq - \ g calt)(m(c) 2(%))

c{ml(t) - mz(t% O{Zt g(t1)3/2dtl
—s(tl)

¢ |Valty)e
+c/t’

at
o | rre(r )0

Since L/Ooog(tl)3/2dtl i3 as small as we please if ¢t is

0o
suffioizgtly large, and g(t) = o(l), 41t follows that
e !
(11.29) my(t) ¢ ¢ + cm (t) + ¢ 7t A dt
173 < 4 r(tl)s(tl)Iiu

On the other hard, from (l1.12) and (11.18), we have

1%{%%7i < c&(t){yl(t) + mz(t)} + o;(t)l/2

R cg(t)l/Q/ t’..'"'s(t
to

)
Y n(t) )ty

N 2U/>t .“(‘1)

dat..
- In(t;)ldey
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Using (11.28) and (11.29) and the faot that

Vi s(t1)3/2dtl - o(g¥?),
t—c

and supposing to sufficiently large, 1t follows that
—1(t13
v,8
t 1
(11.30) mQ(t) g ¢ + co/o o2 at,
to rg
-u(t,)
¢ |V1® 1
+ c0/4 dtl-
t—w
Hence also
-s(tl)
(11.31) m(t) ¢cc +c, /" "’ at
y 1\ s ¢ /T !
to Irg
: \()
+ 0, dt. .
P
In the same way, we find from the equation in (11.15) that
vi(t) t \V1°-'(tl)
(11.32) gc+ec/ |9
q,(t)e(t) to rg
—-a(t,)
ot |V1® 1
+ C 5 o
Yoes | 1/ 1

Since



P-1470
8-28-58
-109-

-8(t,) q_(t) s(t,)
M_t e n( 1) ———m/t e 1 n(tl)dtl

79

< S 28(0-%—2s(t)} / —a(ty) [n(t,)|at,

L

< cg(t)1/2(4_:> e--s "3/ {n(tl)(dtl,

we find from the equation in (11.14) that

uy(t)
(11.33) m‘ S CS(t){ﬂl(t) + me(t)} + cg(t)

+ c.!;(c)/t (&) |n(t, )|ty

+ cg(t)l/a/b)_? e_.(tl)'n(tl)|dtl.

Using the inequality in (11.28), we therefore obtain

—s(t )
.34 L
(34 q(t)s(t) Sc”‘/) 1
—s(t
¢t |V1®
+ ()(/b’_“.J ‘—:‘jﬂ-— dtl.

It follows, since b(t) = 0(g) and b'(t) = 0(33/2), that

—9(t )
1(” b

q, (t)s(t)

dtl

Sc+0/t

—l(t )
dt, .
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Let
vl(tl)
q,(ty)a(t))

(11.35) m3(t) - max

£o<t <t 2

Then

vi(t)
(11.36) |2
la, (t)a(t)®

¢+ cm3(t)oéoc g(tl)3/2dt1
0

+ cm3(t)0€2z)g(tl)dtl.

If t, 1is sufficiently large, it follows that m3(t) < c.

Hence,

s8(¢ T/4

(11.37) (v ()] ¢ ca (t)g(t)? 5 ce®(®r(t)g(t)

(11.38)  |v(e)| g ca (t)a(e)/ 2 ¢ ce®lEln(e)g(e)/ Y,

(11.39)  fu(t)| g eq (t) g :ca(t)r(t)g(t)ml/u.

Once these inequalities have been established, the
asymptotic form of wu(t) can be found from the equation in

(11.8). The : 'equalities in (11.23) and (11.206) now becoms
p(t)] g co®tg(1)¥ 4r(t),

Py (0] g oo Mg(e)  r(e,

and that in (11.28) shows that n(t)e"’(t) is absolutely

integrable. Therefore
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(11.40) u(t) = cér(t)g(t)—l/“e'(t) + p(t) + csr(t)g(t)_l/ud_'(t)

_ -1/4_8(t) poc —s(t)) q
r(t)g(t) ¢ o{’ 3 n(tl) t
_.x-(t)g(t)__l/ue—'(t')‘/)t o.(tl)n(t )dt
to 1 !
where
(11.41) o =, + /% Q_'(t1>n(tl)dcl.

Yo

Taking Cy = 1, 05 = 0, and to sufficiently large, we

see that g 4 0. Using Lemma 7, with n = 3/2, we find

that
s(t, ) 2s(¢, )
o{Ot e ! |n(t1)\dtl S c”{;t g(t1)3/20 1 dt,
0
< cg(t)oza(t).
Therefore
u(t) = (og + o(1))r(t)g(t) > et (®),

To estadblish the existence of a solution of the fom
(¢ + of1))r(t)g(t) L/ 4es(t),

we use the method of successive approximations, as 1in @6.

