CLEARINGHOUSE FOR FEL RAL SCIENTIFIC AND TECHNICAL INFORMATION CFSTI

DOCUMENT MANAGEMENT BRANCH 410.11

LIMITATIONS IN REPRODUCTION QUALITY

ACCESSION # G 0 39§60

@l.

a

O

0 s
0

NBS 9/64

O O o

WE REGRET THAT LEGIBILITY OF THIS DOCUMENT IS IN PART
UNSATISFACTORY. REPRODUCTION HAS BEEN MADE FROM BEST
AVAILABLE COPY.

A PORTION OF THE ORIGINAL DOCUMENT CONTAINS FINE DETAIL
WHICH MAY MAKE READING OF PHOTOCOPY DIFFICULT.

THE ORIGINAL COCUMENT CONTAINS COLOR, BUT DISTRIBUTION
COPIES ARE AVAILABLE IN BLACK—-AND-WHITE REPRODUCTION
ONLY.

THE !NITIAL DISTRIBUTION COPIES CONTAIN COLOR WHICH WILL
BE SHOWN IN BLACK—AND-WHITE WHEN IT IS NECESSARY TO
REPRINT.

LIMITED SUPPLY ON HAND: WHEN EXHAUSTED, DOCUMENT WILL
BE AVAILABLE IN MICROFICHE ONLY.

LIMITED SUPPLY ON HAND: WHEN EXHAUSTED DOCUMENT WILL
NOT BE AVAILABLE.

DOCUMENT IS AVAILABLE IN MICROFICHE ONLY.

DOCUMENT AVAILABLE ON LOAN FROV CSFSTI ( TT DOCUMENTS ONLY).

PROCESSOR: 2
/ / )
e




REPRODUCED FROM BEST AVAILABLE COPY



603920

()

o~
L

G
S V1] 1) P

coPY L of L COPES

/

— > = = — e

GEOMETRY OF MCMENT S5PACES

5 Karlin and L. S. Shapley

P-227 /7% ~

23 July 1951 ////

e PNIFEIHIVE T

AUG 1 9 1964

EOGTU T

* BANTA MONICA - CALIPOANIA

. ¥
RPN ST S ST S

1
Ll mall s TR

1

.,
T
AL




I

\IN’I‘RODUCTION AND SUMMARY

Wlthis paper te—to presentSa natural geometrical
approach to the theory of reduced moment spaces and its application to

orthogonal polynomials, - Many classical results cun be interpreted in

this geometrical setting, many new results obtailned as well, The

method provides an interesting contrast to the more usual techniques

N

involving continued fractions and cogblgf variables,

Some of this material was presente n outline in an earlier
paper (reference zl] at the end of the paper), and™wo papers ([@] 5 [15] )
applying it to the theory of games have also appeared. The _p»esent work
is concerned primarily with distribution functions on a finite interval,

The half-infinite and infinite intervals will be taken up in future papers.

Chapter I is devoted to a preliminary exposition of the theory
of convex sets and their duals in conjugate, finite-dimensional, linear
spaces., Dimensional indices are int.roduced to describe the local structure
of the boundary of a convex set, and are used to express a fundamental
relationship between a convex set and its dual (Theorem 5.2), The moment
spaces themselves are convex bodies whose points are n-tuples of moments
of distribution functions; while the dual convex bodies are the coefficient
spaces of n-th degree non-negative polynomials. In Chapter II these sets
are introduced and their extreme points characterized, The structure of
their boundaries is analyzed in detail, and a new result on the representa-
tion of non-negative polynomials as sums of square polynomials is obtained
(Theorem 10.3). Chapter III introduce. certain convex polyhedra which

approximate the moment spaces and their duals, and uses them to establish




some of the classical thenrems. In Chapter IV un algebraic description
by means of ''‘Hankelt'! determinants is given of the boundary components
previously characterized by the dimensional indices. Chapter V deals
with the distribution functions associatei with a given point in the
moment space, and the convex set in function space which they form,

The interpretation of the supporting hyperplanes to the moment spaces
1s non-negative polynomials, first found in Chapter II, leads to a
natural, geometric representa.ion of orthogonal systems of polynomials,
with arbitrary weight functions. Ceveral applications of this approach
are given in Chapter VI. The paper concluies with a chapter on the

symmetries of the moment spaces.

General expositions of the moment problem may be found in

widder ([9] » Ch. 3) and Shohat and Tamarkin ([}é]). The latter contains

an excellent bibliography of the subjecr.
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CEAPTER I
CONVEX SETS

4. Elsmgrtery dsfinitiems.

We Yegin Iy setiting forth some of the impertamt properties of
oorvex sots. A poimt eet izy m-dimsusiemal Rwclidean spece > s
cogyex if it cemtains the lime segmsut joimimg every two of 1% yoimts.
The Serm Lyperplane refers to an (n-l)-dimemsiemal limear variety im
E"; oach hyperplane deturmimes twe elceed half-gpeveg. If a set K
umn.nofthehoodw-ouu‘ﬁl of & hypswlage -L,, we say that
L (or ) either boynls or gypperts X acserding as the lower dound
of the distance from K % L 1is positive or tero, respectively. Ve
state soms dasis relatioashi) detween ecmvex sets and hyperplazes
(see, for example, Weyl [3]):

THEOREM 1.1 (a) A eloged eonvex set is presigely the intyrvestionm
of )} itd suppoetink’bhld-spaces; _

(») Eyery Downdary oixt 9of a2 comvex Set lles i3 some
Supporting hyperplane of he evt.

(o) Ive mem-iptereecting, closed, bowmisd gonvex gete
S9p bo pepareted: 1Ihgt is, disjoint slesed Mylf-speges exist each
oentaining oge of the gots. Im partisuler, an exterior poist 2ap be
Separeted {xom agy sleeed gemvex go% by = sypperting hyperplame of Mhe
29%.

The dinenglog of a comvex set 1s defined to be that of the smallest
linsar variety eonmtaining the set. A point of an »-dimemsienal comvex




at

-

set K that is interior with respeet to the m-dimsmsiennl variety som-
taining K we shall call an ipgey point'; vhile the terms “interior”
and "doumdary” will comsistently refer to the full n-dimensiocmal
struotwre. Thus, the notioms of "immer” and "interior" eoineide caly

for n-dizemsional ocomvex sets. Ve have:

THROREM 1.2 Eyery (msm-emply) cegvex set hes ap immer peint. Ihe peint
x 18 ap igmer poimt of KX 1if and eply 1f every syppertiang Rrpexalame

at 1 somtaims all of F.

Apoint x of a convex set K vhich is not an imnsy point of any

convex subcet of K, exoept the set cansisting of x alome, s an

gxtreme polat of K.
A eenyeg body inm o is a eomvex ses whish is elosed, bommded,

and n-dimsmsiemal.

For:hﬂnbondarycraoloud,oomutxinr‘u
define L(x) to be the imtervectien of all hyperplames that suppert KX
at x. For formal oe-blot-noun-ymommx

(L(x) = 2 if x 1s interior % K,
|

L{x) = 0 1f x is mot in K.

The goptaot set C(x) of a poimt x 1is defimed to e the imter-

T Sozetimes the term "relative interior” in used.




i'\“\ ,

sectiom of L(x) with K. Ve call & poimt of X oriipery, or

SEerismnl, sceorling as it i, or 1is mot, aR Lumer poirt «f 138 owm
canltiaet set.

Simse C(x) 18 1tmelf clecsd and semvex, wo om scasirwet the
./-hﬂutd’ ¥ Wwith respest to C(x), imstead of K. Ir x {i»
ordinary (vith revpest to K), Theorem .2 %ei\ls ws that tho mev com-

‘i.ctmu:&;t C(x) agaia. If, om %ke ehher hand, x is exneptiemal

vith yespest %0 X, the asw vobast set 1s 2 lewer-dimsssiomml swhect
o O(x). Mﬁudtﬂnmlﬂ.ulumhmﬂm
oondegt 998 C'(x), whleh is the large~ic eomvex subdot of K of vhieh
X 12 on tmmer poimb. C'(x) o x If and emly if x 18 an axbreme point
o K.

Yo .3ov define thave imdieesz

Ineial dimepsien of x: a(x) = dtm L(x),
sanient AingRsien of x: o(x) = dim C(x),
Iedneed sontest dlmemgion of x: o'(x) = dim C'(x),

all, of esurve, vith respect to A-givin slosedveonvex set

K. mﬁlumoqnlu:'n“it X 1s interior to X, anmd egquwal
-I(ﬁod_mw&;l;nt) i x 1ia owteide of X. These
indioes ave iavariant uader affine amd (pxoper) projective transformmtions
of K, sal are imtrimsie im the sense that we do mot altcr them by im-
oxoning the dimsmsion of e sarrying spaee ) g Yor = finite, cewrex
polstepe a(x) = o(x) eoverydere; in gameral the differemses a(x) - e(x)

g —

eCoanro Bonessen and Penchel (4], pp. 14-16. Their "p-Kantenpunktet
are the points x with a(x) = n-p - 1,



doscrives gualitatively the sxrvature of the bowndary of K at x.

"me.x X x is sepevtiemal, Sdam 3 Setuenes of spiimarTy pcimts

(1) oo ve fownt vhish gegverp %o x snd for ynted

.(x“)) = a(%), o(x“)) = o(x).

Pyesf. Take axy goqusmee of immer poimts of C(x) aypresgiing
x.

A fowrth index &(X) ocem bo defimsd by eymaindng mere empRibiil;
the citmation of x 1z relation to the meighdoriag dowmadery peinte of
K. Cemsider all the swppoTting hyperplamss that toush X withis aa
t -noigherhood of x, max-mummlumxmn

tat Yhey ali pess Qhyough x. cmmm«cmm_

set of kyperplancs D(x,c¢ ). Thaa lot
Q(x) - nndinn(z,e).

£ 0

THis index ‘s imvariaat amd intwimeie, like the othwrs, and 1s equil %o
R in the intexier of K, 2610 at the extreme points.

BOVREM 2.2 Eor x in the m»-dineusisss) sleped convex 2% ¥,

n > a(x) 2 0(x) > e'(x) 2 &(x) 2 0.
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Proof. The only one that is not i—odihtd.r m -ﬁ%’é‘ e
A,'.'}.
inequelity c'(x) > d(x). Put mge' 0 - o'(x) and leb &" m‘ e 7
! ' ‘~ b
’ linear wvaristy through x perpendicular to C?*(x), The mt t@ u

extreme in the convex set S -
K' KM E"}

and tbe set D () (x,§) (relstive to E) 1is just the peint x -
S{noe every supporting hyperplane to K! in 1 csn be M

k.'f".!_ .-L P 7, h‘ j:.,n.‘ - JE PRI N

, n y ‘:;1,.‘1-.".\,.:
; at least one supporting hyperplane to X in B, ws hln v ”
R m E {; .\ -.";-
. D(x,e )N E € D(p)(x8)ex fed -
: We condlude that the dimension of D(x,¢ ) does uo: exmeed v
B
g n-omg c'(x).
; o
It can e shown by examples that the insqualities of the lust
i theoren camot be improved on. - v
The acoompanying sketches illustiasting two of the mere cemplieated:
% possibilities for the indizes at a point.
;
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Witk respect to a particular convex set K we mov defime d(x)
to be the least mmbder of extrume points of K required to span x.

