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SUMMARY 

A computational procedure  la given for 
finding the minimum of a quadratic function 
of variables subject to linear inequality 
conatrainta.     The procedure  is analogous 
to the Simplex Method  for linear programming, 
being based on the Barankin-Dorfman procedure 
for this    problem. 

X 
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THB SWPLKX MBTHOD FOR QfAHUTIC PROORAWMO 

i.   umomcnon 
In this pap«r# by "quadratic programing" wt shall 

undarttand tha problam of datarmining valuas of aavaral raal 

varlablat, subjact to linaar Inaquality oonatraintt, which 

yiald tha axtraaa valua of a quadratic function. Baaidat 

baing a atap on tha way toward solution of tha alaborata non- 

linaar prograating problama which aoononic modals oftan present, 

a uaabla computational procedure for quadratic prograamlng can 

ba appliad to a number of problaaa of interest in theoaelves: 

Regression. To find tha beat least-squares fit to given data, 

where certain paraaatars are known a priori to satisfy 

inaquality constraints (e.g., being non-negative)• 

Efficient production. Maxisdzation of profit, assuming linear 

production functions and linearly varying marginal coats. 

"Portfolio" problem.  To find a combination of random 

variablea having given expectation and minlaum variance. 

Convex programming. To find the minimum of a general convex 

function under linear constraints using a quadratic approximation. 

Let the variables of the problem constitute tha n-vector 

x - (x^, .., xn)
t (i will denote transposition; we take x to 

be a column vector, that is, an n-by-1 matrix). Letting A be 

*Due to Narkowitz £>] . 
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an m by n natrix, and b o-by-l, «• will «xpr^tt th« llntar 

constraint! of tht problt« by 

(1) x >► 0, Ax - bt 

that U« 

Xj ^ 0 (>1# .., n), Z1}*!    alJxj " bl t1-1' •" ^' 

Wt raoall that any eoablnatlon of llntar aquation and 

Inequality oonttralnts can b« writtan In tha for« (1) If 

additional varlablot ara allowad Into tha problam. 

Let p ba a 1-by-n matrix, and C ba an n-by-n tyinttne 

matrix. Wt shall wrlta tha objaotlve function, tha (partly) 

quadratic function to ba axtraalzad subject to (1), aa 

(2) f(A^) - AP« ♦ V2 x»Cx, 

or 

fU*x) -Alj PJ^J * 1/2^ J.k xjcjkxk' 

where ^ , a single non-negative real parameter, can be chosen 

as convenient. The problem can now be stated as: 

The quadratic problem for Xl 0: 

(3) Minimize f(A.x) - AP» ♦ 1/2 x'Cx 

subject to x ^ 0, Ax ■ b. 

An Important restriction must be placed on the quadratic 

part, C, of the objective function in order to ensure the 

sueoess of the computational method: the function f must be 

convex, that Is, C must be positive semldeflnlte. This 



P-120' 
11-10-5* 

-3- 

condition - apparently essential.   In the present state of the 

art»   to all non-linear programnlng schemes  - ensures  that any 

local minimum encountered In the problem will be  the  global 

solution desired.    Algebraically,   the assertion of positive 

■emldeflnlteness for C is that 

(4)    x'Cx > 0 for all x. 

In economic problems, It Is the ascription of non-Increasing 

returns to scale for all activities, since the marginal cost 

of changing from the program x to the program x + Ax is given by 

ir    f(>,X+tAx)   -  pAx  +   xCAX  +   tAx'CAx, 

which will  be a non-decreasing function of t.     We  shall assume 

It from now on.     A more detailed discussion of the  role of 

this property in quadratic programming Is given In  [4j. 

A number of proposals  for the computational  solution of 

quadratic programming problems have been made  In  the  last two 

years;   those which seem suited  to high-speed digital  computers 

are given In References   [l]   -   [6]   below.     Barankln ani Dorfman 

[l]   first pointed out the  linear formulation of the quadratic 

problem,   Inspiring the  present approach;  our Section 2  Is  taken, 

with changed notation,   from Sections 1 and 3 of  [l). 

The principal respect  In which the present method differs 

from these  Is  In using only  the  computational mechanlems of  the 

Simplex Method  for linear programming problems.     It Is there- 

fore  a  simple matter to convert a computing machine  code  for 
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linear programming Into one for quadratic programming; the 

SHARE linear programming code for the IBM 704 requires 

modification in eleven inatructiona for this purpose. 

