
UNCLASSIFIED

AD NUMBER

AD484444

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors; Critical
Technology; Feb 1966. Other requests shall
be referred to Rome Air Development
Center, Griffiss AFB, NY 13440.

AUTHORITY

RADC USAF ltr, 17 Sep 1971

THIS PAGE IS UNCLASSIFIED

.1

N
�rA�

� � �

.4

��tAJL .1

� �

* L

-,*.

- � �

��. .p� �

ADVANCED COMPUTER ORGANIZATION

F. T..Baker

W. E. Triest

International Business Machines

This document is subject to special
export controls and each transmittal
to foreign governments or foreign
nationals may be made only with
prior apprt,,'al Of RADC (EMLI),

GAFB, N.Y. 13440.

FOREWORD

This report is submitted as a result of performance on Contract AF 30(602)-

3573 awarded by the Rome Air Development Center, Air Force System Command,

Griffiss AFB, New York to the Federal Systems Division, IBM Corporation,

7220 Wisconsin Avenue, Bethesda, Maryland. This study, leading to the develop-

ment of an advanced general-purpose computer organization featuring content

addressing and parallel processing of data, was performed during the period

November 5, 1964 to January 4, 1966 and was carried out by F. T. Baker,

C. H. Forbes, N. Jacobs, J. D. Schenken, W. E. Triest, and T. P. Walker, Jr.

The authors wish to express their gratitude to the RADC project engineer, F. A.

Dion, and also to R. J. Ferris of RADC for their cooperation and suggestions

throughout dhe project. Valuable consultation was provided by F. A. Behnke,

A, R. Geiger, J. E. Griffith, A. B. Lindquist, H. E. Peterson, J. H. Pomerene

and R. R. Seeber (, the IBM Corporation.

RADC Project Number is 459h; Task Number 459406.

This report has been reviewed and is approved.

Approved. INI
Chief, Processing Branch

Approved: R04ROB J.QU10, JR., COLONEL, USAF
Chief, Intel and Info Processing Div.

FOR THE COM;AANDER:: :: ~I•. ,G J:, 'LtMAN,•
Chief, AdvS, dStudes

_--N J.' (Jo

i~ii

9 ABSTRACT

This study resulted in -design of an advanced

general -purpose computer, including itq functional

organizational and programming. The design is based

on content- addres sable, parallel search memories and

the computer has parallel processing capability. It

resulted from investigations in several important

areas of non-numeric processing and symbol manipu-

lation, and the design studies which were carried out

in each area. In addition to the general-purpose com-

puter and the individual design studies, a number of

associative processing techniques were developed for

use with such equipment.

IW

L!i

CONTENTS

Page

Section I INTRODUCTION 1-1

Section II DATA EXTRACTION 2-1

Problem Statement 2-1

Characteristics of the Problem 2-2

Processor Des A& 2-9

Example Problenm 2-22

Discussion 2-30

Section IUI DICTIONARY LOOK-UP 3-1

Problem Statem3nt 3-1

Characteristics of the Problem 3-2

Processor Dee ;n 3-4

Example Prob -m 3-9

Discussion 3-13

Section IV TEXT STATIS.7ICS 4-1

Problem Statement 4-1

CharacteristicF of the Problem 4-4

Processor Design 4-7

Example Problem 4-1i

Discussion 4-14

Section V FORMATTED FILE PROCESSING 5-1

Problem Statemen'. 5-1

Characteristics of the Problem 5-2

Processor Design 5-8

Example Problem 5-40

Discussion and Reconmmendations 5.49

Section VI PAT' ERN CLASSIFICATION 6-1

Problem Statement 6-1

iv

CONTENTS (Cont'd)

Page

Section VI Charocteristics of Prc"-lw 6-2

Processor Design 6-12

Example Problem 6-17

Conclusions 6-26

Section VII MATHEMATICAL STI-n. 7-1

Distance Measure 7-1

Structured Operation Set 7-9

Nuimeric Processing 7-14

Section VIII GENERAL PURPOSE ASSOCIATIVE PROC'SSOR 8-1

Introduction 8-1

Design Integration Goals and Approacti 8-1

The 3PAP System 8-4

The Associative Unit 8-8

Basic Associative Operations 8-21

Sunm.mry 8-31

Section IX CONCLUSIONS AND RECOMMENDATIONS 9-1

Appendix I ADDITIONAL INSTRUCTIONS A-1

BIBLIOGRAPHY B-i

Iv

qV

*
4

- - - - - -

ILLUSTRATIONS

Figure Page

1 Data Extraction Processor Organization 2-10

2 Block Circuitry for Connecting Storage Positions
to Data Transfer Circuitry 2-11

3 Link Between Registers 2-13

4 Link and Erase Mismatch Logic 2-15

S99n,!'•. Teletype Report as it Appears in Memory 2-24

6 Machine Organization for Dictionary- Processing 3-b

7 Processor for Test Statistics 4-9

8 Associative Disk Scanner 5-10

9 Parallel Read Compare by Bit 5-18

10 Field Compare Matrix Compare and Link Circuits 5-20

11 Query Field Control 5-23

12 Link and Word Control 5-25

13 Identity Control 5-29

14 Link and Word Control for Identity Control 5-31

15 Record Compare Matrix Compare and Link Circuits 5-32

16 Record Organization for Both Machines--Example 1 5-42

17 Results of 10K Transactions Against a File of 270K
Logical Records 5-4-7

18 Record Organization for Conventional Machine-
Example 2 5-48

19 Results of 10K Transactions Against a 270K Logical
File 5-50

20 Pattern for the Character "7" 6-5

21 Processor for Pattern Claseification 6-13

22 Reduction of a Matrix to Upper Triangle Form 7-16

23 Associative Processor Machine Organization 8-5

24 Organization of Associative Unit 8-9

25 Format of Microinstruction for Associative Unit 8-12

26 The Associative Memory 8-19
27 Electronics Associated with a Memory Register 8-26

28 Associative Memory Word State Transition Diagram 8-28

vi

LIST OF TABLES

Table Page

I 3-15

H Binary Scan 3-16

II Standard Look-Up (Two-Stage Binary Scan) 3-17

IV Modified Look-Up 3-18

V Random Chain Scan 3-19

VI Associative Scan (Single Memory) 3-20

VII Assoc. aLive 6ean (Dual Memory) 3-21

VIII. la. Text Statistics Data Description 4-16

VIII. lb. Text Sta=t'cs (Frequency Histogram) 4-18

IX Frequency Distribution of Data Sample Words by
Word Length 4-20

X Frequency Distribution of Data Sample Words by
First Character 4-21

XI Number of Comparison Times for the Alphabetic
Sort Using Random Access Processor 4-22

XII Number of Comparison Times for the Alphabetic
Sort Using Associative Access Processor 4-24

XIII Number of Comparison Times for the Sort Function
Performed Subsequent to the Alphabetic Sort 4-26

XIV Total Comrparison Times by Processor and by
Sort Method 4-28

XV Access Models 5-53

XVI Commercial Vehicle Activities File 5-54

XVII Transaction Model 5-56

XVIII Associative Machine File Organization 5-57
,

XIX Conventional Machine File Organization 5-58

XX Associative Machine Operations 5-60

XXI Conventional Machine Operations--Example 1 5-61

XXII Conventional Machine Transaction Times in
Accesses 5-62

XXIII Associative Machine Transaction Times in
Accesses 5-63

vii

LIST OF TABLES (Cont'd)

Table Page

XXIV Conventional Machine File Organization- Example 2 5-643

XXV Conventional Machine Operations- Example 2 5-66

XXVI Conventional Machine Transaction Times In Accsses 5-67

XXVII Two Sets of Pattern Values 6-28

XXVIII The First and Second Groups Scrambled 6-29

XXIX Formation of Clusters with K=8 6-30

XXX Formation of Clusters with K=10 6-31IXXXI Formation of Clusters with K=12 6-32

XXXII Formation of Clusters with K=8 6-33

XXXEII Formation of Clusters with K=10 6-34

XXXIV Formation of Clusters with K-12 6-35

XXXV Summary of Results of Pass 1 6-36

XXXVI Summary of Results of Pass 2 6-37

XXXVII Summary of Comparisons 6-38

XXXVIII Distance Measure Example 7-8

XXXIX Comparison of Partition-Type Codes 7-13

XL Comparison of Chemical and Computer Hierarchic
Structurcs 7-13

viii

Section I

INTRODUCTION

This study was undertaken primarily to investigate the appiicability of as--

sociative computer organizations to problems involving non-numeric processing.

Previous work in automatic data extraction, automatic indexing, .nd formatted

file processing suggested that the techniques of content addressing and parallel

processing afforded by an associative processor would offer significant advantai

both in performance and in ease of programming for such applications. The ove

all goal therefore was to design an associative processor useful for such work,

-,hile at the same time retaining the ability to perform numeric processing when

required.

The design approach was to work from tfhe specific to the general. Initially

problem areas zharacteristic of those commonly encountered in non-uumeric

processing were identified. After examining a number of oror-numeric prohbemt

five areas were selected as representative. in general., these %ere problems

characteristic of those encountered in systems designed for autornatic input

(e. g., indexing and data extractl3n) from narrative documents and 'he storage,

processing, and retrieval of a large volume of information from aid about theaf

documents. The five areas were:

1. Text searching aAd term identification (automatic data extraction).

2. Generation of text statistics

1- 1

3. Text processing using a large dictionary

4. Foematted file query

5. Pattern classification

After the selection of these problem areas for study a special purpose pro-

cessor was independently designed for each problem area. The performance of

each processor was then compared to that of a conventional processor on the

basis of a specific problem characterisdic of that area. A description of each of

these areas and the processors designed for them is contained in Sections II - VI.

Once designs had been completed in ali areas, fea-.. -e- were idenzified which

were useful in several problem areas. Finally, these features were incorporated

into a general-purp<xse associative procossor.

Concurrent with the design of these five processors, supplementary st7 lit s

were conducted to examine three additional topics which it was felt would con-

tribute to design of the. general processor. Toxt encountered as input to a com-

,nuLer frequently ha,< a high percentage of errors resulting from external data

handling and processes such as long-distance data transmission or optical

reading. A .tudy waL. therefore made to determine a measure which would bý..

useful in an associative processor in determining the "closcst" ,word tk an

errone-us wv-d encountered in text. Current computers frequently have opera-

tion sets which are "incomplete" in the sense that potendialiy usefu! operations

are mising or in whi-.'h cumbersome operations could be replaced by simpler

ones. In order to ',oiw these faults, a study of methods in which operation sets '

ccild be strictur•c was periormed. Finally, some fre~aently performed types

1-2

of numeric processing were examined to see what techniques could be applied to

their solution on associative processors. These studies are described in Sec-

tion VII.

These efforts led to the development of the Geneiral Purpose Associative

Processor (G.IAP) described in Section VIII. The value of the approach was

con•;rmed by the identification in the individual problem area studies of some

unique features which were valuable over a broad range of processing. These

were:

1. Capability for "linking" consecutive registers of an associative storage

unit so that a match on the contents of one register can be indicated in the im-

mediately preceding or following register, thus allowing for simple handling of

important structural aspects of data.

2. High-speed parallel searching, input and output of bulk file.; of data by

use of a "channel processor" containing two associative search matrix units,

thus allowing for the performance of ,.omplex logical queries external to the

central processor with resulting economy of data transmitted and central pro-

cessor time wasted.

3. The use of semi-autonomots associative processing units of varying

speed, capacity and cost to permit increased overall system performance.

4. Flexible handling of bits, charactkrs, or words with consequent ability

to process many types of data.

The resulting design incor'orates all ot thebe features ir addilon to some

interesting architectbral characteristics not found in the individual processors.

1-3

The end result of this effort, then, is the functional organization of an

advanced general-purpose computer featuring content-addressing and parallel

searching capabilities. Detailed logical design can be carried out based on the 4°

organization specified. Indeed, in some areas of unusual novelty or complexity,

detailed logical design was carried cut where necessary to ensure feasibility.

(It is important to note, however, that where this was done, feasibility and not

optimality was the only object). Section IX contains an evaluation of the re-

sulting design and its potential.

Design of digital computers has moved from the original concepts of von

Neumann, et al, by means of hardware inventions, improved components, larger

memories, programming languages and techniques, and new and important

application areas involving non numeric processing. Non-numeric processing

is hardly hinted at in the Princeton report , and, at the time of its writing, the

major manufacturers of machines for business data handling were not aware of

the potential extensions of digital computers into areas of non numerical pro-

blems. As such extensions were developed, clever programming and special

compilers were developed, and extensive research areas were opened up for

investigations into the basic nature of non-numeric problems. The relevance

of thi- ..,j design of an advanced machine organization, including associative

memories and parallel processing capability, is the implication that one cannot

realistically evaluate the efficacy of such an advanced machine without anticipating

a succession of innovations in machine application techniques.

1. Burks, A. W., Goldstine, Ii. H., and von Neumann, J., "Preliminary Dis-
cvussion of the Logical Design of an Electronic Computing Instrument."
Institute for Advanced Study, Princeton, N.J., 1946

1-4

Thus, in addition to the final design, and perhaps even more important

for future designers and users of asscciative processors, the techniques and

features developed in *he individual problem area studies promise to provide

guidelines in this general area. The problems selected are practical, and in

some cases the methods studied are applicable on a variety of computer organ-

izations. Thus, while the proposed design could be implemented within a five-

year time period, many of the techniques are currently useful on present-day

processors, both conventional and associative.

1-

1-5

- - - - - - - - - - - -

Section II
.4

DATA EXTRACTION

PROBLEM STATEMENT

The data extraction problem is the process of extracting nfcrmation of

interest to the user from textual data. The user specifies the type and character

of data desired, and the extraction processor performs the process to yield the

desired result.

The type and character of the problem is stated in the form of character

string configurations. The configurations may be limited in nature, i.e. , exactly

matching the text character by character (e.g., "F-1l"). The configuration

statement may be such that certain classes of characters fU11 into some general

form (e. g., "B-dcd", where "al" may represent ,ny numeric digit). Or, the state-

ment may consider this type of configuration and further specify some particular

concatenation of these types. Variable position of the parameters within the

concatenation may also be supplied. The variations available tu the user are,

in effect, limitless when viewed from the processor standpoint, and the system

required to process this type of input to achieve the desired result will bu highly

complex.

ANEXOR, COMIT, SNOBOL, LISP 1.5, etc., are examples of programming

languages used to aid in the sol-,tion of data extraction.

2-1

CHARACTERISTICS OF THE PROBLEM

The data extraction problem covers a wide range of data -ource3. These

might include newspapers, periodicals, fiaAcial journals, intelligence reports,

books, etc. The data format in these documents varies widely from unformatted

text (books) to semiformatted text (financial journals, 1 intelligence reports in

unfinishea form) to comp!etely formatted reports finished intelligence reports,

baseball boxscores). The data to be extracted from these sources also shows

wide variation, such as in the earnings of a corporation or the names of

officers of the company. The data can also be the location of some activity

being reported on in the news article or intelligence report, or tL.•' itenerar"

of some VIP whose movements are the subject of the ý,ntelligence report in

question.

In any of these examples, the prime consideration that relates each example

to the same general problem is the structure of the material being considered.

Document lengths and formats may change drastically from document to docu-

ment, and within the same ciass of documents. Vocabulary will certainly

change. But, for each class of document, the underlying structure will remain

virtually unmoved and unchanged. This structure will enable the analyst to

determhie the algorithms necessary for extracting data.

"Automatic Information Extraction", C. H. Forbes, 31 May '962, AIDS/SAC

Subsystem Working Paper.

2-2

Structure is the prime characteristic of the data which remains relatively

invariant. It p- ovides the major clue as to how the data is to be extracted from

the document. Document structures may take the form of hierarchies or group-

ings, such as pattern analysis, maze solviving, or processing of directed graphs.

In text, structure is a reflection of the language used to describe the information

being presented. In this way we notice that names of persons tend to appear in

specified manners. That is, the appearance of '1 Mr. 0" in text is a flag that

signifies that the next characters form the name of someone. In like manner,

other structures yield clues to the data for all classes of reports and documents.

The value of structure can most graphically be illustrated by the following

'gedenken experiment'. Consider a document and postulate that the words of

that document are to be rearranged in alphabetical order (or in word length order

or in some other arbitrary order depending on individual characteristics of the

words and not related to their position in text). All of the words will still be

there, but meaning will be lost and most of the information of the document will

be irretrievably destroyed. The structural relationships between words will

have been altered (replaced by a new structure) so that little indication remains

of the original structure. This transformation will effectively prevent the

efficient utilization of the document as an information source.

As an example of data that might be useful if extracted, consider the

foliowing request for information from a class of reports: "Identify those

dccuments containing statements by VIPs." The documents under consideration

are reports of various activities and include reports of public statements made by

VIPs as well as a wide range oi other activities ascribed to them.

"?-3

An analysis of a subset of the documents used revealed that names of VIPs

appeared in a restricted environment in the text and that the 'statement' docu-

ments had such clue words as speech, statement by, said, quote. 'Nonstatement'

documents were found to have different words and phrases than the above in the

areas related to the supposed VIP names. Thus it is possible to discriminate be-

tween the VIP statement documents and the VIP nonstatement documents. This

also holds true for the general activities documents which contain no VIP

information.

A second example in this class is the analysis of financial journal reports

of earnings of companies and corporations. This data is contained in narrative

reports that discuss the per share earnings as well as the overall earnings of

the company. Earnings are discussed in terms of net after taxes, gross earn-

ings, etc. For example, 2 company earnings are sometimes expressed as a

total value which is followed Ly the per share equivalent. The per share

equivalent is sometimes expressed as A SHARE, PER SHAfRE, A COMMON

SHARE, A PREFERRED SHARE. Since character strings are being described,

it is necessary to account for the possible precence of the word COMMON or the

word PREFERRED. In locating the desired information, variatibns of this kin'

need to be considered by means of the conditional statements that indicate

acceptability of either the presence or the awsence U the word In question.

I Memorandum to A.R. Geiger fromn J.1). Schenken, Private Communication,

July 1963.

ANEXOR, C.H. Forbes, 31 Jan 1963, IBM Working Paper.

2-4

That is, COMMON or PREFERRED in the data string is acceptable and the

Pbsence oi them is also acceptable provided that no other term is in their place.

It is often necessary to concatenate th• terms of the search in a Boolean ex-

pansions of terms. That is, COMPANY, CORPORATION or INCORPORATED

will be acceptable in the specified search location. Or, EAST, WEST, NORTH,

or SOUTH not immediately preceded by THE is acceptable.

A specific example of these applications is the parameters specifying

sales, earnings, etc, expressed as total or per share. Character string "A"

is defined as either

1. EARNED or SALES Qr EARNINGS or INCOME or NEi ur PROFIT
followed by:

2. OF or TOTALED or WAS or WERE or INCREASED TO or ROSE TO

or DECLINED TO or FELL TO or SLIPPED TO

Character string "B" is defined as some variation of the basic pattern "$

total value, equivalent share price, FROM, $ total value, equivalent share

price." Therefore,

1. For share prices search for "$" followed by numeric digits, or

2. Two digits followed by CENTS.

Either or both of the share price portions of the string "B" may be legitimately

missing. FROM and all of the subsequent data may also be missing. The total

value may be expressed as all-numeric or scme alphabetic representation of a

numeral, i.e., ONE, TWO, The data to be output from this search is the

string "A" from text followed by the string "B3."

The foregoing have been relatively restricted to typee of problems in which

configu,-%tion has played a major role in the determination of the data to be

2-5i

extracted. This is just one of the areas of data specification that must be

treated for this problem. The following is a general description rf configuration

as related to structure for data extraction.

Configuration. ConfiguL ation means the characters which will appear in the

data string, and is essentially a dascription of the data string. This description

may be in the form of an explicit description as seei& in the foregoing examples

or in the form of an implicit description, as in thi case of the share price above.

Explicit Description. For data strings which exhibit well known charac-

teristics such that the description is exact and unique, the Explicit Description

is used. It specified each datL character and relation te other characte- s in the

string, i.e., EARNED, EARNINGS,

Implicit Description. For those caser where there exists no rigid definition

of the data string in the sense of the Explicit Description, or where such a des-

cription is not possible due to the extensive lists involved, the Implicit DczSrip-

tion is utilized. Such things as any number, where number is suitable defined

to the prouban, any three letters followed by 2, !,, or 4 special Lharacters fall

into the category of Implicit Description. A number might be any string of two

or more consecutive digits bounded on each end by one or more blanks. Im-

beded commas would be allowed if they divide the digits into groups of three

digits, except for the leading digits where one or two digits would be an accept-

able alternative. Imbedded periods (decimal point) would be accptable if only

one exists and it is adjacent on the right to at least one digit. Special characters

2-6

would be defined in a list which would contain but not be limited to:

Other classes ,f characters might be:

1. Letters, A, B, C, D,

2. Control characters, line feed, carriage return bell, upper case shift,
lower case shift

3. Capitalized letters

4. Illegal or other undefined characters.

Another portion of the structure available for analysis is Position, which is

the relationship of the particular string to other strings ir, the data set. It may

be specified in terms of rank, seqdence, and area.

Rank. Rank refers to the first, second, tenth, etc., string of ilie sample;

the first, etc., occurrence of some particular string in the sample; or the nth

string (work, character, etc.) before or after some other specified string in the

data. For example, the first date-time group in a report may indicate the date

of the activity while the second might be the date of the report. Th last such

g-oup could be the date that the report was received for processing. Since all

of the date-time groups possess the same or similar characteristics, only their

rank discriminates them in the absetice of field identifiers.

Sequence. This property relates to the order of appearance in the data string,

If string "A" is specified to appear before string "B" then "1'" before "A" is not

acceptable. If, in searching for the data in a document, the sequence IN 1961,

JUNE WENT TO PARIS appears, then the string JUNE and the string 19C Iwill

not be recognized as the date, since it is required (at least for this example)

that the name of the month precede the number of the year. Sequence ma, Ulso

2-7

include the ;actor of immediacy in text. That is, one specified string must be

found immediately adjacent, either before or after, the other string under

consideration. As a similar example, consider the rearrangement of the pre-

ceding case. JUNE WENT TO PARJT" 7N 1961 would not have JUNE 1961 •dcntified

as the date since the ,3trings are not ini-mediately axjacent,

Area. Area indicates that the character string must be located in some

specified position or area within the overall string. Location may be specified

in terms of document content. Most documents contain such elements as para-

graphs, sections, sentences and other physical characteristics definable in terms

of character counts, special control characters, and etc. To limit search time,

or preclude "false drops" .in the extraction process, the search may be restricted

to some par.-cular area of the documeit. Consider a report concerned with

friendly activities in one section and enemy activities in another. The terms and

constructions in both sections will be quite similar so that the most significant

delimiter for separation of the two types of activity information is the section of

the report in which it appears.

Area in reports can be specified in terms of starting points, a starting point

and a direction or distance, or a starting point and an ending point. The starting

point may be sepcified in terms of number of characters from the begirning of

the document, number of sentences from some fixed p:4nt of the text, the begin-

ning of some section or paragraph. It may be specified in terms of some parti-

cular string of characters such as JOHN Q. JONES. Direction may be given as

forward or backward-toward the beginning of the document or the end. Dis-

tance may be given by a specific number of characters or words. It may be

specified as thW number of sentences or paragraphs.

2-8

PROCESSOR DESIGN

The basic processor organization is divided into three functional memory

and processing units (see Figure 1): input editing processor. general search

processor, and output formatting processor. The units are conceived as sep-

arate in this application. However, depending upon the particular parameters,

the second and the third sections of the processor nmight be combined into one

unit and share the fuictions.

The internal organization of the three memnr4 Ds is similar and consists of

memory registers organized to contain one character of d. a each, with several

additional bits for control information and marker bits for use oy the associative

hardware in marking the var'ous results of associative operations on that

register. The memory/processor units have multiwrite capabilitv, allow'ng for

bimultaneous modidcation of the contents of several registers of tie memory.

The memory units are organizable under program control to allow fo, two

modes of operation (Figure 2). The first is the character mode (CM) and sets

the memory logic for onr character per storage position. All associRtive oper-

ations, as well as read and write operations, are available during this mode of

operation. The second mode, register mode (RM), allows the programmer to

select from 2, 4, or 8 characters per word in the memory. The memory is

then organized so that references to it seleL groups of 2, 4 or 8 of the single-

character registers at a time. R14 is used for data transmission both to and

from the memory as well as within the memory unit.

Associative cq eratlons of the memory/processor unit are not available in

this mode. Only those operations used for data transfer are now allowed. The

2-9

ui-

00

00

t t 0

N

2-10

CL

- a. -

C.

1.4

E-

40

L- La L
4.1

0

6a %.-jý_a 4.

cc

vsa

2-11

omwmwI I

programmer is not allowed to organize storage in more than one data lei.gth

mode at a time. That is, in case the 2-character mode is selected, then all of

storage is organized as two characters per combined register; and a new mode

select instruction must be given if it is desired to transmit data other than two

characters per memory referenc... After the next mode select is given, the

two-characters-per-transfer select is nullified. During the register mode

operation, the actual grouping of the characters is determined by machine

circuitry which forces the groups of characters to start in fixed positions relative

to the first position of the core memory.

In addition to the marker bits of the memory, each storage position contains

logic for use in connecting adjacent positions for logical manipulation by the

programmer. This circuitry serves as an instantaneous chaining device to

indicate the immeacfle preceding or following storage position.

Each position contains a MATCH indicator, a LINK bit, a SKIP bit, and a

START-OF-CHAIN bit. Wnen a COMPARE is found in any storage position, the

MATCH is set in that position, and a signal (link carry pulse) is sent to the

chaining bit in the adjacent position (provided the storage has been set for the

link operation). If Iinking is 'left" or "before,'" the link carry pulse goes

immediately to the preceding storage position; if linking is "right" or "after,"

the link carry pulse goes to the subsequent position. A link carry signal arriv-

ing at any storage position is gated with the skip bit. If the skip bit It set, the

link carry signal is forwarded to the next storage position in the direction of

linking (see Figure 3).

2-12

FORWARD/LINK LINE

MATCH ~ LINK SI

FigureC 3. Unk fewe ett
MATCH FowrdDrcto Bo

2-1

___________________0

During the match and link procedure, special track is kept of the next

potential character in the sequence. This is necessary to ensure the capability

of rdlifying all entries of the chain in which a failure to match occurs, and so

eliminating a false chain indication. Thus, when at the end of a compare cycle

"a 'next successor' character exists which did not match the expected character,

"a pulse is generated to nullify the link to that character and to all other char-

acters in that chain up to and including the first character in the chain. The first

character in the chain is tagged by a START OF CRAIN bi4 while the next chain

candidate is marked by a FOLLOWER bit. Figure 4 illustrates the sequence that

the cancellation pulse executes in nullifying the chain.

Let the START-OF-CHAIN bit be denoted by S, the FOLLOWER bit be

denoted by F and the MATCH bit by M. Then, in a search for the sequence

ABC, consider what happens to the string ABCAD in memory. The linking

control circuitry is not shown in Figure 4 and Is assumed to be set up for the

link right function. Similarly, the carry propagation is not shown for the

normal carries from cell to cell. The first portion of the match cycle marks

the 'A's with the M bit and the S bit set to 1. A strobe pulse on the S-set line

allows the S bit to be set with the M bit. The F bit is then set, through the

delay, to one in the following memory cell. (Subsequent matches for other

characters will not affect the S bit, since the search for 'A' initiates the chain.)

The second match cycle looks for a cell with a 'B' and an F bit set to 1. For

those cells, the match bit is set and the F b0 reset to 0. The setting of the F

bit in the next register is accomplished through a delay which enables the match

or no-match line to come up in the next cell, aud guarantees the correct timing

2-14

5 set line S' transfer line

2-1 F
IT& R

I ~ ~ o etch____

in the examination of the match and follcwer bits. The S bit is also examined.

If the S bit is set to 1, a special carry is propagated upwards in the chain to set

the preceeding S bit to 0 and the associated S' bit to 1. If the S bit is 0, the

normal setting of the F bit occurs.

For those registers in which the no-match line is up and the F bit is set to

1, a no-match procedure is initiated. If the S bit is 0, a no-match pulse is

propagated to the preceding register. The same examination of bits occurs in

each succeeding cell until a cell for which the S bit is 1. The propagation

ceases at this point. The S bit for that cell is reset to 0.

At the end of the comparisons, only those strings in memory which exactly

matched the desired one are marked. The beginning of each is marked with the

S bit set to 1, the end character is marked with the M bit set to 1, and the end

character plus one is marked with the F bit set to 1. All non-matching strings

have had their S and F bits reset.

In case the partial matches overlapped at some point, indicated by the

attempt to set the F to 1 in a cell for which th6 S was already 1, the initial

points of such strings were 'saved' in the S'. Provision is made to transfer the

contents obf the S'plane to the S plane and to initiate the comparisons of these

strings once agsin, At the end of the examinatior. for- the string, ABC, the

memory MRll appear as:

Character S-bit/F-bit/S'-bit/M-bit

A 1 0 0 0
B 0 0 0 0
C 0 0 0 1
A 0 1 0 0
B 0 0 0 0
D 0 0 0 0

2-16

The input editing processor is conceived as 256i words of memory and is

used to do any upper-case or lower-case conversions on the input. This might
I

consist of editing teletype input and converting it from the 5-bit code to the 8-bit

internal code of the computer. All upper-case characters such as numerals,

capitals and punctuation would be handled at this time. Certain format controls

would be recognized in this section and appropriate controls generated. Para-

graph and section indicators fall in this set.

The general search processor will contain on the order of 64 thousand

words of storage (oae character per word) and will execute the programs for

the data extraction process, These include identification, extraction, routing,

indexing and abstracting. All data manipulation for ttl, data extraction process

is done in this section.

The output formatting processor has an eight-thousand single character

mem,)ry and is used for formatting and outputting the data passed to it from the

general search processor. Its function is to make up entries for formatted files,

for reports of various kinds, and for ordinary output of the nature in current

usage. This processor makes up the controls for the display devices which

may be attached to the processor as well as the output units such as disks,

drums and tapes. Figure I illustrates the overall organization of the computer

and the relationship of the segments to the design.

Each subunit of the processor has its own mask and compare register pair.

These operate in a somewhat conventional manner. That is, for each bit set to

a 1 In the mask register, the corresponding bit in the compare register is

matched against the core storage in the manner specified in the instruction.

2-17

- U

For the input editing processor subunit, the registers of this pair are of the

same length as that of the storage positions. The general search subunit,

however, has a pair considerably longer than the individual storage position.

This is to ease the problem of lengthy compares of adjacent strings of char-

acters. Thus, if a string of N characters is to be compared to storage, then as

much of it as possible is loaded into the mask and compare pair before the

match operation commences. The processor is ible to automatically sequence

through strings of this nature in the comparison matching, ýi± 6t against the

first character and then shifting and matching against the remaining characters

one at a time until no match is made or until the number of characters specified

is completed. This type of operation is used primarily in conjunction with the

match and link operation previously discussed.

Another property of the linking feature of the associative processor is the

skipping of characters determined to be nonrelevant -o the current search. This

is accomplished by means of the skip bit associated with each register in memory.