TEEORIM 5.2 Yoy poigle in & glosed daynied »-dinemgisngl teaves b,

25 ' P(x) <m+],

A4 benge, algo,
B(x) 5 ox) ¢ 1. : ,

Preof. See Stainits [5] §10; also Hanner and nxds£r6n [6].

Sh._oenyex senge. Pmlity.
Yo sbvw find 1% sovenient %0 intyedwce the homogsmeous
codrd inntes

I (701 Xys ocod !h)

for the poirits x in l"; and wo impese on them the linsay mormalizing
sonditien:

;'iixi-l, mot all 7, =0,
which may %o written, im short fesm:
(b.1) yxel, T fo.

A dalf-gpase in »* 1s mev eharecterised by (A.1) and an imequality
of S Sesm

L]

A
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b A

-

P

< v -

’ B S5, T3 ,
(h.2). yx20, y¢df, SRSL £ TR

in “ich y »ay » rogarded as a point im e cenjugate space (l..‘)‘
of hemogensons limeer funstioms on E°*). The half-spese detemmines
T wp % a pesitive mmltiple.

Temperarily pusting aside the mormmlising comiition (M.1) we
comsider x as a poimt in l"”1 A gome ia l."”l is a sst that
osmtaine Ax whemever it somtaims x, forall A >0. All
supporting Malf-spaces %0 a eomvex oome ' will have the poims O
nmuwumu,mmmumumuur&(t.e).
The set of all y 1m (X™U))# representing rupperting Malf-speses
% [ 18 alsc a eemvex oeme 1f we imolude the peist y = 0; wve eall
this the gepdumto oomp to | and demste 1t %y %, Thus

yef"m»xgo all x €
THEOREM 4.1 If T is 8 sleasd senvex geme in ®° (sat i ye
J4mALET ke maees (X% g 2™ 12 the patgel yor), Shew
Mot e [ K

Proof thet 0 C M*, Takws x in (. Every y ia *
satisfies y-x > 0. Therefore X, Tegarded as a poimt im (X™*1)es,
representa a swyporting half-gpace to M %, or 18 the point 0. Im etther
cafe x Ydeloags to M R,

Preof \pt *™ . M. Tams x ta E - 7. By Theorem
1.1c, seme swyporting half-gpase of |  does -.st eatain x. In eother
words, y.x<0 foroeme Yy im %, I$ follows that the half-spese
in (x"“‘vm:mummw Ne, Thas x dJdees
208 delsaug %o |,

Ve call a olosed comvex come | proper if it does mot comtaim emy ocmplete
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* « Z([M(x)]*; x) (x inmer to K)

as & fygl et to K. X* ia = osavex body if ead emly if K 1s; and,
%y the last theetem, K 1is édual to X* as wll.
Mo aext tee theoorems follev dixrestly from swur definitioms.

THRORIM V.2 The poixt = 18 interier %o the oegyex eet K if epd
S i y»x>0 fer all peiste 7y i3 X®. INere is p cup-omp
95T Rondience devveqn e downdary points of K spd She owpperting
Mlf-ereces Yo X%, @i equyerwely.

TEROREM V.3 If K gal I gJv glesed gexvey pete with L C X,.gmi
AL £ gal L* are pemmallsed by the Sqme Peint x immer to I,
| ™ CLR

Th the figure & pair of dual comvex 0ots in X and E3® g1y
aye showm, vith scme of the swpyportimg Malf-gpases.

Fig. 4.1
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(%5.1) xey K > xeK end y'x = 0,

of esouxy®e, J-K 1s ocomtaimed in the boundary of K, amd is convex.

If yK =C(x) (see §2) for boundary poimts y and x of K*
and X, respectively, them ve say that y is conjygate to x. This
dePimition is actually symmetric, as the next theorem reveals. Examples
of sanjugnte paire are readily found in Figure 4.1.

(5.2) C(x) = 3K
am! wish to shov that
C(y) = x~K%.

We see at once thnt
C(y) ¢ =xrK™,

since C(y) 1is defined as the imtersection of X% with all of the
supporting hyperplanes at y. To oompiete the proof, we observe that
any poimt .y' Im K¥* - C(y) Mas tifproyorty x'.y' 4 0O for ecme x°
in EK#% vit;:x'-y = 0, By (%.1) x' is im y~K; Dy (5.2) x' 18

im C(x). This means that any hyperplame supporting X at x mmst



also support K et x?, or

y'.x =0 only 1f y'ex' = 0, (all y" . %),

In particular, we obtain ;'-x ¥ 0, from which 1t follows that y'
canmot be in xnX*. This complete« the proof.

Proof (b). The set =x-K*¥ 18 non-empty and convex for every x
in the boundary of X (Theorem L.2). If y 1s any irmer point of

this set (Theorem 1.2), then it is ensmily seen that C(y) = xii[*. Ilence

x 18 oconjugnte to y.

THEOREM 5.2 If x and y are conjugate boundary points of dual

(n-dimensional) oconvex bodies, then

io(x) +a(y) =n -1,

la(x) +0o(y =n - 1.

Proof. When imterpreted in the conjugate space (En)* contalining
the dual dody I#, the set y-K 1s seen to consist of all tue hyperplanes
supporting X* at y. The dimemsionality of this set is ¢(x), by
(5.2) . We may therefore count exactly c¢c(x) + 1 linsarly independent
hyperplanes in (E)®: they intersect in a set of dimemsion
n - o(x) - 1. But this set is precisely the set I1(y) (ses &?2), and
ita dimension is therefore a(y). "This proves the first assertion of

the theorem. The second follows immediately by symmetry (Theorem S.la).

14~



Conjugnation does mot, of course, give a onr -one pointwise corre-
spondence between the doundaries of I and X*, However, a one-one
corresponiemce between sots of boundory points can be set up very
naturally. Let (x)¥* demote the set of pointa in X* vhich are con-
Jugate to x; amd, iIf 5 18 any set of points in the boundary of K,
let % demote the set of all points in X* oonjugnte to same point
in o

s* . L) (x)%.

p £38)

By Theorem 5.1b, S* 18 not empty. We have

(%.h) GHNE . 3,

This 18 a type of idempotemce relation frequemtly emcomtered in dealimg with

linear spaces and their conjugates—it says that after two applications

conjugntion gives nothing mow. To prove (5.4) we must show that

y is conjugate to x,

(5.5) ir x' is conjugat~ to y,

Yy is conjugate to x°',

then A is conjugate to x.

But the definition (with Theorem 5.la) gives us

C(x) & yoF = C(x') = y'nk,

from whioch (5.9) and (5.4) follow at onoe.




THREORFM 5.3 The sets (y)%*, as y rgnges over the boundary of KW,

congtitute a partivion of the bougdary of K imto disloint, convex

ccmponents . These components correspond bdimniquely with the ocomponents
(x)* of %he analogously defimed dmal partition of the boundary of K¥%,

in sush a way that every point of any ome component 1s conjugate to every

point of ita dual.

Proof. By (5.%) or (2.5).

Within each compomsnt of the partition, a(x) and o¢(x) are com-

stant. In the case of polyhedrel bodies, the componsntis are just the
usual cells. In gemersl, they are the (relative) interiors of the maximal
convex sets lying in the bowndary.

The partition of Theorem 5.3 is tho finest partition which admite a
dval, Tor it is easy to «»n that S5 = S™ 1f and only 1f € 1is the
wmion of elsmemtary sets (y)*. Later (in §11) wve shall comnsider as
"faces"” of a sonvex body the maximal commscted sets over which a(x)
is constant. The dual fages or the dual body are the maximal conmected
sets having c(y) comstant, as a short argument besed on Theorem 5.2

reveals.
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% /. Distribution functons on (0,1 .

Tho primary subject matter of this papnr will be the normalized
d1stribution functions on tho closed unit nterv:l fo,g and thelr

—

momonts. Tho cholce of Interval !s » matter of convenience -- in many
respects the interval j;l,l: would serve as well or bstter. "1l of
our reslts can bc adapted with little d!fficulty tH an arbitrary
finite Interv:l, dut manr features of the half-iIafinite and infinite
cases are conspicuously different. Ve propose t deal with thosen cuses
in future papers.

Since we are not interested in distributions over genernl spaces,
ve can amit the cultanarf set-functional approach. We define « digtri-

but‘on function directly as n real-valued funotion which is monotonic,

continuous to the right, and flat outside cf 0,1

(1) g(tz) > d(ty), 1f ¢t >t
(11) F(t) = 4(t + 0), for all t-
dit) = 4(2) irt>1,
(111) -
Ld(t> =09 % il A <)%

The effect f (11) and the last clause of (11i) is Lo remove r«dundant
representotives Hf "substantially equal” distribution -- distridutions

that oper<te !‘dentlically on 2ll continuous functions. (The condition



(11°) F(r) - 2 ) + #(e-0)

{s sometimes found In plice of (11).)

The spectrum of d, denoted (J), is the set of points t In

0,1  with
gt +:) - gt - ) >0

for every poslitive 1r (-’d) is ~ finlte set then we say that d

1s 'n arithmetic dlgtribution function, or a finite step-function.

To normalize, we put

(1v) d(l) = 1.

Wwe let .~ denote the class f normalized d!stribution functions and JSPA
the class >f normalized aritimetic distribution functioc .

. The step-functions

e for t - t. . <G,
- - 3

with 0 <t <1, we cill the pure d!stritut. n functions: they are the

=
extrome points of . ,. Every aritmetic ¢ ocan be represented uniquely:
[+ %
o
[t d(t) = e (e Bl >0, t >t




as n linear combinrtion f pure distribution functlions, and, obviously,

J 1ein . 1f and omly If

IRY

(The use of b(¢) to denote the number of steps !s consonan’ with the

definition of % 3.) In the ®"weak #!' t{opology the pure distribution functions
span out A as woll as ~/, . We shall return to this question in & 21,

(Y

Tt 18 conveulent to introduce an index b'(d) of 17, :

b(¢) 1f no step at either t = 0, 1,

b () = < B -

b -1 if steps at both t = 0, 1,

) =

if etep at just one of t = 0, 1,

which Wald calls the degree” of ¢. Thus, steps at the emnd-points of [0,1]

contribute the amount 2 to the degree; interior steps the amount 1.

2
th
Finally, we define the n  mament of ¢ :

(6.2) /(nm = fl t"ad(t), n=0,1,2, ...
O

The limits of integration would be more properly written

1 (e o]
/ or even /
-0 -
since we intemd, for ¢ : £ , to have alvays //O(f) = 1. Howewr, we shall
use the less oomplicated notatiom of (6.2), with the understanding that the

variation of ¢ at t=0, if any, 1s to be included in the integration.

e See Wald [8]




37, Thc momont space D=,

The n'0 moment space p" we define to bo the set of pointe

x 8 (2, -0 2]

in =7 whose coordinates are the moment.s “i(d)y ooy ,,n(v') of at

least one ¢ 1inm A

THOORTM (.1 (a) There is a function in X having the moments

(7.1) Xps Xpp sees Xy oeee

Af and only if the point
x(k) = (xl’ ey l’x{)

is in D%, for all k.
(b) No two functions in > have the same moment soquence (7,1).