In the sequel this method is developed in two forms, 

"short" and "long." The computations of the long form are 

like those of the short, but are aimed at solving the 

quadratic problem (3) for all > > 0 and at the same time 

avoiding certain restrictions on the use of the short form. 

The table below summarises the oonditions for use of these 

methods.  The estimate of the number of Simplex Method changes- 

of-basis needed to solve the problem is base! on experience like 

that described In Section 6. 

Solution of (3) by - 

Conditions 

Solution 
obtained for 

Size of equi- 
valent linear 
program 

Estimated number 
of basis changes 
for solution 

Ahert Farm Long Fons 

Either A • 0 or C 
positive definite 

fixed A 

up to m+n equations. 
m>3n variables 

C positive semidefinite 

•n A 2 0 

up to mfn equations, 

i- ■♦BiHl variables 

2(«-m) MM«) 

:. 4 

. 
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2.     FRILIMINARIKS 

Sine« w« art lnt«rettea, in part. In the solution of tht 

quadratic problta for all A 2 0, Itt us daflne 

for A^ 0: F(A) - Mln^px ♦ 1/2 x'cx ix^p.  Ax - b}. 

Quite a bit of Information about P(A) can be obtained 

without calculating it« Throughout it will be assumed, of 

course, that there exist feasible x, i.e. x > 0 auch that 

Ax • b. Nevertheless, we may have ?{t)  - -co for some 

(and hence all) A> 0. 

First, an important feature of the positive semi- 

definiteness of C is given by 

L1IWA It x Cx - 0 implies Cx 0. 

Proof: For any n-vector y we have 
i.i      i 

0 ^ (y^tx) C(y^tx) • y Cy > 2ty Cx for any number t, whence 
j  i 

y Cx - Oj Cx - 0 follows at once. 

Proofi Let feasible points x, y be given such that 

:<A ,x) • f( A , y) - F(X). Letting w - y-x, for any O^t^l 

the point X'ftw belongs to the constraint set; since f is 

This leads to 

UMMA 2i    For any \^ C,  tht  "solution set" of all feasible 

x such that f( ,x) - F(A) is the intersection of a linear 

manifold with the constraint set, and px is constant on 

this set for ^ > 0. 

. 
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convex, and f( A , X't-tw)  is miniaal for t - 0 and t ■ lf 

we have f( A, x-Mw) • f(A , x)  for all 0 <t ^ 1,  or 

ApCx-Hw) -•• 1/2  (x-t'twj'cCx^tw) -   \px -f 1/2 x'cx,  which 

simplifies to 

( A pw ••• x,Cw)t -♦• 1/2 w'cw t2 - 0  [O^t^l] . 

Thus w Cw • 0, whence by itflaa 1 

(5) 

Cw ■ 0# and hence 

pw • 0. 

Conversely, It Is clear that If t{? ,x)  • F(?v), w aatlsfies 

(5)» and x <t tw Is feasible, then f(A, x^tw) • F(A); to 

that the conplete solution set for A given is the Inter- 

section of the constraint set with the linear manlfcld 

{ x «> twj . Equation (5) yields finally px ■ py for any 

two solutions. 

If now for any A > 0 we choose a feasible solution xA 

such that f ( X fx. ) - WM,  by leona 2 the value pxA Is 

Independsnt of the choice of x^ . 

Theorea 1: For K^O,  F(A) la a concave function; px^ la 

monotone non-Increasing; and x^ Is a solution y of the 

problem: 

Mln [y Cy : y^O, Ay - b, py £ px^^ . 

Proof: Since f ( A , x) la linear In X , the function 

F(x) is the loflauB of a family of linear functions, and 

hence concave. • 

^ 

. 
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The trend of px^ it an Instance of a quite general fact» 

Take any ^ and u . Since x , minlaicet t[^t%)t  we have 

^V*^   ♦ 1/2 x*^ Cx^ £ ApxM ♦ 1/2 XM CXM J I 

and since x,4 minimizes r(«-,x), we have 

/"px^ ♦ 1/2 y' C^M £ ^px^ -► 1/2 x^ Cx^ . 