The equation in (11.8) is first replaced by
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(11.42) u(t) = p(t) + r(t)‘<t)—1/uo-—l(t)
- r(t)s(t)-l/ue'(t)cééoo 0_.(tl)n(t1)dtl

+ x‘(t)E(t)_l/ue—a(t)c/”m o.(tl)

n(t, )dt
t 1

1
We s8aall omit the details of the argument.

As previously remarked, the argument is virtually
unchanged 1f g(t) < 0 for t > to- In that case, there

e solutions of the form
u(t) = (c + o(1))r(t) lg(t)] Y texB(t),

We have thus complated the proof of part (4) of Theorem
6. The demonstration given necds only very slight modifi-
cation to apply to part (3) of the theorem. In fact, all the
relations in (11.1) - (11.25) are still valid. Since we are
1/,

now assuming only that a(t), b(t) = o(g(t) the

relation ir. (11.26) becomes
(12.43)  |p,(e) ¢ cq+(t\8(t)3/2§n1(t) +m (e

It 18 now found that \gl(t)\ § ¢, and the inequality in

(11.28) must we replaced by

(11.48)  a(e)] g oo lm (t) + mp(e) g()> % (5) + s())

()

T
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Prom the equation in (11.8), we therefore get

%{%%7‘ S os(t)§n1(t) + 12(t)§ + o

! 0{‘1(‘) 4 "2(‘)}/7t [g(tl)l/a‘l(‘l) + (%) )8,

t
—.(tl)‘ 0
/t Vl.
+ C - ‘dt .
1
to rg
1/2

Since g(t) and g(t) gl(t) are integruble over the

infinite range, the equation in (11.29) is now obtained. Since
t 1/2 !
(11.45) 4_“ |g(t, )™ “g (v) + g(t )]ty

1/2 1/2,

S o|8(+)7 26, (8) + (2] = ole

we find in the same way as before that the equation in {(11.30)
holds. Lilewise (11.31) - (11.34) remain true. Prom the
definition of vl(t) in (10.18), and the hypothesis that

b = 0(31/2), b' = O(g), we therefore obtain in the same way

as Yefore

v (e g oa,(t)8(t)Y/2 g ca®)r(e)g(e)>"

and therefore
ROE) g oq,{t) ¢ co®(“ln(e)g(e)™/",

The rest of the proof of part (3) is as before.

We now turn to a discusgion of part (2) of the theorem.
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We egali use the Liouville transformation in (11.1), which

has the form

(11.46) s(t) = |<:0\1/2 log t + ¢ + O(t—l),

and the transformation in (11.3). We find, however, that

11.4 (t) = - = s t
(11.47)  g(t) teq s,(t)
where
(11.48) g, (t) = o(t™).

If we put
LK
(11.49) 03 - (1 + %—O‘ ’

the equati n becones
2 py(t) + vy(t)

c(t)|g(t)]>

(=¥

(11.50) o§7 -~ gylt)y -

+

(o

where the lower sign ie ‘v be used is o, < - 1/4, and the
upper sign 1f ¢, > - 1/4. We can ehow by the method used to
prove par: (3) of Theoren © that there are solutions of the

form
(11.51)  u(t) = il 4 o(]})r(t)[g(:)‘“l/u.i"j'(t)’ 0 > _11;'

+1c.8(t)
u(t) = (1 +o(1jr(t)jg(e)| ™% 3, o <-4



P-1470
8-26-58
-115-

Only minor modifications in the proof are required. The two
equations in (11.51) can be combined in the single relatien

(11.52)  u(t) = (1 + o(1))r(t))g(t)|~>/*

1/2
* W[_‘t(/)t (1 + t:_o) / ‘(tl)l/adtl}v %o # -% .

