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SUMMARY

A computational procedure is given for
finding the minimum of a quadratic function
of variadbles subject to linear inequality
constraints. The procedure is analogous

to the Simplex Method for linear programming,
being based on the Barankin-Dorfman procedure
for this problem,

1
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THE SIMPLEX METHOD POR QUADRATIC PROGRAMMING

1. INKTRODUCTION
In this paper, by "quadratic programming” we shall

understand the problem of determining values of several real
variables, subject to linear inequality constraints, which
yield the extreme value of a quadratic function. Besides

being a step on the way toward solution of the elaborate non-
1inear programming prodblems whioch economic models often present,
& usable computational procedure for quadratic programming can
be applied to a number of problems of interest in themselves:

Regression. To find the best least-squares fit tc given data,
where certain parameters are known a priori to satisfy

inequality constraints (e.g., being non-negative).

Bfficient production. Maximization of profit, assuming linear

production functions and linearly varying marginal costs.

"Portfolio” problou.' To find a combination of random

variables having given expectation and minimum variance.

Convex programming. To find the minimum of a general convex

function under linear constraints using a quadratie approximation.
Let the variables of the problem constitute the n-vector

X = (xl, coyp xn)' (* will denote transposition; we take x to

be a column vector, that is, an n-by-1 matrix). Letting A be

\
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an m by n matrix, and b m-by-1, we will express the linear

constraints of the problem by
(1) x>0, Ax =D,

that 1s,
xJ >0 (J=21, .., n), Z?—l ‘iij - b1 (1=1, .., m).

We recall that any combination of linear equation and
inequality constraints can be written in the form (1) if
additional variables are allowed into the problem.

Let p be a 1 -by-n matrix, and C be an n-by-—n symmetriec
matrix. We shall write the objective function, the (partly)

quadratic function to be extremized subject to (1), as
(2) £(\,x) = Apx +1/2 x'Cx,

or

£(A,x) =)Ly Pyxy + /2L 5, X,Cpxy,

where | , a single non-negative real parameter, can be chosen
as convenient. The problem can now be stated as:

The quadratic problem for ) > O:

(3) Minimize £( A ,x) = Apx + 1/2 x'Cx

subject to x > O, AX = ).

An important restriction must be placed on the quadratic
part, C, of the objestive funetion in order to ensure the
suecess of the computational method: the function f must be

convex, that is, C must be positive semidefinite. 7This
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condition - apparently essential, in the present state of the
art, to all non-linear programming schemes - ensures that any
local minimum encountered in the problem will be the global
solution desired. Algebraically, the assertion of positive

\
semidefiniteness for C is that
() x'Cx > O for all x.

In economic problems, it is the ascription of non-increasing
returns to scale for all activities, since the marginal cost

of changing from the program x to the program x + Ax is given by

%f £{)\,x+tax) = pAx + xCox + tAx'CAx,

which will be a non-decreasing function of t. We shall assume
it from now on. A more detailed discussion of the role of
this property in quadratic programming is given in [4].

A number of proposals for the computational solution of
quadratic programming problems have been made in the last two
years; those which seem suited to high-speed digital computers
are given in References [1] - [6] below. Barankin and Dorfman
[1] first pointed out the linear formulation of the quadratic
problem, inspiring the present approach; our Section 2 is taken,
with changed notation, from Sections 1 and 3 of [1].

