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NATO UNCLASSIFIED 

AN UNRESTRICTED LINEAR RANDOM WALK WITH NEGATIVE 

EXPONENTIALLY DISTRIBUTED   STEP LENGTHS 

By 

B.W.  Conolly 

ABSTRACT 

An account is given of the theory of a doubly infinite linear random walk in 

which step lengths have a negative exponential distribution and the direction of 

each step is not necessarily equiprobable.    The problem of first passage time 

is also studied.    The theory was developed in connection with a study of random 

linear anti-submarine patrols. 

NATO UNCLASSIFIED 



INTRODUCTION 

The unrestricted linear random walk described in text books is usually a study 

of the motion of an imaginary particle that roams backwards and forwards along 

the doubly infinite x-axis according to definite probability laws.    The axis is 

divided into equal intervals of length   h,   say,   and the particle proceeds in leaps 

and bounds,  the lengths of which are integral multiples of h.    At the end of a 

leap,  which,   henceforward,  to conform with convention,  we shall call a    'step' , 

the particle chooses the length and direction of its next step.    The probability 

distribution associated with this choice is prescribed in advance and remains 

the same throughout the walk. 

The most usual topics of investigation are,  for a given starting point: 

a. the probability that at the end of   the   n       step the particle is at the 

point with   x-coordinate   mh,    where   m   is a positive or   negative integer; 

b. the probability that at the end of, or during, the n step the particle 

reaches its starting point for the first time since the walk began. (This is the 

so-called   'first passage problem'. ) 

If the particle moves with constant speed,   steps will occupy varying times 

proportional to their lengths.    On the other hand,   if it is supposed that a step 

occupies constant time,  the particle has to move with variable velocity.    In 

either case a plot of the particle's position as a function of time produces a sort 

of random noise record consisting of a sequence of straight line segments,   and 

in this connection topic (b) above has an obvious relation to the problem of the 

interval of time between successive zeros of a random function. 



The random walk described and investigated in this report arose from the study of 

a family of tactical problems.    It differs from the discrete step random walk in 

that the lengths of steps are continuous.   At the end of a step the particle is given 

a choice as to whether to move to the right with probability   p,  or to the left with 

probability q, (= 1 -p),   and the length of the next step is governed by the negative 

exponential distribution.    Thus,  the probability that a step has length between 
—AA. S s and   s+ds   is  yue    ^    ds. 

The tactical application of the first passage time aspect of this walk is described, 

together with the skeleton of the derivation of the relevant probabilities,   in the 

classified Ref.   1.    It is felt desirable to set down an unclassified account of the 

derivation of the formulae,  not only for the first passage time problem,  but 

also for the problem of where the particle is at the end of a given step.    A 

similar,  but in some aspects abbreviated,   account has also been published by 

the author in Ref.   2. 



th 
1.       POSITION OF THE PARTICLE AT THE END OF THE   r. "   STEP 

A particle is considered that executes a random walk on a line in such a way 

that the probability that a step has a length between   s and   s+ds is   yue    *   ds. 

When the particle reaches the end of a step,  it has probability   p   of moving to 

the right at the next step,  and   q=l-p   of moving to the left. 

We study here the joint probability and probability densities   R (x,  y) and 

L  (x,  y) that the particle,  which begins its walk at the point   X   with coordinate 
n th 

x, finds itself at the end of  the   n      step at a point   Y   in the small interval 

(y,  y+dy).     When y > x,   R  (x,  y) is used to denote this probability; when y—x, 

L  (x,  y) is the corresponding form. 

