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SUMMARY

We consider a generalized form of the problem of optimum linear
filtering and prediction for random processes. It is shown that, under
very general conditions, the optimum linear estimation based on the
received signal, observed continuously for a finite interval a £ t & b,
is the limit of optimum linear estimation based on sampled data - i.e.
based on the received signal observed at only a finite number of points
in the interval a =t & b - as the points of observation become denser
and denser in the interval.

This yields a method for obtaining the optimum linear estimation
in ceses vhere the conventional generalized Wiener-Hopf integral equation
technique has not been shown to yield a solution. The relationship betveen
the sampled-data solution and the Wiener-Hopf integral equation soliution
(vhen the latter exists) is discussed.

Also, a problem is posed concerning the rate at vhich the error
variance of optimum sampled-data estimates approaches the error variance
of the optimum estimate based on continuous observation, as the sampled
points become denser in the observation interval. This problem is solved

in one case.
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1. INTRODUCTION

A. Statement of the Problem

A large class of linear estimation problems can be cast in the
following form: suppose one is given a randam process z(t) in an interval
a @t ab. A sample function of this process will be called an observed

sample. It is assumed that

B z(t) =« O forast &b (1)
$ (s,t) =B 2(s)a(t) < oo fora s o, (2)
a=tab

r -

Here and in the following, the notation l‘ denotes the ensemble
expected value of *he quantity in brackets. The function ¢z is called tue
covariance function of the randam process z(t). We do not assume that
2(t) is necessarily stationary.

Also suppose there is a random varisble, q, vith

E q = 0 (ﬁ)
\ 51
B g < ° ()
and
A{t) = B qe(t)<« o0 forast v (5)
L _

The problem 1is to form the optimum linear estimate § of q in the
followving sense:

Pind an estimate q of q such that
(a) Q@ is formed by a linear operation on z(t). in the sense to be defined

in 3ection I.B; and



P-1206
10-24=57
2
(v) l(:(?i - 1)2] 1s & minimm for all estimates satisfying (a).
In Section I.B belov wve define the class of linear operations on
z(t) within vhich the optimum is to be found. This class contains all the
types of linear operations vhich are usually considered. Also, the
existence of a unique J vhich is optimum vithin this class is guaranteed
(see for example Ref. 1 or Ref. €).
An example of a more familiar-looking type of problem vhich can be
represented in the above form is as follows:
Let the random process x(t) be called the 'signal,' with

[ty ]
B Lx(t)J = 0 (6)
g (s,t) = l[x(-) !(t):,' < oo (7)
Let the rendom process n(t) be called the 'moise,' vith
B n(t)-‘; = 0 (8)
4
[ ]
P (s.t) = B a(s)n(t) <& o0 (9)
and
1
ﬂn(o,t) = l[x(l) n(t)‘ < oo (10)

The observed process z(t) is

z(t) = x(t) + n(t) fora £t Sb (11)

Thus
i
B (0.t) = B [2(0) 2(t)] = g (0,8) + B (0,8) + B (0,0) + B (ti0)  (12)
A typical interpolation or extrapalation problem is to estimate the

signal value x(t ) at same time t, by & linear ocperation on the observed

sample z(t) over the interval r‘vb] « If t, 1s in the observation interval
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a,b this is called an interpolation (filtering or smoothing, problem;
([

if t_ 18 outside ia,bJ , an extrapolation (prediction) problem.

Stated in the formulation of the first few paragraphs above, ve

vould have \
qQ = x(to) (13)
p(t) - E [z(t) x(to?} - ¢x(to.t) + ¢x“(co,t) (L&)

and ¢l(-,t) given by Bq. (12). We wish to find a linear estimate i(to)

]
for vhich B [Si(to) - x(to}fQI is & minimum.