When the register is flagged as being nonrelevant (to be skipped) and a match'and

link operation has identified the adjacent register as beirg matched, the link

carry pulse is propagated through the position marked by the skip bit. It is

gated by the skip bit to the next register and so on until a register is encountered

for which the skip bit is not set. This register is then 'linked' to the original

register. As this process may occupy some time, a delay is made until the

propagating carry pulses are all ended. By this means, occurrences of common

sequences of line feeds, carriage returns, etc., of teletype can be ignored where

desired, in the search for significant data. In the situation where blanks between

2-18

words (text words) are not significant, these may also be skipped and the problem

of accounting for one, two or more blanks legitimately appearing between words
p

is avoided at a saving in processing time.

The overall supervision of the vaxious sections of the processor is by the

central supervisor. This supervisor acts in a like manner to that of a multi-

programming computer. The supervisor controls the data flow between modules

of the computer and coordinatis the activities of the components. Communica-

tions between portions af the system pass through the supervisor module and

then to the recipient component. The individual components of the processor

contain their own central processors which interpret and execute the instructions

for that module. The I/O commands are retained in the supprvisor for inter-

pretation and execution while the internal memory commands are executed

directly by the modules.

Associated with the central control processor is a program storage mer.mory

in which the program elements of the operating programs are stored. As each

module becomes free to execute an instruction, the central computer fetches the

next instruction for that module. Program execution for the various modules of

the computer is interleaved logically and overlaid in execution time. In this

manner, while one section of data is being set up for outputting, the next

section can be formed for the next extraction process.

Each memory processor unit has a mask-compare register pair for the

associative search operations. The comparison field length is the same as that

of the storage register length and overlies the marker bits. This allows for

associative compares on the results of previous scans. Bits to be set during the

2-19

t _|l ,i - .I

scan are specified by the instruction. The mask register enables the user to

compare for exact match on any subfield of the compare register desired.

The compare register and its associated mask register hay, additional posi-

tions available for the storage of characters. Associated with these extra posi-

tions in a count field that may be loaded with a count of the number of characters

currently in the extra positions. This count and the added register length are

used in the iterative comparison instruction for the main processor in which the

data extraction searches are made. The input editing processor module and the

output formatting processor module are restricted with respect to this special

feature.

In addition to the ordinary functions of the digital computer that are used in

control for branching, indexing and so on, certain other functions are uniquely

restricted to the associative memory processor. The normal, so-called asso-

ciative instructions apply to all of the elements of the processor. These include

such things as EXACT MATCH, READ FIRST MATCH, WRITE IN MATCHED

LOCATION. Each of the processor modules has, in addition to these instructiona,

a special match and link operation, link compare, which allo-'s registers other

than those fbr which the match condition is satisfied to be marked for retrieval

of other manipulation. The main dat:n extraction module has a modified exact

match instruction suited to the problem of searching for lengthy strings of data

In an automatic fashion. This instruction is called CYCLED COMP-A -.. Thesc

are implemented either by hardware or by micro-programs stored h., conjunction

with the central control processor and transmitted to the individual associative

processor Involved.

2-20

Cycled Compare

The contents of the comparison register are compared to associative

storage. The first position in the register is m.tched against core memory

and the start-of-field bit is set in all riatching men-ory registers. Simultane-

ously, the mask register bits inhibit comparison in bit positions containing a

in the mask register.

For all registers in memory which matched the compare register, a link

carry pulse is generated and forwarded to the next character in memory. The

mask and comparison registers are shifted left one character position, and the

processor executes the next cycle in the comparison. This character i- matched

against the memory in the same manner as the previous character, but with thd

additional requirement that the matched nharacter in the memory have the link

bit set to one. The process of shifting and matching continues until a no-.match

pulse is received from the memory or the character count for the compare

ret-4ster is 0. Automatic delays are made at each point that a no-compare signal

I. required to eliminate a partial chain in memory.

Link Compare

The contents of the compare r-isters corre-prnding to 1 bits in the mask

register are compared to each register of the memory. The match bit is set

to 1 in each rcgister in which the contents match exactly. Registers next higher

or lower in the memory, ar spec lied by the program, have the link bit set to 1.

The skip bit in these registers is examined and the link carry is propagated to

the next register whenever the skip bit equals 1. The link bit is not set to I in

2-21

those registers for which the skip bit is set. For example, assuming the match

condition is an 'A, ' then the contents of memory might be affected as shown

below for the link right operation.

Prior to LINK COMPARE:

Register contents ,-t L-bit Skip-bit

X 0 0
A 0 0
B 0 1
R 0 0
A 0 0
Y 0 0

Subsequent to LINK CO V-A,

Register contents L-bit Skip-bit

X 0 0
A 0 0
B 0 1
R 10
A 0 0
Y 1 0

EXAMPLE PROBLEM

Because of the compl-.k %:",I- • i . er in data extraction area, the

sample text is defined descrw.,,&- ý.iI in a tabular array of statistics.

The type of document to be proceý. - it tlŽ daily surmmary report of tne type

that is sent from regional office of .. ! FBI to the central headquarters in

V.'ashington, D. C. This report details -e activities of criminals in the western

part of the United States for the previo,,, day and includes such information aa

the type of activi-ty the number of per;onw involved, the iocatlon of the activity,

and any results of police efforts.

2-22

The data is to be input to the processor and significant data relative to the

preceding items is to be extracted for insertion in a formatted file. The report1

has several sections: header, classification, criminal activities, and end of

message code. The portion to be examined is the criminal activities section

and all of the information in this section is to be considered significant. The

criminal activities section is made up of individual reports of activities.

The report begins with the header information which identifies the originat-

ing source and contains the agent's name submitting the report, information

converning the recipient, and the location of the recipient. The heater is ter-
2

minated with the synbols 'BT' preceded and followed by the codes < E -.

The criminal activities section of the report is initiated with the liae

CRIME REPORT (CRIMINAL ACTIVITIES). This is followed by << E. The

second line on thia section contains the report number, and the number of the

day of the year in which the report is generated. The remainder of this section
3

is separated into paragraphs, with each paragraph containing a number of

aentences describing individual activities.

1 Figure 5 is hn example of this type of report. The first portion shows the

printed output while the second shows the characters necessary to control
the printer. These characters are the input to the data extraction processor
and are the ones from uhich the data is to be extracted.

2 These codes are bhown in the second portion of Figure 5 and are carriage

return, line feed, line feed, respectively.

In the sample shows as Figure 5 the paragraphs are labeled '1. MIDWEST
and '2. WEST.'

2-23

fBI<<--DE BOND 007 21/io162<<-)X 2423172 ZEX<<7fM FIELD OFFICE
5<<«-O FBIW A1/RFK<< CIcAGO<<-=BT<<«-C 0 N F I D E N T I A L<<«
-=-SECTION 2 OF 2<<«--CRIME REPORT (CRIMINAL ACTIVITIES)<<=TO FBIW
ASH REPORT 031<<E-=1 MIDWEST: ILLINOIS AND INDIANA:<<•=- A. 18
35H 14 JAN. CHICAGO. CR =NTERED CONSTRUCTION SHACK<<--IvC Ii o87
415, STOLE DYNAMITE. (T[1EFT)<<-== B.2016H 16 JAN. GARY. CR ROBB
ED moTEL RESTAURAnT VIC fN<z-385 012. STOLE CkR AND BEADED EAST.

LOSSES: $900, 1 VHE.<<-(ARMED ROBBERY)<<== C. 21001F 7 JAN. C
HICAGO. CR BO1ED NEGRO CHURCH ,rC IL 44o<<aO87. LOSSES. 3 KIL,
2INJ, 2 VEH DAM. (BOMB)<<«- D. 0830 17 JAN. FORT WAYNE. 3 CR R
OBBED BRINK AEiO1M) CAR<<=VIC IN 042 767. POLICE APPRWESNDED AT
ROAD BLOCK. LOSSES .<<-= 42 MILLION, 2KIL(! CIV, 1 POLICE). CR LOSS
ES: 1 KIL, 1 TIJ,•-< THRR± MAN ESCAPED, MONEY NOT FCKND. (ARMED R
OBBERY)<•---<< R. 2030H 20 JAN. INDIANOPOLIS, 2 CR A'ID UNESC W
OMAN <<«-vic m387 o88. (S.7XUAL ASSAULT)<<-- r. 1917H 18 JAN.

JOLIET. EST 20 CR ATKD AND BURNED POLICE<<•zAR VIC IL 375 221.
OFFICER INJURED, NO ARRESTS. (ASSAULT)<<--2. WEST: S"UTHERN CALl
FORNIA:<<--<<- A. 16ooH 17 JAN. LOSS ANG]UES.2 r'R GANGS RIOTED
IN THEATRE«-<<VIC SC 122 M48. (RIOT)<•= B.1425H 19 JAN. SAN D
IEGO. CR SNIPER FIRED ON CIVIL RIGHTS DM!O0NSTRATION VIC SC 312

o604, KJILED MINTSER..<=(MURDER)<<=--- -- ------
--<- BT -->1NNNN - -

Figure 5. Sample Teletype Report as it Appears in Memory

2-24

.V'LE TELETYPE REPORT

DE 30ND 007 -'1/io01
OY 2423172 ZEX

* ~i FIELD OFFICE
10 FBIWASHi/RFK
CHICAGO

BT

C 0 N F I D E N T I

SECTION 2 OF 2

CRIME REPORT (CRIMINAL ACTIVITIES)
TO FBDIASE REPORT 031

1. MI1MEST:ILLINOIS AID INDIANA:

A. 1835H 14 JAN.cHicAGO. CR ENTERED CONSTRUCTION SHACK
Vic TL 087 415, STOLE DYNAMIIE.(THEFT)

B. 2016ki 16 JAN. GARY, CR ROBBED MOTEL RESTAURANT VIC IN
385 012. STOIE CAR AND HEADED EAST. LOSSES: 9OO, 1 VEH.
(ARMED ROBBERY)

C. 2100H 17 JAN. CHICAGO. CR BOMBED NEGRO CHURCH VIC TL 440
087. LOSSES: 3 KIL, 2 INJ, 2 VEH DAM. (BOMB)

D. 0830 17 JAN. FORT WAYNE. 3 CR ROBBED BRINK ARMORED C0Iq
VIC IN 042 767, POLICE APPREHENDED AT ROAD BLOCK. LOSSES:
$2 MILLION, 2 KIL(ICIV, 1 POLICE). CR LOSSES: 1 KIL, 1 INJ.
STHIRD MAN ESCAPED, MONEY NOT FOUND. (AIRED ROBBERY)

* •R. 2030H 20 JAN. INDIANOPOLIS. 2 CR AT KD UNESC WOMAN
-- C MN387 088. (SEXUAL ASSAULT)

Figure 5. Sample Teletype Report ar Printed

2-25

F. 1917H 18 JAN. JOLIET. EST 20 CR ATKD AND BURNED POLICE

CAR VIC IL 375 221. OFFICER INJURED, NO ARRESTS. (ASSAULT)

2. WEST: SOUTUE CALIFORNIA:

A. 16ooH 17 JAN. LOS ANGELES. 2 CR GANGS RIOTED IN WEATRE
VIC SC 122 o48. (RIOT)

B. 1425H 19 JAN. SAN DIEGO. CR SNIPER FIRED ON CIVIL
RIGHTS DEMDNSTRATION VIC SC 312 064, KILLED MINISTER.

BT

NNNN

Figure 5. Sample Teletype Report as Printed (Contld)

2-25

The following discusses the procedure used in identifying those portions of

a document that are of significance to the user. The analysis will proceed part

by part with a description of the parameters necessary to describe the data and

the permissible variations. For ease of examination, the second portion of

Figure 5 hes the character blank (0) shown as a space between characters rather

than printed as '10. In the following discussion, the symbol '1' should be taken

to mean 'any letter' and the symbol 'd' should be taken as 'any digit. ' This

notation is used to describe the configuration of data fields whose exact contents

are not known but whose characters may be characterized in some predetermined
1

manner.

Crtl- 4,ial Activities Section Identification. The criminal activities section

is headed by a line whose first two words are crime report, This appears to the

processor as <- CRIME REPORT. The characters, <-, indicate that those

characters which follow begin a new line in the printed output. This sequence is

the standard for the beginning (or end) of a line in teletype practice. It is subject

to some variations due to the desire for control of line spacing, operator habits,

etc. Thus,<< , <<< are all equivalent symbols for this configuration.

The presence of a single <or - is not enough to justify the conclusion that the

line marking configuration has been found since it is a simple i-bit transforma-

tion to get from some other legal text character to either the <or the p.

The reader is referred to "Anexor", C.H. Forbes, 31 Jan. 1963 for more

detailed description of search parameters.

2-27

a - - -

-!

Thus, the report is scanned from the beginning until the configuration < -or

<<=- or <<-=--is found. Other equivalent configurations of the line marking

chprIcters are accepted. Examination is made of the characters immediately

following the line marking characters and identification of CRIME REPORT,

comTnlets the search for the start of the criminal activities section.

Report Number Identification. This field consists of the word REPORT

followed by any 3-digit number in the numeric range 001-366. This field will be

followed by the line m:.rking string either directly or after one or more interven-

ing blank eha. icters.

Paragraph iut,', 'r Identification. This field is always numeric and always

appears at1 'ae sta.- nf a new line of text. Since there are other numbers that

could begin a line '- Ci•e -eport, it is necessary to define more closely the exact

configura-Lio., ' tlis -nfoi mation. In this example the highest number that

appears i&-' : hnwev-r " is possible for the number of paragraphs to exceed 10.

It is unli!c' v -.a: .ie .un.-r of paragraphs will exceed 99, so that there is an

arbitr.ary r, st,- iý i -,,t :a e -umber be either a single digit of two digits. The

paragraph li•hac naýL 1i•e- aise ,mtains colons () to separate fields and is the

first line to confL!.iL t.hvSt mnaracters. Therefore, the first line contain.:ng the

rcquisite rmw'riý: 1mn ziati, md the colons will be the paragraph heading line.

Dai.e-T:ýr. Grnoup u*.tificaiion. This group is the first in the sentent.e and

Is follcomý bv a -,)-ic. . The field is usually three strings in length, how-

ever, this is -not a requirt•nn, since the time portion of the field is sometimes

absent. S.nc the output ! ,e 4iearch requixes that the information be separated

2-28

1.

into time information, date information, and month information, the separate

fields of this group will have to be identified.

The entire date-time group is confined to the area beginning with the start

of a sentence and running to the first period. The month is stated as three

contiguous alphabetic characters (it is possible to list all of the month configura-

tions, but restricting the information to the name of the month obviates the need

to list that much detail). The day of the month is any one- or two-character

field consisting of digits bounded by blanks and immediately preceding the month

field. These fields are required to be present in the report, but the time field

may or may not appear. If it is present, it will appear before the day of the

month subfield and will consist of four digits by 'H. ' The entire set is bounded

by blanks. Other fields and subfields that appear in the report are

1. Location

2. Activity Category

3. Subject (usually CR for criminal etc.)

4. Activity (verb ending in ED or the word ATKD, etc.)

5. Map Coordinates

6. Object (object of the activity)

7. Losses Information (descriptive material listing damages incurred)

8. Losses Information Embedded in Miscellaneous Statements (this
material is narrative in nature and such words as KILLED or INJURED
or CAPTURED appear as clues to the location of such data)

9. End of Message (the character sequence < NNNN)

2-29

DISCUSSION

Due to the complexity of the type of data to be manipulated, it is impraatical

to make an explicit comparison of the processing times for an associative proc-

essor and a conventional processor. Indeed it is difficult te specify just what

the actual processing time will be on any given processor for this problem.

Therefore, the evaluation of this design will be a general discussion of the difficult

areas of processing and the manner in which the design approaches a solution of

the problem area. One of the major areas of the problem is examining each char-

acter in the entire message string to find all occurrences of strings of characters

that denote the boundaries of words. Among the characters which denote the

boundary of a te:zA word are blank, comma, colon, semicolon, etc. Combinations

of characters, such as period, blank, also indiate the word boundary condition

as being present. To test for a word boundary, it is necessary to query each incoming

character to determine if it is one of this set. The conventional processor may make

th-s detevminatinn more or less efficiently during the input phase, but the associative

processor needs only one comparison. In searching for all occurrencee of some

string of characters, the program in the conventional processor must compare each

possible character as a potential starting point for the desired character string.

The associative processor may mark all such strings regardless of their start-

ing position in one set of comparisons for each of the characters in the sought-

for string. This might mean that in the case of a message of 1000 characters,

the conventional processor would require 1000 comparisons while the associative

processor will need but one. Of course, some pre-editing can be made to

parameters of the search so as te .ct a thesaurus of the text during the

2-30

input phase; but if the parameters are extensive, this time may be prohibitive.

In the associative processor, even such pre-editing is alleviated since the search

within the parameters for the simplifying data may also be made associatively.

Thus, some of the savings possible by pre-editing the parameters for a conven-

tional prc.-essor are also available to the associative processor. These may be

incorporated into the pre-editing processor where the editing for word bound-

aries is done in parallel with the search for the significant data.

The overall gain possible for this type of organization over that of the con-

ventional processor can range up to several thcusand to one in special cases

where many items of similar structure are in the memory at the same time, and

where many searches may be made for each 1, ling of the memory with data.

The lower limit comes when the paramoters are either very simple in nature

and the conventional processor can accomplish the task on the fly, or the data

is so variable that by the end of one or two searches the data being examined is

reduced to only one possible match. In this case, further searches, although

capable of searching the entire memory, are actually restricted to only one

register. For this type of processing, there appears to be a time advantage of

one order of magnitude.

2-31

Section III

DICTIONARY LOOK-UP

PROBLEM STATEMENT

The dictionary look-up problem covers the identification of words in tex

solely by means of a dictionary in order to prepare for further proce6sing o:

the text. The text involved may originate from a variety of sources ranging

from such strictly formatted material as file entries from a formatted file t

text published in newspapers, books, and periodicals. The goal then, of th(

dictionary look-up process is the identification and marking of the text wort

in a manner to facilitate future processing. The marking may include such

things as parts of speech, index term classification or other, special prope:

of value to the system user. Words not found in the dictionary should be fl Ai

so that separate processing of these terms may be simplified.

To allow practical study, a limitation to this procedure is the restrict;

that all information to be derived and appended to the word is to be derived in

an examination of the word and its characters separate from its context.

utilization of information about the neighbors of the word in queation is t',U

to be considered. Only that information stored in conjunction with the dlt' iry

entry is allowable for classifying the word as to its use in later processin4

The data input for the dictionary look-up processor problem will gene

be considered to be textual in nature. The exception as previously noted

formatted report. It may be derived from teletype input or from typcsett, out

3-1

-A---

from the publishing industry, No special characters other than those normally

used in text will anpear to designate the break points between words or phL.des.

The assumpticn is that 'he word boundaries will be formed primarily from such

items as the c.'aracters "blank", "comma" "blank", "period" "blank", "color."

and "semi-colon". Other characters and configurations of characters appear

in the set anA depend upon their usage in the specific text sampie for member-

ship in the set.

CHARACTERISTICS OF THE PROBLEM

Tht, processor will be required to accept textual data in the form of strings

o, characters. There will bt no ,;pec'.al characters present oti-er than Lhose

normally in text to denote ti , separations in text of paragraphs, lines, sentences

or even of ..ords. The location of the boundaries is of special interest in th~is

case since it is just this problem upon which the efficacy of the system depends.

As previousiy stated, the recognition of these boundaries will be one of recog-

nizing character configurations that. frequently are used for the purpose of

defining the point of separation of one word fromn anotht,

The processor must be capable of looking up an incomtng word or textual

unit de!ineo by the user and affixing to it such information stored in the diction-

ary previously. The look-up procedure must hN. capable of handling the variaLle

length text units that m,'Y be of interest -ithout being dependent upon the rIgister

length of the prc,-essor. This is nece~sa:v since for any length of register,

-ueasured in charicu-,--s, there will he requirements that exceed that length.

Alth•,ii word- rin common usage average about eight characters in lengti,. there

Qi

are single words on the order of eighteen to twenty characters. There are also

compound terms which exceed this limit used in specialied areas such as

chemistry, botany and medicine. This range of data must be handled in the

processor.

The incoming string of characters to ti- processor will be accepted one at

a time, and it will be assumed the t;me for a comparison in both the con-

ventionally organized processor and the associative processor will be equal to

the time to transmit one register full of characters. Since it is possible for

input data to be saved until a previous job is completed and then transmitted to

the processor at a higher rate, it will usually be poasible to have the input data

rate equal to the compare or any other basic machine cycle desired.

The capacity of the main storage unit will be assumed to be sufficient to

contain all of the tern.s and their associated data from the dictionary. If the

dictionary exceeded the size of the main memory, the performance of the proc-

essor would be degraded by the data transmissions to and from the memory

unit. This will be a restriction on the problem and will be considered in con-

junction with the problem of text statistics. (See Section IV.) It is appropriate

to note at this point, however, tnat approximately 97% of words occurring iit a

large sample of ".aws material were accounted for by 44,821 dictionary wurds

(see Table I). It is further assumed that the data looked up will be outputted to

another processor for further processing or that there will be sufficient storage

to contain a moderate amount of the current data after processing. This would

be enough for a single intelligence message or news story or a smaUl document.

3- 3

The method of handling the data 18 as follows. The text characters are

read into the memory and the boundaries of the words are located. The words

are searched for in the dictionary and those words for which a match is found

are tagged with their information as stored in the dictionary. The remaining

putted for further processing or stored in the appropriate section of ihe memory

to be utilized at a later time.

PT-',*'F3SOR DESIGN

The dictionary processor design is based on the assumpticn that the data

flow into the system is restricted to a single input at a time. This requirement

is reasonable since it may be assumed that the inplt may be buffered to achieve

the maxiumum transfer rate that the central process'*,r can accept. Therefore,

if the data tranb~er time is equal to the minimum time to form a comparison

with the incoming data, no further gain is possible by increasing the data trans-

fer rate. Any scheme for increasing the throughput speed of the processor

I.I

must, therefore, address itself to the problem of increasing the effecLive rate

at which thq input can be handler. This could be accomplished by implementa-

tion of even more parallelism.

The design is separated into a system control unit, an 1/0 system, and a

memory system (Figure 6). The system control exercises control ovser the

data flow internal to the system as well as all I/0 flow. The 1/0 system con-

sisto of the 1/O snits and the associated controlers, channel device-, etc. The

wienort system consists of two associative memory units and their controlling

3-4

System
Control

Unit

Mask Mask

Comoore

Memory
memory No. 2

Arithmetic r Ii

Lo- A Ohms g
Logic Logic
Wit Unit
140. C*vicos

Figure 6, Machine Organization for Dictionan, Proceasing

3-5

arithmetic-logic units. All data transfers are under control of the system con-

trol unit. Program flow is monitored from the system control unit and initia-

tion of branching to new or different segments of the process is supervised from

it. The individual instruction sequences are decoded, interpreted and executed

in processor memory modules. These are the main processor memory and

memory control unit and the channel processor memory and memory control

unit. The data that is to be processed is retained in the memory units of these

modules until it is needed.

The I/O devices are controlled by the system control unit and requests for

data from either of the two memory-processor units are relayed to the I/0

devices.

The memory register length in both of the memory units is sufficient for

seven characters pius some control bits. This length is a compromise between

a long register in whict any of the possible strings of data might be stored com-

pletely and a short regi.i-e- which world allow for the minimum amount of storage

to be used for a given set of terms. The control information relates to the data

that is required as a result of the look-up process. This might include such

things as the clas6 of word iound, the possible affixes available, status as an

index term; etc.

The smaller ef the two memory pro-lessors, to be referred to as the chan-

nel processor, has storage capacity on the order of 500 registers. This allows

for the storagc of all the legal characters for any run as well as a set of terms

determined to be the highest frequency act with regard to the text being proc-

eased. These terms, in the context of natural Engiish text, are common to a

3-6

large degree to many samples of text that have been studied. Som.. of these

word-7 tr- lto', 'of', 'by', 'for', 'a', 'an', 'the' and 'but'. The ll!.c will contain

appi oxgately 100 terms. most of which will be common to any sample of t.ext.

:Aere will aiso be capacity in the memory unit for oxdra terms not included in

the aforementioned set that are specially adapted to thts partictuar data sample

\Yader i~onaiderstion.

The indivddual characters are useai n a word ooundary algorithm so that

ý.ae boundaries of the incoming words arc recognized.

The channel uiemory processor is envisioned to be at least one order of

magnitude faster in its exeCuiLlon of L-structions than the main processor. This

will allow for the inspectinn of each character in the data stream as it is in-

patted as a word to the channel processor. Words will be formed up in a buffer

register before transmission through the central processor unit to the main

memory processor unit. For words whose length is less than or at most equal

to that of the longest of the high frequency words, a special look-up is taken

prior to passiag the word into the main m~emory. Any of the words thb match

are flagged before transmission to inhibit the look-up procedure in the main

processor. Since the channel unit is one ord3r of magnitude faster than the main

unit, the look-up just described will be made at no cost to the overall data flow

time. Indeed, there will be a net saving, in time in the process since the look-

u; ,f these" words in the main memory will be eliminated. The actual amount

of savings gainod will depend upon the characteristics of the text material. In

one case, the number of words accounted for in this way was approximately 45%.

Thus, a higher speed 1/0 unit may la, itsed. W~ing advantage of the speed gain

possible with this pre-editing look-up procedure.

3-7

The two associative memory units of this system are of radically different

sizes; however, the functions are quite similar and overlap to a large extent.

The larger of the memories has registers to contain approximately 50, 000 dic-

tionary words and their relevant data. The mask-compare registers of this

memory are of the same length as the memory registers and allow for the in-

hibiting of compares on any specified subset of the word.

The operations of the two associative memories are quite basic in nature

and consist of the usual compare for exact match (with the match register for

bit selection), read out first match, write in first location, multi-write and link

between registers. The link between registers is limited to the following reg-

ister only (although the same procedure for preceding registers will be of value

in other applications such as data extraction). The linking operates by setting

a bit in the memory register following the register in which the exact match

condition occurs. That is, for any register in the memory that is matched

with the c-)ntents of the comparison register, the next adjacent register in the

memory unit will now be marked with an associatively addressable bit. Read

or write operations will then be performed on the basis of continuing matches

so that only the last register in the sequence of registers that has ')een matched

will be marked whenever there is only one string in memory that matches the

search string. This allows for tht automatic resetting of the match bits in

each cell at the beginning of each new compare cycle without sacrificing of the

information gamed in the previous cycle. Since the memory unit will have only

one of each string and the data to be retrieved with the search is not the word

but some information about the word, the cancellation of the partial matches

S~3-8

generated on the first set of characters resuits in a net gain in processing time.

A multiple match condition, resulting from scanning for a partial string or from

the storage of more than one of any item, will result in more than one match bit

remaining set at the completion of the - n.ln and will require program separation

of the desirable results from the undesirable.

The register length for the processor memories is assumed to be seven

characters and control information relating to the usage of the term And to its

status in the system. This length was dictated by the storage requirements of

the dictionary (average length of words, etc.) balanced against the increasing

demands on the hardwal e of excessively lengthy registers in the associative

memory.

EXAMPLE PROBLEM

In order to properly evaluate the design of a dictionary processor it is nec-

essary to definta dictionary and text typical of the general area under considera±-

tion. The parameters of the aci'onary zhat need to be defined are: the number

(of words in th; lictionpry, tWe -equency dis.ribution of the words in their alpha-

betic subsets, the irequeticy distribution of the words by their lengt.t and the

distribution of the text words related to the dictionary entries; that is, how many

and with what distribution of frequencles do worts appear in tho text sample to

be studied,

A text sample and a dit'I-,ary derived from it were dafined. The text was

defined to have char,ý - "ristics common to those of news publications. Since the

problem is essentially serial in nature, only the characteristics of an incremental

3-9

sample were needed to evaluate a tentative machine organization. Thus, a

block size of 8000 text words was used for the evaluation. This size is the size

for a bleik of data coming in to be processed.' The look-up times for each of

the designs of the processors are to be calculated from the statistics of this

parameter. As stated above, the assumption is made that the text input is ap-

proximately at the speed that the c.entral processor operates. Thus the com-

parison between designs wil! be linear in nature and the sample size of 8000

words will be valid.

A set of data derived for a sample of publishing text was studied in order to

produce a sample text description and dictionary description for the sample prob-

lem. The sample text was defined to be approximately 4.0 million words of un-

formatted text. The spelling of the terms was assumed to be correct and the

total unique terms of the sample was 71,805. Of these, 39% or about :ý8,000

terms appeared as entr-es in a dictionary derived from Webster's Collegiate
1

Dictionary. This dictionary dries not include technical terms or words that are

or originated as proper names. It is limited to common nouns, verbs, adjec-

tives, etc. The average length of the words in the 4. 0 million word sample was

5. 21 characters per word. The average length of the 71,805 unique words was

8.53 characters The difference in lengths Letween thL unique and total sample

averages reflects the relatively high proportion of such short words as: 'to',

'by', 'for', 'but', 'and' and so forth. These words modify the distribution of

1Comdict: A Common English Word Dictionary. Private communication from
M. Jones, June 1963.

3-10

the word lengths in a manner which skews it to the right and so reduces the ave-

rage length. I

It is assumed that the dictionary for the look-up is completely contained in

memory and that the percentage of the text words found in the dictionary is

quite high. In the case studied, the percentage was 97.35 (see Table I). This

represented a total of 44,821. unique words with a total occurrence in 4ext of 3.9

million words. The words not in the dictionary amounted to 26,984 words with

a total occurrence of . 1 million words.

The text input for the processor is considered to be one character at a

time. The size of the text units has been set at 8000 words per unit in order to

evaluate the comparative times for the look-up procedure. The words and their

boundaries must be identified during the input phase and the word matched

against an existing dictionary stored in the memory unit of the main and satellite

or channel processor.

Evaluation of the processors was based upon several organizations of the

search procedure. The first procedure was the complete dictionary stored in

the conventional processor as one entity. The incoming word was compared to

the dictionary by means of a binary scan technique with the result that the ave-

rage time per input word was 15. 101 compares per word. Table II shows the

timing breakdown for this process.

Since the high frequency dictionary accounts for such a large proportion

(about 45%) of the total words, the dictionary for these words was separated

1See Table VIMI. parts la and lb of Section IV for similar information regarding
the distribution of words in the same sample including error words.

3.11

from the main dictionary and words of the appropriate length scanned against

the small dictionary prior to the scan of the main dictionary. Although this

amounts to a penalty in look-up time for those shorter words not found in the S

high-frequency dictionary, this 4s more than offset by the gain made by not

having to look up the high-frequency words in the main dictionary. These re-

sults are tabulated in Table IM. The scan in both cases was binary in nature

and resulted in a net increase in processing speed. The time per search was

reduced to 11. 879 compares per input word from text, again on the conventional

processor.

The technique of hash addressing by randomizing the input word was used to

generate an address for the dictionary look-up. This method results in the ad-

dress of the first element of a chain of words in storage, each of which yielded

the same random address. An examination of the chain would proceed in se-

quence until the word was found or until the last element of the chain was com-

pared. An assumption of three compare times was made for the time of con-

version to compute the address, while 1.9 words per chain for the main diction-

ary was used for the length of the average chain of dictionary terms. 1 The

method was assumed to be especially effective in the look-up procedure for the

high frenquency dictionary terms when, they were stored separately. In this case,

the chain length was assumed to be 1. 0 words since the list is quite short. 2

When either of these values is exceeded, the time to proces., rises and the

overall process time increases.

IDictionary Techniques by J. B. Ratchford. AIDS/SAC Working Paper, 31 May
1962.

2See Table VII under Specia. -Iictiona,-y.