Adding these inequalities and rearranging, we get 

which yields pju ^ px-^ for M>^ • 
-v        i 

Finally, alnce x^ does minimize Ap* +  1/2 x Cx, sny 

y such that y Cy<x^Cx* will give py>px , which proves the 
A 

last statement. 

The next theorem characterizes x^ in such a way that 

we will be able to compute it. Only the sufficiency of 

thla condition for the minimization of f(r,x) is needed, since 

its necessity will follow when we have established that 

results of the computational scheme of the next section 

let this condition if the minimum exists. 

THEOREM 2t    If x>0. Ax - b, and there exist v^O (v is n by l) 

and u (u  is m by l) such that 

and 

(6)  v x - 0 

(7)  Cx - v ♦ A'U ♦ ^p 0. 
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then x aolvti the problem Mini Apx •♦■ 1/2 x Cx  : xX),  Ax - b / . 

Proof:    Let any y>0,  Ay ■ b be given.    We shell show thet 

r(X,y)  > f(>,x).    Froei the positive seml-deflnlteness of C 

we heve 

i (y-x)'  C(y-x)  > 0, 

*hence    y'cy ♦ x'cx > ax'cy 

cr 

so thet 

y Cy  - x Cx 2 2x C(y-x) 

f(X,y)   - f(X,x) -   >p(y-x) ♦ l/^Cy - 1/2 x'cx 

>  (XjH-x C)(y-x). 

Since by (?) 

A p^x C - v  -u A, 

f(^#y)   -  f(/v,x)   >vy-vx-uAy'«-uAx 

' 

- 

- v'y - 0 - u»b ♦ u'b (by (6) and feasibility) 

v y 2 0 (since v,y 2 0). 
• 

The conditions   (6)  and  (7) - especially as necessary, 

rather than sufficient,  conditions — are essentially those 

of  the  "saddlepolnt"   theorem of Kuhn end  Tucker  [9].     In  the 

present form,   the  result Is due  to Barankln and Dorfman   (l. 

Section 3].     The  theorem In fact obtains   If f(X,x)  Is  replaced 

by any convex,  dlfferentlable  function and Cx -♦• >p    of  (7)   Is 

replaced by Its gradient. 

. 
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The rcaarlcabl« feature of the quadratic prob lea la the 

linearity of the gradient of f(A,x), which confines the 

non-linearity of the Kuhn-Tucker conditions to the relation 

(6), v x - 0, vhioh has this sort of coabinatorial expression! 

(8) v. > 0 iaplies x, - 0 (J«l,..,n). 

In order to explore the relation of the constraints (8) 

to the linear relations (7), and see how they nay be handled 

nisserlcally, we oust consider briefly the main features of 

the Simplex Method for linear programming [?] . 

It is required to minimize the linear form ex under the 

constraints Dx-e, x_0 (D Is p by q, c is 1 by q, e is p by l). 

We suppose this problem feasible, i.e., the existence of x 

satiafying the constraints. It is easy to show through 

linear dependence that there exists a feasible x having no 

more than p positive components. A collection of p columns 

fro« D which correspond to the non-vaniahing componenta of 

• f.a.lble x is called a basis, and x Is called a basic 

solution.  In the Simplex Method one works always with such 

bases; given any, it ia shown that either (i) the associated 

basic solution yields the mlnimuffl value of the linear form, 

or (11) another basis differing in only one column from the 

given basis can be found whose associated basic solution 

yields a sskaller value for the form, or (iii) one column can 

be adjoined to the baais such that a aequence of feaaible x's 

aaaociated with these p+1 columns can be found on which ex-* -00. 
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, 

r 
Thus a sequence of bates la generated which terminates In 

either a finite or Infinite solution of the problem.  It Is 

convenient to make an assumption of "non-degeneracy" regarding 

the constraints of the problem: That any feasible vector x 

has at least p positive components. A consequence of this 

assumption Is the linear Independence of the columns of any 

basis. It has been shown [7] that every set of conatralntt 

can be dealt with so as to be non-degenerate. In the sequel 

we rely en these results, assuming non-degeneracy In the few 

places It Is necessary. 