The principal respect in which the present method differs
from these is in using only the computational mechanisms of the
Simplex Method for linear programming problems., It is there-

fore a simple matter to convert a computing machine code for
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linear programming into one for quadratic programming; the
SHARE linear programming code for the IBM 704 requires
modification in eleven instructions for this purpose.
In the sequel this method is developed in two forms,
"short”" and "long." The computations of the long form are
1ike those of the short, but are aimed at solving the
quadratic problem (3) for all A > O and at the same time
avoiding certain restrictions on the use of the short form.
The table below summarizes the conditions for use of these
methods. The estimate of the number of Simplex Method changes-
of-basis needed to solve the problem is basel on experience like

that described in Section 6.
Solution of (3) by -

Shert Jerm m Porm

i

Conditions Either A = O or C C positive semidefinite

positive defInite

Solution

obtained for fixed A all A > 0
- - - e e i . o et @ ﬁ
Size of equi- up to m+n equations, !hp to »+n equations,
valent linear m+3n variables ,b—-+3n+1 variables
program - - ‘

#

Estimated number
of basis changes 2(m+n) &(men)
for solution

—

» “.
vl - -



2. PRELININAR

S$ince we are interested, in part, in the solution of tho’

quadratic problem for all A > O, let us define
]
for A2 O: P(A) = ninflpx +1/2 x Cx 1x50, Ax = ﬁ}-

Quite a bit of information about F(A) can be obtained
without calculating it. Throughout it will be assumed, of
course, tChat there exist feasible x, i.e. x > O such that
Ax » b. Nevertheless, we may have FP(2A) = - for some
(ar/\d hence all) AD> 0.

First, an important feature of the positive semi-
definiteness of C is given by ,

LEMMA 11 x Cx = O implies Cx = O.

Proof: Por any n-vector y we have
0< (y*tx)'C(y-Otx) - y'Cy + 2ty'Cx for any number t, whence

y'Cx = 0;j Cx = 0 follows at once.

This leads to
LEMMA 2: Por any 1> O, the "solution set” of all feasible
x such that f(A,x) = P(A) 1s the intersection of a linear
manifold with the constraint set, and px is constant on

this set for ~A)> 0.

Proof: Let feasible points x, y be given such that
S(A,x) = f(A, y) = P(X). Letting w = y-x, for any 0<t<1

the point x+tw belongs to the constraint set; since f is

»

I
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convex, and f( A, x+tw) 1s minimal far t = O and t = 1,
we have f( A, x+tw) = f(A, x) for all O <t < 1, or

A p(xetw) + 1/2 (x+tw)'c(x+tw) = Apx ¢+ 1/2 x'Cx, which
simplifies to '

(Apw + x Cw)t + 1/2 wCw t° = O [oce<a] .

Thus w'Cw = 0, whence by lemma 1

Cw = O, and hence

(5)
pw = O,

Conversely, it is clear that if £(A ,x) = P(A), w satisfies
(5), and x + tw is feasible, then f{ A, x¢tw) = P(A); so
that the complete solution set for A given is the inter-
section of the constraint set with the linear manifold

{x + tu} . Equation (5) yields finally px = py for any

two solutions.

If now for any A > O we choose a feasible solution X,
such that £( 2 Xy ) = P(A), by lemma 2 the value px, is
independent of the choice of x, .

Theorem 1: Por A > O, F(X) 1s a concave function; px, 18
monotone non-increasing; and X, 1s a solution ¥ of the
problem:

Hin{y'Cy : y20, Ay = b, py pr} .

Proof: 8ince £( A, x) is linear in A , the function
F(2) 1s the infymm of a family of linear functions, and

henoce ooncave.
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The trend of PX, is an instance of a Quite general fact,

Take any A and Mo Since x, minimizes f(A,x), we have
\

Apxa +1/2 x;\ Cx& < Ptp?“ + 1/2 7: CX',q 3
and since X minimizes rgp,x), we have
/“px/,. +1/2 71 C:/;u < /upr1 + 1/2 X'R Cxa .

Adding these inequalities and rearranging, we get

su'R)P?» < 9“'7‘)912\ ’
which yields PX,. < px; for yz >A. |
Pinally, since x, does minimize Apx + 1/2 x Cx, any
y such that y'CyOt;:Cx/\will give py>px ., which proves the

last statement.