On the other hand, if ey = — 1/4, then o3 = O, and the
equation in (11.50) leads to a representation of the form

(11.53)  u(t) = p(t) + o,8(e) ™ 4r(t) + ogu(t) ™ *r(t)a(t)

+ g(t )_l/ur(t)l(t )‘{’ v n(t, )at,
0

- t(t)"l/ur(t)aft s(t; )n(t, Jat,
0

where

4
8,(t)s(t)Y _Py(t) + vy(t)
(11.54) n(t) = 0) {u(t) p(t)} ~(2)e(0) ’

rather than an equation of the form in (11.8). Using the

same procedure as before, we can show that one soluticn has

the form
u(t) = (1 + o(1))s(t)" > *r(t)s(t),

and, using successive approximations, that a second has the

form

u(t) = (1 + o(1))g(t) ¥ x(¢).
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This 1s the result stated in part (2) of Theorem 6.
Pinally, to prove part (1) of Theorem 6, we deal directly
with the equation in (10.21), as the Liouville transformation

is unnecessary. From Lemma ll, we obtain the integral

equation

(11.55)  u(t) = p(t) + eyr(t) + etr(t) + x-(v;)(/{ot (t -t )n(t))at,,
0

where Cy and 05 are arbitrary and

pl(t) + 'l(t)

.56 (v = — K3E - _
(11.56) nlc !%E%iu(t) p(t?} s

We now proceed in the same way as before, obtaining expressions
for v(t), u'(t), v'(t), and ul(t) from the equatiun in
(11.55). Since

|a(tr(t))] ¢ or(t),

lar(t)| < c'£££l,

etc., we can establish the following inequalities by

following the same procedure we used for the equation irn (11.8):
[u(t)| ¢ otr(t),
lv(t)| ¢ er(t).

Hence

[p(t)l g er(t)/t,
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In(t)| g otg(t) + ct™2,
If cg # 0, 1t follows from the equation in (11.55) that

u(t) = p(t) + cgtr(t) + oyr(t) — :r(t)/t”" n(t, )dt,

- r(t)0{7t t n(t, )de,,
C

where
00
0
Taking c5 -1, ¢y = O, and choosing to 80 large that

cg # O, we obtain a solution uft) = tr(t)(1 + o(l)). To
show the existence of a solution of the form u(t) = r(t)(1 + o(1)),

we replace the equation in (11.55) by

(11.57)  u(t) = p(t) + r(t) — tr(t)‘[m n(t,)dt,
Q0
+ r(t)oéo tya(t, ),

and use successive approximations. In this way, the proof of

Theorem 6 can be completed.

12, Other Multipl-. Roots

In gQl0-11, we have given a complete discussion of che

differential-difference equation
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(12.1) u'(t) + (ao + a(t))u(r) + (bo + d(t))u(t —w) = 0

having a principal double root. In this section, we should
like to give a brief indiocation of now to handle other
multip’e roots. In the first place, suppose the equation has
a real doubdle root, not necessarily the principal root, at

8 = A, Again we can suppose this root has been translated to
8 = O, We establis™ the existence of solutions having the
form indiocated in Theorems € and 7 sy use of the method of
successive approximations, as we did in {6 for a real,

simple root. The definition of p(t) 1in (10.9) must now be

replaced by

(12.2) p(t) = —(/t/”' [a(tl)u(t.l) + b(tl)u(tl - (.))] kl(t - tl)dtl
0

00
+4’ [a(tl)u(tl) + bty Ju(ty —c))] ky(t — t))at,
dut the other equations in (10.8) - (10.22) are unaltered in
appearance. If the hypotheses of part (4) of Theorem 6 are
setisfied, for example, we proceed as in §11, and again

obtain the integral equation in (11.8). If we desire to find

a solution of the form

(12.3)  u(t) = (1 + o(1))r(t)s(t) > 4e(t),

we define
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(12.4)  wu (t) = p (t) + r(t)g(t) 2/ Ye8(t)

)dt

¢ n_(t
t

m''1 1l

o

O

l(tl)

nn(tl)dtl,
t 2 to’ l- 0.1,2’000'

where

(12.5) p_(t) = -049‘ a(e)up(ey) + ws () — )]k (b = ¢ )at)
0]

+U<7°°[§(tl)un(cl) + bty )u (b, - uqua(t — t,)at,
and where

)34 (¢
ey a (t) - s(t)” g (t)
2r(t)

ualt) - Py(t))

me(t) + Vl‘-(t)
2r(t)g(t)” "

There 18 now no difficulty in deriving expressions for v-(t),

ui(t), u1,m

respectively. Proceeding by induction, we can show that

(t), vé(t) like those in (11.12) - (11.15),

un(t)r(t)_lg(t)l/ue-'(t) is bounded, and then that the
sequence iu‘(t)} converges, uniformly in any 7inite
interval, to a solution of the equations in (12.4) and (12.1).

We shall omit the details. That u(t) has the foim in (12.3)
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follows easily from the integral equation satisfied by wu(t).