Returning to the quadratic problem, the conditions that 

the n-vector x solve the quadratic problem for A>0 may be 

written together as (omitting for the moment v x • 0) 

Ax 

Cx - v ^ A^ 

* ±0,  v ^ 0f 

P'A 0, 

or In detached coefficient form aa 

(9)  x^O v^O u A 

A 
1 

0 0 0       1 
1 

1    C -I A1 P1     1 
• 0 

- 0. 

constituting m -f n equations In 2n non-negative variables and 

■ unrestricted variables (A is not considered a variable). 

We will be concerned below with the basic solutions of this 

system. Note that the m columns associated with the 

> 
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unrestricted variabl« u are taken to be ID every baeit (thie 

technical device makes it unnecessary algebraically to 

ellmlnst« the u's to bring the system to standard form), 
■ 

leaving only n positive variables in any basic solution to 

go to x and v. 

Assuming for the moment the convtrse of Theorem 2,  if 

the quadratic problem has a solution, then there exist x,v,u 

satisfying (6) and (7). But (6) implies that at least n 

components from the 2n x  and v vanish; and this establishes 

the important result of Barankin and Dorfman [l] that some 

basic solution of (9) constitutes a solution of the quadratic 

problem. 

Since the cooputational step of the olmplex Method can 

be used to explore basic solutions, Barankin and Dorfman 

have accordingly proposed use of the method, beginning with an 

arbitrary basic solution of (9),  to reduce v'x to zero* One method 

which accompllshea this is given in [4], but it is more com- 

plicated, and probably slower, than the present algorithm. 

Narkowitz, on the other hand, has suggested a method [6] 

for the "portfolio" problem (equivalent to solving the 

quadratic problem for all ^>C} which begins with constraints 

loOMT than (9) and which, while retaining (8) v'x ■ 0, should 

alter the variables until (9) obtains. The method described 

here exploits this ingenious idea, differing from the proposal 

of [6] in keeping to a linear programming format. 

. 
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3. THI COHPtTATIOW 

H«rt w« present tht ooaputational algoritluM for th« 

minimization of Apx 4 1/2 x* Cx tubjtot to * £ 0,  Ax - b. 

First is glvtn ths "short form," for > fixsd, whost con- 

vtrgsno« raqulrss that «ithsr A - 0 or that C ba positivt 

definite; naxt is given the "long form," solving the quadratic 

problem "paraaetrioally" for all A ^ 0,  which does not need 

C positive definite, but which involves two recursions of the 

"short form" type. 

We will suppose below, relying on I?] ,  that the con- 

straints Ax - b and the constraints eaployed below are all non- 

degenerate. 

SHORT FORM 

1   5> 
Let z , I | and w be reapectlvely n-, n-, and a—component 

vectors. We begin with the set of relations 

(10) Ax 4 w • b 

(11) Cx - v + A'u 4 z1 - z2 - -AP1 

(12) x, v# z1, z2, w 2 0, 

a weakening of the set (9)* 

Initiation 

Since b ^ 0, an initial basis for this system can be 

1   9 
formed from the coefficients of z ,  z ,  and w. fse the simplex 

method to minimize 
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da)        Li «i 

to zero, k««ping v And u zero.  Discard w and the unused 

1   2 
components of z  ,  « ; ist the remaining n eomponents be 

denoted by Z, and their ooeffioients by E. We now have a 

solution of the system 

(IM 
Cx-v•fA,u•fB2--^p, 

x, v, Z ^ 0. 

Recursion 

Given a basis and basic solution satisfying (14)f (8) 

v'x • 0, and ^ , z. > 0, make one change of basis in the 

Simplex procedure for mlnlmlxing the linear form 

(«)     L v 
under the side condition 

(16)     for k - lf..tn  :   if x.   is In the basis,  do not 

admit v^;  and if  v^ is In the basis,  do not admit 

xk. 

Termination 

If the form (lb)  is positive, repeat the recursive step. 

The form «ill vanish in at most  (^) iterations,  yielding 

Z - 0.    The x-part of  the terminal basic solution is a 

solution of the quadratic programming problem for A . 
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LOWO FORM 

Initiation 

Having p«rform«d the short form eoaputation for A« 0, 

add p* to tht short form data, obtaining th« aystaa 

(17) Ax - b 

(Id)  Cx - v -f A*u -f up* ♦ EZ - 0 

and an initial solution having u - 0,  2-0,  and v'x • 0. 