The next theorem characterizes Xa in such a way that
we will be able to compute it. Only the sufficiency of
this condition for the minimization of £(A,x) is needed, since
its necessity will follow when we have established that
results of the computaticnal scheme of the next section

meet this condition if the minimum exists.

THEOREM 2: If x>0, Ax = b, and there exist v)0 (v is n by 1)

and u (u 4s m by 1) such that

(6) vxe=o0
and

(7) Cx -v+Au-+ hp'-o,
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then x soclves the problem Min{hpx +1/2 xCx : x50, Ax = b},

Proof: Let any y>O0, Ay = b be given. We shall show that
£(x,y) > £(2,x). Prom the positive semi-definiteness of C
we have

(y-x)' c(y-x) > 0,

enoe y'Cy + x.Cx 2 2x'Cy

o y'Cy - x Cx 3 2x ' C(y-x)
sc that

£(A,y) - £(A,x) = Xp(y-x) + 1/2y Cy - 1/2 x Cx

> (Ap+x C) (y-x).
Since by (7)
[} [ ] ]
Aptx C = v -u A,

! ] ' '
r(r,y) - £(»,x) 2VYy-VX-uAy + uAx

@« vly -0 -u'db 4+ u'd (by (6) and feasidility)
.‘" ~
’
evy>0 (since v,y > 0). '

The conditions (6) and (7) — especially as necoﬁary,
rather than sufficient, \oonditiom - are essentially those |
of the "saddlepoint" theorem of Kuhn and Tucker [9]. 1In the 0
present form, the result is due to Barankin and Dorfman [1,
Section 3]. The theorem in fact obtains 1if f(),x) is replaced
by any oconvex, differentiable function and Cx + )\p' of (7) 1s

replaced by 1ts gradient.
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The remarkable feature of the quadratic problem is the
linearity of the gradient of f(A,x), which confines the
non-linearity of the Kuhn-Tucker conditions to the relation
(6), v'x = O, wvhich has this sort of combinatorial expressiont

(8) vy > 0 implies X, = 0 (J=1,..,n).

In order to explore the relation of the constraints (8)
to the linear relations (7), and see how they may be handled
numerically, we must consider briefly the main features of
the Simplex Method for linear programming [7].

It is required to minimize the linear form cx under the
constraints Dxwe, x>0 (D 18 p by q, ¢ 18 1 by q, e 18 p by 1),
We suppose this problem feasible, i.e., the existence of x
satisfying the constraints. It is easy to show through
linear dependerce that there exists a feasible x having no
more than p positive components. A collection of p columns
from D which correspond to the non-vanishing components of
a feasible x 1s called a basis, and x is called a basic
80 ion. In the Simplex Method one works always with such
bases; given any, it is shown that either (i) the associated
basic solution yields the minimum value of the linear form,
or (11) another basis differing in only one column from the
given basis can be found whose associated basic solution
yields a smaller value for the form, or (1i11) one column can
be adjoined to the basis such that a sequence of feasible x's

associated with these p+l columns can be found on which cx—> -coo.
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Thus a sequence of bases is generated which terminates in
either a finite or infinite solution of the problem. It is
convenient to make an assumption of "non-degeneracy" regarding
the constraints of the problem: That any feasible vector x
has at least p positive components. A consequence of this
assumption is the linear independence of the columns of any
basis. It has been shown [7] that every set of constraints
can be dealt with sc as to be non-degenerate. In the sequel

we rely on these results, assuming non-degeneracy in the few

places it is necessary.

Returning to the Quadratic problem, the conditions that
the n-vector x solve the quadratic problem for A>0 may be

]
written together as (omitting for the moment v x = O)

Ax .b.
Cx - v + A'u +p'\ =0,
x20,v 20,

or in detached coefficient form as

(9) %0 v20 u )
A 0 ©0 o0 | =b

C -I A p! = 0,

cocnstituting m + n equations in 2n non-negative variables and’
m unrestricted variables (A is not considered a variable).
We will be concerned below with the basic solutions of this

system. Note that the m columns associated with the
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b - -y
unrestricted variable u are taken to be in every basis (this
technical device makes it unnecessary algebraically to
eliminate the u's to bring the system to standard form),
leaving only n positive variables in any basic solution to
go to x and v.