The fundamental equations satisfied by   R (x,  y) and   L  (x,  y) are as follows: 

Rn(x,y)   =    qyu./        Rnl(x, y+s) e"/MSds + p/u /        \_^x> 
«/© «/0 

y-s) e ds + 

L       (x, y-s) e ds 

-dt 

(Eq.   1) 

L   (x, y) = pyu   / L       (x, y-s) e ds + qyu I       L       (x, y+s) e ds + 

Kf Vi(x' 
-/.s (Et>-  2) 

+ q/A /        R^     (x, y+s) e ds 

'x-y 

The first term in Eq.   1 deals with the case when the particle is to the right 

of   Y   at the end of the   (n-1)       step.    The second and third terms arise when the 

particle is to the left of   Y   at the end of the   (n-1)     step,  the integral from 0 

to y-x   dealing with the case when it is to the right of  X,    and the final term when 



the end of the   (n-1)     step is to the left of  X.   A similar explanation can be 

given for Eq.  2. 

We can formulate similar equations by considering the particle's first step. 

Suppose this is to the left (probability q),   and to the point within the small 

interval (x-s,  x-s -ds).    Then the particle must,  during the next   n-1 steps, 

march from x-s   to y.    The resulting integral is: 

m "A^ S I e R     ..(x-s,  y) ds. 
.00 

If the first step is to the right,  two cases arise according to whether it is to 

the right of   Y   or to the left.    Thus,   altogether 

Rn(x, y) = q/* /     e /4^Rn_1(x-s,y)ds + pyu/ e /MS Rnl(x + s, y) ds + 

(Eq.   3) 

+ P/* /        e Ln-l(x+S'  y) dS 

A comparison between Eqs.   1 & 3 shows that   R (x,  y) is a function of y-x. 

Similarly,  L  (x, y)   is a function of   x-y. 

An evaluation   by first principles of R.. (x,  y),    L..(x,  y),etc,  gives: 

Rj (x,   y)    =   P/ue_/U(y"X) , (Eq.  4) 

Lj (x,  y)   =    q/Me"^(x"y)       , (Eq.   5) 



R2 (x, y) =   pyu. e_/A,(y" [q + P/*(y-x)]     , (Eq. 6) 

L2(x,   y) =    q/Ae_/A(x"y)      [p+q/u(x-y)J    , (Eq.   7) 

and these  lead us to consider the functions     0  (y-x),      X   (x-y). defined by 

R  (x,   y)   =    e
_//M(y"x)     p (y-x)      , (Eq.   8) 

s n        J '  n 

L  (x,   y)   =   e_/t fe'y)       X   (x-y)     . (Eq. 9) n n 

Evidently,   either     fi     or      \     (and R    and   L  )   can be transformed into the J f    n n n n 
other by interchanging   p   and   q,    x   and   y. 

Finally we introduce the generating functions 

P (   6  ,  t)   = 2^      /M   &   )   tn      , (Eq.   10) 
nil 

*(   6 ,  t)   = 2]      ^n
(   ^   >   ^     / (Eq-   U) 

n?l 

and the Laplace transforms 

rn(z)   = /       e"z6 ^>n( 5   )   dS       ; (Eq.  12) 



I (z)   =    / e~Z° X   ( 6   ) d6 I (Eq.   13) 
n / n 

Jo 

r(z,  t)   =     /        e"Z />(  S   ,  t)dS , (Eq.   14) ye"Z />(  S   ,  t) dS , 
0 

l(z,  t)   -   f      e~zS A (  fi  .  t)d£ . (Eq.   15) 

Clearly 

r(z, t)   =       > 

nil 

with a similar definition for   t(z,  t). 

^     rn<^" , 

Since at the end of each step the particle must be somewhere,  we have for 

each   n  : 

Rn(x,  y) dy +    / Ln(x,  y) dy = 1, (Eq;  17) 

•'-oO -oO 

or 

oo •» °° 

or 

e_/*        /On(S)d5+    / e"A     Xn(&)dfi=l,        (Eq.   18) 

'(/*)+£(/*) = !     • (Eq.   19) 



Hence, for  | t | <   1 and   Rl   z   sfe JLK   ,  r(z, t) + <C (z, t) is analytic,  and,  in 

particular , 

(/* , t) + €(/*, t) = t/ci -1) (Eq.   20) 