Racursion 

Given a basis and baaio solution satiafying (17)» (18), 

v'x ■ 0, and having Z - 0, oak« ona ohanga of basis (if 

possible) in the Simplex procedure for minimizing the linear 

form 

(19) -|i 

under the side condition (16) and 

(20) do not allow any Z.  in the basis. 

Termination 

If it is not possible to make the basis ohanga of the 

recursion, then u - 0, F(A) - —a for allA> 0, and a set of 

feasible x can be found (in Section 3) on which t{X »»)—> -oo 

I forA> 0. 

Otherwise the recursion will yield the finite sequence 

of values 0 - u0 < n, < .. < u *n^ the x-parts x0,x*,..,xK 
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of their asBOCiated basic tolutiont, terminating in at most 

(f11) iterations with the vector x00 t such that: 
k k*l for M.    1^1 I»       the quadratic problem for A 1B solved 

by 

and for A £. H it is solved by 

(22) x - xK ^ (A -nK) x* . 

NOTB? S. M. L. Beale recently communicated an elegant modi- 

fication of the "short form" procedure above which permits 

Its use in the case that the quadratic form is only positive 

semldefinite instead of definite. It consists essentially in 

calculating the effect of a "virtual perturbation* of C which 

involves replacing C^ by C,,•♦*, J - l,..,n, for arbitrarily 

small 6, so that the algorithm can operate as if a positive 

definite form were employed. 
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4. PAMFLK 

At an exAmpl« for calculating with both the short for« 

and the long font, wt shall tolva the proble« 

Min l/2(x1
2^x2

::^x3
2) •«• A.(x1-«x3) 

subject to x^.x^^^M), x^Xg^x« - 1. 

The objective function can be written 

f(X,x) - l/l^+tt**«,8* (x3^X)
2] - 5/2 A2, 

and thus for any A the solution x will be that point of 

the constraint set closest to the point (—A* 0, 2X). This 

is illustrated in Figure 1 for A - 1, and in Figure 2 for 

general A>P» 

For this problem 

% 

• 

- 
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-*—'/i^'/^'     a  s Set S>C<T 

*. 

0*S's   2 

    J6 

PIQURE  1;     SHORT FORM 
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A 

b 

10 0 
0 10 
0    0    1 

I1 -1 ll 
W 

P - [i   o -2] 

Since C la positive definite,  ttm short for« »111 solve the 

problem for any A  .    Taking A - 1,   fprmilaa (10#U) Kive the 

initial array for    the short font 

1112        2        9 
* xo      *.      vi       vo      V. U        Zj      2*      2^      Zj      2^     Z|      M 1    *2    *3    vl    v2      3 

1-11        000         0 000         000 1 

100-100         1 100-100 0 

0       10        0-10-1 010         0-10 0 

0       01         00-1         1 001         00-1 0 

• 1 

- -1 

• 0 

• 2 

Although there is considerable degeneracy in the problem, the 

minimization of £zk proceeds without hitch, ielow are 

given the values of the variables in the successive steps 

(only the values of the basic variables are given). The 

variable u is introduced first, since it »ill be in every 

basis. Since it is unrestricted, it might have been eliminated 

from the system, but we have left it in. 
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BaslB 

0 

1 

2 

3 

4 

%■*      Xp  x^ vl v2 

I 

U zj z^ 

2 

2 

1 

1 

2 

2 

1 

,1  ,2 ,2 
Z3 *1 z2 

1 

3 

4 

2 

I 

z* •» Z-z 

1 

1 ) Initla 

b 

3 

The path traced out by x- from (1,0,0) to (0,0,1) to (0,^,|) - 

la sketched In Figure 1. 

For the long form, the initial array for the problem is 

1 1 1 ,2 ,2 .,? 
xl X2 x3 vl V2 v3 U  (1 Zl Z2 z3 

zl Z2 z3 
w 

1 -1 1 0 0 0 0 0 0 0 0 c 0 0 1 - 1 

1 0 0 -1 0 0 1 1 1 0 0 -1 0 0 0 - 0 

0 1 0 0 -1 0 -1 0 0 1 0 0 -1 0 0 - 0 

0 0 1 0 0 -1 1 -2 0 0 1 0 0 -1 0 - J 

The sequences ef values are: 



v. 

Basis 

0 

1 

2 

3 

5 

6 

7 

8 

X» o o 

0 

1 
7 

1 
2 
i 

i 

i i 
5 

v2   v3 
u   ^   z: 

1 

1 

t   l«ft   ^f2t 

0 

0 

1 f 
1 

1 
J 

1 
! 

