UNCLASSIFIED

AD NUMBER

AD484444

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution authorized to U.S. Gov't.
agencies and their contractors; Critical
Technology; Feb 1966. Other requests shall
be referred to Rome Air Development
Center, Griffiss AFB, NY 13440.

AUTHORITY

RADC USAF 1ltr, 17 Sep 1971

THIS PAGE IS UNCLASSIFIED

t RADS-T- 64243
; e Im“ ‘sﬁmgwa

> R
foat i
i®
e
- - f
5 < 1o
3 el

f&' f:%zt:f:m. ;%5’***'*2” m. BabT L

~*&
i
s

s SREL

#

ADVANCED COMPUTER ORGANIZATION

: F. T..Baker
W. E. Triest

International Business Machines

This document is subject to special
expor! controls and each transmittal

{ to foreign governments or foreign
nationals may be made oniy with
prnior appruval of RADC (EMLD),
GAFB, N.Y. 13440,

AL, AR, ML, L3 June fealf

A R v e e meneee ORI

FOREWORD

This report is submitted as a result of performance on Contract AF 30(602)-
3573 awarded by the Rome Air Development Center, Air Force System Command,
Griffiss AFB, New York to the Federal Systems Division, IBM Corporation,

7220 Wisconsin Avenue, Bethesda, Maryland. This study, leading to the develop-
ment of an advanced general-purpose computer organization featuring content
addressing and parallel processing of data, was performed during the period
November 5, 1964 to January 4, 1966 and was carried out by F. T. Baker,

C. H. Forbes, N. Jacobs, J. D. Schenken, W. E, Triest, and T. P. Walker, Jr.
The authors wish to express their gratitude to the RADC project engineer, F. A,
Dion, and alsc to R. J. Ferris of RADC for their cooperation and suggestions
throughout the project. Valuable consultation was provided by F. A. Behnke,

A. R. Geiger, J. E. Griffith, A. B. Lindquist, H. E. Peterson, J. H. Pomerene
and R. R. Seeber u. the IBM Corporation,

RADC Project Number is 4SOL; Task Number 459406.

This repart has been reviewed and is approved.

Z Camm,
. INI
Chief, Info Processing Branch

Approved:

"/ -
oAy Gk
Approved: /7y ROBERT'J. QUIRN, JR., COLONEL, USAF
Chief, Intel and Info Processing Div.

FOR THE COMUJANDER:

fi

ABSTRACT

This study resulted ir . design of an advanced
general -purpose computer, including its functional
organizational and programming. The design is based
on content-addressable, parallel search memories and
the computer has parallel processing capability. It
resulted from investigations in several important
areas of non-numeric processing and symbo! manipu-
lation, and the design studies which were carried out
in each area, In addition to the general-purpose com-
puter and the individual design studies, a number of
associative processing techniques were developed for

use with such equipment.

il

Section 1

Section 1l

Section I

Section IV

Section V

Section V1

CONTENTS

INTRODUCTION

DATA EXTRACTION

Problem Statement
Characteristics of the Problem
Processor Design

Example Problem

Discussion

DICTICNARY LOOK-UP
Problem Statemant
Characteristice of the Problem
Processor Des m

Example Prob :m

Discussion

TEXT STATISTICS

Problem Statement
Characteristics of the Problem
Processor Design

Example Problem

Discussion

FORMATTED FIT.E PROCESSING
Problem Statemen*
Characteristics of the Problem
Processor Design

Example Problem

Diacussion and Recomn mendations

PATTERN CLASSIFICATION
Probiem Statement

iv

Page

2-9
2-22
2-30

3-1
3-1
3-2
3-4
3-9
3-13
4-1
4-1
4-4

4-11
4-14
5-1
5-1

5-8

5-40
5-49

6-1

l.g»‘v

Section VI

Section VII

Section VIII

Section IX
Appendix I

CONTENTS (Cont'd)

Characteristics of Prc¢-'~m
Processor Design

Example Problem
Conclusions

MATHEMATICAL STuwnki
Distance Measure

Structured Cperation Set
Numeric Processing

GENERAL PURPOSE ASSOCIATIVE PROC¥SSOR
Introduction

Design Integration Goals and Approacn

The GPAP System

The Associative Unit

Basic Associative Operations

Summery

CONCLUSIONS AND RECOMMENDATIONS
ADDITIONAL INSTRUCTIONS

BIBLIOGRAPHY

Page

6-2

6-12
6-17
6-26

7-14

8-1
8-1
8-1
84
8-8
8-21
8-31

A-1

B-1

Figure

18

19

20
21
22
23
24
25
26
27
28

ILLUSTRATIONS

Data Extraction Processor QOrganization

Block Circuitry for Connecting Storage Positious
to Data Transfer Circuitry

Link Between Registers

Link and Erase Mismatch Logic

Samrle Teletype Report as it Appears in Memory
Machine Organization for Dictionar;” Processing
Processor for Test Statistics

Associative Disk Scanner

Parallel Read Compare by Bit

Field Compare Matrix Compare and Link Circuits
Query Field Control

Link and Word Control

Identity Control

Link and Word Control for Identity Control

Record Compare Matrix Compare and Link Circuits
Record Organization for Both Machines— Example 1

Results of 10K Transactions Against a File of 270K
Logical Records

Record Organization for Conventiona! Machine—
Example 2

Results of 10K Transactions Against a 270K Logical
File

Pattern for the Character "7"

Processor for Pattern Claseification

Reduction of a Matrix to Upper Triangle Form
Associative Processor Machine Organization
Organization of Associative Unit

Format of Microinstruction for Associative Unit
The Associative Memory

Electronics Associated with a Memory Register
Associative Memory Word Stata Transition Disgram

vi

Page
2-10

2-11
2-13
2-15
2-24
3-5

4-9

5-10
5-18
5-20
5-23
5~-25
5-29
5-31
5-32
5-42

5-47

5-48

5-50
6-5

6-13
7-16
8-5

8-9

8-12
8-19
8-26
8-28

B e T L T

o

Table

VIII. 1a.
VIO. 1b.

XI

X1

X

X1V

Xv
XVI

LIST OF TABLES

Binary Scan

Standard Look-Up (Two-3Stage Binary Scan)
Modified Look-Up

Random Chain Scan

Associ~tive Scan (Single Memory)

A8Soc: ative dean (Dual Memory)

Text Statistics Data Description

Text Statistics (Frequency Histogram)

Frequency Disiribution of Data Sampie Words by
Word Length

Frequercy Distribution of Data Sample Words by
First Character

Number of Comparison Times for the Alphabetic
Sort Using Random Access Processor

Number of Comparison Times for the Alphabetic
Sort Using Associative Access Processor

Number of Comparison Times for the Sort Function
Performed Subsequent to the Alphabetic Sort

Total Comparison Times by Processor and by
Sort Method

Access Models

Commercial Vehicle Activities File
Transaction Model

Associative Machine File Organization
Conventional Machine File Organization
Associative Machine Operations
Conventional Machine Operations—Example 1

Conventional Machine Transaction Times in
Accesses

Associative Machine Transaction Times in
Accesges

vl

Page
3-15
3-16
3-17
3-18
3-19
3-20
3-21
4-16
4-18

4-20

4-21

4-22

4-24

4-26

4-28
5-53
5-54
5-56
5-57
5-58
5-60
5-61

Table
XX1v
XXV
XXVI
XXvi
XXvil

XXX1u
XXXl
XXXIV
XXXV
XXXVI
XXXvi
XXXvual
XXXIX
XL

LIST OF TABLES (Cont'd)

Conventional Machine File Organization—Example 2
Conventional Machine Operations—Example 2
Conventional Machine Transaction Times In Acc:osses
Two Sets of Pattern Values

The First and Second Groups Scrambled

Formation of Clusters with K=8

Formation of Clusters with K=10

Formation of Clusters with K=12

Formation of Clusters with K=8

Formation of Clusters with K=10

Formation of Clusters with K=12

Summary of Results of Pass I

Summary of Results of Pass 2

Summary of Comparisons

Distance Measure Example

Comparison of Partition-Type Codes

Comparison of Che.nical and Computer Hierarchic
Structurcs

viii

Page
5-64
5-66
5-67
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
7-8

7-13

7-13

Section I

INTRODUCTION

This study was undertaken primarily to investigate the applicability of as-
sociative computer organizations to probiems involving non-pumeric processing.
Previous work in automatic data extraction, automatic indexing, and formasatted
file processing suggested that the techniques uf content addressing and paralle}
processing afforded by an associative processor would offer sigrificant advantag
both in performance und in ease of programming for such applications. The cve
all goal therefore was to design an associative processor useful for such work,
wiile at the same time reiaiving the ability to perform numeric processing when
required.

The design approach was to work from the specific to the general, Initially
problem areas characteristic of those commonly encountered in non-pumeric
processing were identified. After examining a number of pon-numeric problems
five areas were selected as representative. in general, thece were problems
characteristic of those encountered in systems designed for autoraatic input
(e.g., indexing and data extraction) from narrative documents and the storage,
processing, and retrieval of a large volume of information from and about these
documents. The five areas were:

1. Text searchirg and term identification (astomatic dasa extraction).

2. Generation of text statigtics

-1

e e e S T St o i e W

- A e et

PSPy

e

3. Tex! processing using a iarge dictionary
4. Foimatted file query

5. Pattern classification

)

After the selection of these problem areas for study a special purpose pro-

cessor was independently designed for each problem avea. The performance of N

each processor was then compared to that of a conventional processor on the
basis of a specific problem characterisiic of that area. A description of each of
these areas and the processors designed for them is contained in Sections II - VI.
Once designs haa been completad in ali areas, fen. re: were ideniified which
were useful in several problem areas. Finally, these features were incorporated
into a general- purpcse associative processor.

Concurrent with the design of these five processors, supplementary st lice
were conducted to examine three additicnal topics whick it was felt vould con-
tribute to design of the general processor. Toxt encountered as input to a com-
nuier frequently ha: a high percentage of errers resulting fromn external data
handling and processes such as long-distance data transmiasion or optical
reading. A study was therefore made to determine a meesure which would b
use{il in an associative proceasor in determining the 'closest” word o an
errone.us wu=d encountered in text. Current computers frequently have operu-
tion sets which are "incomplete" in the sense tnat poteniialiy usefu! operations
are mis.ing or in whi~h cumbersome cperations could be replaced by simpler
ones. In order to uveid these faults, a study of methoda in which opersation sets

corild be structuree was pertormed. Finally, poime frequently performed types

1-2

of numeric processing were examined to see what techniques could be applied to
their solution on associative processors. These studies are described in Sec-

’ tion VII.

.q.

These efforts led to the development of the General Purpose Associative
Processor (G.’AP) described in Section VIII. The value of the approach was
con:‘rmed by the identification in the individual problem area studies of some
unique features which were valuable over a broad range of processing. These
were:

1. Capability for "linking" consecutive registers of an associative storage
unit so that a match on the contents of one register can be indicated in the im-
mediately preceding or following register, thus allowing for simple handling of
important structural aspects of data.

2. High-speed paralle! searching, input and output of bulk files of data by
use of a '"channel processor" containing two associative search matrix units,
thus allowing for the performance of complex logical queries external to tha
central processor with resulting economy of data transmitted ard central pro-
cessor tiine wasted,

3. The use of semi-autonomous associative process:ng units of varying
speed, capacity and cost to perinit increased overall system performance.

4. Flexibie handling of bits, characters, or words with consequent ability
to process many types of data.

The resulting design incornorates all ot these features in addi'ion to some

interesting architectural characteristics not found in the individual processors.

1-3

The end result of this effort, then, is the functional organization of an
advanced general-purpose computer featuring content-addressing and parallel
searching capabilities. Detailed logical design can be carried out based on the
organization specified. Indeed, in some areas of unusual novelty or complexity,
detailed logical design wae carried cut where necessary to ensure feasibility.

(It is important to note, however, that where this was done, feasibility and not
optimality was the only object). Section IX contains an evaluation of the re-
sulting design and its potential.

Design of digital computers has moved irom the original concepts of von
Neumann, et al, by means of hardware inventions, improved components, larger
memories, programming languages and techniques, and new and important
application areas involving non numeric processing. Nop-numeric processing
is hardly hinted at in the Princeton repcrtl, and, at the time of its writing, the
major manufacturers of machines for business data handling were not aware of
the potential extensions of digital computers into areas of non numerical pro-
blems. As such extensions were developed, clever programming and special
compilers were developed, and extensive research areas were opened up for
investigations into the basic nature of non-nun.eric problems. The relevance
of thi. .v design of an advanced machine organization, including associative
memories and parallel processing capability, is the implication that one cannot
reglistically evaluate the efficacy of such an advanced machine without anticipating

a succession of innovations in machine application techniques.

1. Burks, A. W., Goldstine, H. H., and von Neumann, J., "Preliminary Dis-
cussion of the Logical Design of an Electronic Computing Instrument."
Institute for Advanced Study, Princeton, N.J., 1946

1-4

Thus, in addition to the final design, and perhaps even more important
for future designers and users of asscciative processors, the techniques and
features developed in the individual problem area studies promise to provide
guidelines in this general area. The problems selected are practical, and in
some cases the methods studied are applicable on a variety of computer organ-
izations. Thus, while the proposed design could be implemented within a five-
year time period, many of the techniques are currently useful on present-day

processors, both conventional and associative.

1-5

Section II

DATA EXTRACTION

PROBLEM STATEMENT

The data extraction protlem is the process of extracting infcrmation of
interest to the user from textual data, The user Specifies the type and character
of data desired, and the extraction processor performs the process to yield the
desired result.

The type and character of the problem is stated in the form of character
string configurations, The configurations may be limited in nature, i.e., exactly
matching the text character by character (e.g., '"F~-111"). The configuration
statement may be such that certain classes of characters {all into some general
form (e.g., "B-dd", where "d'" may represent nny numeric digit). Or, the state-
ment may consider this type of condguration and further specify some particular
concatenation of these types, Variable position of the parameters within the
concatenation may also be supplied, The variations available to the user are,
in effect, limitless when viewed from the processor standpoint, and the system
required to process this type of input to achieve the desired result will be highly

complex. 1

1 ANEXOR, COMIT, SNOBOL, LISP 1.5, etc., are examples of programming

languages usocd to aid in the sclntion of data extraction.

2-1

CHARACTERISTICS OF THE PROBLEM

The data extraction problem covers a wide range of data <ources. These
might include newspapers, periodicals, financial journals, intelligence reports,
books, etc, The data format in these documents varies widely from unformatted
text (books) to semiformatted text (financial journa.ls,1 inteiligence reports in
unfinishea form) to completely formatted reports finished intelligence reports,
baseball boxscores), The data to be extracted from these sources also shows
wide variation, such as in the earnings of a corporation or the names of
officers of the company, The data can also be the location of some activity
being reported on in the news article or intelligence report, or ti.c itenerar:
of some VIP whose n.overaents are the subject of the ‘ntelligence report in
question,

In any of these examples, the prime consideration that relates each example
to the same general problem is the structure of the material being considered,
Document lengths and fermats may change drastically from document to docu-
ment, and within the same ciass of docuinents. Vocabulary will certainly
change. But, for each class of document, the underlying structure will remain
virtually unmeved and unchanged. This structure will enable the analyst to

determine the algorithms necessary for extracting data.

1 »automatic Information Extraction”, C.H. Forbes, 31 May 1962, AIDS/SAC

Subsystem Working Paper,

Structure is the prime characteristic of the data which remains relatively
invariant, It pr ovides the major clue as to how the data is to be extracted from
the document, Document structures may take the form of hierarchies or group-
ings, such as pattern analysis, mace sclviving, or processing of directed graphs.
In text, structure is a reflection of the language used to describe the information
being presented. In this way we notice that names of persons tend to appear in
specified manners. That is, the appearance of "¥ Mr. B' in text is a flag that
signifies that the next characters form the name of someone, In like manner,
other structures yield clues to the data for all classes of reports and documents,

The value of structure can most graphically be illustrated by the following
'gedenken experiment'. Consider a document and postulate that the words of
that document are to be rearranged in alphabetical order {(or in word length order
or in some other arbitrary order depending on individual characteristics of the
words and not related to their position in text). All of the words will still be
there, but meaning will be lost and most of the information of the document will
be irretrievably destroyed. The structural relationships between words will
have been altered (replaced by a new structure) so that little indication remains
of the original structure. This transformation will effectively prevent the
efficient utilization of the document as an information source,

As an example of data that might be useful if extracted, consider the
foliowing request for information from a class of reports: "ldentify those
documents containing statements by VIFs," The documents under consideration
are reports of various activities and include reports of public statements made by

VIPs a8 well a8 a wide range oi other activities ascribed to them,

An analysis of a subset of the documents used revealed that names of VIPs
appeared in a restricted environment in the text and that the 'statement' docu-
ments had such clue words as speech, statement by, said, quote, 'Nonstatement'
documents were found to have different words and phrases than the above in the
areas related to the supposed VIP names, Thus it is possible to discriminate be~
tween the VIP statement documents and the VIP nonstatement documents, This
also holds true for the general activities documents which contain no VIP
information,
A second example in this class is the analysis of financial journal reports
of earnings of companies and corporations. This data is contained in narrative
reports that discuss the per share earnings as well as the overall earnings of
the company, Earnings are discussed in terms of net after taxes, gross earn-

ings, etc. For example,2 company earnings are sometimes expressed as a

total value which is followed Ly the per share equivalent. The per share
equivalent is sometimes expressed as A SHARE, PER SHARRE, A COMMON
SHARE, A PREFERRED SHARE. Since character strings are being descrided,
it is necessary to account for the possible presence of the word COMMON or the
word PREFERRED. In locating the desired information, variations of this kind
need to be considered by means of the conditional statements that indicate

acceptability of either the presence or the ansence of the word in guestion,

1 Memorandum to A, R, Geiger froin ¢, D, Schenken, Private Communication,
July 1963,

2
“ ANEXOR, C.H. Forbes, 31 Jan 1963, IBM Working Paper,

That is, COMMON or PREFERRED in the data string is acceptable and the
absence of them is also acceptable provided that no other term is in their place,

It is often necessary to concatenate thz terms of the search in a Boolean ex~

pansions of terms, That is, CCMPANY, CORPORATION or INCORPORATED
will be acceptable in the specified search location. Or, EAST, WEST, NCRTH,
or SOUTH not immediately nreceded by THE is acceptable.

A specific example of these applications is the parameters specifying
sales, earnings, etc, expressed as total or per share, Character string "A"
is defined as either

1. EARNED or SALES or EARNINGS or INCOME or NE1 or PROFIT
followed by:

2, OF or TOTALED or WAS or WERE or INCREASED TO or ROSE TO
or DECLINED TO or FELL TO or SLIPPED TO

Character string "B" is defined as some variation of the basic pattern "'$
total value, equivalent share price, FROM, $ total value, equivalent share
price." Therefore,

1. For share prices search for "$" followed by numeric digits, or

2. Two digits followed by CENTS,

Either or both of the share price portions of the string "B" muay be legitimately
missing. FROM and ul] of the subsequent data may also be missing. The total
value may be expressed as all-numeric cr scme alphabetic representatioa of a
numerai, i,e., ONE, TWO, The data to be output from this search is the
string ""A" froin text followed by the string "B."

The foregoing have Leen relatively restricted to types of problems in which

configu.ation has played a major role in the determination of the data to be

extracted, This is just one of the areas of data specification that must be
treated for this problem. The following is a general description of configuration
as related to structure for data extraction,

Configuration, Configuration means the characters which will appear in the
data string, and is essentially a description of the data string. This description
may be in the form of an explicit description as seen in the foregoing examples
or in the form of an implicit description, as in the case of the share price above,

Explicit Description, For data strings which exhibit well known charac-

teristics such that the description is exact and unique, the Explicit Description
is used. It specified each date character and relation to other characters in the
string, i,e., EARNED, EARNINGS,

Implicit Description, For those cases where there exists no rigid definition

of the data string in the sense of the Explicit Description, or where such a des-
cription is not possible due to the extensive lists involved, the Implicit Dcscrip-
tion is utilized. Such things as any number, where number is suitable defined
to the program, any three letters followed by 2, 2, or 4 special characters fall
into the category of Implicit Description. A number might be any string of two
or more consccutive digits bounded on each end by one or more blanks, Im-
beded commas would be allowed if they divide the digits into groups of three
digite, except for the leading digits where one or two digits would be an accept-
able alternative, Imbedded periods (decimal point) would be acccptable if only

one exists and it is adjacent on the right to at least one digit. Special characters

2-6

would be defined in a list which would contain but not be liinited to:
T, g, U, RE, (Y,),
Other ;:lasses of charabters might be:
1. Letters, A, B, C, D, .,..

2. Control characters, line feed, carriage return bell, upper case shift,
lower case shift

3, Capitalized letters

4, Illegal or other undefined characters,

Another portion of the structure available for analysis is Position, which is
the relationship of the particular string to other strings in the data set, It may
be specified in terms of rank, sequence, and area.

Rank, Rank refers to the first, second, tentk, etc., string of the sample;

the first, etc., occurrence of some particular string in the sampie; or the nth
string (work, character, etc,) before or ufter some other specified string in the
data., For example, the first date-time group in a report may indicate the date
of the activity while the second might be the date of the report, Th- last such
group could be the date that the report was raceived for processing. Since all
of the date-time groups possess the same or similar characteristics, only their
rank discriminates them in the absence of field identifiers.

Sequence. This property relates to the order of appearance in the data string,
If string "A" is specified to appear before string "B' then '""B" before "A" is not
acceptable. If, in searching for the data in a document, the sequence IN 1961,
JUNE WENT TO PARIS appears, then the string JUNE and the string 19C1 will
not be recognized as the date, since it is required (at least for this example)

that the name of the month precede the number of the year, Sequence ma_, iso

2-1

include the {actor of immediacy in text, That is, one specified string must be
found immediately adjacent, either before or after, the other string under
consideration, Ase a similar example, consider the rearrangement of the pre-
ceding case, JUNE WENT TO PARI™ TN 1961 would not have JUNE 1961 identified
as the date since the strings are not immediateiy adjacent.

Area, Area indicates that the character string must be located in some
specified position or area within the overall string, Location may be specified
in terms of document content, Most documents contain such elements as para-
graphs, sections, sentences and other physical characteristics definable in terms
of character counts, special control characters, and etc. To limit search time,
or preclude ""false drops" in the extraction process, the search may be restricted
to some par._cular area of the document, Consider a report concerned with
friendly activities in one section and enemy activities in another, The terms and
constructions in both sections will be quite similar so that the most significant
delimiter for separation of the two types of activity information is the section of
the report in which it appears,

Area in reports can be specified in terms of starting points, a starting point
and a direction or distance, or a starting point and an ending point. The starting
point may be sepcified in terms of number of characters from the begirning of
the document, number of sentences from some fixed point of the text, the begin-
ning‘of some section or paragraph. It may be specified in terms of some parti-
cular string of characters such as JOHNQ. JONES, Direction may be given as
forward or backward-—toward the beginning of the document or the end, Dis-
tance may be given by a specific number of characters or words, It may be

specified as the number of sentences or paragraphs.

2-8

PROCESSOR DESIGN

The besic processor organization is divided into three functional memory
and proceseing units (see Figure 1): input editing processor. general search
processor, and output formatting processor, The units are conceived as sep-

arate in this application, However, depending upon the particular parameters, b

the second and the third sections of the processor right be combined into one
unit and share the fuiotions,

The internal organization of the three memonrieg is similar and consists of
memory registers organized to contain one character of ¢~ a each, with several
additional bits for control information and marker bits for use oy the associative
hardware in marking the var‘ous resulis of associative operations or. that
register, The memory/processor units have multiwrite capability, ailowing fov
simultaneous modisication of the contents of several registers of the memory,

The memory units are organizable under program control to allow fo. two
modes of operation (Figure 2), The first is the character mode (CM) and sets
the memory logic for one character per storage posi‘ion, All associative oper- « ‘ ‘-
ations, as well as read and write operations, are available during this mode of
operation, The second mode, register mode (RM), allows the programmer to ,

’ select from 2, 4, or 8 characters per word in the memory. The memory is ‘ 3
then organized so that references to it seleci groups of 2, 4 or & of the single-
character registers at a time, RM is used for data transmissior. both to and
from the memory as well as within the memory unit.

Associative ¢jerallons of the memory/processor unit are not available in

this mode, Only those operations used for data transfer are now allowed, The

[

3dvi

3¥04S ¥IN8

$u5Q
SwNNa

- —— ——

uopyezIued1O 108890014 UOTIORIIXY BlRQ

‘1 sand g

30v8015
baad e T

A w:HmImQ.‘

39y 0138

NOKID3Q
_ IONINO3S
W0YLNOD
; e e
¥
Mevie S S S ——— —— 'lﬂl|'|[l||‘—.l!l\#— lllll it — ol
!
% _ |
3ONINO3S i 3ININD3S _
[2 — GNY _
JO¥LNOD | 0¥ LNOD |
t {
1)
| |
] |

Lndino

2-10

IMSS 0N

Lt

2-11

xuwﬂﬂwﬂww&.«o #xoens e e s
g__ N_u o_a sd ._a n_a a_.. ._a , | o | | [
L L L i
® L] aL_ aL] a.#] 9) ,._.- '
¥0 o e 0
LH) D)
1] 4 il
DB DD)ID) 4
PRDD! DBD B
DD DDDP)1
J 1] JJlid DD —
Y)yl 3330))DID)
Y11 1] 111111 111
S Tsefrefeefec]iefe]a]n [alat]ei]rnje e ol {9} SNCIL0d IDVEO0LS

R

programmer is not allowed to organize storage in more than one data leigth
mode at a time. That is, in case the 2-character mode is selected, then all of !
storage is organized as two characters per combined register; and a new mode
select instruction must be given if it is desired to transmit data other than two -
characters per memory referenc.. After the next mode select is given, the
two-characters-per~-transfer select is nullified, During the register mode
operation, the actual grouping of the characters is determined by machine
circuitry which forces the groups of characters to start in fixed positions relative
to the first position of the core memory.
In addition to the marker bits of the memory, each storage position contains
logic for use in connecting adjacent positions for logical manipulation by the
programmer. This circuitry serves as an instantaneous chaining device to
indicate the immed.ate preceding or following storage position,
Each position contains a MATCH indicator, a LINK bit, a SKIP bit, and a
START-OF-CHAIN bit. Wnen a COMPARE is found in any storage position, the
MATCH is set in that position, and a signal (link carry pulse) is sent to the
chaining bit in the adjacent position (provided the storage has been set for the
link operation). If linking is "left” or "before,’ the link carry pulse goes
immediately to the preceding storage position; i{ linking is "right” or "after,” v
the link carry pulse goes to the subsequent position, A link carry signal arriv-
ing at any storage position is gated with the skip bit. If the skip bit ic set, the
link carry signal is forwarded to the rext storage position in the direction of
linking (see Figure 3).

2-12

FORWARD
/ LINK LINE
b F 4
') 5
MATCH | LINK KIP__| j
NO-MATCH
MATCH N En N
a._|)
Y
MATCH LINK KIP |
NO-MATCH
MATCH Y | 4
s]
1 0 1 0 Y
MATCH | LiNg | SKIP
NO-MATCH
! MATCH z 1 +
n s]
’ Note: " "means " or " ?
Figure 3. Link Between Registers
(Only Forward Direction Shown)
2-13

e e, Y e L L

During the match and link procedure, special track is kept of the next
potential character in the sequence, This is necessary to ensure the capability
of rullifying all entries of the chain in which a failure to match occurs, and so
eliminating a false chain indication, Thus, when at the end of a compare cycle
a 'mext successor' character exists which did not match the expected character,
a pulse is generated to nullify the link to that character and to all other char-
acters in that chainup to and including the first character in the chain, The first
character in the chain is tagged by a START OF CHAIN bi. while the next chain
candidate is marked by a FOLLOWER bit, Figure 4 illustrates the sequence that
the cancellation pulse executes in nullifying the chain,

Let the START-OF-CHAIN bit be denoted by S, the FOLLOWER bit be
denoted by F and the MATCH bit by M. Then, in a search for the sequence
ABC, consider what happens to the string ABCAD in memory. The linking
control circuitry is not shcwn in Figure 4 and is assumed to be set up for the
link right function, Similarly, the carry propagation is not shown for the
normal carries from cell to cell, The first portion of the match cycle marks
the 'A's with the M bit and the S bit set to 1. A strobe pulse on the S-set line
allows the S bit to be set with the M bit. The F bit is then set, through the
delay, to one in the following memory cell. (Subsequent matches for other
characters will not affect the S bit, since the search for 'A’' initiates the chain,)
The second match cycle looks for a cell with a "B’ and an F bit set to 1, For
those cells, the match bit is set and the F bt reset to 0. The setting of the F
bit in the next register is accomplished through 2 delay which enables the match

or no-match line to come up in the next cell, and guarantees the correct timing

2-14

XTI PR Do Sz svs R v

S seot line $' tronsfer line
{
-0
H &
‘ -
v o 1 0 !
F s
L]
{
Match Y To—
No-muehl T \"—_@:'
o
& &]8
&
& 1 r
0 1 0 1 [i] 0 1 1 0 1
rat T ¥FF¥ ¥
& LJ
Metch] r'—’ Napa=—"]
No-march T \ L]
S
|1E Tals
$ &
r & -
& 1 o g » o & H
) 1 0 1 [ﬁ] 0 1 0 !
M \ S F s
] 1 8 S | i]
‘ r & _#_J T
Metch 1

No-mateh Z =
l {a]a

[]: am
E:Dclq

Figure 4. Link and Erase-Mismatch Logic

2-15

in the examination of the match and follcwer bits, The S bit is also examined,
If the S bit is set to 1, a sperial carry is propagated upwards in the chain to set
the preceeding S bit to 0 and the associated S' bit to 1, If the S bit is 0, the
normal setting of the F bit occurs.

For those registers in which the no~match line is up and the F bit is set to
1, a no-match procedure is initiated, If the S bit is 0, a no~match pulse is
propagated to the preceding register., The same examination of bits occurs in
each succeeding cell until a cell for which the S bit is 1, The propagation
ceases at this point. The S bit for that cell is reset to 0.

At the end of the comparisons, only those strings in memory which exactly
matched the desired ocne are marked, The bezinning of each is marked with the
S bit set to 1, the end character is marked with the M bit set to 1, and the end
character plus one is marked with the F bit set to 1, All non-matching strings
have had their S and F bits reset.

In case the partial matches overlapped at some point, indicated by the
attempt to set the F to 1 in a cell for which the S was already 1, the initial
points of such strings were 'saved' in the §'. Provision is made to transfer the
contents of the S'plane to the S plane and to initiate the comparisons of these
strings once agzin. At the end of the examinatior. for the string, ABC, the
memory will appear as:

Character S-bit/F-bit/S'-bit/M-bit

go»Ox >
QOO OC r
SO O OO
C O OO OD
QOO OO

2-16

e e

g gy

o ean

[l il o

The input editing processor is conceived as 256 words of memory and is
used to do any upper-case or lower~-case conversions on the input, This might
consist of editing teletype input and converting it from the 5-bit code to the 8-bit
internal code of the computer, All upper-case characters such as numerals,
capitals and punctuation would be handled at this time., Certain format controls
would be recognized in this section and appropriate controls generated. Para-
graph and section indicators fall in this set,

The general search processor will contain on the order of 64 thousand
words of storage (oae character per word) and will execute the programs for
the data extraction process. These include identification, extraction, routing,
indexing and abstracting. All data manipulation for the data extraction process
is done in this section,

The output formatting processor has an eight-thcusand single character
memnry and is used for formatting and outputting the data passed to it from the
general search processor, Its function is to make up entries for formatted files,
for reporis of various kinds, and for ordinary output of the nature in current
usage., This processor makes up the controls for the display devices which
may be attached to the processor as well as the cutput units such as disks,
drums and tapes, Figure 1 illustrates the overall organization of the computer
and the relationship of the segments to the design.

Each subunit of the processor has its own mask and compare register pair.
These operate in a2 somewhat conventional manner, That is, for each bit set to
a 1 in the mask register, the corresponding bit in the compare regicter is

matched against the core storage in the munner specified in the instruction.

2-17

For the input editing processor subunit, the registers of this pair are of the

s Ry

same length as that of the storage positions. The general search subunit,
however, has a pair considerably longer than the individual storage position.
This is to ease the problem of lengthy compares of adjacent strings of char-
acters, Thus, if a string of N characters is to be compared to storage, then as
much of it as possible is loaded into the mask and compare pair before the
match operation commences, The processor is able to automatically sequence
through strings of this nature in the comparison matching, iiist against the
first character and then shifting and matching against the remaining characters
one at a time until no match is made or until the number of characters specified
is completed, This type of operation is used primarily in conjunction with the
match and link operation previously discussed,

Another property of the linking feature of the associative processor is the
skipping of characters determined to be nonrelevant io the current search, Ti\is
is accomplished by means of the skipbit associated with each register in mefnory.
When the register is flagged as being nonrelevant (to be skipped) and a match'and
link operation has identified the adjacent register as beir.g matched, the link
carry pulse is prepagated through the position marked by the skip bit. It is
gated by the skip bit to the next register and so on until a register is encountered
for which the skip bit is not set. This register is then 'linked' to the original
register, As this process may occupy some time, a delay is made until the
propagating carry pulses are all ended, By this means, occurrences of common
sequences of line feeds, carriage returns, eic., of teletype can be ignored where .

desired, in the search for significant data. In the situation where blanks between

2-18 A3

P WML e

words (text worrds) are not significant, these may also be skipped and the problem
of accounting for one, two or more blanks legitimately appearing between words
is avoided at a saving in processing time,‘

The ovz2rall supervision of the various sections of the processor is by the
central! supervisor. This superviser acts in a like manner to that of a multi-
programming computer, The supervisor controls the data flow between modules
of the computer and coordinat=s the activities of the components, Communica-
tions between portions of the system pass through the superviser module and
then to the recipient component, The individual components of the processor
contain their own central processors which interpret and execute the instructions
for that module., The I/C commands are retained in the supervisor for inter-
pretation and execution while the internal memory commands are executed
directly by the modules,

Associated with the central contrcl processor is a program storage mern.ory
in which the program elements of the operating programs are stored, As each
module becomes free to execute an instruction, the central computer fetches the
next instruction for that module, Program execution for the various modules of
the computer is interleaved logically and overlaid in execution time. In this
manner, while one section of data is being set up for outputting, the next
section can be formed for the next extractinn process.

Each memory processor unit has a mask~compare register pair for the
associative search operations, The comparison field length is the same as that
of the storage register length and overlies the marker bits, This allows for

associative compares on the results of previous scans. Bits to be set during the

2-19

scan are specified by the instruction, The mask register enables the user to
compare for exact match on any subfield of the compare register desired,

The compare register and its associated mask register hav- additional posi-
tions available for the storage of characters. Associated with these extra posi-
tions in a count field that may be loaded with a count of the number of characters
currently in the extra positions, This count and the added register length are
used in the iterative comparison instruction for the mair processor in which the
" data extraction searches are made. The input editing processor module and the
output formatting processor module are restricted with respect to this special
feature,

In addition to the ordinary functions of the digital computer that are used in
control for branching, indexing and so on, certain other functions are uniquely
restricted to the associative fnémory processor, The normal, so-called asso-
ciative instructions apply to g.ll of the elemcents »f the processor, These include
such things as EXACT MATCH, READ FIRST MATCH, WRITE IN MATCHED
LOCATION, Each of the processor modules has, in addition to these instructions,
a special match and link operation, link compare, which allo' ‘s registers other
than those for which the match condition is satisfied to be marked for retriéval
of other manipulation, The main dat> extraction module has a modified exact
match instruction suited to the problem of searching for lengthy strings of data
in an automatic fashion, This instruction is called CYCLED COMPA .., These
are implemented either by hardware or by micro-programs stored i.. conjunction

with the central control processor and transmitted to the individual associative

processor involved,

Cycled Compare

The contents of the comparison register are compared to associative
storage. The first position in the register is m...iched against core inemory
and the start-of-field bit is set in 2!l raatching men:ory registers, Simultane-
ously, the mask register bits inhibit comparison in bit positions containing a
in the mask register,

For all registers in memory which matched the compare register, a link
carry pulse is generated and forwarded to the next character in memory, The
mask and comparison registers are shifted ieft one character position, and the
processor executes the next cvcie in the comparison, This character i3 matched
against the memory in the same manner as the previous character, but with the
additional requirement that the matched rharacter in the memory have tne link
bit set to one, The process of shifting and matching continues until a no-match
pulse is received from the memory or the character count for the compare
recister is 0, Automatic delavs are made at each point that a no-compare signal

is required to eliminate a partial chain in memory,

Link Compare

The contents of the compare rogisters correzponding to 1 bits in the mask
register are compared to cach register of the memory., The match bit is set
te 1 in each register in which the contents match exactly. Registers next higher
or lower in the memory, as spec fied by the program, have the link bhit set to 1,
The skip bit in these registers is examined and the link carry is propagated to

the next register whenever the skip bit equals 1, The link bit i8 not set to 1 in

2-21

those registers for which the skip bit is set. For example, assuming the match
condition is an 'A, ' then the contents of memory might be affected as shown
below for the link right operation,

Prior to LINK COMPARY:;

Register contents W-bit L-bit Skip-bit
X 0 0
A i 0 0
B i 0 1
R H 0 0
A it 0 0
Y 0 0
Subsequent to LINK CCGA AT i
Register contents Mokt L-bit Skip-~bit
X 0 0
A i 0 0
B 3 0 1
R G 1 0
A ! 0 0
Y € 1 0

EXAMPLE PROBLEM

Because of the compler nrturs of v wooelzern in data extraction arca, the
sample text is defined descriv' - =iy sutker an in a tabular array of statistics,
The type of document to be procer -¢ ia ti: > daily summary report of tae type
that is sent from regional office of ..:: ¥B! to the central headquarters in
\vashington, D, C. This report detaiis »e activities of criminals in the western
part of the United States for the previo, .. day and includes such information as
the tvpe of activity, the number of person: involved, the iocation of the activity,

and any results of police efforts,

The data is to be input to the processor and significant data relative to the

preceding items is to be extracted for insertion in a formatted file, The reportl

has several sections: header, classification, criminal activities, and end of

message code, The portion to be examined is the criminal activitics section

and all of the information in this section is to be considered significant, The

criminal activities section is made up of individual reports of activities,

The report begins with the header information which identifies the originat-

ing source and contains the agent's name submitting the report, information

converning the recipient, and the location of the recipient. The heater is ter-
2

minated with the synbols 'BT' preceded and followed by the codes < = =,

The criminal activities section of the report is initiated with the line
CRIME REPORT (CRIMINAL ACTIVITIES). This is followed by <<=. The

second line on thiz section contains the report number, and the number of the

day of the year in which the report is generated. The remainder of this section

3 with each paragraph containing a number of

is separated into paragraphs,

sentences describing individual activities,

Figure 5 is an example of this type of report, The first portion shows the
printed output while the second shows the characters necessary to control
the printer. These characters are the input to the data extraction processor
and are the ones from which the date {s to be extracted,

These codes are shown in the second portion of Figure 5 and are carriage
return, line feed, line feed, respectively,

In the sample shows as Figure 5 the paragraphs are labeled '1. MIDWEST
and '2, WEST.'

FBI<<=DE BOND 007 21/10162<<=0X 2h23172 ZEX<<=iM FIFLD OFFICE
<=T0 FBIWASH/RFK<<=CHICAGO<<=BT<<==C O NF IDENT I A L<<=
==SECTION 2 OF 2<<==CRIME REPORT (CRIMINAL ACTIVITIES)<<=TO FBIW
ASH REPORT 031<<==l MIDWEST: JLLINOIS AND INDIANA:<<== A, 18
35H 14 JAN, CHICAGO., CR ENTERED CONSTRUCTION SHACK<<=VIC II. 087
415, STOLE DYNAMITE, (THEFT)<<== B,2016H 16 JAN, GARY, CR ROBB
ED MOTEL RESTAURANT VIC IN<<=385 012, STOLE CAR AND HEADED FAST,
ICSSES: $900, 1 VHE,<<=(ARMED ROBBERY)<<== C, 2100F "7 JAN. C
HICAGO, CR BOMBED NEGRO CHURCH VIC IL LLO<<=087., LOSSES: 3 KIL,
2INJ, 2 VEH DAM, (BOMB)<<== D, 0830 17 JAN, FORT WAYNE, 3 CR R
OBBED BRINK ARMORED CAR<<=VIC IN O42 767. POLICL ARPRFHENDED AT
ROAD BLOCK, LOSSES:<<=$2 MILLION, 2KIL(i CIV, 1 POLICE), CR LOSS
ES: 1 KIL, 1 TiJ,<= THIRL MAN ESCAPED, MONEY NOT FCUWD, (ARMED R
OBBERY)<<==<< R, 2030H 20 JAN. INDIANDPOLIS. 2 CR ATKD UNESC W
OMAN <<=VIC IN387 088, (SEXUAL ASSAULT)<<== T, 1917H 18 JAN.
JOLIET, EST 20 CR ATKD AND BURNED POLICE<<=CAR VIC IL 375 221,
OFFICER INJURED, NO ARRESTS, {ASSAULT)<<==2, WEST: SOUTHERN CALI
FORNIA:<<=<<= A, 1600H 17 JAN, LOSS ANGELES.2 "R GANGS RIOTED
IN THEATRE=<<VIC SC 122 0k8, (RIOTk<== B,1425H 19 JAN. SAN D
IEGO, CR SNIPER FIRED ON CIVIL RIGHTS DEMONSTRATION VIC SC 312
06k, KILLED MINISTER,<<=(MURDER)X<ZZ = = = « ~ = = =
------- <<=zBTz=NINN = = « =ec = = =

e

It \n

H
i

{i

Figure 5. Sample Teletype Report as it Appears in Memory

2-24

AMPLE TELETYPE REPORT

FBI

DE 30ND 007 21,1017
oY 2423172 ZEX

™ FIELD CFFICE *
TO FBIWASH/RFK
CHICAGO

BT
CONFIDENTI? "
SECTION 2 OF 2

CRIME REPORT (CRIMINAL ACTIVITIES)
TO FBIWASH REPORT 031

1. MIWWEST:ILLINCIS AND INDIANA:

A. 1835H 14 JAN,CHICAGO., CR ENTERED CONSTRUCTION SHACK
VIC IL 087 415, STOLE DYNAMITE,(THEFT)

B. 2016H 16 JAN. GARY, CR ROBBED MOTEL RESTAURANT VIC IN
385 012, STOLE CAR AND HEADED EAST, LOSSES: $900, 1 VEH,
(ARMED ROBBERY)

C. 2100H 17 JAN, CHICAGO. CR BOMBED NEGRO CHURCH VIC TL 4ko
087. LOSSES: 3 KIL, 2 INJ, 2 VEH DAM, (BOMB)

D, 0830 17 JAN., FORT WAYNE. 3 CR ROBBED BRINK ARMORED CAR
VIC IN ob42 767, POLICE APPREHENDED AT ROAD BIOCK, LCSSES:
$2 MILLION, 2 KIL(1CIV, 1 POLICE). CR LOSSES: 1 KIL, 1 INJ,
THIRD MAN ESCAPED, MONEY NOT FOUND, (ARMED ROBBERY)

R, 2030H 20 JAN, INDIANOPOLIS. 2 CR AT KD UNESC WOMAN
VIC IN3867 088, (SEXUAL ASSAULT)

Figure 5. Sample Teletype Report ar Printed

2~25

F. 1917H 18 JAN, JOLIET, EST 20 CR ATKD AND BURNED POLICE
CAR VIC IL 375 221, OFFICER INJURED, NO ARRESTS, (ASSAULT)

2. WEST: SOUTHERN CALIFORNIA:

A. 1600H 17 JAN, LOS ANGELES. 2 CR GANGS RIOTED IN THEATRE
VIC Sc 122 o48, (RIOT)

B, 1425H 19 JAN, SAN DIEGO, CR SNIPER FIRED ON CIVIL

RIGHTS DEMONSTRATION VIC SC 312 064, KILLED MINISTER.
(MURDER)

BT

Figure 5. Sample Teletype Report as Printed (Cont'd)

.llll.ﬂlﬂllllllll!lll!ll..!lllu.uunl---

The following discusses the procedure used in identifying those portions of
a document that are of significance to the user. The analysis will proceed part
by part with a description of the parameters necessary to describe the data and
the permissible variations, For ease of examination, the second portion of
Figure 5 has the character blank () shown as a space between characters rather
than printed as '¥'. In the following discussion, the symbol '1' should be taken
to mean 'any letter' and the symbol 'd' should be taken as 'any digit.' This
notation is used to describe the configuration of data fields whose exact contents

are not known but whose characters may be characterized in some predetermined

1
manner,

Criminal Activities Section Identification., The criminal activities section

is headed by a line wnoee first two words are crime report. This appears to the
processor as <=CRIME REPORT. The characters, <=, indicate that those
characters which follow begin a new line in the printed output. This sequence is
the standard for the beginning (or end) of a line in teletype practice. It is subject
to some variations due to the desire for control of line spacing, operator habits,
etc. Thus,<< ==, «=z==, <<<=zare all equivalent symbols for this configuration.
The presence of a single <or = is not enough to justify the conclusion that the

line marking configuration has been found since it is a simple .-bit transforma-

tion to get from some other legal text character to either the <or the =,

1 The reader is referred to "Anexor", C.H, Forbes, 31 Jan, 1963 for more
detailed deacription of search parameters,

2-27

- A ——

ot O

S i, T 3

Thus, the report is scanned from the beginning until the configuration < =:=or
<<z or <<==zis found., Other cquivalent configurations of the line marking
characters are accepted. Examination is made of the characters immediately
fcllowing the line marking characters and identification of CRIME REPORT,
comnlets the search for the start of the ¢criminal activities section,

Report Number Identification. This field consists of the word REPORT

followed by any 3-digit number in the numeric range 001-366, This field will be
followed by the line marking string either directly or after one or more interven-
ing blank chz. acters.