The integral equation for     JO   (  S  ) deriving from Eq.  1 is 

/*n(6)=y   /        e~2AVr-i<& + s)ds+P/./   Al(6 -s)ds + 

2/A* + p^u e ' F e 
/ 

e» (Eq.   21) 

-v* T     . (s - 6 ) ds u n-1 

Applying the Laplace transformation,  we obtain 

[*r     Az)-r     AZM. )1 r 1 
L  n-1 n-1    C.  -I     +PJ±_     [r       (z) + 1       (2      )1 (E Mz) = qyu q.   22) 

(2yl*  - z) 

and 

(2*   -z)        L    n-X n-1    /"J z     |_ n-1 n-1    /* J (2/»   -z) 

(Eq.   23) 

These are simple difference equations,   and it is easy to show,  using Eq.   19,  that 

r (z) = /I*. 
n + 

n 2//.   -z L2/* 

-j n 

-  <£ (2yk   -z) (Eq.   24) 



t (Z)    =    /A n ' 

n r_p + -af] 
L2A -z     ZJ 

il r (2^* 
n 

-z) (Eq.  25) 

The second term on the right-hand sides of Eqs.  24 & 25 are particular solutions 

of Eqs.   22 & 23,  which have to be included to complete the general solution. 

Since   r (2M. )   is certainly not infinite   (see above)   one must expect that 

' (2 LA.   -z)   contains terms that annihilate the apparent poles,   and it seems a 

reasonable conjecture that both   r^(z)   and   *„(z)   are   n       degree polynomials 

in descending powers of   z. 
n n 

n 
Multiplying Eqs.   22 & 25 by   t  ,  adding,   and using the results 

r^z)   =   pyi/L  jz,    IAT.)   =    qu. /z, 

we obtain 

r(z,t) 
q/Ktzr(2/^,t) -p/*. t(2/* -z)Jt(2/A , t)-py(A t(2yu  -z) 

2 2 
z     -i*z(2-qt + pt) + 2p/A    t 

(Eq.   26) 

with a similar formula for <t.(z,  t),   in which   p   and   q   are interchanged.    We 

denote the zeros of the denominator of Eq.   26 by   OJ'    and   w'_.    Then M J        1 2 

OJ 
1 =/* 

OJ 

w 

w 

[l + |(p-q)t+Rj 

2     ""A   [l + |(p-q)t-I^J 

= /* |_1 + |(q-p) t+Rj 
(Eq.   27) 

yu [l + |(q-p)t-RJ 



where 

R a-it,2 
pqt (Eq.   28) 

Now   to.    and   w'   are not less than AA  for all p,   and   t<  1.    Hence,   since 

r(z, t)   and t(z, t)   are analytic for   Rl z — >** and   t K 1,  we must arrange 

for the numerator of Eq.   26 and its companion expression for   C (z,  t) to vanish 

respectively at   z = w     and   z = co'        Thus,  noting that 

2/*     -Wl    =   co'2     , 

2U. 
"Wl    =W2     ' 

(Eq.   29) 

we obtain 

qwj r(2^ ,t) - po),2€(2/n , t)   =   p w'2 

qw2 r(2y^ ,t) - pco,1^(2yU , t)   =    -q ^2 

(Eq.  30) 

and hence 

r(2yu ,t) 
pc°'l  (0'2 

+ qC02  "'2 

q(co'1  Wl  -co'2   »2) 
(Eq.   31) 

1(2^ ,t) 
pco2  o)'2 + q   co1    co2 

p(u'ri -w,
2 

co2) 

(Eq.   32) 

10 



Substituting in Eq.  26 we obtain 

t(p to'    + qto  ) 1 

Hz,  t)   =    ±- —   •    -. :    , (Eq.  33) 
2R (z - co    ) 

t(qto    + p to'   ) 