1 
8 

z1    z1 
Z2    Z3 

0      0 

0      0 

0 
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^2    ,2     ,2 z1    z2     z3 

1 
7 

short 
fOJ 

,03 x1"-   (0,1,1) 

Itis x-parts of  thtst solutions are traced out in Figure 2. 
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^ecurj-'ost 

Jsifm. />* 

X, 

PIOURE 2:     LCNO FORM 
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For «xanplt,  the solution of the problem for A -  I/H 

it given by (21) at an interpolation between the Batit 3 and 

Basis 6 solutions at foliowa: 

, . y^l   x8 ♦ ^   x3 . i/l»x2 ♦ 3^x3 - (l/B.O.7/3). 

The tolution here for A« 1 it given directly from Basis 3 

(of. formula 22) for t - 1/2 as (0,1/2,3/2)* the same answer 

the short form gave. 

. i 
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5. Fiiooys 

The burden of this Section is to prove the statements 

regarding the two terminations of the recursions of Section 3* 

The initiation of the process (v-c) and the side condition 

(lo) on the choice of x's and v*s entering the basis have 

been designed to ensure that at each stage of both recursions 

we have v x-C.  It remains to see what occurs when, in either 

recursion, it is not possible to continue the Indicated 

minimization under the side conditions. The theorem below 

gives what Is needed fc- analysis of these conditions. 

THEOREM 3 

Let A, bf C be as In Section 1; let the matrix Q be n 
i t 

by n , q be 1 by n , and g be n by 1.  Let x>0, v>0 such that 
i 

v x"0 be given. Denote by x those components of x which are 

positive, and by vv the corresponding components of v x 

(note v •<)){ denote by v the positive components of v, and 
x v 

by x the corresponding components of x (note xv»0). 

■ 
If the linear form 

(23) qw 

is minimal under the linear constraints 

(24) vx - 0 v 

N - 0 and 

(25)   Ax 
i 

Cx -Iv -»-A u -^w   -g, 
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coefficients appear below the array. The eclumni corresponding 

to xv*Ot v «0 can be disregarded, since «e insist that these 

variables vanish. 

At the left of the array stand the variables of the 

linear programming problem dual to ours [6]. The coefficients 

of the linear form for the dual problem are those on the 

right of the array; the constraints for the dual problem, 

read vertically from the matrix, have their constant 

coefficients on the bottom of the array. The dual variables 

are unrestricted in sign since they are connected with 

equation constraints. The existence of these variables, 

satisfying the relations indicated below the matrix, is the 
i 

consequence of the duality theorem for linear programming [8], 

as is the equality of the two objective functions.  (Note 

particularly that where a variable turns out to be non-sero, 

as In x , or is never restricted, as in u, the corresponding 

dual relation is an equality.) 

In detail, these relations are: 

6 Jxe (a)  sA„ •♦• r C  4 rÄ C_, ♦ r C 
X  XX 

(b)  sA. ♦ r_ C, * r.C 

xv 

t  ■   'x 'xe ' 'e^ee ^ rv cBv 

(c) 

(27)  (d) 

(•) 

(f) 

- rv V 
r.. A., -f r, A. •»• r. A. 

and 
(s) 

x "x  '6 "6 

qw - sb •♦• rg. 

- 0 

< 0 

- 0 

- 0 

1 <i 

which expresses the equality of the objectives. 



P-1205 
10-25-57 

-24- 

then there exltts  r auch that 
1 

rC • 0, Ar »0, and qw - rg 

PROOF:   (Note that (2^ Is precisely the linear expression 

of the basis restriction side condition (l80) The proof 

depends upon the detailed structure of the quantities x, v, 

u, w which yield the minimum of qw. We have already 

distinguished in the vectors x, v the corresponding parts 

x X), v "0, and the corresponding parts x -0, v >0. There 

remain the corresponding parts x-, v., which, although not 

positive, are not required to vanish by the constraints. 

