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A method is daveloped for computing the greeatest lower bound for the
variance of unbiased estimates of vaveform parameters, vhen the vaveform
is observed in additive Gaussian noise.

The greatest lower dbound 1s approximately evaluated in several
{llustretive cases. The wvaveform parameters occurring in theee examples
are amplitude, time delay, and doppler shift.
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I. INTRODUCTION

The subject considered is the inherent accuracy vith vhich the para-
meters of a wvavefora observed in additive Gaussian noise can be estimated.
Uoodnrd(l) considers a special case of this probvlem, using an apporoach
based on a pesteriori prodadility. The approach to be follewed here is
based on results in statistical estimation theory concerning the greeatest
lower dbound for the variance of estimates of statistical paramsters. Before
proceeding to a more precise formulation of the predlem, it is convenient
to sumarise these results of estimation theory. The following is a
summAry, ia a notation and in a form convenient for the "reposed application,
of results centained in Refs. 2, 3, and &, or of results vhich can de
obtained by straightforvard generslization of these references.

Let {] be « sample spsee vith points w , and let p be a measure
defined on (L .Let TT be any set of points (finite or infinite) called the
paresster sat, vith individual points denoted by §. et {p (v,¥)} for
e 7T be a family of provedility densities in (L with respect to the
measure . Let £(§) denote & real valued function of § . Ve call a real
random variadle g(w) an undiased estimate of £(%) 1f

fd(w) P(w,y) dp = f() , all §eTl. (1)
n

Nov pick some parsmeter value !o (vhich ve may interpret as the true

valus of §) and consider

ol f0.5Y - e1n. /[4«») - 108)]) % pw, 9)ap  (2)
il
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vhere g.1.b. means greatest lower beund f~r all ¢ satisfying (1). Any ¢

satisfying (1) vhieh, vhen §= ¥ , has vartance equal to °251b {t, 5.},

is called an unbiased estimate of £(§) vhich is locally best for ¥ = !o.
Nov let us suppoee that

. p(w") p(“’. ‘,) for 811‘
G(%,% IYO) = p(“"o) df‘ < @, §.¢,% eTT. (3)
S8l

(Ve suppose tbe integrand to be defined almost everyvhere in {1 .) It ia

ouytoahavtnto(Y,!’\So)-lmmproporty

n
}:{c(s.t ;)-1}..‘ 20 ()
1,921 i j‘ o i
for aay choice of real numbers a, and points 51‘TT~

Let us also dencte by )\ the difference betveen any two measures ever
TT , each of which assigns veight to only s finite (but othervise arbitrary)

set of points of 1| . In other words, if £ is any function of §,

n
fr(s) dNY) = 5 a f(¥) (5)
T i=1

vhere a, are real (positive or negative ) numbers.

Then
[ o
{j[t(!) S f(!o)] dA(E)}
‘o {105} = Louwe 1 (6)
j’jo(i.?'(fo) dA(¥) dA(y)
L 4
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vhere the 1l.u.b. means lewest upper bound over all possidls A vhich assign
nen-sere veight te at least ome point of T .
Alse, 1t can be shewn that there exists a sequence { )™} such that

the quamtity in brackets on the right side of (6) approsshes 02‘“ {f, !ok
as n — o , and such that

lim jo(!.!' ls) aX®xh = 1 - ey (7)
n e
A
In eddition,
azslb {t.YO} = Um fjo(!.!'lfo) aX® (p) aX®) (g (8)
e

m

(
= lUa j[f(s)-r(!o)] aX®(y)

n-yoe

e

It 1s apparent from (7) that this sequenee {)\M)}has the property

that lim fax"“(n:o. (Just let § = !ou(v).) Moreo-er, if

n-se
ve can find a f\notion (or gemeralized funetion) A over T (net

necessarily assigning veight to only a finite number of points) such that

jo(!.s'\xo> aAG') = (D) - £(5) (9)
v

then, wmdsr certain conditions,

2 :
6 glb {f.!A . j]o(l.! |5 auD arshH (10)
mw

. f[r(:) - £2(¥))  axD

AL
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(The condition under which this holds is that ¥C§%§%{t§ dA(§) can
be defined as an element of the closed linear manifold determined by
the family of randos variables {g%%?{:%} , having mean £(§) - f(!o)
with respect to dP(«,¥), and having variaice, with respect to
dP(“.Eo). equal to the right side of (10). )