**• *> "        15 '  "TO" • (E"- 34) 

These may be inverted easily and give 

t(pw'    +qW ) r 
/0(6,t)   =    ig 2-       e6"2, (Eq.   35) 

t(qto    + p to'   ) r     , 
A(6,t)    =    1

2R      2 e6w2) (Eq.   36) 

and, returning to the original generating functions f 

Zt(pto'   +qco    )     -(y-x)(/A -to  ) 
Rn(x, y)tn =  — e , (Eq.   37) 

nil 

Z                              t(qto    + pco'   )      -(x-y)(/A  -«'   ) 
Ln(x,y)tn =  ~  e . (Eq.  38) 

It is of particular interest to study the densities   R  (x,  y),  L  (x, y) for fixed 

n   and   various   y.    The simplest case is that in which   p = q = s- ,  when the 

11 



particle is as likely to move to the right as to the left during each step. 

R(x,  y„  t)   and   L(x,  y t)   are then identical,   and,  from Eqs.  37,   27 & 28, 

M t V*« fsf^ 
R(x, y, t)   =    -v^_i•    e 

y 

s/i^t 
(Eq.   39) 

where     6   = y-x.    Now   R_(x,  y),  being the coefficient of  t     in   R(x,  y,  t),  is 

given by 
n 

R (x, y) n 
dnR 

r: 
dt 

n 

t = 0 

2   TT  t ] 
R(x,   y,   z) 

dz 
n+1 

(Eq.  40) 

where   C   is a simple closed contour surrounding the origin,   such that R(x,  y,  z) 

is analytic in   z,    inside and on   C. 

We make the transformation 

V*77 = i -I 
Then 

R  (x,  y) 
n 2 IT i f 

fc/fl' 

/* 6(i -5 dX 

Jn(2-5)n 
(Eq.  41) 

12 



where   C   is a simple closed contour containing   &     = 0 and excluding   J    = 2. 

Evaluating the residue at   J     =0 we have 

h- I ^-^ (2;;r2> Rn(x,y)   .   J**- 
2 TmO 

where      6   = y_x. 

The remaining paragraphs are intended to provide a check on Eq.  42. 

Since 

L (x,  y) dy = 1 /   Vx' y^y+ J L
n< 

for every n,   and since in this case (p = q)   L  (x,  y) and R  (x,  y) are identical, 

except that in the case of the former,   O    in Eq.  42 stands for x-y,  we would 

expect each of the two terms on the left-hand side to be equal to one half.    From 

Eq.   42, 

If we write 

oo 
V1    .    (n)     .a r = J KM y (Eq.   44) 

(1-T )(2-  $)" 
p-0 

then it is easy to confirm that 

I   R  (x,   y) dy   =   k     (.n) . (Eq.   45) 
/       n n-1 

13 



We note the identity 

L  —-r    +     • -r—      ' (Eq.   46) n+1 ,..    ^ w „    » » n + 1 (1-r )(2-^)n (2-5 )n (1-JX2-I) 

Then 

/2n-l    \      1 

V     n       A2" 
.    (n) /2n-l    \     1 (n+1) ,_      /|PJ, k =     / —-—   +   k • (Eq.   47) 

n-1 I      n /  „ 2n n-1 

We now proceed to show that the right-hand side of Eq.  47 is equal to k 

From Eq.  44 

,    (n+1) 
k     1 n-1 

1 

2n+1 

8.0 

Then 

1       V-1        /2n-s\     1_ 
+1    L   \n / 2n" • 

(n+1) 
«   2n 
2 

V   n     /TV. 

1 /2n\       ,    (n+1) 
(n   )+   kn-l 2n-l 

2 

1 V*     ^n-s^               1 

2n+1 £.    \    n    )            n-s 
s-0                           z 

= . (n+1) 
kn             ; 

i. e. 
.    (n) 
k     1 n-1 

. (n+1) 
k 

n (Eq.   48) 

14 



(1) This common value is,  in particular,  true for n = 1,   and evaluation of k 

as the coefficient     J       in (l~$)(2-j)    I shows the common 

value to be   1/2.    Thus 

i R  (x,   y)   dy 
2 

as expected, and a check is provided on Eq. 42. 