3-12

Thi- method was applied to the scan for the high frequency dictionary

and for the combined dictionaries, again on a conventional processor. Thi

sidta ax,> tabulated in Tables IV and V, respectively. The outcome of orgE ng

the data together for a combined scan by the hash addressing rather than h

addressing for the high frequency dictionary and binary scan for the main

tionary r!? - Table IV is a reduction in number of compares per input wor

from 10. 333 per word to 4.570 per word.

As a bench mark for comparison of the efficacy of the organization of

assochv•tive memory into the two parts rather than considering it as one "

computation was made of the number of compares per input word for the,

dictionary contained in the main memory. This is recorded as Table VI.

overall time for comparison averaged out to be 1. 625 compariss..ns per in

word or 36% of the best possible time for the conventional processor. W -."e

channel memory processor is added to the associative processor, the nu-

of comparisons per input word drops still further to .958 compares per i

word, which is 21% of that for the conventional machine.

DISCUSSION

The conclsiAon to be drawn irom this proce-;sor study is that an ove•

gaixn of about 5 Lt I is possible when the associative processor is compas

the conventional processor. This margin will increase when the procedh it'

the search in the conventional processor varies from the optimum given ýC

hash addressing parameter estimates. The main gain to be obtained in,

processing heJ in the speeding u• of the effeŽctive input rate of the text L

3-13

of pr,-editing on the .Iv in a channel processor. The pre-editing may be ob-

tfined at little or no cost in time by utilizing few, high speed components and

ýi imall, very ist memory unit.

Since the procedure is essentially linear in nature, the separation of the

word identification and initial look-up processes into parallel processes by

means of the channel processor enables the overall throughput to be maximized.

The linking of registers, on the other hand, eliminates the need for time con-

suming scans of all registers matched in the first compare cycle and allows full

utilization of the associative nature of the processor. In the absence of these

two features operating in conjunction with one another, thre would be very

little difference in operating speed between a conventional processor and one of

an associative nature when the basic cycle tine was the same.

3-14

TABLE I

Dictionary

Number of Words 44821

COMDICT 28409
Other 16412

Text

Number of Words 4.0 x 106

Ectionary 3.9 x 106
Non-Dictionary 1 x 10 6

% Dictionary 97.35%

Unique Words 71805

Dictioinary 44821
Non-Dictionary 26984
% Dictionary 62.4%

Word Length

Unique 8.53
ar 3.61

Total 5.21
U 2.09

New Terms 160/240,000 Total Words

Special Dictionaries

Number ol Words 120
% of Total Text 45.61

Number of Total Text 1.82 x 106

3-15

TABLE It. BINARY SCAN

8000 Words/Unit

Merged Dictionary

Words Compared 8,OOG
Found 7,788
Not Found 212

Total Compares - Found 117,416
0-7 Characters 47,445
8-14 Characters* 64,249
15-21 Characters 5,478
Over 21 Characters 244

Total Compares - Not Found 3,392
0-7 Characters 1,375
8-14 Characters 140
15-21 Characters 18

Total Compares 120,808

Average Compares per Input Word 15.101

*Assumes complete compare before decision.

3-16

TABLF 1II. STANDARD Lk)OK-UP (TWO-STAGF BINARY SCAN)

8000 Words/Unit

High Frc ,iency Dictionary

Words Compared 3,372
Found 3,280
Not Found 92

Total Compares
Found 18,512
Not Found 519
Words Not Compared 4,628

Total Pseudo Compares 4,628
Total Compares •h. f.) 23,659

Standard Dictionary

Words Compared 4,720
Found 4,508
Not Found 212

Total Compares - Found 61,967
0-7 Characters 27,458
8-14 Characters* 37,177
15-21 Characters 3,175
Over 21 Characters 157

Total Compares - Not Found 3,
0-7 Characters 1,437
8-14 Characters 1,842
15-21 Characters 105
Over 21 Characterq is

Total Compares (s.)

Total Compares Overall 95.026

Average Compares per Input Word 11.879

*Assumes complete compare before decision.

3-17

TABLE IV. MODIFIED LOOK-UP

8000 Words/Unit

High Frequency Dictionary

Words Compared 3,372

Found 3,280

Not Found 92
Total Compares 6,644

Found 6,560
Not Found 184
Words Not Compared 4,628

Total Pseudo Compares 4,628
Total Compares (h.f.) 11,272

Standard Dictionary

Words Compared 4,720

Found 4,508
Not Found 212

Total Compares - Found 67_,-67
0. 7 Characters 27,458
8-14 Characters* 37,177
15-21 Characters 3,175
Over 21 Characters 157

Total Compares - Not Found 3,402

0-7 Characters 1,437
8-14 Characteem 1,842
15-21 Characters 105
Over 21 Characters 18

Total Compares (a.) 71,369

Total Compares overall 82,641

Average Compares per Input Wou 10.033

*Assumes complete compare before decision.

3-18

TABLE V. RANDOM CHAIN SCAN

8000 Words/Unit

High Frequency Dictionary

Words Compared 3,372
Found 3,280
Not Found 92

Total Compares 6,L4
Found 6,560
Not Found 184

Words Not Compared 4,628
Total Pseudo Compares 4,628
Total Compares (h. f.) 11,272

Standard Dictionary

Words Compared 4,720
Found 4,b0ti
Not Found 212

Total Compares - Found 23,907
0-7 Characters 9,310
P-14 Characters* 13,195
15-21 Characters 1,331
Over 21 Characters 71

Total Compares - Not Found 1,378
3 -7 Characters 549
8-14 Characters 773
15-21 Characters 47
Over 21 Characters 9

Total Compares (s.) 25,28

Total Compares Overall 36j557

Average Compares per Input Word 4.570

*Assumes complete compare before decision.

3-19

TABLE VI. ASSOCIATIVE SCAN (SINGLE MEMORY)

8000 Words/Unit

Merged Dictionary

Words Compared 8,000
Found 7,788
Not Found 212

Total Compares - Found 12,654
0-7 Characters 3,283
8-14 Characters* 8,316
15-21 Characters 999
Over 21 Characters 56

Total Compares - Not Found 343
0-7 Characters 89
8-1.4 Characters 226
15-21 Characters 24
Over 21 Characters 4

Total Compares 12,997

Average Compares per Input Word 1,625

Stssumes cormplete compare before diecision.

.2-20

TABLE VII. ASSOCIATIVE SCAN (I)UAL MEMORY)

8000 Words/Unit

High Frequency Dictionary

Words Compared 3,372
Found 3,280
Not Found 92
Words Not Compared 4.628

Standard Dictionary

Words Compared 4,720
Found 4,508
Not Found 212

Total Compares - Found
0-7 Characters* 1,900
8-14 Characters 4,812
15-21 Characters 579
Over 21 Characters 36

Total Compares - Not Found 339
0-7 Characters 93
8-14 Characters 224
15-21 Characters 18
Over 21 Characters 4

Total Compares (s.) 7, G66

A-,, rage Comp,,: ,' per input Word .956

*Assumes complete compare before decision.

3-21

SECTION IV

TEXT STATIS'i WCS

PROBLEM STATEMENT

The text statistics problem encompasses generating the data required to

describe statistically the '.naracteristics of a body of text. These statistics are

used in various studies to determine t.e optimum manner of manipulhting the

text flow in certain data handling situations. For ex.-.mple, assume that one is

investigating a sample of text from a data base which will eventually be processed

automatically on a repetitive basis (e. g. daily intelligence reports). Then one is

interested in acquiring data on numbers of words, word length distribution, etc.,

to be used in organizing a dictionary containing words in the material and infor-

mation on processing to be associated with them, determining the rate at which

new words will be encountered, investigating the volume and type of errors found,

noting peculiarities of spelling or abbreviation, and identifying any other anomalies

which might affect subsequent processing.

The final data to be derived from the text analysis should include the

following items:

1. Word Frequency Counts

a. AlphabeUc sort with word frequencies

b. Length of word sort with word frequencies

c. Frequency sort, subsorted alphabetically with word frequencies

4-1

2. Growth Rate Information

a. Word li-it in the sequence encountered

b. Growth rate of new words per unit of text processed

3- Sorted subsets -f words

a. All alphabetic characters

b. All numeric characters

c. Only alphabetic and hyphen characters i.e. Franco-Prussian,
Pierre-Laval, etc.

d. Alphabetic, rumrnic and hyphen mixtures i.e. B-29, F-111, etc.

,. Alphabf `k and numeric mixtures i.e. 19H, 1604A, etc.

f. Akll items not subsumed above.

Since all of theee outputs are derivable frorr the basic frequency count of

the words, the design and study effort was directed to consideraticn of the

solution of this problem in an optimiun manner.

It cannot be assumed that statistics derived from one body of text necessarily

are transferable in their entirety to another body of text. Stylized vocabLIary

and technical terms tend to make the statistics descriptive of the partlcu '.r

data sample and can even be used to assist in determining to whaL body oý tex-t

an unknown document or text sample belongs. Therefore the problem oi de-

termining text statistics is not one which can be accomplishcd once and then

never roneated, but is likely to recur even within one organlzatlon where prob-

lems of interest change with time.

The data input to the text statistics processor is considered to be primarily

textual. It might be unformatted text from teletype lines or from teletypisetter

input. It will, of course, not be limited to these and can include a wide range

4-2

of other material. A primary characteristic of the data is that the text words

appear as strings of characters with the word boundaries not specifically ident-

ified. The following character configurations are frequently the ones to be con-

sidered in defining the boundaries of text "words." The list can be modified to

meet the requlr3ments of the data sample in any particular instance by the addi-

tion of specia! terms or the deletion of configurations that are not meaningful

in the context of a particular problem.

a. '•' , the character 'blank'

b. ',' , the pair 'comma blank'

c. '. ', the pair 'period blank'

d. '.' the character 'semi-colon'

e. ';)•' , the pair 'semi-colon blank'

f. ' the character 'colon'

g. ' ;$' , the pair 'colon blank'

h. ' "$', the pair 'quotes blank'

Special characters other than shown may also be included in the ',sage given

for colon, semi-colon, quotes, etc. Other usage. may be defined as the occasion

demands.

The-re is generally no special control information to separate text un~ts as

they are received, for example, on teletype or optical character or reader iJ-

put. The separation is provided in the spacing of the inf'-i•mation, which Is

adequate 1.ir production of printed output but poses processing problems for a

computer. Thus the processor will need to be able to do part of the input editing

task as well as the frequency counts and sortings. This requirement is made

4-3

necessary by the wide range of material fnr which this data is valuable and for

which these general pruperties hold. Examples of this data are the text of news

publications, intelligence reports, newswire data and other publication data as it

appears prior to the printing.

CHARACTERISTICS OF TLE PROBLEM

The text statistice problem may be simply stated as the need to generate

lists of character strings of certain characteristics from an input string of text.

Appended to each string will be frequency of occurrence information as well as

the location in the text at which the string first appeared. Ordinarily the strings

desired are words ir. ..,e dictionary sense but no such restriction c~m be imposed

in a limitation on the problem since mis-spellings and other errors are of co,--

siderable interest to the researcher. The termo 'words' and 'strings' or 'text

items' aee used interchangeably to describe the output required.

The initial sorting of the words is most easily accomplishe,., as an alphabetic

sort with the frequency and word length sorts to follow at a later time. This

minimizes the data flow in the system by compressing the data to its final size

as early as possible. The problem then, to be studied in relation to the text

statistics processor will be limited to the generation of word frequency lists

sorted alphabetically. The remaining lists can be generated as a table from this

basic list by common sorting procedures, which are known to be input-output

limited Thus, there will be little differenc, the execution times between the

associative processor and a conventional processor. The relation between these

two philosophies will, of course, b?, 1fected by the additional burden imposed

4-4

by an equal load for each design. An equal load Imposed upon each of two sys-

tems which differ in time of execution for the problem !lnder consideiatlon will

* have an effect in the execution time for the overall process that may range from

a marked difference to almost none at all. Assume that for a problem in ques-

tion that one process represents 80 percent of the job and that the remaining

20 percent of the job has been evaluated for time of execution. Let processor

A have an execution time of 100 time units for the 20 percent part- of the job

while processor B does the same part in 150 ti~ne units. Then, if both have

the same time of execution for the 80 percent portion of the job, in .his case

400 times units if we use the time of processor A as the bench mark for the

20-80 ,jplit, processor A will complete the job in 500 time units while proc-

essor B will complete the same job in 550 time units. The difference in time

of ;.xecution is still the same, 50 time units, but we now refer to the time of

execudon of A as; being 90.5 percent of that of B rather than the 66.7 percent

previously thought when considering only the small portion of the job. Care-

ful consideration must be given to the problem of the overall execution for the

problem by not limiting the investigation to the initial problem of the frequency-

alphabetic sort.

Four schemes of data har~ling to solve the text statistics problam were

proposed for use on a conventional design as we:* as on an associative design.

These were based on the foliowing assumptions:

1. Capacity of the main store of both the conventional and the associative

processors is insufficient to contain all unique entries.

4.5

2. The input/output rate of each processor is assumed to be equal to its
basic comnpare cycle.

3. The outpuE of the data analysis is as previously specified.

The four metkods of handling the data are:

METHOD I. B.-eak the input text into "words" and generate a dictionary

of unique items until storage capacity is reached. Save on

a temporary medium any items not appearing in the dictionary

after this timc. Positional values for the first occurrence of

each word in the dictionary are retained in memory. They

are also associated with each of the overflow items saved

on intermediate storage. At the end of the original input,

the dictionary is saved and the overflow entries are re-

entered to form additional dictionaries in the same manner.

The additional dictionaries are merged with the original one

and formed into the final alphabetic output.

METHOD U. Break the text into "words" and assign sequence values for

input. Generate a dictionary in memory until storage is

filled. Save the current dictionary on temporary media and

begin t,.• generation of a new dictionary. Continue in this

manner until all of tho input is exhausted. Merge the inter-

m~edlate dictionaries deleting the extraneous sequence values.

METHOD 11. Break the text Into "words", assign sequence values and

generate a dictionary of unique items until storage is filled.

Write out onto temporary storage those itemn whose

4-6

frequencies to this point are below some threshold value.

Continue to take input to regenerate the dictionary in the

available core. The threshold is revised periodically to

insure that some minimal percentage of memory is available

for this function. Merge the resulting dictionaries retaining

lowest sequence values and eliminating duplicate "word"

it ems.

METHOD IV. Break the text into "words" and assign sequence values.

Match these words against a pre-stored dictionary making

the appropriate notations with each dictionary entry. Aug-

ment the pre-stored dictionary with any "new" term found

until storage is filled. At this time all cells with zero

frequencies are purged and the process continued until

storage is again filled. The "new" terms are flagged and

purged and faved at each time the dictionary reaches maemory

capacity. At the end of the input, the saved dictionaries

are merged, duplicate entries are eliminated and frequency

counts as well as sequence values are updated.

PROCESSOR DESIGN

The text statistics processor design in based on the assumption that there can

be but one data input to the processor for any one problem. Thus, the processor

will be input/output bound at some l/O speed based on the scheme for proc-

essing the text. This means that the processor must operate faster if an overall

increase in throughput speed is to be accomplished.

4-7

The design is partitioned into an I/O system, a system control unit and a

memory system. 1 The I/O system consists of the I/O units and the associated

controllers, channel devices, etc. The memory system consists of two associ-

ative memories and the mask-compare registers and control circuitry needed by

them. The system control exercises control over the I/O and all internal data

flow in the system. It is responsible for retreiving and interpretation of all

instructions of the system.

The two associative memory units of this system are of radically different

sizes; however, the functions are quite similar and overlap to a large extent.

The larger of thc memories has registers capable of etoring approximately

25,000 text words and their frequencies. The mask-compare registers of this

memory are of the same length as the memory registers and allow for the

inhibiting of compares on any specified subset of the word. The arithmetic-

logic unit of this memory is used primarily in the detection of single matches

and in the updating of counts of the words as the data is passed through the

system.

The smaller of the memories i- a special memory used for the function of

word breakup and special character recognition. The memory is large enough

to contain each possible character of the alphabet as well as an additional list

of short, high frequency words. The alphabetic characters are used in the word

boundary algorithm so that the boundaries of the incoming words are recognized.

1 1See Figure 7

4-8

'-U

-F Q

I.- F-

:2

C4 40

-44 _______

This process can be accomplished in the time between tray •miss~on of the nidi-

vidual characters of the data stream.

Another function ,-f this memory, apart from that already mentioncl, is to

eliminate from the ma'n mem-ory scan those words whose frequency is extrenmely

high relative to the data set. By this means, it is possible to save the tii'.e in

processing that would have been taken up by the search for hose words. "This

memory unit is assumed to be of such an operating speed to be invisible in the

data stream. This means that the search in the unit is done betv'ec-, charv.,ters

and constitute no loss to the system. By this mechanism it is possible to match

and count the frequencies of about 45 per, ýent of the raw text words. This re-

duction in the flow of data arriving in the large memory means an almo,- 50

percent increase in operating speed.

The operations of the two associative memories are quite basic in iatitre

and consist of the usual compare for exact mat-h (with the match for bit selec-

tion), read out first match, write in first location, multi-write and link between

registers. The link between registers, operates by setting a bit in the next

register in memory fiom a register for which the compare condition is met.

That is, for any register in memory that -,natches the aasoctative search criteria

and normally would have been marked, the register adjacnt next higher in

memory will now be marked. Read out is made on the basis of continuing

exact matches so that only the last register of a sequence of registe-'s matched

by the search program will be marked in the case. of the songle match. This

result occurs since the memory contains only one occurrence of each of the

dictionary terms. Furthermore, it As o! value to have only tbe last register

4-10

I

wratched with the natch bj4 set since btatistfcs are being generated about cach

term and it is convienient for this information to be stored after the te'ým in

memory. !t may be stored in the last r-gister or in the one following, depend-

ing upon the number of characters involved. In a multiple match condition, of

course, more than one of the memory registers could be marked. Match bits

are assumed to ýe reset by the Initiation of the writr match bit portion of a

succeeding n"-Ach cycle. Thir 's necessr in ordei to enable the seatch prn

gram to find thos" words which are more than one register in length and to

mark oily the las memory register for each of these words. Linking is

assumed to progre s one way only in this computer design, although the gen-

eral case is to allow this type of function to be symmetric for searches in

either direction.

The register length is such that a seven charsicter string may be contained

in e.:< register. This choice was made based upon the reasonableness for

hardware requirements and the distribution of the word length in the data

sample. It is assumed in this casc that some finite number of characters must

be specified and for any particular length of register, there will be a require-

ment for a register ol length longer than that. (See table II,) In addition to

the seven characters per register, there is space for the cotints associated with

thu lower frequency (1000 or less) words In each register plus aome controi

information to indicate the relative position of the ciaracter string in tlhe word.

EXAMPLE PROBLEM

A text sasnple and a dictionary derived f,,m it were defined. The text was

taken to have similar characteristics to those of a iWge sample)f text 4.0

4-11

million wards of text approximately. This represented approximately 144,000

unique words in text with the average frequency of occurrence for each word

being about 94. The range of word frequencies was 1 - 264,491. These words

were cormpared to a dictionary/ 1 derived from Webster's Collegiate Dictionary.

The words in the dictionary did not include any proper nouns or technical terms;

that is, the set consisted of only common nouns, verbs, adjectives, etc. Among

this restri..,ed set, there appeared 28,409 words out of the 71,805 c""-":tly

spelled unique english words of text. The remaining 72,000 words were alpha-

merix mixtures, error, etc, The distribution of the lengths of the text words was

such that the average length for all words of the sample was 5.21 characters

while the average length for the unique * ,rds only was 8.53 characters. This

reflects the high proportion of words such as 'an', 'the', 'for' and so forth.

These words dilute the overall distribution of the lengths and skew it to the right.

(See Table VTII. la and VIII. lb.)

The input text to the pro.essor is iead c~ae character at a time The input

is such *bat the possibility of parallel inputs is excluded by the requirement

that the order of appearance o) the unique words be preserved. The words and

their boundaries must be Identliled and the word compared against a dictionary

that is being constructed on the fly while the text is passing. Overflow occurs

when the main storage Is filled and a word enters the system for which no com-

pare exists in the cuir ent dictionar,. Such words must be saved together with a

Cumdict: A Commcu English Word Dictionar- Private communication from
M. Jones June 1963

4-12

notation of their sequence information until such time as the initial pass at the

material is completed. They will then be passed again against a new dictionary

and the cycle repeated until all of the words of i, ' sample have been counted and

SV the relevant information recorded. 1

Each of the me~thods listed under CHARACrERISTICS OF THE PROBLEM

was evaluated by means of the data model, The results are summarized in

Tables XI through XIV. Table X1 lists in detail tht. comparison times used in

the uPtandard rawidom acce •s processor as the data is processed through, in this

case, five sorting passes and a merge pass. For each pass, the number of

words read into the computer is listed as well as the total number of comparisons

times utilized in •-e sorting. A random chain sort is assumed with an average

compare time of 4.57 compares per input word. Table XII summarizes similar

inrirmation about the associative processor design. The figure for the ;earch

time in ,its case ii . 958 compares per input word. The low (4.57) figure obtained

for the random access processor is based upon the assumption of an average of

1. 9 conapares2 per input word after the generation of the random memory

address and 3.0 compare Umes for the address generation. In the case that th-,

algorithm is not as efficient in producing the memory address, the corresponding

compare times figure will have to be revised upwards.

I Table IX and X give additional information of a statistical nrtui'e concern!,n

the characteristics of the words In the test sample.

2 Dictionary Techniques
J. B. Ratchford, 31 May 1962
AIDF/SAC Subsystem Working Paper

4-13

Table XIII contains the information relative tc the process which occur after

the initial alphabetic sort has been mF. The tasks here, with the exce'tion of

the frequency sort and the sequence encountered information, are performed in

essentially the same amount of time on the associative processor and the random

access processor. The major factor here is the I/O time and not the internal

look-up time.

These results in Table XIII are obtained by assuming that the time of output

and of re-input are equal to the compare time Zor the machine involved. That

is, the time to read or write one 'word' in the I/O process is equal to the time

necessary to accomplish one compare. This time is essential to the computa-

tions in that it is the main discri•irnator between the schemes for handling the

daia. Table XIII is the conunon information for those parts of the process in

which the associative store is taken to yield no advantage.

Table XIV is a summary of the over processing time for the 4.0 million

words approximately of text in the data model. Total comparison times are

listed for each machine configuration as well as for each of the processing

methods involved.

DISCUSSION

The overall result of the processkr study ti that the application of an

"",clative processor In this area may yield a return of ab-u_,t three to one

0 .1. The cause fcr this low return is that the major portion of the task is

linear and not conducive to parallel processing. The sorting of Items in

ordered lists, merging of lists is essentially 1/0 bound on present day computers

4-14

b -

I

and appears as if it will remain so for the forseeable future. Thu gain for initial

sortirg of the text words is approximately four to one for simihk. reasons.

Modern programming techniques evable the properties of associativity to be

available on random access computers by such means of hash addressing, chain

sorting and binary scans.

The main features of this design are the separation of tN.h. A--rd break task

into what amounts to a channel device from the central processor and the linking

of adjacent registers in the associative memory during the scan operation for

dynamic utilization of the interim results of the scan. Without these two ieatures,

it would be difficult to display a significant improvement in operating speed over

the time of execution in a conventional processor.

4-15

4 4

TABLE VIII. la. TEXT STATISTICS DATA DESCRIPTION

TOKENS 4.0 x 106

A. ALPHABETIC 3.88 x 106

1. Common Words 3.3 x 106

a) frequency a 30 2 9 x 106

b) frequency < 30 4.4 x 105

2. Other Words 5.2 x 105

a) frequency - 30 4.1 x 105

b) frequency < 30 1.1 x 105

B. tMUMERIC 8.7 x 104

C. ALPHA-HYPHEN 3.1 x 104

D. ALPHA-NUMERIC 1. 3 x 103

E. ALPHA -NUMERIC -HYPHEN 1. 2x 104

F. REMAINDER 3.0x 1o0

II. TYPES 1.4 x 105

A. ALPHABETIC 1. 1 x 105

1. Commom Words 3.0 x 104d

a) frequency z 30 1.4 x 104

b) frequency < 30 1. 6 x 104

2. Other Words 7.7 x 104

a) frequency- 30 2.5 x 103

b) frequency < 30 7.3 x 103

4-16

TABLE V1JI. la. TEXT STATISTICS DATA DESCRIPTION (Cont'd)

f NUMERIC 6.2 x 103

C. ALPHA-HYPHEN 1.6 x l)4

D. ALPHA-NUlvE.RIC 3.2 x 10.

E. ALPHA-' TUMERIC-"IYPHEN 2.1 x 10-

F. REMAINDER 6. I x 103

Ill. MISCL2LLANEOUS INFORMATION

A. Highest Frequency 20, 000 words = 95% of total words

B. t ,,erage Frequency for words !530 = 5.62

C. Trnique Words frequency ! 30 = 124,000 words

D. Tota. Words frequency < 30 = 800,000 words

4-17

TABLE VIII. lb. TEXT STATISTICS (FREQUENCY HISTOGRAM)

FREQUENCY TYPES TOKENS

1 63090 51090

2 19720 29440 *

3 10238 22614

4 6634 19736

5 4819 18095

6 3868 175G8

7 3187 16709

8 2528 15344

9 2118 14272

10 1779 13390

11 1581 13101

12 1329 12948

13 1068 12584

14 79e 11172

15 802 12030

16 695 11120

17 619 10523

18 551 9918

19 546 10374

20 482 9640

21 432 9072

22 405 8912

23 395 9085

24 342 8208

25 347 8675

26 AND GREATER 11718

4-18

I

TABLE VIII. lb. TEXT STATISTICS (FREQUENCY HISTOGRAM) (Co.At'd)

FREQUENCY TYPES TOKENS

26 313 8138

7 306 8262

8 300 8400

9 285 8265

30 240 7200

1 237 7347

2 224 7168

3 236 7788

4 194 6596

5 202 7070

6 199 7164

7 169 6253

8 153 5814

9 151 5967

40 174 8960

1 158 6478

2 129 5418

3 134 5762

4 153 6732

5 136 6120

6 119 5474

7 129 6063

8 127 6096

9 101 4949

50 105 5250

51 AND GREATER 7042

4-19

TABLE IX. FREQUENCY DISTRIBUTION OF DATA SAMPLE
WORDS BY WORD LENGTH

LENGTH FREQUENCY LENGTH FREQUENCY

1 14 13 1628
41

2 76 14 1059

3 813 15 694

4 1962 16 451

5 3420 17 291

6 5867 18 203

7 6741 19 123

8 6159 20 89

9 5277 21 64

10 4249 22 42

11 3208 23 30

12 2348 24 + GREATER 13

4-20

TABLE X. FREQUENCY DISTRIBUTION OF DATA SAMPLE
WORDS BY FIRST CHARACTER

CHARACTER FREQUENCY CHARACTER FREQUENCY

A 2505 N 1782

B 2908 0 1181

C 3212 P 2764

D 1825 Q 138

E 1667 R 1857

F 2110 S 4818

G 1646 T 2342

H 1983 U 944

I 3420 V 675

J 579 W 1329

K 859 X 13

L 1442 Y 214

M 2390 z 212

4-21

TABLE Xi. NUMBER OF COMPARISON TIMES FOR THE ALPHABETIC
SORT USING RANDOM ACCESS PROCESSOR

I METHOD I Number of Compares

A. Pasq I
1. Words Read 4,001,562
2. Words Saved 24,921
3. Overflow 217,343 18,638,074

B. Pass HI
1. Words Read 217,343
2. Words Saved 24,747
3. Overflow 95,378 1,161,072

C. Pass m
1. Words Read 95,378
2. Words Savei 25,070
3. Overflow 45,376 529,011

D. Pass IV
1. Words Read 45,376
2. Words Saved 24,307
3. Overflow 17,591 258,062

E. Pass V
1. Words Read 17,591
2. Words Saved - 0-
3. Overflow - 0- 80,391

F. Merge 263,421

G. Total Compares 20,930,031

11 METHOD I

A. Pass I to Pass XV
1. Words Read 240,000
2. Words Saved 24,921 17,012,725

B. Pass XVI
1. Words Read 161,562
2. Words Saved -0- 738,338

C. Merge
1. Pass I 483,515
2. Pass 11 259,687

D. Total Compares 18.493,765

4-22

TABLE XM NUMBER OF COMPARISON TIMES FOR THE ALPHABETIC
SORT USING RANDOM ACCESS PROCESSOR (Cont'd)

IU METHOD III Number of Compares
A. Pasa I to Pass XV

1. Words Read 240,000
2. Words Saved 4,830 16,560,675

B. Pass XVI
1. Words Read 161,562
2. Words Saved - 0 - 738,338

C. Merge
1. Pass 1 182,150
2. Pass II 259,687

D. Total Compares 17,740,085

IV METHOD IV
A. Pass I to Pass

1. Words Read2. Words Saved 16,564,500

B. Pass
1. Words Read
2. Words Saved 738,338

C. Merge
1. Pass I 184,400
2. Pass H 259,687

D. Total Compares 17,746,925

4-23

TABLE XII. NUMBER OF COMPARISON TIMES FOR THE ALPHABETIC
SORT USING ASSOCIATIVE ACCESS PROCESSCO

I METHODI Numbe, of Compares

A. Pass I
1. Words Read 4,001,562
2. Words Saved ?A,921
3. Overflow 217,343 4,184,432

B. Pass 1I
1. Words Read 217,343
2. Words Saved 24,747
3. Overflow 95,373 376,029

C. Pass 111
1. Words Read 95,378

. Words Saved 25,070
3. Overflow 44,376 184,506

D. Pass IV
1. Words Read 45,376
2. Words Saved 24.307
3. Overflow 17,591 94,164

E. Pass V
1. Words Read 17, t91
2. Words Saved -0-
3. Overflow - 0- 16,852

F. Merge 170,132
G. Total Compares 5,026,179

n METHOD I1

A. Pass I to Pass XV
1. Words Read 240,000
2. Words Saved 24,921 3,486,182

B. Pass XVI
1. Words Read 161,562
2. Words Saved - 0- 154,776

C. Merge
1. Pass I 483,515
2. Pass II 259.687

D. Total Compares 4,384,160

4-24

TABLE XII. NUMBER OF COMPARISON TIMES FOR THE ALPHABETIC
SORT USING ASSOCIATIVE ACCESS PROCESSOR (Cont'd)

III METHOD III Number of Compares

A. Pass I to Pass XV
1. Words Read 240,000
2. Words Saved 4,830 3,557,475

B. Pass XVI
1. Words Read 161,562
2. WordsSaved - 0 - 154,776

C. Merge
1. Words Read 182,150
2. Words Saved 259,687

D. Total Compares 4,154,088

IV METHOD IV

A. Past I to Pass
1. Words Read
2. Words Saved 3,561,300

B. Pass
1. Words Read
2. Words Saved 154,776

C. Merge
1. Pass 1 184,400
2. Pass II 259,687

D. Total Compares 4,160,163

4-5

a, ____

LI

TABLE XIII. NUMBER OF COMPARISON TIMES FOR THE SORT
FUNCTION PERFORMED SUBSEQUENT TO THE
ALPHABETIC SORT

I LENGTH SORT: COMMON TO Number of Compares
BOTH PROCESEORS

A. Dictionary 170,132
B. Dictionary Output 113,421
C. Merge 283,553
D. Total Compares 567,106

H FREQUENCY SORT

A. Standard Processor
1. Dictionary Input 777,503
2. Dictionary Output 113,421
3. Merge 283,553
4. Total Compares 1,174,477

B. Associative Processor
1. Dictionary Input 1i0, 132
2. Dictionary Output 113,421
3. Merge

283,553

4. Total Compares 567,106

III DICTIONARY SCAN: COMMON TO
BGrH PROCESSORS 170,131,,

IV SEQUENCE ENCOUNTERED

A. Standard Processor
1. Dictionary Input 777,503
2. Dictionary Output 113,421

1. Merge 283,553
4. Total Corpares 1,174,477

B. ASSOCIATIVE PROCESSOR
1. Dictionary Injmt 170,132
2. Dictionary Output 113,421
3. Merge 283553
4. Tott.l Compares

283, 106

4-26

TABLE 3C,. NUMBER OF COMPARISON TIMES FOR THE SORT
FUNCTION PERFORMED SUBSEQUENT TO THE
ALPHABETIC SORT (Cont'd)

Number of Compares
V GROWTH RATE: COMMON TO

JOTH PROCESSORS -0-

VI SUBSET DATA: COMMON TO
BOTH PROCESSORS

A. Alpha 129,810
B. Numeric 7,485
C. Alpha-Hyphen 19,054
D. Alpha-Digit 3,913
E. Junk 9,867
F. Total Compares 170,132

4-27

TABLE XIV. TOTAL COMPARISON TIMEF BY PROCESSOR
AND BY SORT METHOD

STANDARD Pr'OCESSOR Total Compares

A. Method 1 24,186,355
B. Method"• 21,750,089
C. Method I11 20,996,409
D. Method IV 21,C03,249

ASSOCIATIVE PROCESSOR

A. Method I 7,067,761
B. Method 11 6,425,742
C. Method 1l] 6,195,670
D. Method IV 6,201,745

4-28

Section V

FORMATTED FILE PROCESSING

PROBLEM STATEMENT

In recent years there has been a rapid growth in the use of so-called "for-

matted file systems.." These syqtpris are I•o i-.,-purpose data storage, main-

tenance and retrieval systems designed to provide the user with a maximum

amount of flexibility. They feature the use of a single set of programs to handle

a variety of demands on a group of large files. Each file may possess a different

format, but all records within a file must be identical in format. New files ruay

be created or old files changed in format to meet neu .quirements. Data can be

addedtofiles, or changes can be made to correct errors it, exdsting files. In

each case, however, the prime requirement for these systems is the ability to

make rapid responses to queries.