It must be expected in general that one would only be able to
find a sequence of functions satisfying (7) in the limiting sense,
although there are some cases in which (9) can be solved in closed
form., Inability to solve (9) exactly should not trouble one too
much in practical cases, however, since a lower bound for the

quantity

2
/[‘(‘0) - f(!o)] p(w, Yo) du , # satisfying (1) (11)
0

is obtained by inserting any A , satisfying (5), into the quantity
in brackets on the right side of (6).

Another fact important for applications is that if A is any
generalized fuaction satiefying the above mentioned conditions

(and therefore, in particular, if A satisfies (5) and is such

that ‘/rdk(!) = O0), then the expression
TT

ffa(?.!’ Iro) da(g) dax(y")
T

2
is equal to o glb{f';o} for any £ of the form

£(g) = J[G(Y.i'l Eo) dA{%') + constant,
T7



P-1468
8-25-53

The selutiem A or {)\(m

} to Bq. (9) or (7) will in general depend
oo § .

Nov suppose that a family ef stechastic processes is dafined
eerTespending to the family {dP(w,$)} of msasures over the sample space
0l . Alse swpose that if a subset 8 of [l bas sero measure for any
one of the meeswres dP(.,,%), then it has zeroc mseasure fer all 4P(w,%).
" Seleet any particular peint s, o 17 . 'nun(”thoroctutnn-

negative functiens p(w, ¥ | f) such “aat for any measurable subset 8
of (L,

fdp(w.!) - fp(w.sl 3,) aP(w, §)) (12)
5 3

Ifve set & = 4P (w, ‘o)inthoabmoqmtim, then

a(s,%'|y) = jp(w.s | 5 p(w,¥' | 1) daP(9, %)  (13)
n

One may also ask what estimator actually attains the minimum
variance, at So. of unbiased estinates of f(%). The answer is that
it ie that element of the linear manifold determined by the
family of randor variables {p(w,g [ So)} whose mean with respect
to dP(w,¥) 18 (). Since p(w, ¥ | YO) can often be evaluated
(see Eq. (25) below), it is possible in many cases to give the

miniomum variance estimator,
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II1. ESTIMATION OF WAVEFORN PARAMETERS

let {P(t,5)} be a family of real-valued functions of time t, vhere
§ ranges over seme set |1 . Suppose that {x(t)} is a (real) Gaussian
randem process defined over the time interval 'rlé t 512 , having mean
tero and covariance function 1, (s,t) . (Stationarity is not required.)
Suppose that we observe fumetioms t(t) over the interval Ty S¢S T,

viere

zg(t) s x(t) +« F(t, %) (14)

We will evaluate G(!.t'\!o\ for some situations of this kind.

First, suppose T, and T, are finite and that {x(t)} 1s continuous

1
in the msan over [‘1‘1.‘!‘2] xthcn(j),
o0
Y, (t)
x(t) = x (15)
;“1 ¥ VA,

vhere Av and Y (t) are the eigenvalues and (orthonormal)

eigenfunctions of the integral equation

T
Yis) = Aj; Y (s.t) W (tat . (16)
1

In (15), convergence is in the mean for every t in ['1‘1.'1‘2] .