Assuming for the moment the converse of Theorem 2, if
the quadratic problem has a solution, then there exist x,v,u
satisfying (6) and (7). But (6) implies that at least n
components from the 2n x and v vanish; and this establishes
the important result of Barankin and Dorfman [1] that some
basic solution of (9) constitutes a solution of the quadratic
problem.

Since the computational step of the Simplex Method can
be used toc explore basic solutions, Barankin and Dorfman
have accordingly propo‘Fd use of the method, beginning with an
arbitrary basic solution of (9), to reduce v'x to zero. One method
which accomplishes this is given in [4], but it 1s more com-
plicated, and probably slower, than the present algorithm.

Markowitz, on the other hand, has suggested a method [6]
for the "portfolioc" problem (equivalent to solving the
Quadratic problem for all A>0) which begins with constraints
looser than (9) and which, while retaining (8) v'x = 0, should
alter the variables until (9) obtains. The method described
here exploits this ingenious idea, differing from the proposal
of [6] in keeping to a linear programming format.
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3. THE COMPVTATION
Here we present the computational algorithms for the

minimization of Apx + 1/2 x' Cx subjest to x > O, Ax = b,
Pirst ia given the "short form," for ) fixed, whose con-
vergence requires that either A = O or that C be positive
definite; next 1is given the "long form," solving the quadratie
problem "“parametrically” for all A > O, which does not need
C positive definite, but which involves two recursions of the
"short form" type.

We will suppose below, relying on [7] , that the con-
straints Ax = b and the constraints employed dbelow are all non-

degenerate.

SHORT PORM

Let zl, z2, and w be rupoctivcly n-, n-, and mn-—component

vectors. We begin with the set of relations
(10) Ax +Webd
(11) Cx - v + Alu ¢+ z° - 22 = - Ap"
(12) x, v, zl, ze, w >0,

a weakening of the set (9).

Initiation

Since b > O, an initial basis for this system can be

l 2

formed from the coefficients of z°, 2z, and w. UVee the simplex

method to minimize



(13) Lyw

to zero, keeping v and u zero. Discard w and the unused
components of zl. 22; let the remaining n)eomponents be
denoted by Z, and their coefficients by E. We now have a

solution of the system

(1%) Ax - b
Cx -V + A'u + BZ = -,p'
X, vV, 2 2 0.

Recursion

Given a basis and basic solution satisfying (14), (8)

n
vix « O, and ELI ZJ > 0, make one change of basis in the
Simplex procedure for minimizing the linear form
n

(15) Y, T

under the side condition

(16) for ke 1l,..,n : if x, 18 in the basis, do not
admit v, ; and {f v, 1s in the basis, do not admit

Xk.

Termination

If the form (15) is positive, repeat the recursive step.
The form will vanish in at most (32) iterations, ylelding
Z = 0. The x-part of the terminal basic solution is a
solution of the quadratic programming problem for A .
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LONG FORM

Initiation
Having performed the short form computation torl- o,

add p' to the short form data, obtaining the systeam

(17) aAx = b
(18) Cx - v + A'u + Wp' +B2 =0
and an initial solution having u= 0, Z = O, and v'x = 0,

Recursion

Given a basis and basic solution satisfying (17), (18),
vix « O, and having Z = O, make one change of basis (if
possible) in the Simplex procedure for minimizing the linear

form

(19) -u
under the side condition (16) and

(20) do not allow any Z, in the basis.

Termination

If it is not possible tc make the basis change of the
recursion, then u « 0, P(A) =« —® for allA> O, and a set of
feasible x can be found (in Section 5) on which f( ) ,x)—> -00
forA> O.