Paragraph Nwa! °r Identification, This field is always numeric and aiways

appears at 1ne star* of a new line of text. Since there are other numbers that
could begin a line = tie ~eport, it is necessary to define more closely the exact
configurario.. »¢ tihis info: mation, In this example the highest number that
appears is 2: howevar i is possible for the number of paragraphs to exceed 10,
It is unlike v “-o0 tae cum-er of paragraphs will exceed 99, so that there is an
arbitrary re st 1o0a thai t~e umber be either a single digit of two digits. The
paragraph heag g line aisc ~outains colons (:) to separate fields and is the
first line to comtain these cnaracters, Therefore, the first line contain ng the
reguisite cumeric tnicrmatie and the colons will be the paragraph heading line,

Daie-Te Grou -uentification, This group is the first in the sentence and

is followed by a pemie” ., The field is usually three strings in length, how-
ever, this is ~ot a requircmen: since the time portion of the field is sometimes

absent, S:ince the owtput ¢ 1:e search requires that the information be separated

2-28

into time information, date information, and month information, the separate

fields of this group will have to be identified,

The entire date-time group is confined to the area beginning with the start

of a sentence and running to the first period, The month is stated as three

contiguous alphabetic characters (it is possible to list all of the month configura-

tions, but restricting the information to the name of the month obviates the need

to list that much detail), The day of the month i{s any one- or two-character

field consisting of digits bounded by blanks and immediately preceding the month

field. These fields are required to be present in the report, but the time field

may or may not appear. If it is present, it will appear before the day of the

month subfield and will consist of four digits by 'H.' The entire set is bounded :

by blanks., Other fields and subfields that appear in the report are

Location

Activity Category

Subject (usually CR for criminal etc,)

Activity (verb ending in ED or the word ATKD, etc.)

Map Coordinates

Object (object of the activity)

Losaes Information (descriptive material listing damages incurred)

Losses Information Embedded in Miscellareous Statements (this
material is narrative in nature and such words as XILLED or INJURED

or CAPTURED appear as clues to the location of such data)

End of Message (the character sequence <z = NNNN)

DISCUSSION

Due to the complexity of the type of data to be manipulated, it is impractical
to make an explicit comparison of the processing times for an associative proc-
escor and a conventional processor. Indeed it is difficult te specify just what
the actual processing time will be on any given processor for this problem,
Therefore, the evaluation of this design will be a general discussion of the difficult
areas of processing and the manner in which the design approaches a soluticn of
the problem area. One of the major areas of the problem is examining each char-
acter in the entire message string to find all occurrences of strings of characters
that denote the boundaries of words. Among the characters which denote the
boundary of a text word are blank, comma, colon, semicolon, etc, Combinations
of characters, such as period, blank, also indiate the word boundary condition
as being present. To test for a word boundary, it is necessary to query each incoming
character to determine if it is one of this set, The conventional processor may make
this determination more or less efficientlv during the input phase, but the asscciative
processor needs only one comparison. In searching for all occurrences of some
string of characters, the program in the conventional processor must compare each
possible character as a potential starting point for the desired character string.
The associative processor may mark all such strings regardless of their start-
ing position in one set of comparisons for each of the characters in the sought-
for string. This might mean that in the case of a message of 1000 characters,
the conventional processor would require 1000 comparisons while the associative
processor will need but one, Of course, some pre-editing can be made to

parameters of the search 8o as tc -.. -. uct a thesaurus of the text during the

2-30

input phase; but if the parameters are extensive, this time may be prohibitive,

In the associative processor, even such pre-editing is alleviated since the search
within the parameters for the simplifying data may also be made associatively,
Thus, some of the savings possible by pre-editing the parameters for a conven-
tional prc.essor are also available to the associative processor, These inay be
incorporated into the pre-editing processor where the editiﬁg for word bound-
aries is done in paraliel with the search for the significant data.

The overall gain nossible for this type of organization over that of the con-
ventional processor can range up to several thcusand to one in special cases
where many items of similar structure are in the memory at the same time, and
where many searches may be made for each l¢ ling of the memory with data,
The lower limit comes when the paramcters are either very simple in nature
and the conventional processor can accomplish the task on the fly, or the data
is so variable that by the end of one or two searches the data being examined is
reduced to only one possible match, In this case, further searches, although
capable of searching the entire memory, are actually restricted to only cne
register. For this type of processing, there appears to be a time advantage of

one order of magnitude.

2-31

Section il
DICTIONARY LOOK-UP

PROBLEM STATEMENT

The dictionary look-up problem covers the identification of words in tex

solely by means of a dictionary in order to prepare for further processing o:

the text. The text involved may originate from a variety of sources ranging
from such strictly formatted material as file entries from a formatted file t
text published in newspapers, books, and periodicals. The goal then, of the
dictionary look-up process is the identification and marking of the text worc
in a manner to facilitate future processing. The marking may include such
things as parts of speech, index term classification or other, special prope:
of value to the system user. Words not found in the dictionary should be fl:
so that separate processing of thesé terms may be simplified.

To allow practical study, a limitation to this procedure is the restrict;
that all information to be derived and appended to the word is to be derived
an‘examination of the word and its characters separate from its context.
utilization of information about the neighbors of the word in queation i tiu
to be considered. Orly that information stored in conjunction with the div"
entry is allowable for classifying the word as to its use in later processing

The data input for the dictionary look-up processor problem will gene
be considered to be textual in nature. The exception as previously noted !

formatted report. It may be derived from teletype input or from typesett.

d-1

d

iy

At

from the publishing industry. No apecial characters other than those normall
used in text will anpear to designate the break points between words or ph.-.des,
The assumpticn is that “he word boundaries will be formed priinarily from such
items as the c'aracters "blank”, "comma' '"blank', "period'" "blank', "colon"
and "semi-colon". Other characters and configurations of characters appear
in the set an+ depend upon their usage in the specific text sampie for member-

ship in the set.

CHARACTERISTICS OF THE PROBLEM

The processor will be required to accept textual data in the formn of strings
o1 characters. There will be 2o 3pecial characters present otker *han ihose
normaily in text to denote ti : separaticns in text of paragraphs, lines, seniences
or even of .ords. The Incation of the boundaries is of special interest in this
case since it is just this problem upon which the efficacy of the system depends.
As previousiy stated, the recognition of these boundaries will be one of recog-
nizing character configurations thai frequently are used for the purpose of
defining the point of separation of one word from anothe

The processor must be capable of looking up an incoming word or textual
unit definec by the user and affixing to it such information stored in the diction-
ary previously. ‘’he look-up procedure must he capable of handling the variatle
length text units that meav be of interest without being dependent upon the rcogister
length of the pre~essor. This is necessary since for any length of register,
measured in characiess, there will be requirements that exceed that length.

Althuugh word- in common usage average about eight characters in lengti, there

are single words on the order of eighteen to twenty characters. There are also
compound terms which exceed this limit used in specialized areas such as
chemistry, botany and medicine. This range of data must be handled in the
processor.

The incoming string of characters to ti... processor will be accepted one at
a time, and it will te assumed . the time for a comparison in both the con-
ventionally crganized processor and the associative processor will be equal to
the time to transmit one register fuil of characters. Since it is possible for
input data to be saved until a previous job is completed and then transmitted to
the processor at a higher rate, it will usually be poasible to have the input data
rate equal to the compare or any other basic machine cycle desired.

The capacity of the main storage unit will be assumed to be sufficient to
contain all of the tern s and their associated data from the dictionary. If the
dictionary exceeded the size of the main memory, the performance of the proc-
essor would be degraded by the data transmissions to and from the memory
unit. This will be a restriction on the problem and will be considerad in con-
junction with the probleru of text statistics. (See Section IV.) It is appropriate
to note at this poiut, however, that approximately 97% of words occurring in a
large sample of .aws material were accounted for by 44,821 dictionary words
(8ee Table I). It is further assumed that the data lcoked up will be outputted to
another processor for further processing or that there will ve sufficient storage
to contain & moderale amount of the current data after processing. This would

be enough for a single intelligence message or news story or a small document.,

3-3

The method of handling the data is as follows. The text characters are
read into the memory and the boundaries of the words are located. The words
are searched for in the dictionary and those words for which a match is found
are tagged with their information as stored in the dictionary. The remaining
words are tagged as not being in the dictionary and then the entire set is out-
putted for further processing or stored in the appropriate section of the memory

to be utilized at a later time.

P FSSOR DESIGN

The dictionary processor design is based on the assumpticn that the data
flow into the system is restricted to a single input at a time. This requirement
is reasonable since it may be assumed that the inptt may be buffered to achieve
the maximum transfer rate that the central process~r can accept. Therefore,
if the data trans(er time is equal to the minimum time to form a comparison
with the incoming data, no further gain is possible by increasing the data trans-
fer rate. Any scheme for increasing the throughput spe=d of the processor
must, therefore, address itsell to the problem of increasing the effecilve rate
at wh‘ich the input can be handled. This could be accomplished by implementa-
tion of even more parallelism.

The design is separated into a system control unit, an /O system, and a
memory system (Figure 6). The system control exercises control over the
data flow internal to the system as well as all 1/0 flow. The 1/0 system con-
sists of the I/0 units and the associated controllers, charnel devices, etc. The

memor; system consists of two associative memory units and their controlling

3-4

. pil e e
- System
Centrol
Unit ‘
Mask Mosk
Comﬂrc ‘ _Tj—
e ———— “.mﬂy
Memory No. 2
NC- ‘ .--""".—.—_-
: | |
o b"\-—-—— e —r——“_—-‘————T l '
: | i
. | 1
L]
| i
o Arithmetic | EE—— Arithmatic
Lagic Legie
Unie Unit h’“"/.o""“ '
No. | Ne. 2 Devices

Figure 6. Machine Organization for Dictionary Processing

3-3

arithmetic-logic units. All data transfers are under control of the system con-

trol unit. Program flow is monitored from the system control unit and initia-

tion of brancling to new or different segments of the process is superv.sed from

it. The individual instruction sequences are decoded, interpreted and executed

in processor memory modules. These are the main processor memory and

memory control unit and the channel processer memory and memory control

unit. The data that is to be processed is retained in the memory units of these

modules until it is needed.

The 1/0 devices are controlled by the system control unit and requests for

data from either of the two memory-processor units are relayved to the I/0

devices.

The memory register length in both of the memory units is sufficient for

seven characters pius some control bits. This length is a compromise between

a long register in which any of the possible strings of data might be stored com-

pletely and a shor! regusie~ which would allow for the minimum amount of storage

to be used for a given set of terms. The control information relates to the data

that is required as a result of the look-up process. This might include such

things as the class of word found, the possible affixes available, status as an

index term; etc.

The smaller ¢f the two memory processors, to be referred to as the chan-

nel processor. has storage capacity on the order of 500 registera. This allows

for the storage of all the legal characters for any run as well as a set of terms

determined to be the highest frequency set with regard to the text being proc-

essed. Thexe terms, in the context of natural Engiish text, are common %o a

Sor. - ——

large degree to many samples of text that have been studied. Som. of these
worde ar= 'to', 'of', 'by', 'for', 'a’, 'an', 'the' and 'but'. The lis will contain
appioxunately 100 terms, most of which will be common ic any sample of lext.
Tuere will aiso be capacity in the memory unit for exira ‘erms not included in
the aforementioned set that are specially adapied to the particuiar data sample
uuder consideration.

The individual characters are used in 2 word poundary algorithm 8o that
.ae houndariss of the inccming words ax< recognized.

The chatnel memory precessor is envisioned to be at least one order of
magnitude faster in its excculion of instructions than the main processor. This
will allow for the inspectirn of each character in the data stream as it is in-
putted as a word to the channei processor. Words will be formed up in a buffer
register before transmission through the central processor unit to the main
memory processor unit. For words whose length is less than or at most equal
to that of the longest of the high frequency words, a epecial look-up is taken
prior to passing the word into the main memory. Any of the words ths match
are flagged before transmission to inhibit the look-up procedure in the main
processor. Since the channel unit is one ordar of mugnitude faster than the main
unit, the look-up just described will be made at no cost to the overall data flow
time. Indeed, there will be a net saving in time in the process since the look-
G of these words in the main memory will be eliminated. The actual amount
of savings gatnod will depend upon the characterisiics of the text material. In
one case, the number of words accounted for in this way was approximately 45%.
Thus, a higher speed /0 unit may b used, taking advantage of the speed gain

possibie with this pre-editing look-up procedure.

3-7

The two associative memory units of this system are of fadically different
sizes; however, the functions are quite similar and overlap to a large extent.
The larger of the memories has registers to contain approximately 50,000 dic-
tionary words and their relevant data. The mask-compare fegisters of this
memory are of the same length as the meraory registers and allow for the in-
hibiting of compares on any specified subset of the word.

The operations of the two associative memories are quite basic in nature
and consist of the usual compare for exact match (with the match register for
bit selection), read out first match, write in first location, multi-write and link
between registers. The link between registers is limited to the following reg-
ister only (although the same procedure for preceding registers will be of value
in other applications such as data extraction). The linking operates by setting
a bit in the memory register following the register in which the exact match
condition occurs. That is, for any register in the memory that is matched
with the contents of the comparison register, the next adjacent register in the
memory unit will now be marked with an associatively addressable bit. Read
or write operations will then be performed on the basis of continuing matches
so that only the last register in the sequence of registers that has ')een matched
will be marked whenever there is only one string in memory that matches the
search string. This allows for the automatic resetting of the match bits in
each cell at the beginning of each new compare cycle without sacrificing of the
information gained in the previous cycle, Since the memory unit will have only
one of each atring and the data to be retrieved with the search is not the word

but some information about the word, the cancellation of the partial matches

3-8

generated on the first set of characters results in a net gain in processing time,
A multiple match condition, resulting from scanning for a partial string or from
the storage of more than one of any item, will result in more than one match bit
remaining set at the completion of the . ~an and will require program separation
of the desirable results from the undesirable.

The register length for the processor memories is assumed to be seven
characters and control information relating to the usage of the term and to its
status in the system. This length was dictated by the storage requirements of
the dictionary (average length of words, etc.} balanced against the increasing
demands on the hardwa:e of excessively lengthy registers in the associative

memory.

EXAMPLE PROBLEM

In order to properly evaluate the design of 2 dictionary processor it is nec-
essary tc define dictionary and text typical of the general area under consideva-
tion. The parameters of the dici'onary that need to be defined are: the number
of words in the ‘ictionary, the "~equency dis.ribution of the words in their alpha-
betic subsets, the irequeicy distribution of the words by their lengt.: and the
distribution of the text words related to the dictionary entries; that is, how many
and with what distribution of frequencles do words appear in the text sample to
be studied.

A text sample and a dict!-mary derived from it were dafined. The text was
defined to have charz-’aristics common to those of news publications. Since the

probiem is essentially serial in nature, oanly the characteristics of an incremental

v ke g i A e A ———— s e i et i e, b+ e RO

sample were needed to evaluate a tentative machine organization. Thus, a
block size of 8000 text words was used for the evaluation. This size is the size
for a ble~k of data coming in to be processed.” The look-up times for each of
the designs of the processors are to be calculated from the statistics of this
parameter. As stated abeve, the assumption is made that the text input is ap-
proximately at the speed that the central processor cperates. Thus the com-
parison between designs wil! be linear in nature and the sample size of 8000
words will be valid.

A set of data derived for a sample of publishing text was studied in order to
produce a sample text description and dictionary descrintion for the sample prob-
lem. The sample text was defined to be approximately 4.0 million words of un-
formatted text. The spelling of the terms was assumed to be correct and the
total unique terms of the sample was 71,805. Of these, 39% or about 48,000
terms appeared as entr‘es in a dictionary derived from Webster's Collegiate
Dictionary. 1 This dicticnary des not include technical terms or words that are
or originated as proper names. It is limited to common nouns, verbs, adjec-
tives, etc. The average length of the words in cthe 4.0 million word sample was
5. 21 characters per word, The average length of the 71,805 unique words was
8.53 characters. The difference in lengths Letween the unique and total sample
averages reflects the relatively high proportion of such short words as: 'to',

'by', 'for’, 'but', 'and’' and 3o forth. These words modify the distribution of

jComdict: A Commor English Word Dictionary. Private communication from

M. Jones, June 1963,

3-10

e = —— e . T e e <t

the word lengths in a manner which skews it to the right and so reduces the ave-

rage length. !
It is assumed that the dictionary for the look-up is completely contained in

memory and that the percentage of the text words found in the dictionary is
quite high. In the case studied, the percentage was 97.35 (see Table I). This
repreaented a total of 44,821 unique words with a total occurrence in *ext of 3.9
million words. The words not in the dictionary amounted to 26,984 words with
a total occurrence of . 1 million words.
The text input for the processor is considered to be one character at a
time. The size of the text units has been set at 6000 words per unit in order to
evaluate the comparative times for the look~up procedure. The words and their
boundaries must be identified during the input phase and the word matched
against an exisiing dictionary stored in the memory unit of the main and satellite
or channel precessor.,
Evaluation of the processors was based upon several organizations of the
search procedure. The first procedure was the complete dictionary stored in
the conventional processor as one entity. The incoming word was compared to
the dictionarv by means of a binary scan technique with the result that the ave-
rage time per input word was 15. 101 compares per word. Table II shows the
timing breakdown for this process.
Since the high frequency dictionary accounts for such a large proportion

{about 45%) of the total words, the dictionary for these words was separated

1See: Table VII, parts la and 1b of Section IV for similar information regarding
the distribution of words in the same sample including error words.

from the main dictionary and words of the appropriate length scanned against

the small dictionary prior to the scan of the main dictionary. Although this

amounts to a penalty in look-up time for those shorter words not found in the
high-frequency dictionary, this is more than offset by the gain made by not
having to look up the high-frequency words in the main dictionary. These re-

\
sults are tabulated in Table IO. The scan in both cases was binary in nature

and resuited in a net increase in processing speed. The time per search was
reduced to 11.879 compares per input word from text, again on the conventivnal
processor.

The technique of hash addressing by randomizing the input word was used to

generate an address for the dictionary look-up, This method results in the ad-
dress of the first element of a chain of words in storage, each of which yielded
the same random address. An examination of the chain would proceed in se-
quence until the word was found or until the last element of the chain was com-
pared. An assumption of three compare times was made for the time of con-
version to compute the address, while 1.9 words per chain for the main diction-
ary was used for the length of the average chain of dictionary terms. 1 The
method was assumed to be especially effective in the look-up procedure for the
high frenuency dictionary terms when they were stored separately. In this case,
the chain length was assumed to be 1.0 words since the list is quite short, 2

When either of these values is exceeded, the time to proces: rises and the

overall process time increases.

1Dictlon:u*y Techniques by J. B. Ratchford. AIDS/SAC Working Paper, 31 May
1962,

?See Table VII under Specia. Mictionary.

3-12

Thiz method was applied to the scan for the high frequency dictionary -
and for the combined dictionaries, again on a conventisnal processor. The
sults are tabulated in Tables IV and V, respectively. The outcome of orgs

the dati together for a combined scan by the hash addressing rather than k

addressing for the high frequency dictionary and binary scan for the main
tionary £~ ia Table IV is a reduction in number of compares per input wor
from 10. 333 per word to 4.570 per word.

As a bench mark for comparison of the efficacy of the organization of
associstive memory into the two parts rather than considzring it as one °»
computation was made of the number of compares per inpui word for the .
dictionary contained in the main memory. This is recorded as Table VI.
overall time for comparison averaged out to be 1,625 comparisuns per in
word or 36% of the best possible time for the conventional processor. W
channel memory processor is added to the associative processor, the nv-
of comparisons per input word drops still further to .958 compares per i

word, which i8 21% of that for the conventional machine.

DISCUSSION

The concluoion to be drawn irom this procezsor study is that an ove:
gain of about 5 t¢ 1 is possible when the associative processor is compar
the conventional processor. This margin will increase when the procedi
the search in the conventicnal processor varies from the optimum given
hiash addressing parameter estimates. The main gain to be obtained in!

processing lies in the speedirg up of the effective input rate of the text §

ANS

R i,

of pro-editing on the fly in a channel processor. The pre-editing may be ob-
t-ined at little or no cost in time by utilizing few, high apeed components and
a small, very st memory unit.

Since the procedure is essentially linear in nature, the separation of the
word identification anrd initial look-up processes into parallel processes by
means of the channel processor enables the overall throughput to be maximized.
The linking of registers, on the other hand, eliminates the need for time con-
suming scans of all registers matched in the first compare cycle and allows full
utilization of the associative nature of the processor. In the absence of these
two features operating in conjunction with one another, thrre would be very
little difference in operating speed between a conventional processor and one of

an associative nature when the hasic cycle tine was the same.

3-14

TABLE I

Dictionary .
s
Number of Words 44821
COMDICT 28409
Other 16412
Text e
Number of Words 4,0 x 106
LClctionary 3.9 x 102
Non-Dictionary 1 x 10
% Dictionary 97.35%
Unique Words 71805
Dictirnary 44821
Non-Dicticnary 26984
% Dictionary 62.4%
Word Length
Unique 8.53
aq 3.61
Total 5.21
o] 2.09
New Terms 160/240, 000 Total Words
Special Dictionaries
r.-;,_,s‘ w e
Number of Words 120
% of Tatal Text 45.6%
Number of Total Text 1.82 x 108

TABLL 11, BINARY SCAN

8900 Words/Unit

Merged Dictionary

Words Compared
Found
Not Found
Total Compares - Found
0-7 Characters
8-14 Characters*
15-21 Characters
Over 21 Characters
Total Compares - Not Found
0-7 Characters
8-14 Characters
15-21 Characters

Total Compares

Average Cumpares per Input Word

*Asgsumes complete compare before decision,

3-16

8,000
7,788
212
117,416
47,445
64, 249
5,478
244
3,392
1,375
140

18

120,808

15.101

TABLE 11, STANDARD LOOK-UP (TWO-5TAGE BINARY 5CAN)
5000 Words /Unit

High Fre ,uency Dictionary

Words Compared 3,372
Found 3,280
Not Found 92
Total Compares 19,031
Found 15,512
Not Found 519
Words Not Compared 4,628
Total Pseudo Compares 4,628
Total Compares \h.f.) 23,659

Standard DNictionary

Words Compared 4,720
Feound 4,508
Not Found 212
Total Compares - Found €/,967
0-7 Characters 27,458
8-14 Characters* 37,177
15-21 Characters 3,175
Over 21 Characters 157
Total Compares - Not Found 3,402
0-7 Characters 1,437
8-14 Characters 1,842
15-21 Characters 105
Over 21 Characters is
Total Compares (4.) 14,004
Total Compares Overall v5,028
Average Compares per Input Word 11.879

*Assumes complete compare before decision,

TABLE Iv. MODIFIED LOOK-UP

8000 Words /Unit_

High Frequency Dictionary

Words Compeared

Found

Not Found
Total Compares

Found

Not Found

Words Not Compared
Total Pseudo Compares
Total Compares (h.f.)

Standard Di.tionary

Words Compared
Found
Not Found

Total Compares - Found
0- 7 Characters
8-14 Characters*
15-21 Characters
Over 21 Characters

Total Compares - Not Found
0-7 Characters
38-14 Characteio
15-21 Characters
Over 21 Characters

Total Comparesa (8.)

Total Compares Overali

Average Compares per Input Wo.u

*Assumes complete compare before decision.

3-18

3,372
3,280
92

2,922
6,560

184
4,628
4,628

11,272

4,720
4,508
212
67,967
27,458
37,177
3,175
157
3,102
1,437
1,842
105

18

71,369

82,641

10.033

p—

£
3
5
H
i

g

TABLE V. RANDOM CHAIN SCAN

8000 Werds /Unit

High Frequency Dictionary

Words Compared
Found
Not Found
Total Compares
Found
Not Found
Words Not Compared
Total Pseudo Compares
Total Compares (h.f.)

Standard Dictionary

Words Compared
Found
Not Found
Total Compares - Found
0-7 Characters
£-14 Characters*
15-21 Characters
Over 21 Characters
Total Compares - Not Found
G -7 Characters
8-14 Characters
15-21 Characters
Over 21 Characters
Total Compares (s.)

Total Compares Overall

Average Compares per Input Word

*Assumes complete compare before decision.

3-19

3,372
3,280
92
6,644
6,560
184
4,628
4,628
11,272

4.570

TABLE VI, ASSOCIATIVE SCAN (SINGLE MEMORY)

8000 Words/Unit

Merged Dicticnary

Wards Compared 8,000
Found 7,788
Not Found 212
Total Compares - Found 12,654
0-7 Characters 3,283
8-14 Characters* 8,316
15-21 Characters 999
Over 21 Characters 56
Total Compares - Not Found 343
0-7 Characters 89
8-14 Characters 226
15-41 Characters : 24
Over 21 Characters 4

Total Compares 12,987

Average Compares per Input Word 1,625

* Assumes cor.nlete compare pefore decision.

TABLE VII. ASSOCIATI

8000 Words /Unit

High Frequency Dictionary

Words Compared
Found

Not Found

Words Not Compared

Standard Dictionary

Words Compared
Found
Not Found
Total Compares - Found
0-7 Characters*
8-14 Characters
15-21 Characters
Over 21 Characters
Total Compares - Not Found
0-7 Characters
%-14 Characters
5-21 Characters
Over 21 Characters
Total Compares (s.)

Avorage Compa:»c per tnput

VE SCAN (DUAL MEMORY)

3,372
3,280

92
4.628

4,720
4,508 o
212 |
7,327 ¢
1,900 *
4,812
579
36
339
93
224
18

7,660

Word L9585

*Assumes complete compare before decision.

B

3-21 .

SECTION 1V

TEXT STATIS®iCS

PROBLEM STATEMENT

The text statistics problem encompas:.=s generating the data required to
describe statistically the ~haracteristics of a body of text, These statistics are
used in various studies to determine the optimum manrer of manipulating the
text flow in certain data handling situations. For ex.mple, assume that one is
investigating a sample of text from a data base which will eventually be processed
automatically on a renetitive basis (e.g. daily intelligence reports). Then one is
interested in acquiring data on numbers of words, word length distribution, etc.,
to be used in organizing a dictionary containing words in the material and infor-
mation on processing to be associated with them, determining the rate at which
new words will be encountered, investigating the volume and type of errors found,
noting peculiarities of spelling or abbreviation, and identifying any other anomalies
which might affect subsequent processing.

The final data to be derived from the text analysis should include the
following iters:

1. Word Frequency Counts

&. Alphabetic sort with word frequencies
b. Length of word sort with word frequencies
c. Frequency sort, subsorted alphabetically with word frequencies

4-1

2. Growth Rate Information

a.

b.

Word list in the sequence encountered

Growth rate of new words per unit of text processed

3. Sorted subsets 7f words

a,

b.

~
.

£

All alphabetic characters
All numeric characters

Only alphabetic and hypher characters i.e. Francc-Prussian,
Pierre-laval, etc.

Alphabetic, nume:ic and hyphen mixtures ..e. B-29, F-111, etc.
Alphab¢ "ic and numeric mixtures i.e. 18H, 1604A, etc.

Al: items not subsumed above,

Since ali of «he.e outputs are derivable from the basic frequency count nf

the words, the design and study effort was directed to consideratica of the

solutior. of tnis problem in an optimum manner,

It cannot be assumed that statistice derived from one body of text necessarily

are transierabie in their entirety to another body of text. Stylized vocabulary

and technical terms tend to make the statistics descriptive of the particu »r

data sampie and can even be vsed to assist in determining to what body o: tert

an unknown document or text sample belongs. Therefore the problem o1 de-

termining text staiistics is not one which can be accomplishcd once and then

never revested, but is likely to recur even within cne organization wherc prob-

lems of interest change with time.

The data input to the text statistics processor is considered to be primarily

textual. It might be unformatted text from teletype lines or from teletypesetter

input. It will, of course, not be limited to these and can include a wide range

4-2

of other material. A primary characteristic of the data is that the text words
appear as strings of characters with the word boundaries not specifically ident-
ified. The following character configurations are frequently the ones to be con-
sidered in defining the boundaries of text “words." Tha list can be modified to
meet the requireaments of the data sample in any particular instance by the addi-
tion of specia! terms or the deletion of configurations that are not meaningful
in the context of a particular problem.

a. '¥', the character 'blank'

b. ',B', the pair ' comma blank'

c. '.J', the pair ' period blank’

d. ';', the character 'semi-colon’
e. ";$', the pair 'semi-colon blank'
f. ':', the character 'colon’

g. ';B', the pair 'colon blank'

h., ' "p', the pair 'quotes biank'

Special characters other than shown may also be included in the nssge given
for colon, semi-colon, quotes, etc. Other usage may be duilned as *he occasion
demands.

There ia geaerally no special control tnformation to separate text units as
they are received, for exampla, on teletype or optical character or reader iv.-
put. The separation is provided in the spacing of the inf~rmation, whick is
adequate [or production of printed output but poses processing problems for a
computer. Thus the processor will need to be able to do part of the tnput editing

task as well as the frequency counts and sortings. Thi2 requirement is made

4-3

necessary by the wide range of material for which this data is valuable and for
which these general prouperties hold. Examples of this data are the text of news
publications, intelligence reports, newswire data and other publication data as it

appears prior to the printing.

CHARACTERISTICS OF THE PROBLEM

The text statistice problem may be simply stated as the need to generate
lists of character strings of certain characteristics from an input string of text.
Appended to each strinF will be frequency of occurrence information as well as
the location in the text at which the string first appeared. Ordinarily the strings
desired are words in ...e dictionary sense but no such restriction c:n be imposed
in a limitation on the problem since mis-spellings and other errors are of cor-
siderable interest to the researcher. The terms 'words' and 'strings' or 'text
items' ace used interchangeably to describe the output required.

The initial sorting of the words is most easily accomplishe. as an alphabetic
sort with the frequency and word length sorts to follow at a later time. This
minimizes the data flow in the system by compressing the data to its final size
as early as possible. The problem then, to be studied in relation to the text
statistics proceasor will be limited to the generation of word frequency lists
sorted alphabetically. The remaining lista can be generated as a table from this
basic list by common sortingprocedures, which are known to be input-output
limited Thus, there will be little differenc. . . the execution times between the
assoclative processor and a conventional processor. The relation between these

two philosophies will, of course, b :ffected by the additional burden imposed

4-4

by an equal load for each design. An equal load imposed upon each of two sys-
tems which differ in time of execution for the problem under consideration will
have an effect in the execution time for the overall process that may range from
a macked difference to almost none at all. Assume that for a problem in ques-
tion that one process represents 80 percent of the job and that the remaining
20 percent of the job has been evaluated for time of execution. Let processor
A have an execution time of 100 time units for the 20 percent part of the job
while processor B does the same part in 150 ti.ne units. Then, if both have
the same time of executinn for the 80 percent portion of the job, in .his case
400 times units if we use the time of processor A as the bench mark for the
20-8C split, processor A will complete the job in 500 time units while proc-
essor B will complete the same job in 550 time units. The differénce in time
of .xecution is still the same, 50 time units, but we now refer to the time of
execusion of A as being 90.5 percent of that of B rather than the 66.7 percent
previocusly thought when considering only the small portion of the job. Care-
ful consideration must be given to the probiem of the overall execution for the
p_roblem by not limiting the investigation to the initial problem of the frequency-
aiphabetic sort.

Four achemes of data handling to solve the text statisticas problam were
proposed for use on & conventional design as we.. as on an associative design.
These were based on the foi.owing assumptions:

1. Capacity of the main store of both the conventional and the assoclative
procegsors {s insufficient to contain all unique enisies.

&5

2. The input/output rate of each processor is assumed to be equal to its
basic co.apare cycle.

3. The output of the datz analysis is as previously specified.

The four metl.ods of handling the data are:

METHOD I.

METHOD 1.

METHOD M.

B:eak the input text into "worde' and generate a dictionary

of unique items until storage capacity is reached. Save on

a temporary medium any items not appearing in the dictionary
after this timc. Positional values for the first occurrence of
each word in the dictionary are retained in memory. They
are also associated with each of the overflow items saved

on intermediate storage. At the end of the original input,

the dictionary is saved and the overflow entries are re-
entered to form additional dictionaries in the same manner.
The additional dictionaries are merged with the original one

and formed into the final alphabetic output.

Break the text into "words'' and assign sequence values for
input. Generate a dictionary in memory until storage is
filled. Save the current dictionary on temporary media and
begin t-.: generation of & new dictionary. Continue in this
manner until all of the input {8 exhausted. Merge the inter-

mediate dictionaries deleting the extraneous sequence values.

Break the text into "words', assign sequence values and
generate a dictionary of unique items until storage is filled.

Write out onto temporary storage those itemz whose

4-6

frequencies to this point are below some threshold value.
Continue to take input to regenerate the dictionary in the
available core. The threshold is revised perindically to

insure that some minimal percentage of memory is available

for this function. Merge the resulting dictionaries retaining
lowest sequence values and eliminating duplicate "'word"

items.

METHOD IV. Break the text into "words" and assign sequence values.
Match these words against a pre-stored dictionary making
the appropriate notations with each dictionary entry. Aug-
ment the pre-stored dictionary with any '"new' term found
until storage is filled. At this time all cells with zero
frequencies are purged and the process continued until
storage is again filled. The '"'new" terms are flagged and
purged and caved at each time the dictionary reaches inemory
capacity. At the end of the irput, the saved dictionaries
are merged, duplicate entries are eliminated and frequency

counts as well as sequence values are updated.

PROCESSOR DESIGN

The text statistics processor design ia basad on the assumption that there can
be but one data input to the processor for any one problem. Thus, the processor
will be input/output bound at some 1/O speed based on the scheme for proc-
essing the text. This means that the processor must operate faster if an overall
increase in throughput speed is to be accomplished.

4-7

The design is partitioned into an I/0 system, a system control unit and a
memory system. 1 The 1/0 system consists of the I/0 units and the associated
controllers, channel devices, etc. The memory system consists of two associ- :
ative memories and the mask-compare registers and control circuitry needed by
them. The system control exercises control over the 1/0 and all internal data
flow in the system. It is responsible for retreiving and interpretation of all
instructions of the system.

The two associative memory units of this system are of radically different

sizes; however, the functions are quite similar and overlap to a large extent.

The larger of thc memories has registers capable of etoring approximately

25,000 text words and their frequencies. The mask-compare registers of this
memory are of the same length as the memory registers and allow for the

inhibiting of compares on any specified subset of the word. The arithmetic-

logic unit of this memory is used primarily in the detection of single matches
and in the updating of counts of the words as the data is passed through the
system.

The smaller of the memories is a special memory used for the function of
word breakup and special character recognition. The memory is large snough
to contain each possible character of the alphabet as well 28 an additional list
of short, high frequency words. The alphabetic characters are used in the word
boundary algorithm so that the boundaries of the incoming words are recognized.

e

l&e!"lgure?

$321A3Q
ind.Lno
1NdN!

SIISNIBIS 1S3] 0] 108S3ad0A]

*1 aandly

ﬂ

|

o
z
AdOW3W
¢ P 1
R 12
W L
¢ 1 il
T v T e
. y ﬁ 3y ﬁ
REN
081N R ABOW3wW
w3l 's Wa1SAS
-

This process can be accomplished in the time between tra::amiss‘on of the indi-
vidual characters of the data sireain.

Another function «f this memory, apart from that already mentione 1, is to
eliminate from the n:ain memcry scan those words whose frequesncy is extren.ely
high relative to the data set. By this means, it is possible to save the tir:¢ in
processing that would have been taken up by the search for ;hose words. This
memory unit is assumed to be of such an operating speed to be invisible in ihe
data stream. This means that the search in the unit is done betwec~ charasters
and constitute no lo8s to the system. By this mechanism it is possible to match
and count the frequencies of about 45 per:.ent of the raw text words. This re-
duction in the flow of data arriving in the large memory means an almo:® 50
percent increase in operating speed.

The operations of the two associative memories are quite hasic in ature
and consist of the usual compare for exact match (with the match for bit selec -
tion), read out first match, write in first jocation, multi-write and !ink between
registers. The link between registers, operates by setting a bit in the next
register in memory fromn a register for which the compare condition is met.
That is, for any register in memory that :natches the ageoclative search criteria
and normally would have been marked, the register adjacent next higher in
memory will now be marked. Read out is made on the basis of continuing
exact matches so that only the last register of a sequence of registe~s matched
by the search program will be marked in the case of the single match. This
result occurs since the memory contains only one occurrence of each of the

dictionary terms. Furthermore, it {8 of value to have only the last register

4-10

matched with the match bit set since statistics are being generated about cach
term and it is convienient for this information to be stored after the term in
mermory. It may be stored in the last rogister or in the one following, depend-
ing upon the nqmber of characters involved. In a multipie match condition, of
course, more tpan one of the memory registers could he marked. Match bits
are agsumed to pe reset by the initiation of the writ- maich bit portion of 2
succeeding n‘:».uc\h cycle. This is necess2 . in order to enable the search pro -
gram to find ihos‘? words which are more than one register in length and to | :
mark only the last memory register for each of these words. Linking is |
assumed to progregs or:e way only in this computer design, although the gen-
eral case is to allow this type of function to be symmetric for searches in
either direction.

The register length {s such that a seven characier string may be contained
in eus s register. This choice was mude based upon the reasonableness for

hardware roquirements and the distribution of the word length in the data

sample, It is assumed in this case that some finite number of characters must

be specified and for any particular length of register, there will be a require- T
ment for a register of length longer than that. (See table III.) In addition to ;
the seven characters per register, there is space for the counts associated with B

the lower frequency (1000 or less) words in each register plus some controi

information to indicate the relative position of the character string in the word.

EXAMPLE PRCBLEM

A text sample and a dictionar derived f.:m it were deflined. The text wus

taken to have similar characteristics to those of a la-ze sample of text 4.6

4-11

million words of text approximately. This renresented approximat2ly 144, 000

Thes

unique words in text with the average frequency of occurrence for each word

being about 94. The range of word {frequencies was 1 - 264,491. These words g i “]
were corapared to a dictionary/ ! derived from Wehster's Collegiate Dictionary.
The words in the dictionary did not include any proper ncuns or technical terms;
that is, the set consisted of only common nouns, verbs, adjectives, etc. Amorg
this restricted set, there appeared 28, 409 words out of the 71,805 ¢c~~—~ctly
spelled unique english words of text. The remaining 72, 000 words were alpha-
merix mixtures, error, etc. The distribuiion of the lengths of the text words was -
such that the average length for all words of the sample was 5.21 characters

while the average length for the unique w rds only was 8.53 characters. This

reflects the high proportion of words such as 'an', ‘the’, 'for' and =o forth.

EY S

These words dilute the overall distribution of the lengths and skew it to the right.
(See Table VIII. 1a and VUI. 1b.)

The input text to the pro.essor is read cne character at a time The input
is such that the possibility of parallel inputs is excluded by the requirement
that the order of appearance of the unique words be preserved. The words and
their boundaries must be identiiied and the word compared against a dictionary
that is being constructed on the fly while the text is passing. Overflow occurs
when the main storage is filled and a word enters the system for which no com-

pare exists in the curyent dictionary. Such words must be saved together with a .

1(’:m.‘mdlct: A Commcn English Word Dictionar- Private communication from
M. Jones June 1863

4-12

notation of their sequence information until such time as the initial pass at the
material is completed. They will then be passed again against a new dicticnary
and the cycle repeated unti! all of the words of i+ » sample have heen countied and
the relevant information recorded. 1

Each of the n:cthods listed under CHARACTERISTICS OF THE PROBLEM
was cvaluated by means of the data model. The results are summarized in
Tables XI through XIV. Table XI lisis in detail the comparison times used in
the standaxrd random acce ;s processor as the data is processed through, in this
case, five gorting passes and a merge pass. For each pass, the number of
words read into the computer is listed as well as the total number of comparisons
times utilized in e sorting. A random chain sort is assumed with an average
compare time of 4.57 compares per input word. Table XII summarizes similar
iniormation about the associative processor design. The figure for the search
time in {"is casz is . 958 compares per input word. The low (4.57) figure obtained
for the random access processor is bz2sed upon the assumption of an average of

1.9 comparets2

per input word after the generation of the random memory
address and 3.0 compare times for the address generation. In the case that the
algorithm is not as efficient in producing the memory address, the corresponding

cuompare times figure will have to be revised upwards.

! Table IX and X give additional information of a statistical naluie concerning
the characteriatics of the words in the test sample.

2 Dicticnary Techniques

J. B. Ratchford, 31 May 1962
AIDE/SAC Subsystem Working Paper

4-13

Table XIII contains the inforiration relative tc the process which occur after
the initial alphabetic sort has been mz-i2, The tasks here, with the excention of
the frequency sort and the sequence encountered information, are performed in
essentially the same amount of time on the associative processor and the random
access processor. The major factor here is the I/0 time and not the internal
look-up time.