Proofs of these standard results may be found (for example) in

Vidder 9 | , pp. 79, 31, 60. We remark that for distributions on the

half-infinite or infinite interwml (b) 1is no longer true.

THREORFI4 ~ .2 D7 1is a convex body.

Proof. We must wverify that " 1s convex, closed, bounded, nd

n-dimonsional .




(a) Convex: > 11 convex in the -bvious sense; hence D" also 18
convex by the linearity of (6.2).
(b) Closed: See ngnin '/idder | 9 , pp. 23, 1.

(¢) Bounded: We have, for every x in D,
0<x, <1, 1 a 1, ccop As
(d) n-dimensional: The n+l pure distridbutions
I(v),  I(t-ty) 3=1, ..., n,
for dletinct, mon-zero t, In 0,1 , glve rise to ths n+l points

x(o) =00 N N R O

M
n

1 o n
(1) (tl, ti’ . e § t.l)

n
(B RN PR S

in Dn These d0 Not all lie in any one hyperplane, simce the determinant
of the ocoordinates of x(l), AT x(n) does not vanish. Thus D" contains
an n-dimensional simplex.

The point in D" generated by the pure distribution I(t-t)) we

shall designate by

(7.2) x(t,) = (t) tl2, ceer by




-02.

We shall designate by c® the ocurve trnced out by x(tl) as tl runs

betwveen O and 1.

THECRFM 7.3 The sot _o_r_ extreme polnts _o_f Dn, for n> 2, _1_! greoilel_l:l

o)

Proof. We shnll prove (a) that ch spans Dn, and (b) that no

point of c? is spammod by other points of c®. The theorem then follows

with the aid of Theoxem 3.}.’ TR

(a} Let D: denote the subset of D" generated by the arithmetic
distribution functions ¢A € ’0/\' It is clear from (6.1) that D?
1s exactly the set of points spanned by Cn. Moreover, DK is a closed

set, since c” is closed and bounded. We shall show that Dn - p". In
M

fact, for any g in oJ there is a sequence of step-functions

¢'(J/) c v:TA such that

]

R v W A C LU QIR OO ST

— ) [e)

for overy continuous function f; this is nothing more than the definition

of the Stleltjes Iintegral. Taking f(t) =t, t7, ..., t7, we see that

D® rmust be the closure of its subset DI,?. But DI.: is 1lready olosed;

n n

hemoe D" =D, and C spans n2.

(b) Consider a fixed x(tl) in Cn, and let Hy be the hyperplane
1
dafined by the equation

(7.3) n(x) = t = - Exltl + x> = 0.

-~




RY Yl

(For this we must have n > 2.) For a general point x(t) of C we

have

(7.4) h(x(t)) = (tl - ¢)Z,

Thus our fized poimt x(t,) is in H, , while the rest of c® 1lies 1n
0
the positive opem half-gpace determined by Htl. Obviously x(tl) is

not spammed by other points of cB.

58, The polynomtal space PF.
We are nov im a positior to construot the duwal to the senvex bdbody
D®. It is natural to imtroduse homogeneous coordinates (ses S L) by means

th

of the 0 moment, /40((). Since this is alvays equal to 1 by (1iv) of

2 6, wo appand tho coordimate x, = 1 to each poimt of D®. We thus
have

-~
y=(1,0, ..., 0)

in the normalizing relation (4.1). The come ['(D”) then can be inter-
preted as the mement space of the distributions defined by (1), (11), amd
(111) of §6.

The points Yy of the conjugate cone {F‘(Dn)] * are those satisfying

yx>0 (all x-D7).



h ih'-e ‘ g
g2 -
o
4 : ~
% By Theorem 7.3 we may replace D" by C® 1a the above camdd .
'{' glving instead:
y-x(t) >0
or, by (7.2),
ol n ot
N 8 b 1 J
, (8.1) P(t) = ; yt 20 (all te€ 0,1 ),
¥ ' 1=0 '
‘f
e 4
- This reveals that ,( [ Dn)' # is the ooeffiocient space of the pohwllgf
\_%
& of degre> at most n, 3 which are non-negative over the interval [6,11
It remains to seleot a particular oross-sectiom of thig eome h.
as a repregentative of the class of projectively esquivaleat dual om\ :
v, bodles (D")®. We sal¥cs the polymomial gpace P
!
. P e (L (DN % T
> (see § W), where
E a~ l1 1
4 T2 (1,3 % - o) -
The coordirmtes of X are tle moments ol tre "rectangular® distribution i
B(t) * L; we 2hall nresently see “hat, siice 3 s not a step—function,
v is interior to D™ for ever; n, A: « result of this particular normal-
isation, the poryrnomials inn 7 +all satisf.
« (8.2 Ij! !(t)dt -1, . « R ITTY
This condition may be compared with the condition o %

ol VAT CRR
o

4
\ ' et 4
:é; whioh noymalizes the mament come p(n"). CAH :
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above would have given us P(t)dd(t) 1n place of tne imtegramd of (8.2).)

Summartiging: . . -

THEORRM 8.1 The momemt spacse D" and the space P" of p'" degree poly-
amisls, pon-megative over (0,1) and normalired by (8.2), sre dual oon-

Yex bodies.

To aid im visualizing this relationship we here show P" and D"
forn=2 aad n = 3. As for higher dimensions, it is evidsat from the
definitiens that 7" 1s the cross-section Yo =0 of P.*l, while
I® 1s the perpendicular projectiom of D™*! on the coordinate plams

ey " 0-

x(0)

Fig.8.1— The moment space Ik Fig.8.2—The polynomial space pP°




Fig.8.4—The polynomial space P>

- 26 =
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39. The boumdary of F".

B ¢
= 7 P
'g“i' )
” 4 (1
% ,‘Jﬁ; k

e
»

THEORFM 9.1 The boyndary of P° gawprisos just MMK ?’“*
having ome or mere yoots in 0,1

Proef. (a) If P(%) is strictly positive over E),] , 1% will |

remain 50 under mmall perturbations of its coefficiemts y,. wa

the poimd y muat de interior to P .

(b) Comvermely, if P(t) has a root ty inm [0,1} i
J‘°!(t1) = 0, ' =

eis y lies in a supporting hyperplame to Pp, by Theoren 8.1, sad

henge is in ths doundary of PR,
To help us discuss the boundary of P° we define w(y) hhﬁli’i,‘f

] 'f""

mmabar of distinot ruots in 0,1 of the polyncmial I_ y,t'. The .-f;;f; 3
eymbol r'(y) will also demote the number of distinot rewts in [0,1] - 4
but with the roots at t = 0 and t =1, 1fﬁ:oyooonr,w‘iﬂ-1rz;'

half.° Thns r'(y) is not necessarily an integer, and
ry) -1<r'(y) <x(y).

Simse a nom-negative polynomial must have ell roots doudble im e
of the interval, it follows that

- ; . ' ¥ S Trag )
d ¥ bt .: - ¥ e . - _. TR e B - '__'h-

o Y i L' Nt For S S TR S b
b BT r 4 Saperuio ok A S & L .

2r'(y) sn

1
- L T




for all y in P°. Ve shall sce that the equality holds only if y 14
an oxtreme point of PR,

N demote the oclosure of the subset of P° fer vhich

Let Q
r'(y) = 3. Each polynemial in Q" falls into ome of two sets, Q" or
T, depeniing on vhether the multiplicity of the root at t = 1 1is even
or odd, respestively. .n Q" polynomials have the form: ,

k]

n/2
9(t) = v, ﬁ- (¢ - 8,)% (n owm), !
3=

-rt%ﬁm(t-t)’ (notd); o
n 3= J

and {8 G° they have the form:

n-2 :
QUY) = -y.t(l-t) (-piﬁ (¢ - td)’ (n ovem), 2

- 2
= -y (1-t) [ (t - ¢ )* (m ead);
n al J

wvith all t, in [0,1] .

: J
; Simse we have taken the closwre, the tdmmtmmw.

It is easYy to see that the two sets _O,n and T

mu‘pmtod,fn'ﬁ.i
leading coefficlemt y, 1s always positive in the firet aase, u.suntén
, the secemd. On ths other hand, they are both conmested sets, cesd of thef
in fact beimg the homsomorphic image of a simplex defined ia X bh‘b

inequalities , A

0 aba anst g o o



0<t <...<t <1

1

(vhere m 1is roughly half of n).

THECREM 9.2 The set of extreme points of P" is precisely Q".

Progef. (a) If y 1is in 1% - ¢® them y 18 not extreme. For

polynomial
P(t) = : yiti

has either (1) a root a < 0; (1i) aroot b > 1; or (111) a pair of
( complex roots o + 1d. But in every case wve can exhidbit a cemvex

representation of y in terms of other points of P®. Thus:

(1) P(t) = (t-a) R(t) = 5(t-20)R(t) + 5 w@(¢),
(11) P(t) = (b-t) S(t) = 5(2>-1-t)S(t) + 2(1-4)3(%),
(111) P(t) = [(t-0)Z + 43 T(t) = (t-0)3T(%) + d421(t);

vhere R, S, and T are all non-negative over {0,1} , though not in
gonsral nomalired to lie in P°, However, all three of the right-hand

expressions are of the form

S1Py(t) + 5aPa(t),

the
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vhere P, and P, are nomalized, and ", and -, are positive with

%1-&%2-1.

(b) Conversely, every y in Q’l must be extreme. ror

suppose that there is a convex representation
i \
Qt) = T 7yt = Si(t) + E2Ra(%),  Q, Qe €PR,

with 0< £, =1 - €5 <1. Then every root of Q must be a root of

both Q: and Qz, of the same mmltiplicity or higher. But all of the n

real and oamplex roots of Q are ascounted for in [0,1] ; hemoe weo
necessarily have Q;, = Qp = Q, and the supposed convex represeatation

$ollspee$. This completes the proof. L Ty

We can now proceed to character\:o the exceptional points in ﬁ

boundary of p" (see $2). The joint y 1is in the contact set C(y')

of the point y' if and only if e.ery -~uppotin, hyperplane containing

Y' also contains y. That is, if y {is ot in C(y!) then

-~

7''x =0, ¥x>0 for some xé’.

Using some representation x = ) §Jx(tJ) for this point x (Theorems

3.1 and 7.3), wve odbtain

1 §P'(ty) =0, T §P(ty >0,

whore P' and P ocorrespond to y' and Yy respectively. Hence some
root of P' in (0,1 1s mot a root of P.
- Conversely, if t' 1is a root .of P' bdut not P then the simple




-

hyperplane x(t') ooutains y'' Put not y, aad y 1s not 1m C(y'). This %;:

THEOREM 9.3 The gomtast get C(y') of a point y' of P” oomprises
aXagtly \howe polynamials of P° yhioh vanish at all roots of
}:yiti i o] .