In (26), below,the matrix for the constraints (25) Is 

partitioned in accordance with this partitioning of x and v# 

first vertically, then horizontally In the naturally 

corresponding manner (such that -I partitions Into diagonal 

matrices). 

u   w>0 K»**  XA^0 x„m0     v„"0  VIL>0  v„>0 X    o—   v    x    o--        V 

{26) 

8 

r 
*« 

A6 
A v 0 0 0 0 c 

0" 

Cx8 Cxv ^x 0 0 
1 

Ax 

Q Cx6 C
66 

C6v 0 -xe c 
1 

A
6 

j cxv |C»» 
Cw 0 0 

-^ 

t 

-b 

•gX 

■8« 

0 c 0 
♦1 

c 
11 
0 

^ 

According to the hypothesis of the theorem, the values of 

the variables above thla array minimize the linear fern whose 
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^  ^^. 

Relations (d) and (c) yltld at onct 
1 

Dropping tharefor« r . multiplying (a) on tht right by r and 

(b) by r., wa have 

•Axrx * rxC«rx * r8Cx6rx " 0' 

sA6r6 + rxCx9r6 + r8C66r6 ^ 0' 

which are added to form 

[Vx + Vel + [v»] 
C      C - xx    x6 

i 
Cx6 C66 

[vd' ^ 0 

By (e), however, the first term here vanishes; and the «atrlx 

of C's In the second term, being a principal submatrlx of a 

positive semldeflnlte matrix Is Itself positive senldeflnlte, 

so that the second term is in fact zero; whence, by leiasa 1, 

C C . xx x5 
i 

Cx6 Cöö 
(rxr6) - 0, or 

(28) Cxxrx ♦ Cx6 ^6 " 0' 
Cx6rx + C68r6 " 0- 

Equation (a) then yields Just 

8*x - 0' 

whence we have 

ab - 8[AxXx * Ä0X6 + AvXv] ^ 8AxXx " 0' 



p 
P-1205 

10-2^-57 
-27- 

which, by (g), prove» the theorem, letting r • rx rC rvl arid 

noting (27e) end (28). 

This theorea can be applied to the short form computation 

by letting 

(29) Q - K, q - (1,..,!), and g - -Xp'. j 

When, in the course of minimizing Y^v»  lt i8 not possible to 

reduce It under the basis restrictions, the hypothesis of 

Theorem 3 will be satisfied, and we will have 

^ - qw - rg - - Ai-p', 

with rC • 0. Thus in either the case that C Is positive 

definite — when necessarily r • 0 — or In tha case that A- 0 

we have ^2. ■ 0, so that the hypothesis of Theorem 2 Is 

satisfied, and the terminal x solves the quadratic problem. 

Having reduced Z to zero, we maintain this In the long 

form and proceed to minimize —X. Theorem 3 Is applied here 

by letting 

(30) Q - p', q - -1, g - 0. 

If the long form recursion ends In a finite minimum for —\, 

the hypothesis of Theorem 3 Is sstlsfled, whence we conclude 

— A - qw ■ rg - 0) 

~A has In fact not been reduced. Two cases .are thus possible 

(l) no step lowering -A can be taken; and (ll) -X can be 

reduced to -co. 
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Case 1: H«r« we auat make use of the achievable non- 

degeneracy of the constraint« (26) for this system, which 

asserts that nr+n of the variables in any solution are 

pcsitlve. Since X-0, m of these are in u, artf the remaining 

n In x and v ; xfl, v. are empty. Since Ar «0, Cr "0, and, 

from (27f) pr <-l, we have that for any t 

(31) AU-Kr') - b, 

C(x-ftr ) - v -f A u • C. 

It follows from non-degeneracy that r>0j for otherwise wt 
i 

should have, for sone t>0, x+tr satisfying (23) but 
i 

vanishing in one rno-e component than does x. Thus x-ftr it 

feasible for all t>0f and 

^AjX-Hr') - ^px -f ^x'cx ♦ ^pr t. 

Since pr ^-1, t{X,x*tr  )   -^ -co as t-»oo for any X>0, and 

the desired minimum is -a . 