Each query consists of a logical combina.'-.n of individual field name/field

value pairs. For example, in a hypothetical file on automobile registrations,

the license numbers of all black 1963 Fords might be requested. Specifically,

the request would be: Print the contents of the License Number field fur all

records in the file with:

Color field contents - Black

AND

Date field contents a 1963

AND

Manufacturer field contents - Ford.

5-1

More complex logical statements and different types of relations (e.g., <)

are of course pernutted, and easy-to-use languages art asually provided for

user convenience, However, the Pystem ailows the usei to make any query in-

volving the fields in any of the files using a set of logical and relational orerstors.

Because it is impossible . most cases to predict the queries to be made, and

because the files used are frequently large (as much as 75 tape reels of data for

one intelligence file), the searching of such files presents a severe problem.

CHARACTERISTICS OF THE PROBLEM

The early formatted file systems used the one bulk storage medium avail-

able at the time, magnetic tape. Not much can be done in such a system to re-

duce access time. If one field is referenced in a large percentage of queries,

the file may then be sorted and maintained in order on that field. Thus, one can

index to the reel level and scan only to the point on that reel where the relevant

records are located.

The advent of the quasi-random access, bulk storage devices such as disks,

drums and strip files made more efficient file structures possible, since access

is avail-able at the track level, and scanning need only be performed within a track.

Somc work has been done on examiaing the general proble-i of file structureI

and specific examinations have been carried out for some critical files.

IF. T. Baker, "Some Storage Organizations for Use with Disk Files," AIDS
Working Paper, January 1963.

2 J. B. Ratchford, "Notes on File Structure for AIDS Phase U System," Septem-

ber 1962.

5-2

The usual searching process is a relatively inefficient and slow means of

locating aata because of the tremendous amount of nonrelevant data in the file

which must be scanned to find all relevant data. All records to be scanned must

be transferred to a central processor and examined to some extent before being

discarded if they do not meet the selection criteria. In some caseb, thL com-

plete file may have to be scanned to ensure finding only a few recordb. TAis

method is obviously wasteful, and some of the techniques destcribed next have

been developed to improve search efficiency.

In some cases, there is seldom a need for reading more. Lhan one r.,=ord

per transaction. In such cases, it is often possible to compute an address based

on the value of the keys given. For instance, an algorithm may be desiged to

operate on a randomly chosen set of keys provided to produce an evenly distrib-

uted set of addresses over the total storage area. When an addzess is computed,

a scan will start at the compute address to find the actual record desired. In

special cases involving one key, this has been very effective. However, it tends

to order the file randomly, which nrturally makes it impractical to find records

for sequential or mass transfer.

Since the amount of data scanning during retrieval is roughly inversely pro-

portional to the number of keys indexed, the usual indexed file will have several

indexes. One Lile may require indexes only on its more important keys, another

may require that all keys bW indexed. If the indexes and fries are ordered on the

keys Indexed, the indeir entries will address sets of records with the corresponding

index valve rather than scattered single records. The query can then be accom-

plished by a search of an index to find the location of the first record of an ordered

5-3

set and then reading out the complete set. In such a file organization there is a

good chance that one read will fetch several records at a time thus taking advan-

tage of the mass transfer characteristics of the storage device.

Another common approach involves breaking up logical records into smaller

groups of fi-lds and then chaining the groups with cross-reference addresses to

show relationships among various keys of the file. In some cases, this is a

good compromise design that takes advantage of the mass transfer characteristics

of the storage media, even when search may be on a variety of keys. Generally,

when a scan is used it will be short.

In practice, search time is usually split among searching the index for the

particular key value, seeking an area (e.g., a track or cylinder) where the rec-

ord is kept, then scanning for the actual record or block of records within this

area. The time spent on the first and last stages depends upon the level of in-

dexing. When indexing is to the record level, no search of data file area is nec-

essary. If indexing is to the track level, only a track will be scanned. Indexing

can be to the cylinder level, requiring scanning of the cylinder tracks.

A fundamental rule in the generation of indexes is that no index should be

used that gets closer to the data thar. required. For instance, if a disk system

is used in track mode where the ýransfer of data requires the reading of a full

track, indexing should be to the track level as opposed to the record level. Either

way will find the record, but the second index will be longer than the first by a

fac.or eP.ial to the number of records contained on a track. This extra length

adds to the index search time; more importantly, it greatly increases the index

maintenance time during the update.

5-4

A common problem in many of these approaches is that, as indexing and

chaining are used more and more, the time for adding records to a file increases

significantly. The time spent in maintaining those features that facilitate query

thus has a disastrous effect on overall system efficiency. This is especially

critical in systems where input volume is high, as in many "history file" applica-

tions. Therefore, the application of sophisticated indexing techniques to facilitate

query handling often proves to be self-defeating.

However, there is another approach that can reduce maintenance time with-

out losing query efficiency. A faster scan over a larger area will allow smaller,

courser indexes with a corresponding decrease in index maintenance time and can

be accomplished with a parallel scan of many tracks. For instance, the cylinder

concept common in disk operations can be modified so that all heads are read in

parallel. With such a scheme, small indexes could be used to index large files for

quick access. A further saving with this approach would be in the lessened need

for indexes on seldom-used keys. A high-speed scan on such keys would be far

preferable to the extra effort required for updating a seldom-used index for every

update transaction. Also, queries are sometimes made on keys not even indexed,

and high-spoed scan would be invaluable in such cases. Finally, chaining could be

simplified if such a scheme were adopted and were feasible. An attempt would be

made to always cluster chained records on a cylinder, and each chain scan could

be shortened to thq extent that this clustering was successful.

The concept appears attractive, but has a major drawback; Inci eased de-

mands will be put on the central processor. With data transferring into the

central processor in parallel from disks (for instance, at a 40 x 90 KC 3600 KC

5-5

j ________________________

rate), the memory woild soon be overwhelmed. Even with slower data rates,

buffer space would be used, thus degrading computing performance of the sys-

tem. The solution to this problem appears when the distribution of the work re-

quired in a scan is considered. The work involved in processing a file record

can be broken down into four simple functions:

1. Get the records under the heads

2. Transfer the record to memory

3. Test the record for relevancy

4. Process for output or reject the record.

Of these, the first two generally require the greatest time to the extent that the

other functions can often be overlapped. In the computer, the test for relevancy

is usually simple. Basic logical operations on and between file items are suf-

ficient to isolate the required records in the majority of cases. On individual

fields, a high-low-equal compare operation is generally all that is required;

and between fields the "and," "or," and "not" logical operations will usually

serve adequately. Though simple, these operations nevertheic is require a major

portion of CPU time with relatively small dividends in term., of relevant records.

In the quest for an upgraded CPU operation, this seems like a likely place to

start.

It appAars worthwhile, therefore, to investigate putting the scan and test

functions on a "channel" basis. That is, the scanning and testing should be sepa-

rate and distinct from the CPU; the "channel" should be set up at infrequent inter-

vals and allowed to do its own searching. This appears to merely transfer the tre-

mendous buffer out of the CPU and put it in the channel, but even this problem

5-6

can be attacked by allowing the records to stay on the storage medium tmtil after

they have been scanned and found relevant. This procedure can be done tuither

* by employing separate heads for scanning and for data transfer, or by allowing

two revolutions for each transfer-the first for scan, the second for transfer,

and both from the same heads.

One characteristic of a formatted file is that the records are all exactly

alike in format in any single file, and can be stored in parallel and therefore

scanned in parallel. Such a scheme could also allow a simple implementation of

multi-query capability. In such a system, many comparison criteria rt once

from several queries could be compared to a single field from many records,

multiplying the effective scan rate by the number of different parameters com-

pared to a field.

Such a system would seem to have many advantages. Its autonomous nature

should free the CPU for upgraded work. Because the system would be designed

for both batched and single input handling, it should help keep the system run-

ning well under transient conditions. It should tend to considerably decrease

the time of both update and query. Finally, its implementation appears to be

presently feasible.

The design of such a parallel search chanr.el 1.8 discussed iab the next section.

Since this processor offered promise of significant ,dvantages, both in connection

"with General Puxpoae Associative Processor (described in Section VIII) and as a

channel device to be used with conventional computers, it was decided to carry

out this design in more detail than the design of the other problem area proc-

essors.

5--

PROCESSOR DESIGN

The formatted file processor is designed for use with bulk storage devices

where' parallel data transfer from a number of identically formatted records is

possible. Such devices are exemplified by head-per-surface disk files, head-

per-track strip files, head-per-track drums and similar devices. (The proces-

sor will be desribed in terms of its application to a disk storage unit but is

clearly applicable to the others,) This processor is also designed for use as an

external device or channel processor from which data is transferred to a separate

central processor for further manipulation.

The bulk store to be considered will consist of a disk unit with 40 data disk

surfaces and two field control surfaces. Information is recorded on the disk

surfaces in concentric tracks, each of which allows four thousand 8-bit charac-

ters to be recorded on it. There are 500 tracks on each surface.

Data and control information is read or written on these surfaces by 42

heads mounted on an access mechanism-that is, without moving, the access

mechanism can read or write information on any one or all of 40 data tracks

while being controlled by the corresponding format and timing tracks. The 42

tracks accessible without motion of the access arm are called a cylinder. A

cylinder may be accessed at any time by a pair of mechanisms. One of the pair

carries the read heads of the scanner, the other mechanism, assumed to be
S.

located 1000 characters further around the unit, carries both read and write

heads.

All system operations are controlled by the format tracks. One of these

tracks marks fields and records on the cylinder. The other provides timing,

read/write synchronization, and access mechanism checking.

5-8

Data fields must be stored on the 40 tracks of a cylinder in parallel, that is,

all records within the area defined by one record length along each of 40 tracks

must be stored so that the records and fields within records begin an. - 7 the

same angular position of the cylinder surface. A record length of lIW0O etaracters

or less is allowed.

Records with a variable number of fields are handled by breaking them up

by group into fixed length records and chaining the various groups of a record

together. In such cases, all equal-length groups will be stored in corresponding

sections of the file. In a file with fixed groups (i.e., master records) and per-

iodic groups (I. e., detail records in a different format than the master), the

fixed groups would be stored together in parallel, and the periodics would be

stored together in parallel in another section of the file.

Figure 8 shows a block diagram of the processor. As an example, the bulk

store is shown filled with a set of records from a vehicle file. The bulk store

represents cylinders of disk storage. The access mechanism is such that cor-

responding bits of characters under all heads are read into the Field Compare-

Matrix (FCM) simultaneously. The bit read from each track is read into all

positions of the columot of the Field Compare Matrix immediately "above" the

* character. For example, the bits of characters C, T, B. C. . . . would be

read into all positions of their respective columns in the matrix; following this,

the bits of characters, A, R, U, A, ... would be read into all positions of

the respective columns in the matrix and so on. This read-In actuahly is done

parallel by bit-that is, ftne bit per character is read from each track simultane-

ously.

5-9

S _ _ _ __ll il

Rop..9 for A P S St.#". (SS) R. ,,

Posat.., R.~cerdod Tog Tog Tog Teog Tog (QMI) o.

2 1 3 (GCS) 0...., 94o...

________ Strml Id*. Locs.

Eqw. 1

Eq... 2 4
EqwOo 3 6- 3

Ide... 9y

Indicug.

Lik(RCM)]
edRecord

I S IS Rea outOFMI) 0...., Fold Motch

(QFC) 0uery Field Coatrol Poraaioior Litcs.

11UI S 1 1

_ _ _F., Id
Eq14 C., 0

EqlC 5

EIL7 D 6
c (FCmI Field

(Field mnComil...
Mon..

C TIaC

A IN U A

Itocei
0*

Figure 8. Associative Disk Scanner

5-10

Paramete-s for finding data are shown in the Query Data Compare Store

(QDCS) and the Query Identification Compare Store (QICS), which are actually *

different sections of the same memory. During the loading process, the actual

field contents to be compared are stored in the QDCS as shown. In addition, a

string of FCM row addresses is generated indicating particular logical combina-

tions of query data fields which will satisfy one or more queries. These ad-

dresses are stored in "characters" of the QICS; thus the row address of a QICS

string will represent one qutrv which will be satisfied by the logical conjunction

of the several specified QDCS data fields. In Figure 8, for example, location one

in QICS containing the FCM row addresses 1 and 5 represents the query for a

"bus manufactured by C." QICS location three represents a query concerning a

"car manufactured by D."

The Query Field Control controls the type of cowparison which will N- made

on each field when that field is passing under the heads. In the example, when

the Type field is passing under the heads ai. "equal" compare will be made.

Likewise an "equal" compare is specified for the Manufacturer field,

The heart of the system is the Field Compare M1atrix. This is a matrix of

compare circuits, each match bit of which drives the readout of a single register

of read-only storage. When a match bit is set, the associated register of read-

only storage reads its own row address into 'he position of the Query Field Match

Indicator directly above. U, der control of the Qteiry Field Control, the compare

circuits match the contents of fielde passing the scanner heads with those stored

in rows of the Query Data Compare Store. If a field on a track matches a row of

the Query Data Compare Store, the match bit at the intersections of the

5-11

- - -- -

,

corresponding row and column will be set. This in turn will read the address of

the row which compared into the position of the Query Field Match Indicator cor-

responding to the track containing that field.

To understand the overall operation, consider the example shown in Figure 8.

At the beginning of character time one, the first bit of a character from each of

the set of characters C, T, B, Cwill be simultaneously read into aUL

puiitions of the respective columns in the FCM. At the same time the mask

register will be loaded, and the first bit-column of the Query Data Compare

Store will be simultaneously compared to aU columns of the FCM. Query Field

Control (QFC) will only allow comparisons to be made on the Type field at this

time

Initially, all match bits are set off to indicate the no-match .:ondition. Then

the match bits of rows to be compared with the currently passing field are set

"on" to indicate all matching condition. During actual comparison, the field

which mismatches will cause a match bit to be turned off at the intersection of

the rows and columns mismatched. Thus the result of the comparisons at the end

of character time one would be match conditions shown in positions (1,3), (2,2),

(3, 1) and (3,4). Following the bits of the first row of characters, the bits of a

second row, A, R, V. A, are read and a second rt of compares are made with

the bits of the second column of the Query Data Compare Store. Again, corn-

pares will be left In positions (1,3), (2,2). (3,1). (3.4). The same compares

will clea'ly remain set when the end of the field is signified by the format track

of the cylinder.

5-12

When the end of the field is signaled, a new set of actions will start. The

QDCS row location numbers corresponding to match bits set will be transferred

"to the Query Field Match Indicator Register (QFMIR). Comparison of this set

of location numbers against those in the first column of the Query Identification

Compare Store QICS) w.il be made in a manner analogous to that just described

for the field data. This comparison will leave match bits set in positions (1, 3),

(2,2), (3,1) and (3,4) of the Record Compare Matrix (RCM).

In the meantime, the FCM will be reset and comparison of the second field

will be carried out to find Manufacturer codes of B, C or D. This comparison

results in match bits being set in FCM positions (4,2), (5,3) and (6,4). Again,

at the end of the field, the QDCS location numbers corresponding to the match

bits set will be transferred to the Query Field Match Indicator Register. The

Record Compare Matrix will not b,- reset and comparison of the QFMIR with the

second column of QICS will be made. This comparison will result in the match

bits in position (3,4) being turned off, leaving only RC M positions (1, 3), (2,2),

and (3,4) still set. This condition will remain until the end of the record is

reached, at which time QICS location numbers will be transferred by the match

bit circuits to the Record Match Indicator Register (RMI). The location numbers

now in the RMI indicate that, among the records which start at some pre-deter-

mined angular positicn of the disk, those tracks corresponding to the RMI posi-

"tion now filled have met query criteria. Also, the queries answered are identi-

fied by the QICS row numbers now in the RMI.

Actual data transfer is accomplished in one of two ways. The data may be

tronsferred as single records by addressing a particular position on a particular

5-13

track as in the usual bulk store devices, or data may be transferred automatically

under status control as follows.

Under control of the status register, the information is read by read/write

beads separate from and following the scanner heads when the beginning of the
U.

record is encountered. The status registers tells which track to read and the

tags identify a central processor address to which the data will be transferred.

Writing is accomplished analogously.

Since this processor offers significant data handling advantages over con-

ventional channel devices, it was determined that it would form an excellent

auxiliary device for are with the General Purpose Associative Processor de-

scribed in Section VIII. For this reason, the design effort was continued to pro-

vide further detail of its important component sections. The remaining part of

this section is devoted to describing these components.

Field Compare Section

The Field Compare Section of the processor is primarily concerned with the

parallel comparison of individual query fields against specified fields of the stored

records. The important units of the Field Compare Section are the Field and

Record Control, the Query Data Compare Store, the Field Compare Matrix, the *
Query Field Control and the Query Field Match Indicator.

Field and Record Control. The operation of the scanner as well as the read/

write circuits is under control of the Field and Record Control (FRC). This con-

trol reads two tracks of control information. The first track (Field Marking

Track) indicates the beginnlqz of each field, as well as the record end. The

5-14

second track (iiing and Angular I osition Track) indicates angular position and

cylinder address. In addition, it orovides a base timing pulse which, together

with auxiliary timing circuits, allo,,s Lor syr-.•, onized read and write.

The FRC reads the Field Marking f rad" -id -ses a field counter to indicate

which field is being read. It sense- the ¾ ginning-oL-record mark which resets

the field counter to one. Each chrage of field then "n.ciiases the field counter by

one. The count then is used to control the field co,4zrisons to be pqrformed by

the identity and query field controls.

All read/write/scan operations are timed through use of information from

the Timing and Angular Position Track (rAPT). Actual timing pulses are fur-

nished by a combination of primary pulses tromn the TAPT and a clock. The clock

is synchronized with the primary pulses. It is assumed that there is enough

room on the TAPT to record angular position informatio3 interspersed with pri-

mary timing pulses at regular intervals around the track. With the angular

position available as soon as the access mechanism Pettles to a new position,

so-caUed rotational delay can be reduced. After access motion has stopped, it

will be possible to start scanning as Rom as the beginning of the first record is

sensed following the first read of angular position. Thus, with several identically

formatted records stored on a track, any delay will be only a small fraction of

the rotational period.

Query Data Compare Store. The tile is searched by comparing search te": s

stored in Query Data Compare Store (QDCS) against fields in all tracks of tht,

* cylinder being processed. Search terms are stored in the QDCS a word at a time

as in a conventional memory, except that 10 bits are stored for each 8-bit

5-15

V

II

character of the word. The extra two bits per character are to indicate masking

for each four bits of a packed numeric digit or for the eight bits of a character.

Assuming a five-byte QDCS word, a word of digits stored would appear as fol-

lows:
a.°

(1) (4) (1) (4) (1) (4) (1) (4) (1) (4) (1) (4) (1) (4) (1) (4) (1) (4) (1) (4)

The shaded part is the rdask bit and the unshaded bleeks each represent four bits

of the data byte.

This memory is constructed so that input is by word while output (to the com-

pare matrix) is parallel by bit. That is, the first bit of all words can be read in

parallel, followed by the second bit of all words, etc. Every fifth readout, a

new mask is read into the Mask Register. This mask will be used to mask the

following four data bit comparisons, allowing for partial field comparisons. A

one in a mask bit will prevent comparison on the next four bits; a zero enables

comparison of the next four bits.

It is expected that this memory could be constructed in either of the follow-

ing methods depending upon relative cost of components. If magnetic cores are

used, the usual (XZ, YZ) coincident current write by word seems plausible,

where the intersection of the XZ and YZ planes corresponds to word address.

Output then couid be accomplished through use of a full write pulse on the XY

plane. Senre amplifiers on each Z axis would then sense switch cores through-

out the XY plane. Because this method Is expensive in terms of sense ampli-

fiers, a better method might be to design the memory as a series of flip-flop

registers.
5-16

Field Compare Matrix. The Field Compare Matrix is the heart of the Field

Compare Section. It is comprised of a matrix of comparison and associated

readout circuits to compare the row of bits, one from each track, presently

being read from the cylinder with the column of corresponding bits presently being

read from the comparison memory. The type of comparison is determined by the

mask and the compare control. Types of comparisons are controlled by row and

may be different for each row. In other words, a term in word one ot the com-

parison memory may be equal-compared to a field at the same time that a term

in the second word is high-compared to the same field. The only restriction is

that the results of the two comparisons must be mutually exclusive, since, if

more than one match bit is set in a column, the column will be treated as though

all its match bits had been set.

Figure 9 shows the general comparison scheme used in the matrix. Only

the operation of two query words on one track is shown. All other tracks oper-

ate' in parallel as indicated. The mask bits from the first digit of all words of

Query Data Compare Store (QDCS) are entered into the mask bit flip-flops for

each word. Then the first data bit from each word is read into its corresponding

compare flip flop. Here, a l is signified by C while a 9 is a U. The first bit of

the field being compared on each track is read Iy the correspondUg disk head

into all compare circuit in the corresponding column. These bits are comrared

"if the mask bit allows it, and the results of the comparium are recorded in all

* comparison circuits of the corresponding rows. Similarly, successive -ows of

bits from the cylinder are compared to successive col4mnm of bits frorM the corn-

pare memory with a new mask every fifth bit. At the end of the field, *U matrix

5-17

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ w • ,i l ,M ,w ,d ••

Head

Driver

QDCS
Output

Marar

C~ Cirui

0Cnw 10 CmpC

C CCrrcuit

D 0 Type

C""

Y'gu 9. Cansl re 1R0ad Compareby1

Circuit

7 DSQC

(Wod) fe 1

compare circuits are notified of the type of compare being attempted on that

particular row by lines from the Query Field Control (QFC). Then the match

bits are set to indicate the success or failure of the comparison of the field.

Figure 10 indicates the operation of the compare circuits of the matrix by

th
detailing the compare circuit of the n row of one column. The circuit is de-

signed for comparison of a sequence of bit pairs. High, low, and equal com-

parisons are possible in the sequence circuit. At the start of a field in the disk,

all match bits in every row of the scanner are set to 0 for no-match; then the

match bit flip-flops corresponding to the rows for the fields to be scanned are

reset to 1, the match condition. The sequence change indicators, flip-flops

A and B, are reset to 0; then the comparison of compare bits and data bits

proceeds as follows. An input of equal bits (CD or CD will have no effect on

the sequence change detection. The first unequal pair in the sequence will set

one of the sequence detector flip-flops as follows:

A = CDB

B = CDA

From thi it can be seen that oace A it set (data high), B can no longer be af-

fected by the sequence. Similarly, B set (data low) disables the setting of A.

Thus, the change detector detects and records the direction of the first inequality

of bit pairs. This enables the compare control lines to properly set the match

bit to the no-match condition if necessary at the end of the field or word. which-

ever Is shorter.

5-19

tI

Reset OR OR

Match (n-1) match

OR Link I &

C

&

ýDý & Reset Data
Reset HisS Low

i I

0 A 110

0

Low (L)

High (H) 7-1-
OR

Equal (E)

OR

No Mosk

Note,

OR

Not IN

OR ON

Moch (n)

Link W

WAIWIA to) MEtch(a)
To Mocti In

Figure 10. Field Compare Matrix Compare MA Link Circuits

5-20

The action of the High, Low, Equal, Not and No Mask lines is obvious. Ex-

cluding the actions of the link circuits, the condition for "match" can be described

by either

M = (AL + BH + E(A + B)) No Mask + NM

or

M = E AB + LB+ HA+ NfAL +BH +E(A +B) No Mask

The Not line in concert with No Mask merely complements the match bit after

other actions have taken place.

When a field is longer than a word of the Query Data Compare (QDCS), the

link mechanism must be used to link successive won of the field. Link I links

successive words, for use when the field is so stored in the QDCS. One function

to be performed by the scanner is the between limits search, for which the

search limit parameters must be stored in alternating words of the QDCS. When

these fields are more than one word long, Link 2 must be used to link successive

woras of each field.

Figure 10 shows the effect of the Link 1 line on the match bits. After all

match bits have been set to their proper vilues at the end of L word, !he Link I

lines (under program control) will transfer the no-match condition from one

match bit (Match n-l), for example, to the next one down (Match (n)). In addition,

If Match (n-i) is in match cond•ilon it will be set to no-match by the Link I line.

This ensures that at the end of the field, only one match bit can be set for that

field. Link 1 required in Lhe between limits search operates in a similar man-

ner, except that the link is from one match bit to another two below the first-for

example from Match (n-I) to Match (n + 1).

5-21

Once the match bits are set for a field, it becomes necessary to read out

the information that the field on some track (or tracks) has matched the scan

parameter in somerow. The read-out mechanism is a read-only memory, each

word of which is read by a pulse gated by tle match bit. The read-out is to, a

set of buss lines connected 'to the Query Field Match Indicator Register position

corresponding to the match-bit column. Each word of the read-only storage will

have the corresponding row address permanently stored in it. Consequently, the

result of a readout trom one position will be the placing of that position's row

address in the proper column of the Query Field Match Indicator Register.

Each column should have a detector for the condition of more than one match

bit set in a coli.inn. Such a detector may be made from logical elerents that

sense the condition of at least two match bits in sequence. This may be found to

be too slow for the matrix envisioned, and it is therefore felt that analog circuits

might be developed for this job.

Query Field Control. The Query Field Control (FC) determines the opera-

tions to be performed on each row of the matrix. Query Field Control can be

broken down into two functions. First, boundaries within QDCS of the fields to

be compared with the currently passing field must be defined, Second, the type

of compare and linking to be performed must be determined.

The general operation is shown in Figure 11. The Field Record Control

Counter (FRCC) is compared associatively with field numbers stored in the CAM

Field Control (CFC). Successful comparison indicates that the field passing the

cylinder scan heads is the field to be compared with the row of QDCS correspond-

ing to the field number and sets the oorresponding match bits in CFC. In turn,

5-22

LL w

0 I 0

5-2

W

• 1,, Ix

I-

|.,0

5-23

9F

the m.:'.dh bits operate through the Link and Word Control to bring up the "match"

line and the Not, Link 1, Link 2 lines as required.

Comparison type is stored in the H (high), L (low), E (equal), and N (not)

registers shown. The registers for storage of linking rommands are located in

the Link and Word Control. If the "match" line comes up and H, L, ' E flip-

flop is set, the corresponding function will be carried out in that row of the

matrix. The Not function will operate if the N flip-flop is set. The Link opera-

tions are completely under control of registers in the Link and Word Control.

The Link and Word Control is shown in more detail in Figure 12. The func-

tion of this control is to ensure the scanning of only those words of QDCS which

actually correspoiiJ to a particular word of the field currently passing the scan-

ner heads. In the Figure, Li and L2 are the registers in which the commands

for Link 1 or Link 2 are stored when the control is first loaded for a scan opera-

tion. The End register must also be loaded to indicate the end of a between

limits scan. The Field Number Match lines determine which field will be active

at any one time. In turn, the step flip-flops determine which word of the field

will be active at any time.

Operation of the circuit ti best explained by example. Assume the field to

be compared is one word long in QDCS row 2. The field number comparison

setv the Field Number Match line of row 2. The Begin Field Reset line resets

all step flip-lops to 1. Then the step flip-flop of row 2 in combination with the

Not and Compare lines will cot up the proper lines to the Comparison Control

registers.

5-24

W&

Void

L-,A I
Iowam.

oil
L L-A

Tem"'..

moth

No

-LOP OP

F..w

T. Mý..

1. dwý

mot

Oil

ON

OR

$we

'so.

-T
16ft-

Figure 12. Link wW Word Control

5-25

If the field to be compared is more than one word long, for instance a word

in row 1 and 2, a linking operation will be required. Link 1 (Li) must be set in

row 1. When Link 1 is set in word 1 the step flip-flop of row 2 will be turned off

so that row 2 will be made inactive. At the end of the comparison of the first

word the link step mechanism wlU turn off the step flip-flop of row 1 and turn

on the step flp-flop of rc v 2. In addition the Link 1 line to the matrix will trans-

fer the match/no-match condition of row I to row 2.

Link 2 operates in the same manner except that the linking is from one row

to two below.

In a between-limits search the fields which bound the search are stored in

alternating words. This simplifies the function so that it can be performed by

two standard link operations and the END operation. The storage of the limit

fields in QDCS is illustrated below:

Word 1: First word of u'fper-bound field

Word 2: First wbrd of lower-bound fielh

Word 3: Second word of upper-bound field

Word 4: Second word of lower-bound field

etc.

The fields must therefore be linked by Link 2. In addition, the last word of the

upper-bound must be linked by a Link 1 to the last word of the lower-bound field.

The last word of the lower-bound ficld must also be marked by a I loaded into the

END flip-flop. As can be seen in Figure 12, this END flip-flop permits a Link 1

which does not shut off the next lower row operation. This operation of the END

flip-flop Is rnly enabled on the last words of the fluid.

:"-26

Query Field Match Indicator. The Query Field Match Indicator Register

QFMIR) is simply a flip-flop register large enough to hold one FCM row address

for each column of the matrix, along with a mask bit for each column. For a

FCM of 40 colums and 128 rows the QFMIR would comprise 320 bits at eight

bits per column. The eighth bit (the mask) will only be set by the multiple match

detector in the FCM. It will be used to ensure that fields which give multiple

matches on a track will be assumed to satisfy all queries.