Now let us suppose that y 1is {n C(y'), #o0 that we have

a=2, 0<t <1

a
T oyget = T (et JRe(w) J )
J 1, t,=0erl
(9.1)
a
oyttt T (+-t,) Jr(%) t, all dlstinot, J = 1,2,...,r(y'),

vhere R' has no roots in {0,1] exoept possidly at scme of the tJ.
For the appropriate )\,l 0, the polynomial A R(t) bDelomgs to P', vhere

(9.2) mR=n - Ead-n-er'(y').

It is easy to see from this that C(y') and P* are homeamorphic. Hense
y' 1s an immer pcint of C(y') 4if and only if the coeffiscients of X\ R!'
give an imner point of P™ --- that is, if and v ly i€ AR'(t) 1s
strictly positive over [0,1] . Referring to th .sfimitions of § 2, we

see that wve have proved:

s al




THEEOREN 9.4 The point y' of P° 1is exceptional If and only If

1
i yiti hes a multiple root at O or 1, or a roct interior to ‘,(0,1,

of multipliocity greater than 2. The reduced contact set C'(y') oomprises

those polynomiale in P” which have roots at the roots in (0,1 of

T~ yit', of the same multiplicity or higher.

We have also established, by way of (9.2), the first of the follow-

ing useful formulas:

THEOREM 9.5 For y imn P",

c(y) =n - 2r'(y),

a(y) = n - r(y).

Proof of the seoond formula. If the roots in (0,1 of J_ y,t'

are tl, H0 Gy tr(y)’ then we can eaxhibit the linearly independent

hyperplanes:
I(tl), !(tz), seey x(tr(’));

all of vhich support P® at the point y. Any other such hyperplane
must be a linear cambination of these, for its coavex representation
camnot involve smy extreme point x(t) of D® without t being a root
of Z yitl. The intersection of these r(y) hyperplanes, considered as
point sets in (E™)#, 1s the set L(y) (defined In §2), whose dimension

defines the index a(y). The formula nowv follows directly.



The last throe theoroms are mainly of interest for the doundary of

Pn. However it is easily verified that they are valid for interilor
points as well; consequently we have stated them in the more general

form,

§10., A property of the extreme points of P,

In this section we shall prove that every point of 7= - Q° 1is

spanned by some pair of extreme points. That is, in the notation of &3,
b(y) =1 or 2 for every yc< e, Moreover, although there may be

more than one spunning pair in zome cases, we shall show that there is
alvays a unique representation in which the extreme polynamials have

interlocking sets of roots in LO,l" . This vill prove a usaful strengthen-

ing of the wvell-imown theorem on the representation of a non-negative

polynomial as a sum of squares.’

The next two theorems are lemmas for the main result.

THEOREM 10.1 Let m+l ocontimious, non-negative functions

fo(k), £3(2), «oey £(7) Do dofined om the simplex =™ of poimte { :
e (A £ ) >0, Y k. .=1
2= Vor iy oo figlsy ng 29 SRl
yith the further property that eagh fJ(E) vanishes on the faue
L,=0. Then for same -~ in =7,

-J

7 See for example Szego [1C0) , p. L.
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Proof. Define

k(a Y J(t ), k=0,1,..., m,

and suppose that the F, ( t) never all vanish at once. (At least ome

vanishes at each point, and all are mon-negative.) Then the tramsformation

rkﬂ,({)
A N e

Via)

defines a mev point ' in the boundary of = . (We reduce gubsoripts

»odulo m +1.)The mapping g > %' 1 continuous; it therefore has =
fixed point by the familiar theorem of Brouwver. If £ * 1s a fixed

roint, we can set up the followiag chain of implications:
gs -0 == fJ(g#) =0 =$FJ(S’) -0 => %3;1 = 0,
from vhich ve conslude that all components of & % vanish if any ome

vanishes. But we know that at least one componsnt vanishes, and wve also

now that all cannot vanish. This contradiction forces us to abandon our
original assmption about the F,({); thore must in fact be a £ 1n

—™ for vhich 21l vanish:
ro(g) -vl(S) A 'Fn(.i) = 0.

This is equivalsnt to the assertion of the theorem,
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s

THEOREM 10.2 If f(t) 1a continuous and positive for t in 0,1

then n non-negntive, n-th degree polynamial 3/t) with r'(S) = n/2

nxists satisfying

S(t) < f(t) 0<t<

gnd such that equality holds a2 least once betwee seach pair of distimot

roots of S(t). Elther of the further cond:tioms:

—~
=
~—

. T {r(o) (n even)
0

(n odd)

- 0 (n gyen)
A C,((\) =
£(0) ‘n pd4d)