Frequently the time to and the observation interval ,:a.oJ are
regarded as varying, and one is interested in the manner in vhich the
optimum lipnear operator on z(t) and the minimm error variance vary with
t.o. a, orb The formulas {n the remainder of this paper will not
explicitly reflect the variation with to' since they will be expressed in
terms of the formulation of the first few paragraphs. However, the
depsndence of the optimum estimator and the minimum error variance on to
{n this case can always be made explicit by use of Bqs (12), (13), and
(14). In a similar manner, many other problems such as estimation of the
derivative of the signal, etc., caun be translated {nto the formulation of
the first f'ew parsgraphs.

In another problem which 13 “requently studied. it i{s assumed that

-

the signal x(t) has a non-randam comporent: X Lx(t) = m(t). vhere m(t)
J

e knowvn except for a finite number of unknovn but non-rardom parsmeters,

N X
upoa wvhich w(t) depends linearly i.e. m(t) = E aku(t) vhere Pk(t)
kml i

are known functions. In this case, the objective is to find, say, the

optimum linear estimate Si(to ) of x(to) subject to the additional restriction
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that E x(to) = m(to) identically in the unknown parumcters a . The
{ J

main results below can be extended to this case in a fairl!y straightforvard

vay. This is left as an exercise for the interested reader.

B. Definition of Linear Operation on the QL served Process

Definition. Given the randam process z(t) in the interval a = t = b,
assumed to have zero ensemble mean and finite ruvariance function, a (real)

linear operrtion on z(t) ve define to be any randam variable of the torm

n
11 m. i ci(n) z(ti(n)) “15)
n 5 oo i=1
where 1.1{.m. stands for 'limit in the mean,' Ci(n) are real constar .3, and
\ ni
ti(n} are points ol |&.b . (Here and in the following. the not . .on

r ~

la bJ signifies the closed inter/al. a = t & b.)

All the types of linear operations which are usually considered are
special cases of this. Also. the existence of a unique linear estimate
which {8 optimum within this class of est.mates i3 guaranteed.

For processes which are conti{nuous in tlie mean over a finite interval,
an alternative (and equivalent) definition is as follows (Ref. 1): a
theorem of Karlunen states that processes z(t) which are continuous in the

' 1
mean over the finite interval La,b can be represented in the forr

<\"" g (t)
2(t) = /) oz . )
] \ =
‘v"’L v 1%
vith convergence in the mean for t in a,b . @ (t) and = are the

eigenfunctions and eigenvalues of the integral equation
.

,4
-
—

giet & ~[ ¢ (a,0) #o ) (

and ¢, ore random vari{ables givenby
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=/, ¥ z(t)¢v(t)dt (18)
vith
9 r
l{z»: « 0 E z“zv], = buv (Xronecker delta) (19)

A linear operation on the process z(t) is then defined to be a random

variable of the form

>
U . (20)
val

vhere e 5
Z o} 7 o0
v=l v

There are useful applications for both of these definitions of linear
operation to the linear interpolation and extrapoclation problem. The
opt imm linear estimate ¢ and the minimum error variance ;i car be found,
for processes vhich are continuous in the mean, by utilizing the represen-
tation (16); (see Ref. 1, section 6 and the Appendix to the present paper).
lHowever, for purposes of this paper the first definition above of linear
operation is of main interest.

C. The variational or 'Integral RBquation' Method of Solution

What might be called the conventional method of solution of the
problem posed in Section I.A is as follovws: one considers linear operators

of the form
q f 2(v) k(tHT (21)

Bven in the simplest cases, vhen desaling vith finite observation intervals,
it is necesnary to assume that k may contain delta functions of various
orders -- that i{s, that /a may give finite weight to the values of z(t) or

i{ts derivatives at individual points.



For estimates a of the form (21),

[ A
r ' » oAl
I 2 t 2
E(d-q) J s ja k(T) | [ p,(0,7) k(oMo - 2p(T)  dr + B Q" (22)
‘ ) J
Denoting the estimte which minimizes the expression in (22) by 4,
and the corresponding weighing function by i, A application of the

usual variational technique yields the followving integral equation for k:
f i(r)ﬁz (T.t)drt = p(t) (asts=abd) (23)
a

vhere ¢! and p are given by (2) and (5). The minioum error variance

B {ﬁq - q)2 is given by

r 3 L P
L(ci -q) = EBEqQ° - . k(r) p(t) at (24)

! i

Bven in the simplest cases, when the observation interval is finite
the integral Eq. (23) does not have a rolution unless k 1s permitted to
contain delta functions.