These results in Tahle XIII are obtained by assuming that the time of output
and of re-input are equal to the comrare time for the machine involved. That
is, the time to read or write one ‘word’' in the I/0 process is equal to the time
necessary to accomplish one compare. This time is essential to the computa-
tions in that it is the main discriminator between the schemes for handling the
daia. Table XIII is the common information for those parts of the process in
which the associative store is taken to yield no advantage.

Table XIV is 2 summary of the over processing time for the 4.0 million
words appraximately of text in the data model. Tota! comparison times are
listed for eaci: machine configuration as well as for each of the processing

methods involved.

DISCUSSION

The overall result of the process:r study is that the application of an
. eijative processor in this area may yield a return of about three to one
i 1. The cause fcr this low return is that the inajor portion of the tagk is
linear and not conducive to parellel processing. The sorting of items in

ordered lists, merging of lists is easentially /O bound on present day computers

4-14

and appears as if it will remain_so for the forseeable future. The gain for initial
sortirg of the text words ie a.ppro:ﬁmately four to one for simil.. reasons.
Modern programming techniques erable the properties of associativity to be
available on random access computers by such means of hash addressing, chain
sorting and binary scans.

The main features of this design are the separation of tke word break task
into what amounts to a channel device from the central processor and fhe linking
of adjacent registers in the associative memory during the scan operation for
dynamic utilization of the interim results of the scan. Without these two features,
it would be diificult to display a significant improvement in operating speed cver

the rime of execution in a conventionai processor.

4-15

s o

TABLE VIII. 1a. TEXT STATISTICS DATA DESCRIPTION

1. TOKENS 4.0 x 108
]
A. ALPHABETIC 3.88 x 108 '
1. Common Words 3.3 x 106

a) frequency 230 2 9x 106
b) frequency <30 4.4x 109

2. Other Words 5.2 x 10°
a) frequency =30 4.1x 109

b) frequency < 30 1.1x 109

B. NUMERIC 8.7 x 104
C. ALPHA-HYPHEN 3.1x 104
D. ALPHA-NUMERIC 1.3 x 103
E. ALPHA-NUMERIC-HYPHEN 1.2 x 104
F. REMAINDER 3.0 x 104
. TYPES 1.4 x 10°
A. ALPHABETIC 1.1x 10°
1. Commun Words 3.0x !04

a) frequency > 30 1.4x 104

b) frequency < 30 1.6 x 104 .
2. Other Words 7.7 x 104

a) ({requency = 30 2.5x 103

h) frequency < 39 7.3x 103

4-16

Iy

TABLE Vil la. TEXT STATISTICS DATA DESCRIPTION (Cont'd)

£ NUMERIC 6.2 x 103
C. ALPHA-HYPHEN 1.6x 174
¢ D. ALPHA-NUMERIC 3.2 x 103
E. ALPHA-“UMERIC-.'YPHEN 2.1x 10%
F. REMAINDER 6.1x 108

m. MISCELLANEOUS INFORMATION

A. Highest Frequancy 20,000 words = 95% of total words
B. :verage Frequency for words <30 = 5.62

C. Tinique Words frequency < 30 = 124,000 words

D. Tota. Words frequency < 30 = 800,000 words

4~17

TABLE VIII.1b. TEXT STATISTICS (FREQUENCY HISTOGRAM)
FREQUENCY TYPES TOKENS .
1 63090 51090 '
2 19720 29440 o
3 10238 22614
4 6634 19736
5 4819 18095
6 3868 17568
7 3187 16709
8 2528 15344 |
9 2118 14272 !
10 1779 13390
11 1581 13101
12 1329 12948
13 1068 12584
14 798 11172
15 802 12030
16 695 11120
17 619 10523)
18 551 9918
19 546 10374
20 482 9640
21 432 8072 :
22 405 8912 -
23 395 9085
24 342 8208 -
25 347 8675)
26 AND GREATER 11718

4-18

TABLE VIII. 1b. TEXT STATISTICS (FREQUENCY HISTOGRAM) (Cc.it'd)

FREQUENCY TYPES TOKENS
26 313 8138
7 306 8262
8 300 8400 |
9 285 8265
30 240 7200
1 237 7347 .
2 224 7168 |
3 236 7788
4 194 6596
5 202 7070
6 199 7164
7 169 6253
8 153 5814 |
9 153 5967 i
40 174 | 8960 L
1 158 6478
2 129 5418
3 134 5762
4 153 6732
5 136 6120
6 119 5474
7 129 6063 Li
8 127 6096
9 101 4949
50 106 5250
51 AND GREATER 7042

4-19

TABLE IX. FREQUENCY DISTRIBUTION OF DATA SAMPLE
WORDS BY WORD LENGTH

LENGTH FREQUENCY LENGTH FREQUENCY
1 14 i3 1628
2 76 14 1059
3 813 15 694
4 1962 16 451
5 3420 17 291
6 5867 18 203
7 6741 19 123
8 6159 20 89
9 5217 21 64

10 4249 22 42
11 3208 23 30
12 2348 24 + GREATER 13

4-20

TABLE X. FREQUENCY DISTRIBUTION OF DATA SAMPLE
WORDS BY FIRST CHARACTER

CHARACTER
A

Lo RS"T om0 OO0

FREQUENCY
2505
2908
3212
1825
1667
2110
1€46
1983
3420

579
859
1442
2390

4-21

CHARACTER FREQUENCY
1782
1181
2764
138
1857
1818
2342
944
€75
1329
13
214
212

M < X g <R MmO YO 2

TABLE Xi. NUMBER OF COMPARISON TIMES FOR THE ALPHABETIC
SORT USING RANDOM ACCESS PROCESSOR

METHOD 1

Al

F'
G.

Pasa 1

1, Words Read
2. Words Saved
3. Overliow

Pass I

1, Words Read
2. Words Saved
3. Overflow

Pass I11

1. Words Read
2. Werds Saved
3. Overflow

Pass IV

1. Words Read
2. Words Saved
3. Overflow

D

1. Words Read
2. Words Saved
3. Overflow

Merge
Total Compares

METHOD II

A.

B.

Pass I to Pass XV

1. Words Read
2. Words Saved

Pass XV1
1. Words Read
2. ‘Words Saved

Merge
1. Pasel
2. Passll

Total Compares

Number of Compares

4,001,562 .
24,921
217,343 18,638,074
217,343
24,747
95,378 1,161,072
95,378
25,070
45,376 529,011
45,376
24,307
17,591 258,062
17,591
- 0 -
-0- 80,391
263,421
20,930,031
240, 000 e
24,921 17,012,725 .
161,662
-0- 738,338 .
483,515
259,687
18,493,765

4-22

TABLE XI. NUMBER OF COMPARISON TIMES FOR THE ALPHABETIC
SORT USING RANDOM ACCESS PROCESSOR (Cont'd)

I0 METHOD I Number of Compares

A. Pzsalto Pass XV

1. Words Read 240,000

2, Words Saved 4,830 16,56¢,875
B. Pass XV}

1. Words Read 161,562

2. Words Saved -0- 738,338
C. Merge

1, Passl 182,150

2, Passll 259,687
L. Total Compares 17,740,085

IV METHOD 1V

A. Passlto Pass
1. Words Read

2. Words Saved 16,564,500
B. Pass

1. Words Read

2, Words Saved 738,338
C. Merge .

1. Passl 184,400

2. Passll 259,687
D. Total Compares 17,746,925

4-23

TABLE XII. NUMBER OF COMPARISON TIMES FOR THE ALPHABETIC
SORT USING ASSOCIATIVE ACCESS PRCCESSCR

I METHODI

A.

F.

G.

Al

Pass 1

1. Words Read
2. Words Saved
3. Overflow

Pass I

1. Words Read
2. Words Saved
3. Overflow

Pass I

1. Words Head
.. Words Saved
3. Overflow

Pass IV

1. Words Read
2. Words Saved
3. Overflow

Pass V

1. Words Read
2. Words Saved
3. Overflow
Merge

Total Compares

METHOD II

Pass ! to Pass XV
1. Words Read
2. Words Saved

Pass XVI
1. Words Read
2. Worda Saved

Merge
1. Passl
2. Passll

Total Compares

4,001,562
24,921
217,343

217,343
24,741
95,378

95,378
25,070
45,376

45,376
24,307
17,591

17,591
-0 -
-Q -

240,000
24,921

161,562
-0 -

4-24

Numbe. of Compares

4,184,432

376,029

184,506

94,164

16,852
170,132

B R

5,026,179

3,486,182

154,778

483,515
259,687

4,384, 140

Iv

TABLE XII.

NUMBER OF COMPARISON TIMES FOR THE ALPHABETIC

SORT USING ASSOCIATIVE ACCESS PROCESSOR (Cont'd)

METHOD Il

A.

Pass I to Pass XV
1. Words Read
2. Words Saved

Pass XVI
1. Words Read
2. Words Saved

C. Merge
1. Words Read
2. Words Saved
D. Total Compares
METHOD IV
A. Pase]to Pass
1. Words Read
2. Words Saved
B. Pass
1. Words Read
2. Words Saved
C. Merge
1. Passl
2. PassIl
D. Total Compares

240,000
4,830

161,562
-0 -

Number of Compares
3,557,475

154,776
182,150

259,687
4,154,088

3,561,300

154,776

184,400
229,687

4,160,163

i

TABLE XIlI. NUMBER OF COMPARISON TIMES FOR THE SORT e
FUNCTION PERFORMED SUBSEQUENT TO THE *
ALPHABETIC SORT i
1 LENGTH SORT: COMMON TO Number of Compares)
BOTH PROCESEORS =
A. Dictionary 170,132 ¢

B. Dictionary Output 113,421

C. Merge 283,553

D. Total Compares 567,106

II FREQUENCY SORT
A. Standard Processor

1. Dictionary Input 777,503
2, Dictionary Output 113,421
3. Merge 283,553
4. Total Compares 1,174,477
B. Associative Processor
1. Dictionary Input 170,132
2. Dictionary Output 113,421
3. Merge _ 283,553
4, Total Compsares 567,106

I DICTIONARY SCAN: COMMON TO
BOTH PROCESSORS 170,13%

IV SEQUENCE ENCOUNTERED
A. Standard Processor

1. Dictionary Input 777,503
2. Dictionary Output 113,421
3. Merge 283,553
4. Total Corpares 1,174,477
B. ASSOCIATIVE PROCESSOR
1. Dictionary Input 170,132
2. Dictionary Output 113,421 .-
3. Merge 283.553
4. Tot:l Compares 567,106

4-26

TABLE X, ', NUMBER OF COMPARISON TIMES FOR THE SORT
FUNCTION PERFORMED SUBSEQUENT TO THE
ALPHABETIC SORT (Cont'd)

Number of Compares
V GROWTH RATE: COMMON TO
B30TH PROCESSORS -0 -

VI SUBSET DATA: COMMON TO
BOTH PROCE=SSORS

A. Alpha 129,810
B. Numeric 7,485
C. Alpha-Hyphen 19,054
D. Alpha-Digit 3,913
E. Junk 9,867

F. Total Compares 170,132

4-27

TABLE XIV. TOTAL COMPARISON TIMES BY PROCESSOR
AND BY SORT METHOD

I STANDARD FROCESSOR Total Compares -
A. Method 1l 24,186,355
B. Method ™ 21,750,089 o
C. Method I 20,996,409 '
D. Method IV 21,003,249

II ASSOCIATIVE PROCESSOR

A. Method I 7,067,761
B. Method II 6,425,742
C. Method I 6,195,670
D. Method IV 6,201,745

Section V

FORMATTED FILE PROCESSING

PROBLEM STATEMENT

In recent years there has been a rapid growth in the use of so-called "for-
matted file systems." These systems sre gone al-puipose data storage, main-
tenance and retrieval systems designed to provide the user with a maximum
amount of flexibility. They feature the use of 2 single set of programs to handle
a variety of demands on a group of large files. Each file may possess a different
format, but all records within a file must be identical in format. New files may
be created or old files changed in format to meet new ‘auirements. Data can be
added to files, or changes can be made to correct errors i existing files. In
each case, however, the prime requirement for these systems is the ability to
make rapid responses to queries.

Euch query consists of a logical combina:i~n of individual field name/field
value pairs. For example, in a hypothetical file on automobile registrations,
the license numbers of all black 1963 Fords might be requested. Specifically,
the requeat would he: Print the contents of the License Number field for all
records in the file with:

Color field contents = Black
AND
Date field contents = 1963
AND
Manufacturer field contenis = Ford.

S5-1

More complex legical statements and different types of relations (e.g., >, <)

are of course permitted, and easy-to-use languages are usually provided for

user convenience. However, the system ailows the user to make any query in-
volving the fields in any of the files using a set of logical and relational orerators.
Because it is impozgiblc iu most cases to predict the queries to be made, and
because the files used are frequently large (as much as 75 tape reels of data for

one intelligence file), the searching of such files presents a severe problem.

CHARACTERISTICS OF THE PROBLEM

The early formatted file systems used the one bulk storage medium avail-
able at the time, magnetic tape. Not much can be done in such a system to re-
duce access iime. If one field is referenced in a large percentage of queries,
the file may then be sorted and maintained in order on that field. Thus, one can
index to the reel level and scan only to the point on that reel where the relevant
records are located.

The advent of the quasi-random access, bulk storage devices such as disks,
drums and strip files made more efficient file structures possible, since access
is availuble at the track level, and scanning need only be periormed within a track.
Somc work has been done on examiaing the genvral proble~ of file structure, 1

and specific examinations have been carried out for some critical files. ¢

ll-‘. T. Baker, "Some Storage Organizations for Use with Disk Files,” AIDS
Working Paper, January i863.

J. B. Ratchford, ""Notes on File Structure for AIDS Phane II System,™ Septem-
ber 1962,

2

5-2

- g "

E e e L O L AP

The usual searching process is a relatively inefficient and slow means of
locating aata because of the tremendous amount of nonrelevant data in the file
which must be scanned to find all relevant data. All records to be scanned must
be transferred to a central processor and examined to some extent before being
discarded if they do not meet the selection criteria. In some cases, thc com-
plete file may have to be scanned to ensure finding only a few records. 73.is
method is obviously wasteful, and some of the techniques described next have
been developed to improve search efficiency.

In some cases, there is seldom a need for reading more ihan one r.cord
per transaction. In such cases, it is often possible to compute an address based
on the value of the keys given. For instance, an algorithm may be desiged to
operate on a randomly chosen set of keys provided to produce an evenly distrib-
uted set of addresses over the total storage area. When an add.ess is computed,
a scan will start at the compute address to find the actual record desired. In
special cases involving one key, this has been very effective, However, it tends

to order the file randomly, which ncturally makes it impractical to find records

. for sequential or mass transfer,

Since the amount of data scanning during retrieval is roughly inversely pro-
portional to the number of keys indexed, the usual indexed file will have several
indexes. One file may require indexes only on its more important keys, another
may require that all keys be. indexed. If the indexes and files are ordered on the
keys indexed, the inder entries will address sets of records with the corresponding
index valve rather than scattered single records. The query can then be accom-
plished by a search of an index to find the location of the first record of an ordered

set and then reading out the complete set. In such a file organization there is a
good chance that one read will fetch several records at a time thus taking advan-
tage of the mass transfer characteristics of the storage device.

Another common approach involves breaking up logical records into smaller
groups of fi~lds and then chaining the groups with cross-reference addresses to
show relationships among various keys of the file. In some cases, this is a
good compromise design that takes advantage of the mass transfer characteristics
of the storage media, even when search may be on a variety of keys. Generally,
when a scan is used it will be short. *

In practice, search time is usually split among searching the index for the
particular key value, seeking an area (e.g., a track or cylinder) where the rec-
ord is kept, then scanning for the actual record or block of records within this
area. The time spent on the first and last stages depends upon the level of in-
dexing. When indexing is to the record level, no search of data file area is nec-
essary. If indexing is to the track level, caly a track will be scanned. Indexing
can be to the cylinder level, requiring scanning of the cylinder tracks.

A fundamental rule in the generation of indexes is that no index should be
used that gets closer to the data than required. For instance, if a disk system
is used in track mode where the iransfer of data requires the reading of a full
track, indexing should be to the track level as opposed to the record level. Either
way will {ind the record, but the second index will be longer than the first by a
faclor e7ual to the number of records contained on a track. This extra length
adds to the index search time; more importantly, it greatly increases the index
maintenance time during the update.

5-4

A common prcblem in many of these approaches is that, as indexing and
chaining are used more and more, the time for adding records to a file increases
significantly. The time spent in maintaining those features that facilitate query
thus has a disastrous effect on overall system efficiency. This is especially
critical in systems where input volume is high, as in many "history file" applica-
tions. Therefore, the application of sophisticated indexing techniques to facilitate

query handling often proves to be self~defeating.

However, there is another approach that can reduce maintenance time with-
out losing query efficiency. A faster scan over a larger area will allow smaller,
courser indexes with a corresponding decrease in index maintenance time and can
be accomplished with a parallel scan of many tracks. For instance, the cylinder
concept common in disk operations can be modified so that all heads are read in
parallel. With such a scheme, small indexes could be used to index large files for
quick access. A further saving with this approach would be in the lessened need
for indexes on seldom-used keys. A high-speed scan on such keys would be far
preferable to the extra effort required for updating a seldom-used index for every
update transaction. Also, queries are sometimes made on keys not even indexed,
and high-spwed scan would be invaluable in such cases. Finally, chaining could be
simplified if such a scheme were adopted and were feasible. An attempt would be
made to always cluster chained records on a cylinder, and each chain scan could

‘. be shortened to the extent that this clustering was successful.

The concept appears attractive, but has a major drawback; incieased de-
mands will be put on the central proocessor. With data transferring into the
central processor in parallel from disks (for instance, at a 40 x 90 KC = 3600 KC

5-5

A e i e
1

rate), the memory would soon be overwhelmed. Even with slower data rates,
buffer space would be used, thus degrading computing performance of the sys-
tem. The solution to this problem appears when the distribution of the work rc~
quired in a scan is considered. The work involved in processing a file record
can be broken down into four simple functions:

1. Get the records under the heads

2, Transfer the record to memory

3. Test the record for relevancy

4. Process for output or reject the record.

Of these, the first two generally require the greatest time to the extent that the
other functions can often be overlapped. In the computer, the test for relevancy
is usually simple. Basic logical operations on and between file items are suf-
ficient to isolate the required records in the majority of cases. On individual
fields, a high-low-equal compare operation is generally all that is required;
and between fields the “and," "or," and "not' logical operations will usually
serve adequately. Though simple, these operations neverthele s require a major
portion of CPU time with relatively small dividends in term. of relevant records.
In the quest for an upgraded CPU operation, this seems like a likely place to
start. .
It appears worthwhile, therefore, to investigate putting the scan and test
functions on a "channel" basis. That is, the scanning and testing should be sepa-
rate and distinct from the CPU; the ''channel” should be set up at infrequent inter-
vals and allowed to do its own searching. This appears to merely transfer the tre-

mendous buffer out of the CPU and put it in the channel, but even this problem

5-6

-

can be attacked by allowing the records to stay on the storage medium until after
they have been scanned and found relevant. This procedure can bc done wither
'.,' by employing separate heads for scanning and for data transfer, or by ailowing

two revolutions for each transfer—the first for scan, the second for transfer,

and both from the same heads.

One characteristic of a formatted file is ihat the records are all exactly
alike in format in any single file, and can be stored in parallel and therefore
scanned in parallel. Such a scheme could also allow a simple implementation of
multi-query capability. In such a system, many comparison criteria 2! once
from several queries could be compared to a single field from many records,
multiplying the effective scan rate by the number of different parameters com-
pared to a field.

Such a system would seem to have many advantages. Iis autonomous nature
should free the CPU for upgraded work, Because the system would be designed
for both batched and single input handling, it should help keep the system run-
ning well under transient conditions. It should tend to considerably decrease
the time of botk update and query. Finally, its implementation appears to be
presently feasible.

The design of é;xch a parallel search chanrel {8 discussed in the next section,
Since this processor offered promise of significant udvantages, both in connection

. . with General Purpose Assoclative Processor (described in Section VIO) and as a
' channel device to be used with conventional computers, it was decided to carry
out this design in more detail than the design of the other problem area proc-

e880rs.,

PROCESSOR DESIGN

The formatted file processor is designed for use with bulk storage devices
where: parallel data transfer from a number of identically formatted records is
possible. Such devices are exemplified by head-per-surface disk files, head-
per-track strip files, head-per-track drums and similar devices. (The proces-
sor will be desribed in terms of its application to a disk storage unit but is
clearly applicable to the others.) This processor is also designed for use as an
external device or channel processor from which data is transfcrred to a separate

central processor for further manipulation.

The bulk store to be considered will consist of a disk unit with 40 data disk
surfaces and 'wo field control surfaces. Information is recorded on the disk
surfaces in concentric tracks, each of which allows four thousand 8-bit charac-
ters to be recorded on it. There are 500 tracks on each surface.

Data and control information is read or written on these surfaces by 42
heads mounted on an access mechanism—that is, without moving, the access
mechanism can read or write information on any one or all of 40 data tracks
while being controlled by the corresponding format and timing tracks. The 42
tracks accessible without motion of the access arm are called a cylinder. A
cylinder may be accessed at any time by a pair of mechanisms. One of the pair
carries the read heads of the scanner, ihe other mechanism, assumed to be
located 1000 characters further around the unit, carries both read and write
heads.

All system operations are controlled by the format tracks. One of these
tracks marks fields and records on the cylinder. The other provides timing,

read/write synchronization, and access mechanism checking.
5-8

et s s i b i

b dad
b
*

Data fields must be stored on the 40 tracks of a cylinder in parallel, that is,
all records within the area defined by one record length along each of 40 tracks
must be stored so that the records and fielde within records vegin an. > { the
same angular position of the cylinder surface. A record length of 100 claracters
or less is allowed.

Records with a variable number of fields are handled by breaking them up
by group into fixed length records and chaining the various groups of a record
together. In such cases, all equal-length groups will be stored in corresponding
sections of the file. In & file with fixed groups (i.e., master records) and per-
iodic groups (i.e., detail records in a different format than the master), the
fixed groups would be stored together in parallel, and the periodics would be
stored together in parallel in another section of the file.

Figure 8 shows a block diagram of the processor. As an example, the bulk
store is shown filled with a set of records from a vehicle file. The bulk store
represents cylinders of disk storage. The access mechanism is such that cor-
responding bits of characters under all heads are read into the Field Compare-
Matrix (FCM) simultaneously. The bit read from each track is read into all °
positions of the column of the Field Compare Matrix immediately "above" the
character. For example, the bits of characters C, T, B, C. . . . would be
read into all positions of their respective columns in the matrix; following this,
the bits of characters, A, R, U, A, would be read into all poaitions of
the respective columns in the matrix and 8o on. This read-in actually is done
parallei by bit—~that is, rne bit per character is read from each track simultanc-

ously.

(QFC)

APS/Stetve/Toy N
L
Repaat for APS Status {$S) Regd Wiirg
each Anguler Cortral
Pasition Racerded Tag I Tag I Tog] T"J Tag Section
[
(RMI) Rescord
Maich
\ Ind;cavor
~
2 13 (QICS) Query ldeni.
(1IC) identity Control I Compare Store
f f 1 T ———— - Steing id's Locs.
Equal " 1) 1
2
Equel N2 4
Eque! T " _3 _6_ _—— 3 String
————— T = ' “'”'I"
Field | Section
Metch '
Indicete | o
and -
Link | (RCW) -';’ -‘;’
ond | Record e
Word Compore 55
Contral | Matrix -~ W
| /
_______ - -
1 1ttt l
$ 1S Reed O (QFMI) Query Fiald Match
Comtrol _] Indicator Reg.
Query Fisld Control 1 i ’ 1 ----- - --‘f Poramaters Lecs. T
Equel b -' 8 US ¥ & 1
7 3 e
Equel r:.: ¥ -» TRUCK 2
E.!"''.__'L__g_.‘ E-:-f-—.—.— 3 Field
Equal Manyt. - - 8 ; f:u.om
Code k| ction
Equet Fan 121 ™ ¢ "
’ oy D 6
_Ewel 2T o nMh=------
fial € (FCM} Fiald 7
(Commond) { .'...)‘ et C“:::n .
Fiold Re- I Resd Dete Compare 4
cord Contrel L ’ _T ' Heeds Stere
Record Meck $ ™
C v 8 ¢
A R U A
Troe Froud ® U s on
Cy'v“"’
¥ C » & >
» K &
Fiald Mark
Menddeciwer Code Frald A B C O
Record Mack Doe y
ecord Mor Y, gt N a0
Teach Date Trachs
Figure 8, Associative Disk Scanner

5-10

Paramete -8 for finding data are shown in the Query Data Compare Store
(QDCS) and the Query Identification Comparc Store (QICS), which are actually
different sections of the same memory. During the loading process, the actual
field contents to be compared are stored in the QDCS as shown. In addition, a
string of FCM row addresses is generaied indicating particular logical combina-
tions of query data fields which will satisfy one or more queries. These ad-
dresses are stored in '"characters” of the QICS; thus the row address of a QICS
string will represent one querv which will be satisfied by the logical conjunction
of the several specified QDCS data fields. In Figure 8, for example, location one
in QICS containing the FCM row addresses 1 and § represents the query for a
"hus manufactured by C," QICS location three represents a query concerning a
"car manufactured by D."

The Query Field Control controls the type of cowparison which will he made
on each field when that field is passing under the heads. In the example, when
the Type field is passing under the heads ai. "equal" compare will be made.
Likewise an "equal" compare is specified for the Manufacturer field,

The heart of the system is the Field Compare Matrix. This is a matrix of
compare circuits, each match bit of which drives the readout of a single register
of read-only storage, When a match bit is set, the associated register of read-
only storsge reads its own row gddreas intc the position of the Query Field Match
Indicator directly ‘:bove. U. der control of the Quary Field Control, the compare
circuits match the contents of fielde pasaing the scanner heads with those stored
in rows of the Query Data Compare Store, If a field on a track matches a row of
the Query Data Corapare Store, the match bit at the intersections of the

8-11

corresponding row and column will be set. This in turn will read the address of
the row which compared into the position of the Query Field Match Indicator cor-
responding to the track containing that field.

To understand the overall operation, consider the example shown in Figure 8.
At the beginning of character time one, the first bit of a character from each of
the set of characters C, T, B, C. . . . +ill be simultaneously read into all
pusitions of the respective columns in the FCM. At the same time the mask
register will be loaded, and the first bit-column of the Query Data Compare
Store will be simultaneously compared to all columns of the FCM, Query Field
Control QFC) will only allow comparisons to be made on the Type field at this
time.

Initially, all match bits are set off to indicate the no-match condition. Then
the match bits of rows to be compared with the currently passing field are set
"on'" to indicate all matching condition. During actual comparison, the field
which mismetches will cause a match bit to be turned off at the intersection of
the rows and columns mismatched. Thus the result of the comparisons at the end
of character time one would be match conditions shown in positions (1.3), (2,2),
(3,1) and (3,4). Following the bits of the firat row of characters, the bits of a
secoad row, A, R, V, A, are read and a second sct of compares are made with
the bits of the second column of the Query Data Compare Store. Again, com-
pares will be left in positions (1,3), (2,2), (3,1), (3.4). The same compares
will clea.ly remain set whon the end of the field is signified by the format track
of the cylinder.

5-12

When the end of the field is signaled, a2 new set of actions will start. The
QDCS row location numbers corresponding to match bits set will be transferred
to the Query Field Match Indicator Register QFMIR). Comparison of this set
of location numbers against those in the first column of the Query Identification
Compare Store (QICS) \.ill be made in a manner analogous to that just described
for the field data. This comparison will leave match bits set in positions (1,3),
2,2), 3,1) and (3, 4) of the Record Compare Matrix (RCM).

In the meantime, the FCM will be reset and comparison of the second field
will be carried out to find Manufacturer codes of B, C or D. This comparison
results in match bits being set in FCM positions (4,2), (5,3) and (6,4). Again,
at the end of the field, the QDCS location numbers corresponding to the match
bits set will be transferred to the Query Field Match Indicator Register. The
Record Compare Matrix will not b<. reset and comparison of the QFMIR with the
second column of QICS will be made. This comparison will result in the match

bits in position (3,4) being turned off, leaving only RCM positions (1,3), (2,2),

"and (3,4) still set. This condition will remain until the end of the record is

reached, at which time QICS location numbers will be transferred by the match
bit circuits to the Record Match Indicator Register (RMI). The location numbers
now in the RMI indicate that, among the records which start at some pre-deter-
mined angular positicn of the disk, those tracks corresponding to the RMI posi-
tion now filled have met query criteria. Also, the queries answered are identi-
fied by the QICS row numbers now in the RMI,
Actual data transfer is accomplished in one of two ways. The data may be

transferred os single records by addressing a particular position on a particular

5-13

track as in the usual bulk store devices, or data may be transferred automaticaily
under status control as follows.

Under control of the status register, the information is read by read/write
heads separate from and following the scanner heads when the beginning of the]
record is encountered. The status registers tells which track to read and the "

tags identify a central processor address to which the data will be transferred.

Writing is accomplished analogously.
Since this processor offers significant data handling advantages over con-

ventional channel devices, it was determined that it would form an excelient
auxiliary device for use with the General Purpose Associative Processor de-
scribed in Section VIII. For this reason, the design effort was continued to pro-
vide further detail of its important component sections. The remaining part of

this section is devoted to describing these components.

Field Compare Section
The Field Compare Section of the processor is primarily concerned with the

parallel comparison of individual query fields against specified fields of the stored

records. The important units of the Field Compare Section are the Field and

Record Control, the Query Data Compare Store, the Field Compare Matrix, the

Query Field Control and tie Query Field Match Indicator.
Field and Record Control. The operation of the scanner as well as the read/

write circuits is undar control of the Field and Record Countrol (FRC). This con-
trol reads two tracks of control information. The first track (Field Marking
Track) indicates the beginning ol each field, as well as the record end. The

5-14

e e I R

second track (i'iming and Angular ! osition Track) indicates angular position and
cylinder address. In addition, it provides a base timing pulse which, together
with auxiliary timing circuits, allows ior syn~i..onized read and write.

The FRC reads the Field Marking [racl "nd ses a field counter to indicate
which field is being read. It sense~ the " giming-ot-record mark which resets
the field counter to one. Each chrage of field then icicases the field counter by
one. The count then is used to control the field couparisons to be pgriormed by
the identity and query field controls.

All read/write/scan operations are timed through use of information from
the Timing and Angular Position Track (TAPT). Actual timing pulses are fur-
nished by a combination of primary pulses tro.n the TAPT and a clock. The clock
is synchronized with the primary pulses. It is assumed that there is enough
room on the TAPT to record angular position informatioa interspersed with pri-
mary timing pulses at regular intervals around the track. With the angular
position available as soon as the access mechanism settles to a new position,
so-calied rotational delay can be reduced. After access motion has stopoed, it
will be possible to start scanning as soon as the beginning of the first record is
sensed following the first read of angular position. Thus, with several identically
formatted records stored on a track, any delay will be only a small fraction of
the rotational period.

Query Data Compare Store. The file is searched by comparing search ter: s

stored in Query Dota Compare Store QDCS) against fields in all tracks of the
cylinder being processed. Search terms are stored in the QDCS a word at a time

as in a conventional memory, except that 10 bits are stored for each 8-bit

§-15

character of the word. The extra two bits per character are to indicate masking
for each four bits of a packed numeric digit or for the eight bits of a character.

Assuming a five-byte QDCS word, a word of digits stored would appear as fol-

lows:
7 2 YU Y 2 Y 7
/ 7 7Z Z Z Z Z
7 Z 7 Z A Y v z Z
/ % % % % A 7 %
Mm @ Q) GO @ GO 90 GO @ oW a @ a1 @

The shaded part is the mask bit and the unshaded blcrks each represent four bits
of the data byte.

This memory is constructed so that input is by word while output (to the com-
pare matrix) is parallel by bit. That is, the first bit of all words can be read in
parallel, followed by the second bit of all words, etc. Every fifth readout, a
new mask is read into the Mask Register. This mask will be used to mask the
following four data bit comparisons, allowing for partial field comparisons. A
one in a mask bit will prevent comparison on the next four bits; a zero enables
comparison of the next four bits.

It is expected that this memory could be constructed in either of the follow-
ing methods depending upon relative cost of components. If magnetic cores are
used, the usual (XZ, YZ) coincident current write by word seems plausible,
where the intersection of the XZ and YZ planes corresponds to word address.
Output then couid be accomplished through use of a full write pulse on the XY
plane. Sense amplifiers on each Z axis would then sense switch cores through-
out the XY plane. Because this method is expensive in terms of sensec ampli-
{iers, a better method might be to design the memory as a series of flip-flop

registers,
5-16

. BEPRCIQUIT U B . 3340 0 i s s

Field Compare Matrix. The Field Compare Matrix is the heart of the Field

Compare Section. It is comprised of a matrix of comparison and associated
readout circuits to compare the row of bits, one from each track, presently

being read from the cylinder with the column of corresponding bits presently being
read from the comparison memory. The type of comparison is determined by the
mask and the compare control. Types of comparisons are controlled by row and
may be different for each row. In other words, a term in word one of the com-
parison memory may be equal—compared to a field at the same time that a term
in thé second word is high—compared to the same field. The only restriction is

that the results of the two comparisons must be mutually exclusive, since, if

more than one match bit is set in a column, the column will be treated as though
all its match bits had been set,

Figure 9 shows the general comparison scheme used in the matrix, Only
the operation of two query words on one track is shown. All other tracks oper-
ate in parallel as indicated. The mask bits from the first digit of all words of
Query Data Compare Store (QDCS) are entered into the mask bit flip-flops for
each word. Then the first data bit from each word is read into its corresponding
compare flip flop. Here, a 1 is signified by C while a # is a T. The firat bit of
the field being compared on each track is read by the curresponding disk head
into all compare circuit in the corresponding column. These bits are compared
if the maak bit allows it, and the results of the comparison are recorded in all
comparison circuits of the corresponding rows. Similarly, successive rows of
bits from the cylinder are compared to successive columns of bits from the com-
pare memory with a new mask every fifth bit. At the end of the field, ali matrix

5-17

LR TR TE

Disk
Heod
Bit Compare
Control Reod
Driver
1
&
QDCS
Output
Buffer |
D D Tree
g { Compore
-] 3 > S\ o
C e § QFC
ompare
C Circuit REERRENE
&
. —l MJ o Nex
e am——— - Track
¢ Compare } 0 ! o Compare
Doto " Meif Circuits
QDCs QDCs
(Werd 1) (Wawd 1)
©——————— | c——t—————
|
!
- o) Type
C Compare
s Byl -
Compore '—-——-} QFC
Cc Cireuit e
- s e
) 4411__i o Nex
- . TL_-——_.‘ : : —gie T'.Ch
Compare _} - Congare
Dete Mmsk Circuits
'
QCDS 1
(Werd 2) :
ﬁF
Tigur~ 8, Parailel Read Compare by Bit

5-8

g

B T

compare circuits are notified of the type of compare being attempted on that
particular row by lines from the Query Field Control (QFC). Then the match
bits are set to indicate the success or failure of the comparison of the field.
Figure 10 indicates the operation of the compare circuits of the matrix by
detailing the compare circuit of the nth row of one column. The circuit is de-
signed for comparison of a sequence of bit pairs. High, low, and equal com-
parisons are possible in the sequence circuit. At the start of a field on the disk,
all match bits in every row of the scanner are set to § for no-match; then the
match bit flip-flops corresponding to the rows for the fields to be scanned are
reset to 1, the match condition. The sequence change indicators, flip-flops
A and B, are reset to §; then the comparison of compare bits and data bits
proceeds as follows. An input of equal bits (CD or CD will have no effect on
the sequence change detection. The first unequal pair in the sequence will set

one of the sequence detector flip-flops as follows:

o
|

A=C
B=C

=]]
»>|

From this it can be seen that once A is sct (data high), B can no longer be af-
fected by the sequence. Similarly, B set (data low) disables the setting of A.
Thue, the change detector detects and records the direction of the first inequality
of bit pairs. 'This enables the compare control lines to properly set the match
bit to the no-match condition if necessary at the end of the field or word, which-

ever is shorter,

§-19

A — i et it e i S R At S =

(45
Reset ————euf OR OR
I 0
Match (n-1) Match
OR 7es Link) l&j
& L} b
C
[I—
¢
Do
—————— & Reset a?;: Reser Lo\':
A 1 8 1
Low (L) &
High (H)
&
OR
Equel (E) s
OR
No Mask
Nat (Npmrameminf [} &
) = !
Reset
iR . bull
l I Match (n)
3 [}
Link {a}
March () Match

Yo Mmtch (n 1}

Figure 10, Field Compare Matrix Compare and Link Circuits

5-20

Lonk 2

‘o
i
;

YT AR - e e v

The action of the High, Low, Equal, Not and No Mask lines is obvious. Ex-

cluding the actions of ihe link circuits, the condition for "match" can be described

by either

M = (AL + BH + E(A + B)) No Mask + NM

or

M=EAB+ LB+ HA+N(AL +BH +E(A +B) No Mask

The Not line in concert with No Mask merely complements the match bit after
other actions have taken place.

When a field is longer than a word of the Query Data Compare (QDCS), the
link mechanism must be used to link succescive worc of the field. Link 1 links
successive werds, for use when the field is so stored in the QDCS. One function
to be performed by the scanner is the between limits search, for which the
search limit parameters must be stored in alternating words of the QDCS. When
these fields are more than one word long, Link 2 must be used to link successive
words of each field,

Figure 10 shows the effect of the Link 1 line on the match bits. After all
match bite have been set to their proper values at the end of & word, the Linl_c 1
lines (under program control) will transfer the no-match condition irom one
match bit (Match n-1), for example, to the next one down (Match (n)). In addition,
if Match (n-1) is in match condition it will he set to no~match by the Link 1 line.
This ensures that at the end of the field, only one match bit can be set for that
field. Link 2 required ia the between limits search operates in a similar man-
ner, except that the link is from one match bit to another two below the first—for
example from Match (n-1) to Match (n + l).'

6-21

Once the match bits are set for a field, it becomes necessary to read out
the information that the field on some track (or tracks) has matched the scan
parameter in somerow. The read-out mechanism is a read-only memory, each
word of which is read by a pulse gated by the match bit. The read-out is fo a
set of buss lines connected to the Query Field Match Indicator Register poslition
corresponding to the matchi—bit column. Each word of the read-only storagée will
have the corresponding row address permanently stored in it. Consequently, the
result of a readout trom one position will be the placing of that position's row
address in the proper column of the Query Field Match Indicator Register.

Each column should have a detector for the condition of more than one match
bit set in a coluinn. Such a detector may be made from logical elemrents that
sense the condition of at least two match bits in sequence. This may be found to
be too slow for the matrix envisioned, and it is therefore felt that analog circuits
might be developed for this job.

Query Field Control. The Query Field Control QFC) determines the opera-

tions to be performed on each row of the matrix. Query Field Control can be
broken down into two functions. First, boundaries within QDCS of the {ields to
be compared with the currently passing field must be defined. Second, the type
of compare and linking to be‘ performed must be determined.

The general operation is shown in FIgI;rQ 11. The Field Record Control
Counter (FRCC) is compared associatively with field numbers stored in the CAM
Field Control (CFC). Succeasful comparison indicates that the field passing the
cylinder scan heads is the field to be compared with the row of QDCS correspond-
ing to the field number and sets the corresponding match bits in CFC. In turn,

5-22

&t Ehiw

[03jUu0) piatg Airand 1 aandig

WRALANDD

anNy
MNITY

TJOULN0D NOSINYINOD

Py

x

SR N

TFOVLNOD 01314 YD

5-23

the m:'ch bits operate through the Link and Word Control to bring up the "match"
line and the Not, Link 1, Link 2 lines as required.

Comparison type is stored in the H (high), L (low), E (equal), and N (not)
registers shown. The registers for storage of linking ~ummands are located in
the Link and Word Control. If the "match' line comes up and H, L, . ~ E flip-
pop is set, the corresponding function will be carried out in that row of the
matrix. The Not function will operate if the N flip-flop is set. The Link opera-
tions are completely under control of registers in the Link and Word Control.

The Link and Word Control is shown in more detail in Figure 12, The func-
tion of this control is to ensure the scanning of only those words of QDCS which
actually correspoud to a particular word of the field currently passing the scan-
ner heads. In the Figure, Li and L2 are the registers in which the commands
for Link 1 or Link 2 are stored when the control is first loaded for a scan opera-
tion. The End register must also be loaded to indicate the end of a between
limits scan. The Field Numbsr Match lines determine which field will be active
at any one time. In turn, the step flip-flops determine which word of the field
will be active at any time.

Operation of the circuit is best explained by example. Assume the field to
be compared is one word long in QDCS row 2. The field number comparison
sete the Field Number Match line of row 2. The Begin Field Reset line resets
all step flip-Qops to 1. Then the step flip-flop of row 2 in combination with the

Not and Compare lines will et up the proper lines to the Comparison Control
registers.

5-24

Ho,

u

td

L

L]

Figure 12. Link and Word Control

If the field to be compared is more than one word long, ior instance a word
in row 1 and 2, a linking operation will be required. Link 1 (L1) must be set in
row 1. When Link 1 is set in word 1 the step flip-flop of row 2 will be turned off
so that row 2 will be made inactive. At the end of the comparison of the first
word the link step mechanism will turn off the step flip-flop of row 1 and turn
on the step flip-flop of rc~ 2. In addition the Link 1 line to the matrix will trans-
fer the match/no-match condition of row 1 to row 2.

Link 2 operates in the same manner except that the linking is from one row
to two below.

In a between-limits search the fields which bound the search are stored in
alternating words. This simplifies the function so th;t it can be performed by
two standard link operations and the END operation. The storage of the limit

fields in QDCS is illustrated below:

Word 1: First word of upper-bound field

Word 2;: First word of lower-hound fielc

Word 3: Second word of upper-bound field

Word 4: Second word of lower-bound field
etc,

The fields must therefore be linked by Link 2. In addition, the last word of the
upper-bound must be linked by a Link 1 to the last word of the lower-bound field.
The last word of the lower-bound ficld must alsc be marked by a 1 loaded into the
END flip-flop. As can b2 seen in Figure 12, this END Qip-flop permits a Link 1
which does not shut off the next lower row operation. This operation of the END
flip-flop is only enabled on the last words of the ficld.