Also,

T2
x, = \/Ayf'r x(t) Y (t)de (17)
1

The rendom variables x y are independent and normally distriduted vith

moans gero and standard deviations unity.
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We vill also suppose that fer eash § in T[] ,
-
P(EE) = ), B (D) W, (1) (18)
val

vhere the convergeance is pointwise as well as in mean square in [TI'TE]'
and

T

A, « [2 Fem y (v . (19)
T
1

We also suppose that, for eash § in T,

> x, 82
A (§) < o@. (20)
Vel L& (3,
Then )
= W (L)
2t) = D, g X (21)
V=1 v \JAV
vhere
L, = X, + pv(i)\l)\v (22)

T2

-\/)\,f e(t) Y (t)at
T
1

The joint density fumction (vith respeect to Lebesgue measure) of

Zlgooo.zn is

€y (2 vernazy) (23)

-N/2 N 42
s (2m) cxp{-% ; Ezv - p,(‘)J)‘vJ }
Vs
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¥We my regard STLITTER a3 observable coordinates of the stochastie
process {z(t)} .

Also, vith probabdbility m(j),

By(zy0ee. .le!)

pEs | 5) - la RO (24)
Thus, by (23),
po,¥ [5) = oxp{--%; A,[pf(:) - pf(?o)]} (25)
X exp %- yzgl zv\/-)—v{ﬁv(so) - P,(f)}}

Cemsequently,
p@, ¥ | §5) plw, ¥ [¥)

- pr{-%zl )\y[pf(!) vopieh -2 pyz(sc,)]} (26)

Vs
X oxp{- Zl z \/—;\:[2 Pv(;o) - @v(f) - Pv(“)]}
V=
Thus, by (13))
G(%,%' lfo) = oxp{Zl Xv Pyz(’.o% (27)
Ve

val

X oxp{z Xv [P,(!) B (s') - Pv(‘) B,(%) - pv(f') Pv(‘o;}}

It is possible in many cases to express G(§, %' I;‘o) in a more
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convenient form: s.,poee
E(e,%) satisfies the imbagral equationm
T, N
f Y, (e,t) K(a,Dds = F(t,5) (28)
T

1

Here :(c,!) is peiaitted to contain a finite number of delta functions
of various erders.

Then, under conditions vhich vill be stated,

o0

T )
2oAAD BE) = [ 2 R(e,¥) ke D ar (29)
vsl viv Tl

To shéw this, consider the following linear predietion problem: let q(¥)

be a randem variadle defined on (L such that q(3)has zero mean, finite

varianee, and such that

Elam) x(0)] = r(e,D) (30)

Such a random variadle exists by (20). B[ ] denotes the expested value
of the quantity in dbrackets.

Let 1(§) Vve a random variable such that

(1) 3(5) 1s & lineer eperation over [Tl.'rz_] on the rendom process {x(t)} ;

(11) 7;’(?) ninimises B [6 -q(!)] 2 for all linear operations 3 over

['rl.'rz] on {x(t)} .

By 'linear operstion o {x(t)} over \:Tl.‘ra]' is meant any remdom

variadble of the form
oo

o0
a . 6_ X where c‘2 < o,
z-; v v 2 v
Ven ) 72
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vow, 6)
OO0
O RPN b (31)
Ve
Also, q(%) is given by
T2 ~
YO = [ 2 x(v) ke, Dat (32)
T
1

provided the integration in (32) is legitimate and provided the satisfaction
of (28) is a sufficient condition that q(%) givea by (32) minimisze
E [a -q(s)]z . Equation (29) is then established by calculating
E 39 asn] .

There is a large litorstm(” on the solution of the integral
equation (28), and in many cases the conditions of validity of (29) can be
established.

Cne special case is the folloving:

Suppose
Y (s,t) = de7c!o"" (33)
Then, denoting g7 F(t,%) by F'(t,%), etc.,
K(t,$) Sl F(e,8) - X g !)]
- = >a ' - c—2 F"(t, (34)
o L Fer ) - Llpr ;)] S
24 WG ST X
L lrr.,n.3ip
* 33 o .;r (Tz,i)] 3(?.-'1'2)
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Thus, =ad \
; A, A(D (8" (35)

AT
- 51/ ° Femres) S renres)] a
Tl c

) § i 1 )
+ T F(Tl'!)r(Tl" ) p= F(TZ,S)F(TZ.! )}

One reascnable representation for 'vhite noise' of spectrel density

N, is noise having s eovariange function given by (33) with
N = ! (36)
and ¢ and 4 very large.