Zadeh and Ragazinni (Ref. 2) have given the solution to this equation
vhen ¢z 1s 8 statlonary kernel (i.e. depends only on '8 - t ) and
corresponds to a rational spectral density function. It turns out that
for such cases k need only contain delta functions at the endpoints a and b
of the observation interval.® This is a fairly remarkable fact. There are
important stationary random processes with rational spectral densities for
wvhich the sample functions are differcntiable to a certain order, say v,
wvith probebility one. In such cases, one might expect that the optimm
linear operator might be of the form

\ b
o e (o (2
-0 a

* Actually some further conditions on Qz and P are needed.
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vhere K, are functions of bounded variation and z(i)(T) is the y e
derivative of z(T). The fact that the optimum operators in these cases
actually involve delta funct.ons only at the points a and b is fairly
remarkable.

It {s of course necessary to justify the variational derivation of
the integral Bq. (23) vhen k 1s permitted to contein delta functions.

That is, even if (23) has a solutioun, it is in such cases necessary to

give a separste proof that the satisfaction of (23) is in fact & necessary
and sufficient condition for the minimization of the expression in (22);

see for exarmple Ref. 4. Also, one should prove that the optimum estimate
derived in this way (s actually the optimum of all possible linear estimates
and not just the optimum among estimates of the form (21). This can be
proved in many cases.

For general kernels ¢z(s‘t), however, one cannot assume that (23)
has a solution even if 'k 1s permitted to contain delta functions; nor can
one asswuse that the optimum linear estimate is of the form (°%9), say.

It vould be very desirable to exhibit a method for obtaining the
optimm linear estimate ¢, vithout meking any special assumptions ae to the
form of ¢z' The main purpose of this paper is to exhibit such a method,
subject only to the very general restrictiaon that the process z(t) be

[

continuous {n the mean over a,b . (The Appendix briefly discusses an

-

alternative msthod for obtaining 4.)



P-1200
10-2L-Y7

I1. OPTDMUM LINEAR ESTIMATES AS LINITS OF OPTIMUM LINEAR SAMPLED DATA
RITIMATES

Buppose we select n distinct points tl(n), S tn(n) from the interval

r 1 ; 1

La,b . We wjill call this a subdivision 0 of the interval 'a,b .* Ve
| s

need not assume that these points are numbered in order of magritude.

An estimete wrich depends only on the values of z(t) at ¢ finite
number of points will be referred to as a sampled-data estimate. The most

general linear operation wvhich can be performed on the set of random
n
(),

variables z(t,1 , { =«1,...,n0, {8 of the form

" 2 (n) (n) :
Q = ., z(t.1 ) (26)
{=1
vhere ci(n) are real constants.
Definition: We define tie optimum linear estimate qn of q, based on the
observed values of z(t) at just the points ti(n), i =1,.....0, to Ve that

-~

random variable of the form given by (2¢) which minimizes B (&n - q)°
anong all random variables % of the form yi.en by (2t). (See Ref. ! far
a detailed discussion.)

(It 18 of course understood that q and Q\ depend on the specific
points ti(n) and not just un the number n of po!nts, but for convenlence
this vill not be explicitly {nuicated in the notat:ion.)

Later ou ve will give explicit formulas tor %). At this polint, we

wish to bring out the fact that thne overall optimum linear estimate 3{ is &

limit of optimum estimates based on sampled data.