Query Field Match Indicator, The Query Field Match Indicator Register

(QFMIR) is simply a flip-flop register large enough to hold one FCM row address
for each column of the matrix, ;.long with 2 mask bit for each column, For a
FCM of 40 colums and 128 rows the QFMIR would comprise 320 bits at eight

bits per column, The eighth bit (the mask) will unly be set by the multiple match
detector in the FCM. It will be used to ensure that fields which give muitiple

matches on a track will be assumed to satisfy all queries,

String Identity Section

Once individual fields have been found to compare with specified parameters,
they must be associated with a particular query, and this function is performed
by the String Identity Section (SIS). The major units of this section are the Record
Control, the Identity Control, the Record Compare Matrix, the Query Identifica~
tion Compare Store, and the Record Match Indicator,

The String Identity Section operation is very similar to that of the Field
Compare Section just described, The differences in the two sections are in
detailed operation of the various units, These differences in operation are
necessary in order to allow for the treating of the strings of query identifications
in QICS in the same manner as a single field is treated in the QDCS. In addition,
changes in the compare circuits are required to properly treat inputs of muitiple-
match columna from the FCM,

Reoord Control, The Record Contro! in this section is modified by the

String Identity Section Read-Out Control (SISROC) to allow inhibiting all string
operations when no purameters are compared to 4 passing fleld. This control

5-27

sens=s the condition of the Query Field Control when a field is passing the heads,
If no comparison is attem.ied cn this field, the SISROC will prevent all operations
of the Idemtity Control, Tiiis, of course, inhibits all vperations in the RCM and
the QECS. AS scon as a field is passed in which at least one comparison is tried,
the String Idemiitly Section Read-Out Control will allow the whole SIS section to
resume operati~a, In addition, since the actual comparisons made are only on
one "characte per field, comparison control pulses will only be put out at the
end of each field,

Identity Control. Figure 13 shows the general operation of the Identity

Control (IC). This control has a link 1 and an Equal register for each row of
the compare circuits of RCM. Both of these registers are loaded when the
query strings are made up. The purpose of the Equal register is to enable

or inhibit matching on its particular row. The Link 1, as in the Query Field
Control, allows for operations on strings of more characters than are contaired
in a word of the Query Identity Compare Store,

In this section, contral variations relating to particular fields selected for
scanning have been made to depend upon an across-the~board decision, If any
comparison was performed on the field in the Field Comparison Section, all
comparisons will be enabled in the String Identity Section for this fleld, I no
comparisons were performed in the Field Comparison Section, no comparisons
will be allowed in the String Idsntity Section. It is apparent that the asaoctatively
addressed Field Number Selector present in the QFC {8 not required here. In-
stead, the Link and Word Control is driven directly by the String Identity Section
Read-Out Control (SISROC).

5-28

1onuo) AINuapl g1 dand g

10207 InQ-poay
uondes Ay mep) Sulig (oo
Poom
Uy
B
]
'R
¥ i
yosop v e |
{Z+v) a0y ” ~
[}
R hid i
v !
;
t. |
t 3 ¢ .
(1+9) mOY¥
L w7
k
Yow jonb3
() MOy %‘ A
[4

The operation of the Link 1 and Word Control is detailed in Figure 14, At
the beginning of the record all the step flip-flops are set to one. Then if no
Link 1 flip-flops are set, the level from the SISROC is gated by a Compare pulse
and the row step flip-flop to the Match Line. If Link 1 is on, the Link 1 register
modifies this operation in the succeeding row by turning off the row's Step flip-
flop. Therefore, there will be no Match output from a row which has Link 1 set
in the row above, Link and Step comes after each complete word has been read
out of the QICS, In a linked chain, this will turn off the Step flip-flop set for the
previovs row compared and turn on the Step for the next row in line, Thus, ina
linked chain defining a string, only one word of the string will be compared at a
time,

Record Compare Matrix. The Record Compare Matrix (RCM) is simplified

version of the Field Compare Matrix previously explained, The matrix is
designed to compare selected rows of the Query Identity Compare Store with
successive results from the Field Compare Matrix, At each row/column inter-
section, comparison and associated ''read or.._- storage" read-out circuits
perform the required comparison. In addition, sach intersection has a multiple-
match indicator bit associated with it which will be used to indicate that multiple
matches have occurred on a scanned field,

Operation of the comparison circuits is shown in Figure 15, The figure
shows two match bits in # column, The inputa to une comparison circuit and
the method of seiting it are shown. The column: inputs Irom the Query Match
Indicator register are called field busses and are shown marked F, F, and NOT
MULTIPLE-MATCH FIELD BUSS, The row inputs from the Query Identity

5-30

Begin

Reset
Link
Step
° L, , 1] And
Step
From
\ 8 o sis
& Compare Reod
Link 1 Out cont.
To Matrix Stort
- > Record
taatch
- &
(Row 1)
& (ROW 2)
-»{ OR OR =
))
L L, \ 0 Step 1
i
L
A SR 1 b--—r—
Link } [}
To Matrix I
Match
- & J
(Row 2)
{Row 3)
‘ J-
S i
At
OR OR
v N
-~
[

Figure 14. Link and Word Control for Identity Control

5-31

RESET ——_1 RESET

[} 0 Multi-Motch .
MATCH (n - 1) Match 1 Record 0 .

l 1 To Read Out .

LiniH‘__ Buss

& &
Field
And String
Busses
E
- Not
S & Multiple-motch
Field
F Buss Multiple-match
[Field
S & Buss
| A
>
OR
- E,
- 1} l}_
& s ‘- No
\ | Mask ’)
‘—‘—)f i Buus

l RELET

-

-

Multo mateh

MATCH (n) Match R

! S Linh 1 ‘I .

e S|]
: y by l To Reed Out :
[T Buse *
'

Figure 15. Record Compare Matrix Compare and Link Circuits

5-32

Compare Store are the string busses shown marked S, _S_; and NO MASK BUSS,
Here again, F stands for a 1 bit in the QM" while S stands for a 1 bit in the QICS,

Operation is as follows: At the start of the record, all match bits in rows
containing Query Identity Strings are reset to a 1 cr match condition, All other
match bits in the matrix are set to § or no match, The mask for the first QICS
character is read int~ the mask register, Then the first bit from the first QICS
"character' is read into the string busses. At the same time, the QFMIR reads
out the condition of its Multiple Field Match indicator to the proper Multiple
Field Match Euss. In any particular position, a no-match will occur if the
Field and String Busses do not match, there is no masking, there is no multiple
field match from QFMIR and the circuit is enabled by the EQUAL(E) line, If
there is an indication of a multiple field match on a column, no mismatch will
be recorded in the column, although the probability is high that the field and
string busses are not equal, In this case, all those intersections enabled by E
and No Mask wiil have their Multi-Match Indicator set,

Similarly, the rest of the word of QICS is compared with a new mask for
every "chiylacter.'" Note that, contrary to the requirements for two masks per
eight~bit character in the FCM, only one new mask {8 needed per "character"
in the RCM. This is because the FCM is set up to handle both "packed" (four
bits per digit) decimal and unpacked eight-bit BCD, whiie the KCM only handles
binary (row address) '"characters. '

When the word is finished, if the string is ionger than a word, the Link 1
operation transfers all No~Match conditions down one row, This next row is
then enabled by E while the row just completed is set to No~-Match and inhibited

5-33

- o o o

by disabling its E line, Comparison then continues until the end of the record
is reached,

When the end of record is reached, the contenis of the Read-Only-Storage
Registers associated with each row/column intersection in which a match bit is
set are read into the Record Match Indicator (RMI), In addition, the Multiple
Maich Bits of any column which has at least one match bit set at the end of the
record will be transferred to the RMI, At this point, the resuits in the Record
Match Indicator define the records to be read out from this angular positior and
associate each record with the query that it answers,

Query ldentification Compare Store, The Query Identification Compare Stere

operates very much like the QDCS previously described. The only difference is
in the control of readout. As previously explained, the mask is only read out

to the mask register once per ''character." An additional feature is designed te
save storage in QICS, Suppose that the identity strings of two queries were the

following representing a query on a record of 11 fields:

Column
in
RS i R4 3 4 5 6 7 8 9 10 11
Name
A 2 5 h 7 M 8 M M
- —_— o p— SR — - - -~ - 4+ - -+ - b T T
B 1 3 M M M M 9 M M

M stands for masked out "characters,’’ In such a case it would be a waste of

space in QICS to store the full strings, Instead the strings should be stored

as follows:

Columns
in
QICS 1 2 3 4

Name
A 2 5 7 8
B 1 3 M 9

leaving out the completely masked characters,

Such storage of the strings is made possible by the String Identity Section

Read-Out Control (SISROC). As previously stated, this control inhibits all string

cperations when no parameters are compared to a passing field, Thus, irrele-
vant fields wili have passcd by without being tested. In the second example
strings shown, the String Identity Section would pause between columns 2 and 3
and from column 4 to the end of the record,

Record Match Indicator, The Record Match Indicatur is identical in form

and function to the Query Field Match Indicator and needs no further description

here,

Data Transfer

Once the scan has found records to read out the actual data must be trans-
ferred to the central processor memory., Recall that the read/write heads are

positioned some distance around the cylirder from the scanner heads, They

i ok i

follow the scanner heads by at least the maxamum number of characters that a
physical record is ever expected to have (assumed 1000 in this case), To
accomplish readet under conirol of the scanner, a record must be kept of the
channels to be read bheginning with each angular position at which a set cf
records staris. This record keeping is done in the APS/STATUS/TAG Store,
This Store is a conventional word-organized memory. If organized as

shown on the basis of two words per cutry, its maximum size wenld be:

2x maximum character capacity of a track

number of characters in smallest record allowed

When the scanner finds a position where at least one record required is
gtored, it makes an entry in the APS/STATUS/TAG store as follows: The
angular position where reading should start is kept in the Angular Position
Store (APS)., The channels to be read starting at that position are marked by
hits in the Status Store (SS) which has one bit within each register for every
channel, For each APS register there is also a corresponding register of tags
in the Tar Store which are used (o record the contents of the RMI, In Figure 8,
five tags per APS vuore assumed as an illustration, In this tag register, the
tags are stcred corresponding to up to five iracks to oe read from the angular
position stor2d in the APS of the entry, and it is alsc assumed that five data
channeis are azvailable to the main processor memory.

Normally, the number of records marked at a single APS wi'l not exceed
five. In this case, a3 single revolution of the cylinder will suffice to read all

relevant records intoc memory,

5 -36

Main memory may be too fuli to take all records found in a single revolution
or there may be oo many records found (more than five) at one angular position,
In this case, readout may be conducted by the computer as follows: Un the first
revolution of the cylinder, the APS and its complete Status Register and a maxi-
mum of five Tag positions per APS will be stored in an entry. Tags stored will
always be those corresponding to the left-most group of set status hits, Any or
all of the five channels with tags may be read out on request of the computer,
When the corresponding irack is read out, the status bits will be reset to §# and
cannot be set again until no more status bits remain set. On a second revclu-
tion, tags generated by a second scan will be read intc thc tag register for up
to five of the leftmost status bits remaining set. Again, reset of status bits
#1ll occur on read out. For example, suppose that at angular position 300 a
group of seven records were to be read out. These records have tags here de-
signated as A, C, F, I, J, L and P. They are located on wracks 1, 2, §, 10,
15, 20 respectively. The complete entry in the store after the first scan would be:

APS; 300

SS: has 1's in bit positions 1, 2, 5, 7, 10, 15 and 20
and ¢#'s everywhere else

TAGS: A, C, F, I, d.
Tue Iust five records would be read out and the first five status bits reset.

After a second scan the entry in the store would be:

APS: 300
88: has 1's {n bit positions 15 and 20 and §'s everywhere else
TAGS: L, P

These last two records would be read out on this revolution.

5-37

A record is kept to ir Vrate when there are more records to be read, and
scanning of the cylinder will continue until the last record is read, At this time,
scanning can be initiated on the next cylinder,

Writing is done similarly, Empty spaces are found through one revolution,
As they are found, iags are inserted in the Tag Store. When the write heads
come to the proper position, the record is written, the Status is reset, and the
computer is informed of the action,

Each tag will be made up of ine row address from the RCM along with a tag
number (1 to 5). Under norwmal circumstances, the tag number will be irrel-
levant. But, when data is transferred which cannot be associated with one string
(multiple matches) the tag number will be used to store the data in a particular
place in memory, Thus, if two records from two tracks should be indeterminate

simultaneously they will retain unique identifications.

Compare Controls

A summary of compare controls is given beluw, The ncrmal read/write
control instructions are not given, The underlined letters correspond to the

flip-fiops in which the commands are stored as shown in Figures 11 and 12,

Equal Compare: Exact match between track and QDCS fields on all characters
compared in this row sets the Match bit at the intersection
of this row and the track(s).

High Compare: If track data field characters compared a. - greater than
corresponding characters in QDCS, the Match bit will be

set at the intersection of this row and the track(s).

Low Compare:

Link 1:

Link _2_ :

If track data field characters compared are less than
corresponding characters in QDCS, the Match Lit will be
set at the intersection of this row and the track(s).

Sets the Match bhit of the next lower row to No Match if
Match bit of this row is No Match, otherwise does not
change condition of next Match bit, Prevents matching on
all succeeding rows up to first row with no Link 1 preceding
it, Therefore, last word of a field must not have link 1
set, As words of a field are passed, the succeeding Link 1
program gates are successively opened, while preceding
Link 1 gates are closc... This allows one word at a time
of a field to be compared.

Sets the match bit of the secord following row to No Match
if Match bit of this row is No Match, otherwise does not
change condition of next Match bit, Prevents matching on
all words of a field except that being presentlv nassed.
Complements the Match bits of the row which have been
set up by High, Low or Equal compare, This gives the
functions Not High, Not Low, or Not Equal, respectively,
"Not" i8 meaningless without one and only one of the
comparison instructions,

The end of the field of the lower stored parameter of
boundary parameter fields in a between-limits scan is

indicated by the END command,

5-39

EXAMPLE PROBLEM

Specifying an example file, the following discussion compares the operation
times required to process a given number of individual transactions on both a
conventional machine with standard disk storage and the file processor just
described, Comparisons are also made using two slightly different file organiza-
tions to point out some of the advantages of the file processor.

In its upper and lower parts, Table XV describes the access models for both
the associative and conventional machines reppectively. The models typify a
number of operations which will be performed in the general process of reading
or writing data, and the times associated with each operation. Each operation
is identified by a number or symbol, These symbols will be used later in the
Operation Tables to explain and time the query update functions. I Table XV,
the operations described are almost self-explanatory, The term Random Access
implies that the access arm skips over some random number of cylinders before
it settles down to actually read data., The term Sequential Access implies that
the arm movee from one ~yvlinder to the next in succession, The term Record
Space means just that: the associative machine is able to insert data in a given
space without having to rewrite any of the rest of the track.

The times given arc in terms of ""access times,' One access time is
defined as the time required for one revolution of the disk in question, and
this time is assumed the aame for both disk systems considered. In the
Associative section of Table XV, the times are somewhat lower than the sum

of operation timea to do comparable functions in the Convontional Machine section,

5-4¢C

The rcason for this is that the associative machine is usually looking for several
records at once, while the corventional machine is always looking for some
~ specific record, The time given for sequential readout of records in the asso-
ciative machine is two accesses per cylinder read, since in these problems no
more than one revolution will be needed to read out all records selected from a
cylinder.
What might be considered a typical Activities File is defined by Table XVI
as the Commercial Vehicle Activities File, This file will be used in both
examples presented, It is a file of 270, 000 logical records, each of which is
assumed to have one fixed and, on the average, five periodic groups, These
groups all exist as separate physical records; all are chained and indexed as
explained later in each example,
In the two examples which follow, 10,000 transactions will be processed
against this file, These transactions are described in Table XVII where the
update transactions are described for both examples in the upper section, and
the queries, which differ for examples 1 and 2, are described in the lover
sections. In the table, the perceniages given rafer to the mix of types among
updates alone and among types of queries alone. The intermix of percent !
query and update will be given in the individual problem results,
The record format of the file for the firat example is presented in Figure 16,
The file is organized in two sections: the fixed groups of all records are stored X
as one set of cylinders, the periodics on another. In a given logical record, the
logical connection between fixed and periodic groups and between periodics of the
same logical records is an address chain which includes the ICC number and

5-41

1 ardwiexy
sauryoely yiog o) uoneziuedap paodsy "9l aan3r 4

a——

3

L 21potied POSH | ves] 220 5
vo1ip0 o4 Uty y30g o4 wioy) yoog
$dn0I) PO
{¢
) ¥
(ssesppy
' paodey sseppy
0 w
n0g| seung|esuedt e ; n““”a Lo o]
B
1

dneag pexiy

other identification characters (explained below)., The chain address in the

fixed group refers to the last stored periodic group of the logical record, Each
periodic is chained to the periodic immediately preceding it in the storing
chronology of the logical record, In addition, each periodic is chained to the
header of the record,

The fixed groups are in order by "ICC numher", the periodics by "location™,
Only two indexes are kept, though in the two machines the indexes are to different
levels, The indexes are to the ICC numbers of the fixed group and to the loca-
tions of the periodics,

If the ICC number is given, the general procedure for reading a complete
record will be to find the proper fixed group by the ICC number index. This
fixed group wili be accessed, and the forward chain address will then be used to
access and read the last-stored periodic group. Using the back chaining of
periodic groups, the machine can then read the next periodic in the chain. The
process continues uuntil the end of the chain is reached,

The specific record parameters for the organization used by the associative

processor in both examples are shown in Table XVIII, The addressing para-
meters shown in the table are given in cumulative form. For instance, the
chain address in the fixed group referring to the corresponding periodic group
chain will comprise the ICC number, twn characters of cylinder information,
and the saquence character—nine characters in ail,

The specific record narameturs fur the file organization nsed by the con~
ventional machine in Example 1 are shown in Table XIX, This table is self-

explanatory, The differences in addressing, which seem comparatively minor,

5-43

are required by the greater degree of address definition neeaed in the conventional
machine, It should be noted that this fine: definition is a definite disadvantage in
the update procedure, since it will require more update in operaticns for
maintenance,

Observation of the index portion of Tableg XVIII and XIX will bring out the
following differences, In the associative machine, the indexing is only to the
cylinder level, In the conventional machine, indexing is to the track ievel by a
combination of indexes, The cylinder index allows quick access to the cylinder
on which the record is located; then a track index stored on the same cylinder
as the recorda ailows quick access to the correct track, This combination of
indexes is used to give quick access to a track during retrieval, but at the same
time to minimize random access arrn motion which might otherwise be required
during update of a track index siored on a special cylinder.

In the problem examples, two assumptions were made, No cylinder index
updating was required, On the other hand, record indexes were always updated
when changes to records were made,

In Table XVII, the query and update functions to be performed in the first
example were specified. I Table XX, the actual operations required of the
associative machine in the performance of any one function is specified. To
understand the table symbols, reference should be made to the .ccess model
for the associative machine specified in Table XV, The operation numbers

specified in Table XV are used to define the operations required to perform a

5-44

function as specified in Table XX, For instance, Table XX shows that the

function ADD a RECORD requires the following operations:

Operation Number Operation
3. Random Access and Read Complete
1. Random Access and Write Into Empty Record Space
1. Repeat 1 Above

jor a total time for the function of 19,45 accesses. When a particular operation
is to be repeated n times in a table entry, the symbol for the operation is followed
by (n). An example of this occurs in Query Type 5 where 8(123) implies that opera-
tion 8 is repeated 123 times. Repetition cf & ~et of operztions is denoted by enclosing
the set in parenthesis followed by the receptition number in parenthesis.

Table XXI specified the conventional machine operations to be performed
{.r each qucry and update function of Example 1, The table in conjunction with
Table XV is self-explanatory.

Tke results of Example 1 are given in Tables XXII and XXIII. In the upper
part of these tables the total time: fcr each type of transaction are given per
10,000 transaciions, For instance, of 10,000 total updates of which 1666 ‘rans-
actions or 16,66% were Type 1, the totul time taken for those updates would
be 27 x 103 access times, In the lower part of the tables the 10,000 transactions
are broken dcwn to give total transaction time as a functicu of the percent of the
total which constitutes update time. In addition, Table XXII gives . ratio of the
comparative performance of the two machines, The performance ratio is defined

to be Conventional dachine Accesa Time

.

Associative Machine Access Time

5-43

In Figure 17 the same results are shown in graphical form, Note that the left-
hand scale for associative machine times is scaled down from the right-hand
scale for the conventionai machine by a factor of 5, The ratio scale is in the
center,

A study of these resuits point: to the great advantage of the associative
processor when any appreciable scanninyg is required in queries, For this
reason Exampie 2 \vas prepared. Example 2 is quite similar to Example 1
except that the file organization, as shown in Figure 18, for the conventional
machine has been changed o allow for cross-chaining by "Owner" in the fixed
groups and by ""Route Entered"” in the periodics., Cross-chaining creates chains
by subjects which span severzl of the normal file logical records., Indexes to
the cross~chain entry points are also provided. 'To get to an entry by cross-
chain, therefore, the cross-chain index must be accessed to find the first record
in the chain, Then the first chain record is accessed and scanned, From this
point, successive records in the chain are accessed until the proper record is
found, In this example no particular order is maintained in the cress~aie,

In Table XXIV the parameters for the conventional machine file o: zarizativas
are shown, Table XXV shows the conventional machine operations requir:..! :u
the Example 2 functiors, and Table XXVI shows the conventional machine resuts
on 10,000 transactions. In addition, the results of comparison to the associative
machine results of Table XXIII are shown in ratic form., The results are also
shown graphically in Figure 19,

Examination of the results clearly shc /s the advantage of the file processor

as & function of the nmount of scanning required on queries. In the two oxamples,

5-46

40000

Conventional

\ .
\

30000
25000
4600
4200
20000
13800 Conventionoi
Time 1n 34
3400 second inter- ols
3000 15000
Associative
2600

Associative

2000 10000
1400
Time in M
second 1200
intervals
5000
600
: 0
0
* 0 3 %0 7" 100
| Updete

Figure 17. Results of 10K Transactions Against a Filc of 270K lLogical Records

547

e 3P A MR AAN WUT cragi ge r

B

X - s B 7
z o1dwexy
UIYIRIY [BUOIUDAUO)D 0] uoneziuediQ pioday g1 aindry
/ 1 r ¥
i i
" i
. \. “
m 1 4
1 . :
L 3 m ke
T 7
: i
) N
' d '
A i
ot ~— T
pomicy | yog \ ' 4
oig ' 21porvg N sapooyy vag) R TR
(possiu3lasy) o1 uioyD Roog o3 uIoyD) yoog 1 sppy procey
C.USU ﬂﬂOhU m L
\ M~ e
N O 4
)T T T
prowic " yo0Q “
240 (s19umQ) bag | prmMI0 4 LIOYD) £ I
_ PPy prodey
Loy sso1) 1
—5 § : o
_ N———— por:
4 T\ | e 4

5-48

consider the speed advantage of the associative machine in the case of queries
only, The advantage gain of the associative machine from 2,2 in Example 2
to 16,8 in Example 1 is almost wholly a result of an increase in scanning re-
quired in 20% of the queries,

It is further evident that the queries considered were weighted in favor of
queries mentioning the ICC number and locations, the keys which were indexed
and about which the file was organized. That is, 80% of the queries mentioned
an indexed field. Since this percentage of siinple queries appears to be a
somewhat high, it can be argued that the figures of merit in the second example
should be closer to 3- or-4 to 1 in favor of the associative machine.

Another point which should be pointed out is that the transactions in the
examples were processcd on a one-at-a-time basis, The associative machine's
multiple input capability was not used to great advantage, As a matter of fact,
the processing as stated could have been done in a ecanner of at most 16 six-
character words in QDCS and 2 four-character words in QICS, It is felt that
more realistic use of the scanner would considerably increase the speed gain

of the associative machine,

DISCUSSION AND RECOMMENDATIONS

A storage and retrieval system for formatted files in intelligence applica-
tions must meet stringent requirements for capacity, speed, and fiexibility.
Consider how the file atorage device described meets these requirements,

The device has a high storage capacity. Fitted on the IBM 1302 Disk
Storage Unit, for instance, the system could store 180 million characters, Or,

549

4400

4000

Time in
34 seconds 3400
intervals

3200
2800
2400
7000

1600 4

1200 3

800 2

400 |

0 0

0 25 0 7 100

Figure 19. Results of 10K Transactions Against a 270K Logical File

% Update

a-a20

. C
1i0: -
ratio: A

if the system were fitted on a disk system with removable disks the storage
areas is, for all intents and purposes, limitless, Another way in which this
device could be used is as a buffer for other devices which could be read and
written in parallel. As such, the capacity is limited only by the storage medium
buffered.

Storage and retrieval speeds of the scanner are high. They depend pri-
marily upon the speed of the storage medium past the heads and upon the number
~f tracks which can be read at once. Even with the very smail scanner assumed
in the examples, speeds of storage and retrieval were increased over those of
present-day disk storage systems by factors of from 2 to 16, and possibilities
for even greater speed exist in different organization and use of storage,

The processor has great flexibility both in the data it can handle and in the
operations it can perfcrm,. The data is somewhat restricted in that it must be
stored in parallel fielc - on fixed-length physical records., But such records
can be logically joined to form quite complicated variable-length logical records
in a several ways, The linking features allow fields of any length up to the
maximum 8ize record or to the maximum number of characters in QDC.,

The device is also flexible in its logical abilities., The logical connectives
AND, OR, and NOT, along with HIGH, LOW, EQUAL and BETWEEN LIMITS
compares, furnish capabllities to handle complicated logical searches expressed
in disjunctive normal foria, If the query contains parameters which cannot be
so expressed, thus resulting in multiple matches on a track record, all records
which cannot be resolved by the simple scanner can be read into memory where

they can be further analyzed,

The processor is well able $o handle inputs on an individual basis or in
batthed form. The amount of batching possibie depends upon the number of rows
in the Field Compare and String Identity Sections,

The most important feature of the design is its independence from the CPU
while scanning, This will save a good deal of CPU time, which can be used for
mcre coinpiicated types of processing than simple file scanning,

The unit is comparatively simple in concept and appears simple to imple~
ment, & cuwia LS Luilt in modular form to handle varying storage requirements,
No obvious circuit timing limitations have been found, and the timing of the
comparisons and string identification do not change appreciabiy as more equip-
ment—such as more disks and scanner heads—is added, Electronically, the
timing for the complete compare matrix is essentially the same as for one
compare circuit, Should the system require expansion, no timing problems due
to cascaded circuit delays would becume evident, Equipment has already been
built to read/write in parallel on 40 disk tracks at a time, and there should be
little problem in building at least a small scale device to operate on a present-
day large-scale computer,

In conclusion, the design presented seems well suited to the storage and
retrieval of formatted files on an economical medium, Its added cost szems
little enough to pay for the large gain in performance over conventional disk
storage. It is therefore recommended that a small system of this sort be
further defined and, 1{ it still seems feasible, built in prototype form,

5-52

Operation

Operation
Symbol

R
SSR

SSRI
ssw

SSRT

Table XV, ACCESS MODELS

Associative Machine

Operation

Random Access Write into Empty
Record Space

Random Access Insert in full
Record Space

Random Access Read Complete
Rundom Access Read Chain Addv

Sequeniial Access Write into
Empty Record Space

Sequential Access Replace full
Record Space

Sequential Access Read Complete
Sequential Read Out of Records

Conventional Machine

Operation

Random Access Motion

Successive Reads on Same Cylinder
Reading by Record

Successive Reads on Same Cylinder
Reading Complete Track

Successive Write on Same Cylinder
Record Mode

Read Records from Same Track
Access Next Successive Cylinder

5-83

Average
Time in
Accesses

5.35 a
0,75 a

5.75 a
5.50 a
2,35 a

3.75a

2,7 a
2.0/cyl.

Average
Time in
Accesses

5.0
0.5

1.0
0.5

1.0/track read
2,0

Table XVI, COMMERCIAL VEHICLE ACTIVITIES FILE

Fixed Fields Number Of
Field Name Number Of Type Different Meaning LT
Char. Packed Values -
License 7 Alpha 25000 License number
State 5 Alpha 50 Abbreviation of License
state
ICC number 5-1/2 Num 270K ICC registration number
| Company 18 Alpha 5000 Owner's name
Company number 7 Alpha 1000 Company vehicle number "
Type 9 Alpha 100 Type - Truck, taxi, etc, 4
Make 9 Alpha 40 Make (Chevy, Ford, etc.) .
Empty Wt, 2-1/2 Num 180 Expressed in pounds .
Passenger Cap, 1-1/2 Num 200 Number paying passen-
gers possible
Freight Cap. 3 Num 1000 Expressed in pounds
617

Periodic Ficlds

Time 10 Y/M/D 365 Time
OCbserver 5 Alpha-Num 1000 Observe code .
Location 1 18 Alpha-Num 5000 Road & state observers

staiion .
Location 2 2-1/2 Num 20 Number
(8t. No.)
Type Rep 3 Alpha 10 Radio, Message, Talk

to Driver

5-54

s Ak

Table XVi. COMMERCIAL VEHICLE ACTIVITIES FILE (Cont'd)

Fixed Ficids Number Of
Field Name Number Of Type Dijferent Meaning
Char, Packed Values
Direction 3 Alpha 16 Compass points
: Speed 2~-1/2 Num ¢0 Miles per hour
Reason 3 Alpha 10 Codes for stops
Route (from) 18 Alpha~Num 500 Name or route left
Route (to) 18 Alpha-Num 500 Name or number of route
entered
Freight Inv 3 Num 1000 Express in pounds
Passenger Inv 1-1/2 Num 200 Actual cost
" Freight 1-1/2 Num 4 Quarters fuil
Passenger Est 1-1/2 Num 4 Quarters full
Type Cargo 3 Alpha 1000 Code for general type
91

5-88

QD(DNIG}.U\'&L\)ND—‘

1-4
5.
6-8
9.

Table XVII, TRANSACTION MODEL

Updates: Examples 1 and 2

Action

Add one record
Delete one record
Add one periodic

Queries: Example 1

Query

Given ICC range, print fixed groups

Given ICC number, print fixed groups

Given ICC number, print last periodic group
Given ICC number, print itinerary

Search entire fixed portion of file

Given two locations, print ""from - to'" groups
Given location, print all fixed groups

Given location, print all periodics

Search entire periodic portion of file

Queries: Example 2

Same as Example 1
Search on Owner Chain, find 325 records
Same as Example 1
Search on Rcute Chain, find 500 records

10
10
10
10
20
20
20

30
10
50
10

Table XVII, ASSOCIATIVE MACHINE FILE ORGANIZATION

Example 1
T Type Field Length
Fixed
. Group: Record Address: ICC number 6 char
Forward Chain Address: ICC number + Cylinder + 2 char
Current Last-In-Sequency Indicator 1 char
Data. 61 char
Total 70
Periodic
Groun* Record Address: ICOC number + Sequence Indicator 7 char
Back Chain tc Header: ICC number + Cylinder + i
Track 2 char I
Back Chain to Periodic: ICC number + Sequence
Indicator + Cylinder 3 char
7 Data 85 char
' Total 97
Average
% Logical
b Record: Fixed Group + Five Periodic Groups 565 char
Jndexes: Fixed Cylinder Index: to ICC number 1 Track
Periodic Cylinder Index to Lowest Location on !
Cylinder 8 Track |
* Totals: Fixed Data and Track Index 120 Cylinders |
Periodic Data and Track Index 835 Cylinders
5-57 I

R

Tyvpe

-

Fixed
Group:

Periodic
Group:

Average
Reacord:

 m———— N e = L n e

Table XIX. CONVENTIONAL MACHINE FILE ORGANIZATION

Example 1

Field

Record Address: ICC number

Forward Chuin Address: ICC number + Cylinder
+ Track + Sequence

Current Last-In-Sequence Indicator
Date
Total

Record Address: ICC number + Sequence Indicator

Back Chain to Header: ITC number + Cylinder
+ Track

Back Chain go Periodic: ICC number + Sequence
Indicator + Cylinder + Track

Data
Total

Fixed Group + Five Periodic Groups

Fixed Cylinder Index: to ICC number

Fixed Track Index to ICC number: 1 Track on
Each Cylinder of Fixed Groups

Periodic Cylindor index (o Lowest Location
on Cylinder

Periodic Track Index i» Largest on Each
Track or to Overflow Track

§-68

Length

6 char

4 char
1 char
61 char
72 char
7 char

3 char

4 char
91 char
105 char

587 char

1 Track

125 Tracks

8 Tracks

910 Tracks

Table XIX. CONVENTIONAL MACHINE FILE ORGANIZATION (Cont'd)

Example 1
Type Field Length
Totals: Fixed Data and Track Index 125 Cylinders
Periodic Data and Track Index 910 Cylinders

3-89

Table XX, ASSOCIATIVE MACHINE OPERATIONS

Examples 1 and 2

Function Operatiors Times in
From Access Model Accesses

Add Record: 3, 1,1, 16.45 K
Add Periodic: 3,2,1, 17.85
Delete Record: 3,1,1,1,1 27.15
Query Type 1: 3,3,8 13.50
Query Type 2: 3,3 11.50
Query Type 3: 3, 4,3 17,00
Query Type 4: 3,3,8,33 28.75
Query Type 5: 3, 8 (123) 251,75
Query Type 6: 3,3,9,3,8 21.25
Query Type 7: 3,3,8 13.5
Query Type 9: 3, 8 (860) 1725.75

5-80

Table XXI. CONVENTIONAL MACHINE OPERATIONS

Function

Add Record;

Add Periodic
Group:

Delete a2 Record:

Query Type 1:
Query Type 2:
Query Type 3:
Query Type 4:

Query Type 5:
Query Type 6:
Query Type 7:

Query Type 8:
Query Type 9:

Example 1

Operations from
Access Model

R, SSRi, R, SSR, R, SSR,

SSW, R, SSW

R, SSRi, SSRi, R, SSR, SSR,

R, SSR, SSW, R, SSW

R, SSRi, R, SSRi, SSR, SSW, R,
(R, SSR, SSW, SSk SSW) (2),

(R, SSR) (2)

R, SSRi, R, SSRi,SSRT

R, SSRi, R, 8SRi, SSR

R, SSRi, R, SSRi, SSR, R, SSR

R, SSRi, R, SSRi, SSR,
(R, SSR, SSR) (2), (R, SSR) {2)

R, SSRi. R, (SSR(40),S) (125)
R, SSRi, R, SSRt (13), R, SSRt(13)

R, 88Ri, R, SSR, SSR, R, SSRi,
(8, SSRi) (119)

R, SSRi, R, SSRi, SSRt (300)
R, 88R, R, (SSE(40), 8) (910)

5-61

Times in
Accesses

25.0

25,5

36.0
18.5
12,5

18.0

5135.5
42.0

451.5
24.0
37321.0

R0l ...c_ N Hiect ec— N Hoee [11} o [
[1 nc_ X £oLze ns_ X CRorE oL na— X 0%y i 4
Loct ﬂz X oz no- X LGLT ne na_ X 091 ac
1 4] n:.. X 780t ne— X ®i901 «T ﬂe_ X 0°¢0r ¢l
1 got ¥ L7 1] 0 n:- X 1°7Ls oot
QOUBWIO JXI] sl SINSIOIV UY DWLL W SI8S0VIY U} MWL WadL0d
J0 onITY 1oL caomd R
¥, AG AWOPNDIAY FHOITINELL 00001
01 X 0°b1sel 00001
T ot oz w1 8
ﬂon X 0°st 0°+Z 0007 8
0! X 0706 0 0007 L
nc— xXg'zy L4 4 0001 9
01 X g°sels gTsele 0001 ¢
no— X g°0t [T 0001 t n.: X 1°2:¢ 00001
...o— X 0°8l 0°8t 0001 € Mot—!ﬂ.m.eh— - §°¢T .ﬂlﬂ
no— X €2°9 ezl 09¢ 4 no. X 0°09 09t 2991
ﬂO— X 6Z°6 [£e 1 00% 1 n..: X a1t 0°st 9981
SIU8DY Uy 2wt] 8588020y U] SUOLPUSUTI]L oSy I3V S4NS2IIY Ul SUOTIICSURS |
awL WU JO JdquInN oy surr L swiy, wun LR Y]
awil Saand) auil aepin

1 opdwex3

SASSIOOV NI STWIL NOLLOVSNVH.L INIHOVIN TVNOLLNIANOD °IIXX 2198l

5-62

i

no. X L5S2 nom X L6G2 001 Q jard

nea X 9661 no— X 8¥61 [nS xXg*Lp sz

ng x G6€1 nS X 6621 oS nc_ X 9°¢6 ‘ o

no— X Z6L no— X 6%9 B4 no« X ¥°etl [12

ng X 161 nS X 6¥9 0 no_ X 2 161 003

oL 888,00V U 3wl MIIIIJ $298200Y U} Jwi} WadIdd
aw] A1and aurit arepdin
% AQ WMOpHETIE SUOROUSUIELL 000’01
ns X 6152 00001

ng X 6L S2L1 L 82l 0001 &6

ng xX0°L2 gel 0002 8

nc— X 9°16S 5’652 0002 i
nou X 5Z°12 1 4 ¢4 0001 9
noa X GL°SH2 SL°182 0001 S
nom X §L°82 SL 8T 0001 1 4 ng xzZ 161 00001

nS x0°L 0°Ll 0001 14 nS x0°6I1 = S8°L1 Mﬂwﬂl ‘s
nca X GL°S S 11 008 (4 non X Z°sy = S1°LC 9991 bt 1

02 xXL°9 sl 00s | ¢ as x0°L2 = S¥°91 9991 ‘1

8389300V Uf W] SI8SIOOY U] PUONIESUBLL adA], S288300Y 9288300V U] SUONOVSURIL aywpd
aun L owiL U} Jo aaquunp uy 2wt L awil Nun Jo IaquInN adhy
L2 30
L1and s}, 1N

Z bue 1 satdurexy

SASSAOOV NI STWLL NOLLOVSNVYL ANIHOVH FAILVIOOSSY “HIXX 2198l

5-63

) i - —— O — 1§ g e “e

Table XXIV, CONVENTIONAL MACHINE FILE ORGANIZATION

Type

Fixed
Group:

Periodic
Group:

Average
Record:

Example 2
Field

Record Address: ICC number

Forward Chain Address: ICC number + Cylinder
+ Track + Sequence

Current Last-In-Sequence Indicator
Cross Chain

Data

Total

Average Cross Chain Length

Rceord Address: ICC number + Sequence Indicator

Back Chain to Header: ICC number + Cylinder
+ Track

Back Chain to Periodic: ICC number + Sequence
Indicator + Cylinder + Track

Cross Chain Route Entered
Data

Total

Average Cross Chain Length

Fixed Group + Five Periodic Groups

5-64

Length

6 char

4 char
1 char
20 char
61 char
92 char

54 records

7 char

3 char

4 char
20 char
91 char
126 char
540 records

717 char

Table XXIV, CONVENTIONAL MACHINE FILE ORGANIZATION (Cont'd)

Example 2
Type Field Length
Indexes: Fixed Cylinder Index: to ICC number 1 Track

Fixed Track Index to ICC number: 1 Track on
Each Cylinder of Fixed Groups 159 Tracks
Fixed Owner Index to Record Level (last entry) 13 Tracks
Periodic Cylinder Indextto Lowest Location on
Cylinder 6 Tracks
Periodic Track Index to Largest on Each Track or
to Overflow Track 1078 Tracks
Last Route Index to Record Level 4 Tracks

Totals: Fixed Data and Track Index Periodic Data and
Track Index 159 Cylinders

Periodic Data and Track Iniex 1078 Cylinders

6-65

RPNV N P PR S S

TABLE XXV, CONVENTIONAL MACHINE OPERATIONS

Function

Add Record:

Add a
Periodic:

Delete a

Record;

Query Type 1:
Query Type 2:
Query Type 3:
Query Type 4:
Query Type 5:
Query Type 6:
Query Type 7:
Query Type 8:
Qucry Type 8:

Example 2

Operations from
Access Model

R, SSRi, SSRi, SSRi, SSRi, R, SSRi, R,
SSR, SSW, R, SSR, SSW, R, SSR, SSW,
R, SSW, R, SSw, SSw

R, SSRi, SSRi, SSRi, R, SSRi, SSR, R,
8SRi, SSW, R, SSR, SSR, R, SSR, R,
SSR, R, SSR, SSR,

R, SSRi, R, SSRi, SSR, SSW, R, SSR,
SSW, R, SSR, SSW, (R, SSR, SSW, SSR,
SSW) (2) R, SSR, SSW, (R, SSR, SSW)(9)
Same as in example 1

Same as in example 1

Same as in example 1

Same as in example 1

R, SSRt(3), (R, SSR) (325)

Same as in example 1

Same as in example 1

Same as in example 1

R, SSR, (R, SSR) (500)

5-68

Times in
Accesses

5L.5

46.0

96.0

18.5
12.5
18
30.5
1793.5

*e X t09¢C
6l°2 no— L09¢

81°2 nc— X Zrey

2'e g0l X 080€

4 X
£°e ﬂQ— S181

.) e
6°2 no— X pGe

20URWI0}13d AW [C10] SI88ADIY U] W] WUIDIAJ

X RO9G
no— 094

ng X s02t

no— X £08¢

X 20F
n.: 20%1
0

awry faand

4

1

nS X 309S
no~ X §°96L2 €°98L2 0001
no— X 0°8Yy 0°%2 0002
no— x 0°€06 g 15y 0002
no— xXc'Zy s 2y 0001
ng X 6°g6L1 STe2LT 0001
ne— X ¢°0¢ $°0g 0001
ne— X -°81 0°st 0001
nOu X 62°9 LA 00¢
ncn X 62°6 ¢°8l 00s
SIE$300V U] dW] 9289200y U] suopoesuex] adiL
wijL I} JO J3QUWINN
wl Lxand
.N aydurexg

0

X
nS Ng!

X 122
no— LLe

X
no— i484

X yc¢
no~ ¥ce

aw] avepd()

8988300y uy owl],

FUERIEN]

, Aq umopyra.lg] suoloesusal 000 °01

no~ X ¥SS
nen X 0°80¢ 0°9¥%
no~ X 0°091 0°96
no~ X G°S8 s°18

§988200Y 9298300V U]
ui swiy JwiyL Uy

swi] avepdy

L X

0001
8999
9991

9991

SUOTIOWSURLY
J0o taquuny

SISSI OOV NI STWIL NOILLOVSNVHL INTHOVIN TVNOILLNIANOD °‘IAXX FTdVL

5-87

s b e

SECTION V1

PATTERN CLASSIFICATION

PROBLEM STATEME® ¥

A pattern is defined to be a row vector of dimension 1 x t (t unspecified)
whose components are real numbers. One subclass is singled out for specis
attention—those vectors whose components are either zeroes or ones.

This definition of a pattern has been adopted because it includes as asp .l
case those patterns which are defined as matrix or tabular arrays. Ifa patt o
is given as a matrix composed of, say, m rows and n columns, then such a
maxrixcaﬁbe rewritten as a row vector of dimension 1 x (mn) by placing th
rows (or the columns) consecutively from left to right. Thua only row vect
need be considered.

The chief goals of pattern analysis are:

1. To cluster the patterns into similar groups.

2. To assign new patterns to the appropriate groups by measuring tix
similarity between the patterns and the groups.

In order to achieve these goals, it iz evident that several basic proble
must be solved.

. e The conoept of similarity of patterns must be defined as well as t!
- oonoept of a pattern cluster or pettern group.
¢ Techniques must be developed for measuring the simflarity betwe ‘wo
patterns and the similarity botween a pattern and & clustar of oth
patterns,

® Decision rules must be formulated for assigning new patterns to
appropriate olusters.

6-1

CHARACTERISTICS ¢ ™ PROBLEM

Having defined a pattern as a vector, it becomes clear that the significance
of a pattern depends on either:
~. The magnitude of the entries in the pattern
b. The sequence in which a critical set of values occur

¢. A combination of (a) and (b), i.e., whan magnitude and cequence
must be considered together.

It will simplify the presentation if (a), (b), and (o) are discussed separately.
With respect to (a), a further simplification wmgbe made, "Initially only voctors
of zeroes and ones will be examined. This may be denoted as case (a.1).

For (a.1) then, the problem may be expressed as followa: give» 1 set of
p patterns, each of which i8 a 1 x t vector of zeroes and ones, find mean.agful
relationships among the patterns. Usuilly, "mesaningful relationships' wili
mean: ‘cluster the patterns into simil:r groupa".