In order to estadbliash the existence of a solution of the form

(12.7)  u(t) = (1 + o(1))r(t)g(t) L/ Yao(®),

we replace the equaticn in (12.4) by
—l(tl)

(12.8)  uy, () = po(t) — n(t)g(e) " Bet(t) oo,
t

v r(e)g(e) Ao

" r(c)g(t)"l/“a“’(‘)/“ e'(t
t

)
1 nm(tl)dtl

and proceed as defore. The other parts of Theorem © can be

dealt with similarly. Hence, Theorems 6 and 7 remain valid

if s =0 1s any double root, not necessarily the principal

root.
We should again iike to remark that if
o - = -
(12.9) a(t) ~ = a U, p(t) ~ Z B LT,
n=l n=1

then tha solutions wu(t) of the equation in (l2.1) have full
asymptotic expansions, which can be found in a fashion similar
to that in 95. Suppose, for example, that a; + B, ¥, O,

& > 0, und tlat

u(e) = (1 + (1)) expla(g o) 2L,

This funotion satisfies an equation of the forx in (11.8). By

the relations in §11, we have

nm(tl)dt

1
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In(t)] ¢ ot™3/2 cxp{?((lt)l/a}.
The equation in (11.8) can therefore be rewritten as
(12.10)  u(t) = p(t) + oét’*l/“ oxp{?((lt)l/af
P cst“*l/“ oxp{— 2(glt)1/2z
_ gTel/4 exp{2(tlt)l/2}céo°° n(t, Jexp—- 2(slt1)1/2}dtl

£ tN]'/“ cxp{-— 2(;1’.)1'/""f4’Q n(tl)oxp{2((1tl)l/2}dtl.
0

It follows that

(12.11)  u(t) = [c6 + o(t‘1/2)]t’*1/“ cxp§2(;lt)l/2}.

With the aid of this expression, we can demonstrate that

p(t) = [OYC—I + O(t—a/‘?)]tNl//u exp {2(glt)l/2j,

using the technique in §5. Then

pl(t) - cet—z + O(t_ﬁ/a)} t“l/h oxp{2(;1t)l/2§.

Directly from the relation in (12.11) we can find similar
asymptotic expressions for v(t), v'(t), ul(t), vl(t), and

finally deduce that

n(t) = |c v=3/2 O(t_a)}oxp[ﬁllt)l/?} .

9
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"31ng this relation in (12.10), we get

u(t) = [c6 - 2c9t'—1/2 + O(t_l)]tr*l/u oxpEQ(‘lt)l/zi.

Repetitions of this argument shew that the solution has an

asymptotic expansion
(12.12) u(t)~ tr+1/“ oxp{?(;lt)l/zg ;Ount—n/2 (uo p 0).
) nN=

Once it 18 known that the solution has an expansicn of the
indicated form, the values of the coefficlents v and of
the parameters r and §, are nost easily found by sub-
stituting the expression for u(t) into the original
differential-difference eguation, and equating coefficients
of like powers of t.

Asymptotic expansions of u(t) can be found in a
similar way in the cther cases of Theorem 7. These expressions
may involve combinations of powers of t and log t. For

cxample, 1if € =& - O, one solution has the form

l+b @ U+ u' logt
u(t) ~ ¢t 1 uy + Z O R
n=1 t

In some of the other cases, higher powers of log t appear.
We shall oclose this section with some remarks abdout
equations of more complicated form than that in (12.1). For
equations of higher order (in derivatives or differences)
than the one in (12.1), it is possible to have non-real doubdle

roots, or roots of multiplicity greater than two. In the
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former situation, we proceed as in §7, while in the latter,
we have to Ceal with higher order differential equations.
For example, 1f a root has multiplicity three, we ae led to

an equation of the form

x''(t) + cl(t)x'(t) + cz(t)x(t) - w(t).

Solutions of suoch an equation can 2e written in terms of
integral operators dy using the method of variation of
parameters. If necessary, we first make a Liouville trans-

formation s = 8(t),
s(t) = /7% A(t, )dt
S ME ey
where A(t) 18 one root of the oharacteristic equation

A3 . cl(t)A + oz(t) - 0,

As the details wecome even wore involved than bdefore, we

shall omit a more complete discussion,

13. More GQeneral Punctional Rjuations

In attempting to extend the foregoing results to more

general linear functional equations of the form
(13.1) L(u) = g(t)u,
where

C
(13.2) ()~ ¢ +—5+ **,
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we see that the techniques we have employed hinge upcn two

basic facts:

(13.3) (a) The solution of L(u) = f(t), with appropriate

initial conditions, has the form

@® Akt
(b) k(t)N Z &KO ’ M(Al) ?_ n‘(7\2) > ey,
k=1

Once it har been established that the linear operator
L possesses the required properties, we may readily obtain

analogues of the foregoing resulis.
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