String Identity Section

Once individual fields have been found to compare with specified parameters,

they must be associated with a particular query, and this function is performed

by the String Identity Section (SIS). The major units of this section are the Record

Control, the Identity Control, the Record Compare Matrix, the Query Identifica-

tion Compare Store, and the Record Match Indicator.

The String Identity Section operation is very eimilar to that of the Field

Compare Section just described. The differences in the two sections are in

detailed operation of the various units. These differences in operation are

necessary in order to allow for the treating of the strings of query identification-

in QICS in the same manner as a single field is treated in the QDCS. In addition,

chaopes in the compare circuits are required to properly treat inputs of mteltiple-

match columns from the FCM.

Roeord Control. The Record Control in this section is modified by the

String Identity Section Read-Out Control (SISROC) to allow inhibiting all string

operations when no parameters are compared to A passing field. This control

5-27

senses the condition of the Query Field Control when a field is passing the heads.

U no comxparison is attermn'e1 cn this field, the SISROC will prevent all operations

of the Ideitity Control. This, of course, inhibits all operations in the RCM and

the WES. As ocon a.ý a field is passed in which at least one comparison is tried,

the String lIdentity Section Read-Out Control will allow the whole SLS section to

resume operatJ-.i, In addition, since the actual comparisons made are only on

one "Characte- per field, comparison control pulses will only be put out at the

end of each field.

Identity Control. Figure 13 shows the general operation nf the Identity

Control (IC). This control has a link I and an Equal register for each row of

the compare circuits of RCM. Both of these registers are loaded when the

query strings are made tip. The purpose of the Equal register is to enable

or inhibit matching on its particular row. The Link 1, as in the Query Field

Control, allows for operations on strings of more characters than are contaired

In a word of the Query Identity Compare Store.

In this section, control variations relating to particular fields selected for

scanning have been made to depend upon an across-the-board decision. If any

comparison was performed on the field in the Field Comparison Section, all

comparisons will be enabled In Whe String Identity Section for this field. If no

comparisons were performed in the Field Comparison Section, no comparisons

will be allowed in the String ItI.nUty Section. it in apparent that the associatively

addressed Field Number Selector present in the QFC Is not required here. In-

stead, the Link and Word Control is driven directly by the String Identity Section

Read-Out Control (SISROC).

5-28

- ~

,- all
I I u

El TU. E

'ii h, w

IL I

iri

The operation of the Link 1 and Word Control is detailed in Figure 14. At

the beginning of the record all the step flip-flops are set to one. Then if no

Link 1 flip-flops are set, the level from the SISROC is gated by a Compare pulse

and the row step flip-flop to the Match Line. If Link 1 is on, the Link 1 register

modifies this operation in the succeeding row by turning off the row's Step flip-

flop. Therefore, there will be no Match output from a row which has Link 1 set

in the row above. Link and Step comes after each complete word hai been read

out of the QICS. In a linked chain, this will turn off the Step flip-flop set for the

previoti row compared and turn on the Step for the next row in line. Thus, in a

linked chain defining a string, only one word of the string will be compared at a

time.

Record Compare Matrix. The Record Compare Matrix (RCM) is simplified

version of the Field Compare Matrix previously explained. The matrix is

designed to compare selected rows of the Query Ideutity Compare Store with

successive results from the Field Compare Matrix. At each row/column inter-

section, comparison and associated "read or,., storage" read-out circuits

perform the required comparison. hI addition, each intersection has a multiple-

match indicator bit associated with it which will be used to indicate that multiple

matches have occurred on a scanned field.

Operation of the comparison circuits is shown in Figure 15. The figure

shows two match bits in, column. The input3 to wne comparison circuit and

the method of setting it are shown. The colum• inputs from the Query Match

Indicator register are called field busses and are shown marked F, F, and NOT

MULTIPLE-MATCH FIELD BUSS. The row inputs from the Query Identity

5-30

Begin
Record
Reset

i _IStep L n

From- I
ea

• Link I Compare -Reod

To Matrix StrtOt con.S• Record

Match

S - -- - - " (Row)1

II

0 Ll" 0 stop

I&L ink . i
To Matrix -

(Rfow 2)

T T]

Figure 14. Link and Word Control for Identity Control

5-31

RESET OR RESET

0 M.lti-Match

WATCH (n-i1) match 0 Record 0a

To Read Out

Link IButs

Field
And String
Buss**

FNo

MMultiple-match
FField

Buss

Buls

To R494 out

Figure 15. Record Compare Matrix Compare and Link Circuits

5-32

Compare Store are the string busses shown marked S, T, and NO MASK BUSS.

Here again, F stands for a I bit in the QW while S stands for a 1 bit in the QICS.

Operation is as follows: At the start of the record, all match bits in rows

containing Query Identity Strings are reset to a I or match condition. All other

match bits in the matrix are set to 0 or no match. The mask for the first QICS

character is read int" the mask register. Then the first bit from the first QICS

"character" is read into the string busses. At the lu•ne time, the QFMIR reads

out the condition of its Multiple Field Match indicator to the proper Multiple

Field Match Buss. In any particular position, a no-match will occur if the

Field And String Busses do not match, there is no masking, there is no multiple

field match from QFMIR and the circuit is enabled by the EQUAL(E) line. If

there is an Indication of a multiple field match on a column, no mismatch will

be recorded in the column, although the probability is high that the field and

string busses are not equal. In this case, all those intersections enabled by E

and No Mask will have their Multi-Match Indicator set.

Similarly, the rest of the word of QICS is compared with a new mask for

every "chlacter." Note that, contrary to the requirements for two masks per

eight-bit character in the FCM, only one new mask is needed per "character"

in the RCM. This is because the FCM is set up to handle both "packed" (four

bits per digit) decimal and unpacked eight-bit BCD, while the RtCM only handles

binary (row address) "characters."

When the ward is finished, if the string is longer than a word, the Link I

operation transfer& all No-Match conditions down one row. This next row is

then enabled by E while the row just completed is set to No-Match and inhibited

5-33

by disabling its E line. Comparison then continues until the end of the record

is reached.

When the end of record is reached, the contents of the Read-Only-Storage

Registers associated with each row/column intersection in which a match bit is

set are read into the Record Motch Indicator (RMI). In addition, the Multiple

Ma~ch Bits of any columni which has at least one match bit set at the end of the

record will be transf;-red to the RMI. At this point, the results. n the Record

Match Indicator define the records to be read out from this angular positior and

associate each record with the query that it answers.

Query Identification Compare Store. The Query Identification Compare Store

operates very much like the QDCS previously described. The only difference i-

in the control of readout. As previously explained, the mask is only read out

to the mask register once per "character." An additional feature is designed to

save storage in QICS. Suppose that the identity strings of two queries were the

following representing a query on a record of 11 fields:

In 1 11

RS 1 2 3 4 5 6 7 8 9 10 11

Name

A 2 5 8MM M 7M

B 1 3 M iM 9M M h M

5-34

|''P

M stands for masked out "characters." In such a case It would be a waste of

space in QICS to gtore the full strings. Instead the strings should he stored

as follows:

\ Columns

QICS 1 2 3 4

Name

A 2 5 7 8

B 1 3 M 9

leaving out the completely masked characters.

Such storage of the strings is made possible by the String Identity Section

Read-Out Control (SISROC). As previously stated, this control inhibits all string

cperations when no parameters are compared to a passing field. Thus, irrele-

vant fields will have pasft-d by without being tested. In the second example

strings shown, the String Identity Section would pause between columns 2 and 3

and from column 4 to the end of the record.

Record Match Indicator. The Record Match Indicator iV identical in form

and function to the Query Field Match Indicator and needs no further description

here.

Data Transfer

Once the scan hu found records to read out the actual data must be trans-

ferred to the central processor memory. Recall that the read/write heads are

positioned some distance around the cylipier from the scanner heads, The'

5-35

follow the scanner heads by at least the maximun nuimber (,f characters that a

physical record is ever expected to havc (assumed 1000 in this case). To

accomplish reade'it under control of the scanner, a record must Ve kept of the

channels to be read beginning with each angular position at which a set of

records starts. This record keeping is done in the APS/STATUS/TAG Store.

This Store is a conventional word-organized memory. If organized as

shown on the basis of two words per eutiy, its maximum size wol,,d be:

maximum character capacity of a track2x

number of characters in smallest record allowed

When the scanner finds a position where at least one record required is

stored, it makes an entry in the APS/STATUS/TAG store as follows: The

angular position where reading should start is kept in the Angu1lar Position

Store (APS). The channels to be read starting at that position are marked by

bits in the Status Store (SS) which has one bit within each register for every

channel. For each APS register there is also a corresponding register of tags

in the Tag Store which are used to record the contents of the RMI. In Figure 8,

five tags per APS v: re assumed as an illustration. In this tag register, the

tags are stored corresponding to up to five tracks to oe read fromi the angular

position stor.d in t.he APS of the entry, and it is also assumed that five data

channels are available to the main processor memory.

Normally, the number of records marked at a single APS will not exceed

five. In this case, a single revolution of the cylinder will suftice to read all

relevant records into memory.

5 _303

Main memory may be too fuli to take all records found in a single revolution

or there may be too many records found (more than five) at one angular position,

In this case, readout may be conducted by the computer as follows: Un the first

revolution of the cylinder, the APS and its complete Status Register and a maxi-

mum of five Tag positions per APS will be stored in an entry. Tags stored will

always be those corresponding to the left-most group of set status hits. Any or

all of the five channels with tags may be read out on request of the computer.

When the corresponding track is read out, the status bits will be reset to 0 and

cannot be set again until no more status bits remain set. On a second revolu-

tion, tags generated by a second scan will be read into- the ta'g register for up

to five of the leftmost status bits remaining set. Again, reset of status bits

•ill occur on read out. For example, suppose that at angular position 300 a

group of seven records were to be read out. These records have tags here de-

signated as A., C, F, I, J, L and P. They are located on tracks 1, 2, 5, 10,

15, 20 respectively. The complete entry in the store after the first scan would be:

APS: 300

SS: has 1's in bit positions 1, 2, 5, 7, 10, 15 and 20
and O's everywhere else

TAGS: A, C, F, I, J.

T'4e fiLst five records wou.1 be repd rut and the first five status bits reset.

After a second scan the entry in the store would be:

APS: 300

85: has l's in bit positions 15 and 20 and O's everywhere else

TAGS: L, P

These last two records would be read out on this revolution.

5-37

I

A record is kept to ir `-'ate when there arce more rc,.ords to i, read, ýýnd

scanning of the cylinder will continue ntili the last record is read. At this time,

scanning can be initiated on the next cylinder.

Writing is done similarly. Empty spaces are found through one revolution.

As they are found, tags are inserted in the Tag Store. When the write heads

come to the proper position, the record is written, the Status is reset, and the

computer is informed of the action.

Each tag will be made up oi t;LC row address from the RCM along with a tag

number (I to 5). Under normal circumstances, the tag number will be irrel-

levant. But, when data is transferred which cannot be associated with one string

(multiple matches) the tag number will be used to store the data in a particular

place in memory. Thus, if two records from two tracks should be indeterminate

simultaneously they will retain ,mique identifications.

Compare Controls

A summary of compare controls is given belv,,. Tkz ncrmal read/w-ite

control instructions are not given. The underlined letters correspond to the

flip-flops in which the commands are stored as shown in Figures 11 and 12.

Equal Compare: Exact match between track and QDCS fields on all characters

compared in this row sets the Match bit at the intersection

of this row and the track(s).

High Compare: If track data field characters compared a. : greater than

corrcapp.nding characters in QDCS, the Match bit will be

set at the intersection of this row and the track(s).

5-38

Low Compare: If track data field characters comparced are less than

corresponding characters in QDCS. the Match .it will be

set at the intersection of this row and the track(s).

Link 1: Sets the Match bit of the next lower row to No Match if

Match bit of this row is No Match, otherwise does not

change condition of next Match bit. Prevents matching on

all succeeding rows up to first row with no Link 1 preceding

it. Therefore, last word of a field must not have link 1

set. As words of a field are passed, the succeeding Link 1

program gates are successively opened, while preceding

Link 1 gates are close.. This allows one word at a time

of a field to be compared.

Link 2: Sets the match bit of the second following row to No Match

if Match bit of this row is No Match, othe-wise does not

change condition of next Match bit. Prevents matching on

a!1 words of a field except that being presently nased.

Not: Complements the Match bits of the row which have been

set up by High, Low or Equal compare. This gives the

functions Not High, Not Low, or Not Equal, respectively.

"Not" is meaningless %ithout one and only one of the

comparison instructions.

END: The end of the field of the lower stored parameterof

boundary parameter fields in a between-limits sean is

indicated by the END command.

5-39

EXAMPLE PROBLEM

Specifying an example file, the following discussion compares the operation

times required to process a given number of individual transactions on both a

conventional machine with standard disk storage and the file processor just

described. Comparisons are also made using two slightly different file organiza-

tions to point out some of the advantages of the file processor.

In its upper and lower parts, Table XV describes the access models for both

the associative and conventional machines reppectively. The models typify a

number of operations which will be performed in the general process of reading

or writing data, and the times associated with each operation. Each operation

is identified by a number or symbol. These symbols will be used later in the

Operation Tables to explain and time the query update functions. ;i Table XV.

the operations described are almost self-explanatory. The term Random Access

implies that the access arm skips over some random number of cylinders before

it settles down to actually read data. The term Sequential Access implies that

the arm .,c from onp ,ylinder to the next in succession. The term Record

Space means just that: the associative machine is able to in-,rt data in a given

space without having to rewrite any of the rest of the track.

The times given are in terms of "access times." One access time is

defined as the time required for one revolution of the disk in question, and

this time is assumed the same for both disk systems considered. In the

Associative section of Table XV, the times are somewhat lower than the sum

of operation times to do comparable functions in the Conventional Mpchine section.

5-40

II

The rcason for this is that the associative machine is usually looking for several

records at once, while the conventional machine is always looking for some

specific record. The time given for sequential readout of records in the asso-

ciative machine is two accesses per cylinder read, since in these problems no

more than one revolution will be needed to read out all records selected from a

cylinder.

What might be considered a typical Activities File is defined by Table XVI

as the Commercial Vehicle Activities File. This file will be used in both

examples presented. It is a file of 270,000 logical records, each of which is

assumed to have one fixed and, on the average, five periodic groups. These

groups all exist as separate physical records; all are chained and indexed as

explained later in each example.

In the two examples which follow, 10,000 transactions will be processed

against this file. These transactions are described in Table XVII where the

update transactions are described for both examples in the upper section, and

the queries, which differ for examples 1 and 2, are described in the lower

sections. In the table, the perceniages givcn rzfer to the mix of types among

updates alone and among types of queries Alone. The intermix of percent

query and update will be given in the individual problem results.

The record format of the file for the first example is presented in Figure 16.

The file is organized in two sections: the fixed groups of all records are stored

as one set of cylinders, the periodics on another. In a given logical record, the

logical connection between fixed and periodic groups and between periodics of the

same logical records is an address chain which includes the ICC number and

5-41

171 171117
CIS

Uu

5-42

other identification characters (explained below). The chain address in the

fixed group refers to the last stored periodic group of the logical record, Each

periidic is chained to t!he periodic immediatety preceding it in the storing

chronology of the logical record. In addition, each periodic is chained to the

header of the record.

The fixed groups are in order by "ICC numnher", the periodics by "location".

Only two indexes are kept, though in the two machines the indexes are to different

levels. The indexes are to the ICC numbers of the fixed group and to the loca-

tions of the periodics.

If the ICC number is given, the general procedure for reading a complete

record will be to find the proper fixed group by the ICC number index. This

fixed group will be accessed, and the forward chain address will then be used to

access and read the last-stored periodic group. Using the back chaining of

periodic groups, the machine can then read the next periodic in the chain. The

process continues until the end of the chain is reached.

The specific record parameters for the organization used by the associative

processor in both examples are shown in Table XVIII. The addressing para-

meters shown in the table are given in cumulative form. For instance, the

chain address in the fixed group referring to the corresponding periodic group

chain will comprise the ICC number, tw,) characters of cylinder information,

and the soquence character-nine characters in all.

The -,reeffc record armsietarir for the file organizatiop knsed by the con-

ventional machine In Example 1 are shown in Table XLX. This table 15 self-

explanatory. The differenoes in addressing, which seem comparatively minor,

5-43

are required by the greater degree of address definition neeaed in the conventional

machine. It should be noted that this fine- definition is a definite disadvantage in

the update procedure, since it will require more update in operations for

maintenance.

Observation of the index portion of Tables XVIII and XIX will bring out the

following differences. In the associative machine, the indexing is only to the

cylinder level. In the conventional machine, indexing is to the track level by a

combination of indexes. The cylinder index allows quick access to the cylinder

on which the record is located; then a track index stored nn the same cylinder

as the recora auiows quick access to the. correct track. This combination of

indexes is used to give quick access to a track during retrieval, but at the same

time to minimize random access arm motion which might otherw'se be required

during updat(: of a track index stored on a special cylinder.

In the problem examples, two assumptions were made. No cylinder index

updating was required. On the other hand, record indexes were always updated

when changes to records were made.

In Table XVII, the query and update functions to be performed in the first

example were specified. In Table XX, the actual operations required of the

associative machine in the performance of any one function is specified. To

understand the table symbols, reference should be made to the -ccess model

for the associative machine specified in Table XV. The operation numbers

specified in Table XV are used to define the operations required to perform a

I-4

function as specified in Table XX. For instance, Table XX shows that the

function ADD a RECORD requires the following operations:

Operation Number Operation

3. Random Access and Read Complete

1. Random Access and Write Into Empty Record Space

1. Repeat 1 Above

;or a total time for the function of 16.45 accesses. When a particular operation

is to be repeated n times in a table entry, tht symbol fur the operation is followed

by (n). An example of this occurs in Query Type 5 where 8(123) implies that opera-

tion 8 is repeated 123 times. Repetition cf a 'et of oper.tions is denoted by enclosing

the set in parenthesis followed by the receptition number in parenthesis.

Table XXI specified the conventional machine operations to be performed

,r each query and update function of Example 1. The table in conjunction with

Table XV is self-explanatory.

The results of Example 1 are given in Tables XXII and XXIII. In the upper

part of these tables th~e total timeL fur each type of transaction are given per

10,000 transactions. For instance, of 10,000 total updates of which 1666 trans-

actions or 16.66% were Type 1, the total time taken for those updates would

be 27 x 103 access times. In the lower part of the tables t'*e 10,000 transactions

are broken dcwn to give total transaction time as a iuncttbn of the percent of the

toatl which constitutes update time. In addition, Table XX1I giver ', ratio of the

comparative performance of the two machines. The performance ratio is defined

Conventional ifachine Access Time

Assoclative Machine Access Time

5-45

In Figure 17 the same results are shown in graphical form. Note that the left-

hand scale for associative machine times Is scaled down from the right-hand

scale for the conventional machine by a factor of 5. The ratio scale is in the

center.

A study of these results point. to the great advantage of the associative

processor when any appreciable scanning is required in queries. For this

reason Examp'e 2 -,.,-s prepared. Example 2 is quite similar to Example 1

except that the file organiza t ion, as shown in Figure 18, for the conventional

machine has been changed to allow for cross-chaining by "Owner" in the fixed

groups and by "Route Entered" in the periodics. Cross-chaining creates chains

by subjects which span severdl of the normal file logical records. Indexes to

the cross-chain entry points are also provided. To get to an entry by cross-

chain, therefore, the cross-chain index must be accessed to find the first record

in the chain. Then the first chain record is accessed and scanned. From this

point, successive records in the chain are accessed until the proper record is

found. In this example no particular order is maintained in the v- .

In Table XXIV the parameters for the conventional machine file oa gav izatIt ns

are shown. Table XXV shows the conventional machine operations requir ,.' ii

the Example 2 functlorns, and Table XXVI shows the conventional machine results

on 10,000 transactions. In addition, the results of comparison to the associative

machine results of Table XXIII are ahown in ratio form. The results are also

shown graphically in Figure 19.

Examination of the results clearly sho w's the advantage of the file precessor

as a function of the amount of scanning required on queries. In the two examples.

5-46

400o0

3500

30000

25000

4600

4200
20000

3800 Comý*nt~onol
S8 Time in 34

340 Raio second inter- oat

34000

3000

2600

ls ~Associative |12i

2000 to k 10000

1600
Time in 34

1200Vitf'vali

400

C0
25 so 75 too

SUpdatee

Figure 17. Results of 10K Transactions Against a File of 270K Logical Records

5-47

- Nt. rf~ae

k

0 11
0 0.

. E

Ic r
TI I

.1 U

i:14 0

5-48

consider the speed advantage of the associative machine in the case of queries

only. The advantage gain of the associative machine from 2.2 in Example 2

to 16.8 in Example I is almost wholly a result of an increase in scanning re-

quired in 20% of the queries.

It is further evident that the queries considered were weighted in favor of

queries mentioning the ICC number and locations, the keys which were indexed

and about which the file was organized. That is, 80% of the queries mentioned

an indexed field. Since this percentage of simple queries appears to be a

somewhat high, it can be argued that the figures of merit in the second example

should be closer to 3- or-4 to 1 in favor of the associative machine.

Another point which should be pointed out is that the transactions in the

examples were processed on a one-at-a-time basis. The associative machine's

multiple input capability was not used to great advantage. As a matter of fact,

the processing as stated could have been done in a ecanner of at most 16 six-

character words in QDCS and 2 four-character words in QICS. It is felt that

more realistic use of the scanner would considerably increase the speed gain

of the associative machine.

DISCUSSION AND RECOMMENDATIONS

A storage and retrieval system for formatted files in intelligence applica-

tions must meet stringent requirements for capacity, speed, and flexibility.

Consider how the file storage device described meets these requirements.

The device has a high storage capacity. Fitted on the IBM 1302 Disk

Storage Unit, for instance, the system could store 180 million characters. Or,

5-49

5200

4800

44OO

4000

Time in
34 seconds 3600

intervals

3200

2800

2400

1000

1600 4

1200 3 ratio: C

iA

0 0
0 25 50 75 100

S Update

Figure 19, Results of 10K Trrusactions Agninst n 270K i.ogicad File

if the system were fitted on a disk system with removable disks the storage

areas is, for all intents and purposes, limitless. Another way in which this

device could be used is as a buffer for other devices which could be read and

written in parallel. As such, the capacity is limited only by the storage medium

buffered.

Storage and retrieval speeds of the scanner are high. They depend pri-

marily upon the speed of the storage medium past the heads and upon the number

t€ tracks which can be read at once. Even with the very small scanner assumed

in the examples, speeds of storage and retrieval were increased over those of

present-day disk storage systems by factors of from 2 to 16, and possibilities

for even greater speed exist in different organization and use of storage.

The processor has great flexibility both in the data it can handlve arid in the

operations it can perform. The data is somewhat restricted in that it must be

stored in parallel field . on fixed-length physical records. But such records

can be logically joined to form quite complicated variable-length logical records

in a several ways. The linking features allow fields of any length up to the

maximum size record or to the maximum number of characters in QD(,C,.

The device is also flexible in its logical abilities. The logical connectives

AND, OR, and NOT, along with HIGH, LOW, EQUAL and BETWEEN LIMITS

compares, furnish capabllities to handle complicated logical searches expressed

in disjunctive normal forz,. If the query contains parameters which cannot be

so expressed, thus resulting in multiple matches on a track record, all records 1

which cannot be resolved by the simple scanner can be read into memory where

they can be further analyzed.

5 -51

The processor is well able to handle inputs on an individual basis or In

bat(thed form. The amount of batchIng possible depends upon the number of rows

In the Field Compare and String Identity Sections.

The most important feature of the design is its independence from the CPU

while scanning. This will save a good deal of CPU time, which can be used for

wncrc coinpiicated types of processing than simple file scanning.

The unit is comparatively simple in concept and appears simple to imple-

rnez~1. R~ utnL, LC 1-uilt in modular form to handle varying storage, requirements.

No obvious circuit timing limitations have been found, and the timing of the

comparisons and string identification do not change appreciably as more equip-

ment-such as more disks and scanner heads-is added. Electronically, the

timing for the complete compare matrix is essentially the same as for one

compare circuit. Should the system require expansion, no timing problems due

to cascaded circuit delays would bet~ume evident. Equipment has already beer

built to read/write in parallel on 40 disk tracks at a time, and there should be

little problem in building at least a small scale device to operate on a present-

day large-scale computer.

In conclusion, the design presented seems well suited to the storage and

retrieval of formatted files on an economical medium. Its added cost seems

little enough to pay for the large gain in performance over conventional disk

storage. It is therefore recommended that a small system of this sort be

further deftned and, if it still seems feasible, built in prototpe form.

5412

Table XV. ACCESS MODELS

Associative Machine

Average
Operation Operation Time in

Accesses

I Random Access Write into Empty 5.35 a
Record Space

"2 Random Access Insert in full 0.75 a
Record Space

3 Random Access Read Complete 5.75 a

4 Random Access Read Chain Addv 5.50 a

5 Sequential Access Write into 2.35 a
Empty Record Space

6 Sequential Access Replace full 3.75 a
Record Space

7 Sequential Access Read Complete 2.75 a

8 Sequential Read Out of Records Z. 0/cyl.

Conventional Machine

AverageOperation Operation Time in
Symbol Accesses

R Random Access Motion 5.0
SSR Successive Reads on Same Cylinder 0.5

Reading by Record

SSRI Successive Reads on Same Cylinder 1.0
Reading Complete Track

SSW Successive Write on Same Cylinder 0.5
Record Mode

SSRT Read Records from Same Track 1.0/trackread

S Access Next Successive Cylinder 2.0

5-63

Table XVI. COMMERCIAL VEHICLE ACTIVITIES FILE

Fixed Fields Number Of
Field Name Number Of Type Different Meaning

Char. Packed Values

License 7 Alpha 25000 License number

State 5 Alpha 50 Abbreviation of License
state

ICr number 5-1/2 Num 270K ICC registration number

Company 18 Alpha 5000 Owner's name

Company number 7 Alpha 1000 Company vehicle number

Type 9 Alpha 100 Type - Truck, taxi, etc.

Make 9 Alpha 40 Make (Chevy, Ford, etc.)

Empty Wt. 2-1/2 Num 180 Expressed in pounds

Passenger Cap. 1-1/2 Num 200 Number paying passen-
gers possible

Freight Cap. 3 Num 1000 Expressed in pounds

67

Periodic Fields

Time 10 Y/M/D 365 Time

Observer 5 Alpha-Num 1000 Observe code

Location I 18 Alpha-Num 5000 Road & state observers
station

Location 2 2-1/2 Num 20 Number
(St. No.)

Type Rep 3 Alpha 10 Radio, Message, Talk
to Driver

5-54

Table Xv'I. COMMERCIAL VEHI(CLE ACTIVITIES FILE (Cont'd)

Fixed Filtds Number Of

Field Name Number Of Type Different Meaning
Char. Packed Values

Direction 3 Alpha 16 Compass points

Speed 2-1/2 Num Co Miles per hour

Reason 3 Alpha 10 Codes for stops

Route (from) 18 Alpha-Num 500 Name or route left

Route (to) 18 Alpha-Num 500 Name or number of route
entered

Freight Inv 3 Num 1000 Express in pounds

Passenger Inv 1-1/2 Ntum 200 Actual cost

Freight 1-1/2 Num 4 Quarters full

Passenger Est 1-1/2 Num 4 Quarters full

Type Cargo 3 Alpha 1000 Code for general type

91

5-65

Table XVII. TRANSACTION MODEL

Updates: Examples 1 and 2

Type Action Percent

1. Add one record 16.6
2. Delete one record 16.6
3. Add one periodic 66.8

Queries: Example 1

Type Query

1. Given ICC range, print fixed groups 5
2. Given ICC number, print fixed groups 5
3. Given ICC number, print last periodtc group 10
4. Given ICC number, print itinerary 10
5. Search entire fixed portion of file 10
6. Given two locations, print "from - to" groups 10
7. Given location, print all fixed groups 20
8. Given location, print all periodics 209. Search entire periodic portion of file 20

Queries: Example 2

1-4 Same as Example 1 30
5. Search on Owner Chain, find 325 records 10
6-8 Same as Example 1 50
9. Search on Route Chain, find 500 records 10

IP

$ -6

Table XVIII. ASSOCIATIVE MACHINE FILE ORG,%NIZATION

Example 1

Type Field Length

Fixed
Group: Record Address: ICC number 6 char

Forward Chain Address: ICC number + Cylinder + 2 char

Current L.ast-In-Sequency Indicator 1 char

Data. 61 char

Tottal 70

Periodic
Grou"'. Record Address! ICC ntimber + Sequence Indicator 7 char

Back Chain to Header: ICC number + Cylinder +
Track 2 char

Back Chain to Periodic: ICC number + Sequence

Indicator + Cylinder 3 char

Data 85 char

Total 97

Average

Reuord: Fixed Group + Five Periodic Groups 565 char

Indexes Fixed Cylinder Index: to ICC number 1 Track

Periodic Cylinder Index to Lowest Location an
Cylinder a Track

Totals: Fixed Data and Track Index 130 Cylinders

Periodic Data and Track Index 635 Cylinders

i 5-5I

S... .. , , , ,5.. .