—~~
=
—
o)
~~~
(-
N’
[
(@]
F
S,

detormines G{t) uniquely, as a multiple of an element of ° or O

respectively.

Proof. We assume comd'tion (A), with n = 2m. The three other
cases are proved in essentialiy the same way. The polynomial S must

have the form:

m
3(t) =as (t) =a || (t-u,)? (a > 0)
u 3=1 J

wvhero u = (W, ..., um) is a point in the interior of the simplex e
defined dby:

uel <=> 0<wu <...<y <1




Wo define the quantity zJ(u) to be the greatest . such that

Al

lfwu(t) - (Y, 21l ttfuj, uJ+lJ

The dofinition is wvalid for J=0,1, ..., m Iif we adcpt the ~onventions
u, = 0, Weel = 1. These m+l functions are continuous and bounded :wmay
from zero throughout the interior of 7. 8 u approachss the doundary
face defined by uJ = uj+l the funotion JJ(u) tends to infinity. The
reciprocal functions l/nJ(u) therefore satisfy the conditions of Theorem

10.1, and we conclude that a point u' exlats with
ao(u') = nl(u') = .,. = fm(u') = (',

The polynomial S'(t) = "Su,(t) is equsl to f{t) at least once in each
interval between roots, a.l clearly has the other properties required bdy
tho theoren.

To show that 5' 1s unique, we take any (" having the same properties
and examino the differomce, <'-C", again an n-th degree polynomial. In
fact, supposo that the smallest root of 3" is less than the smallest
root ui of 3'. Then 1t is easy to show that O'-3" has at lenst one
root in the open interwval (O, ui) and two roots in each interwml

lwi, wy|, «oop {9y, w | for a total of 2m - 1 (the possidle cotin-
cidence of some of the ruots of S' and 5" does not affect the total,

counting multiplicity). Tn addition, S'-C" vanishes at O and at 1,

8o that the numder of roots exceeds the degree. Hemce S'-S" = O,
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THEOREM 10.3 Xvery non-extreme poimt y of P” has a unique convex

representation by a pair of extreme points, ome cach fram §° apd Q,

yhose roots interlock, as follows:

Iyt -oT )2 « pr1e) 1T :
y.t =a (t-t + Bt(1-t) (t-t, )
=71 i 23-1 5 2

if n=2m; and

n m n
;‘-_(_) ytt et TT (4, )2 & B(1-t) TT (t-t,, 1)°
J=1 3=1

n=2m+l, with a>0, B >0, Ogtlg...gtn-lsl. Moreover, Yy

1s interior to P° if and only if all of the inequalities are strigt.

|

Proof. Take y interior to P" and demote Zyiti by P(t).
Then P is strictly positive over 0,1 (Theorem 0.1). Applying Theorem

10.2 (A) and (A) to P glves us polynamials
$=Ffg and 5=« rQ (3¢ g%, Qe ).

But P - S 1is a polynomial with the same properties -3 §; by the unique-

ness wve must have P - 3 = 3, or

P(t) = FQ(t) + i Qt) (>0, 1>0.
Since P, Q, and Q are all in Pn, we havug n = 1l. Moreover, the roots
of § and C interlock (strictly) as required.

If y 1s in the boundary of p", then the same procedure works if




we start by dividing out the roots in (0,1] of P(t) end finish by
multiplying them back into both terms of the representation. But nov, with
scme roots cammon to both extreme polynamials, the two sets of roots will
no longer interlock so as to satisfy the strict ineqialities. This completes
the proof.

Ve may remark that sane points in P® aro spamned also by pairs of
extrems pointe vhose roots do mot interlock, or by pairs of extreme points
from the same component of Qn. However, Theorem 10.3 descoribes the only

natural vay of gsmerating P? from Qn, in vhich every point is represented

once and only onoe.

$1l. The boundary of p".
Returning to the momsnt space p® we now investigate the mammer in

vhich its boundary is spanmned by the extreme points. In order to de adble
to apply Theorem 7.3 we assume throughout this section that n > 2.

THEOREM 11.1 The representation of the point x 1in p" by extreme points

Js unique if and only if x is in the boundary.

Proof. (a) The set of extreme pcimts C° 1s a twisted ourve (see & 7)
that does not meet any hyperplanse in more than n points; hence the contact
set C(x) of 2 boundary point x ocan contain at most n of the extreme
points. But any n or fewer extreme points are linearly independemt (see
proof (d) of Theorem 7.2), therefore C(x) 1is a simplex. The representation

(3.1) of x depends only on the vertices of the simplex, amd hemce it is

unigue.



(b) If x 1is interior to D", then it is imner to the segment
coomecting x(t) with the directly opposite bdoundary point x', x(t)
deing any voint on c®. a representation for x can then be construoted
by combining x{t) with the representation for x'; x(t) will necessarily
appear vith positive weight. But since t was arbitrary in 0,1

there are infinitely many distinot such representations for x.

Proof. No interior point is exocuptiomal. Let x ©be a boundary point

of D® and consider its unique representation

b% b(_x_)_ X

X = = kx(ty), - $,=1, §J>o, ¥1, ..., b(x).
We shall show that C(x) 1is precisely the simplex S spamned by the points
x(tJ) . Them, since x 18 clearly immer to S, x 1is by definition not
exceptional. We at once have S C C(x) because every supporting hyperplane

at x oontains all the points x(tJ). To show that S = C(x) we need only
oxhibdit one hyperplane that contains the extreme points x(tJ) and no others.

But any polyncmial in P having just the set of roots {tﬂ will provide

such a hyperplane.

n
THEOREM 11.3 For x in the boundary of D,

o(x) = b(x) - 1.




Proof. By the definitions of b(x) and o(x) (see §3 and ® 2)
we have
o(x) = dim C(x) = dim S = B(x) - 1,

S Dbeing takem as in the preceding proof.

THEOREM 1.k If xe D° and ye PO are conjugate points, thep

b(x) = r(y).

2roef. Theorems 5.2, 9.5, and 11.3 give us respectively:

n-1=o0(x)+a(y),
a(y) =n - r(y),

o(x) = b(x) - 1.

Adding the three equations gives the desired result.

Comsistently vith our definitioms in ¢6 and § 9 we define b'(x)
to be b(x) - 1/2 1f ome of x(0), x(1) occurs in the most efficient
representation of x¢ Dn; to be b(x) - 1 1f both ocour; and to de Db(x)

1f neither ocowrs. We then have, without difficulty:

THBORRM 11.5 JIf xeD” and yec P are conjugate points, them

b'(x) = r'(y).
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THEOR™M 11.6 For x in D,
a(x) = Zb.(x) % 1.

Proof. (a) First take x 1in the boundary of D". Theorems 5.2, 9.5,

and 11.5 give us respectively:

n-1=a(x)+o0o(y),
o(y) =n - 2r'(y),

b'(x) = r'(y);

vhere the existence of the conjugate point y in P® 1s assured by
Theorem 5.1b. The sum of the first two equations and twice the third gives

the desired result.
n
(b) Suppose mow that x is in the interior of D, eo that

a(x) = n. Pass a lins through x(0) and x, meeting the opposite boundary
at x', As in the proof of Theorem 1ll.1lb we can build up a representation
for x out of x(0) and the representation for x', giving us the eatimate
1l
b'(x) <b'(x') + 3.
But a(x') 1s at most n-l, so that part (a) of this proof give us

(11.1) bi(x) <22

However, there might be a more efficient representation for x, giving us




rolu

(11.2) b'(x)<ﬁ2¥, 1.6., b'(x) <

If ve denote the extreme points involved by x(tJ), =1, ..., d(x), then
it is poseidle to comstruot a non-negative polynomial, vanishing at every
tJ, vhose degree would not exceed n. (See for exmple (9.1).) This would
entail the existence of a supporting hyperplane to D" which contains all
the points x(td) and therefore the point x itself. Cince x wae assumed
interior, (11.2) 1s impossidle and the equality must hol4 in (11.1l). This
proves the theorem.
As a corollary we have

b(x) < n;2

for all x in D®. This contrasts vith

»(y) s2
fop poimte ia P® (Theorem 10 and with
-— e o < S = e . “he
t 2 -
b(s) < n+l
[ ' [ Pcs . .
/ 1 . T
] Q *.‘

for the general convex t.r in E" (Theorem 3.2).

R N,

w:ﬁmu.lnmuw Qfﬂitﬂ.iﬁ.h“ﬁft"
points of p* in a natural vay. VWe define
n

x€C, < a(x) =a.
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More particularly, if a <n, we shall use C, for thcse points of c:‘
vhose unique representation (see Theorem 11.1) involves tkr.s point x(1),
and _C_: for C: - E:. We shall refer to these sots as the a-faces of

p". For exsmple, we have

The partition of the doundary of p® into a-faces, O < a <n,

generates a dual partition of the boundary of ® into “o-faces” 9_:,

=n

Qo’
5.3, since it is evident that the partition there is a refinement of the

0<oc<n, onvhich o(y) is constant. This follows from Theorem
present partition. (See §5.) In partiocular, we have:

Qg = (Ch_,)* = (ordinary points of g%

-n

Q = (Cp.;)* = (ordinary points of T,

as may be seen from Theorems 5.2, 9.5, 9.4, and the definitiom of Q°.

n
THEOREM 11.7 The two a-faces C. and C,, & <n, in the boundary of
D" are tho maximal comnegted components of C:, and have (topological)
dimension a.

Proof. A typlical point x in, say, 9!211-1’ has the wunique

representation

(11.3) x = Yox(w) + Sox(u,) 4+ ooce e o gx(n),

~,




rd

-

eince b'(x) = d(x) = m. Here the $.1 are all positive, with em 1,
and the ndmandi-timt,notOorl, and arremged for the sake
of wniquensss in ascending ordsr. We gan therefore estedlish a one-ome
esrrespenience betwesn (. . ead the produst of the imteriors of the two

simplexse " amd E"lz
(11.4) wel® > 0<uy ...y <Y

=1
(11.5) §e=""" > 5,20, §,20, coey £ 20,

; gd.l.

The mapping obvicusly does not disturd topological properties, hense 2m-)

is the (bopological) dtmemsion of g;_l, as requirsed. 1in a similar way,
Chny 18 Telated to the pair of simplemes U™, =%; ¢} to U, ="
and Ty again to U', =". The commectivity of the imdividual a-faow
is apparent from the above, and their peairviee separation is evidemt from the

relation:
a-1
(11.6) (closure 2:) -9_: - go C: = (oclosure 5:') -5:,

vhioh follews from (11.3). This oompletos the proof.
wowﬂdmlmuwWaboutthommmutieadpoim
in C}, the interior of D". If e momentarily twrm our attemtiom to the
higher-dimensional moment space D™'X, X > 0, we see that there is a
natural correspsndence betveen C. and either ome of the two =-faces of

Dmk. In fact, c: is Just the non-singular, perpendicular projection of




gnm'k or 6::+k into E°. The unique vrepresentations in the higher sete

go into "mintzal” representations in C::, involving exastly b' e (ndl) /2
extreme points. Eash x in C: has precisely two sush mimimal repsw-

sentations, formally ideaiical with the represemtations of the inveree imnges

= _ Dk “n+k
5(n+k) and x(mk) of £ in -(:n and Cn , respectively.

Considering the proof of the preceding theorem, we can therefore

aseort:

THEORRM 11.8  The interfor of D" ' 1is svept gut by an m-papgseter
foniiy of (m-1)-dimwygicnal simplexes =L and, in a differymé way,

by sn (n-1)-parsmeter family of m-dimeneiel sinplexes = ". The iaterior |
of D™ 1is sveph out in two different yaye by m-perwmeter fugllice of » |
dimesieme) gimplexes = .

Vo shail make ussy of this paremetrizatiom im 315.




W ““';c‘r,nxyw

" » \7‘(_"‘3“&1 o i ] o ., .f A
1L
é\ ¢ ;
- : ,

12 olapl S