At this point, it will be useful to introduce some notation and definitions.
Assume that the atterns have been aligned one under the other, thereby form-
ing a p x t matrix, R =(ru), wherei =1, ,...pand j =1, ..., t.

letr,. =11is pattern { has a one in position j.

31
Let r,, = 0 otherwise,

1

Define R =)': rij' Rl is the_number of ones in pattern {. R! will be cailad the
3=1

sum function (or pattern i,

Define A, = ‘\k is the number of poriticms in patterns { and k

» Tyy Ty
wrich have matching ones. It is evident that the product r

. r . is ope only

£ ki

wheanuthrl andrk are one. Summing over j thus vounts the number of

i i
places where patterns 1 and k have corresponding opes. Aik is the intersedtion

function for patterns 1 and k.

6-3

Define vik

i® a one in either pattern i or patterr k or both. V‘k is tue union or inclusive-or

= Ri + Rk - Aik" Vik is the number of positions in which ihere

junction tus patterns i and k.,
Define Hy =R, + Rk - ZAik‘ H, is known as the Hamming distance-the
1. nber of non-matching positions in patterns i and k, i.e., Hik is the number
-~ of positions in which there is a one in either pattern i or pattern k but not in both.
H,, is the exclusive-or function for patterns i and k.
it shorld be noted that all the above functions are concerned with the namber

of ones and zcroes in a pattern but not with the arrangement or sequence of ones

and zeroe:..

Returning now to the problem of clustering patterns, it is clear that the

definition of the term "similar patierns’ is the key to ine problem. Previous

work in this field has shown :hat the definition =f similarity depends heavily on the
particular probiem being investigated. For ex=mypiz, in reference (1) below,
five definitions of similarity are described. Letting Sik denote the measure of
similarity between patterns i and k, then in terms of the notation juat defined,
the five measures of similarity described in (1) are:

1. King - Tanimoto;

Stk = A Vik A/ By R - A,
2. DBaxendale:

Sik = Aplt
3. Kochen - Wong:

'
tk Rle

1. Applied Research Program, AIDS. Quarterly Report No. 3, volume 1 -
Progress Summary, Feb. 28, 1962, IBM Research Center, Yorktown Heights,
New York.

6-3

5. Stiles:

-R R -_t
log gt Ay = By By = —)2
8,y = '

k" R R_(-R) ¢-R

Examination of these five measures of similarity reveals that:

1. They are independent—none is a function of any other

2., Each definition is some combination of the fcur numbers: t, R,, R’k and

Aikl

Since V,,. and H

ik ik
evident that the computetion of these four numbers is basic to any pattein analysis

are also expressivle in terms of ¢, Ri’ Rk and Alk’ itis

program. Accordingly, the ability to calculate rapidly the ™ and the intersec-
tion functions is put forth as a basic requirement.

On the uther hand, precisely because these are so many defindtions of
similarity, it appears that the computation of the sum and interscotion functions
together with t represexts the extent of basic techniques which will be practical
for a gener.l pattern analysis program. This corcludes the discussion of case
(2. 1).

Turning now to the examination of case (), it will be usefui onoe again to
limit the discuasion to 0 ~ 1 vectors. For case (b), the problem of pattern
snnlysis becomes more complex than for case (a). Not only is the number of
ories significant but in addition the iocstion or srrangement of the ones (and

consequently the arrangement of the zeroes) must be iaken iato account.
Consider the simple situstion depicted in Figure 20 for example. Let the 8 x 10
mairix be interpreted in the usual way &3 a 1 x 80 pattern. Then the character "7"

64

00000000
00000000
00111100
001001100
0000100
00000100
00000100
0cC000100
60000000
00000000

Character "7" is defined as the set of ten ones located in positions 19, 20,
a1, 33, 27, 30, 38, 46, 54, 62,

Figure 20. Pattern for the Character "7"

is defined not simply as a set of ten ones but as the set of ten ones .ocated in the
specific positions: 19, 20, 21, 22, 27, 30, 38, 46, 54 and 62, 1t is evident that
the arrangement of ones defines a character. Identical characters are those
whose defining sequences are the same, Further, if two defining arrangements
are such that th2y have the same number of ones and if all corresponding
sequence positions differ by the same constant, then one sequence represents a
shift left or right, up or down of the character defined by the second seyuen: e,
For example, the sequence 1, 2, 3, 4, 9, 12, 20, 28, 3G, 44 differs in encu
place by 18 from the sequence defining "7". Accordingly, the new sequence
represents "7" shifted up two and *wo places to the left.

In many practical problems, sequences to be compared wil: not nave the
same number of ones. In suzh cases, a useful procedure may b2 to compare
the longer sequences against the shortest sequenoe of interest, since often the
basic problem is to determine those patterns which contain the shortest sequence
as a subsequence. Consider, for example, pattern A, B and C whiLh are defined
as twenty position vectors:
A: 10011100101101001011
B: 00000011111001011001
C: 01001001100111010110

Suppose the problem is to find all patterns which contain pattern G as a
subsequence where G is a tea position vector:
G: 1110010110,
Comparisor of G with A, B and € shows that G matches positions 4 through 13 of
A, positions 9 through 18 c{ B and doea not match at all with C. (In a computer

with an associative memury capability this matching will probably be most

8-8

easily accomplished by the ""match and link right'* techniques previously proposed

for the text searching and term identification problem.)

In order to speed up the matching process, it is proposed that the data be
'_,' compressed by use of the following information preserving data compression

scheme, Let the 0 - 1 vector which defines pattern A be replaced by another
vector, V(A), whose components are the distances between the consecutive ones
in pattern A. This defines the components of V(A) from the second component
on. To complete the definition, the first component in V(A) will be defir. :d as the
position of the first '"1" in A, 1i.e,, if the first "1" in A occurs at position 3 in A,
the first component in V(A) is 3. For example, the compressed vectors asso- i
ciated with patterns A, B, C and G are: '

V(A) = 13113212321

V(B) = 711113213

V(C) = 2331311221

V(G) = 111321
It is important to note that since the first component of a vector V(P) marks

the position of the first 1" in P, it is therefore possible to reconstruct P given

V(P). Also note that the sum of the components in V(P) which can be denoted as

SV(P) is equal to the position number of the last "1" in P. This fact can be used

to provide a rough error check when forming vector V(P) from pattern P.
If the problem of finding all patterns which contain G as a subsequence is
» reworked using the vector patterns, it is clear that the technique of "match and
_. link right" can again be used. The comparison time will be shorter since the
S vectors are shorter. However, in using V(G) instead of G, a problem arises

from the fact that the last component of V(G) refers only to the distance between

the last two ones in G. The fact that G might have ended in a string of zeroes is
not indicated in V{G). The same is true of V(A), V(B) and V(C). Consequently,
the vector definition for pattern P should be slightly modified so as to indicate
how P ends. The modification is very simple, Let the new final component of
V(P) denoted as LV(P) be the difference between the number of positions in P
and the position of the last one in P, Recalling that the position of the last one
{n P is the sum of the components in V(P), excluding LV(P) of course, it is
clear that if pattern P has t positions, then LV(P) =t-SV(P). LV(P) will be zero
if P ends in a one and will be a positive integer otherwise. With this change, the
vectors for A, B, C and G become:
V(A) = 131132123210
V(B) = 7111132130
V(C) = 23313112211
V(G) = 1113211

In matching V(G) with the other vectors, a match on first components will
occur provided the first component of V(G) is less than or equal in value to the
component of the other vector with which it is being matched, This follows
because of the fact that the first component simply indicates where in G the
first '"1" is located. Note also that the last component, LV(P), msatches when~
ever it is strictly less than the component with which it is being compared.

A comparison of V(G) with V(A) shows that V(A) contains the sequence
3113212 in positions 2 through 8. There is perfect agreement between V(G)
and this sequence from the second through the penultimate positions. The first
components match since 1 is leas than 3, Finally the last component of the
subsequence being greater than LV(G), there is agreement in the last place also.
Accordingly, G is a subsequence of A.

6-8

Examination shows that V(B) contains the subsequence 1113213, Since the

last component of this subsequence is larger than LV(G), there is agreement

between the subsequence and V(G).

Finally examination of V{C) shows that the closest matching sequence to

V(G) is 3112211.

In reviewing case (b. 1), it is evident that attempting to find subsequences

which match exactly a given sequence or sequences is only one of several

possible approaches to the problem of determining similarity based on arrange-

ment of ones and zeroes. However this approach appears to be such a basic

procedure that it should be incorporated as a basic tool into any general pattern

analysis program. This concludes the discussion of case (b. 1).

It will be recalled that case (a.1) considered vectors of zeroes and ones. A

slightly more complex situation will be considered now in which the components

are scaied values. In other words, a component value no longer is simply 0 or 1,

Instead it is a number taken from some range of values. These scaling factors

often are used to quantize non-numeric phernomeua such as shadings (from light

to dark) or distances (from near to far) or weights (light to heavy). Thus, the

vectors are composed of integer components. By adding a constant, if necessary,

to each component, these integer values can always be made strictly positive so

that they all lie in some interval (a, b), where a and b are positive integers, It

will be assumed that this has been done and further it will be assumed that the

interval is from 1 to N, where N is known.
Case (a.2) may now be expressed as: ""Cluster patterns whose components

are positive integer acaling factors taken from the rang= 1to N." It i8 evident

that in this case there is an obvious meaning to the notion of distance between

patterns or similarity between patterns, Patterns are similar if the differences
between their respective components are small. For example the vector 71234
is closer to 61234 than it is to 71434 since it differs by 1 in one place from the
first while it differs by 2 in one place from the second. But what about the
distance between 71234 and 62234? Here the difference is one in each of two
places. Clearly the problem is to develop some similarity measure based on the
component differences. Since the components are scale factors, elaborate for-
mulas should not be necessary. A minimum of computation is desired. Note that
case (c) is essentially the same as case (a.2).

Consequently if the similarity measure is denoted as Sik whers { and k refer

to pattern i and k, then Sik will be some function of LI and Ty

i i

Examples of such a function are:
a. S1 =Zj:|rij - rkj

b. S, = 2:(1'i i " rkj) 2 - the square of the Euclidean distance

= the sum of the absolute values of the
differences.

a j between vectors i and k.

c. 53 = max {' T T ,F the largest single component distance
j)) between 1 and k,

d. The correlation coefficient denoted by r may also be considered a
measure of estimate of the similarity between two patterns.
Recall that the formula for r is:

tzj‘rsj rkj-z; ruz:’ i i
(T C e (S

It is clear that r requires much more computation than the other measures,

However, its calculation would be facilitated if the inner product function of two

6-10

vectors could be calculated rapidly, for it is evident that Z t';?j may be re-
garded as the inner product of a vector with itself, while Z rij may be con~
sidered as the inner product of a vector with a vector of ones and Zri 4 rkj
-_.’ is the regular inner product of 1 and k. Consequently, the correlation coefficient
may be inwerpreted as combinstion of various inner products.
e. A rather extreme example of a measure is the outer product of
two vectors. In geometric terms, the outer product is a vector
whose length is numerically equal to the area of the parallelogram
formed by the two vectors and whose direction is perpendicular to
the plene of the two vectors. If Yij = (v1,...., ¥t denotes the

outer product of patterns i and k, then an important relation among
the components yj, r“ and rkj is given by the Lagrange Identity:

E v F) (T H(E)

As in the case of the correlation coefficient, it is interesting to observe that
the right hand side is a combination of various inner products. Again, the need
for an inner product function is indicated.

A third reason for developing inner product function capability is that the

Euclidean distance may be expressed in terms of inner products:

2
2 2,
;(rij - ’k) - ; Tyt ; ky T c Zj: "1y iy
= ; (!'12j + rfj - 21'u rkj)'

In summary then, analysis of the characteristics of the pattern classification
prol.cm laads to recommending the following as design requirements:

1, The ability to calculate rapidly the sum and intersection functions of
0 - 1 type vectors;

> 2, The ability to find rapidly those subsequences of 0 ~ 1 type vectors
- which match exsctly one or more given sequences;

3. The ahility to compute rapidly the inner product function of two vectors
having positive integers as components,

Finally it should be remarked that requirement (3) is most fimdamaental since
(1) and (2) may be regarded as special cases of the inner product function.

6-11

PROCESSOR DESIGN

As the analysis of the patterr finding and classification problem indicates, ? i
the inner-product notion of vector algebra is the basic tool used in the great |
majority of the pattern manipulation schemes. This function is computed in E , |
"ordinary' computers by bringing out in sequence each component of the vector
and performing the operations necessary, This is done for each pattern model
against which the incoming pa‘tern vector is to be matched. The most significant
gain, then, can be made in this area and this design is directed to taking full
advantage of any savings possible in parallel operations in this respect.

The computer which i, depicted in Figure 21 is divided into three sections,
These are:

1, Program memory and arithmetic-logic unit j

2. Main parallel stcre

3. Small parallel store

The program memory is a conventjonally organized memory with random
access &nd sequential instruction read out. Program control branching is avail-
able for program modifications, etc. The arithmetic-logic unit is also conven-
tional in nature and capable of data transfers, arithmetic operations, and other
similar control functions. The memory is logically divided into an instruction

section and a data section. The instruction scction has registers which are one -

half or one quarter as long as those in the data section. The data section registers
are the same length as the muin and small inemories, that is, long enough to con-
tain an eight or ten position vector with integral values, This arrangement may

be obtained via the multiple read out technique of System/380 or by using the

memory cells directly,

6-12

o/i

UOIIBDINISSE]) WIdBG 0] 10883004, ‘g 9B

ABOWIW
IYNINID
ANOWNIW
1oNAa0¥d
a(
- 1H1
—s Id
SA316193y
3¥VAN0D/ JSYW
¥ ;
(wyuooud}, (viva)
1INN 51901 AdOW3W
= /DILINHLINY WY¥90Ud

—

1

6-13

The main parallel store is fully associative memory. The usual instructions

for an associative processor apply. A list of such usual instructions may be

found in reference (2), belew. There are some edditional instructions described

in Appendix I which apply to this memory. Each register of this memory will

contain, as in the program memory, eight or ten positin ., In addition, the

registers will carry an eighc bit counter waich will also be associatively address-

able. The arithmetic-logic unit will be able to add to the counter directly,

modified by che presence or absence of a match bit, Link bits and match bits

will be available to allow for the interconnection of several of these counters

from consecutive registers, By suitable combination oy link bits one may make

the counter (counters connected) appear as an adder with either end-around

carries or in which carries out the high order position are i-at. Accumulation

r 1y be carried several registers ahead so that sums from various parts of a

vector may be accumulated into one register.

The smal! store is also fully associative but has only a few registers,

there 18 an accumulator register associated with each storage position ot (his

memory, ¥hen the inner product function {8 performed against the memory, the

resultant sum is accumulated in it. The ordinary associative processes apply

to both the storage register and to the zssociated accumulator register, All

other of the apecial instructions appiy with the exciption of the Intersect

operator,
The following brief, simple example demonatrates some of the considerations

that will in."uence the computation of the vi:ious distanoe measures.

2, Estrin, G. and Fuller, R., "Algorithma for Content Addresssble Meiories, "
Proceedi { the Pacific Computer Conference, Pasadens, California,
Warch 1508, 1303 '

In the case of 0-1 vectors, the inner product function yields the clue to
group membership, For example, in the Tanimoto scheme, the measure is

A
dgv, v = R—-F_RL-"K' ; for any threshold vaiue 8, if the requirement is that
I

Aj

R + R] - A
i
to R and sciving the inequality Aj/ (R + R3 - Aj) >8 for R, it follows that the

must exceed S, then by successively setting Aj equal to Rj and then

admissible range of values of Rj is given by:

KN
For this set of values of Rj only those ones are to he taken whose values Aj are

maximal and the comparison will be among just those. The total number of

sRsr s R/x f

compariscus in this case will be greatly reduced being just that number equal
to the number of integers contained in the range sSR<I <R/s. The search may
then be further limited by calculation as to the poasible values of Aj that could
possibly cause other values of Rj to exceed the preciously obtained maximum.
Similar strategies may be used in the case of other measures of distance.
Finally, formulas can be derived for estimate of the performance of the
processor. To be definite, the computation of the inner product function is
considered, first by using the small store and then by using the main store, The
integer case and the 0-1 case are considered separately,
2, For the integer case, let:

N = number of registers in the amall store

T = number of {ntegers per small store register

X = number of pattorns

K = pumber of integers per psttern

8-18

a = number of processor machine cycles required for the integer
inner product function using the small store

b = number of conventional machine cycles required for an accu:-
mulative multiply operation,

Furthermore, let the notation ['x'l represent an integer XK = [x'l such that
K - 1 <X <K. Then the number of cycles Ip required by the processor for the

integer inner product computation is given by:

The number of cycles Ic required by a conventional machine for the integer inner

product computation is given by

Ic = bKX,

If the cycle time of both machincs is assumed the same, and if:

SR - -
e ped G
S Nno e

[| I L |

then the performance ratio R = Ic/Ip ia

= 3000
R o5 32.
b. Forthe 0 - 1 case, let:
T = number of bits per conventional register
K = number of bits per ;attern

X = number of patterns

6-16

a = number of processor machine cycles required for the 0 - 1
inner product function using the main store

b = number of conventional machine cycles required to count the
number of one bits in a register

Then the number of cycles Lp required by the processor for the 0 - 1 inner
product computation is g'lveri by:

L =a
p

The number of cycles Lc required by a conventional machine for the 0 - 1 inner

product computation is:

Lc =M + 1) X[-:%-]

If the cycle time of both machines is assumed the same, and if:

36
120
40
50
5

or xR
uononono

then the performance ratioR = Lc/ Lp is:

960

R=22
50

19,

EXAMPLE PROBLEM

In order to demonstrate the formation of pattern clusters and the assignment
of patterns to clusters, an experiment was performed using simulated data. The
procedures that would be used in carrying this experiment on a conventional
compu..r and on an associative proceassor were both manually simulated, there-
by ylelding a comparison with the number o. operations that would be required

in the conventional computer with the number that would be required in the

6-17

computer having associative features. since the experiment was manually per-
formed, the patterns were restriote’’ teger: This restriction minimized
computational difficul:ies yel still perm’riea a vatin s1."ulation of the general
case since an integer may be treate’ as = ©w vector of cunension one by one,

The following sections a throura £ desc. ibe .ue experiment fully:

a - Definitions and notatic:

b - Decision rules for assigning patterns to clusters
¢ - Determination of ncdal values

d - Experimental procedure

e - Description of pattern data and resulting clusters

f - Conclusions

a. Definitions & Notation
A pattern element (P) is any integer in the range 0 to 99 inclusive,
i.,e. the pattern is a row vector of dimension one by one.
A cluster (C) is any non-null set of pattern elements which meets
the rules of membership.
A node (N) of a cluster is that integer which is closest to the
arithmetic mean of the pattern elements of the cluster. (Round
down at the fractional part equal 0,5).
The distance d (C, P) between a cluster C and a pattern element P
is the absclute value of the difference N-P, where N is the node
C. Thus, d (C, P) =|N

C
b. Decision Rules for Assigning Patterns to Clusters

-Pl.

Rule 1, Assign the first P as the first C.

6-18

Rule 2, Assign subsequent P's to Ci whenever d (C,, P) < K and
d (C P) >Kforallj #1i. " K is some cut&ff value defined
bythe user,

Rule 3. Assign P to Cj whend (Cy, P) <d (Cy, P) and d (Cy, P)< K.

Rule 4, Assign P to Cy when d (C4, P) = d (Cj, P) s K and when
the number of elements of Ci is less than the number of
elements of Cj.

Rule 5. Assign P to Cj and to C; whenever d (Cj, P) = d (C
< K and the number of elements oi Cj equals that ot) CJ.

Rule 6. Assign P as a new C whenever d (Ci, P) > K for all i,

Determination of No tal Values

The node of a cluster will initially equal its first member. The
node will thereafter be the average of the cluster elements whenever
the number of elements in the cluster is congruent to 0 modulo 10.
This yields results which do not significantly differ from those ob~
tained by re-evaluating after the addition of each member., A final
determination will be made after the last elements of the data
sample has been assigned.

Experimental Procedure

The procedure begins with Nl = P, and P e Cl' N, will be the
first P, such that d (Cl, Pi) > K. When all Pl have been assigned to

C T the N, are re~calculated, As a result of this computation, the

}

final N, may be such that for some P ¢eC,,d(C Pi) > K. There-

| ¥y ¥
fore, the pattern elements Pi need to be re-evalusted. Further,
since the Ck that are of interest are only those with a number of

elements deviating from and significantly higher than the average

v-19

number, only those C, where the number of elements equals or

k
exceeds the average by at least 20% will be considered. A new
determination is made using just those values as nodal values by
the same assignment algor’'thm, A change is made at this time in
the assignment rules:

Rule 1, * P, ¢C, whend (C

Pi) <K. Whend (C Pi) <K and

} ¥y iy
d (Cjz’ Pl) <K, assign Pi to le and Cjz‘

Rule 2. * Ignore all Pi such that d (C Pi) > K for all j.

§*
This pass is repeated until no further changes occur in the clusters
or their elements. By this technique it is seen that when the true
nodal value falls between two clusters (by chance of ordering the
original pattern), the two clusters will coalesce into one cluster.
Description of Pattern Data and Resulting Clusters

For the experiment, 100 simulated pattern values were obtained
from a random normal number table. The 100 numbers are listed
in Table XXVII and are divided into two groups. The first group
was centered about 30 with a standard deviation of 10; the second
group was centered about 60 with a standard deviation of 10. Then
the numbers were scrambled as shown in Table XXVIII by the rule:
start with column 1 of this first group and transcribe the number,
If the number ia even, continue with the firat group. If the number

is odd, take the next number from column 6-- the first column

of the second group. If the number from the second group is
even, continue with the second group. If the number is odd,
take the next number {rom the {irst group. Repeat until all

the numbers have been transcribed,

6-20

The experiment was performed three times with K equal to 8, 10
and 12, The resuits of the first pass are shown in Tables XXIX,
XXX and XXXI while the results for the second pass are shown in
Tables XXXII, XXXIII and XXXIV, Seven clusters were formed

for pass one at width K=8 and K=10 while six were formed at widtbh
K=12, Table XXXV summarizes the results of pass one, displaying
the nodal values and the number of elements in each cluster for
widths, 8, 10 and 12 respectiveiy., Table XXXVI displays similar
irformation for the results of pass two.

Examination of Table XXIX indicates that clusters 3 and 6 for width
K=8 exceed by more than 20% the value of i4 to 15 members per
cluster that would be expected if the 100 patterns were uniformly
distributed over the 7 clusters, Accordingly on pass 2 for K=8, the
100 patterns are matched against the nodal values of 32 and 58 and
are assigned according to Rules 1* and 2*, Similar procedures
are followed for re-evaluating the clusters for widths K=10 and
K=12,

Jr pass two then, the number of clusters was reduced to two, three
and two for K equal to 8, 10 and 12, respcctivelv, It will be noted
that the clusters formed have nodes quite cloce to the original
»a:.188 with the exception of the second cluster formed for width 10,
Howaever this latter clust2r has significantly fewer elements than

either of the other two clusters,

6-21

Column A of Table XXXVII shows the number of operations that
would be performed in 2 computer with a conventional memory in
carrying out this experiment and Column B shows the number

that would be performed using a computer with an associative
memory,

Before comparing this data, it will be useful to explain how the
comparison figures relevant to the computer with the conventional
memory were caiculated.

The figures given in Column A for the total number of comparisons
required for each pass and each width using a computer with a
conventional memory were all arrived at by‘comparing each new
pattern against the total number of clusters that has been formed
up to that time and assigning the pattern according to the decision
rules., In order to demonstrate this procedure, the figures of 645
comparisons for pass 1 with K=8 and of 562 comparisons for pass
1 with K=10 will be explained in some detail.

For pass 1 with K=8, the patterns in Table XXVIII are examined
row by row, i.e. from left to right, top to bottom. Accordingly,
19 becomes the first member of and the nodal value of cluster 1.

6 is matched against 19, is found to be too far away and so becomes
cluster 2, 30 is matched against clusters 1 and 2 and bécomes
cluster 3, 42 is matched against clusters 1, 2 and 3 and becomes
cluster 4. Continuing with row 1, 18 is matched against the four

clusters and i8 assigned to cluster 1, 35 is assigned to cluster 3, 71

6-22

becomes cluster 5 after being matched against the four clusters,

56 becomes cluster 6, 56 is assigned to cluster 6 and the last mem-
ber of the first row, 69, is assigned to cluster 5, Thus the number
of comparisons required to assign all the members of the first row

may be evaluated as follows:

row element no. of comparisons required

19 0 (begins cluster 1)
6 1 (begins cluster 2)

30 2 (begins cluster 3)

42 3 (begins cluster 4)
18 4

35 4

71 4 (begins cluster 5)

56 5 (begins cluster 6)

56 6

69 8

35 = total for row 1
Continuing with row 2, it is found that all members of the second
row are assigned to the six existing clusters. Thus row 2 requires
. 10 x 6 or 60 comparisons. In the same fashion, it is found that all
members of row 3 are assigned after six comparisons each.
However the last member of row 3, 81, becomes the first member

of cluster 7. This turns out to be the last cluster formed, The

6-23

e o o b

members of the remaining seven rows are all assigned to these
seven clusters after seven comparisons each. Thus the total num-

ber of comparisons required for pass 1 with K-8 is:

row no. of comparisons required
1 35
2 - 60
3 60
4 70
5 70
6 70
7 70
8 70
9 70

10 70

645 = total number of
comparisons for pass 1 with K=8,
For pass 1 with K=10, the patterns in Table XXVIII are examined
column by columr, i.e., top to bottom, left to right. Thus, 19
becomes cluster 1, 57 becomes cluster 2, 18 is assigned to
cluster 1, 30 becomes cluster 3, 34 and 31 are assigned to
cluster 3, 62 {s assigned to cluster 2, 58 is assigned to cluster

2, 75 becomes cluster 4 and the last member of column 1, 28, is

6-24

assigned to cluster 3. Thus for column 1, the number of com-

parisons required is:

column element fo. of comparisons required

N 19 0 (begins cluster 1)

57 1 (begins cluster 2)

18 2

30 2 (begins cluster 3)

34 3

31 3

62 3

58 3

75 3 (begins cluster 4)

28 4

24 = total for column 1
Continuing with column 2, it {8 found that the first element of
column 2, 6, becomes cluster 5 and the fourth elemont 44, becomes
cluster 6, The remaining elements of column 2 and the members of
of columna 3 through 10 are assigned to the six clusters afier six

comparisons each until the seventh element of column 10, 87, is

reached, which becomes cluster 7. The last three elaments of

column 10 thus require seven comparisons each. The total

€-25

number of comparisons required for pass . with K=10 i8 therefore
calculated to be:
column no. on comparisons required
v
1 24)
2 55 .
3 60
4 ~ 60
§ 60
6 69
(60
8 60
9 60
10 63

562 = total number of
comparisons for pass 1 with K=10.
For pass 1 with K=12, the data in Table XXVIII is again examined
column by column yielding a total of 475 comparisons.

CONCLUSIONS

For the data in column B of Table XXXVII it is evident that the
number of comparisons is equal to the number of items examined,
Examination of and comparison of Columns A and B of the table
leads to the following conclusions,
(1) In a computer with an associative memory capability, the

number of comparisons that must be performed {rr any pass

6-26

depends strictly on the number of items that are examined,

The number of comparisons is independent of the number of

clusters formed during that pass,

In a computer with a conventional memory the number of
comparisons that must be performed depends on both the
number of items to be examined and the number of clusters
formed. Roughly speaking, the number of comparisons for
pass 1 is very nearly equal to the product of the number of
items examined times the number of clusters formed. For
pass 2 and succeeding passes, the number of comparisons
needed is exactly equal to the number of items times the
number of clusters,

From (1) and (2), it is evident that the associative memory
capability always effects a reduction in the number of comp-
arisons that mus “e performed, It is further evident that the
ratio of improvement w;ll increase as the number of clusters

formed increases.

TABLE XXVII, TWO SETS OF PATTERN VALUES

First Group Second Group v
19 40 34 35 31 57 76 69 51 51)
18 17 | 42 | a9 26 62 68 | 57 56 | 47)
30 30 24 39 31 50 31 64 30 60
34 32 25 10 33 75 59 55 53 69
31 31 26 45 33 60 67 60 69 81
28 38 18 43 19 44 71 71 60 59
6 30 34 23 25 69 78 48 63 81
33 42 21 24 9 83 64 42 56 53
42 32 42 21 22 60 58 53 47 63
24 33 35 44 11 60 57 80 69 49
x = 29,3 y =59.9

6-.8

TABLE XXVIII. THE FIRST \ND SECOND GROUPS SCRAMBLED

|-, |r 6 30 2 | 18 35 71 26 56 69
B 22 32 34 69 43 30 47 9
18 60 31 33 21 49 48 53 33 81
39 44 60 59 71 57 42 44 69 22
74 89 60 34 42 39 53 31 33 11
| 31 | 42 76 42 35 64 23 69 61 59
62 24 68 24 78 | 55 80 60 19 | 8
58 49 31 25 g4 10 51 63 47 53
75 17 36 67 58 45 24 26 25 63
28 63 30 26 57 60 21 a1 60 49

6-29

TABLE XXIX. FORMATION OF CLUSTERS WITH K=8

PASS 1
Cluster: .
1 2 3 4 5 6 7 -
19(17 | 6 | 30f3031 | 42j42 | 71067 | s56]s3]63 | s1
18]24 | o | 35]34 43|40 | 69 56 | 6453 | 78
18|26 | 11 | 3534 a7 |47 | 69 5716158 | 80
212 | 10 | a2]a a8 {38 | m 60 |59 63 | 87
22 | 26 32|33 44145 | 69 49 | 62 | 63
23 | 21 34 | 31 a2 |49 | o9 53 | 55 | 57
24 30 | 35 | 76 60 | 60 | 60
24 Tl alar| | a2| | es| | s9|ss]eo
19 33 | 28 39 68 57 | 64
25 33 | 20 42 75 60 [51

6-30

TABLE XXX, FORMATION OF CLUSTERS WITH K= 10

PASS 1
Cluster:
1 2 3 4 5 6 7
19 {21 57157 |63 30 132 |31 75 |69 6 44 | 43 87
4 —t

18 | 19 62 | 57 | 56 34 {33 |33 69 |69 10 42 | 48

24 |25 58| 64 [61 31134)33 76 | 69 i ~9~ 40 42

17 |22 60| 55 | 60 28 | 26 68 |81 | 11 38 | 44

24 63] 60 | 59 33 3—4 67V - 42 | 47

25 60 53 | 53 30 {35 71 42 | 47

18 60| 51} 63 32 |35 78 42 149

21 59 | 56 31 30 69 49

23 64 | 53 1 31 317 71 39

24 581 60 30 | 26 _ 80 45

6-31

TABLE XXXI. FORMATION OF CLUSTERS WITH K= 12

PASS 1

Cluster:
1

19 |23

18 | 24

30 {21

24 | 26

17 119

24 | 25

25 | 22

26

18

21

TABLE XXXII., FORMATION OF CLUSTERS WITH K=8

" PASS 2
Cluster:
R 2
30 31 35 25 57 57 63
34 38 35 62 57 56
31 30 39 58 64 61
28 | 32 24 60 55 60
33 33 30 i 63 60 59
24 34 31 60 53 63
40 24 26 60 51 53
30 25 31 59 56
32 26 33 64 53
31 34 33 58 60

6-33

TABLE XXXIII, FORMATION OF CLUSTERS WITH K=10

PASS 2 '
Cluster:
, .
30 31 34 31 34 35 a7 67 | 53 r 60
34 38 21 33 44 35 62 64 | 51 69
31 30 35 25 42 49 58 58 | 56 59
28 32 35 22 40 39 60 57 | 53 53
33 33 39 38 45 69 69 | 69 63—?)
24 34 23 42 43 63 49 | 60 49
40 24 24 34 48 60 57 63
30 25 21 42 42 60 64 | 56
32 26 31 34 53 68 55 69 i
31 | 30 | 26 42 | 51 59 60 | 61
i

6-34

TABLE XXXIV., FORMATION OF CLUSTERS WITH K=

PASS 2
Clustes:

1 2
30 32 24 48 33 57 67 6¢
T
34 31 25 42 47 62 64 67
31 31 26 24 25 58 58 “_;
28 38 34 30 60 57 60
33 30 | 42 44 69 69 8o
44 42 35 31 63 57 5¢.
42 32 35 26 60 64 : 5:
24 33 39 31 60 6;1 ; 8
40 34 45 417 68 55 1— i

30 42 43 33 59 60 J'

6-35

e

TABLE XXXV, SUMMARY OF BESULTS OF PASS 1
Width K=# Width K- 10 Width K=12 .
Cluster | No, of [Nodal ~",lusterr No., of |Nodal |Cluster: No, of Nodal e
No. |{Elemente|Value No, Elements| Valur No. Etements | Value .
— SV S . [S U S - - PRSI S—— ’
1 16 20 i 4 21 1 17 22
PN - - [EPRSRY S - e SV VU SO ——
2 4 { 9 2 27 59 2 30 58
3 21 32 3 23 31 3 34 25
4 16 43 4 14 72 4 14 72
5 11 70 5 4 9 5 4 9
— —— — b i e —
6 28 58 6 17 —1 44 a 1 87
7 4 81 7 1 87 - l - -
._\.
!
6-36

TABLE XXXVI,

SUMMARY GF RESULTS OF PASS 2

Width K+ 8 Width K= 10 Width K-z
FCIuster No. of |Modal {Cluster! No. of | Nedal Clusterr No, of ! Nodal
No, |Element:; Value No., |Elements Value# No:A ! Flir_mrlts__\iﬂlt_
u 1 31 31 1 34 3u 1 43 35
2 27 59 2 20-‘"‘%“4-2“ —?: d 39 59
- - - 3 36 60 - - -

6-37

TABLE XXXVII. SUMMARY OF COMPARISONS

A B
Pass 1, K-8
Number of Patterns Examiucu 100 100
Number of Clusters Found 7 7
Number of Comparisons Required 645 100
Patterns/Cluster (Average) 14.3 14.3
Comparisons/Pattern (Average) 6.45 1.0
Pasg 2, K=8
Number of Patterns Examined 100 100
Number of Clusters Found 2 2
Number of Comparisons Required 200 100
Patterns/Cluster (Average) - -
Comparisons/Pattern (Average) 2.0 1.00
Pass 1+ Pass 2, K=8
Number of Patterns Examined 100 100
Total Number oi Comparisons
Required 845 200
Comparieons/Patiern (Average) 8.45 C(A) 2,00 CBY
(C{A) and C(B))
Ratio of C(A) to C(B) 4.225t0 1,0

6-38

TABLE XXXVII. SUMMARY CF COMPARISONS (Cont'd)

-

T B { 7 A B
Pass 1, K- 10
! Numi. rv of Patterns Examined 190 100
Number of Clusters Found 7 7
Number of Comparisons Required 562 160
Patterns/Cluster (Average) 14,3 14,3
Comparisons/Pattern (Average) 5.62 1.0
Pass 2, K=10
Numb-~.r of Patterns Examined 100 100
Number of Clusters Found 3 3
Number of Comparisons Reguired 300 100
Patterns/Cluster (Average) - -
Comparisons/Pattern {(Average) 3.0 1.6
Pasa 1 + Pass 2, K=10

Number of Patterns Examined 100 l 100
Total Number of Comparin-
Required 862 20C
Comparisons/Pattern (Average) 8.62 C(A) 2.00 C(Bi
C(A) and C(B)
Ratic of C(A) to C(B) 4.31to 1.0

6-3Y

TABLE XXXVII. SUMMARY OF COMPARISONS (Cont'd)

1
A B .
f’ass 1, K=12
Nuinber of Patterns Examined 100 100
Number of Clusters Found 6 6
Number of Comparisons Required 475 100
Patterns/Cluster (Average) | 16,07 16,67
Comparisons/Pattern {Average) 4.75 1.0
Pass 2, K=12
Numbcr of Patterns Examined 100 100
Number of Clusters Found 2 2
Number of Comparisons Required 200 100
Patterns/Cluster (Average) - -
Comparisons/Pattern (Average) 2.0 1,0
Pass 1 + Pass 2, K=12 '
Number of Patterns Examined 100 100 i
Total Number of Comparisons :
Ronutrad 675 200 s 3
Comparisons/Pattern (Average) 6.75 2.,0C(B) .
C(A) end C(B)
Ratio of C(A) to C(B) 3.375t0 1.0

6-40

SECTION VII

MATHEMATICAL STUDIES

This section of the report discusses three studies that were conducted: a
study of the possibility of develeping a data distance measure; investigation of
structured operation sets to be used in an associative processor; and a study of
associative techniques for numeric processing. As might be inferred from their
titles, these topics are somewhat peripheral with respect to the main design
areas. However, they were selected because they offered promise of extending
and improving associative processor capability.

Each of these three studies is self-contained and was conducted independently
of the other two. None of the studies led to special processor designs (nor were
any such designs intended). However, the results of the studies shcild provide
subplementary guidelines to processor designers by supplying them with some

simple, useful sets of operations for the processor,

DISTANCE MEASURE

In many military and commercial applications involving text processing, the
probability of a significant error rate in the input is quite high. Error correc-
tion on present applications is performed manually or by complicated software
at considerable expense. This study was undertaken to investigate lexical
distance measurea with potential for being implementeu readily on associative

processors,

7-1

In order to perform speiling correctio) . it will be necessary to compare
werds and to define in some meaningful way a distance between words. The
definition of '"distance between words" is non-trivial because words can differ
by only one letter, yet their meanings may be completely different. For
example, in the set (phone, shone, shore, short, shirt), each word differs by
only one letter from its successor and predecessor, so that in one easily
measured sense — number of common letters — these words are near each
other. In a semantic sense, their distance is arbitrary since the mearing
changes arbitrarily by substituting one letter for another. Consequently, word
comparison techniques will be based either on semantic considerations or on
mechanical features of a word but not on both. This study is concerned with
developing distance measures based solely on such mechanical features as
word leogth and spelling and io Zimed at transcription and transmission errors,
not content errors,

To begin with, attention is restricted to the following iour causes of word
errors:

1. Letters in the word are permuted or scrambled, e.g., COULDS,

instead of CLOUDS

2. Correct order, but use of nne or more incorrect letters, e.g.,

SEVIRIL instead of SEVERAL,
3. Too many letters, e.g., TELLEPHONE instead of TELEPHONE.

4. Mie=ing letters, e.g., TRIFIC instead o1 [ERRIFIC.

The selection of word errors 28 the oncs to be analyzed was based on the
results of an error study conducted by IPM under the 438L contract and reported

in the working paper AIDS System Communication Error Stuay, 29 November 1961.

Each error cause is examined separately and some distance measurements
based on these errors are developed. To aid in the analysis the following
nu.ation is used: n denotes the number of letters in the longer of the two words
being compared. For errors 1 and 2, n is evidently the length of both words.
The interchange of any tvo adjacent letters in a word is a transposition. Other
potation is defined as appropriate,

Turning now to error 1, it is evident that a scrambled word may be un-
scrambled by a sequence of transpositions. It is known from eroup theory that
this process is well defined and the number of transpositions required may be
obtained by inspection of the permuted word. For a word n letters long, the
maximum number of transpositions is required if the word is spelled backwards.
This is obviously the worst case. Further, it is known that this maximum number
is 1/2 (n) (n-1). If T is used to denote the number of transpositions actually
required to unscramble a word, then one might consider as a distance measurc

the ratio
DX1) = T/3 () (-1).

D(1) has the advantage that its value lies between zero and one, However, 1t
turns out that D(1) i8 not a very good measure, for in most cases, T will be
either one or two thereby yielding an inreasonably small value for 1). In

other words since the number of transpositions, T, will never even approach

7-3

the value-é— {n) {n~1) in actual cases, it i8 unreasonable to normalize T with
respect to-zl- (n) (n-1). A more reasonable normalizing factor is n. Consequently,
for error 1, let the distance betwcen two wurds be given by Rule 1: D(la) = T/n.
Of course with this new definition, there now arises the possibility that T will

be greater than ., yielding a distance greater than one. However thiv possibility
is more theoretical than real, since as has already been stated, the distauce will
be of interest only when T is a fairly small sumber.

For example to demonstrate Rule 1, suppose the words are TRAVEL and
TARVLE, and suppose that TARVLE is compared against TRAVEL., Each letter
of TARVLE is examined to determine if it is in proper order with respect to the
letters following it, i.e., the letters to the right of it. The examination shows
that A is out of order with respect to R and L is out of order with respect to E.
Hence A and L will each require one iransposition so that a total of T=2 trans-
positions will permute TARVLE into TRAVEL. Since TRAVEL has six letters,
it then follows that

D{1a) = 2/6 = 1/3.

For error 2 the occurrence of one or more incorrect letters, the obvious
measure to use is to count the number of positions in which the characters
disagree. In order to normalize this measure, the number of non-matching
positions should then be divided by n, the length of the word. If K denotes the
number of positions in which the two words disagree, then for error 2 the
distance is given by Rule 2: D(2) = K/n. Evidently D(2) lies between zero and
one. An example for rule 2 may be constructed by compc ring SEPLRADE
against SEPARATE. The two words disagree in the {ourth and seventh positions

so that K = 2. Since n = 8, D(2), = 2/% = 1/4.

7-4

Errors 3 and 4, too many letters and missing letters, may be treated as
one case by observing that both errors imply that words of unequal longth are
being compared. For error 3, the problem is the .ncorrect word has tvo many
letters while for error 4, the situation is reversed —~ the incorrect word has
too few letters. In either case, the fullowing procedurz for comparing words
i8 applicable:

1. The words firsi are left ius..fied. Regardless of which word is the
correct one, the shorter word is completed to the lengtt of the longer by

adding null characters, labeled as *, to the end of the shorter word. Now both

words are n characters long, where p is obviously the length of the longer word.

Next, corresponding characters in the two are examined and a trial word
L= Ll ... 1 s formed, where 1, is * if the two words disagree in
position i and 1i is the common character, denoted as Ci’ if the two words
agree in the i-th position, Evidently the trailing char icters of L must all be
* gince *'s were added to the end of the siorter word.

2. Next, right justify the two words and complete the shorter word to the
length of the longer by adding *'s at the beginning of the snorter word. Again,
examine the corresponding characters in the two words and form another trial
word R = T Ty« Ty where r, is * if the two wovrds disagree in position i
and r, is the common rharacter C1 if there is agreement in the i-th position.

3. Finally the trial words are compared with each other to produce a

most probable word P = Pi. .. Fn. The comparison of L ~nd R is performed

by "OR-ing" corrasponding characters. Consequently it follows that

Pi = Ci if either 1i is Ci orr,is Ci or both are Ci;

i
P1=*ifandonlyifboth liandriare *, .

It shouid be pointed out that there is no possibility that 1i and r; can equal

different characters. This may be shown by the folloving considerations. If 1:',

ig (‘i, this indicates that position i of the two words, left-justified, contains Ci' ‘4.
Ifr is C', then ' is in poeition i of the two words, vight-justified. But the a
i-th position of the longer word left justified is the same as the i-th position of
the longer word, right justified so that Ci = Ci"

The distance between the two words i8 given by Rule 3: D(3) = w/n, where
u is the number of *'s in the probable word P and n is the number of characters
in P.