From (35) and (27), for{x(t)} with covariance function given by (33)
A

vith-c--lonndc,dﬂu,
2 L 2
1im G(¥,¥' | £.) = exp Y [j F (t.Eo)dt (37)
o o T
1
T, =
+_/ﬁ F(t,$)F(t,§')dt - jﬁ F(t.S)F(t.fo)dt
T b
1 1
5
s '/' F(t,8' )F(T, %D)dt-l
Ty -

It is reasonable to suppose that a close approximation to 02‘1b {t.5}

can be obtained for this case vith very large ¢ and d by inserting G as

given by (37) into (6), though this seems difficult to prove rigorously.
Another case in vhich G may be evaluated is as follows: let the

<

interval of observaiion be the vhole real axis -z t

<
=

oo, and let

\
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{x(t)} be stationary vith constant spectral density N over 0 S ftSw
and zero spectral density for f >¥W. Also suppose that for each ¥ ,
P(t, 5 ) has a Pourier transfeéra vhich va~.ishes for If |(>W.

Then, the process {z(t)} way de rcgu*dcd(a) as being determined by
the random varisbles z(z3), 1=0,51,+2,... These are independent,
normally distributed random variables vith means P(ti, %), vhere t, = ;—w .
and standard deviations K _W. We cbtain the result that G(f,y' \ r)
is given exactly by the right side of (37), with T ==-2and T, = .

To recupitulate vhat can be acccomplished by using the above expressions
for G: by inserting any function A satisfying (5) into the quautity in
brackets on the right side of (6), one obtains a lower bound for the
variance, at § , of unbiased estimates of £(%); also, if A is any

generalized function,* then

ffG(}.!' I B) dA(§)dA(§') 4e equal to of

mIT

glb {f' ‘os

for any functicn £ of the form

£(%) = fG(?.'ﬁ'l So)d)\(S') + constant.

e
A possidle computational procedure for approximation of ozglb {I.Sok
is to select n points Si from 11 , and solve the equations
n
3.}:1 G5, 8| X)) ay = 105 - £(F) (38)

n

Then the function A= 3 818('5-!1) could be inserted into the brackets
i=1

on the right side of (6).

‘satisfying certain conditions mentioned in Bection I , including

the condition fd A(S) =0
v

N eseostityitvussaishssu e st
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III. EVALUATINN OF a‘?‘}b {r s} IN SPECIAL cass

We will suppose from nov on that the interval of ouvservation and the
noise process ix(t)} axe such that G(§,§'| Qo) is given, or very

closely spproximated, by (37) with T

|+ -w'Tlm.

1 2l
S8uppose first that

F(t,8%) = oF(t-T) (39)

vhere o bslongs to some real non-negative interval A, and T Dbelongs to

some finite real interval [a, b] . Here Ss («,7); TT = d4irest product of

A and (s, b].
Then
aa'/?
R 0 (o}
G(S.!'l ‘O) =, [ ] {ﬁ(r-’cﬂ (lh))
4/«0 “'/“O
[H(t- r°>] [H(t -to)]
vhere
2 .w
2“0 2
R = N j F (t)dt (41)
(o]
- 00
H(T) = exp{R p(D)} (42)
ag
jF(t)F(tot)dt
PO - =T (43)

fFZ(t)dt
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Equations (9) and (10) become

a(cx'/a o« ,
/{u(r-w] LTS DR YL 20 3) B PSR IS B TS
T
where
-o('/
ax(v) o« f[aE-T)] T anyh
and
r o(a('/“z
nglb {f'50§ = O-R‘/ ‘/‘[H(r"tl)] ° dA‘(!MA‘(!') (“5)
7 77