The moment space D and its dual P® are closely related to '}

peir of dual simplexes, vith vhose aid ve are able to gecmetrize seme
classical proporties of mement sequemces and positive polymsmials. '.!‘N &
firet simplex, eiroumsorited adout Dn, 1s defined by its vertioes x(k),

x=0,1, ....n, with

.k-,
L0 kg 1)

) 1 " mtfk-f)t 7 @y ?
lg/

vhere, as usual, ] /(k-1 1 = (:) =0 if 1>k, D:.opluvduluirl.tr..j‘i;.-{_.

these coordinatcy are: 'y
-
X
e
1
(1 0 0 s D 0) At
i
1 -J: Q 0] Q
n
2 2°'1
. n l(n-l) v :
GERY)
, n n n
’ L1 1, 1 1 1)

¢ L v
4 4 ] “m
We shall denote this simplex by s®. Figure 12.1 shows B"» llqmlﬁ.ﬂi
” ool i
to D°.
’
o '...\ ," k
L0 4 et
; :'.&:i-'z‘
s Q\ A ! s ;&’{:L“‘ by

e 3



THrOR®M 12.1 S° oomtains DO.

Proof. The key to the proof is the {dentity

L}
n
(12.2) s R R )t (L { =0, 1 5
‘E:o Kk n, J 2
i

Accepting this, ve odtain by direct substitution:

n
: L X
(12.3) x(t) - 74l
k-0
wvith
~ ny ¥ n-x
153 -t N
Sp s gl taet >

A simple calculation (or (12.2) with 1{=0) gives us




! This sbove that the extreme pointe x(k) of §° span the axtreme points

x(t) of D", amd hemoe that S® ocontains D,

To verify the ldentity (12.2) we observe that

Pl
| n k n-1 n
‘ (k) (1) ’ \k—i) (1)
‘
: The right-hand menber of (12.2) may therefore be vritten: _..
3 \ =% 1
i YOy
3 B Bk %
: n-1\ .k n-k "oy
(LR _ (py) tf-yvE iy
' lo=0 ik
g With the substitutions {= k-1, m = n-1, (12.4) beccmes
¢

A nk(g‘: were introducel by Hausiorff [ll], using the successive

differences

.
1 ‘{ L

F,
.-"

(T kR R 203 |
e 3 101 s € il

(See also widder[‘?} » PP. 100 ff; <hohat and Tamarkin llEJ » PP. 93 £f.)
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These quantities have a simple geametric interpretation. Applying
(6.2) to the right-hand expression above givec us
‘r:t.-ﬂ-‘-.”.o -:m?". R ,..._.. i ' - ‘. X . :“-: . _‘.\f:
) Sths 1 - . e
] n X n-k r 1.8
(12%6) u(J) S(B) oy Ry Lk
o i Y
o\ 5 ‘f”"‘a
3 I_(‘.‘\'a
9 L .Q 0 }‘
If o demote by x, the moments of ¢, we then have ’;«
i
] R (x) 3
x = [ x(t)ad(r) - T A_(Hx',

0 =0 i
by (12.3) and (12.6), with 3,
Rt
%

; i.‘!
¥

n
A 20, :)\ =1
nk 00 nk

Thus, the /\nk(l) are jusi. the baryountrio ooordinates of x 1in the
_§_u4_ e dl eimpien 7"

(l}.l) Bn<t) - (:) tk(l’t)rk’ k = 0, 1’ seay nolfl"‘:

By Theorem 9.2 these polyammials are, up te a positive frotory, extcemo
> of P®. Im fact we huve

ir

(n*l)l.k € e

Danoting the point (n«bl)lnk by y(k)

for 1+s scorXiinates:



ygk_) - (-0

The matrix of the y(lk) 19 sudetantially the imverse of the matrix (12.1),

for we have

(13.2) L) (L) VS BT

The simplex spammed by the n¢l pointe y(k) wve denote by B‘; 1t e
obviowsly imecrided im - Piguve 13.1 1adicates the configura*iom for

W

"y[ﬂ'.l Jylir?]

Fig. 13.1




THBOFKEM 15.1 B jadmel te 6.

2299f. It suffices %o mhov that the vertices xm) of §°,

interpreted Iimn the dwal spece, are ibe hyperplames oomtainimg the (ma-1)-
Almensioma) faces of B®. But, by (13.2), each hyperplene xZ) comtaims
y ‘ e
ex.otly n of the vertioces y(k’ of Bn, and the resalt follews. 9 ged
It 1 now evidemt that the hyperplanes vhish determime the (nel)- L A
dimensienal faces of 5" are supporting hyperplamss to D" as well, o “y
tet in some semse s® 18 the most glosely fitting simplex that oan be
circumseribed abowt D", Dually, 3® 1s In sams sense & mavimal inserided "'.f.-.
voik
simplex in ) presise meaning to thes: statemeats will be givem im h 2
ncat tvo sestions. n‘N* oo o
A simple caloulation shows that the cemtroids of the bwo simplemes. &‘E A A
.uy _* } : .__.‘-
and B' are respectively . 3;? -
= 2 ERRP T %5
x = (1, %, 00 Zay) e i R
CARRLSN Y
end 8 A :."i;
— u’dﬂ '_> :\f‘
y=(,0, ..., 0. % I
~‘(‘;' ) :
These vill be recogiuized from ¢ € as the normaliring veciors wsed il '» ff
selecting the cross-sections P° and D" of the conjugate, coRvex oRENE -’ N
4 A — "‘;
(P st (D). They correspomd to the "rootanguler” distridwiigm g
X
g(t) s ¢ and the oomstant polymomial P(t) = 1. RS
' a& ;,;
s w’ “i'

S, ivor 5° ana BT to D° e PN

We have already noted that P® is a oross-sectica of P"‘




- T IVRRY WO e et v ey ey Rt it - ee e -—y -

B®, but a larger, polyhedral body, more nearly filling ous the imterier
of Pt

TEHREM 141 If y is imberfor to P, them for suffiplemtly lerge =
e poigt

,(-) = (’O' ’1) sy ’n; 0, ..., 0)
iew ¥,

M. Denote by x%:; the verticee of S, and hemoe also the

kyperplanes ia (r‘)' carrying the boundsry of B°. Ve must shev that
(0
(1h.1) Y (m) x(‘) >0, k=0,1, ..,, n

holds (for fixed =) 1f m 1a taker sufficlemtly large. Writing tm = k, ws have

foreach 1 «0,1, ..., &

-

by (12.1). As m inoresses this cwnvergrs (wniformly fn t) % t . But

frem the hypothetis amd Theorem 9.1, ve have;

ty1t128>0, 0<t <.
i=0

Tt follows that (1h.1) holds for sufficlently iarge m, as wvas %0 o showm.

8 Soe Nawsdorff [1l] , p. 224,




The proof has shown that as m increases the verticee x(k) of S

tend to the points x(k/m) on C™. The projeotions of S* on E° (n
fixed) form a nested sequence of polyhedral, comvex bodies tending to p°.

However, the marimum distance of 9" to D" does not temd to tero as =

inoreeses. TFor sxample,

x (1)) - =Tt e,

We shall also see !n the next section that the volumes of 8. and f do

not approach each other asymptotically.

THROREM 14.2 Gilven the sequence

xO, 11, s 00y xn, e o0 y

then 2oy = (X 4, oo %) i84n S forall m Uadoenmyif x s
2 0" for all m.

Proof. This is essentially the dual form of Theorem lk.), it follows from it
at once by means of Theorems 12.1 and 4.3,
Tr anslating these theorems out of gemmetric termimology we obtain two

well -imowvn results:

THEOREM 1%.5  Any polynomial positive an (/1] esn be represented as a

finito eum with positiyp coefficients of palynomials

By (t) = \i) X (1-¢)P X
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of sufficiently high degree.

THEEOREM 1k.4 A necessary and suffigient pemdition that

élxo, Xy, eeey X, g

be the moments of some distribution function on io,l] is that the sequence

be "oompletely monotonic”, i.e., that the X, and their successive differences

£\ Sx,  of all orders be all non-megative.

The latter follows from the expression (12.5) relating the A\ kxi to

the barycentrioc coordinates of x in Shi.

§15. Comparisom of volwses.
We now oaloulate the m-dimensiomal velumes of S° and Dn, to obtain

further insight into the relation between the two bodies. The result is
somovhat special -- unlike our other results, for exampls, the extemsion to
momsnt speces bdased on the general finite interval |a,b| , though not
difficult, is not immediately apparent. But ve feel that the remarimbdly
neat formula for vol D° {in terms of the bete and gmmma functions justifies

the inclusiomn of a portion of the calculation.

THEOKEM 19.1 The n-dimemsional yolume of S° 1is

1 B n -1 B [x) [C(x
vol 5° - E;IIL(DJ = :I P%n#ls .
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Proof. We amit this elementary calsculatiom.

THEOREM 15.2 The n-dimensional voluwe of D~ 1is

voln‘-'ﬁ’n(k,x)-'ﬁ' {x) | (k
K=l =1

Preof. We outline the preof for the case n = 2m-1. By Theorem 11.C

wo may regard the Iinterior of D® as the produst of the interiors of U" and

f;m-l, defined by (11.4) and (11.9). It 1s convenient tu roplace o by

the wnit m-oube I, thereby mmltiplying the volume by m!. Thus

»

vol P° = f dx1 . dx = ;l— S ] by ... a8 jaw ...
T S . l‘ J”".- -

A

J belng the jacoblan )L the transformation (11.7) with <. replaced by

-8 -t \A calculation ylelds

|7| - 'ﬁ;? i ‘h' (w-u )t

J=2 Y=l

enabling us to split up the imtegral. Thus:

y6l D% % = far TTEER e i {m \(—LTJ (wwy)4duy ... du.

The first integral is 1/ (2m). By a result of Selberg 13: the value of

the second is

F (2ea) ((2-1)) 2
k=1 2 [ (2m+2x-2)




Comdining these results ylelds:

.. 1 B (exel) [ Cf(2x-1)] 2
R ;TI TIETS )

From this the theorem cam be verified directly, or by induction on m. The
cage n = 2m is treated similarly.

We are nov in a position to campare the sizxes of s® and Dn, a8 n
inoreanes. A reasonable meagsure might be the n-th root of the ratio of
volumes, vhioh could be expected to approach 1 for large n, even if the
ratio itself does mot. However, it is nmot difficult to show, from the

theoremws just proved, that

1
n\n E
Bl—D—n/ - 02 naf2) o,
\7018
\ ,

This result makes an intereseting contrast with Theorem k.2,



CHAPTER TV

ALGEBRAIC DESCRIPTION OF THE MOMENT SPACES

416. Moment sequences and quadratic forme.

Ve twim first to the (uoltion of vhether a givem till&. .‘!IlllQ !I! !!i

ronstitutes the rire\, n moncnt,a of some function in a‘ — that 13, whether

a given point

\

x = (XO’ xl’ seey xn/
is in D .
< * ." .

By Theorem 8.1 we have , -
(k6. 1) X< D <= x+'y>0 for all y in sz

(considering first the evem-dimensional case). It is equivalent, however,

to have y range over Jjust the extreme points of Ph thus:

(1%.2) X« D <> x>0 for all y in Q

We have seen 1n ; 7 that the polynomials of Q all have one or the other

> the two forms

(L)) 2

(17.%) R ()2  or t(l-t)iRn_l

(subscripts here indicate the degree). ‘urthermore, all polynomials (106.%),
though not necessarily in u2m, are coertainly in fem, or positive multiples

of elements of Pzn. Thus (1'..1) and (11.2) are equivalent to:

e ‘*W‘ R TSV
)

— w®
3 The criterio: of Theorem 1/../, of :ourse, lies only to infinite °

seguernces,




2m
xtDa. <=> x:3y 29 for all y such that : yit.i has oither the
1=0
4

L
s
tho form t(l-t) ﬁpt) .

e

Elimirating y gives us finally:

). 3 | 3
x _
xeD <> 23-0 ;;o’ﬁkafk >Ne, all (@, ..., a), and

R

(X el T onca) PPy 2 0 a1l (B,

m-1
)
J=0

k=Q

We thus have the vell-kmown reeult'V:

THEOREM 16.l1a A negessary amd suffiocient condition that x be a point of

p= is that the two quadratio foms:

m-1

Tl o JEO (X jowe1 % jonce2)? P

be positive desinite or semidefinite.

In an analogous manmer ve may establish:

THEOREM 16.1b A neceesary and suff’‘cient comdition that x be & point of

Dt is that the quadratic forms:

70 See for example Shohat and Tavarkim 12| , p. .




wY P

R
=

» -

n m
JL):_--:O Xsers1¥ s and JEO (X T sexe1) P P

he positive definite or semidefinite.

The proof of the next theorem follows the same lines as above, making

use> of Theorem 4.2,

THEOREM 10.2 A necssesary and sufficieant condition that x be an interior

point of D" 1s that the quadretic forms of Theorem 16.la or 16.1b (whichever

applies) be positive definite.

1", The detoerminants A\m and their relation to the faces of I‘“.

We nov introduce a special notation for the “Hanksai™ determinants

assooiated with ths quadratic forms of the last sectiom:

‘1 xl xk
|
—2x "
T el 0 Aok
L X5 11:+1
= 2icel

Ol e o Tokal




X Ror e RNy

[P f
R T W
| e T T B e 2!
| D oopn - :
| 5% N1 el w2 ‘2}:"2)«»1'

The subsoripts have been chosen sc as to indicate the highest moment occurring