Otherwise the recursion will yield the finite sequence

of values O = u° < u,l € o0 £ ul( and the x-parts x°,x1,..,x‘
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of their associated basic solutions, terminating in at most
(sn) iterations with the vector x*, sush that:

for u.k A€ u.k*l the quadratic problem for A is solved

K+l _ | .k
(21)  x = Mrmq K+ Qo A,
' - B il

and for A > ux it 1s solved by

by

(22) x = xK 4 (A -ux) x® .

NOTE: E. M. L. Beale recently communicated an elegant modi-
fication of the "short form" procedure above which permits
its use in the case that the quadratic form 1is only positive
semidefinite instead of definite. It consists essentially in
calculating the effect of a "virtual perturbation®™ of C which
involves replacing cJJ by CJJ+6J, J=1l,..,n, for arbitrarily
small 6, so that the algorithm can operate as if a positive

definite form were employed.
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4. KXAMPLE '

]

As an example for calculating with dboth the short form
and the long form, we shall solve the prodblem !

Min 1/2(1120122”:32) + A (x1-2x3)
subject to 11.12.13__ . xl—x2+x3 = 1, g

The objective function can be written
£(r,x) = 1/2[(x1¢}\)2+x.22+ (13-2)\)"’] - 5/2 )%,

and thus for any A the solution x will be that point cf

the constraint set closest to the point (=), 0, 2A). This |

is 1llustrated in Pigure 1 for A= 1, and in Figure 2 for

general A>0. !
For this prodblem

.

7
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l 0 O
C= 0 1 O
O 0 1
P = [1 o -2]

Since C is positive definite, the short form will solve the
problem for any A . TakingA = 1, ‘forwulas (10,11) give the

.initial array for the short forw

1
Xl X2 X3 V1 V2 v u Zl 22 23 21 32 23 w
i1 -1 1 O 0 O 0 O 0 O O 0 O 1 -]
l 0 0 {-1 0 O 1 l1 0 O -1 0 O 0 - -]
O 1 0 0-1 0 -1 O 1 O 0-10 0 w0
O 01 0O 0 -1 1 o 0 1 O 0 -1 0 - 2

Although there 1s considerable degeneracy in the problem, the

minimization of ) Z, proceeds without hitch. Below are

given the values of the variables in the successive steps

(only the values of the basic variables are given). The

variable u 1s introduced first, since it will be in every

basis.

Since it 1s unrestricted, it might have been eliminated

from the system, but we have left it in.



1l 1 1 2 2 2
Basis Xy x2 x3 v:l v2 v3 u 2] 22 z3 z1 22 23 w Zz
\ \
0o 0] 2 1 )
1 2 2 3 1 ) Initia
2 1l 2 e y 6
/
3 1 1 1 e 3
1 1
* z % 3 2 3
1 1
3 z % 3 3 0

The path traced out by x— from (1,0,0) to (0,0,1) to (0,5,8) —

is sketched in Pigure 1.
For the long form, the initial array for the problea is

1 1 1 e &€ 2
Xl X2 x3 Vl V2 V3 u u zl 22 23 21 22 23 W
1 -1 110 0 O ojojo O O ¢C 0 O |l}]l=1l
1 o o}|-1 O O 11111 O O}-1 O 0 }0}=0
0 1 o o0 -1 0 }-1}J0] 0 1 O O -1 O }jO0|=0
O O 10 O -1 ij-21 0 0 1 O 0 -1 }|0|=0

The sequences of values are:
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Basis Xy X5 x3 Vi Vo v3 u B oz z; z% zf zg z§ w
o 0 O O 1)
ial 1l 0 O O 1‘ short
2 0 0 0 3| fere
3 0 o) 0 1/
4 i 1 ! 1
2 2 2 2
5 1 1 1 P
2 2 2 2
1 1 1
- 3 I 3%
7 1 3 o 3
1 1
8 t 14t :ﬁet t §+t

Xm- (0’1,1)

The x-parts of these solutions are traced out in Figure 2.
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Ay

Recursson

1447‘,4 fl;d

<

LONG FORM

FIGURE 2
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For example, the solution of the problem for A = 1/4
is given by (21) as an interpolation between the Basis 5 and

Basis 6 solutions as follows:

\
xe JAL 2+ 3HA 5 = 1/ 4 33 - (1/8,0,7/8).