A. FURE AMPLITUDE ESTIMATION

Suppose in (39) that T 1s knovn, and hence may without losr of
generality be taken equal to zero. Also suppose A is non-degenerate and

that X is interior to A.
Thus, O 1s given by (4O) with T= T'= T, = 0.

let (%) = « , Then (44) becores

wu'/?
_/[mm] T PO (o] /o (€= ) (46)
A o

This is solved (since H(O) = eR) by
P
"O ]
d«) = = O () - qoé(«-ao,\ da (47)

vhere § and § ' are, respectively, the delta function and its derivative;

that {s, for any function g(«) differentiable at o«

fs‘(“) 5'(«-«0) de = g'(ao); f g (a) J(M-oLoﬁ dx = g(uo).
A A

R e
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Thus, frem (45) vith £(%) = «, -
2 -1
2 do No 2
LAY {r.ao’; - = T jr (t)dt (48)
= o
or
2 2 1
=3 0 c1b {f'“o} " TR (49)

o
o

One interesting feature of this result is that the ansver is
independent of A, the a-priori range of variation of X , provided A is
non-degenerste. This means that decreeasing A does not decrease the minimm
error varianee of unbiased estimates of X -- {n other vords, if one has an

unbiased estimate attaining the varianee o in (k9), and then if A 1s

glb
decreased, one cannet use this increase in a-priori information to provide

an unbissed estimate of decreased variance.

B. PURE TDE-DELAY ESTIMATION

In this case ve vill suppose that F(t,%) is given by (39) but that
%, 18 known, so that TT={a,b] ; =T .Thus G ts given by (40) vith
o= o' = oco.\k vill derive, under certain conditions, an asymptotic
expression for °2¢lb {f,t‘o} as ‘Jo-a and b- T.‘o approach {nfinity, for
certain funsticns £ for vhieh ((T)= T.

We vill first assume that ‘t:o = 0 ; the answer for general 1:0 will
be obtained by a minor modification of the result for T, - 0 . Under

the assumed conditions, ve must solve for dr*(T7) the equation

b
[ r@-m) axeen = [ro - 10)] w) (50)

S




P-1468

8-25-58
16
Also
2 R [®
o] glb = ° j; [f(r) - f(o)] H(T) da*(T) (51)
¥We first make the following definitions:
let
L(T) = H(T) -1 (52)

We assume that L(T), TL(T), and T°L(T) are integrable over (- o, o),

Alse let

- J

p
Lu) = je-iuTL(r)dT (53)

- 00

It 1s not hard to shov that <(u) is a real, strictly positive function of

12,
u ., VWe will suppose that —‘%tf‘l)- is integrable over (- o o),
(u)
Nov K let
T _
dae(r) = ,A(t) dx . dt - Id<T (s4)
L)
vhere
l 2
0 e b Ele (55)
2 &) [£(0) + v - 4]
and
- L' ()
i u
M(u) = ‘/e-i‘n,u(t)dr e ——— K(u) (€5)
£ (u)
- 00
ku2

vhere K(u) 1s a funetion -- such as e

-- vhieh insures that M(u) has
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the necessary integradility properties to justify the folloving steps, dbut

for vhich the Fourier transform is close to a delta function. We obtain

b
f H(T-T')AN*(T') « TH(T) + remainder. (57)

T™he remainder term can, as &8 —» -, b — + o0, be made very close to szero
exoept for valuss of T near the end points a and b,
Also, using (S1), ve obtain with the aid of Parseval's formula

o 4
2 R J 1 L% (u) 2 [ 2
o {f.O} ~ e —j du + T® L(T)dT
e1> { & J Lw) £(0)
2 2.2 e
. Ry R (% - 2%
3 £(0) 4 L) (&) + b - a]

(am a9 -o00, b 00),

It {s olear that if T 0, 0%, {f,T} can be obtained from (58)
simply by replacing & aad b respectively by a-T ,b-T in (58).
It vill be acticed that the term depending cu (s, b} inersases

as (b-a)>. On the other hand, the estimate ° 2P for T vould have bias
(T-‘;b), but vould have mean square omrnotmnurthm%- (v -u)2.