Case ii: The values of A are not bounded. Since only a 

finite number of baaes is available, a sequence of basic 

solutions (x ,v ,u ,» ), l«lf.*»c will be produced, and 

finally (x^v^u8*1) such that (x^tx^v^tv^.u^tu8^ 

■■'':) is a solution for all tX).  Owing to the basis restriction 

(18), we will have these relations: 

/~0x  i i  i i+i  m i  !♦! i^i (32)vx-vx   -v  x-v  x  , 

Z^1^14,1 (i-l,..,g). 
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Qiven now   y,   ^Al ^      »  tht point 

x - ul4l-A     xi , A-u1 i^i 

being a convex  combination of x    and x       ,   it feaelblt,   and 

it  It eaty to chtck  that,   letting v and u be respectively 

the tarn« comblnationa of  v  ,  v        and u  ,  u      ,  the retulting 

triple tatitfies Theorem  j,  to that x yields  the desired 

minimum.    If on the other hand A2. u^*  the triple 

xg ♦ (A-H8)*8*1»  ^ ♦ (A-^8)^1,  ug ♦ (A^g)  vi8*1 tstieflet 

Theorem 3,  to that xg -f ( A-^8)  ***    l8  th€ antwer. 
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6. COMPfTATIOIt 

Although we have presented the procedure above only for 

the case of oonetreints of the for« Ax * b, x 2 0* relying 

on the fact that all typee of linear inequality constraints 

may be written in this for«, in practical computations there 

are several devices which will serve to reduce the magnitude 

of the problem when other types of constraints are given. We 

shall give these below without proofs of their effectiveness; 

such proofs follow clossly along the line of those of 

Section 4. 

Let the constraints of the stated problem be 

(33)  An xi ♦ Ai2 x2    " bi 

A31 xl * A32 x2 ' y3 " b3 

xl' ^2 ' y3 ^ 0 

(The second and third lines of (33) are the usual formulations 

for the constraints £ and £.) The new system of linear con- 

straints (corresponding to (9) of Section 2) will be 

X1*P  x2 y2^ 7$?    *&      ul  u2^ ^A 

All       A12 
A21       A22 I 

A^       A^2 -I 
-1 All *k21 A3l   '1 

0 Al2 
At A22 A32   P2| 

0 
0 
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Th« algorithm proceed» as bafora, with Tula (18) of 

Saotion 3 strangthanad to: 

(33) It (x]>)k 
iB ln the baele, do not admit (v1)k# and 

vioa varaa; if {y^)^ lB ln th6 batii, do not admit (u2)k» 
an<1 

vioa versa; if (yJk is in the basic, do not admit (^3)k» and 

vice versa. 

In this formulation, it is seen that the number of 

equations in tha stated problem is augmented only by the number 

of non-slack variables in tha problem. A further reduction is 

avidantly possible: sinoa tha variables x. and u. are not 

restricted, they could ba algebraically eliminated from the 

system, along with an equal number of equations in which they 

have nonzero ooaffioienta (this reduction could also have bean 

performed with the u of (9)). The eliminations would leave a 

number of equations equal to tha total number of components 

of x^, y^, and y. for this generalized problem, and Just the 

number, n, of components of x in the simpler problem - in any 

case, the number of inequality constraints in the original 

problem.  (This might seem odd if, for example, there were no 

inequality constraints in the stated problem; but then the 

operations of eliminating the unrestricted variables - all the 

variables - would be precisely those of solving for x and u in 

the classical Lagrange Kaltiplier solution.) 

While the elimination is simple to perform, we have not 

employed it in calculation, for tha reason that it is not 
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likely, In problem« whose natrioes have many zero entries,  to 

decrease very greatly the number of nonzero entries;  end It 

is this latter number which,to a considerable extent,determines 

speed of computation in sophisticated versions of the sinplex 

method.    This must be kept in mind when estimating the relative 

efficiencies of prcoedures of this sort;  in this procedure,  the 

bulk of the data consists of the entries of C and twice those 

of A.    In the large problem described below, these data were 

only 1660 in number,  although the resulting linear programming 

problem had 204 equations and 714 variables. 

A revision of the SHARK Linear Programming code for the 

IM 704 computer has been made for the solution of quadratic 

programming probleme.    This code can  be used for either the 

short form or the long form as described above, or in an 

alternate version which first gets the solution to the linear 

problem obtained by dropping the quadratic form, and then 

proceeds to obtain the solutions for all Xl 0-    Ttl# oode llAt 

been used on a variety of problems, the largest of which, 

concerned with the allocation of a stratsgic material, had 

90 constraints and 192 variables,  78 of which were "slacks«" 

This problem required 359 simplex method changes-of-basis 

during 230 minutes for the complete long form solution. 
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