As one exainple of this technique, consider the comparison of COULDS and
COLDS. [r’rst, left justify the two words and complete COLDS to a six character
woxrd by adding one * after S, Then COULDS and COLDS* yield L = CO**#**,
Right justifying and adding one * before C leads to the matching of COULDS and
*COLDS which produces R = ***LDS. Finally the "OR-ing" of L and R shows
that P = CO*LS. Hence by Ruie 3, IX3) = i/6. A

A second example is given by comparing COAGE with COURAGE. Leflt ? |
justify and complete COAGE to the length ol COURAGE by adding two *'s after .
E. Matching of COURAGE and COAGE** produces L = CO*¥*** Nuxt, right
justify and complete COAGE by adding two*'s ahead c¢f the C. Matching of
COURAGE and **COAGE produces R = ****AGE. Then the "OR-ing" of L and R

yiclds P = CO**AGE, 8o that by Rule 3, IX3) = 2/7.

7-6

A few comments are in order regarding the formuiation of Rule 3. At tirst
ii was plunned to treat separately errors 3 and 4, However, a few test cases
indicated that irying to distinguish between the problems of too many letters and
too few letters was needlessly confusing. Development of a standard rule for
comparing words cf unequal length, without regard to which is the correct one,
is the preferred approach.

To demonstrate these rules, consider the comparison of the test word
COTILDS against a list of correct words. COULDS will be said to match that
word in the list to which it is closest according to any of the three cistance
measuring rule.. The list of correct words in alphabetical order is given in
the first column of Table XXXVIII. The second column states the rulc which
yielded the minimum distance. The third column lists the distances betv-een
COULDS and each of the correct words. From this cclumn it is seen that
COULDS is closest to the word COULD by Rule 3 and so will be said to match
that word.

To accomplish these measurements in a conventional computer would
require, generally speaking, that COULDS be compared against the correct
words one at a time. On the other hand, an associative memory capabiliiy will
permit the simultaneous comparison of the test word against the full list of
correct words, Hence one may reasonably conclude that an associative memory
capability reduces the number of comparisons required by a factor that is
approximately equal to the number of correct words that are being matched

against the test word.

TABLE XXXVIII. DISTANCE MEASURE EXAMPLE

Test Word: COULDS

Correct Word L.st

Rule use to yield

(alphabeticai order) minimum distance Distance
BOARDS 2 1/2
CLOUDS la 1/3

cT 3 1/6
COULEES 3 2/1
COULOMBS 3 3/8
COUNTESS 3 1/2
COUNTS 2 1/3
COWARDS 3 3/17
MOUNDS 2 1/3

COULDS is closest to COULD.

STRUCTURED OPERATION SET _ﬂ{,~"

This section of the report will discuss studies that were made during the
investigation of the proposed development of a structured set of operations for
the issociative processor.

At the outset, a distinction will be drawn between the concepts of a structured
set of operations and a structured operation code. The two ideas may contain
overlapping features but neither necessarily includes the other. This investiga-
tion was concerned with the subject of a structured - ot of operations. However
it will be useful to start by discussing briefly the concept of a structured
operation code since this is perhaps the more familiar idea.

When one examines the operation instruction codes of the IBM 7094, one
notices that the codes resemble those that might be used to structure an
organization such as a mamufacturing concern. That is t~ say, the codes
represent a partition of the functions performed by the computer and the

business respectively, as shown in Table XXXIX, but they are not organically

or hierarchically related. Codes 03xx are neither inferior to nor subsets of
codes 04xx. Since the codes are independent, it is not feasible to combine
instructions simply by combining their respective codes in any meaningful way,
i.e. one instruciis followed by another usually will not produce the same
result as an instruction whose numeric code is some logical or numeric
combinativn of their respective codes.

However it should be noted that within one of the subsets of the partition,
it may be feasible to consider a structured set of opcrations which would be

applicable only within the subset. Referring once again to the IBM 7094,

examination of the 03xx codes indicates that most of them deal with the operations
of addition and subtraction in the floating point mode. In addition, consideration
is alsc given to the features of precision, normalization and signature. Thus
altogether there are in the floating point mode, sixteen possible add-type instruc-
tions which are formed by taking all combinations of add or subtract, single or
double precision, normalized or unnormalized, signed or unsigned, i.e.
magnitude. A typical instruction is DUSM, octal code -0307; double precision,
unnormalized, floating point subtract magnitude. By inspection of the codes
0330 through -0307, it is seen that all sixteen possible instructions are actually
available and furthermore the unnormalized operations are characterized by
having a minus sign in their octal codes. Thus one may conclude that there is
a simple structure in this subset of operations, exhibiting ihe features of
completeness and attribute characterization (at least for a single attribute).

Turning now to the problem of developing a structured set of operations, it
would appear at first glance that some sort of hierarchic arrangement would be
the most desirable and useful form for the stricture to take. The reason for
suggesting a hierarchic arrangement is that there are at least three levels of
computer instructions which are so related: commands to open various gates,
test triggers, otc, which are combined to form micro instructions; micro
instructions which are put together to produce the so called machine instructions,
and the machine instructions, which usually stand alone.

One example of a hierarchy is furnished by chemistry in which elements
combine to form compounds. Further as shown in Table XXXX, an analogy can

be drav'n between the building blocks of chemistry and those of computers. As

7-10

is well known, thec isotopes and the chemical compounds indicate by their
formulas not only the elements from which they are formed but the proportion
or amount of each element in the compound. Thus, H2 SO 4 shows that one
molecule of sulfuric acid is composed of two atoms of hydrogen, one of sulfur
and four of oxygen. It is clear that one function of a structured operation set
would be to obtain an analogous representation go that for example the code
(or formula) for a machine instruction would make it possible to identify the
micro-instructions which combine organically, so to speak, to form the
machine instruction.

However it soon becomes clear that computer instructions are sufficiently
complex so that such a code would perhaps be very lengthy, and a lengthy code
would be self defeating as its length would prohibit it from serving its purpose —
making clear to the user at a glance the functions that are being performed.
Consequently in developing a hierarchic structure, careful attention must be
given to the resulting code.

Since the computer operations are not all caual in the sense that mathe-
matical operations are, a structured set of operations may prove to be un-
necegsarily confining. In mathematics and especially in arithmetic, one has
operands which can be manipulated according to certain opcrations. For
example, numbers can be added, multiplied or divided. Although these
numbers may vary in magnitude, they are equal in the sense that the operaticns
treat them in the same manner. No number is given preferential treatment
(excluding the case of division by zero), and the operations themscelves are

comparatle,

7-11

This comparability of operations no longer holds when computer operations
are considered. To be sure, computer arithmetic instructions such as clear
and add, add magnitude or subtract do have sir ar features. But what can
one say about the relationship among the operations of loading, branching and
1/0? It would appear that such instructions have little in common. In other
words, computer operations are much ""richer' than mathematical operations.
Furthermore when micro-instructions are combined to form a machine
instruction, it is usually found that the sequence alone is not sufficient to
describe the instruction. Another parameter must be specified — time, or
more precisely, the times between certain subsequences of micro-instructions.
Thus, the inst-:ction is more complex by far than the sequence of micro-
instructions which compose it.

Because of these reasons, the development of a structured set of operations
which will encompass the entire computer appears not to be feasible. If one
considers the problem combinatorially, it is evident that so many combinations
of instructions (with their associated timings) are possible that an overall
structure encompassing all such combinations seems not to be attainable.
However, as in the case of the IBM 7094 codes, it may be possible to develop
structured sets of micro-instructions which will apply only to specific classes
of instructions such as control or floating point or shifting operations.

In conclusion, while much remains to be done in the development of a
structured set of operations for the processor, it would appear that the concept

is still a valid one especially for certain classes of operations.

7-12

TAB:.E XXXIX. COMPARISON OF PARTITION-TYPE CODES

Octal Codes for the IBM 7094 instruction set

00xx: transfer and other control

02xx: multiply, divide, floating multiply, floating divide
03xx: floating. add, subtract, logical

04xx: add. subtract, logical, control

05xx: loald. reset. ontrol
06XX; Stoie
07xx: place

Typical numeric codes for a business organization
00xx; headquarters

01xx: comptroller

02xx: marketing

03xx: engineering

04xx: manufacturing

05xx; distribution

TABLE XXXX. COMPARISON OF CHEMICAL AND COMPUTER
HIERARCHIC STRUCTURES

Chemistry Computers
1. electrouns, protons flip-flops, gates, levels
2. atoms micro-instructions for micro-
programming
3. elements machine instructions
Na, Ca, Cl, C CLA, TRA, ANA
4. heavy hydrogen special machine instructions,
RDCA, RDCB
5. chemical compounds macro-instructions
NacCt, CC14. il2804

NUMERIC PROCESSING

This section discusses how an associative memory may be used in problems

that are numerically oriented. Areas in the {ield of numerical analysis are:

L]

Interpolation

Numerical difierentiation and integration
Numierical solution of differential eruations
Least squares polynomial approximation
Quadrature methods

Approximation methods

Numerical solution of polynomial eauations
Numerical solution of sets of linear equations
Numerical methods for matrix inversion

Numerical computation of the eigenvalues and eigenvectors of a matrix

It may be stated tha! for a computer to perform efficiently on these problems—

whether or not it is equipped with an associative meinory feature—the machine

organization must have registers, adders, etc.

The question may be raised as to how an associalive memory may be ex-

ploited to help solve numeric problems, or putting the matter more precisely:

are there important numerical techniques which can be implemented most suc-

cessfully on a computer with an associative memor'? This question is nontrivial

since many of the techniques which have been developed over the past several

hundred years have been predicated on the assumption that computation would be

done by hand. It is thus entirely possible that some of these techniques are not

well suited to execution by a programmed calculator and indeed this turns out to

be the case.

A

In order to obtain some results in depth, it was necessary to limit the
scope of the inquiry to one or two important numerical problems. Because of
their occurrence in a wide variety of applications, matrices appeared to offer a
good cholce for concentrated attention.

The chief numerical problems connected with matrix operations are the
computation of the inverse of a matrix, the reduction of a matrix to either tri-
anguwar or diagonal form and the computation of the eigerv~'"~< and eigenvectors
of a matrix.

In the course of ~omputing solutions for one of the above problems, it often
becomes evident that the results of the computation may prove to be meaningless
because ot the loss of precision due to round-off errors. It thus becomes clear
that the magnitude of the matrix entries is of surpassing importance. If certain
entries are much larger than others, then these numbers will influence heavily
the entries in the inverse matrix as well as the size of the eigenvalues and eigen-
vectors. Consequently, many of the matrix reduction techniques developeu over
the years require for their success the identifying and relocating of the entries of
largest magnitude.

The various pivoting techniques are more effective if the pivotal elements !
are the largest numbers respectively in each row. Now searching for a good
pivot is feasible if the computing is being done by hand or with a dcsk calculator,
However, such searching techniques clearly cannot be easily programmed for
existing computers. They are too time consuming. i

When an associative memory capability is added to a computer, however,

the searching no longer appears to be such a problem. Pcrhaps the best way to

7-19

see how an asscciative memory can be used is to go through briefly the process
of reducing an n x n square matrix whose entries are real numbers. The cb-
ject is to reduce A to A' which is a matrix having non-zero eatries along and

above the main diagonal and zeroes below the main diagoral. Figure ¢2 depicty

Aand A'.

11 12 In
391 p 7 T T "8y,
A = (aij) =
41 2" T T "
b11 Do~ - - "B
0 Byg = = - ~ by
A' = (O =
(‘,j) .
a3
bn—l' n
0. 0
an

Ffigure 22, Reduction of a Matrix to Upper Triangular Form,

The reduction process will be explained as a series of steps.

Step 1
Search for the largest element in A ard by interchanging rows and columns,
bring this larges. element - poeition (1,1). If this largest element had orig-
inally been in position (7,9), say, then after the interchange it will be at (1,1)
and A11 will be at (7,9). Notice that the search operation is easily accuinplished

with an associative memory.

Step 2
Reduce the rest of the entries of column 1 to zero by multiplying row 1 by

akl/all and subtracting from row k. for k = 2, 3,..., n, respectively.

Step 3

Search for the largest element in the (n-1) x (n-1) minor (aij). wherei=2,...n,
j=2,...,n. Note that because of steps 1 and 2, these entries will be much dif-
ferent from the corresponding original entries in A. Bring this largest element

to location (2, 2) by interchange of rows and columns.

Step 4

Reduce the entries in column 2 which are below (2,2) to zoro by multiplying row

2 by akz/a22 and subtracting from row k as k = 3,4,...,n, respectively.
Continuing this process, it iz seen ‘hat in general after the untries of col-

uraa k below (k. k) have been reduced to zero, the largest element in the re-

maining ((n-k) x (n-«)) m:nor is chusen and brought to position (§+1), (k+1))

and the remaining entries below ((k+1), &+1)) in cclumn k+1 are reduced to zero.
Notic: that the final computation will be that in which row n-1 is multiplied

by s and subtracted {rom the last row. The entry at (n,n-1)

n'n-1/a .
‘"n-1, n-i

w - ;e rcduced to zero and the last entry at (n,n) will be simultaneously ob-
tained. At that point, A will have been reduced to A'.

If this method 18 used to solve a system of equations AX -~ T, where X is a
column vector of unknowns and T is a column vector of constants, then the
interchanges called for by Steps 1 and 3 will also affect the components of X and
T. Te be specific, iuterchanging rows p and q of A will cause components tp
and tq of T to be interchanged while interchanging columns U and v will result
in the interchange of Xu and Xv. Certain bockkeeping routines will be needed to
keep track of these changes. These will be explained in more detail later.

A few cornments are in order regarding the role that an associative memory
has played in this reduction. An associative memory has ot improved or
changed the manner in wa:ch the elemenis . .. thc diagona! are reduced to
zero. In other words, the strictly arithmetic processes called for proceed the
same way in a computer with an associative memory as in a regular machine.
Rather the chief contribution of an associative memory has been to facilitate
‘he search for the largest element in the various arrays.

As mentioned above, the interchange of columns will cause the components
of X to be switched. In order te keep track of these changes, it will be neces-
sary to tug each ve~tor position 8o as to indicate which of the original unknowns
is now occupying which position in X. The following example will demonsirate
the r2labeling of the vectors.

Example. Suppose for definiteness that the matrix is 9x9. The unknowns
then are denovied by the 9 comrponent veclor)(0 where Xo = (X‘m. xz‘z’,

Xam.. .. ,.'(,,(9). In v iplanation of X(‘:), the subacript i refers to the column

O . o otk smn e

position in the array. The superscript (j) denotes which of the original vectors
is occupying the i-th position. Naturally at the beginning i=j as is indicated by

Xo.

Step 1

Assume that columns 1 and 9 are interchanged. Then Xo becomes 1)(1 =
0 x @ ___x 8 (1))
(%, x5 x,

Step 2

Clear column 1 below the diagonal.

Step 3

Assume that columns 2 and 9 of the new array are interchanged. Xl ~ X2 =
(X (9)' X (1). X (3). ---, X (8), X (2)) Note that X (1) is correct because
1 2 3 8 9 7 2

ceolumn 1 went to position 9 by Step 1 and then to position 2 by Step 3.

Step 4

Clear column 2 below the diagonal.

Step S

Columns 3 and 9 switch.

- - {9) (1) (2) 4 __ (8) 3
Xy~ X, (x1 R N A L))

Step 6

Clear column 3 below the diagonal.

1-19

AR SRS AR [Rl

Step 1

Columns 4 and 8 switch.

K %,= (%9, %0, %@ x® x O x©® x O x® x0)
Step 8

Ciear

Step 9

Columns 5 and 7 switch.

X = 9 (1) (2) (8) (7) (6) (5) 4) 3)
X4~ X5 (xl X X X XU, XU X, X X)

Step 10

Clear

Step 11
Column 6 does not change. Xs “emains

S (x O x D x@ O 6 6 @ 4O
XS (Xl .X2 ’x4 ,X5 'x6 .X7 ’x8 'XQ()'

Step 12

Clear

Step 13

Columns 7 and 8 switch,

X = ®) (1) ¥ (2) o B 4 () 4 (6) 4 , 6) @
Xg=%g = (%, %0, x, X X X X X Xy)
Notice that X, “) and XB(S) are correct because column 4 went to position 8 by
step 7 and then to position 7 by step 13. Column 5 went to position 7 by step 9
and then to position 8 by step 13.

7-20

o~ ———

Step 15

Columns 8 and 9 switch.

6 7
Veuwor X, 18 the final arrangement anu the original unknowns now appear in the

- X = &) (1 (2) ‘8) (7N (6) 4) 3) ()
Xg = Xq = (xl), x,0, x4, %, %, » Xg 0 Xg T, Xg Ty Xg)

order (9,1,2,8,7,6,4,3,5). Notice that in the overall process the original col-

umns were 611'anged as follows:

Number of Changes

1492
293
398
487
5~7-8~9

T=5

9-1

[
b
uﬁs'HHHowNwNN

It is interesting to observe that the maximal number of changes for a single
column would occur if column 1 were successively interchangea with the next
higher column at each step, resulting in the following arrangements as the final
arrangemert of the components: (2,3,4,5,6,7,8,9,1). In terms of changes to
the original columns, this arrangement can be expressed as:

Number of Changes

122-3-4~56-T-8~9 8
-1 1
3-2 1
43 1

7-21

Number of Changes

54 1
6~5 1
T7-+6 1
8-~17 1
9-8 1

B

It has been suggested in several previous tasks that certain tags should be
associated with data items. From the foregoing discussion, it is evident that
such tags would be extremely useful for these matrix manipulations, for it is
clear that the column switching just described refers to a conceptual process,
not to an actual one. That is to s.v, the nine components of the vector will not
be physically moved about in the memory. Instead by use of the tag marker the
components will be simultaneously relabeled, thereby effectively simulating the
switching operations. The assoclative capability will thus facilitate the relabel-
ling process by permitting parallel examination and relabeling of all the
markers associated with vector components.

Turning now to the problem of computing the eigenvalues and eigenvectors
of a matrix, it will be shown that an associative momory capability will sig-
nificantly improve the computer implementation of one of the better known
techniques presently in use for dealing with this problem.

The techniques referred to are the method of Jacobi which was developed
for Hermitian matrices and which in practice is used chiefly for a real sym-
metric matrix. Reduced to diagonal form, the sum of the squares of the

diagonal elements of the original matrix i; always less than the sum of the

7-22

et —— ———

squares of the diagonal elements of the reduced form. For example the re- i

duced form of

T 6 1m oo\, .2,.2 2 2
(6 2)1s (o _2),7+2<11 + (-2)°.

Also, the reduced form of (g ;) is (9 g) and again

0
82 + 52 < 92 +42. The elements (11,-2) and (9,4) of the reduced forms are,

of course, the eigenvalues of the original matrices.
The second fact underlying the Jacobi method comes from observing that if

the above matrices are examined more closely it is seen that

62 +72 4 92 4 62

22 +82

=112 + (-2 and
+52 422 =92 + 42,
In other words, the increase in the diagonal elements of the reduced form over ;

the diagonal elements of the original matrix is accounted for since the off-

diagonal elements have decreased in magnitude to zero.

The method of .Tacobi malies use of these facts by finding a set of trans-
formations each of which decreases the off-diagonal elements and increases the
diagonal elements. Performig these transformaiions in «équence on a real §
symmetric matrix A will reduce it to diagonal form.

The method requires that at each step, the off-diagonal element a i of
largest magnitude be annihilated. Herein lies the problem of implementing
this method. For computation by present machine organizations, the search
for the largest element is too time-consuming. Consequently, the customary

practice is to program the method so that the elements will be annihilated in

7-23

some pre-assigned cyclic order. Unfortunately the cyclic order—annihilation
has two drawbacks. First, a larger number of transformations will be re-
quired. Secondly, and more serious it is possible that the sequence of trans-
formations may not in fact yield the reduced diagonal form. That the Jacobi
method does produce the diagonal form depends on annihilating the appropriate
elements, i.e., the largest element, at each step of the process. Since this
is not done when the elements are annihilated cyclically, special precautions
must be taken to ensure that the cyclic process does converge to the diagonal
form.

If on the other hand, the computer has an associative memory, the cyclic
order annihilation process with its accompanying drawbacks can be avoided.
Now with the associative memory capability it will be feasible and entirely
practical to search for the largest off-diagonal element after each transforma-
tion. Consequently the Jacobi method can be followed strictly from which it
neccssarily follows that the eigenvalues will be obtained after performing the
minimal aumber of transformations (as compared with the number required by
the cyclic order process) in a sequence whose convergence is guaranteed.

As has been stated, a prime requirement in carrying out the Jacobi
method—and one which is satisfied by the associative processor—is the ability
to identify quickly the largest of a set of numbers. Now as the final diagonal
form is approached, another, rather opposite, requirement appears. This
requirement is the ability to determine when the off-diagonal elements have
been sufficiently reduced in size so that they may all be considered to be, in

effect, zero. Such a requirement will arise because round-off and truncation

7-24

errors make it likely that the _{f-diagonal elements will never vanish exactly.
Evidently, the associative processor will satisfy this requirement for it is as
equally capabie of determining the smallest as well as the largest of a set of
numbers.

Summarizing then, one may conclude that the associative processor is
iniquely able to handle problems that require identification of the largest
(or smallest) of various arrays of numbers. Moreover this capability becomes
increasingly valuable when, as is the case here, the arrays are nc;t specified
in advance but instead are formed dynamically during some mathematical

process.

1-25

Section Vil

GENERAL PURPOSE ASSOCIATIVE PROCESSOR

INTRODUCTION

The major design effort was concentrated on finding hardware configurations
for solving problems which were identified in the initial phase of the project.
Studies on individual problem types resulted in designs which have been described
in other sections of this report. The remaining design effort, described in this
section, was to integrate selected logic of the individual problem processors into
an overall machine design. In addition, another study was performed on the pos-
sibility of applying mathematical theories of structure to determine a set of
operations for the processor, as reported in Section VII. The design of the
"overall processor' had the primary goal of exhibiting improved performance in
non-numeric areas over conventional general purpose computers of the sequential
von Ne':mann type. In particular, increased speed and ease of programming
were sought for non-numerical data processing probleras and the processing of

problems involving symbol manipulation.

DESIGN INTEGRATION GOALS AND APPROACH

The design of the processor was approached with a view toward general
purpose computer cauability, integrated with logic for processing non-numerical
pinblems, of the types studled, to retain the advantages of associative processing

on nun-numerical data, This may be expressed as a "covering problem," as

8-1

follows: given a set of individual processor designs, find a machine organiza-
tion in which a set of data paths and machine operations covers the individual
processor designs. For perfect "covering,' the machine should be indistinguish-
able from each individual processor in performing the task for which the proces-
sor was designed. The problem of "covering" is not precisely defined, although
its qualitative nature is clear. The problem is somewhat similar to the design
of an efficient progam, organized to use common subroutines as much as pos-
sible. This analogy suggests a potential loss of efficiency, analogous to loss of
execution speed due to linking operations for utilizing subroutines. A key issue
is eccnomy: an economical solution to the covering problem is desired so cer-
tain sub-machine organizations (memory, register data paths, and machine
operations) are common to many processor problems. Obviously the design
problem is not one which has a unique solution, nor is it one foi which the ob-
jective criteria are at hand for judging a solution.

An approach, which is more of a guide than an objective measure of design,
ié to seek performance according to the expected usage of the machine. Assum-
ing numeric processing will utilize machine facilities only 10% to 20% of the
operating time principal emphasis should be ou features for non-numeric proc-
essing, Related to this aspect is the question of how well a proposed design for
the processor satisfies the requirements imposed by the need to ""cover” the in-
dividual problem processors, with due weighting attached to efficiency of execu-
tion according to the percentage of machine operation time which will be used

on each of the problem types.

The present trend toward making a machine more usable to a community of
users (the comiaunity, as meant here, is comprised of technical or military
specialists of an organization) will be an established "modus operandi" by the
era of the general purpose associative processor (GPAP). Thus, hands-on pro-
gramming, time-sharing, real-time computing, and monitor operation are re-
quired capabilities. The total design of such an advanced operating system is
beyond the scope of this effort, but hardware for the system will include the re-
quired features. An advanced system capable of operating under supervisory
control is intended. The operational system will have the capability for building
on concepts which are foremost in the current state-of-the-art, whose major
innovations are related to the incorporation and usage of associative memories
and/or devices in the system.

A goal for the advanced processor is ease of programming. Particular
properties of the associative processor which will help achieve this goal are in-
herent in the ability to designate data by its name or by a property of the data.
Man can supply this information easier than he can give the address of data in
memory. For problems too difficult to think through to the point of determining
th. complete computer program and coding such a program for a machine, com-
puter languages are needed. These languages must be oriented to the way people
think through their problems; man-machine interaction is nceded. The use of
computer languages is simplified when the human specifies ''goals'" or some de-
scription of the result of computation, rather than the detailed steps by which

the computer achieves the resuit.

8-3

 ——

Another aspect, possibly the most challenging task for advanced computer
design, is the discovery of techniques for efficient and effective man-machince
communication. This goal is only paiiially achieved by making the machine an
interpreter of the language which the user finds most convenient for his prob-
lems. Additional features for man-machine communicAation. would consider the
operational environment of the system in more detail which is outside the scope
of this study. This study did consider the need to allow a programmer {o
either use the language best suited for his application, or design innovations and

modify the language without concern for developing and debugging software pack-

ages to compile his language.

THE GPAP SYSTEM

The machine organization for the associative processor is presented in
Figure 23. A relatively conventional general purpose unit (GPU) is shown,
whici: executes instructions cbtained from its core memory. An instruction
which indicates that an operation is to be performed by an associative unit (AU)
will also identify the AU, and cause the GPU to make tests to decermine whether
the AU can perform the operation. If successful, operuion will be ini.iated by
transfer of data from the GPU to the AU to define the operation to be performed.
Also, instrictions will be given by the GPU to the Control Unit, the Mitiplexor,
the AU, and to the device (which may be the GPU, its:1f) which will supply the
data on which the AU will operate.

Inputs and Outputs of the Associative Processor may be transmitted to and

from terminals and devicer through I/0 Chamels, which are also interconnected

e

]

uonjezIueda() JUIYOE] J08SaD0I] IAPEIO0S8Y ‘g7 AInDt |

(nde?
LINN
350d¥Nd - TYY¥INID |
13INNYHD 0/
I
(n) |
1INN "
0¥ LNOD H
THO
| Y3INNYHD O/)
(XdW) ™ v O/
LINN
YOXI1diL W 1HO
" "1 INNYHD O/1]
1
u-ny Ny t-av
LINN T LINA LINN
JAILYIDOSSY IAILVIDOSSY JAILYIDOSSY

5

8-5

£1

to the GPU and the AU's by means of paths established by the Control Unit
through the Multiplexor.

Each Asc -mative Unit contains an associative memory, registers, contrcl,
clocks, and a Microprogr..n Sequence Memory (MSM). The MSM is the means) ; -
for specifying functions to be peiformed in the AU. At any one time, & MSM
contains several - icroprogram sequences which it can execute on data in its .
associative memory. A MSM sey.enc2 may be an algorithm for a complex func-
tion which can be done more efficiently using associative memory rather than
random-access core memory; for example it may be a text searching or inner p. ;
product algorithm. The MSM program makes the AU perform in a manner .
similar to that described for a special purpose associative processor on the '
particular problem type.

All communication within the system takes place through the multiplexor,
and a direct path may be established between any two elements. This feature
elimirates the bottleneck which could occur if all data transfers were required
to pass through the memory of the GPU. Hcwever, central control resides in
the program which is executed by the GPU. Associative Units, the Multiplexor,
and the Control Unit will respond and initiate action only when commanded by the
GPU. Status information is transmitted by all functional units to the GPU, for

its use in executing instructions in the GPU program.

The General Purpose Unit, (GPU), is an advanced design general purpose .
computer, current with the state-of-the-art, Its precise specification depends
on the number of associative units and I/0 units attached and the amount of

activity for the system. Since the burden of supervising control to be exercised

. .
R o . et N IO PR

by the GPU is very large, the GPU will have features to optimize its capability
for fast reaction to external events. An associative memory is used to store the
systera's status, whereby the GPU can instantaneously determine what AU's, if
any, are inactive and can be assigned to a task to be performed. When a new
task is to be performed, its priority can be used to determine if any AU has a
lower priority task and can be preempted to service the new task.

It is assumed that the GPU, MPX, and the AU's are located in close proxim-
ity, perhaps even in the same equipment housing, so that memory to memory
transfers may be accomplisicd at Ligh specd. Transfers betwcen the GPU and
the associative memory iv an AU take place over the same memory bus by which
the GPU accesses its own high-speed randon -access memory. The Control Unit
uses signal paths to establish a state of ''readiness to operate" in units which are
to be functionally interconnected. When a channe! or an AU has correctly ic-
sponded to control instructions, the Control Unit s. the data paths for instruc-
tions and/or data to be transferred from the GPU to the Associative Unit, Initial
instructions specify the task to be done and parameters of the task. Data on
which to operate may come from the GPU or directly from one of the attached
1/0 devices, via 1/0 channels, to the Asso.i.tive Unit without going through thc
GPU. The termination of a task, or the production of a result in the AU which
should be communicated to the GPU, will be accomplished by sending the AU's
signal for attention to the GPU. The normal noint for a task to be completed will
be predetermined by the GPU, a8 an address in MSM which will be reached for
taak termination. The Interrupt Control will operate when the termination ad-

dress in reached in the MSM AR. This generates a signal to be transmitted to

the GPU, The GPU monitor program will control responses to the requests for
attentioi: by the Associative Units,

One (or more) of the I/0O channels may be the associstive channel processor
as describea in Section V. The response to queries may be transmitted directly
from the disc file proressor, to the associative memory of an AU, where the
data can he processed by a microprogram set up with parameters by the GPU

program to achieve a desired resuit.

THE ASSOCIATIVE UNIT

For generality, the Associative Unit (AU) has features which permit it to be
programmed to perform the non-numeric problems which were described in
other sections of this report. The general organizational structure is shown in
Figure 24. Input and output take place through a buifer register, which is
coupled to the memory data bus of the GPU for high speed data transfer, or to
one of the I/0 channels via the muitiplexor for input and output to terminal de-~
vices. The GPU sends an initial command to specify what unit of the AU will be
involved in subsequent data transfer, and how many words of information will
be transferred. This command is decoded in the AU control circuitry and gates
are set to make the proper data paths operative, in and out of the buffer register,
In order to assign a task to the associative processor, the GPU transmits com-
mands to the AU. The commands are macros which contain data for sequencing
and parameters of the micro routines stored in MSM, and thus sequence the
microroutines intc a program which performs the operations. A start signal

is given for retrieving the first micro instruction of the task. At the conclusion

8-8

JJUf) PATIETOOSSY JO uopjeziuesiO ‘§Z 2andi g

L 4
:c(.x“
ANOW3
m>;<.oo4<
1
{vivQ} “G.QOJ

| _
D ¥31NN0D 1 — VIO BE A “ !
A i

o —
H $

IOULMOD :
| 03w suvemo> —l.. _ ‘038 WY o 4o \
S “ ||||||._.] ‘

¥ 1]
{ Y s o b

J

8 ¥3ILINNOD

¥ ¥ILINN0S

8-9

WOXD 1d

LISk
wi
ey

¥3i51038 894400 _

1%

YADNINDIS (SHILSIDIN IYUINID
P ouines ~Rvasowoim o
PR LR
IMAS NdD

[wison .a:»g.:...] - olr.lll_ -
l_.l |_I ¥ e

S

of a task, the Associative Unit signals the GPU and awaits further instructions
on what to do with the processed data, or operations to perform.

Once a task is started, the AU operates autonomously, taking microinstruc-
tions from its MSM, interpreting them through the control logic and executing
them. The sequencing of microinstructions has been provided within the micro-
routines, and between microroutines by the macroinstructions given by the GPU.
Coding in the microinstruction specify alternatives in sequencing when conditions
in processing cause certain condition codes to be indicated.

Counters are provided for controlling shift operations of the Mask and Com-
pare Registers, as used (for example) in locating a pattern which may start on
any bit or character position within an associative memory word. Once the
starting position of a search pattern has been found, the same shift will be exer-
cised in subsequent word searches, when the search patiern is longer than one
word in the associative memory. Hence, the shift which was made in finding
the start of the pattern match is needed for subsequent matches. The counter
contents which specify shifts may be used as part of the compare data, and also
stored in mcmory as "tag data" which is to be matched in succeeding interroga-
tions for determining sequences of words in a search. The need for this feature
arises from the logic of text processing and pattern classification, where the
data in the compare register may match data words in the memory, but they are
not initially in exact alignment at memory word boundaries.

The counters, A, B, and C, each contain 12 bits, and are incremented by
time pulses from the control circuits. The countcrs are general purpose and
may be used to control shifting of the mask and compare regi.iers of the

8-10

associative memory, or to set the address register of the MSM or the AM. It
may be noted that the address register and link bits of the AM are shown as a
portion of the compare register in Figure 26. They are loaded and unloaded
separately from the 72 data bits, and are not involved in shift operations on the
Compare Register. Through control of loading the counters, incrementing them,
and being able to specify their data transfer destination, microinstructions are /
the means by which the programmer determincs the function of each counter, as
explained with reference to Figure 25.

Data Transfer Control (DTC) is used to control designated transfers of data
between registers. Cne bit of DTC is interpreted as meaning that the three
counters are to be loaded with 36 bits (12 bits for each counter) which are ob-
tained from the MSM register whose address is given by the A1 field of the
microinstruction. This is, however, but one illustration of the interpretation

of a microinstruction.

Another bit of the DTC, if set to '"1", means that all designated data trans-
fers are to take place, including fetching an operand from a general register in
MSM (if ordered) and the sequence of designated Basis Associative Operations (BAO)

is to be executed. The DTC bits include assignment of counters to functions;

i AR o

for example, the ""C" counter may be assigned to supply its contents to the shift
‘ control for the mask and compare registers. In the same microinstruction, the
first six bits indicate what incrementing should take place in each counter prior
to execution of operations, as shown in the format of Figure 25. The functions
of DTC bits are directly concerned with data transfers whose detailed descrip-

tion would involve a level of detail not practicable at the conceptual stage of

811

012345 14 BITS 1281TS 12 8ITS

T 117 }? 8AD A Ay .

T ™
DATA TRANSFER
AND CONTROL BITS :
{DTC) .
. MSM ADDRESS FOR

COUNTER C CONTROL NEXT MICROINSTRUCTION

COUNTER B CONTROL
L COUNTER A CONTROL

MSM ADORESS FOR AL TERNATIVE

0,0 NO INCREMENT

CONTER 01 Ao T e TER NEXT MICROINSTRUCTION (FOR
CONTROL 1.0 SUBTRACT | FROM COUNTER BRANCH ON CONDITION, ETC.)
11 ADD8 TO COUNTER OR, MSM ADDRESS FOR REF ERENCE

TO A "GENERAL REGISTER' (NOR-
MALLY A FETCH OR STORE DATA
OPERAND ADDRESS).

CONTROL BITS FOR THE
BASIC ASSOCIATIVE OPERATIONS (BAO)
(ONE BIT FOR EACK OPERATION)

™S

™

MATCH
MT
MR
(Y)
MSEL

ADSEL

RA

R

" w

12 SMS

13 Cms ;
oo "

SEQUENCE
OF THE
14 BAQ BITS

Bowvuruvawn—

*Nete thet these aperations ore reapested in the seauence 30 that they can be done ot the and of o sequence of other aparetiont.

Figure 25. Format of Microinstruction for Associative Unit

8-12

design. General functions only can be indicated, while specifying data path

width, location of gating circuits, and control circuit conditions would involve

£

fairly conventional design practices. ;

] It is implicit in the description of the Basic Associative Operations ‘
that the Link Bit Register could be loaded by either DTC bits or by 6 bits i

from the contents of a MSM register. The design decision favors loading the !

Link Bit Register by latter method, i.e., with 6 bits from a MSM register,

3
¥
-

¥

3
¢

{

H
v

which may usually be done at the same time as the "load counter' operation, de-
scribed above. One reason for this choice is that the data content of the Link
Bit Register is not likely to change within a microroutine. This discussion
serves to illustrate the concepts and functions involved in completely specifying
the DTC bits. It is evident that details are best resolved when a detailed design
is produced for implementation by hardware. No difficulties are expected in
applying the state-of-the-art design techniques to cover the functions of DTC
bits. Further description will, therefore, emphasize the associative operations
and the logic connected with the associative memory.
Microinstructions are fetched from the MSM, to the Buffer Register, then
transferred to the Instruction Register which supplies, signals to the Control
Sequencer (CS). The Control Sequencer is also supplied with time pulses by the
. T2G and the clock. The logic of the CS is to gate pulses which establish data
transfer paths and signals to execute operations on data. The most important of
these for the discussion of the AU are the basic associative operations, shewn
as the BAO field of the microinstruction. The BAO bits are sampled in sequence

and transmitted to the Associative Mumory (AM) as signals to cause operations

8-13

in the memory. Since different time intervals are required to perform different
basic operations, and a giver. operation may have variable time required for its

completion, the jump from one basic operation to the nex’ generally depends on

receipt of a response from AM, indicating completion of the last operation sent

to it. Further explanation of the basic associative operations will be deferred

until a more detailed explanation of the memory and its logic are presented.

Microprogram Sequence Memory

The program for the associative processor resides in the Microprogram
Sequence Memory, which is initially loaded by block transfer of a program
from the GPU. The program is a sequence of microprogram instructions, pro-
duced by a suitable higher level language compiler (or interpreter) in the GPU.
Thus it is preswined that a suitable program language will have been developed,
and its compiler will exist in the GPU for producing the detailed microprogram
sequences which actually control the operation of the associative memory.

Each step of a microprogram sequence consists of one or more basic func-
tions to be performed during one Microprogram Storage Memory (MSM) cycle.
Complex operations, such as "match greatest," will require a sequence of MSM

cycles, and still more complex algorithms, such as ordered retrieval, will re-

quire sequences of complex operations. The MSM is used functionally as a read- .

only memory in the Assoclative Unit operations, but it can be written by the
GPU. Thus, the assignment of a task, or special-purpose function by the GPU
must be preceded by transmittal of the appropriete MSM sequences, to guide

the further processing operations of the Associative Unit.

8-14

A

The MSM is a "conventional" random access memory which stores micro-
program words, or instructions. Its contents may be completely changed by
reloading it from the GPU. The advantage of a random access memory for the
MSM is in the capanility to alter the processing function of the AU by compiling
a new microprogram sequence in the GPU; speciaiization of design is then ac-
complished by software and by establishing a library of microprogram sequences
through which many specialized designs may be accommodated in one Associative
Unit. The greatest advantage of a MSM with read/write capability will be reai-
ized in the early stages of GPAP usage, when the detailed design of specialized
functions is still in the development stage. Thus, the choice of a conventional
random-access storage over a read-only storage seems to be justified.

The capacity (number of words) of the MSM is determined by considering
that i. ‘esirable to minimize the amount of communication of the AU with the
GPU. The cost of random-access core storage generally favors increased core
storage am opposed to additional logic and the loss in effective computing time in
both the AU and the GPU to deal with interruptions of processes. The capacity
of the MSM will provide for storage of a set of sequences which could inciude
all functions necessary for the text processing problem. The width of the MSM
is determined by considering the number of basic functions for which control
signals may be developed during one MSM cycle, and the requirements for se-
quencing, branching, testing conditions, etc.

Physically the MSM may be considered to have improved characteristics
compared with present day fast scratchpad memories, with an order of magni-

tude greater capacity. Thus, a read/write cycle time of 200 nanosaconds or

8-15

less and an access time (for read only) of about 100 nanoseconds wiil be as-
sumed. A capacity of at least 2048 words, of 36 bits each, or 1024 words of 72
bits each will be required. it is expected that magnetic core technolegy will
still have economic advantages in memories which do not require a significant
combination of the logic and storage functions; hence, while integrated circuit

~ technolcgy is postulated for the associative memory, magnetic technology is
postulated for the MSM if the timing requirements can be met.

Another important use of the MSM is the program controlled use of MSM
for general registers; i.e., registers for storing intermediate and final results
of processing, or data and constants which will be needed for problem execution.
Some coasideration was given to including more registers i:. the Associative
Unit; one might desire two or more sets of Mask-Compare Register pairs for
complex searches. For example, the contents of one Mask/Compare might be
stored in all Associative Unit words which match another Mask/Compare pair.
By the ability to designate certain MSM registers as pseudo Mask/Compare
pairs, anrd transfer these in and out of the physical Mask/Compare r~isters,

the same capability can be obtained, but at a sacrifice in speed.

Associative Memory

Central to considerations in the design of the associative processor are the
basic associative operations which are to be performed on data in the memory.
This philosophy emphasizes that once the baaic associative operations and the
memory, itself, are specified, the necessary control signals for memory opera-

tions are revealed. Then the registers, data paths, and control signal generation

8-16

can be specified as necessary to support translating a machine instruction set
inio the proper operations on the associative memory. The basic associative
operation set was derived from the earlier studies and individual machine de-
signs for selected non-numeric problems; the text processor being especially
significant in this regard. Conclusions were reached about the structure of the
associative memory and its basic associative operations.

1. The prime associative operation is, of course, a matching of the con-
tents of all words in the associative memory against some configuration of binary
variables in an associated data register. In addition, it is desired to be able to
indicate linking between contiguous words which are matched on successive

mnatching operations against a string of data.
2. While stored data may be accessed associatively, extrinsic (or location

addressing) means are also desired. The need to locate data by its storage loca-

tion, especially by its distance from some other datum, arises in text processing.

Also, extrinsic addressing simplifies other *unctions, such as input/output.

3. It is desired to be able to read or write any number of sclected bits in
words hich meet the match test d~scribed in 1. Furthermore, the read or
write operation should be performed on a single word, if desired, or simultan-
eously on all words which match tne criteria specified by a data registe. and a
mask register.

4. The evaluation of the result of a matching operation is required to de-
termine if there waa one matching word, more than one, or exactly how many
words :n the associative memory met ihe matching criterion. Since the match
resolution coasumes time, this is to be a program controlled operation and is not

performed automsticaily after each match operation.

8-17

At e, e e e s et

5. A sufficient (but small) set of basic associative operations is required.
Complex functions may be performed by designing logic within each word cell of
the memory, but such complexity tends to over specialize the memory and addi-
tional components required quickly reach prohibitive proportions. More complex
operations than those indicated in 1 ~ 5, will be done by algorithms employing
the basic associative operations.

6. The associative memory capacity is, nominally, taken as 4096 words
with 72 data bits each. In addition, each word shall have cells which store the
maich status, the "match select" status, and the linking status by which con-
nectivity or chaining can be determined.

The Associative Memory is shown in Figure 26. For the sake of discussion,
the memory is assumed to be 4096 words, with storage capacity of 72 bits for
each word. A word may contain 72 data bits, or it may contain fewer data bits
if scme bits of each word are required for tagging memory registers. The
functions of tag bits, their location and the number of them in each word is a
program controlled function; a dashed line is shown in the storage to indicate
that the division of storage into data and tags is a flexble boundary. The mem-
ory is divided into two functional parts: Storage and Word Operatica Logic.

For each register (or word) in memory, there are directly associated compo-
nents in each part which belong to the register. The functional division may
also be a physical division, since a different technology may be c!:oa\en to imple-
ment each part, with, parhaps, economic advantages in doing so.