The solution here for A= 1 is given directly from Basis 8
(ef. formula 22) for t = 1/2 as (0,1/2,3/2), the same answer

the short form gave.



5. PROOPS

The burden of this Section is to prove the statements
regarding the two terminations of the recursions of Section 3.

The initiation of the process (v=0) and the side condition
(18) on the choice of x's and v's entering the basis have
been designed toc ensure that at each stage of both recursions
we: have v'x-o. It remains to see what occurs when, in either
recursion, it is not possidble to continue the indicated
minimization under the side conditions. The thecrem below

gives what is needed for analysis of these conditions.

THEOREM 3
Let A, b, C be as in Section 1l; let the matrix Q be n
' t
by n, qbelbdbyn, and g be n by 1. Let x>0, v>0 such that

'
v x=0 be given. Denote by xy those components of x which are

positive, and by v_ the corresponding components of v

x
(note Vx'O)i denote by Vi the positive components of v, and |
by x, the corresponding components of x (note xv-o).

If the linear form

(23) qw
is minimal under the linear constraints

(2&%) v. =0
\

x
x, = 0 and
Ax

(25) =b

Cx -Iv +A'u Qw g,



coefficients appear below the array. The columns corrolpondih;
to xv-o, vx-o can be disregarded, since we ingist that these ;
variables vanish. :

At the left of the array stand the variables of the |
linear programming problem dual to ours [8]. The coefficients
of the linear form for the dual problem are those on the
right of the array; the constraints for the dual problesm,
read vertically from the matrix, have their constant
coefficients on the bottom of the array. The dual variables
are unrestricted in sign since they are connected with
equation constraints. The existence of these variables,
satisfying the relations indicated dbelow the matrix, is the .
consequence of the duality theorem for linear programming [8];
as is the equality of the two objective functions. (Note
particularly that where a variable turns out to be non-gzero,
as in Xy, or is never restricted, as in u, the corresponding
dual relation is an equality.)

In detail, these relations are:

(a) 8A,  + 1, C .+ Ty Cprp * r, Ctkw =0

'
(b) 8Ay + 1, Cog + TgCyy + T, Co <O

(c) —-rg Iy <0
(27) (4) -r, I,® = 0
|}
(e) r, A; + 1y A+ r, A, -0
(£) [rxrbrv] Q <q
and
(g) . Qw = 8b + rg,

which expresses the equality of the objectives.
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then there exists r such that
]
ICs= 0, Ar = 0, and Qw = rg.

PROOP : (Note that (24 1s precisely the linear expression
of the basis restriction side condition(18)) The proof
depends upon the detailed structure of the quantities x, v,
u, w which yield the minimum of qQw. We have already
distinguished in the vectors x, v the corresponding parts
xx>0, vx-o, and the corresponding parts xv-o, vv>0. There
remain the corresponding parts Xg» Voo which, althocugh not
positive, are not required to vanish by the constraints.

In (26), below, the matrix for the constraints (25) is
partitioned in accordance with this partitioning of x and v,
first vertically, then horizontally in the naturally
corresponding manner (such that -I partitions into diagonal
matrices).