Table XIX. CONVENTIONAL MACHINE FILE ORGANIZATION

Example 1

Type Field Length

Fixed
Group: Record Address: ICC number 6 char

Forward Chdn Address: ICC number + Cylinder
+ Track + Sequence 4 char

Current Last-In-Sequence Indicator 1 char

Data 61 char

Total 72 char

Periodic
Group: Record Addreris: ICC number + Sequence Indicator 7 char

Back Chain to Header: IXC number + Cylinder
+ Track 3 char

Back Chain go Periodic: ICC number + Sequence
Indicator + Cylinder + Track 4 char

Data 91 char

Total 106 char

Average

Record: Fixed Group + Five Periodic Groups 597 char
iS

Indmzs: Fixed Cylinder Index: to ICC mumber I Track

Find Track Index to ICC number: I Track on
Each Cylinder of Fixed Croupe 125 Tracks

Periodic Cylinder index to Lowest LocAlon
am Cylinder 6 Tracks

Periodic Track index on Lsrps on Each
Track or to Overflow Track 910 Tracks

-- 548

II

Table XIX. CONVENTIONAL MACHINE FILE ORGANIZATION (Cont'd)

Example 1

Type Field Length

Totals: Fixed Data and Track Index 125 Cylinders

Periodic Data and Track Index 910 Cylinders

9

&--89

a ________

Table XX. ASSOCIATIVE MACHINE OPERATIONS

Examples 1 and 2

Function Operatiors Times in
From Access Model Accesses

Add Record: 3, 1, 1, 16.45

Add Periodic: 3, 2, 1, 17.85

Delete Record: 3, 1, 1, 1, 1 27.15

Query Type 1: 3, 3, 8 13.50

Query Type 2: 3, 3 11.50

Query Type 3: 3, 4, 3 17.00

Query Type 4: 3, 3, 3,3, 3 28.75

Query Type 5: 3, 8(123) 251.75

Query Type 6: 3, 3, 9, 3, 8 21.25

Query Type 7: 3, 3, 8 13.5

Query Type 9: 3, 8(860) 1725.75

5-40

i .1

Table XXI. CONVENTIONAL MACHINE OPERATIONS

Example 1

, Operations from Times in
Access Model Accesses

Add Record: R, SSR1, R, SSR, R, SSR,
SSW, R, SSW 25.0

Add Periodic
Group: R, SSRi, SSRi, R, SSR, SSR,

R, SSR, SSW, R, SSW 25.5

Delete a Record: R, SSRI, R, SSRI, SSR, SSW, R,
(R, SSR, SSW, SSR SSW) (2),
(R, SSR) (2) 36.0

Query Type 1: R, SSR, R, SSRt,SSRT 18.5

Query Type 2: R, SSRi, R, PSRI, SSR 12,5

Query Type 3: R, SSR1, R, SSR, SSR RR, SS 18.0

Query Type 4: R, SSRi, R, SSUR, SSR,(R. SSR, SSR) (2), (R. SSR) ,'j)