15 



2.       DISTANCE TRAVELLED DURING FIRST PASSAGE TO ORIGIN 

In this section we consider the problem of the distance travelled by the particle 

from its initial point   X   (coordinate x >  0),  until it reaches the origin for the 

first time.    To be more precise,  we consider the probability   u  (x,  y) dy 

(y > x } 0)   that simultaneously: 

(a) the particle reaches or crosses the origin for the first time at the 

end of,   or during its   n      step; 

(b) the total distance traversed by the particle up to the moment when 

it first reaches the origin lies between   y   and   y + dy. 

It is convenient to introduce two new probabilities:   f (x,  y) dy and   g (x,  y) dy. 

The probability   f (x,   y) dy has a definition identical with that of   u  (x,  y) dy, 

except that the particle's first step is to the right. The probability g (x, y) dy 

corresponds to a first step to the left. Clearly u (x, y), f (x, y), and g (x, y) 

are all zero for y ^ x   and   n = 1,   while,for   y^x     and   n i   2    , 

un(x,   y)   =   p Mx,   y)   +   q   gjx,  y)     . (Eq.  49) 

The case y = x   is a special one.    The particle can return to the origin in n 

steps covering a total distance   x   only if it moves always to the left.    We 

denote the corresponding probability by   v  (x),   and then 

v  (x)    =    q   e">** X , (Eq.   50) 

16 



and generally 

v (x)     =     q 
n 

•'O 

e_/UG     v     ,  (x - G) dG 
n-1 

which gives 

v  (x) 
n 

q   e 
/* x (q/A   x) 

n-1 

(n - 1 ) ! 

(Eq.   51) 

(Eq.  52) 

The generating function   (g.f. )   of   v  (x)   is given by 

V( x, t) =   y    tn v (x) / 

-/^x(l-qt) 
=   q t e  ' J 

(Eq.   53) 

17 



FORMULATION OF EQUATIONS 

We consider first the case   x > 0   and write down integro-difference equations 

for   f (x,  y)   and   g (x,  y),   for   y > x.    We have 

Jo 
fn(x,y)-/*e v

n-l   2
(x+y)J+M G ^^(x+G,   y - G) dG 

(Eq.   54) 

The first term in Eq.  54 arises because the particle's farthest possible first 

step to the right cannot carry it beyond the small interval at the point with 

coordinate   — (x + y)   (a step length of   — (y - x)),   and a direct passage to or 

beyond the origin in n-1 steps must follow.    The integral term arises to cover 

all the possible steps to a point in the interval   (x + G,   x + G + dG),  where 

0 < G ^ —  (y - x).    Thence the particle starts another walk,  the first step of 

which can be to the right or the left,   and it must reach or overstep the origin 

for the first time at or during the   (n-1)     step,   covering a total distance to th 

origin of an amount between   y-G   and y - G + dy.     Similarly 

g (x,   y)   =     / e_/*G   u     Ax - G,  y-G) dG    • (Eq.  55) 
n / n-1 

By substituting Eqs.   54 & 55 in Eq.   49 we obtain a homogeneous integro- 

difference equation for    u  (x,  y). 

18 



An obvious way of converting integro-difference equations into integral equations 

is to introduce   g.fs.    Thus,  let 

F(x,  y,  t) 

G(x,  y,  t) 

U(x,   y,   t) 

I 
n^2 

I 
n^2 

E 
n^2 

,n 
t    Mx. y) 

n 
t     gn(x, y) 

n 
t   u

n<x> y) 

J 

The analogues to Eqs.   49,   54,   & 55 are then 

U(x,   y,  t) =   p   F(x,  y,   t)   +   q G(x,   y,   t) 

F(x, y, t) = -/At   e 
i        T^(y-X) Ti [|<x+y), tj  +y|rt    I 

Jo 

f(y-x) 