In view of the many efforts and promises to develop cheaper, faster mem-
ories by plated wire, ferrite slab, thin-film, and other magnetic technologies,

8-18

71 72 83 84 83 86 87

T T
| AooRESS L {L" M yMs

: ty o
bt)
STORAGE SECTION | M
(DATA CELLS) | “ORDOPERATION
) Logic ! i
' | rcurtrRn | |

: I 1 !
DATA — g T AC § oo |
FIELD v FIEW | L |

: I B
ASSOCIATIVE MEMORY (AM), '
i
' Ly 1
l L
L
| L1

nn ¥ s

MASK REGISTER (AMMR) : R
COMPARE REGISTER (AMCR) ! H
{ t
| aporess | me!

| FIELD |, BITS,

~

Figure 26, The Associative Memory

8-19 —

one of these rnay be selected to implement the storage part of the associative
memory. It is assumed that the expectations for monolithic iniegrated circuits
will make them economically feasible for the circuitry of the Word Operation
Logic, certainly by the 1970 era. In fact, it may be expected that the entire
associative memory may be comprised of monolithic integrated circuits in a
not-too-advanced time era, if some predictions for this technology are realized.
Accordingly, the functional division of the Associative Memory is, at least, a
division into a part which is data cells and a part which contains circuitry and
logic by which operations are performed in the memory.

The concept of a mixture of technologies in implementing the memory can
be extended here to include the use of a read-only type storage for the address
part of each word. Since the address will not be required to change during
operation, active cells are not required. A caution in exploiting the use of
mixed technologies is the usual problems of iacompatabilities of electrical
signals required by devices; this matter has not been investigated during the
present study and comments regarding mixed technologies are, therefore,
advanced as ideas to consider for future study.

While sjorage of the register address, i.e., the conventional sequential or
random-access address, is shown in the circuitry, it could be omitted and 12
bits of the daia portion could be used for addressing registers in those applica-
tions which require extrinsic addressing. The functions which involve the address
would ther be donc by algorithms, instead of by circuitry as described herein.
However, it was felt that the a4\ antages of hardware for addressing are suf-
ficient to warrant its inclusion, as we will discuss in describing *he functions

performed with Word Operation Logic.

8-20

The Mask snd Compars registers are used in what is now a "'conventional"
way for associative i.emaries. .U 2 Mn.n bit is a '1" the corresponding bit
of the Compare Register is .sed tc #°! rinine whether a match on "1" or "0"
is to be tested for the corr=: »oading . L: [every word in the associative
memory. It will be noted tii... ae masx and Compare registers overlap the
address field and bits L, and L2 of the Woid Opera'tion Logic. By overlapping
the address field, word selection is ¢<nabled since the Match Bit (M) will be set
for only that word in storage whose Address Field matches bits 72 through 83
of the Compare Register when the corresponding bits of the Mask Register are
all set to "i". By setting 2 "1" in bit 72 of both the Compare Register and the
Mask Register, and all ""0's" in the bits 73 through 83 of the Mask, one half of
the memory words will be set to "Match' in a Compare operation; similarly
other "areas" of memory can be selected and identified, if it is desiraible to
do so, by using partial addresses. Bits 84 and 85 of the Mask and Compare
Registers are "link bits", whose operation will be evident in the description of

the basic associative operations, next.

BASIC ASSOCIATIVE OPERATIONS

Each basic associative operation may be programmed as a bit in a micro-

instruction, and the operations are executed sequentially during executica of each

microinstruction. This section describes the basic associative opers i to
provide information needed by a programmer if the machine were to be built.
Reference should be made to Figure 28 in reading this section. Also, the

8-21

definition of "word state" is nceded. The word state is expressed by the con-
ditions of two flip-flops, MATCH and MATCH SELECT, for cach word of the
memory. Basic associative operations are cffected by control signals from the
Control Sequencer of the Associative Unit, but the operation is performed on a
given word only if its state is in the required condition.

1. Clear Match Select (CMS) If the MATCH SELECT flip flop is "on" it
will be turned off: i.e., if the word state is either (0, 1) or (1, 1) then operation
takes place to make the resultant word state (0,0) =~ (1,0), respectively.

2. Clear Match (CM) For all words of the memory, if the word state is
(1, 0) the MATCH flip flop will be cleared and the resultant word state is (0,0).
Note that a word whose state is (1,1) will not be affected; this provision allows
programmers to operate on words and leave them in the (1, 1) state if they wish
to eliminate such words from being processed by succeeding operations.

3. Match (MATCH) The MATCH operation sets the MATCH flip fiop of
all memory words in the (0, 0) state, so that they go to the (1, 0) state. An
interrogate signal is generated which samples gates on each data bit of the
words which make the transition (but not on words which were previously in the
(1,0) state). The interrogate signal will be gated as a NO MATCH signal for
any data bit which dogs not agree with the unmasked data in the 74 bits of the
Compare Register, of which 72 bits are the data portion and 2 bits are the link

bits, L, and Lz' The result of 8 NO MATCH signal from the gated interrogation

1
signal is that the word state reverts to (0, 0); otherwise, the word state remains
as (1,0). In a word which was not reset to (0, 0), the delayed interrogate signal

sets bits L1 and I..2 of that register, the preceeding register, and the following

8-22

register according to the oontents of the Link Register. Recall that the Link
Register was specified as 6 bi*s. The first two bits control L, and L2 for the
preceeding register; the second two bits for the matched register; the third two
bits for the next register. Furthermore, control of Link bits is ""set" only, not
reset, and the setting of a link bit is an OR of the conditions which can set it.
For example: if the contents of the Link Register are 100110, then the L1 bit
inthe preceeding register to each match register is set, the Lz bit in each
matched register is set and the L1 bit in each following register is set. If the
match field contains ABC and storage is as below, then the storage will be as
indicated after the match operation for the above link register configuration.

Match Field/ L 1 ~bit/ L2-bit/ M-bit

ABX 0 0 0
ABY 1 0 0
ABC ¢ 1 1
ABD 1 1 0
ABC 1 1 1
ABC 0 1 1
AXY 0 1 0

4. Match Test (MT) A "match test" signal is emitted (from the Control
Sequencer) which polls the state of words in the memory until one is found in
the (1, 0) state, then the signal is gated through the word logic and returned as a
"match” signal to set a "match status" flip flop in the Control Sequencer. The
"match status" is one of the conditions on which the current (or a successor)
microinstruction can be programmed to select an alternative address for the
next microinstruction. If no word in memory is in the (1, 0) state, the match
status flip flop is reset by a signal from the last memory word to be polled. No
word states are changed by the MT operation.

8-23

5. Multi Rcad (MR) The contents of all memory words in the (1, 0) state
are written (as a Boolean OR) into unmasked bit positions of the Compare Re-
gister. No.word states are changed.

6. ™u'*i Write (MW) The contents of unmasked bit positions of the Com-
pare Register are written into corresponding bit positions of all memory words
in the (1, 0) =tate. No word states are changed.

7. Match Select (MSEL) A "first-match test" signal, emiited from the
Control Sequencer, polls the state of memory words in succession, starting at
the lowest address, until 2 word in the (1, 0) state is found. The first word in
the (1, 0) state is cho~_ed to the (0, 1) state and returns a "'first match set'
signal to the Control Seyueacer. U no word is found in the (1, 0) state, a "match
status reset' signa! ir “wturned to the Control Sequencer.

8. Address Select {ADEEL) The memory word whose extrinsic address is
the unmasked 2orzion ot e Address Field of the Compare Register will be set
to the (0, 1) state, n~ matter what state it had been in.

9. Read Address (RA) The extrinsic address of a memory word in *he
{0, 1) state it transierred w wne Adddress Field of the Compare Register. If
more than one memory word :s w the (0, 1) state, the contents of the Address
Field will be a logicas OR of the binary representation of the addressas of
those words. 7he word staue is changed from (0,1) te (1, 1) by this operation.

10. Read (R) The unmasked bit:: of the Compare Register are set to match
corresponding bits in a memory word which s in the (0, 1) state. If more than
one memory worg is in tire ‘2 i state, the read-out results in an OR of the

contents of those words irto the CHmpare Register, giving a "selective multiread”

3-24

P R ——

capability, but the expected usage of the read operation is to transfer the con-
tents of one memory word, only, to the Compare Register, The word state is
changed from (0,1) to (1, 1) by this operation,

11. Write (W) The unmasked bits of the Compare Register are written in
any memory register which is in the (0, 1) state. The word state is changed
from (0,1) to (1,1) by this operation.

12, Set Match Select (SMS) Any memory word in the (0, 1) state, as a re-
sult of a previous MATCH, is put in the (1, 1) state. This provides a useful
means for selecting registers (by MATCH) and putting them into an inactive
status, i.e,, into the (1, 1) state, from which they can subsequently be recalled
by a CMS operation. The word state is changed from (0, 1) to (1, 1) by the SMS

operation.

Word Operation Logic

The associative memory and electronics associated with its operation are
indicated in Figure 27, with detail for only enough of the logic to indicate what
is involved in basic associative operations. Assume that some data configuratién
exists in the Associative Memory Compare Register (AMCR), and in the Asso-
ciative Memory Mask Register (AMMR). An interrogate signal, simultaneously
applied to all words in the memory will test each data word to determine if its
data m:a.ches the unmasked data in AMCR. A signal will be produced for any
word in which one or more bits fail to match. The No Match signal is input to

the Word Operation Logic, which is designed to control operations on the word

8-25

L

1318180y AJOWAW ® YIIAM POIBIOOSSY SOTUCIIOIH

45 0L IIN04SI ONY

*12 aandr g

SINOMIIN ON- WIISISAW WIDININCIE TONLINOGD
WIONINO IS TOBINGD MIT n0¥ 4 OKYPWOD
WObd SONVHWOS wO%4 40 3wV 3
e e s, _ el e
H -
oy
= 3
..... 2 i
~ o
w |
* H
r 1 -
« QUO~ ¥OJ 4OVIdiTs £I3138 HILYR - 'sm
v QuOm 205 ¢07 94V HILYw - | W
J1007 NOILY¥ 340 Q¥0A ““10a
[N} it [NRERE! i (I}
L e [N
[N et [
XX [N ISXXNR 1 "
t £Y90m “u i
. Jiiva
EERLLCL |
v
7138
11
he hd gvis
| avae
u‘_n = i
-4
‘g MILVW
—— 113 on 0
T VivO 1.V50883 1N
E B 24¥208N 21Nt SSINUAY
Ri% +
- 4
L= v0m

01314 ss3w0aY |

2hi8%38
JEvens

(21852 3
nve

LIL R J

SR PR 2 g

8-26

with which it is associated. The Word Operation Logic performs functions to

coordinate and respend to processor control signals. Further explanation of

the Word Operation Logic will clarify the rﬁl‘é of the basic associative opera-

tions and make their meaning more precise, but before proceeding further the
B reader is reminded that the design intent was to leave open the selection of
specific technology, at least for the data storage part of the associative memory.
The logic as shown here is intended to indicate logical functions, not the specific
implementations of them, which would, in implementation, take best advantage
of characteristics of the chosen technology. -

The Word Operation Logic (WOL) exists for each word in associative memory.

One set of inputs to WOL is from two flip flop cells in the associated word, which
are called Match and Match Select. Match indicates whether the contents of the
word agree with the unmasked data register contents in a prior interrogation of
the memory. Meich Select indicates whether the word has been selected for an
operation successive to the matching process. Other inputs to WOL are the No
Match signal, emitted when the AM word fails to match the masked data register,
and controi signals from the processor which depend upon the microprogram
being executed. The control signals, in combination with the logical state of the
word, denoted as (M, MS), determine the next state of the word. To further
explain the response to control signals, consider Firure 28, in which the word
states are shown as (0,0), (0,1), (1,0) and (1, 1) to indicate the states of M and
MS. Transition from one state to another {8 made on occurrence of a command

signal, as indicated.

8-27

,v;Zj;

ADSEL ,
0,0 0,1
MSEL
MATCH
CM R
ADSEL
DSEL
MT @ MRL My 1.0 s 11
N’ CMS

Figure 28. Associative Memory Word State Transition Diggram

8-28

The Word Operation Logic also sets the "link bita", L1 and L, of ¢« .ch word,

2l
when appropriate conditions are met. As a result of per. >rming memory inter-

rogation on a MATCH command, L1 and L, are set according to the contents of

2
may be set by either of the words con-

the Link Bit Register. Thus, L, an¢ L

1 2
tinguous to the word in which they belong.

The state (0, 1) is unique in the respect that one, and only one, word of the
memory may be put in the (0, 1) state at one time, A Match Select (MSEL)
operation must procede a read address operation, or a read or write operation
which is to be performed on one word only. Note that an address select com-
mand always sets the state to /0, 1) for the selected word, no matter what state
i was in prior to the address select, All conditions which prepare the memory
so that a unique selected word is {o be operated on must leave one and only cne
word in the (0,1) stu 2,

The microp.ogrammer provides the proper command ' ~quence. For
example, the sequence

(1) Clear Match Select (CM-
‘2) Clear Match (LM)
will always put the words in the (0,7) state; in fc thesc two operations can be

done at one time by Clear Match and Clear Match Select tits in & single micro-

instmction. The operation following this may be an Address Select (ADSEL) or

& Match, Match Select (MSEL) sequence to obtain one vword of the memory in the
0,1 stale,
Multi~-Read (MR) and Mult:-w rite (MW) capability can be properly uscd

ouly when Jv: ..ords to be operative in the read or write are in the (i, 0) stale,

and al! other words are in some state other than (1,0). If all (or even some)
matched words have been operated upon by operations on a word-by word basis
‘Read, Write, or Read Address) and it is desired to start a new operation, it
is unnecessary to Match again if the match criteria have not changed, since the
CMS signal will restore all words in the (1, 1) state to the (1, 0) state.

Note that Set Match Select (SMS) changes the state from (1,0) to (1,1). This
operation may be used to initially select a set of words (by Match) and then tem-
porarily exclude them from any other operation. SMS will not be operative on
any word not in the 1, 0 state. The usefulness for set theoretic operations can
be illustrated by considerins "hat all words of memory can be maiched on char-
acteristics A and B; then 2 IS command is given to eliminate all words in the
conpunction of A and B. Fo) wing this, separate matches on A and B will give
the sets AB and AB, respectively. If desired, the membership in each of the
three sets AB, AB, and AB, could have been tested by algorithmic counting;
if these three sets are included in a large set whose membership is also re-
quired, it, too, can be identified by MATCH operation and a following sequence
of MSEL and counting operations. This sequence of operations is suggested,
for evample, in pattern classification programs.

Another capability for setling aside words which are not to be considered
in a successor operation is through the use of the tag bits whic'i the programmer
may define in the data part of the memory. The procedure would be to first
identify words to be set aside by a Mulch op~ration. Then Multi-Write a tag

bit for all matching words. The set ip for the next operation would include

8-30

writing a "1" in the AMMR and a ""0" in the AMCR for the tag hit, so that no
words previously tagged in this bit position could be set to a Match State.

The use of linking is through a successful MATCH operation, and the ap-
propriate setting of link bits in AMCR. The setting of link bits L, and L2,
for word n in the memory may be accomplished through a match on word n,
word n+l, or word n-1, depending upon the contents of the Link Bit Register.
This operation is, tnus, dependent on programmed control, and has been in-
cluded in the Associative Unit by considerations which were found (o te sig-
nificant in the text processing and pattern classification studies.

MATCH SELECT is a signal which polls the word icg: for cach word in
succession, until a word in the (1, 0) state is sampled. The first word in the
(1, 0) state is set to the (0, 1) state and a response is transmitted to set the
MATCH SET flip flop, transmitting a signal to the AU control unit. The time to
find the firat word which matches is, therefere, primarily the transmission delay
in propagating the MATCH SELECT test pulse plus the time to turn on the ..p
flop. MATCH TEST is similar to the MATCH SELECT; it polls the word logic
until a word in the (1, 0) state is found and, then provides a respouse indicating

that a match does exist in at least one memory word. MATCH TEST does not

aiter the state of any word.

SUMMARY

The design of the associative processor has been carried to the point where

& conceptual deacription has been presented, the basic operations (or "machune

8-31

language') have bcen defined, and the logic at the memory word level has been
indicated. By drawing or the experience acquired in specifying machines to solve
selected non numeric problems, decisions on functions to be included in the as-
sociative processor have been made with a view to enhancement of non numeric
processing capability. This capability is required for certain intelligence sys-
tera functions. Thus, the basis has been established by which a hardware imple-
mentation could proceed. The choice of technology for the associative memory
elements ie left open, since the state-of-the-art is dynamic, and promising
developments may be imminent in both magnetic l:echnology1 and integrated cir-
cuits.z’ 3 Nevertheless, the design has been specified sufficiently so thaf logical
design would follow by the use of state-of-the-art design techniques, from the
description of the logic at the memory word level.

The complete design of the associative processor would require many more
details than presented in this report. The microinstruction format, as given in
Figure 25 is not completely specified and lacks detail which would indicate all of
the possible ways to transfer data in preparation for executing a sequence of basic
associative operations. The complete specification of the machine and its use

would also require detailed description on the generation of microrodtines and

1. Rajchman, J. A., "Memories in Present and Future Generations of Computers",
IFEE Spectrum, Vol, 2, No. 11 pp 90-96; 186¢£.

2. Phillips, A. B., '"Monolithic Integrated Circuits,” IEEE Spectrum, Vol. 1,
No. 6 pp 83-102; 1964.

3. Richmond, W. H., "Integrated Circuits for Commercial Computers," Data-
mation, Vol. 11, No. 11, pp. 29-33; 1965.

8-32

Section IX

CONCLUSIONS AND RECOMMENDATIONS

Six associative processor designs have been presented; tive of these are
special-purpose processors designed to include features which optimize pro-
cessing in certain selected problem areas, and one is a general-purposc asso-
ciative processor, All designs included at least one associative memory and the
capabhility for parallel processing by performing the same operation simulta-
neously on all words in the memory. The emphasis throughout the study was on
the characteristics and significant features of the problems, and a unique pro-
cessor was designed for each problem. However, it was possible to identify
characteristics which the different designs possess in common, and these
characteristics are included in the general-purpose processor,

The most important di.ference in concept, in the transition from individual
special-problem processors to the general-purpose associative processor
{covered in Section VIII), is the departure from the view that a general-purpose
computer is.associated as a controliing computer with an associative memory,
Instead, a relatively autonomous Associative Unit is propoced, containing its
own “'stored-in" program sequences to guide its operations through a set of
comlex tasks, The controlling General Processor Unit requires minimal time
for communication with the Associative Unit, generally at the start and com-

pietion of a task, but not during performance of a task by the Associative Unit,

89-1

In the design of an associative file processor unit (sc2 Section V), it was
recognized that the most siem!ficant gains could be made by devising means
wnict. minimr‘ze the amount of data {ransfer to a central processor, The capacity
= the bulk siore was considered to be of the order of 80 miiiion 8-bit characters,
i.e., much greater than would be reasnnably assumed for an associative memory
rut repres-.atative of the capacity required for data files in military command
and intelligence systems, I conventional systems, techniques have been devel-
oped for Jirectlv positioning the access mechanism to read records that contain
data tu be tested for values of specified parameters (or fields) and combinations
of these parameters, which are usually expressed in terms of Boolean connectives,
However, a large number or records must be transferred from the bulk file to
the CPU (which makes the logical and numeric checks to select those qualifying
as responses to a query). In some cases, the amount of data transferred in
searching can be reduced by indexing and chaining technigques. However, such
techniques reduce overall system efficiency by substantially increasing the time
required to add new records., The associative file processor retains the capa-
bility for using indexes in the CPU by which the disk access mechanism is
positioned so that only records relevant to the query will be read, but associative
circuitry has been designed so that fleld values in the records are coripared with
query parametcrs while reading the records. Thus, it is possible to select only
qualifying records for tranamiasion to the CPU, This results in a very signifi-
cant saving in transmission time, usage of CPU random-accesy memory, and

CPU processing time,

9-2

The results of the formatted file processor study have importance beyond
the objective of designing a general-purpose associative processor. A bulk file
unit of the type described would be a significant benefit to a conventional data
processing system as well as to an advanced design; it might be regarded as an
"intelligent channel" when compared with present-day usage and access to bulk
files via computer data channels,

The problem of pattern classification (discussed in Secticn VI) was studied
with the object of deriving the mathematical formulation of the problem in terms
of operations which, if implemented in hardware, would facilitate solution of
the problem, Measures of '"similarity" derived in various independent efforts
were considered as models of the classification process, and their defining
parameters were put on a common basis., This was possible despite the fact that
the different models cannot be derived from one another. The required capa-
bilities were found to be:

1, Ability to rapidly calculate sum and intersection functions of vectors
with binary components,

2. Ability to rapidly find subsequences of vectors which match given
sequences,

3. Ability to compute rapidly the inner product function of two vectors
having positive integers as components,

While it is considered reasonable to implement the second capability in hard~
ware, it is very doubtful that the cost of hardware implementation of the other
two functions would be justifiable, In the final design, an algorithmic method of

obtaining the first and third functions ig recommended.

9-3

Significant increases ir operating speeds are possible in the implementation
of an associative processor for the solution to the data extraction problem, It
was observed in Section II that the problem is logically divided into three func-
tional segments: Text Input, Text Search, and Formatting and Output. The first
of these is concerned with the initial editing of the text as it is receive; in the
processor, the second covers the area of the actual extraction of the data from
the text, and the third relates to the process of formulating the actual output in
the manner desired by the user.

The gains to be made in the parallel processing of textual data result from
the feasibility of searching in parallel for several items similar in format.
Additional gains are possible when one considers processing more than one
similar document at a time, The systera throughput time for documents other
than the first few in any batch would be diminished, since the performance of
later functions could be overlapped with performarce of input functions,

At a slightly more detailed level, the processor is organized in a manner to
facilitate the processing of strings of characters using the shift capability of the
mask and compare registers. The organiza.ion of the storage into single cher-
acter cells further reflects the character-oriented natire of the problem, The
examinat:on of characters and strings of characters may proceed at the charac-
ter level or at the bit level by means of the mask capability designed into the
processor. This impnees no arbitrary reatriction on the type of manipulation
available to the user of this processor and opens the way to extensive manipula-

tions of the data not easily done on more couventional organizations,

9-4

The design of ;in associative processor for dictionary search processing
(described in Section IIl) was based upon the premise that major gains would be
possible if the effective data processing rate in the processor could be increased.
The design results from the consideration of the data flow in such a system,
Significant gains result from the parallel searching by the memory unit involved
and from the technique of performing, inparallel, the separate functions of dif-
ferent phases of the process. The properties of the text yield clues to the
solution of the second part of the problem in that a large proportion of the text
with respect to the actual terms used is redundant, This is because a small
percentage of unique words (types) account for a large percentage of total words
(tokens) in narrative Frgiish text, Samples studied indicate that less than 1
percent of the unique words (e.g., THE, OF, A, FOR) account for 45 to 50 percent
of the total words: 99 percent of the unique words represent the remaining 50 to
55 percent of t..e text,

This technijue of parallel processing by means of an extra, high-speed
module in the processor can yield a gain of 50 percent in the overall processing
time for the dictionary task. This decrease in the processing time will be in
addition to tf\e gains realized from the associative properties of the processor
embodied in the main processing element, The suggestion for processor design
is that dictionary search be done in two phases: a small high-specd memory for
the 1 percent of the unique words and a larger memory for the remaining 99
percent.

The memory unit of the input processing module asg well as that of the

dictionary processing module has the capability of linking adjacent registers of

9-5

v"
i
]
'
; g
g
{,
!
3

the memory during the search, This allows the programmer to ignore the
problem of packing “is data in some special code in order that the data will fit
compactly in one register. The requirement for algorithmic retrieval or storage
of an actual address of the corollary information desired is eliminated by this
feature. Thus, additional information about some word can be stored in the next
highest register in the memory, and the program merely "links higher' on exact
match to be able to extract this information without having to know its address in
the memory,

The design of the associative processor for the compilation of statistics on
textual material (covered in Section IV) is related in organization and function to
the dictionary processor., The relation of processing speed between the two
subprocessors 1s similar in each of the above processors and is so for the same
reasons, The associative processor is therefore organized to take advantage of
the same potential time savings found in the dictionary processor. The design
is oriented to take advantage of the possible reduction in data flow to the central
processor and at the same time to accomplish this reduction in data flow in par-
allel with the operations of the central processor. Thus, the design allows for
the word breakup processing and identification of the highest-frequency words
in paralle! with the looking up of words already found and placed in the dictionary,
The preprocessing of the text in the first processor results in a decreased data
flow in the second procecsor, Since the first processor is alao independently
programmed, the table of special words and definitions of word boundaries may

be changed to reflect the characteristics of the current data sample,

8-6

The results of several studies thus indicate that the concept of one or more
small general-purpose associative processors of varying speeds and capabilities
located in the data flow path would be highly desirable, This is evident in the
overall simplification of the programming of the system that results, and in «hc
overlapping .nd consequent net decrease in the number of operations that each
processor i8 required to execute for this task,

The results of the study of the associative processing designs and techniques
opplied to non-numeric data processing indicate that there exist severai areas of
investigation requiring further study. The deveiopment of the concept of the
associative channel processor, with the resultant savings in operation times for
file processing, is a prime area for additional design effort leading to the con-
struction of a feasibility model. This model would use current technology and
could be implemented for use with a variety of general~purpose processors,

The adaptation of thia concept for use with current hardware does not preclude
its use with associative hardware of the future. Such processors, described in
Section VIII, will enable the search procedure to be made even morc effective
than it is in conjunction with the durrent hardware available as a general-purpose
computer. This improvement can be accomplished by means of more sophisti-
cated techniques for analyzing the queries to be sent to the channel processor for
search of the file, Aspects of the queries that are parallel can be detected
currently with very {aborious techniques, which would cut down in the overall
speed increase available from the use of this device with a conventional

processor,

It is evident that, while the associative file processor is being developed,
considerable gains are possible from the study of advanced probiems and the
techniques for their solution both on current equipment and on associative and
non-associative equipment of the future. Using extensions of the problem
models (as stated in Sections II through V), techniques can be developed for
exploiting information inherent in the data that it is not now practical to extract,
The problem of automatic data extraction is currently critical in a number of
areas and will become more critical when optical charuacter resders are per-
fected and more widely used. An inc¢i:asing number of formatted and semi-~
formatted reports are being produced and transmiticd, with an increasing need
for techniques to extract data from these reports for storage and display.

Because processing requirements on current machines are excessive,
they appear to be a prime candidate for the application of, and techniques
developed for, associative hardware, Together with the associative channel
processor mentioned above, this hardware would add capability to large for-

matted file systems and improve their effectiveness,

9-8

e

APPENDIX |

ADDITIONAL INSTRUCTIONS

LINK RIGHT Each bit position of the compare register correspond-
ing tc a "1 bit in the mask register is compared to
storage. A link bit is set fo one in the next adjacent
registers to those registers where all “compared" bits
matched, If the resei bit in the instruction is 1 and a
mismatch occcurs, the link bit is set to zero, otherwise
the link bit is unchanged on a mismatch. A correspond-
ing bit may oe set or cleared in the matched register
by inclusion of another one bit in the instruction.

Format: LRI, j

LINY TETT Each bit position of the compare register correspond-
ing to a '"1" bit in the mask register is compared to
storage. A link bit is set to "'1'" in the preceding
adjacent registers to those registers where all "com-
pared” bita matched. If the reset bit in the instruction
ia 1 and a2 mismatch occurs, tae link “i! is set to zero,
otherwise the link bit is unchanged on a mismatch, A
corresponding bit may be set or cleared in the matched
regirler by inclusion of another one bit {n the instruction.

Format: LL{, j

A-1

NTERSECT

NEAREST MATCH

MATCH GREATER

Fach bit position of the compare register correspond-
ing to "1 hits in the mask register is compared to
storage logically. A pulse is generated in the first
counter position for each matching position in the
mem: ry register. A delay is made for each storage
bit. No pulses are generated when corresponding
positions do not match.

- ar
Format., IN

The contents of the compare register correspending

to "1 bits in the mask register are compared numeri-
cally to each storage register. A match bit in the
register(s) having the smallest numeric differencc is
(are) set to one. Bit positions of storage corresponding
to "#" bhits in the mask register are ignored.

Format: NM

The contents of the compare register corresponding ¢
1" bitg in the mask register are corapared numerically
to each storage register. A match hit is set to one in
each storage register exceeding the compare register.
8it position of storage corresponding to " bits in the
mask register are ignored.

Format: M(,

A-2

MATCH LESS

CLEAR COUNTERS

INNER PRODUCT

TRANSMIT

The conients of the compare register corresponding to
"1" bits in the mask register arc compared numerically
to each storage register., A match kit is set to one in
each storage register exceeded by the compare register.
pit positione of storag~ corresponding to "#" bits in the
mask iecgister are ignored.

Format: ML

The counters in memory whuse corresponding match
bit(s) i8 (are) set are set to zero. When no bit(s) is
specified in the instruction, all counters are set to
zero. (main memory only)

Format: CCN], No,. . ., Ny

The bits of cach character position of the comparison
register corresponding to '"1"" bits in the mask register
are multiplied againsi the corresponding character
position in small storage. The resultants are accumu-
lated in accumulator registors associated with ecach
storage posiuon. (Smaii Memoiy ondy)

Format: 1P

N consecutive cells of storage are transmitted from
main storage to high speed storage. Transmission

begins at the first cell in which the T-match bit is set

CLEAR ACCUMU-
LATORS

and ~tinucs for the smaller of the following numbers
of cells; the number N, specified in the instruction, or
the nurber K, of celis available In the higt peed
memory. Starting position in high speed memory is
specified in the instruction. The T-match bit is turned
off in majin memory when data transfer commencss.

Format: T, N, K

The accumulators in merfxory whose corresponding bits
are set are set to zero. .When no bits are specified in
the instruction, all cccumulators are set to zero.
(Small memory only)

Format: CA, Nl' ..., Ny

A-4

BIBLIOGRAPHY

Ahrons, R.W., Burns, L. L. Jr., "Superconductive Memories™, Compuatir
design, p. 12, Jan 64,

Air Force Sysiems Command, "Impiicitly Programmed Systems Working Group, "
Vol, 11, USAT Lxploratory Development Program In Information Process-
ing Technology, AFSC, Wash, D.C., AD 458 660, DIV 32/1, Oct 4.

Alexander, D. C., Dennard, R. H., Post, I. L., "A Delay Line Approach 7o
Associative Memory,' IBM Advanced Systems—Endicott, N. Y., 17.022,
May 61,

Almendinger, V. V., "Span Reference Mznual (System Operation) (Statistical Pro-
ceseing and Analysis)," SDC, Santa Mc 1ca, Calif., AD 613 284, 30/1,
32/1, Feb 65, 33 pp.

Almendinger, V. V., "Span Reference Manual Data Files Manipulation and Pro-
cessing," SDC, Santa Monica, Calif., AD 613 289, DIV 30/1, 32/1,
Mar 653, 92 pp.

Amdahl, G. M., "New Concepts In Computing System Design," IBM Research,
RC-526, IBM CONFIDENTIAL, 5 Au; 41,

Amc.hl, G. M., Blaauw. G. A., Brooks, F. P. Jr., "Architecture of the IBM
System/360,'" IBM Journal of Research and Development, Vol. 8, No. 2,
Apr 64. T

Anderson, J. L., "Search on Range Associative Mcmory' IBM ™-~2h Digelogsuras
Bulleiin, Vol. 5, No. 5, Disclosure #75,627, Oct 62.

Anderoon. J. P., "A Computer For Direct Execution of Algorithmic Languages,"
Proc. EJCC, 61.

Anderson, J. P., et al, "D825 - A mult;ple-Computer System for Command
and Control," Proc, FJCC, 62,

Aoki, M., Estrin, G., "The Fixed-Plus-Variable Computer System In Dynamic
Programming Formulation of Control System Optimization Problems -
Part I," RPT. No. 60~6f, UCLA, May 61, 33 pp.

Auizienis, A., "Signed-Digit Number Representations for Fast Parallel Arithme-
tic,"” IRE, Transaction on Flectronic Computers, Vol. EC-10, pp. 389~
400, Sept 61.

Baldwin F. R., et al, ""A Multiprocessing Approach To A Targe Ccmputer
System," I™M Systems Journal, Sept 62,

Ball, J. C., et al, "On The Use Of The Sviomon Paraliel Processing Computer, "
FJCC, 62.

Barbieri, R., "Computer List Processing Languages,' 1BM Data Systems,
Poughkeepsie, New York, TR 00.1209, 11 Nov 64,

Barnard, J. D., Behnke, F. A., Linquist, A, B., Seeber, R. R,, "Structure
of a Cryogenic Associative Compiuer," IBM Data Systems, Poughkeep-
sie, New York, TR 00. 1050, IBM CONFIDENTIAL, 23 Sep 63,

Barnum, A. A., Knapp, M. A., "Computer Organization,’' spartan Beoks, 63.

Beatty, J. C., "On Some Properties of the Semi-Group of a Machine Which Are
Preserved Under State Minimization,' IBM Research, RC-1199,
22 May 64.

Beaity, J. C., Muroga, S., "File Memory Addressing," IBM Research, RC-
1282, IBM CONFIDENTIAL, 18 Sep 64.

Behnke, F. A., Plonsky, A. T., "Associative Storage Techniques,' IBM Kings-
ton, TP 61-1376, AF-30(602)2161.

Behnke, F. A., Plonsky, A. T., "Associative Storage Technology,' IBM Kings-
ton.

Behnke, F. A., Rosenberger, G. B., "Cryogenic Associative Proc. ~<or," Final
Report, IBM~Kingston, New York, RADC-TDR-63-422, AF 30(602)2608,
IBM CONFIDENTIAL, 3 Sep 63.

Belady, L. A., "Measurements on Programs - One Level Sltore Simulations, "
IBM Research, RC-1420, IBM CONFIDENTIAL, 15 Jun 85, 67 pp.

Bennett, R. W., Julius Berger, H. Y., "A Special Purpose Microprogram For
The Preprocessing of Input Data,' IBM Advanced Systems, Endicott,
New York, 17-153, 65A00925-MF011, IBM CONFIDENTIAL, Nov 64,

Bledsoe, W., Browing, I., '"Pattern Recognition and Reading by Machine," Proc.
EJCC, 59, p. 2256-232.

Bloom, L., Cohen, M., Porter, S., "Considerations in the Design of a Compu-
ter with High Logic-To-Mcmory Speed Ratfo,' Proc. Gigacycle Comput-
ing Systems Scesions, AIEE Winter General Meeting, Jan 62, p. 5.,

Bobrow, D. G., Raphael, B., "A Comparison of List Processing Languages,"
COMM. ACM, Vol. 7, Nu. 7, Apr 64,

Branning, H, F., "Randam: Random Access Non-Destructive Advanced Memory,"
IBM Federal Systems, Owego, N.Y., 61-503-2, 61-RRA.

Brenda, J. G., "A Systematic Analysis of Equipment Selection and Data Allocation
Strategies for Shared Computer Systems,' IBM Advanced Systems, Endi-
cott, New Yerk, 17-158, Dec 64,

Brenza, J. G., Jackson, R. C.. Rhodes, W. H. Jr., Winger, W. D., "A
Built-In Table Lookup ..rithmetic Unit,"

Brown, J. R. Jr., "A Semi-Permanent Associative Memory and Code Con-
verter," Special Technical Conference on Nonlinear Magnetics, Los
e Angeles, Nov 61.

Bucholz, W., "File Organization and Addressing," IBM Systems Journal, Vol. 2,
Jun 63.

Burroughs Corp., "The Descriptor, a Definition of the B-5000 Information Pro-
cessing System," Burroughs Corp., Detroit, Michigan, Bulletin 5000-
2000L-P, Feb 61.

Bussell, B., "Properties of a Variable Structurc Computer System in the Solu-
tion of Parabriic Partial Differential Equations,' PhD Dissertation,
UCLA, Aug 62.

Bussell, B., Estrin, G., 'Design of a Fixed Plus Variable Structure Computer
for the Solution of a Diffusion Equation,' Part I, UCLA, AD 263 883,
DIU 15/1, 25/1, 30/1, Jul 61,

Carr, 4. J., "Evaluation of Electronic Memories Including SHMOO Transfluxor
Memory Device,' I'rankford Arsenal, AD 445 122 L DIU 8/1, 30/1;
RESTRICTED uiSi: Attn Franktord Arsenal, Phila.

Caschera, J., "Research on Ferret Associative Memory," Phiico Corp., Wii-
low Grove, Pa., AD 453 096, DIV 30/1, 31 Aug 64 - 30 Nov 64.

Chadurjian, F., "Comparator,” U.S., Patent No, 2,973,508, Feb 61.

Chesarek, J., "The Stored Program Calculator, SPC—A Small High Perform-
ance Computer,' IBM Advanced Sysiems, IBM CONFIDENTIAL, Oct 64,

Chu, Yaohan, "A Destructive-Readout Associative Memory," IEEE Trans. on
Electronic Computers, Vol. EC-14, No. 4, p. 600, Aug 65.

Clark, W. A., Farley, B. G., "Generalization of Pattern Recognition in a Self-
) Organizing System," Proc. WJCC, 55, pp. 86-91.

Comfort, W. T., "A Modified rivilanu machine,” ~F1ue. FICC, GO,

Comfort, W. T., "Highly Farallel M -chines," IBM Owego, IBM Tech Rpt.
62-825-496, Got 62,

Comfort, W. T., "Multiwcrd List [tems," IBM Owego, IBM Tech. Rpt. 61-907-
198, Nav 61,

B-3

Computer Command and Control Co., "Applicition of Associative Memor ies tc
the Weapon Assignment Problem of NTDS, ' Computer Command and
Control Company, ONR Report No. 13-101-8 (SECRET), Contract #
#NOnr 4068(00), Naval Analysis Group, SECRET.

Computer Command and Control Ca., "Associative Memory Computer System
Description and Selectcd Naval Applications,”" Computer Command and
Control Co., 10 Apr 65,

Compuier Comm.nd and Control Co., "Summary of Investigaiion 1 Associative
Memorie: " Rpt. No. 5, Compater Command and Controt Co., 15 Jan 64.

Computer Command and Control Co., "Pattern Recognition Process for Bubble
Chamber Pictures," Computer Command and Control Company, ONR
Report No. 2-102-2, Contract # NOnr 4668(00), Naval Analysis Group.

Conway, M. E.,"A Muitiprocessor System Design,'" Proc. FJCC, p. 139,
Nov 63.

Corbell, R. C., "Tunnell Diode Associative Memory,'" Master's Thesis UCLA,
Jun 62.

Corneretto, A., ""Associative Memories, A Many-Pronged Design Effort,"
Electronic Design, p. 40, 1 Feb 63.

Corperetto, A., "2-K BIT Associative Memory Works at Rooir» Temperature, "
Electronic Design, 5 Jul 62.

Cr. chlow, A. J., "Generalized Multiprocessing and Multiprogramming Systems, "
Proc. ¥JCC, 63.

Danyichuch, 1., Pernesni, A, J., Sagal, M. W., "Plaled Wi: - Magreiic Film
Memories," Intermag Proceedings, Washington, D. ., Apr 64.

Davies, P. M., "A Superconductive Associative Memory," Proc. SJCC, May 62,
p. 79.

Davies, P. M., "Design of an Associative Computer,” Proc, Pacific Computer
Conference, Pasadena, California, Mar 63, p. 1¢9.

Davies, P., "The Assoclative Computer, Proc. Pacific Computer Conference,
California Institute of Techaology, 15 Mar 63.

Deronald, C. H., Fotheringham, J. A., "The ALTAS Computer,” Datamation,
May 61. -

Dreyfuss, P., "'System Design of the Gamma 60," Proc. WJCC, 58.

B4

Duda, W. L., Elfant, R. F., "Electronically Addressable Bulk Memorics,
IBM Research Yorktown Heights, New York, RC-1250, IBM CONFI-
DENTIAL, 10 Aug 64.

Dunham, B., North, J. H., "The Problem of Selecting Logically Efficient Build-
ing Blocks and Hookups," IBM Research, Yorktown Heights, New York,
RC-785, 18 Sep 62.

Elfant, R. F., "Design and Cost Estimate for Electronically Addressable Bulk
Memory," IBM Research, Yorkiown Heights, New York, RC-1292,
JRM CONFIDENTIAL, sep 64.

Elmendorf, W. R., "Program Sequencing and Storage Addressing in a Multi-
Processing System," IBM Research, Yorktown Heights, New York,
RC-501, 1IBM CONFIDENTIAL, 4 Aug 61.

Erikson, A. J., "Magnetic Thin-Sheet Memory," Quarterly Report, RCA De-
fense hlectronics Products, Camden, N.J., AD 460 381, DIV 30/1,
17/1; 1 Jun 64-30 Sep 64.

. Erickson, D. K., Hughes, J., Turner, R. L., "Information Storage and Re-
trieval System,'" IBM Generzl Products, San Jose, Calif., PT-2909-F,
IBM CONFIDENTIAL, Apr 65.

Estrin, G., Fuller, R., "Algorithms for Content Addressable Memory Organiza-
tions)" Proc. Pacific Computer Conference, Pasadena, Calif., Mar 63.

Estrin, G., "Organization of Computing Systems — The Fixed Plus Variable
Structure Computer,' Proc. WJ CC, San Francisco, Calif., 3-5 May 60,
pp 33-40.

¥strin, G., Fuller, R., "Some Apjalications For Content-Addressable Memories,"
Proc. FIJCC, Las Vegas, Nev., Nov 63. ’

Evane, J., Filorkowsky, J. H., "A Correction Scheme to Use Imperfect Memory.
Array With No Reductlon In Speed,' IBM Advanced Systems IBM CON-
FIDENTIAL 20 Mar 64.

Evans, J., Florkowsky, J. H., '""Multiple Addressing for Fixed-Tag Associative
Memcries, ' IBM Advanced Systems, Endicott, New York, TR-17-138,
IBM CONFIDENTIAL, 17 Jan 64.

Ewing, R. G., Davies, P. M., "An Associative Processor," Proc. FJCC, Vol
26, Part I, Oct 64, p. 147.

Falkotf, A. D., "Algorithms For Parallel Search Memories,' IBM Research,
Yorktown Heights, New York, RC-533, Aug 61.

Falkoff, A. D., "Algorithms for Parallel Search Memories,'" IBM Research,
Yorktown Heights, New York, RC-658, IBM CONFIDENTIAL, Apr €2.

Falkoff, A. D., "Algorithms for Parallel Search Memories, " Journal of the
ACM, Oct 62, P. 488.

Falkoff, A.D., "Formal Description of Processes—The First Step In Design
Automation,” IBM Research, Yorktown Heights, New York, NC-510,

15 Jun 65.

Falkoff, A. D., "Program Sequence Control In A Multiprocessing System Using
Associative Storage,' IBM Advanced Systems, Mohansic, New York,
Technical Memo No, 15, IBM CONFIDENTIAL, 28 Sep 60.

Fan, G., Mee, C. D., "A Beam Addressable Memory File,' RC-1346, IBM
Research, Yorktown Heights, New York, RC-1346, IBM CONFIDEN-

TIAL, 7 Jan 65.

Farber, D. J., et al, "Snobol, A Strink Manipulation Language,” J. ACM,
Vol. II, No. 2, Jan 64.

Farrar, J. M. Jr., Courtney, R. H. Jr., "Associative Memory Applications
for Intelligence Data Processing," IBM Federal Systems Division,
Rockville, Maryland, IBM CONFIDENTIAL, 29 Dec 61.