Query Type 5: R, SSRI. R, (SSR(40),S) (125) 5135.5

Query Type 6: R, SSRi, R, SSRt (13), R, SSRt(13) 42.0

Query Type 7: R, SSRI, R, SSR, SSR, R, SSRi,
(S, SSRI) (119) 451.5

Query Type 8: R, SURI, R, SBR1, 88Rt (300) 24.0

Query Type 9: - R, 88R, It. (SsE(40), 8) (910) 37321.0

8.41

S i


~~~C Cl Cl C C

0~~~ 6~000

X X ~ 14 1 IC - - -

o 4.4 CI C u, 0 0O0t

E-4 C

Cl - . Cl C MaC

5-42 C



V3 "o 90 V)V 0 1

to on 0 0 0 a ~ t. 9 0 0 t-
.4 0 ý t - - - o$ 0 04 .

- 4 g - 0)

K K 0 4 t- K KK

t- -

-N

LM to c L t n Ln 0- 0

W-4 04 0 0 0 4 0 C

0 0 '

NN

-4 --4



Table XXIV. CONVENTIONAL MACHINE FILE ORGANIZATION

Example 2

Type Field Length

Fixed
Group: Record Address: ICC number 6 char

Forward Chain Address: ICC number + Cylinder
+ Track + Sequence 4 char

Current Last-Tn-Sequence Indicator 1 char

Cross Chain 20 char

Data 61 char

Total 92 char

Average Cross Chain Length 54 records

Periodic
Group: Rceord Address: ICC number + Sequence Indicator 7 char

Back Chain to header: ICC number + Cylinder
+ Track 3 char

Back Chain to Periodic: ICC number + Sequence

Indicator + Cylinder + Track 4 char

Cross Chain Route Entered 20 char

Data 91 char

Total 125 char

Average Cross Chain Length 540 records

Average
Logical
Record: Fixed Group + Five Periodic Groups 717 char

Indexes:

5.64



Table XXIV. CONVENTIONAL MACHINE FILE ORGANIZATION (Cont'd)

Example 2

Type Field Length

Indexes: Fixed Cylinder Index: to ICC number 1 Track

Fixed Track Index to ICC number: 1 Track on
Each Cylinder of Fixed Groups 159 Tracks

Fixed Owner Index to Record Level (last entry) 13 Tracks

Periodic Cylinder Indextto Lowest Location on
Cylinder 6 Tracks

Periodic Track Index to Largest on Each Track 'or
to Overflow Track 1078 Tracks

Last Route Index to Record Level 4 Tracks

Totals: Fixed Data and Track Index Periodic Data and
Track Index 159 Cylinders

Periodic Data and Track Inilex 1078 Cylinders

I

5-65



TABLE XXV. CONVENTIONAL MACHINE OPERATIONS

Example 2

Function Operations from Times in
Access Model Accesses

Add Record: R, SSRI, SSRi, SSRi, SSRi, R, SSRi, R, 51.5
SSR, SSW, R, SSR, SSW, R, SSR, SSW,
R, SSW, R, SSW, SSW

Add a R, SSRI, SSRi, SSRI, R, SSRi, SSR, R, 46.0
Periodic: SSRI, SSW, R, SSR, SSR, R, SSR, R,

SSR, R, SSR, SSR,

Delete a R, SSRi, R, SSRi, SSR, SSW, R, SSR, 96.0
Ree'ord: SSW, R, SSR, SSW, (R, SSR, SSW, SSR,

SSW) (2) R, SSR, SSW, (R, SSR, SSW)(9)

Query Type 1: Same as In example 1 18.5

Query Type 2: Same as in example 1 12.5

Query Type 3: Same as in example 1 18

Query Type 4: Same as in example 1 30.5

Query Type 5: R, SSRt(3), (R, SSR) (325) 1793.5

Query Type 6. Same as in example 1 42.5

Query Type 7: Same as in example 1 451.5

Query Type 8: Same as in example 1 24.0

Qucry Type 9: R, SSR, (R, SSR) (500) 2756.5

5-66



C 0 * 0 N N N C

4: Nl fa 6D .4 N
CD~~ 0 CI -a ; d

*~O -P 010m, 0

04* to 0 0 ;0t-0

to to4

4: m

00 0 0

il)C f- CID alif 0 M~ 0

N N S. N tLM t'-

ao - 0 0 N 0 .30.

C) 0 0 0.8 ~ -- -

z 440 .Nto

44 ~ 2 N N-N7



SECTION VI

PATTERN C LABSIFIC ATION

PROBLEM STATEME' IT

A pattern is defined to be a row vector of dimension 1 x t (t umspeclfled)

whose components are real numbers. One subclass is singled out for specla

attention-those vectors whose components are eitber zeroes or ones.

This definition of a pattern has been adopted because it includes as a sp A

case those patterns which are defined as matrix or tabular arrays. If a pa

is given as a matrix composed of, say, m rows and n columns, then such a

matrix can be rewritten as a row vector of dimension I x (ma) by placing th

rows (or the columns) consecutively from left to right. Thus only row vet

need be considered.

The chief goals of pattern analysis are:

1. To cluster the patterns Into simila group.

2. To assign new patterns to the appropriate groups by measuring Uw
similarity between the patterns and the groups.

In order to achieve these goals, it is evident that several basic probae

must be solved.

e The concept of similarity of patterns mst be det" as well am V
concept of a pattern cluser or pattern go

l Teaniques must be developed for measuring t simflarity btwas wo
patterns and the similarity betwe a patern and a olatAr of a&

- Decision rules must be formulated for assignn new petras to
appropriate clusters.

- ti



CHARACTERISTICS C PROBLEM

Having defined a pattern as a vector, it becomes clear that the significance

of a pattern depends on either:

". The magnitude of the entries in the pattern

b. The sequence in which a critical set of values occur

c. A combxiation of (a) and (b), i.e., when magnitude and utequence
must be considered together.

It will 3implify the piesentatlon If (a), (b), and (c) are didcussed separately.

With respect to (a), a further simplification willbe made. "Initially only v*otore

of zeroes and ones will be examined. ThWs may be denoted as case (a. 1).

For (a. 1) then, the problem may be expressed as follows: given•a set of

p patterns, each of which Is a 1 x t vector of zeroes and ones, find meanagful

relationships among the patterns. Us, illy, t'mesningful relationships" will

mean: "cluster the patterns into simil: r groupts".

At this point, it will be useful to Inrxodukce some notation and definitions.

Assume that the datterns have been aligned one under the otiwr, thereby form-

ing a p x t matrix, R = (rl) where i = 1, .... p and J - 1, .. ,t.

Let r 1 is pattern I has a one in position j.

Let -tj = 0 otherwise.

SDefine R, - rij. R, is the ber of ones In patern i. will be called the
J-1

surn fun•itnon lor pattern I.

Define Ai = rij rkj. Ak is the number of pooltltcs in piter l eand k
=-1

"•kch have matching ones. It ts evlent that the product r J r is 0 oMly

when both rIj and rkj are me. 9amming over j thus uomts the number of

plsces where patterns I and k have :orr-sponding otes. AIk IS the intersel•ton

function for patter'nt I and k.

6.-2



Define Vik = +• R. - Aik Vik i's he number of positions in which there

ir a one in either pattern I or pattern k or both. Vik is tue union or reclusive-or
ik'

menction he patterns I and k.

Define Hik R1 + Rk - 2 Aik. H is known as the Hamming diatance-the

L.-nber of non-matching positions in patterns I and k, i.e., Ifk is the number

of positions in which there is a one in either pattern i or pattern k but not in both.

H. is the exclusive-or function for patterns I and k.

It shovld be noted that all the above functions are concerned with the number

of ones and zerocs In a pattern but not with the arrangement or sequence of ones

and zeroe .,

Returning now to the problem of clustering patterns, it is clear that the

definition of the term '"similar patterns" is the key to tine problem. Previous

work in thAis field has shown •hat the definition 4jf Rimilarity depends heavily on the

particular problem being invistigated. For exmnmpli, in reference (1) be1ow.,

five definitions of similarity are described. Letting Sik denote the measure of

similarity between patterns I and k, then in terms of the notation just defined,

the five measures of similarity described in (1) are:

1. King - Tanimoto:

Sik = AiklVik = Aik/(RI + Rk - Aik).

2- Baxendale:

Sik = Aik~t

3. Kcchen - Wong:

StA 1k
Sik RR

1. Applied Research Program, AIDS, Quarterly Report No. 3, volume I -
Progress Summary, Feb. 28, 1962, IBM Research Center, Yorktowii Heights,
New York.

6-3



4. Luhn - Savage$

S1- Rk

5. Stiles:
l°gl 0t < ik - R1 B -

2
SOk - ti 1

Nk R1 RBk (t-Ri) (t-Rk)

Examination of these five measures of similarity reveals that:

1. They are independent-none is a function of any other

2. Each definition is some combination of the four numbers: t, Ri, Rk and

Aik.

Since Vik and Hik are also expressiole in terms of I, Ri, Rk and Aik, It is

evident that the computation of these four numbers is basic to any pattern analys~s

program. Accordingly, the ability to calculate rapidly the m and the intersec-

tion functions is put forth as a basic requirement.

On the other hand, precisely because these are so many definitions of

similarity, it appears that the computation of the sum and interscotion functions

together with t represerts the extent of basic techniques which will be practical

for a gener.- pattern analysis program. This corncludes the discussion of case

(a. 1).

Turning now to the examination of case (b), it will be useftd onoe again to

limit the discuasion to 0 - 1 vectors. For case (b), the problem of pattern

analysid becomes more .-omplex than for case (a). Not only is the number of

ones significant but in *ddition the Aocation or arrazw!TEA of the ons (and

consequently the arrangement of the zeroes) must be taimn into aoc•wt.

Consider the simple situation depicted in Figure 20 for example. LWt the 8 x 10

matrix be interpreted in the usual way as a 1 x 80 pattern. Tbe, the character 117"

6-4



00000000

00000000

0 0 111100
00100100

00000100

00000100

00000100

OcO00100

00000000
S00000000

Charaoter "7" is deied s ie set of ten oes located in positions 19, 20,

21, 22, 27, 30, 38, 46, 54, 62.

Figure 20. Pattr for the Charactr "7"

6-5

0 0
0 0,



is defined not simply as a set of ten ones but as the set of ten ones ocated in the

specific positions: 19, 20, 21, 22, 27, 30, 38, 46, 54 and 62. It is evident that

the arrangement of ones defines a character. Identical characters are those

whose defining sequences are the same. Further, if two defining arrangements

are such that tk'y have the same number of ones and if all corresponding

sequence positions differ by the same constant, then one sequence represents a

shift left or right, up or down of the character defined by the second sequence.

For example, the sequence 1, 2, 3, 4, 9, 12, 20, 28, 36, 44 differs in eta,

place by 18 from the sequence defining "7". Accordingly, the new sequenc,

represents "7" shifted up two and 'wo places to the left.

In many practical problems, sequences to be compared wil. tiot have thk

same number of ones. In such cases, a useful procedure may be to compare

the longer sequences against the shortest sequenoe of interest, since often the

basic problem is to determine those patterns which contain the shortest sequence

as a subsequence. Consider, for example, pattern A, B and C whi.h are defibad

as twenty position vectors:

A: 10011100101101001011

B: 00000011111001011001

C: 01001001100111010110

Suppose the problem is to find all patterns which contain pattern G as a

subsequence where G is a tea position vector:

G: 1110010110.

Comparison of G with A, B and C shows that G matches positions 4 through 13 of

A, positions 9 through 18 c B and does not match at all with C. (In a computer

with an associative memory capability this matching will probably be most

6-6



easily accomplished by the "match and link right" techniques previously proposed

for the text searciiing and term identification problem.)

In order to speed up the matching process, it is proposed that the data be

compressed by use of the following information preserving data compression

scheme. Let the 0 - I "ector which defines pattern 4 be replaced by another

vector, V(A), whose components are the distances between the consecutive ones

in pattern A. This defines the components of V(A) from the second component

on. To complete the definition, the first component in V(A) will be definr d as the

position of the first "1" in A, i.e., if the first "1" in A occurs at position 3 in A,

the first component in V(A) is 3. For example, the compressed vectors asso-

ciated with patterns A, B, C and G are:

V(A) = 13113212321

V(B) = 711113213

"V(C) =2331311221

V(G) = 111321

It is tmport~nt to note that since the first component of a vector V(P) marks

the position of the first "1" in P, it is therefore possible to reconstruct P given

V(P). Also note that the sum of the components in V(P) which can be denoted as

SV(P) is equal to the position number of the last "1" in P. This fact can be used

to provide a rough error check when forming vector V(P) from pattern P.

If the problem of finding all patterns which contain G as a subsequence is

reworked using the vector patterns, it is clear that the technique of "match and

link right" can again be used. The comparison time will be shorter since the

vectors are shorter. However, in using V(G) instead of G, a problem arises

from the fact that the last oomponent of V(G) refers only to the distance between

6-7



the last two ones in G. The fact that G might have ended in a string of zeroes is

not indicated in V(G). The same is true of V(A), V(B) and V(C). Consequently,

the vector definition for pattern P should be slightly modified so as to indicate

how P ends. The modification is very simple. Let the new final component of

V(P) denoted as LV(P) be the difference between the number of positions in P

and the position of the last one in P. Recalling that the position of the last one

in P is the sum of the components in V(P), excluding LV(P) of course, it is

clear that if pattern P has t positions, then LV(P) = t-SV(P). LV(P) will be zero

if P ends in a one and will be a positive integer otherwise. With this change, the

vectors for A, B, C and G become:

V(A) = 131132123210

V(B) = 7111132130

V(C) =23313112211

V(G) = 1113211

In matching V(G) with the other vectors, a match on first components will

occur provided the first component of V(G) is less than or equal in value to the

component of the other vector with which it is being matched. This follows

because of the fact that the first component simply indicates where in G the

first "1" is located. Note also that the last component, LV(P), matches when-

ever it is strictly less than the component with which it is being compared.

A comparison of V(G) with V(A) shows that V(A) contains the sequence

3113212 in positions 2 through 8. There is perfect agreement between V(G)

and this sequence from the second through the penultimate positions. The first

components mr.atch since 1 is less than 3. Finally the last component of the

subsequence being greater than LV(G), there is agreement in the last place also.

Accordingly, G is a subsequence of A.

6-8



Examination shows that V(B) contains the subsequence 1113213. Since the

last component of this subsequence is larger than LV(G), there is agreement

between the subsequence and V(G).

Finally examination of V(C) shows that the closest matching sequence to

V(G) is 3112211.

In reviewing case (b. 1), it is evident that attempting to find subsequences

which match exactly a given sequence or sequences is only one of several

possible approaches to the problem of determining similarity based on arrange-

ment of ones and zeroes. However this approach appears to be such a basic

procedure that it should be incorporated as a basic tool into any general pattern

analysis program. This concludes the discussion of case (b. 1).

It will be recalled that case (a. 1) considered vectors of zeroes and ones. A

slightly more complex situation will be considered now in which the components

are scaled values. In other words, a component value no longer is simply 0 or 1.

Instead it is a number taken from some range of values. These scaling factors

often are used to quantize non-numeric phenomeka such as shadings (from light

to dark) or distances (from near to far) or weights (light to heavy). Thus, the

vectors are composed of integer components. By adding a constant, if necessary,

to each component, these integer values can always be made strictly positive so

that they all lie In some interval (a, b), where a and b are positive integers. It

will be assumed that this has been done and further it will be assumed that the

interval is from I to N, where N is known.

Case (a. 2) may now be expressed as: "Cluster patterns whose components

are positive integer scaling factors taken from the range I to N." It is evident

that in this case there is an obvious meaning to the notion of distance between

6-9



I
patterns or similarity between patterns. Patterns are similar if the differences

between their respective components are small. For example the vector 71234

is closer to 61234 than it is to 71434 since it differs by 1 in one place from the

first while it differs by 2 in one place from the second. But what about the

distance between 71234 and 62234? Here the difference is one in each of two

places. Clearly the problem is to develop some similarity measure based on the

component differences. Since the components are scale factors, elaborate for-

mulas should not be necessary. A minimum of computat4 in is desired. Note that

case (c) is essentially the same as case (a. 2).

Consequently if the similarity measure is denoted as Sik where I and k refer

to pattern i and k, then Sik will be some function of rij, and rkj.

Examples of such a function are:

a. = S Ir.. - r = the sum of the absolute values of the
ar 3rkj differences.

b. S 2 =E(r 1 4 - rk.) 2 = the square of the Euclidean distance
b = j - rbetween vectors i and k.

c. S3 = max ri - rkj the largest single component distance
j ri I between I and k.

d. The correlation coefficient denoted by r may also be considered a
measure of estimate of the similarity between two patterns.
Recall that the formula for r is:

tYr r kj- r i rkj
JJ j

rr' r 2XV'r2 -k )2 ]1/2

It is clear that r requires much more computation than the other measures.

However, its calculation would be facilitated if the inner product function of two

6-10



vectors could be calculated rapidly, for it is evident that Fa r i may be re-

garded as the inner product of a vector with itself, while r may be con-

sidered as the inner product of a vector with a vector of ones and •=rij rkj

is the regular inner product of I and k. Consequently, the correlation coefficient

may be Interpreted as combination of various inner products.

e. A rather extreme example of a measure is the outer product of
two vectors. In geometric terms, the outer product is a vector
whose length is numerically equal to the area of the parallelogram
formed by the two vectors and whose direction is perpendicular to
the plane of the two vectors. If Yj (y I...... Yt) denotes the
outer product of patterns I and k, ihen an important relation among
the components yj, rij and rkj Is given by the Lagrange Identity:

Yj ~ ri) r~ r2)-(F rnj rk,)2

As in the case of the correlation coefficient, it is interesting to observe that

the right hand side is a combination of various inner products. Again, the need

for an inner product function is indicated.

A third reason for developing inner prodilct function capability l8 that the

Euclidean distance may be expressed in terms of Inner products:

Y r2 + '2._ I ri rk

~(ij-k)- jK

(r- 2 r + r2 -2 rj rkj).

In summary then, analysis of the characteristics of the pattern classification

proL.em leads to recommending the following as design requirements:

1. The ability to calculate rapidly the sum and intersection functions of
0 - 1 type vectors;

2. The ability to find rapidly those subsequences of 0 - 1 type vectors
which match exactly one or more given sequences;

3. The ability to oompute rapidly the inner product functiov of two vectors
having positive integers as components.

Finally it should be remarked that requirement (3) Is most fundamental sino.

(1) and (2) may be regarded as special cases of the inner product function.

6-11



PROCESSOR DESIGN

As the analysis of the patter. finding and classification problem indicates,

the inner-product notion of vector algebra is the basic tool used in the great

majority of the pattern manipulation schemes. This function is computed in

"ordinary" computers by bringing out In sequence each component of the vector

and performing the operations necessary. This is done for each pattern model

against which the incoming pat tern vector is to be matched. The most significant

gain, then, can be made in this area and this design is directed to taking full

advantage of any savings possible in parallel operations in this respect.

The computer which i, depicted in Figure 21 is divided Into three sections.

These are:

1. Program memory and arithmetic-logic unit

2. Main parallel stcre

3. Small parallel store

The program memory is a conventionally organized memory with random

access and sequential instruction read out. Program control branching is avail-

able for program modifications, etc. The arithmetic-logic unit is also conven-

tional in nature and capable of data transfers, arithmetic operations, and other

similar control functions. The memory is logically divided into an instruction

section and a data section. The instruction sqction has registers which are one

half or one quarter as long as those in the data section. The data section registers

are the same length as the m'in and small mnemories, that is, long enough to con.-

tain an eight or ten position vector with integral values. This arrangement may

be obtained via the multiple read out technique of System/360 or by using the

memory cells directly.

6-12



w

C.)

w i 02

02

6-13



The main parallel store is fully associative memory. The usual instructions

for an associative processor apply. A list of such usual instructions may be

found in reference (2), below. There are some edditional instructions described

in Appendix I which apply to this memory. Each register of this memory will

contain, as in the program memory, eight or ten posttimt j. In a1dition, the

registers will carry an eight bit counter wikdih will also bc associatively address-

able. The arithmetic-logic unit will be able to add to the counter directly,

modified by the presence or absence of a match bit. Link bits and match bits

will L>e available to allow for the interconnection of several of these counters

from consecutive registers. By suitable combination o•' link bits one may make

the counter (counters connected) appear as an adder with either end-around

carries or in which carries out the high order position are lŽ't. Accumulation

r-ay oe carried several registers ahead so that sums from various parts of a

vector -nay be accumulated into one register.

The small store is also fully associative but has only a few registers.

whre is an accumulator register associated with each storage position ot this

memory. When the inner product function is performed against the memory, the

resultant sum is accumulated in it. The ordinary associative prooesses apply

to both the storage register and to the casociated accumulator register. All

other of the special instructions apply with the excirption of the Intersect

operator.

The following brief, simple example dumonstrates some cf the oonaideraticna

that will iii:uence the computation of the vi b ous distanon measures.

2. Estrin, G. and Fuller, R.. "Algorithms for Content Addressable Memorie,"
Procee&dlu of the Pacific Computer Conference, Pas¶na, Callfcrnia,

6-14



In the cage of 0-1 vectors, the inner product function yields the clue to

group membership. For example, in the Tanimoto scheme, the measure is

d ~vA -- ; for any threshold value 8, if the requirement is thatdjv) :R+ Rjj.

A must exceed S, then by successively setting A equal to RE and then

to R and sLiving the inequality A"/(R + Rj - A )>S for R i it follows that the

admissible range of values of R is given by:

For this set of values of Rj only those ones are to be taken whose values A are

maximal and the comparison will be among just those. The total number of

comparisoi~s in this case will be greatly reduced being just that number equal

to the number of integers contained in the range sR -I !R/s. The search may

then be further limited by calculation as to the possible values of A that could

possibly cause other values of R to exceed the preciously obtained maximum.

Similar strategies may be used in the case of other measures of distance.

Finally, formulas can be derived for estimate of the performance of the

processor. To be definite, the computation of the inner product function is

considered, first by using the small store and then by using the main store. The

integer case and the 0-1 caee are considered separately.

a. For the integer case, let:

N - number of registers in the small store

T - number of integers per small store register

X - number of patterns

K - number of Integers per pattern

. _ . 6 -1 5



a number of processor machine cycles required for the Integer
inner product function using the small store

b = number of conventional machine cycles required for an accu.-
mulative multiply operation.

Furthermore, let the notation rx] represent an integer K = [X] such that

K - 1 < X sK. Then the number of cycles I required by the processor for the

integer inner product computation Is given by:

a ra X

The number of cycles Ic required lýy a conventional machine for the integer Inner

product computation is given by
I Ic = bKX.

If the cycle time of both machino is a.sumed the samc, and if:

N = 32
T = 10
X = 40
K = 15
a =5
b =5

then the performance ratio R = Ic/1p i
icp

R 3000 - 32.
95

b. For the 0 - 1 case, let:

T - number of bits per conventional register

K - number of bits per pattern

X - number of patterns

6-10



a = number of processor machine cycles required for the 0-1
inner product function using the m&'1n store

b = number of conventional machine cycles required to count the
number of one bits in a register

Then the number of cycles Lprequired by the processor for the 0 - 1 inner

product computation is given by.

L =a

The number of cycles L crequired by a conventional machine for the 0 -1 inner

product computation is:

Lc= (b +1 K

If the cycle time of both machines is assumed the same, and if:

T = 36
K = 120
X = 40
a = 50
b = 5

then the performance ratio R =L L pis:

R=960;19

EXAMPLE PROBLEM

* In order to demonstrate the formation of pattern Musters and the assignment

of patterns to clusters, an experiment was performed using simulated data. The

procedures that would be used in carrying this experiment on a conventional

compu:ýr and on an associative processor were both manually simulated, there-

by yielding a comparison with the number o, operations that would be required

in the conventiotuil computer with the number that would be required in the

6-17



computer having as~ociative feaiUreS. *iincte tl'e experiment 'was manually per-

formed, the patterns were' restrlrtt,' integer- rhis restriction minimized

computational difficuhles ye' still pern,'!x~n a vaiiiP' ,.ulatlon of the general

case since an Integer may be treatc, ab , w vector of aimenslon one by one.

The following sections a throur a f dest . i t-w ate experiment fully:

a - Definitions and notatic.:

b - Decision rules for assigning pa~tterns to clusters

c - Determination of nodal values

d - Experimental procedure

e - Description of pattern data and resulting clusters

f - Conclusions

a. Definitions & Notation

A pattern element (P) is any integer in the range 0 to 99 inclusive,

"i.e. the pattern is a row vector of dimension one by one.

A cluster (C) Is any non-null sW of pattern elements which meets

the rules of membership.

A node (N) of a cluster is that integer which is closest to the

arithmetic mean of the pattern elements of the cluster. (Round

down at the fractional part equal 0. 6).

The ditac d (CP) between a cluster C and a pattern element P

is the absolute value of the difference N-P. where N is the node ~

C. Thus, d (C,P)uINC -PI
b. Decision Rules fr Asgn Ptterna to Clusters

Rule 1. Assign the first P as the first C.

6-18



Rule 2. Assign subsequent P's to Ci whenever d (C P) < K and
d (Cj, P) > K for all j 4 i. K is some cutAff value defined
bythe user.

Rule 3. AssignPtoCiwhend(Ci, P) <d(Cj, P) andd(Ci, P)!K.

Rule 4. AssignPtoCiwhend(Ci, P) = d(C 1 , P) 5 Kandwhen
the number of elements of Ci is less than the number of
elements of C3.

Rule 5. Assign P to Ci and to CI whenever d (Ci, P) = d (C , P)
• K and the number of dlements of Ci equals that ofCj.

Rule 6. Assign P as a nevv C whenever d (Ci, P) > K for all i.

c. Determination of NciIal Values

The node of a cluster will initially equal its first member. The

node will thereafter be the average of the cluster elements whenever

the number of elements in the cluster is congruent to 0 modulo 10.

This yields results which do not significantly differ from those ob-

tained by re-evaluating after the addition of each menmber. A final

determination will be made after the last elements of the data

sample has been assigned.

d. Experimental Procedure

The procedure begins with N1 = P 1 and P1 E C1. N2 will be the

first P1 such that d (C1, Pt) > K. When all P1 have been assigned to

C,, the Nj are re-calculated. As a result of this computation, the

final N may be such that for some Pi C1 , d (CiI Pi) > K. There-

fore, the pattern elements Pi need to be re-evaluated. Further.

since the Ck that are of interest are only those with a number of

elements deviating from and significantly higher than the average

6- 19



number, only those Ck where the number of elements equals or

exceeds the average by at least 20% will be considered. A new

determination is made using just those values as nodal values by

the same assignment algorlthm. A change is made at this time in

the assignment rules:

Rule 1. *Pi ' Cjwhend(Cj, Pi) <K. Whend(C1 j, Pi) <K and

d (C32, P) < K, assign P1 to C and Cj 2.

Rule 2. * Ignore all Pi such that d (Ci , Pi) > K for all J.

This pass is repeated until no further changes occur in the clusters

or their elements. By this technique it is seen that when the true

nodal value falls between two clusters (by chance of ordering the

original pattern), the two clusters will coalesce into one cluster.

e. Description of Pattern Data and Resulting Clusters

For the experiment, 100 simulated pattern values were obtained

from a random normal number table. The 100 numbers are listed

in Table XXVII and are divided into two groups. The first group

was centered about 30 with a standard deviation of 10; the second

group was centered about 60 with a standard deviation of 10. Then

the numbers were scrambled as shown in Table X VIII by the rule:

start with column 1 of this first group and transcribe the number.

If the number is even, continue with the first group. If the number

is odd, take the next number from column 6-- the first column

of the second group. If the number from the second group is

even, continue with the second group. If the number is odd,

take the next number from the first group. Repeat until all

the numbers have been transcribed.

6-20



The experiment was performed three times with K equal to 8, 10

and 12. The results of the first pass are shown in Tables XXIX,

"XXX and XXXI while the results for the second pass are shown in

Tables XXXII, XXXIII and XXXIV. Seven clusters were formed

for pass one at width K=8 and K=10 while six were formed at widtb

K=12. Table XXXV summarizes the results of pass one, displaying

the nodal values and the number of elements in each cluster for

widths, 8, 10 and 12 respectively. Table XXXVI displays similar

information for the results of pass two.

Examination of Table XXIX indicates that clusters 3 and 6 for width

K=8 exceed by more than 20% the value of 14 to 15 members per

cluster that would be expected if the 100 patterns were uniformly

distributed over the 7 clusters. Accordingly on pass 2 for K=8, the

100 patterns are matched against the nodal values of 32 and 58 and

are assigned according to Rules 1* and 2*. Similar procedures

Sire followed for re-evaluating the clusters for widths K=10 and

F =12.

Or, pass two then, the number of clu.-ters was reduced to two, three

*mand two for K equal to 8, 10 and 12, respocttve!v. It will be noted

0tt the clusters formed have nodes quite clobe to the original

,a ies with the exception of the second cluster formed for width 10.

Houever this latter clustir has significantly fewer elements than

either of the other two clusters.

6-21



Column A of Table XXXVII shows the number of operations that

would be performed in a computer with a conventional memory in

carrying out this experiment and Column B shows the number

that would be performed using a computer with an associative

memory.

Before comparing this data, it will be useful to explain how the

comparison figures relevant to the computer with the conventional

memory were calculated.

The figures given in Column A for the total number of comparisons

required for each pass and each width using a computer with a

conventional memory were all arrived at by comparing each new

pattern against the total number of clusters that has been formed

up to that time and assigning the pattern according to the decision

rules. In order to demonstrate this procedure, the figures of 645

comparisons for pass 1 with K-8 and of 562 comparisons for pass

1 with K=10 will be explained in some det-ail.

For pass 1 with K=8, the patterns in Table XXVIII are examined

row by row, i.e. from left to right, top to bottom. Accordingly,

19 becomes the first member of and the nodal value of cluster 1.

6 is matched against 19, is found to be too fax away and so becomes

cluster 2. 30 is matched against dusters 1 and 2 and becomes

cluster 3. 42 Is matched against clusters 1, 2 and 3 and becomes

cluster 4. Continuing with row 1, 18 is matched against the four

clusters and is assigned to cluster 1, 35 is assigned tocluster 3, 71

6-22



becomes cluster 5 after being matched against the four clusters,

56 becomes cluster 6, 56 is assigned to cluster 6 and the last mem-

ber of the first row, 69, is assigned to cluster 5. Thus the number

"of comparisons required to assign all the members of the first row

may be evaluated as follows:

row element no. of comparisons required

19 0 (begins cluster 1)

6 1 (begins cluster 2)

30 2 (begins cluster 3)

42 3 (begins cluster 4)

18 4

35 4

71 4 (begins cluster 5)

56 5 (begins cluster 6)

56 6

69 6

35 = total for row 1

Continuing with row 2, it is found that all members of the second

row are assigned to the six existing clusters. Thus row 2 requires

10 x 6 or 60 comparisons. In the same fashion, it is found that all

members of row 3 are assigned after six comparisons each.

However the last member of row 3, 81, becomes the first member

of cluster 7. This turns out to be the last cluster formed. The

6-23



members of the remaining seven rows are all assigned to these

seven clusters after seven comparisons each. Thus the total num-

ber of comparluans required for pass 1 with K=8 is:

row no. of comparisons required

1 35

2 60

3 60

4 70

5 70

6 70

7 70

8 70

9 70

10 70

645 = total number of

comparisons for pass I with K=8.

For pass I with K=10, the patterns in Table XXVIII are examined

column by columt,, i.e., top to bottom, left to right. Thus, 19

becomes cluster 1, 57 becomes cluster 2, 18 is assigned to

cluster 1, 30 becomes cluster 3, 34 and 31 are assigned to

cluster 3, 62 is assigned to cluster 2, 58 is assigned to cluster

2, 75 becomes cluster 4 and the last member of column 1, 28, is

6-,24



assigned to cluster 3. Thus for column 1, the number of com-

"parisons required is:

column element no. of comparisons required

"19 0 (begins cluster 1)

57 1 (begins cluster 2)

18 2

30 2 (begins cloister 3)

34 3

31 3

62 3

58 3

75 3 (begins cluster 4)

28 4

24 = total for cohmn 1

Continuing with column 2, it is found that the first element of

column 2, 6, becomes cluster 5 and the fourth element 44, bezomes

cluster 6. The remaining elements of column 2 and the members of

of columns 3 through 10 are asslgned to the six clusters after six

comparisons each until the seventh element of column 10, 87, is

reached, which becomes cluster 7. The last three el3ments of

column 10 thus require seven comparisons each. The total

6-25



number of comparisons required for pass with K=10 is therefore

calculated to be:

column no. on comparisons required

1 24

2 55 -

3 60

4 60

5 60

6 60

7 60

8 60

9 60

10 63

562 = total number of

comparisons for pass 1 with K=10.

For pass 1 with K=12, the data in Table XXVIfl is again examined

column by column yielding a total of 475 comparisons.

CONCLUSIONS

For the data in column B of Table XXXVII it is evident that the

number of comparisons is equal to the number of items examined.

Examination of and comparison of Columns A and B of the table

leads to the follo-wing conclusions.

(1) In a computer with an associative memory capability, the

number of comparisons that must be performed fer any pass

6-26



depends strictly on the number of items that are examined.

The number of comparisons is independent of the number of
V

clusters formed during that pass.

(2) In a computer with a conventional memory the number of

comparisons that must be performed depends on both the

number of items to be examined and the number of clusters

formed. Roughly speaking, the number of comparisons for

pass 1 is very nearly equal to the product of the number of

items examined times the number of clusters formed. For

pass 2 and succeeding passes, the number of comparisons

needed is exactly equal to the number of items times the

number of clusters.

(3) From (1) and (2), it is evident that the associative memory

capability always effects a reduction in the number of comp-

arisons that mus '•e performed. It is further evident that the

ratio of improvement vll increase as the number of clusters

formed increases.

fi 7



TABLE XXVII. TWO SETS OF PATTERN VALUES

First Group Second Group

19 40 34 57 76 69 51 51

18 17 42 49 26 62 68 57 56 47

30 30 24 39 31 50 31 64 30 60

34 32 25 10 33 75 59 55 53 69

31 31 26 45 33 60 67 60 69 81

28 38 18 43 19 44 71 71 60 59

6 30 34 23 25 69 78 48 63 81

33 42 21 24 9 63 64 42 56 53

42 32 42 21 22 60 58 53 47 63

24 33 35 44t1 60 57 80 69 4

x 29.3 y 59.9

6-a.8



TABLE XXVIII. THE FIRST %.ND SECOND GROUPS SCRAMBLED

6 30142 18 35 71 a6 56 69

.1i 3 32 32 69 43 30 47 9

18 60 31 33 21 49 48 53 33 81

30 44 160 59 71 57 42 44 69 22

34 69 60 34 42 39 53 31 33 11

31r 42 76 42 3 4 23 69 61 5
62 24 68 24 '78 .55 80 60 19 87

58 43 31 25 C4 10 51 63 47 53

75 17 36 67 58 45 24 26 25 63

Ui.

28 L 63 30 426 57 60 1 31 6 469

6-29



TABLE XXIX. FORMATION OF CLUSTERS WITH K=8

PASS 1

Cluster:

1 2 3 4 5 6 7

19 17 6 30 30 31 42 42 71 67 56 53 63 81

18 24 9 35 34 43 40 69 56 64 53 78

18 26 11 33 34 47 47 69 57 61 58 so

21 25 10 32 31 48 38 71 60 59 63 87

22 26 32 33 44 45 69 49 62 63

23 21 34 31 42 49 69 53 55 57

24 30 35 44 76 60 60 60

24 31 31 42 69 59 58 60

19 33 28 39 68 57 64

25 33 20 42 75 60 151

6-30



TARLE XXX. FORMATION OF CLUSTERS WITH K= 10

PASS 1

Cluster:

12 3 4 5 6 7

19 21 57 57 63 30 32 31 75 69 6 44 43 87

18 19 62 57 56 34 33 33 69 69 10 42 48

24 25 58 64 61 31 34 33 76 69 9 40 42

17 22 60 55 60 28 26 68 81 11 38 44

24 63 60 59 33 34 67 42 47

25 60 53 53 30 35 71 42 47

18 60 51 63 32 35 78 42 49

21 59 56 31 30 69 49

23 64 53 31 31 71 39

24 58 60 30 26 80o 45

6-31



TABLE XXXI. FORMATION OF CLUSTERS WITH K= 12

PASS I

Cluster:

1 2 3 4 5 6

9123 ! 57V57 • 51 34 31 35 47 75 69 6 8?
18 24 6 60 31 38 35 33 69 69 10

30 21 58 57 63 28 30 39 33 76 69 9

24 26 60 64 56 33 42 45 47 68 81 11

17 19 63 55 61 44 372 43 67

24 25 60 60 60 42 33 42 71

25 22 60 48 59 40 34 30 78

26 59 53 53 30 42 44 69

I18 64 51 63 32 34 31 71
- _-_ ____ - - -. -I58 56 49 31 42 31 80

6-32



TABLE XXXII. FORMATION OF CLUSTERS WITH K=8

PASS 2

Cluster:

1 2

30 31 35 25 57 57 63

34 38 35 62 57 56

31 30 39 58 64 61

28 32 24 60 55 60

33 33 30 63 60 59

24 34 31 60 53 63

40 24 26 60 51 53

30 25 31 59 56

32 26 33 64 53

31 34 33 58 60

6-33



TABLE XXXmI. FORMATION OF CLUSTERS WITH K= 10

PASS 2

Cluster:

2 3

30 31 34 31 34 35 57 67 53 60

34 38 21 33 44 35 62 64 51 69

31 30 35 25 42 49 58 58 56 59

28 32 35 22 40 39 60 57 53 53

33 33 39 38 45 69 69 69 63

24 34 23 42 43 63 49 60 49

40 24 24 34 48 60 57 63

30 25 21 42 42 60 64 56

32 26 31 34 53 68 55 69

1 30 26 42 51 59 60 61

6-34



i

TABLE XXXIV. FORMATION OF CLUSTERS WITH K=

PASS 2

Cluster:

1 2

30 32 24 48 33 57 67 1

34 31 25 42 47 62 64 1 6

31 31 26 24 25 58 58

28 38 34 30 60 57

33 30 42 44 69 69

44 42 35 31 63 57 5 ]
42 32 35 26 60 64 I
24 33 39 31 60 64 I ', I
40 34 45 47 68 55 I

30 42 43 33 59 60 j

6-35



TABLE XXXV. SUMk1AI{Y OF PFSULTS OF PASS 1

Width K=8 1 % Width K 10 i Width K-I 2

Cluster No. of Nodal "lusterT No. of Noda Clu-sterIj 4o. ,f Nodal
-No Elements AValue 1 No. -lementsVah- No. I'Flements Value

1 16 20 14 21 1 17 22

2 4 9 2 27 159 2 30

3 21 32 23 31 3 34 2 6
------ 4--- I _ _ _--- - - _ _ _ _ _ _ _ _

4 16 43 4 14 72 4 14 72

11 70 5 4 9 I 5 4 9

6 28 58 6 17 44 q 1 87

_-.K ] ___________

7 4 81 7 1 87 -

6-36



TABLE XXXVI. SUMMARY OF IESULTS OF PASS 2

Width K -- [ Width K- 10 1 Width K- U

Cluster No. of Nod&I Cluster No. of Nodal ICluster No. of Nodal

No. Element.- Value No. Elements Value No. ]Elements Value

1 31 31 1 34 30 I 43 3

2 27 59 2 20 42 2 39 5

T36 i - -3 59

6-37



TABLE XXXVII. SUMMARY OF COMPARISONS

11 A B

Pass 1, K-8

Number of Patterns Examhismd 100 100

Number of Clusters Found 7 7

Number of Comparisons Reqvi'red 645 100

Patterns/Cluster (Average) 14.3 14.3

Compp-tsons/Pattern (Average) 6.45 1.0

Pass 2, K=8

Numbr of Patterns Examined 100 100

Number of Clusters Found 2 2

Number of Comparisons Required 200 100

Patterns/Cluster (Average) - -

Comparisons/Pattern (Average) 2.0 1.00

Pass 1 + Paiss 2, K=8

Number of 9 atterns Examined 100 100

Total Number oi Comparisons
Required 845 200

Comparisons/Pattern (Average) 8.45 C(A) 2.00 C (B
(C(A) and C(B))

Ratio of C(A) to C(B) 4.2Z5 to 1.0

6-38



TABLE XXXVII. SUMMARY oFCOMP ARISONS (Coot'd)

A B

Pass 1, K-1.

Numi r of Patterns Examined 190 100

Number of Clusters Found 7 7

Number of Comparisons Required 562 100

Patterns/Cluster (Average) 14.3 14.3

Comparisons/Pattern (Average) 5.62 1.0

Pass 2, K=10

Number of Patterns Examined 100 100

Number of Clusters Found 3 3

Number of Comparisons Re4uired 300 100

Patterns/Cluster (Average) - -

Comparisons/Pattern (Average) 3.0 1.0

Pass 1 + Pass 2, K= 10

Number of Patterns Examined 100 100

Total Number of Comparli-
Required 862 200

Crmparlsons/Pattern (Average) 8. (,2 C(A) 2. 00 C(B)
C(A) and C0()

Ratio of C(A) to C(B) 4.31 to 1.0

6-39



TABLE XXXVII. SUMMARY OF COMPARISONS (Cont'd)

A B

Pass 1, K=12

Nuyziber of Patterns Examined In0 100

Number of Clusters Found 6 6

Number of Comparisons Required 475 100

Patterns/Cluster (Average) 16.67 16.67

Coniparisons/Patterr- (Average) 4.75 1.0

Pass 2, K= 12

Numb.,r of Patterns Examined 100 100

Number of Clusters Found 2 2

Number of Comparisons Required 200 100

Patterns/Cluster (Average) - -

Comparisons/Pattern (Average) 2.o 1, v

Pass 1 + Pass 2. K= 12

Nuxmber of Patterns Examined .00 100

Total Number of Comparisons
675 200

Comparisons/Pattern (Average) 6.75 2.0 C (B)
C(A) znd C(B)

Ratio of C(A) to C(B) 3.375 to 1.0

6-40



SECTION VII

MATHEMATICAL STUDIES

This section of the report discusses three studies that were conducted: a

study of the possibility of developing a data distance measure; investigation of

structured operation sets to be used in an associative processor; and a study of

associative techniques for numeric processing. As might be inferred from their

titles, these topics are somewhat peripheral with respect to the main design

areas. However, they were selected because they offered promise of extending

and imp•poving asbociative processor capability.

Each of these three studies is self-contained and was conducted independently

of the other two. None of the studies led to special processor designs (nor were

any such designs intended). However, the results of the studies should provide

supplementary guidelines to processor designers by supplying them with some

simple, useful sets of operations for the processor.

DISTANCE MEASURE

In many military and commercial applications Involving text processing, thuý

probability of a significant error rate in the input is quite high. Error correc-

tion on present applications is performed manually or by complicated software

at considerable expense. This study was undertaken to investigate lexical

distance measures with potential for being Implemente4k readily on associative

processors.

7-1



In order to perform spelling correctioi . it will be necessary to compare

words and to define in some meaningful way a distance between words. The

definition of "distance between words" is non-trivial because words can differ

by only one letter, yet their meanings may be completely different. For

example, in the set (phone, shone, shore, short, shirt), each word differs by

only one letter from its successor and predecessor, so that in one easily

measured sense - number of common letters - these words are near each

other. In a semantic sense, their distance is arbitrary since the meaning

changes arbitrarily by substituting one letter for another. Consequently, word

comparison techniques will be based either on semantic considerations or on

mechanical features of a word but not on both. This study is concerned with

developing distance rneasures based solely on such mechanical features as

•"d..4"--"-- -.. , . at traris.ription and transmission errors,

not content errors.

To bqgin with, attention is restricted to the following four causes of word

errors:

1. Letters in the word are permuted or scrambled, e.g., COULDS,

instead of CLOUIR

2. Correct order, but use of one or more incorrect letters, e.g.,

SEVIUIL instead of SEVERAL.

3. Too many letters, e.g., TELLEPHONE instead of TELEPHONE.

4. Milutng letters, e. g., TRIFIC instead oi tERRIFIC.

7-2



The selection of word errorb *s the ones to be analyzed was based on the

results of an error study conducted by IPM under the 438L contract and reported

in the working paper AIDS System Communication Error Stu•y, 29 November 1961.

Each error cause is examined separately and some distance measurements

based on these errors are developed. To aid in the analysis the following

nu.ation is used: n denotes the number of letters in the longer of the two words

being compared. For errors 1 and 2, n is evidently the length of both words.

The interchange of any t-vo adjacent letters in a word is a transposition. Other

notation is defined as appropriate.

Turning now to error 1, it is evident that a scrambled word may be un-

scrambled by a sequence of transpositions. It is known from o'roup theory that

this process is well defined and the number of transpositions required may be.

obtained by inspection of the permuted word. For a word n letters long, the

maximum number of transpositions is required if the word is spelled backwards.

This is obviously the worst case. Further, it is known that this maximum number

is 1/2 (n) (n-i). If T is used to denote the number of transpositions actually

required to unscramble a word, then one might consider as a distance measure

the ratio

D(1) = T/4 (n) (ii-i).

D(J) has the advantage that its value lies between zero and one. However, it

turns out that D(1) is not a very good reasure, for in most cases, T will be

either one or two thereby yielding an mreasonably small value for D(1). In

other words since the number of transpositions, T, will never even approach

7-3



1
the value i (n) (n-1) in actual cases, it is unreasonable to normalize T with

respect to 1 (n) (n-1). A more reasonable normalizing factor is n. Consequently,

for error 1, let the distance betwuen two wurds be given by Rule 1: D(la) = T/n.

Of course with this new definition, there now arises the possibility that T will

be greater than r., yielding a distance greater than one. However thL possibility

is more theoretical than real, since as has already been stated, the distatice will

be of interest only when T is a fairly small number.

For example to demonstrate Rule 1, suppose the words are TRAVEL and

TARVLE, and suppose that TARVLE is compared against TRAVEL. Each letter

of TARVLE is examined to determine if it is in proper order with respcct to the

letterb following it, i. e., the letters to the right of it. The examination shows

that A is out of order with respect to R and L is out of order with respect to E.

Hence A and L will each require one Lransposition so that a total of T=2 trans-

positions will permute TARVLE into TRAVEL. Since TRAVEL has six letters,

it then follows that

D~la) = 2/6 = 1/3.

For error 2 the occurrence of one or more incorrect letters, the obvious

measure to use is to count the number of positions in which the characters

disagree. In order to normalize this measure, the number of non-matching

positions should then be divided by n, the length of the word. If K denotes the

number of positions in which the two words disagree, then for error 2 the

distance is given by Rule 2: D(2) = K/n. Evidently D(2) lies between zero ald

one. An example for rule 2 may be constructed by compc ring SEPERADE

against SEPARATE. The two words disagree in thu fourth a8M seventh positions

so that K = 2. Sincen- 8, D(4), = 2/P 1/4.

7-4



Errors 3 and 4, too many lettert; and missing letters, may be treated as

one case by observing that both errors imply that words of u.nequal lngth arc

being compared. For error 3, the problem is the Lncorrect word has too arny

letters while for error 4, the situation is reversed - the incorrect word ha.-

too few letters. In either case, the fullowing procedure for comparing words

is applicable:

1. The words first are left jusLAfLed. Regardless of which word is the I

correct one, the shorter woz-r is completed to the length of the longpr by

adding null characters, labeled as *, to the end of the shorter word. Now both

words are n characters long, wherc P is obviously the length of the longer word.

Next, corresponding characters in the two are examined and a trial word

L = 11 12 .2 1n is formed, where 1. is * if the two words disagree in

position i and 1. is the common character, denoted as C., if the two words

agree in the i-th position. Evidently the trailing char tcters of L must all be

• since *Is were added to the end of the s;Aorter word.

2. Next, right justify the two words and complete the shorter word to .tht

length of the longer by adding *Is at the beginning of the snorter N•ord. Again,

examine the corresponding characters in the two words and form another trial

word R = r1 r 2 .... r where r is * if the two words disagree in position i

and ri is the common character Ci if there is agreement in th' i-th position.

3. Finally the trial words are compared with each other to produce a

most probable word P p . F . The comparison of L tnd R Is performed
n

7-5



by "OR-ing" corresponding characters. Consequently it follows that

P. C. if either 11 is Ci or ri is C. or both are C.;1 1 1 1'

P * if and only if both 1 and ri are *.

It should be pointed out that there is no possibility that 1I and ri can equal

different characters. This may be shown by the folloving considerations. If 1;

iLt C.I this indicates that position i of the two words, left-justified, contains C..l' ' 1

If ri is C.', then ( 1 ' is in poeition i of the two words, right-justified. But the

i-th position of the longer word left justified is the same as the i-th position of

the longer word, right justified so that Ci = Ci

The distance between the two words is given by Rule 3: D(3. = u/n, where

u is the number of *Is in the probable word P and n is the number of characters

in P.

As one example of this technique, consider the comparison of COULDS and

COLDS. Frrst, left justify the two words and complete COLDS to a six character

word by adding one * after S. Then COULDS and COLDS* yield L = CO****.

Right justifying and adding one * before C leads to the matching of COULDS and

*COLDS which produces R **LDS. Finally the "OR-ing" of L and R shows

that P = CO*Li)S. Hence by Rule 3, D(3) = 1/6.

A second example is giv,, by comparing COAGE with COURAGE. Left

justify and complete COAGE to the length o/ COURAGE by adding two *'s after

E. Matching of COURAGE and COAGE** produces L = CO*****. Naxt, right

justify and complete COAGE by adding two*'s ahead of the C. Matching of

COURAGE and **COAGE produces R - ****AGE. Then the "OR-ing" of L and R

yields P = CO**AGE, so that by Rule 3, D(3) - 2/7.

7-6



A few comments are in order regarding the formulation of Rule 3. At tlrst

i was planned to treat separately errors 3 and 4. iPowever, a few test cases

indicated that Lrying to distinguish between the problems of too many letters and

too few letters was needlessly confusing. Development of a standard rule for

comparing words of unequal length, without regard to which is the correct one,

is the preferred approach.

To demonstrato these rules, consider the comparison of the test word