X >0 %20 x =0 v =0 v,>0 v >0 u w>0

X v b ¢ 0= v -
8 A Ab Av 0 T_O 0 0_: 0] sbh
] [} ]
(26) Tx oxx be va fIx 0 0 _“f§ ] 'Sx
] ]
Ts| Cxe | 65 | “av | © 1y | C | A < =gg
B
]
Ty cxv va i ?v! 0 0 l -1y | Ay “&y
" A A 1| ] /\\
(0] 0 (0] (0] 0 0 (0] qQ

According to the hypothesis of the theorem, the values of

the variables above this array minimize the linear form whose
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Relations (d) and (c) yield at once

r,=0, rg20.

]
Dropping therefore r,» multiplying (a) on the right by Ty and
(v) vy ra, we have

'
sA rx + rxcxxrx + rbcxb z T 0,

sAyTy + T,CraTy *+ ToCpgly < O

which are added to form

Coy C
xx ~x8 ;
8 [Axr + AT b] + [rxrb] ¢ ¢ [rxrb] < 0.
x6 “08

By (e), however, the first term here vanishes; and the matrix

of C's in the second term, being a principal submatrix of a

positive semidefinite matrix is itself positive semidefinite,

so that the second term is in fact zero; whence, by lemma 1,
Cxx cxb '

' (r r,) = 0, or
Cxs Cos » ’

! ]
(28) Cox¥x * Cyxp T6 = O»
l

]
cxa’x + Cypry = O

Equation (a) then yields Just
sAx - 0,
whence we have
-O’

8b = s[Axxx + Abxb + Avxv] « 'Axxx
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*
e

which, by (g), proves the theorem, letting r = [?x s rv] and

noting (27e) and (28).

This theorem can . be applied to the short form computation

by letting
'
(29) Q= Eo .= (1)°':l)o and g = -WXP .

When, in the course of minimizing Z?kﬂ it is not possible to
reduce it under the basis restrictions, the hypothesis of

Theorem 3 will be satisfied, and we will have

tZ, = Qw=rg = - Arp
with rC = 0. Thus in either the case that C is positive
definite — when necessarily r = O — or in the case that A= 0
we havo‘zzk = 0, 8o that the nypothesis of Theorem 2 is
satisfied, and the terminal x solves the qQquadratic problem.
Having reduced Z to zerc, we maintain this in the long
form and proceed to minimize — A. Theorem 3 1s applied here

by letting

(30) Q=p, qa=-1, g=0.
If the long form recursion ends in a finite minimum for —A,
the hypothesis of Theorem 3 is satisfied, whence we conclude
—-K, = Qw = rg = 03
— A has in fact not been reduced. Two cases are thus possible:
(1) no step lowering — A can be taken; and (11) — A can be

reduced to — .
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L

Case i: Here we must make use of the achievable non-

— g ')

degeneracy of the constraints (26) for this system, which
asserts that mtn of the variables in any solution are
positive. Since A=0, m of these are in u, and the remaining
n in x_ and Vyi Xgs Vg are empty. Since Ar'-O, Cr'-o, and,

]
from (27f) pr <-1, we have that for any t

(31) A(x+tr') b,
C(x+tr') - G & B

It follows from non-degeneracy that r>0; for otherwise we
should have, for some t>0, x+tr' satisfying (25) but
vanishing in cne mo—e component than does x. Thus x+tr. is
feasible for all t>0, and

t‘()\,x+tr') - Apx + %x'Cx + Apr't.
Since pr'_<_-l, !‘(>\,x+tr') —>» - as t—=>o00 for any >\)O. and

the desired minimum is —oo.