Feldman, J. A., "Aspects of Associative Processing,'" Lincoln Lab, MIT,
Lexington, Mass., AD 614 634, DIV 30/1, Apr 65.

Ferris, Ronald J., "An Analysis of the Multiple Instantaneous Response File,"
RADC, Griffiss AFB, N.Y., AD 610 131, DIV 32/1, 30/1; Dec 64.

Fildes, J. J., Zeitler, G. Jr., "A Memory Address Controller for Tele-
Processing Systems,' IBM Data Processing, Poughkeepsie, New
York, 30 Apr 62.

Fleisher, H., "Combinatorial Techniques for Periorming Arithmetic and Logi-
cal Operations,” IBM Research, Yorktown Heigats, New York, RC-289.

Flynn, M. J., "Operations In an Associative Memory," PhD Thesis, Purduc
University, BTP-62-1782, APFILS, Jun 61,

Flynn, M. J., Machol, R. E., "Logical and Functional Specification of an Asso-
ciative Memory," IBM Data Systems, TR 00.852, 15 Feb 62.

Frate, G. J., Stromick, S., "Compendium of Storage and Retrieval Devices
and Techniques,' RADC, AD 450 182L, DIV 30/1, RESTRICTED DIST:
RADC ATTN EMIIG, Sep 64. '

B-6

Frei, E. H., Goldberg, J., "A Methud for Resolving Multiple Responses In a
Parallel Search File," IRI Transactions on Electronic Computer«,
Vol. EC-10, No, 4, Dec 61, pp. 718-722.

French, W. K., "Associative Memory', IBM Patent, U, S, DPatent No. 3,123,706,
3 Mar 64,

French, W. K., "Associative Memory,'" U, S, Patent No. 3,131,291, Apr 64.

Fuller, H. W., McCormack, T. L., "Study and Investigation of Technique tor
Constructing Medium-Speed Random Access Mass Memory, LFE
Electronics, Boston, Mass., AD 614 821, DIV 30/1, 14/1, 25/1, 26/1;
Mar 65.

Fuller, R. H., "Content-Addressable Memory Systems,'' UCLA, AD 417 644,
DIV 30/1, Jun 63.

Fuller, R. H., Bird, H. M., Medick, J. N., "Associative Processor Study,"
Librascope Div., Glendale, Calif., AD 508 427 DIV 30/1, Oct 64.

Fuller, R. H., Estrin, G., ""Some Applicat: ns for Content-Addressable Mem-
ories,” Proc. FJCC, Nov 63, p. 495.

Fuller, R. H., Salzer, J. M., "Asscciative Processor Study,' General yrecision
Inc., AD 608 427, Oct 64.

Futami, K., 2t. al., "The Plated-Woven Wire Memory Matrix, " Interman Pro-
ceedings, Washington, D. C., Apr 64.

Ga!l, R. G., "A Hardware-Integratcd GPC /Search Memory," Proc. IFIPS 1964,
FJCC, 64,

Gelernter, H., "System Requi ‘ements of a Digital Computer for the Manipula-
tion of List Structures,"” IBM.

Goldberg, J. . Creen, M. W., "large Files for Information Retrieval Based on
Simultaneous Interrogation of All Items,” Proc. Symposium on Large-
Canacity Memory Techniques, May 61, p. 63.

Goldstine, Horwitz, Karp, Miller, "On the Parallel Execution of Macro Instruc-
tirns," IBM Research, Yorktown Heights, New York, RC-1262, IBM
CONFIDENTIAL, 17 Aug 64,

Gunodyear Aircraft Corp., "Collection of Note~ on Associative Memory,"” Report
No., GER 10857, Akrep, Obo, Oct 2.

Gr-en, B, F., "Computer Languages for Symbel Manipulation,” IRF Transac-
tions on Electronic Compuiers, Dec 61,

B-7

Greene, J. E., Dean, R, F., Updike, B. M., "Microprogrammed Implemen-
tation of the IBM System/360-30 Machine Organization," General
Products, Endicott, New York, TR-01.813, Jun 64,

Gregory, J., McReynolds. R, '""The Solomon Computer,' IEEE Trans. Cn Elec-
wronic Comnuters, Vol. EC-12, No. 5, Dec 63,

Griffith, J. E., “An Intrinsically Addressed Processing System," IBM Systems
Journal, Vol. 2, Sept-Dec 63.

Griffith, J. E., "Table Lookup Computers,'" iBM Data Systems, Kingston, New
York, TR-21.053, IBM CONFIDENTIAL, 14 Mar 62,

Griffith, J., "Techniques for Advanced Information Processing Systems,"
Firat Congress on the Information System Sciences, Hot Springs, Va.,
18-21 Mov 62.

Hawkins, J.*K., "Self-Crganizing Systems—A Review and Commentary," Proc.
IRE, 1961, Vol. 49, pp 51-48,

Hellerman, H., "A Compile1 and Machine Organization for Parallel Processing
of Algebraic Expressions,' IBM Advanced Systems, Endicott, New York,
Report No. 17-150, IBM CONFIDENTIAL, Dec. 64.

Hellerman, H. H., "A Directory Control System for Multiprogramming, " IBM
Research, Yorkiown, New York, RC-1095, Oct 63. :

Hellerman, H., "Experimental Personalized Array Translation System," Comm.
ACM, Vol. 7, No. 7., 64. -

Hellerman, i%., "On the Organization of a Multi-Programming~Multiprocessing
System," IBM Research, Yorktown Heights, New York, RC-522, IBM
CONFi1DENTIAL, 5 Sep 61,

Herwitz, P. S., "Harvest System,' IBM Research, Yorktown Heights, New York,
RC-64, Nov 58,

Holland, J. R., "A Universal Computer Capable of Executing an Arbitrary Num-
ber of Sub—Programs Simultaneously," Proc. EJCC, Bostuu, 1-3 Dec 59.

Holland, J., "Interative Circuit Computers,” Proc. WJICC, 60,
Holum, B. A., "Some Uses of an Associative Memory As a Real-Time Control,"

1BM Corporation, New York, New York, SRI Term Paper No. 11-31, IBM
CONFIDENTIAL, Apr 64.

Hughes Aircraft Co., ‘A Proposal for the Study of Associative Processing Tech-
niques,” Rpt No. FP 63-16-276, llughes Aircraft Co., 14 Oct 63,

Hunt, R. T., Snider, D. L., Suprise, J., Boyd, 1I. N., "Study of Elastic Switch-
ing For Associative Memory Systems,' Good Year Aircraft Corp, DDC,
M Feb 64.

IBM, "Asr-ciative Processing Techniques, ' IBM Proposal to RADC RTD, GRIFISS
A_ B, RFP # 64-423, 9 Oct 63.

IBM Advanced Systems Division, "A Proposal for the Study of Advanced Informa-
tion Retrieval Techniques,' IBM Advanced Systems, Yorktown Heights,
New York, IBM Proposal to USA/SSA, Ft. Monmouth, 30 Mar 62.

IBM Data Processing Division, ''File Organization Techniques for Direct Access
Storage Devices, ' IBM Data Proc-<ssing, Mechanicsburg, Pa., IBM
CONFIDENTIAL,

IBM Federal Systems Division, "An Associative Memory Using Superconductive
Techniques,” IBM Federal Systems, Rockville, Maryland, TP60-3500
to RADC, 13 Sep 60.

IBM Federal Systems Division, "Associative Processor," IBM Proposal to
RADC-AFSC, GRIFFISS AFB, 19 Jun 64.

IBM Federal Systems Division, ""Cryogenic Associative Memory Techniques, "
IBM Proposal to RADC GRIFFISS, FSD-Rockville, AFPI-465 (d) (1).

IBM Federal Systems Division, "Hybrid Associative Computer Study," IBM Pro-
posal to RADC, Rome, Iiew York, 29 Jun 64.

IBM Federal Systems Division, ''Study of the Applications of Parallel Search
Memories,' IBM Proposal to AFSC-ESD HANSCOM Field, FSD Rock-
ville, ES-3-438L-3267/5SBM, 29 Mar 63.

IBM Federal Systems Division, '""Logical Memory Study,' IBM Rockville-ATl
Cambridge Research Center, 7 Nov 60.

‘ Iverson, K. E., "Formalism In Programming Languages,' COMM. ACM,
Vol. 7, No. 2, Feb 64.

. Iverson, K.E., "Recent Applications of a Universal Programming language,”
IBM Research, Yorktown, New York, NC-511m 15 Jun 63.

B-9

Johnson, L. R., "An Indirect Chaining Method for Addressing on Sccondary
Keys, " Communications of the ACM, May 61.

Johnson, L. R., "On Operand Structure, Representation, Storage and Search,”
IBM Research, Yorktown, New York, RC-603, 5 Dec 61,

Johnson, L. R., McAndrew, M. H., "On Ordered Retrieval From an Associa-
tive Memory," IBM Journal of Rescarch and Development, Vol. 8, No. 2, ‘
Apr 64, p. 189.

Joseph, E. C., Kaplan, A., "Target-Track Correlation with a Search Mcmory, " ﬁ
Proc. 6th National Conv. on Military Electronics, Jun 62, p. 255, "

Jutzi, W., "The Magnetic Pulse Field of the Bit Line in the Megabit Thin Mag-
netic Film Memory, ' IBM Research, Yorktown, New York, R7-150,
IBM CONFIDENTIAL, 22 Sep 64.

Kaatariya, G. V., "Parallel Micro-Programming and the Principles of Design
of Central Control Units for Digital Computers,” AERO Space Technol-
ogy Div., Library of Congress, AD 299 737, DIV 30/1, Dec 62.

Kaplan, A., "A Search Memory Subsystem for a General Purpose Con, uter,"
Proc., FJCC 1963, p. 193.

Kilburn, T., et al, "One Level Storage System,' IRE Transactions on Elec-
tronic Computers, (also PGEC Apr 62), Apr 62.

King, G. W.. "Table Luokup Procedures in Data Processing,' I1BM Research,
Yorkitown, New York, NC-166. !

Kiseda, J. R., "A 128-Word, 36-Bit Magnetic Associative Memory," IBM Re-
search, Yorktown, New York, NC-358, IBM CONFIDENTIAL, 17 Mar 64.

Kiseda, J. R., Peterson, H. E., Seelbach, W. C., Teig, M., "A Magentic As-

sociative Memory," IBM Journal of Research and Development, Vol. 5, ;
No. 2, Apr 61,

Koener, R.; "A Memory Array Searching System," U.S. Patent No. 3,031,650,
Apr 62.

Kolsky, H. G., "General Description of a Low-Cost Computer Organization Based
on the Dynamic Streaming of Records,” IBM Research, Yorktown, New N
York, RJ-210, 23 Feb 62.

Kochen, M., "Experimental Study of 'Hypothes-Formation' by Computer," [3M
Research, Yorktown, New York, RC-294, 25 May 60.

Kovalick, V. £., "Literature References on: Modular Computer Organization,
Parallel & Multi-Processor Computers,’ IBM Federal Systems, Owego,
New York, IBM CONFIDENTIAL, 14 Nov 62.

B-10

Kurtz, G., Neilson, R., Schiff, A., Smith, G., "Table Lookup Study Model,"
IBM Federal Systems, Kingston, New York, IBM CONFIDENTIAL,
3 Aug 62,

Ledley, R. S., "Organization of Large Memory Systems," Proc. Large-
Capacity Memory Techniques for Computing Systems, May 61, p. 15.

. Lee, C. Y., "Intercommunicating Cells, Basis for a Distributed Logic Compu-
o ter." Proc. FJCC, Philidelphia, Pa., Dec 62.

Lee, C. Y., Paull, M. Y., "A Content Addressable Distributed Logic Memory
With Applications to Information Retrieval,” Proc. IEFE, Jur 63,

Lee, E. S., "Associative Techniques with Complementing Flip-Flops,' Proc.
SJCC, May 63, p. 381,

Lee, E. S., "'Solid State Associative Cells,' Proc. Pacific Computer Confer-
ence, Calif. Inst. of Tech., 15-16 Mar 63.

Leiner, A. L., et. al., "Concurrently Operating Systems,' Proc. IFIPS, 59.

Lewin, M. H., "Retrieval of Ordered Lists From a Content-Addressed Memory,"
RCA Review, Vol. XXIlI, No. 2, Jun 62, pp. 215-229,

Lewin, M. H.. Beelitz, H. R., Rajchman, J. A., "Fixed, Associative Memnory
Using Evaporated Organic Diode Arrays,” Proc FJCC, Nov 63, p. 101.

LFE Inc., "Study and Investigation of Technique for Constructing Medium-Speed
Random Access Mass Memory," Laboratory for Electronics Inc.,
AD 614 831, Mar 65,

Lindquist, A. B., "An Application for a Small, Fast Associative Memory to RRe-
duce the Access Time for Instructions in Loops," IBM Corporate, New
York, New York, IBM Term Paper No. 4-39, 19 Dec 61.

Lindquist, A. B., "An Associative Local Store," IBM ITL Meeting on Machine
Organization, IBM CONFIDENTIAL, Nov 63.

Lindquist, A. B., "Associative Memory for Highly Parallel System, " Proc.
FJCC, Las Vegas, Nev., 12-14 Nov 63.

Lindquist, A. B., "Coding of Trees for Use In an Associative Memory,” IBM
Corp.., 5 Aug 62,

Lindquist, A. B., "Cryotron Associative Memory Cell," IBM Data Systems,
Poughkec, sic, New York, 6SC-01774-MF004, Mar 65.

Lonergan, W., Ring, P., "Design of the B-5000 System, " Datamation, May 61.

B-11

Long, T. R., "Electrodcposited Memory Elements for a NonDestructive Mem-
ory,' Journal of Applicd Physics, May 60, Supplement to Vel 31, No. 5,
pp 123s-124s.

e

Louis, H. P., Shevel, W. L. Jr., "Storage Systems - Present Standards and
Anticipated Developments, ' IBM Research, Yorktown, New York,
RC-1222, 23 June 64.

Love, H. H., Savitt, D. A., "Associative Processing Techniques Study,"
RADC-TR-65-32, Hughes Aircraft, FR-65-11-18, AF30(602)-3279,
AD-616-620 D1V 30/2, Apr. 1965.

v
.
v S (i R

Luckfield, W. J., "A Multiple File Organization for Information Retrieval Sys-
tems," TIE 6408-0857, IBM CONFIDENTIAL.

Lussier, R. R., Schneider, R. P., "All-Magnetic Content Addressed Memory,"
Electronic Industries, Mar. 63, p 92.

McAteer, J. E., Capobianco, J. A., Koppel, R. L., "Associative Memory
System Implementation and Characteristics," Proc IFIPS, 1964 FJCC.

McCarthy, J., et al, "LISP 1.5 Programmers Manual, MIT Press, 1962,

McCormick, B. H., Divilbiss, J. L., "Tentative Logical Realization of a I'at-
tern Recognition Computer,' Digital Computer Laboratery, University
of Illinois, Report No. 403.

McDermid, W. L., Peterson, H. E., "A Magnetic Associative Memory System,"
IBM Journal of Research and Development, Vol. 5, No. 1, Jan, 1961.

Mclnnes, D. S., "A Micro-Programming Approach to Optical Scanning," Item
No. 6408-0844, KWIC Index to TIE.

Macklin, D., "Dual M2M - Multiprocessor Communication System," SRI Paper
9-37, Ch-NY, Aug 63.

Maher, R. J., "Probiems of Storage Allocation in a Multiprocessor Multipro-
grammed System, " Comam. ACM, Oct, 1951, ,

Mann, H. T., Rogers, J. L., "A Cryogenic 'Between-Limits' Associative
Memory," Proc. Nat. Aerospace Electronics Convention, May 62,
p. 359,

Meggitt, J. E., "A Character Computer for High Level Language Interpreta-
tion,"” IBM Systcms Journal, Vol 3, No. 1, 1964,

B-12

C ORI

AR A R

Minnick, R. C., '""Magnetic Comparators and Code Convertors,' Symposium owu
the Applicati- n of Switching Thcory in Space Technology, Sunnyvale,
California, Feb, 62.

Mueller, O., "A Very Small, Very Low Cost Computer for Use as a Black Box
Computer,'" IBM Research, ““rrktown, New York, R(C-1206, 3 Jun 64,

Mullery, A. P., "A Procedure-Oriented Machine Language,' IEEE Transac-
tions on Electronic Computers, Aug, 1964,

Mullery, A. P., et al, "ADAM - A Problem Oriented Symbol Processor,"
SSCC 1963.

Mullery, A. P., Rice, R., Schauer, R. F.. "Specifications for ADAM and
ABEL," IBM Research, Yorktown, New York, RC-631, IBM CONFI-
DENTIAL, 1 Mar 62.

Muroga, S., "Application of Group Theory and Coaing Theory to File Memory
Addressing,’ IBM Research, Yorktown, New York, RC-1025,

Muth, V. O., Scidm-re, A. K., "A Memory Organization for an Elementary
List Proce s3ing Computer,' IEEE Transactions on Electronic Com-
puters, Ju 2 1963.

Nelson, R. A., "Problems in Automatic Storage Allocaticn," IBM Research,
Yorktown, New York, RC-601, IBM CONFIDENTIAL, 27 Nov 61,

Nelson, R. A., ""An Experimental Data Processing Machine," IBM ITL Meeting
on Programming, IBM CONFIDENTIAL, Dec 62, p 267.

Newell, A., "Information Processing Language V Manual, " Prentice Hall, 1964.

Newell, A., Tonge, F. M., "An Introduction to Information Processing . -
uage V," Comm ACM, Apr. 1960.

Newell, A., "On Programming A Highly Parallel Machine to be an Intelligent
Technician," ‘tand Corp., Santa Monica, Cali{., AD 616 585, D1V
30/2, 1 April '960.

Newell, A., "A Note On the Use of Scrambled Addressing for Associative Mem-
ories,' Unpublished Paper, Dec. 1962.

Newhouse, V. L., Fruin, R. E., "A Cryogenic Data Addressed Memory,"
Proc. SJCC, May 1-3, 1962, p. 89,

Newhouse, V. L., Fruin, R. E,, "Data Addressed Memory Using Thin-Film
Cryotrons," Electronics, 4 May 62, p. 31.

B-13

Newman, E. G., Winter, L. F., "'Magnetically Controlled Variable Logic, "
IBM Data Systems, Kingston, New York, IBM Journal of Research and
Development Vol. 8, No. 3, July 1964.

e i A

Nolan, J. F., Armenti, A. W,, "An Experimental O;: Line Data Storage and
Retrieval System,' Lincolr Labs Inst, of Tech., $ Feb 1965, Lexing-
ton. Masgs., AD 615 658, D1V 30/2, 32/3.

e g 28 s

O'Neil, R. W., "Simulation of Seme Multi-Processing Systems,' IBM Research, . ' ;
Yorktown, New York, RC-824, IBM CONFIDENTIAL, 23 Oct 62.

O'Neil, K. W., "Some Notes on the Absoiuie Coure Locarion 2»oblem " IBM Re-
search, Yorktown, New York, RC-600, IBM CONFIDENTIAL, 3 Jan 62,

Perkins, R., McGee, W. C., "Programmed Control of Multi-Computer Systems, "
Proc. IFIPS, 1962,

Perlis, Thornton, '"Symbol Manipulation by Threaded Lists," Comm ACM, Vol. 3,
No. 4, April 1960.

AT B O I R T W |

Petersen, H. E., '""Content Addressing and Information Retrieval,' IFJPS Con-
gress '62, Munich, Germany, Aug. 1962.

Petrick, 8. R., "Use of a List-Processing Language in Programming Simplifica-
tion Procedures,'" AF CRL, Bedford, Mass. , AD 273 759, D1V 30/1.

Philco, "Research on Ferret Associative Memory," Philco Corp. , Willow
Grove, Pa., AD 458 798, D1V 30,1, 30 Nov 64 - 28 Feb 65.

Phister, M., '"Logical Design of Digital Coruputere,' John Wiley & Sons. New
York, New York, 1958, pp 144-167.

Plonsky, A. T., "Tag-Ordered Associative Memory,' IBM Tech. Disclosure
Bulletin, Vol 5, No. 8, Disclosure No. 131,099, Jan. 1943.

Porter, R, E., "The RW-400—A New Polymorphic Data System," Datamation,
Jan/Feb 1960.

Pritchard, J. P., Jr., "Fabrication and Testing of Cryogenic Associative Mem-
ory Planes," Texas Instruments, Inc., Dallas, Texas, AD 615 491,
DIV 30/2 25/6, 5 May - 13 Dec 64. '

Pritchard, J. P., Jr., Wald, L. D., "Design of a Fully Associative Crvogenic
Data Processor," Proc. of the International Conference on Nonlinear
Magnetics, Apr. 64, p 2-5-1.

B-14

Prywes, N. H., ct al, "Interactions of Computer Language and Machine De-
sign," Final Repert, RADC-TDR-82-584, AD 292 033, Oct. 1962.

Prywes, N.S., Gray, H. J., "The Organ:zation of a Multiliet-T ype Associative
Memory,'' IEEE Transactions on Communications and Electronics,
& No. 68, Sep 63.

. Raffel, J., Crowther, T. S., "A Proposal for an Associative Memory Using
.- Magnetic Films, AD 612 832, Div 32, 25,

Raffel, J. 1., Crowther, T. S., "A Proposal for an Associative Memory Using
Magnetic Films," Lincoln Lab, MIT, Lexington, Mass., AD 451 538
Div 30/1, Mar. 64,

Rajchman, J. A., "Computer Memories: A Survey of the State o1 the Art,*
Proc. IRE, Vol. 49, Jan. 1961, pp 104-127,

RCA, "High Speed Data Processor System Research Prcject Lightning," RCA
Electronic Data Processing Division, Camden, New Jersey, AD 240
499, Dec. 1959,

RCA, "Magnetic Thin-Sheet Memory,' RCA - Defense Electronics Products,
Camden, New Jersey, AD 460 381, Jwne 1, 64 - Sept 30, 54,

Rice, R., Schauer, R. F., Terman, L. M., "High to Low Order Numeric Proc-
essing,' IBM Research, Yorktown, New York, Jan 20, 1962.

Richards, Paul, '"Parailel Programming,' Technica! Operations Research,
Burlington, Mass., AF 33 (600) - 351%), BTP 62-0376, AD 261 623,
Div 15/1 30/1, Aug 60.

Robbi, A. D., Riceci, R., "Transfluxor Content-Addressable Memory," Proc.
of the International Conferance on Nonlinear Magnetics, Apr. 64,
p 8-3-1.

Roberts, M. deV., "A Programming Proposal for a Computer Design,' IBM
Research, Yorktown, New York, RC-794, IBM CONFIDENTIAL,

e Aug 29, 1962.
Roberts, M. deV., "Associative Mcmories and the One Level Storc,” IBM Re-
search, Yorktown, New York, RC-807, IBM CONFIDENTIAL, Sept 26,
* 1962,

Rogers, J. L., "Research on Cryogenic Associative Memories," Quarterly
Progress Report for Period Ending 30 Nov 1962, Space Technology
Labs, TP 64H1-4668, 16 Jan 1863.

B-15

Rogers, J. L., "Research on Cryogenic Associative Memories," Quarterly
Progress Report ivr Period Ending 28 Feb 1963, Space Technology
Labs, 11 Apr 1963.

Rogers, J. L., "Research on Cryogenic Associative Memories, ' Quarterly
Progress Report for Period Ending 30 May 1963, Space Technology
Labs, 8 Aug 1963.

Rogers, J. L., Wolinsky, A., ""Associative Memories and Their Cryogenic
Implementation,' TRW Space Laboratories, Redondo Beach, Calif.,
8670-6007-RU-000, DDC, Dec 63.

Rogers, +. L., Wolinsky, A., "Research on Cryogenic Associative Memories, "
Tinal Summary Report. 28 Mayv 64, "RW Snace Tcoh, I15bs., NOMR
3£39(1001), 1 Jun 62 - 30 May 64.

Rosengerger, J., Lindquist, A. B., Seeber, R. R., "Cryogenics Memory Plane
Interconnection Techniques," IEM Pcughkeepsie, Poughkeepsie, New
York, AD 622 819, DIV 30/2, 8/2, Oct 65.

Rosenblatt, F., "Perceptro. Simulation Experiments,' Proc. IRE, 1960, Vol.
48, pp 301-309.

Rosin, R. F., "An Organization of an Associative Cryogenic Computer," Proc.
SJCC, San Francisco, Calif., May 62, pp 203-212,

Rosin, R. F., "List Structures and Their Implementation Through Advanced
Machine Design,' IBM Research, Yorktown, New York, RC-297,

Aug 60.

Ross, D. T., "A Generalized Technique for Symbol Manipulation and Numerical
Calculation,' Comm ACM, Vol. 4, No. 3, Mar. 1961.

Roth, J. P., "Systematic Design of Automata,” IBM Research, Yorktown, New
York, RC-1425, 16 Jun 65.

Rethman, §., "The RW-400 Data Processing System, " Proc. Auto-Math Con-
ference, International Congress of Information Processing, Pzris,
June 1959,

Rowe, A. J., Brock, P., "Use of Hybrid Computing in Design Automation,"
Hughes Aircraft, Rand Corp., AD 613 002, Mar 65.

Rowlaug, C. A., Berge, W, O., "A 300 Nanosecond Search Memory," Proc.
FJCC, Las Vegas, Nev., Nov 1963.

B-16

BT T o SO ——

B

o A e g

Rybak, Franklyn M., "Study to Determine the Applicability of the Solorion Com-
puter to Command and Control," Vol 1. Information Storage, ietrieval
and Communication System Control, Westinghouse Electric, Baltimore,
Md., AD 454 765, Div 30/1 5/1, Oct. 64, 194 p.

Sagnis, J. C., Stuckert, P. E., "Cross Core Memory Element," IBM Research,
Yoritown, New York, RC-767, IBM CONFIDENTIAL, Sept. 62,

Scheuer, R. F., "Variable Field Length: Its Effect on the ADAM System Design,"
IBM Research, Yorktown. New York, RC-1138, v Mar 64.

Schauer, R. F., Meggitt, J. E., "Evaluating the Logical Design of tlie Preblem
Oriented Symbol Processor," Final Report, IBM Research, Yorktown,
New York, AF 19(628)-3257, 1 Nov 63.

Schlaeppi, H. P., "A Formal Language for Describing Machine Logic, Timing
and Sequence (LOTIS)," IBM Research, Yorktown, New York, RZ-125,
24 Dec 63.

Schlaeppi, H. P., '""Notes on Microprogramming of Digital Systems," IBM Re-
search, Zurich, Switzerlana, RZ-33, July 1958.

Schoene, L. P., Jr., Murray, P. J., "The Application of List Processing
Techniques to Intelligence Data Processing,' Final Report, IBM-FSD,
Rockville, Md., Task No. 0273, IBM CONFIDENTIAL, 31 Dec 62.

Seeber, R. R., Jr., Lindquist, A. B., "Associative Logic for Highly Parallel
Systems," Proc FJCC, Las Vegas, Nev., Nov, 12-14, 1963, p. 489.

Seeber, R. R., Jr., Lindquist, A. B., "Associative Memory with Ordered Re-
trieval,’ IBM Jourual of Research and Development, Vol. 6, No. 1,
Jan. 1962, p. 126.

Beeber, R. R., Jr., Scriver, A, J., "Associative Self-Sorting Memory," Proc.
EJCC, Vol. 18, Dec. 1960.

Seeber, R. R., Jr., "Associative Self-Sorting Memory Revised, " IBM Data Sys-
L tems, Poughkeepsie, New York, TR-00, 756, Nov. 60.

Seeber, R. R., Jr., "Cryogenic Associative Memory, " Natisnal Conference ot
. the ACM, Aug. 1960.

Seeber, R. R., Jr., Lindquist, A. B., "Mass Fabrication, Highly Parallel Sys-
tems, and Associative Logic,” IBM, Paughkeepsie, New York, TIC
63AS 0518, IBM CONFIDENTIAL., 22 May 62.

Seeber, R. R., Hartman, F. B., "Memory and Circuits Therefor," U. S. P, tent
No. 3,121,217, Feb 64.

B-17

Seeber, R. R., "Symbol Manipulation With an Associative Memory Preprints,"
National Conference of the ACM, Sept 1.

Selfridge, O. G., "Pattern Recognition and Modern Computers,' Proc. WJCC,
1955, pp 91-53.

Shahbender, R., et al, "Laminated Ferrite Memory," Proc. F.JCC, Las Vegas,
Nev., Nov. 1963.

Shaw, J. C., et al, "A Command Stiucture for Complex Information Process~
ing," Proc WJCC, 1958.

Shay, G., Jr., Spruth, W. G,, "Analysis of a File Addressing Method. "

Shooman, Wm. , "Parellel Computing with Vertical Data," SDC, Santa Monica,
Calif., AD 276 593, Jan 1961.

Shooman, W., "Parallel Computing With Vertical Data," Proc EJCC, New York,
Dec 13-15, 1960.

Simmons, G. J., "Appiication of an Associatively Addressed Distributed Memory,"
Proc. SJCC, Apr 64, p, 433.

Simmons, G. J., ""A Mathematical Model for an Associative Memory," Sandia
Corp. Report, SCR-641, April 1963, Sandia Corp. Report, SCR-621,
April 1963.

Binger, T., Schupp, P., "Associative Memory Computers f.om the Program-
ming Point of View," Mitre Corp., ESD-TDR-63-245, AD 416 301,
Aug 1963.

Slade, A. E., McMahon, H. O., "A Cryotron Catalog Memory System," Proc.
EJCC, Dec 56, p 120.

Slade, A. E., Smalimau, C. R., "Thin-Film Cryotron Catalog Memory," Auto-
matic, Aug. 1960, p. 48,

Slade, A. E., "The Woven Cryotron Memory," Proc. [~*ernational Sympusium
on the Theory of Bwitching, 1859, p. 326.

Slotnick, D. L., et al, "The Solomon Computer - A Preliminary Report,"
Workehop on Computer Organization, A. Barum and M. Knapp, Editors.

Slotnici- L., Borck, W, C., McReynolds, "The Solomon Computer,"” Proc.
Z, San Francisco, Calif., Msv 1862, i

Smith, E. . "A Directly Coupled Multiprrcessing System," IBM Systems
Journzl, Sept/Dec 1963.

60 Y Lt

B-18

Smith, R, V., "4 Programmed Assccialive Memory for Use in Compiling,"
SRI - Term Paper No. 2-45, |BM Corporate, New York City, IBM
CONFIDENTIAL, 28 Apr 1961,

. Smitk, R, V., Senzig, D. N., "Computer Organization for Array Processing,"

> IBM Research, Yorktown, New York, RC~1330, 9 Dec 64.
. Space Technology Labs, "Feasibility “tudy for a Cryogenic Assuciative Memory, "
g Report: Proposal 0759.00, July 1961.

Sperry-Rand Corp., "UNIVAC Search Memory,'" MO 5562, Sperry-Rand Corp. ,
Univac Park, St. Paul, »inn,

Sproul, W. W., "Microprogram Computers with Minimum Redundancy Memories, "
IBM-FSD, Owego, New York, 63-533-G14, Dec. 1963.

Stanford Research Institute, "Development of a Multiple Instantaneous Response
File," The AN/G5Q-81 Document Data Indexing S«t, AD 609 126, Stan-
ford Research Institut:, Meanlo Park, Calif., Oct 1964,

Strachey, "Time Sharing in Large Fast { ‘mputers," Proc. IFIPS, 1959,

Tapecott, R. P., "An Algorithm for the Reduction of Intermediate Storage Utiliza-
tion Costs,” RC-599, IBM Research, Yocktown, New York.

Thompeon, R. N., Wilkinson, J. A., "The L .25 Automatic Operating and Sched-
uling Program," Proc SJCC, .963.

Toxen, A. M., Burng, M. J., "Critical Fields of Thin Superconducting Films,
1 Mean Free Path Effects in Indium-Tin Alloy Films," IBM Research,
Yorktuwa, New York, Sept 10, 1962,

TRW, "Car.puter Associative Mzmory Study," TRW-Gpace Technology Labs,
Redondo Beach, Calif,, AD 442 950, Div 30/1, July 64.

TRW, "Computer Associative Memory Final Repcrt,'" TRW Inc., DDC, TP 64K1-
5764, Not for For, Disgt,, 15 Jul 64.

Turm, R., "Assignment of Inveniory c¢f a Variab'e Structure Computer," PhD
Dissertation, U,C. L,A., Jan. 1963,

Tuttle, G. T., "How to Quiz a Whole Memory at Once,"” Electronica, 15 Nuv 83,
p 43.

) Urr, L., Vossler, €., "A Pattern Recogaition Program that Generates, Evalu-
. ates and Adjusts 'ts Own Operatoss,” WJCC. May 1961, pp 555-569.

B-12

e i+ Y o e e | et e 487 A

Jnger, S. H., "A Computer Oriented Toward Spatial Problems,' Proc, IRE,
Oct. 1958, pp 1744-1750,

Wagner, E. G., "An Approach to Modular Computers I, Spider Automata and
Embedded Automata," IBM Research, Yorktown, New York, RC-1107,

Jan. 1964.

Wagner, E. G., "Modular Computers II. Graph Theory and the Interconnection
of Modules," IBM Research, Yorktown, New York, RC-1414, 4 Jun 65.

Wagner, E. 4., McCarthy, J., "Tag Memory," U. S, Patent No. 3,093,814,
Jun 63.

Wang, C. P., Ruehli, A, E., "A Transis’or-Tunnel Diode Cell for Associative
Memories and Multiple-Word Access Memories," 65C-001359-MF003,
IBM CONFICENTIAL.

Wamner, V. R., "The Logical Design of a Multi-Channel Device for the Retrieval
of Information," ONR Report No. ACR-93, April 1964.

Webster, W. W., "Problems In Utilizing Tabular Languages, with Examples
Drawn from 1401 Card Program Generator," IBM Corporate, New York

City, Dec 1961.

Weinstein, H., ""Proposals for Ordered Sequential Detection of Simultaneous
Multiple Responses," IEEE Trans. on Electronic Computers, Oct. 63,
p. 564.

Westinghouse Corp., ""Study and Investigation to Develop Compiler Techniques Re-
quired for Programming the Parallel Network Computer," Westinghouse
Defense and Space Center, Baltimore, Md., AD 602, Div3 ‘1, Jun 64.

Westinghcuse Corp., '"Parallel Network Computer (Solomon)". Westinghouse,
Baltimore, Md., AD 419 318, Div 30/1, 8/1, April 1963.

Westinghouse Corp. . "Multiple Processing Techniques," Westinghouse, Balti-
mote, Md., AD 602 693, Div 30/1, June 84.

V/estinghouse Corp., '"Parallel Network Computers (Soloman) Solomon Bread-
board Te~hnical Report," Westinghouse Electric Corp., Air Arm Divi-
sion, Baltimore, Md., AF 30(602)2724, AD 419318, 15 Apr. 1933.

Wigington, R. L., "A Machine Organization for a General Purpose List Proces-
sor," IEEE Transactions on Electronic Computers, Dec. 1963,

Winters. R. E., "Snecial Intelligence Processos," Progress Report, Jan-Dec
1962, IRAD 0270, IBM-~FSD, May 1963,

B-20

Wiseman, N. E., "Applications of List Processing Methods to the Design of
Interconnections for a Fast Logic System,'" Electrical Communication,
ITT, Vol 38, No. 3, 1963.

Yang, C. C., Tou, J. T., "Systematic Design of Cryogenic Logic Circuits,"
Computar Sciences Lab, AD 617 501, Div 30/2 25/6, 1964.

Yngue, V. H., COMIT, Comm ACM, Mar 1963.

Younker, E. L., Heckler, C. H., Jr., Masher, D. P., Yarborough, J. M.,
"Design of an Experimental Multiple Instantaneous Response File,"
Proc. SJCC, Apr. 64, p 515.

Younker, E. L., Heckler, C. H., Jr., Masher, D. P., Yarborough, J. M.,
"Development of a Multiple Instantaneous Response File: the AN/GSQ-
81 Document Data Indexing Set,'" Stanford Research Institute, Menlo
Park, California, AD 609 126, Div 32/1, 30/1, Oct 64.

Zucker, M. S., Griffin, J. F., Haimes, M. J., Patton, S. K., "Control Sys-

tems Technology,' IBM Advanced Systems, Endicott, New York, TR-
17-058-RD, Dec 61.

B-21

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

duumy clasesiticetion of title, body of abstrect and indexing tation muet be d when the overall repori is cleasiliad)
t. OMIGINATING ACTIVITY (Comorete auther) 26 REPORY SECUNITY C LASSIFICATION
Federal Systems Div UNCLASSIFIED
Im Corp 26 crour
|___7220 Wisconsin Ave, Bethesds, Md 20014 N/A

3 REPORT TITLE

Advanced Computer Organization

4 DESCRIPTIVE NOTES (Trype of repect anc inciualve dalss}

Final Report

8. AUTHON(S) (Laet name. Hret name, inttial)

Baker, F.T. Schenken, J.D.
Forbes, C.H. Triest, W.E,
dacobs, N, Walker, T,P., Jr.

6. REPORT DAYE T7a. votaL no. oF PasEs 75 NO. OF - "

Pebruary 1966 u.y 1966 N 302 293 ——
a8 CONTRACT OR GRANT NO. R OR'GINATON'S RIPOAT NUME&AS)

AF30(602)-3573

b PROJECT NO

Ls9L

* Task # LSu06

‘ RADC-TR-66-1L8

10 AVAILABILITY/LIMITATION NOTICES : This document is subject to special export controls
and each transmittal to foreign governments or foreign nationals may be made
only vith prior approval of RADC (EMLI), GAFB, N.Y. 13u4LO.

H. SUPPL EMENTARY NOTRS 13. SPONSORING MILITARY ACT iVITY
Rome Air Development Center
Griffiss AFB, New York 13LL0O

[T x‘v.un a,-ouv NO(S) (Any other umbers that may be sssigned

13 ABSTRACT

this study resulted in a design of an sdvanced general-purpose computer,
including its functiomal organiszation and programming. The design is based
on content-addressable parsllel search memcries and the computer has parallel
proceasing capability. It resulted from investigstions in several important
areas of non-numeric processing and symbol manipulation, anc¢ the design studies
which were carried out in each area. In addition to the general-purpose
computer and the individual design studies, a mmber of asscciative proces-
sing technigues were developed for use with such equipment.

DD " 1473 UNCIASSIFIED

Security Classification

\¥

— _INCIASSIFTED
Security Classification

KEY WORDS

Associative Processor
Associative Memory
Content-Addressable Memory
Parallel Sesarch Memory
Non-Numeric Processing
Symbol Manipulation

Data Extraction

Indexing

Word Frequency

Formatted Files

Pattern Recognit ion
Textual Error Correction

1. ORIGINATING ACTIVITY: Enter the nams and address
of the contractor, subcontractor, grantee, Tepartment of De-
fense activity or other organization (corporate suthor) issuing
the report.
2a. REPORT SECURTY CLASSIFICATION: Enter the over
all security classificetion of the report. Indicate whether
““Restricted Dmta” is included Merking is to be i sccped
snce with appropriste security regulatioas.
25, GROUP: Auwomatic downgreding is specified in DoD Dt-
rective $200. 10 snd Armed Forces Industrie) Manual. Entes
the group number. Also, when applicable, show that optional
markings have been uaed for Group 3 ind ‘ roup 4 a8 suthor-
ized.
3. REPORT TITLE: Enter the complete repont titte in all
copital tetters, Tiies in all cases should be -clnom-d.
Il o mesnirgiul titie cannct be eelected with ifice
ilon, show tide classification in all cepitals in parenthesis
immediately following the title.
4. DESCRIPTIVE NOTES f sppeopriste, enter the type of
report, e.g . interim, progress, summery, samual, or final.
Give the inclusive dates when a specific reporting period is
covered.
S. AUTHOR(SX Enter the nasw(s) of suthoxe) a8 shown on
or in the report. Emer taet name, firet nomt, midde inftial.
It xilitary, show reni and breach of service Th name of
the principal «that 1w sa sbeolute xi
& REFORT DATL. Emter the dete of the report ss day.
month, yeor. or @oath, yeas ! more thas ose dute appeore
on the repoet, uav dute of pudlicetion
Te. TOTAL NUMBER OF PAGRS The totel rage count
should {ollow sormel paginmtion procsdures, Lo, enter the
rumber of peges coatsining informetion
70, NUMBER OF RAFERENCER Erter the totsl mustier of
reflovences ciod it 1he report.
Sa CONTRACT MR GRANT NUMBLR: If approgeiste, eater
the applicodle maaher of the contract or gramt undes which
the report was wriiten
80, k. b 8¢ PROJECT NUMBER: Enter the appropriate
wilitery depwriment idewntification, such 88 projoct aumber,
sulproject mub #, syvtew tambare, t8sh sumbaer, ete
9. ORIGINATVIR'S REFPORT NUMBER(S: Emter the offh-
cial report susl ar by which the document will be idomt iflad
and controilod iy the originating activity. This sumber wuatl
S0 smique te this repert.
9. OTHER R!PORT NUMBER(S): 15 the repont hoo bown
sssigned ony Slther repert manbars {either by 1he originater
or by the apon_er), alpe emiav this sumber(s)

roqul

ustions om fwrther dissomisstion of the repert, oOher thes

INSTRUCTIONS
imposed by security classification, using stasidard statements

10. AVARLABILITY/LIRTATION NOTICKER Eater any I

such as:
(V) "Qualified requasters may obtain copies of this
report from DDC."*
(D “Poreign ot and dissemination of this

report by DDC is not suthorized *’

() *“U S Government sgenci>s may obtain copies of
this report directly from DDC.
users shall request through

(4) *U. S..military sgencies may obta.n coples of this
report directly from DDC. Othor qualified users
shall request through

(5) *'All distridation of this report is controlied Quai-
ilied DDC users shall request through

tory notes

12 SPONSDRING MUJITARY ACTIVITY:
the depertments! ms:; office or l&ouucy mdn‘ (por

If the report has beea lwnished to the Office of Techuical
Services, Dupertirent of Commerce, for sale to the public, iadh
cate this fact snd snter thre p.ice, if known

IL SUPPLEMENTARY NOTER. Use for additionst enpiane

ing foc) the

13. ABSTRACT: Rawr en lhlnﬂ giving & briaf ond toctua!
indicetive of the ;oport, aven though

Y of the

e attacived.

selocted o8 Bat oo
sreject code name,

it may slee sppear eleewhers in the bady of the techaicel re-)
port. Uf addiionn) space Is requingd, & eontinvation sheet shell

1t is highly desireble that the sbetrect of classified reports
be naciecaified. Kach psragraph of the sbetrect shall and with
o tmlicetion of the wilitary secwrity closaifNcetion of the in:
for-atiom in the paregragh, represnatsd os (T3). (3). (C). ar (V)

There is ae Linitstion eu the
ever, the suggested leugth ia irom)
14. KEY PORDS: Rey worda are tachaicslly aeeniaghil torme

wlhﬂ*u«thlclnnﬂnhoonp«u‘-qnnodn
Ml.tﬂuh«ﬁhﬂqhnﬂﬂ l-,-od-.-mu

to 113 wesde.

- " .
18 .o

flere, such sa cquipment nodd dosigmation. trade aeme, -mury
locetion, way 3o waed s¢ key

wotda ut will be Inllowed by an indication of techaice] con-
teat. The acsignment of linhe, reles, o0 weights s opticael.

URCLASSIFIED

Security Classification

Other qualifsed DDC

Kater the pame of

of the abatrect. How-

