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A3 ti the Poiseson Dist ti

‘One of the most important stochastic processes is the Poisson process,
in which it is assumed that (a) the numbers of events occurring in nonover-
lapping time intervals are independent; (b) the probability of one event's
occurring during time dt is Xdt + o(dt), where X is a constant, while the
probability that two or more occur is o(dt). Various approaches [1] are known
which lead to the result that the probability that n events occur in time t,

Pp(t), 1s
(1) Py(t) = ot -‘-’%}E (=0, 1, 2, «oe)y

that is, the Poisson distribution with mean At. An extremely simple and
straightforward derivation of this formula, based on an idea of G. Morant [2],
is as follows:
The probability for no event t.o'occur in time t is
T t/dt
(2) Po(t) = Lim [1 - adt - o(at)]
®—0

=\t

Bq. (2) merely expresses the fact that for no event to occur in time t, none
may oocur in any of the subintervals of length dt into which t may be divided.
We now use this result to aid in obtaining Eq. (1).

Let us consider n small nonoverlapping time intervals dtl, dtz, oo ey
at, contained within the time interval (0,t). The probability that n events
ocour—-the first at time t.1 within the interval dtl, the second at time tz
wiibin the interval dtz. and so on=-is asymptotically equal to
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-A -A(t ) .
° ! Mt e 2™ Adt, ... Adt o-"("'“)
which reduces to
.-kt )‘n

d‘l “2 LN d‘n L

This obtains since no event occurs from time O to time t1; one event occurs
in the interval dt.l; no event occurs from time "1 to tz; and so on., Hence

pn(t), which is the integral of this expression over all tn satisfying

OStlstzg... gtnst .

is given by
t t;’n ;2
(3) pn(t) - o x“/ / dty dt, ... dt) (n»21,2,000) 4
' o le o

which immediately ylelds Eq. (1), sinee the integral in Eu. (3) equals t%/n1 .
Thus, “using only the simplest kind of reasoning from rrobability theory,
we ‘have deduced the Poisson distribution from the basic assumptions (a) and
(b). Consequently, tho, need for viewing the Poisson distribution as a limit-
ing case of some other distribution is obviated. In addition the technique
used readily generalizes %o the case in which )\ depends on t.
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