(Eq.   56) 

(Eq.   57) 

e"^GU(x+G, y-G, t) dG, 

(Eq.   58) 

Jo 

-/*G 
G(x,y, t)   =^ut    I U(x-G,  y-G ,  t) dG 

'o 
(Eq.   59) 

In passing,  it is worth mentioning that   F(x,  y,  t)   and   G(x,  y,  t) satisfy the 

simultaneous differential equations 

9F 9F 
3x 9y 

yuF   =   -yu-tU, (Eq.   60) 

»2. + _|2  +/.G . ^o, (Eq.   61) 

19 



which imply that all three of F,  G, and   U   satisfy the telegrapher's equation 

A2   F = 0     , 

where 

0 0 

A*= -^T •  ^T +/*t(p " q) -?r "^(2 _t)   a      - ^2 (1 -*> Sx2 3y 3x dy 

(Eq.  62) 

and the omitted arguments x,  y,   and t are understood. 

We now proceed to determine F,  G and U from Eqs.  57,  58,   & 59.    We first 

introduce the function   F (x,   z,  t),    G (x,   z,  t),    U (x,   z,  t), and   V(z,  t),  where 

F(x,   z,  t)   =        /      e"Zy    F(x,   y,  t) dy (Eq.   63) 

G and   U  are similarly defined,   and 

VC.. t)   . /V^V<y. «)dy   .   ^JL-j    .-»<»-V«. (Eq. 64) 

We then observe that 

/    e"Zydy   / e"AGU(x-G, y-G, t)dG = e"aX/       e*8 U(s,   z,  t) ds,       (Eq.   65) 

/   e"Zydy / e_/aGU(x+G, y-G,t)dG = eaY      e"aS U (s, z, t) ds, 

(Eq.   66) 

20 



where 

a.   =   /*. + z    - (Eq.   67) 

Then 

ax   — 
P(x,   z,   t) = yuit e  '     V(a+z,   t)   +^ut 

ax  f      e-as u(g^   ^   t) dg>        (Eq>   68) 

* 0 

G(x,   z,  t)   =     yute        / e  '    U(s,   z,  t) ds, (Eq.   69) 

whence,  using the transformed form of Eq.  57 t 

ax   — 
U (x,   z,  t)   = x*.pte  '    V(a+z,  t) +   u. pte aX /        e3S   U(s,   z,  t)ds + 

+ ^uqte / e  '    U(s,   z,  t)   ds    . 
Jo 

(Eq.   70) 

To solve Eq.   70 for   U we introduce the further Laplace transform 

U (w,   z,  t)   =  / e U (x,   z,  t)   dx, I (Eq.   71) 

which,   applied to Eq.   70,   leads to 

f*         t.\-           /*.pt(o> + a) IXu, z, t)=7 -    *=  
-qt(w-a)+U(a, z, t)(a—-^ qt)(a+w-(/w qt) 

f 2 2 "I 1 
ju +yutto(p-q)-(a   -ayut)r (a-—yu.qt) (a+co -/A qt) 

(Eq.   72) 

21 



Now   u (x,  y)->-0   as   x-*»oo for any   n,   since it is clearly impossible for the 

particle to reach the origin in a finite number of steps from an infinite distance. 

It follows that   U  (GO,   z,  t)   is an analytic function of   GO,   at least for Rico ^ 0 and 

0 < t < 1. 