Thus, vhea R is 80 small that the a-priori range of variation of T s

the main fagstor determining msan square error, the requirement of unbiasedness
is clearly disadvantageeus. On the other hand, i{f R s large enough

that mean square error is mueh smaller than (b - a)° as vill be true in most

oases of interest, one wvould expect on intuitive grounds that any optimm

estimate based omn a reascnadle criterion 'vould be appreximately umbiased

?
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(exeept whea the a-prieri distributien of T over [a, b] 1is knewn and
nen-unifern). The term in (58) dependent on [a, b] 1s useful ehiefly as
a ecriterion for hov large R should be in order that the error varianee de

effectively independent of (b - a).
In many cases of interest the parameter valuss vill be such that

o

=R 12
2 e L' “(u)
aiv 175} Ch L ()

- 00

It is therefore of interest to evaluate, approximately, the expression on

the right side of (59). This has been done in a number of cases in Ref. 9.
Here we will esinply recapitulate the results:

Case 1
Here it vill be assumed that p(T), defined by Bq. (43), 1s given by

p(T) = /3(1') cos W T (60)

vith, for emall T,
P) = 1-38°T (61)

then, for sufficiently large R,

R £12
e (u) o :
> f a0y du ~ 5 for w, = 0 (62)
RA
- 00
P
- 1 “o
= == for uo>>'ﬂ and — >> 1
RB 2RB
P
- 1 wo
=~ —3 for Ww_ >3 and —— << 1,
Rw ° l
o 2R
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2
W

These results can be interpreted as followve: for Z—R—;-i > > 1,

the result is the sams as for wo-o,untu, it is the result determined
a

o~ (78}
by the eavelepe p(T) ; for 5?"- << 1, the result is that associated

vith a sinusoidal fine structure of frequency W . The transition occurs
2
w
0

at = T that is, vhen the minimum error standard deviation

2
2RS
associated vith the envelope becomes roughly equal to the wvaveleagth of
the fine strueture of p (7).

Case 2

Here we assume p(T) to be given by (60), but with

p(T) 1 -7l (63)

)

for T near the origin.

Then, for sufficiently large R,

o
b L LR TR 1o tor  w =0 (64)
L (u) 2R°Y
- 00
o~ 1 for w S>> Y and =d >>1
2R212 o RY
1 1 “o
~ — for w >>Y and — <<— <« < 1
Rui o \ﬁ!_ RY
; for w y»y»Y and 0 1
2R%Y° ° Ry <° :/—f

it
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It wvould be possible to earry out much the same sort of analysis &s in

Ref. 9 for P(T) of the form

P(T) = P(T) coswT + £,(T) sinwT (65)

vhere Pl('c) and PZ(T) can be expanded in a suitable manner at the origin.

C. PURE DOPPLER SHIFT ESTIMATION

Here it is assumed that

52 .
F(t.8) = o F(e t) (66)

vhere 5= 5 .

The paramster 5 1is a msasure of the 'doppler shift.' For example,
if we are dealing with a reflected radar signal from a target moving with
radial velocity v, and if ve sssume % to be small (c = velocity of light)
then approximately ¥ = %—'— .

It wvill henceforth be assumed that the a-priori range of variatisn of

S is a real interval [a, b], and that lal<<1l, |bl<<l,

The factor eg/z sultiplying F makes the total received energy
independent of the valus of 5 . This would not actually be the case,
since the received energy actually vould be greater for approaching
targets and less for receding targets. However, the factor e ’:' makes for
s great simplifieation in the mathematics, 80 it vill be assumed that the
received energy is in fact independent of 5 . In cases of practical
interest, this assumption probably has little effect on the calculated
value of the minimum variance of wnbiased cstimates of £(3) .