Case ii: The values of A are not bounded. Since only a

finite number of bases is available, a sequence of dbasic

i,ui,ﬁi), i=1,..,g8 will be produced, and

solutions (xi,v 7 E
finally (xg+l,vg+1,ug*l) such that (x8+txg+1,vg+tv8+1,u8*tu8+},
«&.t) 1s a solution for all t)0. Owing to the basii'roltriction
(18), we will have these relations:

(32) vix1 - vixi*l = viﬂx1 - v1+1x1*1

I’“1<"1+1 (1-1'..'3).
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1

Given now ui <AL ui"' » the point

141

being a eonvex combination of x" and x , is feasible; and

it 1s easy to check that, letting v and u be respectively

the same combinations of vi, vi*l and ul, ul*}, the resulting
triple satisfies Theorem 3, so that x ylelds the desired
minimum, If on the other hand A > u&, the triple

x€ + (,\-u.g)xs"'l, v 4 (,{-ug)vg"'l, ub + (,\-ug) uB*! satisfies

Theorem 3, 8o that x& + (A -u8) x€+l 15 the answer.
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6. COMPYTATION
Although we have presented the procedure above only for

the case of constraints of the form Ax = b, x > 0, relying
on the fact that all typez of linear inequality constraints
may be written in this form, in practical computations there
are several devices which will serve to reduce the magnitude
of the problem when other types of constraints are given. We
shall give these below without proofs of their effectiveness;
such proofs follow closely along the line of those of
Section 4.

Iet the constraints of the stated problem be

(33) Ay xp + Ay, X, - b
Aoy Xy + Ay X5 + ¥, = by

A31 Xy + A32 X, - y3 - b3

Xys Yo y3 2 0.
'
(The seeond and third lines of (33) are the usual formulations
for the constraints < and >.) The new system of linear con-
straints (corresponding to (9) of Section 2) will be

xlzp X, y229 y3zp vlzp vy “229 “329,&

(3%) | Ay Ay = b
Ay A |1 - b,

- [)
54 AL, AL, A‘31 Pl | <o
¢ M, Ay Ay PL{ =0
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The algorithm proceeds as before, with rule (18) of
Section 3 strengthened to:

(35) 1r (xl)k is in the basis, do not admit (vl)k' and
vice versa; 1if (y2)k is in the basis, do not admit (“2)k' and
vice versa; if (y3)k is in the basiz, do not admit (“3)k' and

vice versa.

In this formulation, it is seen that the number of
equations in the stated problem is augmented only by the number
of non-slack variables in the problem. A further reduction 1is
evidently possible: since the variables X5 and u, are not
restricted, they could be algebraically eliminated from the
system, along with an equal number of equations in which they
have nonzero coefficients (this reduction could also have been
performed with the u of (3)). The eliminations would leave a
number of equations equal to the total number of components
of X1s Yor and y3 for this generalized problem, and just the
number, n, of eomponents of x in the simpler problem — in any
case, the number of inequality constraints in the original
problem. (This might seem odd if, for example, there were no
inequality constraints in the stated problem; but then the
operations of eliminating the unrestricted variables — all the
variables — would be precisely those of solving for x and u in
the classical Lagrange Multiplier solution.)

While the elimination is simple to perform, we have not
employed it in calgsulation, for the reason that it is not
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likely, in problems whose matrices have many zero entries, to
decrease very greatly the number of nonzero entries; and it
is this latter number which,to a considerable extent,determines
speed of computation in sophisticated versions of the simplex
method. This must be kept in mind when estimating the relative
efficiencies of prccedures of this sort; in this procedure, the
bulk of the data consists of the entries of C and twice those
of A. In the large problém desoribed below, these data were
only 1660 in number, although the resulting linear programming
problem had 204 equations and 714 variables.

A revision of the SHARE Linear Programming code for the
IBM 704 computer has been made for the solution of quadratic
programming problems. This code can be used for either the
short form or the long form as desoribed above, or in an
altermate version which first gets the solution to the linear
problem obtained by dropping the quadratic form, and then
proceeds to obtain the solutions for all | > O. The eode has
been used on a variety of problems, the largest of whioch,
concerned with the allocation of a strategic material, had
90 constraints and 192 variables, 78 of which were "slacks."
This problem required 359 simplex method changes-of -basis

during 230 minutes for the complete long form solution.
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(Items 1-6 are eoncerned with computational
procedures for nonlinear probless.)
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