in each determinant. The upper and lower bars will be seen in die course to

agree with our previous usage.

| THEOREM 17.1 A meocegsary and sufficiemt condition that the guadratic form

2 a, a,x

15747
i L 1'J J LR
.»“:; n:r’-: . k . i’ )

be positive definite 1s that the f'rst principal minors iféts gymmet ric

matrix ail be pcsitive,

) | . Wt

Note. By the "first principa minore"” of an array such as the matrix

of &2] givee above, we mean the k+l subdeterminants .. , Logy e sdpye

For a procf of this standard result, see for example Ferrer lA] ,

page 138,
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THEOREM 17.¢ The point I 1s interfor to D' if and omly if all of the
determinants
(17.1) AV Dopys Ligs Kl, e B, Zn
are positive. i
1
N
Proof. By Theorems 16.2 and 17.1 x is interior to D" If ard only
ir _;_ﬁ, —‘Sn’ 3Py Zn-2’ stc., are positive. Tt omly remains to remerk

that 'f x 1e in*erior to D", then the point

x(n-l) - (to, Xy, ceey X )

18 nocessarily interior to J° 1, und “he theorem follows at once.

Nov suppose that x is in the bowndary of s say in the face 5::_1

1

(see S 11). It follows that X, is interior to D", so that all
\

n-1)
but the last two determinants (17.1) are necessarily positive, ani one of these
last %wo must vanish. Since the polymomial ) yiti associated with the
umiqQue supporting hyrperplane yec ' at x has a root at t=1l, we can seec
that the seocond quadratic form of Theor< . 16.1 (& or b) s positive semi-

definite, while the first form i& essily shi:v~ %o de pusitive definite. Hence

It x had beem in the fase _Q:_ the uppe ' and lower bars would have beem

1l

revereed.
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Applying the same argument to the lowver-dimensional faces gives us

the following charecterization theorem for the a-faves of p".

THEOREM 17.3 The point x(D° 1s in C. if ani only if

7 N } ~ \ ~

9’ [\ol 297 Al’ 0ooy _é_a’ A!l, and Za§1
are positive and

-4\4—114-1 and —‘C-J-a+2’ A‘a-vQ’ O Sy -é-—'-n’ All
are sere. Simllarly x is in Co if and omly if

Lor Bor Lyy Ly s by Byy ot Doy
are positive amd

Liggy 88 Loy Oopgpr oo Lgy Lo

are rervo.

All of the determinante of index a+2 and higher vanish because
of the faot that C, 1s contained in the closures of both c. ana 7,
for a<m<na. (See (11.6)).

It s essential here to spesiry that x be in D", because the
analogues of Theorems 17.2 and 1.1 for non-negative determinants do not

hold. For an illivstrative exanple, see Widder |9 | , pages 135-6.
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§ Y. The lower and upper boundaries of p°.

- 1 -

Tq. 1ting —[-Ln to zern gives us a particular value X for the n-th
moment as a function of the preceding momenta. We may write this relation-
ship in the compact fom:

I
L.xn

(18.1)

'r

rn

JD

vhiclk is aotually indepemdent of x , as it should be. In similar fashiom,

ve seo that
¢ o 7:11
(16.2) X =X 4 —
3 n Hp-p

is the value for the n-th moment that makes -En vanish.

For any point x in D" we can defins the assoclated points

X = (IO’ Ill ey xn'l, %)

o 'xo,  SURERTIE Y xh).

LR

Since we always have

wvo can interpret x and x as the projections ™dowaward™ and "upward"

of ¥ on the boundary of D",

- ince, morecver, ws alwvaye have by Theorem 17.3%

X closure of Cn

S Zn-1

X -~ closure of C 0
n-l

wve shall refer to these two closed sets as respectively the lower and upper
boundaries of DR,
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CHAPTER V

DISTRIBUTIONS BAVING GIVEN MOMENTS

$19. The polynomials _/f_;_‘(t) aMd /. (t).

Our next task vill be to find out vhat can de said about the distri-
bution funoctions whick give rise to a givem point x of D™. We first
nsed an explicit form for the hyperplanes which support D° at the associated
upper and lover boundary pointe x and Y (see _ 1¢); this form !s pro-
viled by the following polynomials, closely related to the determinante

L, and Zm of R 17. We define:

| t
Lol =
| o
Y ka1 XoK-1 |
n % 1
' t
Lo (®) =
R
D kel Tkee 0 o !
L TXp Tt Xy e Ly X 1
| t
— (t\ ! . . !
Oox ™/ - : o
k-1 |

Ol Nal Tkee 0 T2 %opel *




2k+l(t)

T el kel Tke2 ctr Tope1 %ot

We further define:

‘:‘_\n(t)l2 iIf n s even,
En(t) %
toa () ‘ tf n 18 odd;
t(1-t) T\n(t) 2 if n !s even,
—};n(t) = . P -
L (1-8) A () F it n 1s odd.

P (t) and fn(tf are obviously in Pn, except for a positive normaliring

factor.

THECREM 19.1  If I(n-l\ is !nterlor to anl, then the unique supporting

hyperplanes to Bt at x and x are given respectively by Bn(t) and
I \
nlt

Proof. Wwe give the pro t "~»r x, with n - 2m+)l, as a typical case.

By definition, the diterminant ..  of the polnt x !s zero. Hence an

m+1l-tuple
B~ (B, By -os B) F 0
exists with
m
T‘_:o'x'*”“lB(:O x=0,1, ..., m.




R . ———————————SS——————

_()(',_

Let
s !
R(TA) - ‘J_“ﬂ‘(t“
J=0
n
and defime y 1in P~ by
i 1
)yt = t R(t) ? .const.
= B/
1=0
Then
A o
y-z- , ! BP :O'
3:6 §;6 J4k41T Y X

shoving that 5 s the weigad supperting lyperplans at 3. Ve mwst chew

that the polynomials y nnd _Iin(d) are the same or, equivalently, that R(t) =4

-

and 4 (t) are tre saze (ir. ot cas-»s up to a constant factor ,. The matrix
-n
product of 3 (a8 « row matri.) w.th tne matrix of Lot {s equal to
[ 4
t;-«‘ ’ . - . ~_:‘—. - |
(0, 0, ..., 0, RTYYY.,

hence overy root of R(t) 1is a rm " of L;n(t). But
x) +1
r'(y) = —L‘;———— =m 4+ 1/0,

'

by Theorems 11.5 and 11.6 and the fact that /by hypothesis) a(x) = n-1 = 2m.
This tells us that y has m dietinct roots tesides the root at t=0, and
consequently that R/’t' has m diptinct roots. Since éln(t) 1s, like
R(t), & polynomia) of m-th degree, {t is therefore the same as R(t) wup
to a comstant factor. This completes the proof.

Theorem 19.1 {s rvatrioted to points intevior %0 I, or in S (m-R)e o

- e e Bgen g g o~ orth

. r
facns 9:~1 and 62“1, these being just the peinte whose thuppertt and




e

"lower" supporting planes are unique. The associated pointe x and x are
no longer dlstinct if x 18 in a lowver-dimensional face of Dn. Irf x =

in C:_2 then there 1s a one-dluensional set of supporting hyperplanes =zt

X = X = x, and the polynomials -)‘n and "n represent the extreme points of

that set. If x 18 in ’3:_,\, then the supporting hyperplanes form a two-

dimensional convex set resembling PZ (see Vigure ' .2), vhose sxtreme points
consist of a curve and an isolated po!nt. Ome of the two polynomials Eﬂ
and Fn reproesents the isolated poin*:; the other vanishes identically.
“or x in ",g_u and lower faces, both polyromials vanish {demntically.

AS a corollary to tue preceding theorem, we may state:

is interior to 7 vaen all the geroe of

THEORFM 10.2 It x
L Xp-y

C.o(t) amd 7O (t) are real, distinct, and interfor to 0,1

Thie result is also valid for Xy Pt interior o Dn'l, except
that zeros may occur also at O or 1, or one or buth polynomials may
vanish identically. We might also remark that, umless they vanish identically,
the polynumials alwvays have the maximum degree -- namely n/2 and (n—2)/2

i n 1is even; (n-1)/2 and 'n-1'/0 1t n ‘s odd.
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20. Construction of distribution functionas.

By Theorem 11.1 we have at cnce:

THEOREM 20.1 The points im D" to vhich unique distridution functions im

gorruspond are precisely the boundary points.

!
If TIf ¢/ corresponds to x¢D”, then we designate by ¢ and ¢ the

5

(
unique distribution funotioms in “~ ocorresponding to the assocliated boumdary

points x and X. The functions ¢ and ¢ thus agree vith each other amd

S WV f n Getr TUS -l mosets, W A1fer vith el cAler 1n Whelr
n-th moments unless g -7 J_” L e e, Sl i
..- $ e L ': ’_ a Wl}“"‘ ~—
W M 19.1 ve have: W e R

THEORRM 20.2 If x, . 1is istericr to D™, then ¢ snd 7

aritime’io distribution funitions whose steps occur at the roots of fn('t)

and Pn(t) re ti

This theorem provides us with an effective means of conmtruscting

distribution functions correspomding to points in the momsnt spaces. .ndeed,

suppose first that x s Iin the doundary of Dn, and take
m=a(x) ¢+1 <n.

Then x(n-l) ‘s interior to Dm-l and x(‘) is in the lower (upper)

dboundary of D™. The rootas t, of E, (-I;m) determine the location of
the ateps, and the J\inear aystem : . .
. & . PR, N R ’.'.. o

11 Since # and adopond on n, as wel% ason f, wes
i

only use tnis 10t itlon when n hay A xed value {n t*
t1acugsion.




..6(‘)_

Mx)
P8 1«0, 1, ...,

im) ¢

~ The unigue distribution funotion corrseponding

determines the }umpse ) 0

to the point x 18 them

is interior to Dn, then the wvay to comstruct

# ‘Qg .
— AL e oot b w

If the given point x

"-iunl distributiep fumstions (D' -./2) ie o use g.am and
Pt " (neither of xtileh, depends| of the. 24" mowent) in conjunction with
Theorem 0... Another const uction mares y.e ¢ the fact tht x 1{s a con-
vex cobbination of x and x: one can {nrify by means of (18.1) and (18.¢) that
gy il

= »

j. Gl ADd (el p?
(&) %ap) + (24/ 4 0)

is a distridution function with the moments 1, x,, ..., e Here

b'(¢) = n.

sel.

moments.
In general there will be many distridbution func'! ne he ing the momen’'s
W

n {(‘ which we denote br | X.

X., X, y X These {orm a convex se
0 1 n
-&‘; XY of ar!thmetic distr!ibut . on

2 s

We flrat consider the c »nvex subeet

|
‘unctions in 'L“ix.
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-
Y,

THEOREM °1.1 The extreme points of X are thosec ‘unctions § wvith

1\'
TOA
b(#) < n + 1.

Proof. An arbitrary aritmetic distridbution ¢ can he

b(¢)
gt - ‘f RICEW

§=1

reprosented :

(soo (6.1)). If ¢ 18 in fSA,x then we have

b
b
2. it AT P
o _

-

v " -

Since the t, are all distinct, the rank of the sy.lem .1.1) is

J
IR, ML) . The itnsmsics 4F the mmrifeld of sefutiens - o

f- (‘51, ""gb(ﬂ) of (21.1) is therefore

b(#) - min(d(¢), n+l) = max (0, b(¢§) - n-1).

Every non-negative solutiom of (21.1) comc;oﬁ to a point in &'A‘x.
The solution ocorresponding to ¢ 1tself is strictly positive. Henoce, if
it is not the only solution it will be expressidle as a convex combdimation
of other non-negative solutions. But them ¢ will be the same convex

camdination of the corresponding points in :(9 ‘x. Therefore, 1if

A
b(¢#) >nel then ¢ 1s not extreme.

On the other hand, any convex representation of § must involve functions
with speotra comtained in the spectrun of ¢; hence functioms correspending

to non-negative solutions of (21.1). But if b(f) < nsl then the




solution of (21.1) is unique, and J must oc.sequently be extreme. This

completes the proof.

THFOREM 21.2 /', x 1is spanmed by ite extreme polats.

Proof. Theorem 3.1 does not apply In general to infinite-dimensional

oonvex sets. However, it is clear from the proof just glven that wo can

span any non-extireme f in "{"A‘ X by a set of step-functions each

having aotually fewer funps than ¢. If any of these is mot extreme, then
» P ‘