We retain the assusmption that G can be obtained from (37) with

rlz -oo,'rzz @ ; the result is as follows:

e e
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Let -
R = NL F<(t)dt (67)
0
B a0
4
R /r(c)r(.‘zm
- 0 .
F(S) . (63)
/Fz(t)dt
- 0D
H(S) = exp [R #(5)] (69)
Then
R \
a(s,3' | %) S HOSE 30 (70)

H(Y- so) H(g'- to)

It is seen that this s of precisely the same form as Bq. (40)with
« »«' = o axcept that §,S' are substituted for T ,T' and the
definition of H is given by Eqs. (67), (68), and (69). Therefore, the

develepments of part B can be followed, finally resulting in:

Let
L(S) = H(Y) -1 (71)

-
L(u) = fe'i“‘ L(3)ds (72)

then ozglb{f ,!.}, the greatest lover bound for the variance of msatly unbiased
estimates of $ vhen the true value is !o , 1s given approximately by

Bq. (58) with a- 5,0 b-%  substitwted for a, b, and of course vith

the nev definitioms of L(u), L(¥), R, etc.

In particular fer sufficiemtly large R,
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o0
‘ l
-R !
2 _ e L (u)
6 ap 11058 = -——;/ x(u)-du (73)
o0

We vill nov turn to the evaluation of Z(%) in a large class of

cases. Namely, ve assums F of the form

F(t) = Fl’t) cos «.Jot ¢ Fz(t) sin w t (726)

It can then be estadblished vith some elementary trigonomstric

identities that

o0
/2
F(s) = —2 H (t) dt (79)
[Fe(t)dt -
vhere -
Q«'(t) £ %F (t)F (e t) { coa -l)t] N co-{uo(ox ‘l)t]} (76)
V3 FL(OF, (o5t { cosfw (o -1)t] - cosfw (e q)z]}
. % F (t)F (o t) { ain[w (e -l)t] + cin[wo(og 01“.]}

eln[wo(o‘ ol)t] }

Thus, #(S) can be readily evaluated for cases in vhich the Pourier
b

. I‘Z(t)}‘l(ost) { ein‘_uo(e‘ -l)t]

transforms of P, (t) P (o‘t)a.nnre(t)r t) l.ndof?l(t)te(cst)

ol
and F,(t) Fl(c3t) are known.

Also, in most cases, {f w is sufficiently large, the terms
involving -oo(e’ +1)t can all be neglected.

As an illustration, suppose

Fl(t) = exp [-% 32t2] (-2t So0 ) (77)

Fe(c) = 0,
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Then, since 15| 1s alvays assumed < ¢ 1, and assuming ©_>> 3

2 .2
-uog
#(§) = exp — (78)
La

-R ”‘t'z 2
;w j (u) du = -2—-53 (79

L (u) Rwo

- 00

It is also not difficult to obtain the result for

Fl(t) = exp [- % 62t2] . Fz(t) « kt exp[- %12t2] q

for exaxple.
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Appendix I

A proposition vhieh may be of use in evaluation of G or of 0281b is
as follows:

Suppose T and T, are finite and {x(t)} 1s continuous in ths mean

['rl,'rz] .
Let {S.} be a sequence of sets of points, 8n consisting of the

points tl(n), A 005 tn(n) belonging to the interval [‘rl.'r2] . Let

S; be the union of Sn and the set consisting of the points T, and T

1 2’

Let An be the length of the mexisnm interval between neighboring
points 01’8; , and suppose & —> O as n - eo.

Let the matrices ('V [t(n) (n)]) be nonsingular vith metrix
inverses ('q(n) .

Then

oo
(n) g (@) (n) w1y
Z )\vpy(!) p’(y') = lim Z: Myy F 1 '8 FO 0D (80)

Vel 00 1, 4=l

To show this, consider the linear predietion provlem introduced in the
(6)

proof of Eq. (29). It can be shown that
~ ) ~ (n) (n) (n)
3D - 1m0 1,5 Py xe ™) (81)

n —» oe A=l

Equation (80) then follows from computing E [?{(}) q(s' )]
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