" . actually de;ends, of course, an the specific points t‘(n) selected,

not Jjust on the number of jpoints.
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For reference, we first give the following well known definition:

The process z(t) is sald to be continuous in the mean for a & t = b

r 2 N

~

provided E Jz(t) - z(s)}“ approsches tero a5 s t, for each t in a,b

L - { )

Theorem 1. Let z(t) be continuous in the mean over the finite interval

- ]
'a,b]. Let Z'lnk be a sequence of subdivisions of a,b . and define

L ) L

An = length of maximum interval betveen neighboring(n‘ (27)
l ’

points d’(tl;o point set consisting of a, b, t
n
..... tn
vhere ti(n). { «=1,..., n are the polints correspond.ng to the subdivision

’Jn' Suppose that An ~ O asn - ~. Then the overali optimum linear

estimate 4 is given by

q«1.1.m dn (28)
Also, let D .

W= B (d-q)

(V ?

ﬁn R ‘qn-q)J
Then

Yo« 1im fzn (29)

1} o

Proof - Since J is a linear operation on z(t), d is of the form
n
. 3
¥ « l.t.m. e (8) (T ("’) (0)

o » o0 {=]

vhere Ti(n) are points of a,b . possibly different fror ti(n).

(Thus, by definition of 'li.near operation on z(t),' J 1s the limit

in the msan of some sequencc of linear operations based on sampled data.

The point of the theorem is to exhi{bit sequences of specific linear
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operations on sampled data which converge in mean to q.)

By continuity in the mean of z(t), each estimate of the form

by linear operations on thea variables z(t

sufficiently large m. Thus, one can vithout loss of yenerality say that

?1 = 1.1.m. ) ¢ z(t (n)) (51)
3 .

4 O

t'or sume set of constants c¢

(*1) holds, let

&n . ci(“) z(ti(n)) (22)
| i=1
so that ¢ = 1.1.m. %
Also let )
\ : a2 e
hooo= E‘(qn'Q) (&)

Since ah is defined as tie ojtimum linear estimste based on the

"
polats of « n’

P
]
O
—
2]
’P
=
)
Kol

But, since @ = 1.{.m. Q}. {t follows that
)]

anl tnerefore i Iim .. . Theretore. fram (=),
1

Al -
1 i 1 e l1im i (.x. \

n o - n
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Nov, ve vish also to shov that q = 1.{.m. ?in This vill be accamplished

if we cushwthatl(in-%F »Oas n .~ . To this end, let

q° = (l-x)’(uthin (30)

wvhere kX i{s any real number.

Then,
d'—q:(l-k)(dh-‘l)*k(in"l) (37)
Therefore, -
r Al
P
) 4 L(“o _q)2‘ =’ﬁn (l-k)24 M .]:_. (58)
J / e
vhere ’
l { ) V) .
P —— B (q -4q) (¢ -4q) (33)
aou L
n ' n
and
ﬁ’n
e L] — (hb)
bi
n
Then
r' 1
E (a -q)
= = co1 ek Bzet 0 loipee ce ()
b . e

n

Therefore, {t must be true that

since othervise it would be possible to choose k so that B (&X° . q)

— N
t

vhich is impossible, since o( * is & linear estimate Lased just on the

points of Jn.
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By (42) and (33",
. - - - ¢\
E (q, -4q)(q -q) 1. (L)
Therefore,
!k(%”%) LS (L)
Tberefore, by (3%5), E (q.n - c'ln“ O as n » ... This proves
Theorem 1.

Coroliary 1: Let C by any class of linear estimates of q which contains

all eitimmtes of the form

>

Q - 2(T) dK( 1)
‘a
wvhere K 1s of bounded variation. If there exists (n C an estimate, say é,
wvhich is optimum among all estiuates belonging to C., then q 18 the overall

optimum linear estimate {

I'roof: This is an immediate consequence of

(a) the uniqueness of g,

(b) the fact that all sampled-data estimates helong to any such
class . and

(c) Theorem 1.

specific formulas tor the optimum sampled-datsa estimates q, are as

followe (see also Ref )
(n) (n)