The poles of the right hand side of Eq.  72 are at 

yuqt  - a, (Eq.   73) CO 

CO   =   Wj    =    - j        yUt(p  - q) +   tJ/A2 t2(p  - q)2 + 4    A2 j , (Eq.   74) 

w  = U) = 
2 2 

\ /It (p - q) - A//*V (p - q)2 + 4 A2   I , (Eq.   75) 

where 

2 2 
"X      =     a    - ayu t    . (Eq.   76) 

Taking t < 1   we find that 

Rl   (yuqt - a)<  0, 

so that the pole   to -fu qt - a)is admissible.    Also Rl   co   K 0   for all p and q 

while   R1   w   ^  0.    Hence the numerator of the square bracket in Eq.   72 must 

vanish for   GO =   GO  .    This fact determines   U (a,   z,  t)   and we obtain 
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U(to,   z,  t)   = 

<2    . . 
-ttpqt    (a + to) 

(to - to  ) (a + co    -^/Aqt) (a + to -^nqt) 

/*pqt' 

(a+to    -/*qt)(a + co   -/Aqt) 

to    + a 

to - CO 

/*# 

to - qM t + a 
(Eq.   77) 

Thus,  on inversion,  we have 

U(x,   z,  t) = k L(ui 
to   X 

+ a)   e - yt».qte 
-(a-/*.qt)x J (Eq.   78) 

and,  upon substitution in Eqs.   68 & 69, 

F(x,   z,   t) = m t e 
to  x 

(Eq.   79) 

G(x,   z,  t)=   teV   _te-(a"^qt) (Eq.   80) 

Since the Laplace transform   U*(x,   z,  t) of   U(x,  y,  t) is given by 

-zx 
U*(x,   z,   t)   =   e V(x,  t)   +   U(x,   z,   t) , (Eq.   81) 

we have 

(a + to1) to., x 
U* (x,   z,  t)   =          e (Eq.   82) 
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Similarly,  the Laplace transforms of   F(x,  y,  t)   and   G(x,  y,  t)   are given by 

H a + co       \ co.. x 
F*(x,   z,  t)   =     I  — 1   t e > (Eq.   83) 

a - wH 

to x 
G*(x,   z,  t) =     t e . (Eq.   84) 

Recovery of   F(x,  y,  t),    G(x,   y,   t), and   U(x,  y,  t)   can now be carried out by 

inverting the transforms.    Thus we obtain for   y ^ x  ^  0 

G(x, t). ^**2 e-/.y(i>->t(P-q)x h r t  .,. xzl (Eq 85) 

and 

n«       t)     ^^-^-^^-^pqt'x     f.    TtAT^l + U(x,y,t) = e ^(y + x)     Vo   ^jyP^   "X  1 + 

h IAX V pq(y2 " x2)J  Ty-x 1 
+ —w —J Y~]r+ >*tq(y + xj 

/*t   /pq(y    - x  ) 

(Eq.   86) 

F(x,  y,  t)   can obviously be obtained immediately from   U and   G.    If desired, 

the densities 

powers of   t. 

the densities   u  (x,  y),  etc.     can be extracted from the expansion of Eq.  86 in 
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In the case where the particle starts from the origin (x = 0), the problem of first 

passage back to the origin concerns a path in which the first n-1 steps are either 

entirely to the right of the origin, or entirely to the left. In the former case, and 

with obvious notation, 

1 "2/*y 1 f**     a 
MO,  y) = -yue Vl(2"y)   +W        *       Vl(G'  y_G) dG<    (Eq*  87) 

Corresponding to a walk to the left of the origin there is a probability density 

f '   (0,  y) similar in all 

interchanged.    We have 

f '   (0,  y) similar in all respects to   f (0,  y),   except that   p   and   q   are 

U  (0,   y)    =   pf  (0,   y)   +qf    (0,   y)  • (Eq.   88) 
n t      J n J M       n J 

The same kind of treatment as for   x > 0   yields the Laplace transform 

U(0,   z,  t)   of the generating function   U(0,  x,  t).    We obtain 

U(0,   z,   t)   =   (    2 a -/At - s) , (Eq.   89) 

where 

2 2   2    . ,2        A N   2 
s      =   /K   t     (p-q)     +4A 

v2 2 
/\     =     a    - a IK t 

/* + z    . 
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On inversion this gives 

2 t J^i -j^y( 2 - t) 
U(0,   y,   t)   =       ^Pq e Ix (^ty   fi~q) . (Eq.   90) 

-e- 
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