wo.replace 14 by fumstions haviag st/ll Cower Jumps. AfSer & findte dimber ‘
. @ . fi g 3

o such reductionrs we obtain a1 ~{.f: e, c.nvex reprasentation of ¢

by extreme points only.

G40 might wish 49 regard the full set ¥ x ‘ns betmg spamaed By W) -
same extreme points, making uss of infinite conv.x representations of same

e R
¥

i

sort. This becames permissible 1f we adopt the weak * topology in o7 ,
for in that topology J\A x is denme in 4 x. (The v ak * topology

or &> may be defined by the neighborhoods

s £ 5 9, >0, dop

(21.2) K, t), _

vhere ifh( t)! 1is any finite set of funotions continuous om LO,1~ ;@

is in the neighiorhood (21.2) if and only if

(21.%) l/‘lrh(t)dJ'(t) -/ lf'h(t)dd(t)' < - h=1l, ..., m,)
| O Q

In fact, consider a fixed neighboricod (21.2) of a fixed ¢ in < |x,

and choose a set Rh of polynumials satisfying




R () - £,(8) < ¢f2, ellt. 01 , hel, .. m
Then comstrwit & ¢' in ' |x vith ncuents satisfying
9 = (B t=0,1, ..., max (&, ..., d_, n)
where &, 1s the degree of R (t). Sinoe
FENCUACKIVERTENE hel, . m

1t 18 evidemt that this ¢' satisfies ‘21.3). It foliowe that o,|x

is weak ® demse i.. iblx This proves:

THROREM 21.3 4| x 1s spesned in the week * topology by the sxtreme
points of U, |x.

For the special case n=0 this theorem dessribes hovw el is epammed
By the pwre distridutiom fwnetioms I(t-t'), 0 < t' <1, as mentiomepd
ia 46,

£22, INtertwiming property of fumcticms tn U] x,'

THRCRDM 22.1 If ¢ amd §' are distinot fwmetlons B 4’| x, them tbe

QULLexemoe
Y (L) = $(t) - §'(t)

-~

has &b least n sign chepges in ;0,1:



g:’k or 6:+k into E®. The unique representatioms in the higher sets

go into "minimal” repreeentations in C::, involving exastly b = (nel) /2
extremo points. Each x in Cﬁ has precisely two such mimiwal repre-

sentations, formaily identical vith the representations of the inverwe imagos

= ek <n+k
z(mk) and x(mk) of x in gﬂ and Cn , respectively.
Considering the proof of the preceding theorem, wve oan therefo:e

aseert:

TREOR®Y 11.5 The imterfor of D™’ is swept out by an n- paremetor
fomily of (v1)-dinemgicnal stxplezes -~ ™, and, in a Aiffermst way,

by an (m-1)-jaremeter family of n-dimeneigngl simplxes — . The imterior
D™ s svept out in two different yays by m-parmetes fupllies of »

dimensiemn) glmplexre .

lo
"

Wo shall make uss of this paremetrizatiom in 3 15.

A
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THE SINPLEXRS S AmD 3°
12 eimpl s?
The mcment tpace D® and its dual P® are closely related to 3
pair of dual simplexes, vith vhose aid we are able to geometrise scme
olassical proporties of mment sequemces and positive polymsmiale. The ' - wﬂ; YR
firet simplex, eirovumscrited about Dn, 1s defined by its vertioces x(k), I

k=«0,1, .... n, vith

' ‘
'@
L0 | k@) A1)
] 1 nl(k-1)! n '
g/
vhere, as usual, ] /(k-i){ = (1) =0 If 1 >Xx, Dispiayed as a m\rix;»j:-jﬁ‘t.
these coordinates are: e
Y.
. ¥ i
(1 0 0 ... 0 0
1 : 0 0 0 -
n
2 2:1
< n th—l) ¢ sl v
2
. Bl n-o 1
: * n n n g :
’ (1 W 1 1 1)

We shall denote this simplex by st Figure 12.1 thm B"

to 1%,



THEOREM 12.1 S® oomtains D,

Proof. The key to the proof {s the identity

k
n
. bl T ny Lk .B-k 1
(12.2) e L PRt ~ 10,1, ..., m
k=0
!

. o \
(12.3) i) - Tt
k=0
wvith
1% L4
T L -0

A slmple calculation for (12.2) with {=0) glives us




: -‘W ¥ ¢ ! . % 'T‘ »"}’:‘."'Ew i-"‘ jmi"’}. : vz"vq*—- ‘,_ ..‘::9 “ﬂ;‘ (m;{.',.{" o .

-l L
!r

va}n
H
!

V. R's
23

]

p—

[}
: This sbhovs that the extreme pointe x(k) ot s° span the axtreme pointe <4 \"
* v
x(t) of D", and hence that S° oontains D°. B -
To verify the {dentity (12.2) we observe that
) N \
. 'g) Lkl . n- i »n\ .
/ 1/ Wlig=4 \ i B i
¢ ‘;“
o A 3
The right-hand manber of (12.2) may therefore be written: ,,,
i ¥ T o b
! n 3 T
‘n-4 )" n-k T Nl
SR S G I I i o
H k"o 3
With the substitutions A= k-1, m = nr-!, ‘12.4) becomes Ehe

L #  were introiuce! by Hausiorff [lly, usin, the asuccessive

1ifferences

nd

gy

T <2
Yy el

3

- PEIRIRWIRET ™ A Fageadopyoc P
& &3’ .‘Q. y !‘ . - ¥ 7 g:"&‘ &a@, # e
w1 I | o S RS

(See also h’idder[?J y PP. 100 ff; -hohat and Tamarkin LlZJ » PP. 93 ££.)

. :‘ }'
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£4 gt w3 &
‘- -
i

L2 &

: ?‘;'1:"-:1“;;:;"\.' .. ! 4 E‘;

, Ca v dr FA 4 g ”’ikf’g - At
L n 2t &d:&' A ‘b.: * ALY
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“(1276) IR S e Ry,
o

If ve demote by X, the moments of ¢, we then have

1

n

1
x= Loy = T AL e,
o k=0

by (12.3) and (12.6), with

n
N ZO: Z:)\ = 1.
nk s nk

O P &)

’ ¥
§1%. The éual simplex 3"

Turning to the duel space, wo ooneider the "Sermatein” pol:mnnlm

) P3 n.;vf- a " ‘-~.:tty’ ' ’V"-‘ 'ﬁ}"‘ﬁ rh“i -m
‘v, ’ A -"«*':?‘3{‘9:3!-%‘
7, REN K OISR |
, e
45—
L
Thece quuntities have a simple geametric interpretatiorn. Applying
(6.,2) to the right-hani exvression above gives us )
3
ARCTE: ARSI 12 aidibr i Al R ‘
3 S b = s ] .
iiEde LY Tl Ce

» * ."
b . s That . i
.Y y . - . . k.
s = P . . - — - .
X v
5 - ol
Pyt & i
=

(23.1) Byt = () v, k=0, 1, oy n.
- By Theores 7.2 these polymaamials are, up %o a positive faator, extremo M -'5-
N of P®. Im faot ve have
i
B 3¢ ok s evem;
(no-l))“é

51 if a-kx s odd.

Dancting the point (Ml)]!”k dy y‘k
for its coordinates:

___L




X 1-x +1) !
’g) - (1) (_n-i&ﬁ-kT‘.k'.'

k)

The matrix of the y; is sudetantially the¢ imverse of the matrix (12.1),

for ve have

(13.2) S0, g (L) t‘:»l 1f :

The simplex spammed by the n¢l pointe y(k) ve denote dy B‘; i1t 1s
obviously imscribed {a P®. Pigure 15.1 indicates the configuratiom for

l.-e

e '3“""".*-
kT
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THBOREM 15.; B° jg dzel Yo 6.

2IR#L. It suffioes to mhov that the vertises x'2) of &B,
interpreted in the dual spacs, are the hyperplanes comtainimg the (m-1)-
dldemsicmal faces of B°. But, by (13.2), each hyperplene x'’) comtaime
exotly n of the vertioes y'' of X%, amd the resalt follews.

Tt is now evidemt that the hyperplanes vhish determime ths (nel)-
dimensienal faces of 5" are supporting hyperplames to D° as well, ®o
that in some semss S 1 the most elosely fitting simplex that cam be
circmmsoribed abowt D". Dually, M 1s 1> somé sense s marimal inserided
simplex in P°. A presise meaninng to these statemeats vill b givea im h‘_ g
next two sectioms. ; )

A simple calsulation shows that the cemtroids of the two simplemes l\“'g

and B are Tespectively

T (1,0, ..., 0.

These vill de recoguized from 258 es the norealizing vectors used Iwm
selecting the oross-sectioms P and D” of the conjugate, comvex SRmSS -
l‘(P‘7 and P(Dn) . They coivespend to the "reotangule~” distridubiem

g(t) = t amd the oomstant polymomial P(t) = 1. :

S, Tiver 5° and BT to D am PR ﬂ:,;;':"_'-_"'ﬂ'
We have already noted that P® 1is a oross-sectica of P.‘. ’ I

o

o o

vy
Ahe corresponiing oross-section of the insoribed simplex ¥™'% tm gt
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B®, but a larger, polyhedral body, more nearly rillimg out the interier
of P°.

THECREM 1b.1 If y is imterior to P, them for suffiolemtly large =
$be poipt

’(.) = (’07 ’1’ ey yn) 0) <oy 0)

lein ¥

M- Denote by xg:g the verticee of S, and hemos also the

hyperplanes in (!‘)' carrying the boundary of B". We must shev that
(K
(1s.1) Y (m) x(.) >0, k=0,1, ..,, n

holds (for fixed m) if m 18 taken sufficlemtly large. Writimg tm = k, we have

for each {1 « 0,1, ..., a:

wll

by (12.1). As m Iinoreares this convergre (uniforml) im t) to ti. But

frem thy hypothesis and Yheorasm 3.1, we have:

t!’it126>0, 0<t<l.
1=0

Tt follows that (1h.1l) holds for suff‘ciently large =x, as wvas to Yo showm.

————

8 See Nawsdorff 11, , p. 224,




The proof has shown that as = inoreases the vertices x(k) of Gl

tend to the points x(k/m) on c™. The pro jections of s* on E° (n
fixed) form a nested sequence of polyhedral, comvex bodies tending to p®.

However, the mayimum distance of 3" to D™ does not tend to tero as =

increases. For sxmmple,

m»-1),

11\((5.--1)/.) - 4 - (1-1/m)® = 1/e.

We ohall also see ‘n the noxt sesctiorn that the volumes of S. and D‘ do

not approach each other asymptotically.

THBOREM 14.2 Given the sequence

Proof. This i{s essentially the dual form o Thecrem lk.1l; it follows from !
at once by means of Theorems 12.1 and b 3.
Tr anslating these thsorems out of gemmetric termimology we obtain two

vell-known results:

THEOREM 1%.%  Any polynomial positive am /1, can be represented as a

finito ews with positivg coefficients of polynomials

By, () = : tX(1-y) 0K




of sufficiently high degree.

THEOREM 1k.4 A necessary and suffiglent samdition that

TXey Xy, eee, X

\

the momemte of same distribution fumction om (0,1 1s that the sequenco

I

“completely monotonic”, 1.e., that the x, and their successive differences

4

“x, of all orders be all non-megative.

[/\-‘

The latter follovs frum the expression (12.5) relating the /\ Hi to

the darycentrioc coordinates of x 1in Skd.

§1%. Comparisom of volwmes.

We now caloulate the m-dimensiomal volumes of S° and D°, to obtain
further insight imto the relation detween the two bodies. The result ie
samovhat special) -- unlike our other results, for example, the extemsion to
moment speces based on the gemeral finite interval  a,b , though not
difficult, is not immediately apparent. But we feel that the remarimbly
neat formula for vol D® 1n terms of the bete and groma functions Justifies

the inclusion of a portion of the salculation.

THEOKEM 1.1 The n-dimemsional volume of S~ 1s

n

n
kw \kll

n
o7 BT

1
volSn- n'! Kul MN(n4l
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Proof. We amit this elementary calculatiomn.

TNECREM 15.2 The n-dimensional volume of 1" 1is

- W
mln?‘-ﬁ'n(k,x)-Tr i xk
o=l =1

Drpof. We outline the proof for the case n = 2m-1. By The.rem 11.C

wo may regard the Iinterior of D" as the produst of the interiors of ™ and ‘

=™, defined by (11.5) and (11.5). It is convemlent to roplace T by |

the unit m-ocudbe In, theredby mnltiplying the volume by m!. Thus

, r )
_/--1 (J] afy L a jdw L

L ~ad

-

man-fhldﬁj";le
2 o

» A

L |
J belng the ‘acoblan >™ the transformation (11.!" witk < . replaced by

P -fl - e -f._l . \A calculation yields |

enabling us to split up the imtegral. Thus:

n 1 T = .
vl = = /m_1 C"d,l...dn_l

" (uk_uj)‘dul oo du

The first integral is 1/ (2m). By a result of Selberg 13 the value of

the secord in

A () (o)) * |
k=1 2 ' (2m+2%-2)




hJ

Combdbining these results ylelds:

m = [~ )
n 1 C(2xs1) | Cf2x-1)) 2
vl D7 = Ay klzll 2k I (Om+2k-2)

From this the theorem cam be verified directly, or by induction on m. The
cage n =2m {s treated similarly.

We are nov in a position to compare the sizes of s?  and Dn, as n
inoreanes. A reasonable moasure might be the n-th root of the ratio of
volimes, vhi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>