‘ongider the subdiviston n of a.,b 4ith points t.L yoe e t'n .
-
Define
(n (n)
t t,
¢11J Qz i 3
")
)
Qi ¢ t.i
z : ¢, (o)
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It is desired to find constants éi(n) such that B| + ¢ z/t1

\

is minimized. In the foiloving, ‘n order to avoid circum'ocutions, it will

be assumed that the matrix (¢11J) is nonsingular. Of course, this

assumption is not necessary for the existence of a unique optimum %

« (o)

) 18 singular, the set of constants 1

(although ir (¢ glving qn will

i}

not be unique ). However, assuming nomsingularity of (@ ., ) for convenience,

2t
the process of finding éi(n) is a simple differentiation problem. the
result being
Theores 2: Let (¢1U) be nonsing.lar, and let
-1
14 4 . ’,',_)\
( 21 wlij) (matrix inve:se) (k)
Thern
n
G Tug -
b2l
r o
by - B - Yz PLby (x4
1,)=1

it is {nteresting to note wvhat happens heur'st:call; wvhen n is
alloved to approach i(nfinity (and b defined by () approaches zero) in

(7) and (48). We have

n n
) , () < 1
%1 , kili ang unngkq, . kxpi
151 inl
vhere
n
. )
L i By
Jml
n
That {s, (ki) i{s the solution of the equation Py * ¢“‘, k,
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In the limit, then (of course, on & purely heuristic basis),

{, > ®(D) (1) av
[ %

b
b, B [12] - J k(?) p(1) &v
8
/,b
vhere k(7) is the solutiom of p(t) = ] $. (+,7) k() ar.
a

This is seen to be the result expressed in (23) and (24 ) derived by
the 'conventional' variational techniques. Of course, this passage to the
limit is unjustified if the resulting integrel equation does not have a
solution. If the integral equation has a solution, and if it can be
proved that this solution actually solves the problem of minimizing the
expression in (22), than this passage to the limit is actually justified.
For a discussion of the 'integral equation' method of solution, see for
example Ref. k.

An interesting problem vhich nov ariees is the following: given
¢z' p, B [2J, and a subdivision . W of s,b} , establish an upper bound
for h‘ - . If a sempled-data estimate dn is used as an approximation of
4, 1t would be interesting to knov how far short this falls of the optimum
estimate §.\ It would be desirsble to obtain such & bound directly in terms
of the properties of ': and r, vithout having to knowv explicit expressions
1a elesed form for q and i. This problem seems difficult to treat in
general. An example of this type of result is the following:

Theoren 3: Let :
e PR
t(n) . i B i(b - a)

i n
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and let p(t) be at least three times differentiable and satisfy, for t in

the finite interval [.,b:l "
lpa(t +h) - pa(t)i “‘1"

. . l
,p(t+h) p(t+h)-p(t)p(t)‘ szju (49)

‘p(t +n) Bt + b) - p(e)'p(t)l stlu
Then p

" ¢ b - -a | ]
By - '/\bn.) zbi’ B:l 'L"(z‘“L *‘3“'

(50)

+
©
—~
| J
~
=
| ]
~
-
©
-
o
~
o
—~
o
(.
W
+
(]
—
o
'
]
~

It is easily seen that this is a rather unelegant result. An outline
of t.l.n proof is as follows: For the particular case assumed in the
theorem, it is possible to explicitly invert the matrix “zid) as in Ref. 5,
and thus get an explicit expression for

'nl
un - 2 ,fuJ Py PJ

1,3=1
We them evaluate I = lim Un directly as in Ref. 5, except retaining the

firet order terms ia § « >-® |

The result cames out as stated in the
theorem. Unfortunately this method of proof is of very special applicability,
in that in gemsral one camnot expect to be able to invert “zij); also a
knowledge of Y in closed form is involved in the proof.
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If the process z(t) and the random variable q are jointly Gaussian,
then §, the optimum linear estimate of q, is actually optimm among & much
vider class of estimates. We define the class F of operstions on z(t) as
follows:

Definition: ¥ contains all rendom variebles of the form

v . (a) (n)q j
l.i.m. )t Lz(t ), <., 2(t ) (51)
n 2 (n) LZ 1— ' 4 n J
vhare tl(‘), _— tn(") belong to ;l,bJ , aad £, 18 & random varisble
measursble on the sample space of z(t.l(n)), ceey l(tn(n)) and for which

|

2
' f(n) < G0 .
Theorem 4: Let the process z(t) and the random variable q be jointly
Gaussian. Also, as before, let ‘d be the optimum linear estimate of q and

~ | (X - 2‘.
let u - E l.(q. Q)_J Then )

< A 2
bos lliL(q-q)J

for all estimates q\ belonging tc the class F.

Proof:

An estimate q belonging to F is of the form (51). Let us write this

d =1.1.m. &n (52)

Hovever, according to Ref. 6, pp. 561-562, if z(t) and q are Geussian,

—

n‘L(in-q)‘?J s x !Q‘-q)‘?’ (54)

{

vhere '&n is the optimum linear estimate based on just the variables s(tl(n)),

iwiy z(tn(n)).
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Nov, since & = l.i.m. é‘n' then E (q - q)2] = lim R (q\~n - q)2

But from (54). inf B ({n-q)2 : lin K (%-q)e,. Also

i

g - R L(q’ - q)zj : {inf B -('Qn - cl)'?i . This proves the theorem.

|

We can also state

Theorem 5: Let the process z(t) and the rancam variable q be Jointly
Gaussian. Let ./ nS be a sequence of subdivisions of the finite interval
la,b: satisfying the conditions of Theorem 1 and, in addition, having the
property that o= is a refinemsnt of ‘,'n for m ’n. Also, let qn be the
optimm linear estimate of q based on the points of -’ 0 Then

q = 1lim %
vith probadbility oms.

Proof: This fullows directly fram a theorem of Doob (Ref. =, pp. 232-233).
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APPENDIX

The Karhunen rer—esentation of processes which are continuous in the

mean can be used to obtaiin ¢ as follows:

We Lave, for z(t) continuous in the mean over a,b , (a, b both
finite),
Y g (¢) |
z(t) 2 ——— ., tE ap (AL)
‘ rl VA\‘ ' g

with convergence in the mean. The ¢‘ and T, oare eigenfunctions and

eigenvalues of the integral equatian
b
g(t) - .(s,t) P(s) ds (a2)
a

The random variables r are given by
b

z = z(t) @ (t) at (A3)

Also

uo My
We now let
a - .z with y (AS)
o \ ) , \
b =l l
and determine - 10 thac E (q - q)c) is minimized. The resulting

\

constants vill be denoted by fgv;

o7
18



Thus,

Therefore

with

P-1206

and z given by (A3). Also,

10-24-57
19
I 2] .Y 2
IL(Q-Q)J - B _(M‘\vtv-q)
O ‘ 1
.i xf . B [qaj . 223 ) [qzVJ
~ )
A, = B {.vJ’ (a6)
'(‘ .
p(t) = B :gz(t) -‘_‘.’,4'- B [Ql ]' p,(t)
! b
z [«z | =/, p(t) g (t) at (A7)
- - V‘
e
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Bquations (A8) and (A9) could be vritten
b
q = l.i.m. s(t) k (¢) at (A1)
J‘
vhere o
ko (2) = > LA #(t) (a2)
1

This is very similar to the result that would be obtained if one
tried to 'solve' the integral Bq. (23) by the method of eigenfunction

expansions. The resulting 'solution' for k(t) would be

k(t) =) N7, 8 (¢) (M3)

) |
with ,‘J\, given by (A9). The trouble with this is of course that the sum
on the right side of (AL3) usually does not converge in any ordinary sense
to a weighting function which corresponds to . In other words, slthough
§ 1is the limit of operations on t(t) which correspond to the wveighting
functions kn, the limiting operation q does not correspand to any weighting
function k vhich is the limit of the k in the ordinary sense.
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