COTLDS against a list of correct words. COULDS will be said to match that

word in the list to which it is closest according to any of the three distance

measuring rule.:. The list of correct words in alphabetical order is given in

the first column of Table XXXVIII. The second colunm states the rule which

yielded the muumum distance. The third column lists the distances between

COULDS aad each of the correct words. From this column it is seen that

COULDS is closest to the word COULD by Rule 3 and so will be said to match

that word.

To accomplish these measurements in a conventional computer would

require, generally speaking, that COULDS be compared against the correct

words one at a time. On the other hand, an associative memory capabilit.y will

permit the simultaneous comparison of the test word against the full list of

correct words. Hence one may reasonably conclude that an associative memory

capability reduces the number of comparisons required by a factor that is

approximately equal to the number of correct words that are being matched

against the test word.

7-7



kt

TABLE XXXVIII. DISTANCE MEASURE EXAMPLE

Test Word: COULDS

Correct Word List Rule use to yield Distance
(alphabeticai order) minimum distance

BOARDS 2 1/2
CLOUDS la 1/3

COL 3 1/6
COULEES 3 2/7
COULOMBS 3 3/8
COUNTESS 3 1/2
COUNTS 2 1/3
COWARDS 3 3/7
MOUNDS 2 1/3

COULDS is closest to COULD.

7-8

p



STRUCTURED OPERATION SET

This section of the report will discuss studies that were made during the

investigation of the proposed development of a structured set of operations for

the associative processor.

At the outset, a distinction will be drawn between the concepts of a structured

set of operations and a structured operation code. The two ideas may contain

overlapping features but neither necessarily includes the other. This investiga-

tion was concerned with the subject of a structured it of operations. However

it will be useful to start by discussing briefly the concept of a structured

operation code since this is perhaps the more familiar idea.

When one examineF the operation instruction codes of the IBM 7094, one

notices that the codes resemble those that might be used to structure an

organizatihn such as a manufacturing concern. That is t' say, the codes

represent a partition of the functions performed by the computer and the

business respectively, as shown in Table XXXIX, but they are not organically

or hierarchically related. Codes 03xx are neither inferior to nor subsets of

codes 04xx. Since the codes are independent, it is not feasible to combine

instructions simply by combining their respective codes in any meaningful way,

i.e. one instruck.i)a followed by another usually will not produce the same

result as an instruction whose numeric code is some logical or numeric

combinaLiun of their respective codes.

However it should be noted that within one of the subsets of the partition,

it may be feasible to consider a structured set of operations which would be

applicable only within the subset. Referring once again to thb IBM 7094,

7-9



examination of the 03xx codes indicates that most of them deal with the operations

of addition and subtraction in the floating point mode. In addition, consideration

is also given to the features of precision, normalization and signature. Thus

altogether there are in the floating point mode, sixteen possible add-type instruc-

tions which are formed by taking all combinations of add or subtract, single or

double precision, normalized or unnormalized, signed or unsigned, I.e.

magnitude. A typical instruction is DUSM, octal code -0307; double precision,

unnormalized, floating point subtract magnitude. By inspection of the codes

0300 through -0307, it is seen that all sixteen possible instructions are actually

available and furthermore the unnormalized operations are characterized by

having a minus sign in their octal codes. Thus one may conclude that there is

a simple structure in this subset of operations, exhibiting the features of

completeness and attribute characterization (at least for a single attribute).

Turning now to the problem of developing a structured set of operationz, it

would appear at first glance that some sort of hierarchic arrangement would be

the most desirable and usefl, form for the stricture to take. The reason for

suggesting a hierarchic arrangement is that there are at least three levels of

computer instructions which are so related: commands to open various gates,

test triggers, etc. which are combined to form micro instructions; micro

instructions which are put together to produce the so called machine instructions,

and the machine instructions, which usually stand alone.

One example of a hierarchy is furnished by chemistry in which elements

combine to form compounds. Further as shown in Table XXXX, an analogy can

be drawn between the building blocks of chemistry and those of computers. As

7-10



is well known, the isotopes and the chemical compounds indicate by their

fornmias not only the elements from which they are formed but the proportion

or amount of each element in the compound. Thus, H2 SO4 shows that one

molecule of sulfuric acid is composed of two atoms of hydrogen, one of sulfur

and four of oxygen. It is clear that one function of a structured operation set

would be to obtain an analogous representation so that for example the code

(or formula) for a machine instruction would make it possible to identify the

micro-instructions which combine organically, so to speak, to form the

machine instruction.

However it soon becomes clear that computer instructions are sufficiently

complex so that such a code would perhaps be very lengthy, and a lengthy code

would be self defeating as its length wvould prohibit it from serving its purpose -

making clear to the user at a glance the functions that are being performed.

Consequently in developing a hierarchic structure, careful attention must be

given to the resulting code.

Siuve the computer operations are not all cnual in the sense that mathe-

matical operations are, a structured set of operations may prove to be un-

necessarily confining. In mathematics and especially in arithmetic, one has

operands which can be manipulated according to certain operations. For

example, numbers can be added, multiplied or divided. Although these

numbers may vary in magnitude, they are equal in the sense that the operations

treat them in the same manner. No number is given preferential treatment

(excluding the case of division by zero), and the operations themselves are

comparable.

7-11



This comparability of operations no longer holds when computer operations

are considered. To be sure, computer arithmetic instructions such as clear

and add, add magnitude or subtract do have sir ar features. But what can

one say about the relationship among the operations of loading, branching and

1/0? It would appear that such instructions have little in common. In other

words, computer operations are much "richer" than mathematical operations.

Furthermore when micro-instructions are combined to form a machine

instruction, it is usually found that the sequence alone is not sufficient to

describe the instruction. Another parameter must be specified - time, or

more precisely, the times between certain subsequences of micro-instructions.

Thus, the inst-ction is more complex by far than the sequence of micro-

instructions which compose it.

Because of these reasons, the development of a structured set of operations

which will encompass the entire computer appears not to be feasible. If one

considersi the problem combinatorially, it is evident that so many combinations

of instructions (with their associated timings) are possible that an overall

structure encompassing all such combinations seems not to be attainable.

However, as in the case of the IBM 7094 codes, it may be possible to develop

structured sets of micro-instructions which will apply only to specific classes

of instructions such as control or floating point or shifting operations.

In conclusion, while much remains to be done in the development of a

structured set of operations for the processor, it would appear that the concept

is still a valid one especially for certain classes of operations.

7-12



TAB;;,E XXXIX. COMPARISON OF PARTITION-TYPE CODES

I. Octal Codes for the IBM 7094 instruction set

00xx: transfer and other control

02xx. multiply, divide, flowering multiply, floating divide

03xx: floating, add. subtract, logical

04xx: adt,. subtra(t. logical, control
05xx: [, ') rs• . trol

06.xx: st ''I

07xx: pla,.'

U. Typical numeric codes for a business organization

00xx: headquarters

01xx: comptroller

02xx: marketing

03xx: engineering

04.xx: manufacturing

05xx: distribution

TABLE XXXX. COMPARISON OF CHEMICAL AND COMPUTEI'R
HIERARCHIC STRUCTURES

Chemistry Computers

1. electrons, protons flip-flops, gates, levels

2. atoms micro-instructtons for micro-
programming

3. elements machine instruction3
Na, Ca, Cl, C CLA, TRA, ANA

4. heavy hydrogen special machine instructions,
RDCA, RDCB

5. chemical compounds macro-instructions
NaCi, CCI4 , If2 04

7-13



NUMERIC PROCESSING

This section discusses how an associative memory may be used in problems

that are numerically oriented. Areas in the field of numerical analysis are:

* Interpolation

* Numerical diferentiation and integration

* Numerical solution of differential e-,uations

* Least squares polynomial approximation

• Quadrature methods

* Approximation methods

• Numerical solution of polynomial equations

* Numerical solution of sets of linear equations

* Numerical methods for matrix inversion

* Numerical compitation of the eigenvalues and eigenvectors of a matrix

It may be stated that. for a computer to perform efficiently on these problems-

whether or not it is equipped with an associative memuory featuxe-the machine

organization must have registers, adders, etc.

The question may be raised as to how an assocbitive memory may be ex-

ploited to help solve numeric problems, or putting tht matter more precisely:

are there important numerical techniques which can be implemerted most suc-

cessfully on a computer with an associative memory? This question is nontrivial

since many of the techniques which have been developed over the past several

hundred years have been predicated on the assumption that computation would be

done by hand. It is thus entirely possible that some of these techniques are not

well suited to execution by a programmed calculator and indeed this turns out to

be the case.

7-14



k

In order to obtain some results in depth, it was necessary to limit the

scope of the inquiry to one or two important numerical problems. Because of

their occurrence in a wide variety of applications, matrices appeared to offer a

good choice for concentrated attention.

The chief numerical problems connected with matrix operations are the

computation of the inverse of a matrix, the reduction of a matrix to either tri-

aag•-iar or diagonal form and the computation of the eigen-'-,,; and eigenvectors

of a matrix.

In the course of f-omputing solutions for one of the above problems, it often

becomes evident that the results of the computation may prove to be meaningless

because ot the loss of precision due to round-off errors. It thus becomes clear

that the magnitude of the matrix entries is of surpassing importance. If certain

entries are much larger than others, then these numbers will influence heavily

the entries in the inverse matrix as well as the size of the eigenvalues and eigen-

vectors. Consequently, many of tne matrix reduction techniques developea over

the years require for their success the identifying and relocating of the entries of

largest magnitude.

The various pivoting techniques are more effective if the pivotal elements

are the largest numbers respectively in each row. Now searching for a good

pivot is feasible if the computing is being done by hand or with a desk calculator,

However, such searching techniques clearly cannot be easily programmed for

existing computers. They are too time ct'nsuming.

When an associative memory capability is added to a computer, however,

the searching no longer appears to be such a problem. Pt rhaps the best way to

7-15



see how an associative memory can be used is to go through briefly the process

of reducing an n x n square matrix whose entries are real numbers. The ob-

ject is to reduce A to A' which is a matrix having non-zero entries along and

above the main diagonal and zeroes below the main diagor-l. Figure 22 depictu

A and A'.

al11 a 12 a in

a21 a22 a 2n

A = (aij)

an1 an 2 a-nn

b b b
11 12 I

0 b b- b
22 2

A' ) =

• b3 3

b , n

0 .. 0 b
anf

,Figure 22. Reduction of a Matrix to Upper Triangular Form.

The reductioa process will be explained as a series of steps.

7-16



Step 1

Search for the largest element in A and by interchanging rows and columns,

bring this largebý element - position (1, 1). If this largest element had orig-

inally been in -)osition (7,9), say, then after the interchange it will be at (1, 1)

and Al 1 will be at (7,9). Notice that the search operation is easily accuomplished

with an associative memory.

Step 2

Reduce the rest of the entries of column 1 to zero by multiplying row I by

ak1/all and subtracting from row k, for k = 2, 3,...., n, respectively.

Step 3

Search for the largest element in the (n-l) x (n-I) minor (a..), where i 2,... n,ii

j = 2,.... n. Note that because of steps 1 and 2, these entries will be much dif-

ferent from the corresponding original entries in A. Bring this largest element

to location (2,2) by interchange of rows and columns.

Step 4

Reuace thc entries in column 2 which are below (2,2) to z#ýro by multiplying row

2 by ak/a2, and subtracting from row k as k = 3,4,... n, respectively.

Continuing this process, it is seen *hat in general after the entries of col-

umn k below (k,k) have been reduced to zero, the largest element in the re-

maining ((n-k) x (n-k)) mitior is chosen and brought to position (O,+I), (k4l))

and the remaining entries below ((k+l), @c+l)) in c=lumn k+1 are reduced to zero.

Notic. that the final computatim will be that in which row n-I is multiplied

by an'n-i/a- and sultracted fronr the last row. The entry at (n,n-1)

7-17



v, )e reduced to zero and the last entry at (n,n) will be simultaneously ob-

tained. At that point, A will have been reduced to A'.

If this method is used to solve a system of equations AX - T, where X is a

column vector of unknowns and T is a column vector of constants, then the

interchanges called for by Steps 1 and 3 will also affect the components of X and

T. To be specific, interchanging rows p and q of A will cause components t
p

and t of T to be interchanged while interchanging columns U and v will result
q

in the interchange of Xu and X v . Certain bookkeeping routines will be needed to

keep track of these changes. These will be explained in more detail later.

A few coniments are in order regarding the role that an associative memory

has played in this reduction. An associative memory has not improved or

changed the manner in watch the elements " the d-agonal arc reduced to

zero. In other words, the strictly arithmetic processes called for proceed the

same way in a computer with an associative memory as in a regular machine.

Rather the chief contribution of an associative memory has been to facilitate

'he search for the largest elemtnt in the various arrays.

As mentioned above, the interchange of columns will cause the components

of X to be switched. In order to keep track of these changes, it will be neces-

sary to taW each veitor position so as to indicate which of tlhe orignalW uaknowns

i'A no',. occupying which position in X. The following example will demonstrate

the ,labeling ef the vectors.

Example. Suppose for defiDlteness that the matrix is 9x9. The unknowns

then are denoted by the 9 corrponent vector X where X o X

X( 3 ) W In eplation of X0- the eub3cript i refers to the column

7-18



position in the array. The superscript (j) denotes which of the original vectors

is occupying the i-th position. Naturally at the beginning i=j as is indicated by

x.
0

Step 1

Assume that columns 1 and 9 are interchanged. Then X becomes X1
(Xl(9), X 2 (2),___,X8(8),X1(1) •

Step 2

Clear column I below the diagonal.

Step 3

Assume that columns 2 and 9 of the new array are interchanged. X1 - X =

X(9)1 x 2 (1), x3(3), --- , x8 (8), X (2)) Note that X2 (1) is correct because

column 1 went to position 9 by Step I and then to position 2 by Step 3.

Step 4

Clear column 2 below the diagonal.

Step 5

Columns 3 and 9 switch.

X2- X3 : (9), X2(1), X3(2). X4(4). --- X 8).1 X (3))

Step 6

Clear column 3 below the diagonal.

7-19

________



Step 7

Columnn 4 and 8 switch.
X3 -X4 (X(9), X2(1), X3() X4(8), X5(5), X6(6), X7(7), X8(4), X9(3))

Step 8

Clear

Step 9

Columns 5 and 7 switch.

X4 -"X5 = (X(9), X211), X3(2), (48), X5(7), X6(6), X7(5), X (4), X91(3))

Step 10

Clear ....

Step 11

Column 6 does not change. X5 remains
X 5= ( Xl1(9) , X 211), X 4(8), X 5(7), X 6(6), X 7(5), X 8(4), X 9(3))

Step 12

Clear ....

Step 13

Columns 7 and 8 switch.

x5 . x6 = (x1 (9). x2 (), x3(2), x4 (8). x() , 6 x(6,) X(4). x8(5), X9 ()

Notice that X7 (4) and X8(5) are correct because column 4 went to position 8 by

step 7 and then to position 7 by step 13. Column 5 went to position 7 by step 9

and then to position 8 by step 13.

7-20



Step 14

Clear .....

Step 15

Columns 8 and 9 switch.
X6 -* X 7= ( X 1(9), X P(1), X 3(2), X48S), X 5(7), X61(6), X 7(4), X8 (3), X 9(5))

Vecbor A7 is the final arraugement an- the original unknowns now appear in the

order (9,1,2,8,7,6,4,3,5). Notice that in the overall process the original col-

unns were changed as follows:

Number of Changes

1-.9-2 2
2-.9-3 2
3-9-8 2
4-8-.7 2
5-7-8-9 3
6 0
7-5 1
8-4 1
9-.1 1

14

It is interesting to observe that the maximal number of changes for a single

column would occur if column I were successively interchanged with the next

higher column at each step, resulting in the following arrangements as the final

arrangement of the components: (2,3,4,5,6,7,8,9, 1). In terms of changt.s to

the original columns, this arrang'mnt can be expressed as:

Number of Changes

1-3.4-4-7--&-9 8
2.1 1

3-2 1
4-,3 1

7-21

S.. .. . .o.. .



Number of Changes

5-44 1
6-5 1
7-6 1
8-7 1
9-81

It has been suggested in several previous tasks that certain tags should be

associated with data items. From the foregoing discussion, it is evident that

such tags would be extremely useful for these matrix manipulations, for it is

clear that the column switching just described refers to a conceptual process,

not to an actual one. That is to s.y, the nine components of the vector will not

be physically moved about in the memory. Instead by use of the tag marker the

components will be simultaneously relabeled, thereby effectively simulating the

switching operations. The associative capability will thus facilitate the relabel-

ling process by permitting parallel examination and relabeling of all the

markers associated with vector components.

Turning now to the problem of computing the eigenvalues 9nd eigenvectors

of a matrix, it will be shown that an associative momory capability will sig-

nificantly improve the computer implementation of one of the better known

techniques presently in use for dealing with this problem.

The techniques referred to are the method of Jacobi which was developed

for Herml!ian matrices and which in practice is used chiefly for a real sym-

metric matrix. Reduced to diagonal form, the sum of the squares of the

diagonal elements of the original matrix is always less than the aum of the

7-22



squares of the diagonal elements of the reduced form. For example the re-

duced form of

6 ~ 7 2 2 2

Als.o, the reduced form of 8 5 is (9 0) andagain

2 2 2 2 2/
8 + 5 < 9 + 4 . The elements (11, -2) and (9,4) of the reduced forms are,

of course, the eigenvalues of the original matrices.

The second fact underlying the Jacobi method comes from observing that if

the above matrices are examined more closely it is seen that

62 +72 +22+62 112 ++(-2)2 and

2 2 2 2= 2 2
2 +8 +5 +2 -9 +4.

In other words, the increase in the diagonal elements of the reduced form over

the diagonal elements of the original matrix is accounted for since the off-

d elements have decreased in magnitude to zero.

The method of Jacobi makes use of these facts by finding a set of trans-

formations each of which decreases the off-diagonal elements and increases the

diagonal elemets. Perfcr- - ,; those transforiuaLiona in aequence on a real

symmetric matrix A will reduce it to diagonal form.

The method requires that at each step, the off-diagonal element aij of

largest magnitude be annihilated. Herein lies the problem of implementing

this method. For computation by present machine organizations, the search

for the largest element is too time-ornntiming. Consequently, the customary

practice is to program the method so that the elements will be annihilated in

7-23



some pre-assigned cyclic order. Unfortunately the cyclic order-annihilation

has two drawbacks. First, a larger number of transformations will be re-

quired. Secondly, and more serious it is possible that the sequence of trans-

formations may not in fact yield the reduced diagonal form. That the Jacobi

method does produce the diagonal form depends on annihilating the appropriate

elements, i.e., the largest element, at each step of the process. Since this

is not done when the elements are annihilated cyclically, special precautions

must be taken to ensure that the cyclic process does converge to the diagonal

form.

If on the other hand, the computer has an associative memory, the cyclic

order annihilation process with its accompanying drawbacks can be avoided.

Now with the associative memory capability it will be feasible and entirely

practical to search for the largest off-diagonal element after each transforma-

tion. Consequently the Jacobi method can be followed strictly from which it

nec.ssarily frUlows that the eigenvalues will be obtained after performing the

minimal number of transformations (as compared with the number required by

the cyclic order process) in a sequence whose convergence is guaranteed.

As has been stated, a prime requirement in carrying out the Jacobi

method-and one which is satisfied by the associative processor-is the ability

to identify quickly the largest of a set of numbers, Now as the final diagonal

form is approached, another, rather opposite, requirement appears. This

requirement is the ability to determine when the off-diagonal elements have

been sufficiently reduced in size so that they may all be considered to be, in

effect, zero. Such a requirement will arise because round-off and truncation

7-24



errors make it likely that the -.if-diagonal elements will never vanish exactly.

Evidently, the associative processor will satisfy this requirement for it is as

equally capable of determining the smallest as well as the largest of a set of

numbers.

"Summarizing then, one may conclude that the associative processor is

.u nmiquely able to handle problems that require identification of the largest

(or smallest) of various arrays of numbers. Moreover this capability becomes

increasingly valuable when, as is the case hert, the arrays are not specified

in advance but instead are formed dynamically during some mathematical

process.

7-25



Section VIII

GENERAL PURPOSE ASSOCIATIVE PROCESSOR
o

INTRODUCTION

The major design effort was concentrated on finding hardware configurations

for solving problems which were identified in the initial phase of the project.

Studies on individual problem types resulted in designs which have been described

in other sections of this report. The remaining design effort, described in this

section, was to integrate selected logic of the individual problem processors into

an overall machine design. In addition, another study was performed on the pos-

sibility of applying mathematical theories of structure to determine a set of

operations for the processor, as reported in Section VII. The design of the

"overall processor" had the primary goal of exhibiting improved performance in

non-numeric areas over conventional general purpose computers of the sequential

von Ne, mann type. In particular, increased speed and ease of programming

were sought for non-numerical data processing problems and the processing of

problems involving symbol manipulation,

DESIGN INTEGRATION GOALS AND APPROACH

The design of the processor wab qpproached with a view toward general

purpose computer eapability, integrated with logic for processing non-numerical

pi, blems, of the types studied, tr) retain the advantages of associative processing

on nun-numerical data. This may be expressed as a "covering problem," as

8-1



follows: given a set of individual processor designs, find a machine organiza-

tion in which a set of data paths and machine operations covers the individual

processor designs. For perfect "covering," the machine should be indistinguish-

able from each individual processor in performing the task for which the proces-

sor was designed. The problem ,f "covering" is not precisely defined, although

its qualitative nature is clear. The problem is somewhat similar to the design

of an efficient prog'am, organized to use common subroutines as much as pos-

sible. This analogy suggests a potential loss of efficiency, analogous to loss of

execution speed due to linking operations for utilizing subroutines. A key issue

is economy: an economical solution to the covering problem is desired so cer-

tain sub-machine organizations (memory, register data paths. and machine

operations) are common to many processor problems. Obviously the design

problem is not one which has a unique solution, nor is it one fol which the ob-

jective criteria are at hand for judging a solution.

An approach, which is more of a guide than an objective measure of design,

is to seek performance according to the expected usage of the machine. Assum-

ing numeric processing will utilize machine facilities only 10,% to 20% of the

operating time principal emphasis should be on features for non-numeric proc-

essing. Related to this aspect is the question of how well a proposed design for

the processor satisfies the requirements imposed by the need to "cover" the in-

dividual problem processors, with due weighting attached to efficiency of execu-

tion according to the percentage of machine operation time which will be used

on each of the problem types.

8-2



The present trend toward making a machine more usable to a community of

users (the community, as meant here, is comprised of technical or military

specialists of an organization) will be an established "modus operandi" by the

era of the general purpose associative processor (GPAP). Thus, hands-on pro-

gramming, time-sharing, real-time computing, and monitor operation are re-

quired capabilities. The total design of such an advanced operating system is

beyond the scope of this effort, but hardware for the system will include the re-

quired features. An advanced system capable of z•erating under supervisory

control is intended. The operational system will have the capability for building

on concepts which are foremost in the current state-of-the-art, whose major

innovations are related to the incorporation and usage of associative memories

and/or devices in the system.

A goal for the advanced processor is ease of programming. Particular

properties of the associative processor which will help achieve this goal are in-

herent in the ability to designate data by iUs name or by a property of the data.

Man can supply this information easier than he can give the address of data in

memory. For problems too difficult to think through to the point of determining

th• complete computer program and coding such a program for a machine, com-

puter languages are needed. These languages must be oriented to the way people

think through their problems; man-machine interaction is needed. The use of

computer languages is simplified when the human specifies "goals" or some de-

scriptiort of the result of computation, rather than the detailed steps by which

the comvpIter achieves the result.

8-3



Another aspect, possibly the most challenging task for advanced computer

design, is the discovery of techniques for efficient and effective man-machine

communication. This goal is only paL Lially achieved by making the machine an

interpreter of tie language which the user finds most convenient for his prob-

lems. Additional features for man-inachnae communication would consider the

operational environment of the system in ,n :re detail wbich is outside the 3cope

cl this study. This study did consider the need to allow a programmer to

either use the language best suited for his application, or design innovations and

modify the language without concern for developing and debugging software pack-

ages to compile his language.

THE GPAP SYSTEM

The machine organization for the ,associative processor is presented in

Figure 23. A relatively conventional general purpose unit (GPU) is shown,

which executes instructions ebtained from its core memory. An instructio!,

which indicates that an operation is to be performed by an associative unit (AU)

will also identify the AU, and cause the GPU to make tests to determine whether

the AU can perform the operation. 1f successful, operailon will be iniiated 1,

transfer of data from the GPtLJ to the AU to define the operation to be performed.

Also, instrfictions will be given by the GPU to the Control Unit, the Mtiltiplexor,

the AU, and to the device (which may be the GPU, itsAIf) which will supply the

data on which the AU will operate.

Inputs and Outputs of the Associative Processor may be transmitted to and

from terminals and devices through I/O Channels, which are also interconnected

8-4



Ir CL
CUC

M I

LU w
z 0.

ui~

W Vi

HI

_ _ i___J>



to the GPU and the AU's by means of paths established by the Control Unit

through the Multiplexor.

Each Asr, -ative Unit contains an associative memory, registers, control,

clocks, and a Microprogr... Sequence Memory (MSM). The MSM is the means

for specifying functions to be pbfarmed in the AU. At any one time, a MSM

contains several , icroprogram1 sequonces which it can execute on data in its

asociative memory. A MSM setjenc3 may be an algorithm for a complex func-

tion which can be done more efficiently using associative memory rather than

random-access core memory; for example it may be a text searching or inner

product algorithm. The MSM program makes the AU perform in a manner

similar to that described for a special purpose associative processor on the

particular problem type.

All communication within the system takes place through the multiplexor,

and a direct path may be established between any two elements. This feature

elimirnates the bottleneck which could occur if all data transfers were required

to pass through the memory of the GPU. However, central control resides in

the program which is executed by the GPU. Associative Units, the Multiplexor,

and the Control Unit will respond and initiate action only when commanded by the

GPU. Status information is transmitted by all functional units to the GPU, for

its use in executing instructions in the GPU program.

The General Purpose Unit, (GPU), is an advanced design general purpose

computer, current with the state-of-the-art. Its precise specification depends

on the number of associative units and I/O units attactied and the amount of

activity for the system. Since the burden of supervising control to be exercised

8-6



by the GPU is very large, the GPU will have features to optimize its capability

for fast reaction to external events. An associative memory is used to store the

systen. Is status, whereby the GPU can instantaneously determine what AU's, if

any, are inactive and can be assigned to a task to be performed. When a new

task is to be performed, its priority can be used to determine if any AU has a

lower priority task and can be preempted to service the new task.

It is assumed that the GPU, MPX, and the AU's are located in close proxim-

ity, perhaps even in the same equipment housing, so that memory to memory

transfers may be accomplis~c• at ,, . Transfers betwcen the GPU and

the associative memory in an AU take place over the same memory bus by which

the GPU accesses its own high-speed randon. -access memory. The Control Unit

uses signal paths to establish a state of "readiness to operate" in units which are

to be functionally interconnected, When a channel or an AU has correctly ze-

sponded to control instructions, the Control Unit s, the data paths for instruc-

tions and/or data to be transferred !rom the GPU to tht Associative Unit. Initial

instructions specify the task to be done and parameters of the task. Data on

which to operate may come from the GP(J or directly from one of the attached

1/0 devices, via 1/0 channels, to the Asso,.!tive Unit without going through the

GPU. The termination of a task, or the productloiN of a result in the AU which

should be communicated to the GPU, will be accomplished by sending the AU's

signal for attention to the GPU. The normal noint for a task to be completed will

be predetermined by the GPU, as an address in MSM which will be reached for

task termination. The Interrupt Control will operate when the termination ad-

dress in reached in the MSM AR. This generates a signal to be transmitted to

8-7



the GPU. The GPU monitor program will control responses to the requests for

attentioo by the Associative Units.

One (or more) of the I/O channels may be the associative channel processor

as describea in Section V. The response to queries may be transmitted directly

from the disc file Proressor, to the associative memory of an AU, where the

data can be processed by a microprogrm set up with parameters by the GPU

program to achieve a desired result.

THE ASSOCIATIVE UNIT

For generality, the Associative Unit (AU) has features which permit it to be

programmed to perform the non-numeric problems which were described in

other sections of this report. The general organizational structure is shown in

Figure 24. Input and output take place through a buffer register, which is

coupled to the memory data bus of the GPU for high speed data transfer, or to

one of the I/O channels via the multiplexor for input and output to terminal de-

vices. The GPU sends an initial command to specify what unit of the AU will be

involved in subsequent data transfer, and how many words of information will

be transferred. This command is decoded in the AU control circuitry and gates

are set to make the proper data paths operative, in and out of the buffer register.

In order to assism a task to the associative processor, the GPU transmits com-

mands to the AU. The commands are macros which contain data for sequencing

and parameters of the micro routines stored in MSM, and thus 3equence the

microroutines into a program which performs the operations. A start signal

is given for retrieving the first micro Instruction of the task. At the contlusion

8-8



we
.40
-ii-

SW

4 a U

U U Uw w iu
.- I- I-z
0 0 0
(4 U U

__________
I-
U __________

* 43
-4 -4
I

-4
43

-4

m
______ .41:

4k..

0

0-4
-3

_____________ '41
N

-4

bC
'.4
0

'-S

.3

8-9



of a task, the Associative Unit signals the GPU and awaits further instructions

on what to do with the processed data, or operations to perform.

Once a task is started, the AU operates autonomously, taking microinstruc-

tions from its MSM, interpreting them through the control logic and executing

them. The sequencing of microinstructions has been provided within the micro-

routines, and between microroutines by the macroinstructions given by the GPU.

Coding in the microinstruction specify alternatives in sequencing when conditions

in processing cause certain condition codes to be indicated.

Counters are provided for comtrolling shift operations of the Mask and Com-

pare Registers, as used (for example) in locating a pattern which may start on

any bit or character position within an associative memory word. Once the

starting position of a search pattern has been found, the same shift will be exer-

cised in subsequent word searches, when the search pattern is longer than one

word in the associative memory. Hence, the shift which was made in finding

the start of the pattern match is needed for subsequent matches. The counter

contents which specify shifts may be used as part of the compare data, and also

stored in memory as "tag data" which is to be matched in succeeding interroga-

tions for determining sequences of words in a search. The need for this feature

arises from the logic of text processing and pattern classification, where the

data in the compare register may match data words in the memory, but they are

not initially In exact alignment at memory word boundaries.

The counters, A, B, and C, each contain 12 bits, and are incremented by

time pulses from the control circuits. The countcrs are general purpose and

may be used to control shifting of the mask and compare regiLiers of the

8-10



associative memory, or to set the address register of the MSM or the AM. It

may be noted that the address register and link bits of the AM are shown as a

portion of the compare register in Figure 2G. They are loaded and unloaded

separately from the 72 data bits, and are not involved in shift operations on the

Compare Register. Through control of loading the counters, incrementing them,

and being able to specify their data transfer destination, microinstructions are

the means by which the programmer determines the function of each counter, as

explained with reference to Figure 25.

Data Transfer Control (DTC) is used to control designated transfers of data

between registers. One bit of DTC is interpreted as meaning that the three

counters are to be loaded with 36 bits (12 bits for each counter) which are ob-

tained from the MSM register whose address is given by the A1 field of the

microinstruction. This is, however, but one illustration of the interpretation

of a microinstruction.

Another bit of the IOTC, if set to "1", means that all designated data trans-

fers are to take place, including fetching an operand from a general register in

MSM (if ordered) and the sequence of designated Basis Associative Operations (BAO)

is to be executed. The DTC bits include assignment of counters to functions;

for example, the "C" counter may be assigned to supply its contents to the shift

control for the mask and compare registers. In the same microinstruction, the

first six bits indicate what incrementing should take place in each counter prior

to execution of operations, as shown in the format of Figure 25. The functions

of lYrC bits are directly concerned with data transfers whose detailed descrip-

tion would involve a level of detail not practicable at the conceptual stage of

8-11



01 2 3 4 S 14 BITS 12 SITS 12 SITS

SA A A2

DATA TRANSFER
AND CONTROL BITS

(DTC)

SCOUNTER C CON MSM ADDRESS FOR

NEXT MICROINSTRUCTIONCOUNTER S CONTROL.

COUNTER A CONTROL

0,0 NO INCREMENT MSM ADORESS FOR ALTERNATIVE
COUNTER 0,1 ADOD TO COUNTER NEXT MICROINSTRUCTION (FOR
CONTROL 1,0 SUBTRACT I FROM COUNTER BRANCH ON CONDITION, ETC.)

1,1 ADDSI TO COUNTER OR, MSM ADORESS FOR REFERENCE
TO A "GENERAL. REGISTER" (NOR-
MALLY A FETCH OR STORE DATA
OPERAND ADDRESS).

CONTROL SITS FOR THE
BASIC ASSOCIATIVE OPERATIONS (BAO)

(ONE BIT FOR EACH OPERATION)

1 CMS
2 CIA
3 MATCH
4 MT
S MR

SEOUENCE 6 &W
OF THE 7 MSEL

14 WAO BITS I AOSEL
9 RA

10 R
I! W

12 MNS
13 CMS,
14 CM

'Neo hot W op laions We e to d0 • be dau e4 ' ed • .. qe of elk* l, op.'oe .

Figure 25. Format of Microinstruction for Associative Unit

8-12



design. General functions only can be indicated, while specifying data path

width, location of gating circuits, and control circuit conditions would involve

fairly conventional design practices.

It is implicit in the description of the Basic Associative Operations

that the Link Bit Register could be loaded by either DTC bits or by 6 bits

from the contents of a MSM register. The design decision favors loading the

Link Bit Register by latter method, i.e., with 6 bits from a MSM register,

which may usually be done at the same time as the "load counter" operation, de-

scribed above. One reason for this choice is that the data content of the Link

Bit Register is not likely to change within a microroutine. This discussion

serves to illustrate the concepts and functions involved in completely specifying

the DTC bits. It is evident that details are best resolved when a detailed design

is produced for implementation by hardware. No difficulties are expected in

applying the state-of-the-art design techniques to cover the functions of DTC

bits. Further description will, therefore, emphasize the associative operations

and the logic connected with the associative memory.

Microinstructions are fetched from the MSM, to the Buffer Register, then

transferred to the Instruction Register which supplies, signals to the Control

Sequencer (CS). The Control Sequencer is also supplied with time pulses by the

TPG and the clock. The logic of the CS is to gate pulses which establish data

transfer paths and signals to execute operations on data. The most important of

these for the discussion of the AU are the basic associative operations, shown

as the BAO field of the microinstruction. The BAO bits are sampled in sequence

and transmitted to the Associative M.inory (AM) as signals to cause operations

8-13



in the memory. Since different time intervals are required to perform different

basic operations, and a giver. operation may have variable time required for its

completion, the jump from one basic operation to the nex generally depends on

receipt of a response from AM, indicating completion of the last operation sent

to it. Further explanation of the basic associative operations will be deferred

until a more detailed explanation of the memory and its logic are presented.

Microprogram Sequence Memory

The program for the associative processor resides in the Microprogram

Sequence Memory, which is initially loaded by block transfer of a program

from the GPU. The program is a sequence of microprogram instructions, pro-

duced by a suitable higher level language compiler (or interpreter) in the GPU.

Thus it is presmned that a suitable program language will have been developed,

and its compiler will exist in the GPU for producing the detailed microprogram

sequences which actually control the operation of the associative memory.

Each step of a microprogram sequence consists of one or more basic func-

tions to be performed during one Microprogram Storage Memory (MSM) cycle.

Complex operations, such as "match greatest," will require a sequence of MSM

cycles, and still more complex algorithms, such as ordered retrieval, will re-

quire sequences of complex operations. The MSM is used functionally as a read-

only memory in the Associative Unit operations, but it can be written by the

GPU. Thus, the assignment of a task, or special-purpose function by the GPU

must be preceded by transmittal of the appropriate MSM sequences, to guide

the further processing operations of the Associative Unit.

8-14



The MSM is a "conventional" random access memory which stores micro-

program words, or instructions. Its contents may be completely changed by

reloading it from the GPU. The advantage of a random access memory for the

MSM is in the capability to alter the processing function of the AU by compiling

a new microprogram sequence in the GPU; specialization of design is then ac-

complished by software and by establishing a library of microprogram sequences

through which many specialized designs may be accommodated in one Associative

Unit. The greatest advantage of a MSM with read/write capability will be real-

ized in the early stages of GPAP usage, when the detailed design of specialized

functions is still in the development stage. Thus, the choice of a conventional

random-access storage over a read-only storage seems to be justified.

The capacity (number of words) of the MSM is determined by considering

that i. 4esirable to minimize the amount of communication of the AU with the

GPU. The cost of random-access core storage generally favors increased core

storage as opposed to additional logic and the loss in effective computing time in

both the AU and the GPU to deal with interruptions of processes. The capacity

of the MSM will provide for storage of a set of sequences which could include

all functions necessary for the text processing problem. The width of the MSM

is determined by considering the number of basic functions for which control

signals may be developed &dring one MSM cycle, and the requirements for se-

quencing, branchirg, testing conditions, etc.

Physically the MSM may be considered to have improved characteristics

compared with present day fast scratctpad memoriees witb an order of magni-

tude greater capacity. Thus, a read/write cycle time of 200 nanoseconds or

8-15



less and an access time (for read only) of about 100 nanoseconds will be as-

sumed. A capacity of at least 2048 words, of 36 bits each, or 1024 words of 72

bits each will be required. it is expected that magnetic core technology will

still have economic advantages in memories which do not require a significant

combination of the logic and storage functions; hence, while integrated circuit

technolegy is postulated for the associative memory, magnetic technology is

postulated for the MSM if the timing requirements can be met.

Another important use of the MSM is the program controlled use of MSM

for general registers; i.e., registers for storing intermediate and final results

of processing, or data and constants which will be needed for problem execution.

Some consideration was given to including more registers i:. the Associative

Unit; one might desire two or more sets of Mask-Compare Register pairs for

complex searches. For example, the contents of one Mask/Compare might be

stored in all Associative Unit words which match another Mask/Compare pair.

By the ability to designate certain MSM registers as pseudo Mask/Compare

pairs, and transfer these in and out of the physical Mask/Compare r,:;isters,

the same capability can be obtained, but at a sacrifice in speed.

Associative Memory

Central to considerations in the design of the associative processor are the

basic associative operations which are to be per formed on data in the memory.

This philosophy emphasizes that once the basic associative operations and the

memory, itself, are specified, the necessary control signals for memory opera-

tions are revealed. Then the registers, data paths, and control signal generation

8-16



can be specified as necessary to support translating a machine instruction set

into the proper operations on the associative memory. The basic associative

operation set was derived from the earlier studies and individual machine de-

signs for selected non-numeric problems; the text processor being especially

significant in this regard. Conclusions were reached about the structure of the

associative memory and its basic associative operations.

L The prime associative operation is, of course, a matching of the con-

tents of all words in the associative memory against some configuration of binary

variables in an associated data register. In addition, it is desired to be able to

indicate linking between contiguous words which are matched on successive

matching operations against a string of data.

2. While stored data may be accessed associatively, extrinsic (or lo.aLion

addressing) means are also desired. The need to locate data by its storage loca-

tion, especially by Its distance from some other datum, arises in text processing.

Also, extrinsic addressing simplifies other munctions, such as input/outpuAt.

3. It is desired to be able to read or write any number of selected bits in

words -hich meet the match test d-scribed in 1. Furthermore, the read or

write operation should be performed on a single word, if desired, or simultan-

eously on all words which match tie criteria specified by a data registe. and a

mask register.

4. The evaluation oi the result of a matching operation is required to de-

termine if there was one njatching word, more than one, or exactly how many

words _n the associative memory met the matching criterion. Since the match

resolution consumes time, this is to be a program controlled operation and is not

performed automaticaljy after each match operation.

8-17



5. A sufficient (but small) set of basic associative operations is required.

Complex functions may be performed by designing logic within each word cell of

the memory, but such complexity tends to over specialize the memory and addi-

tional components required quickly reach orohibitive proportions. More complex

operations than those indicated in 1-5, will be done by algorithms employing

the basic associative operations.

6. The associative memory capacity is, nominally, taken as 4096 words

with 72 data bits each. In addition, each word shall have cells which store the

match status, the "match select" status, and the linking status by which con-

nectivity or chaining can be determined.

The Associative Memory is shown in Figure 26. For the sake of discussion,

the memory is assumed to be 4096 words, with storage capacity of 72 bits for

each word. A word may contain 72 data bits, or it may contain fewer data bits

if scme bits of each word are required for tagging memory registers. The

functions of tag bits, their location and the number of them in each word is a

program controlled function; a dashed line is shown In the storage to indicate

that the division of storage into data and tags is a flexible boundary. The mem-

ory is divided into two functional parts: Storage and Word Operat±ic Logic.

For each register (or word) in memory, there ore directly associated compo-

nenta in each part which belong to the register. The functional division may
\

also be a physical division, since a different technology may be chosen to imple-

ment each part, with, p.arhaps, economic advantages in doing so.

In view of the many efforts and promises to develop cheaper, faster mem-

ories by plated wire, ferrite slab, thin-film, and other magnetic technologies,

8-18



7172 83 84 85 86 87
ADDRESS ,L, L 2 M MS

I Ii il

STORAGE SECTION , , ,
(DATA CELLS) WORD OPERATION

I LOGIC I
' I (CIRCUITRY) I

I 
.11DATA 4__,.i.tAG Ili

"FIELD , FIELDa I
I I

I I iII

ASSOCIATIVEMEMORY (AMI

0 7.72 83 854

MASK REGISTER (AMM,)

COMPARE REGISTER (AMCR) :
ADDRESS LINK)

FIELD ITS

Figurp 26. The Associative Memory

8-19



one of these may be selected to implement the storage part of the associative

memory. It is assumed that the expectations for monolithic integrated circuits

will make them economically feasible for the circuitry of the Word Operation

Logic, certainly by the 1970 era. In fact, it may be expected that the entire

associative memory may be comprised of monolithic integrated circuits in a

not-too-advanced time era, if some predictions for this technology are realized.

Accordingly, the functional division of the Associative Memory is, at least, a

division into a part which is data cells and a part which contains circuitry and

logic by which operations are performed in the memory.

The concept of a mixture of technologies in implementing the memory can

be extended here to include the use of a read-only type storage for the address

part of each word. Since the address will not be required to change during

operation, a~tive cells are not required. A caution in exploiting the use of

mixed technologies is the usual problems of hicompatabilities of electrical

signals required by devices; this matter has not been investigated during the

present study and comments regarding mixed technologies are, therefore,

advanced as idea& to consider for future study.

While storage of the register address, i.e., the conventional sequential or

random-access address, is shown in the circuitry, it could be omitted and 12

bits of the data portion could be used for addressing registers in those applica-

tions which require extrinsic addressing. The functions which involve the address

would thev be donc by algorithms, instead of by circuitry as described herein.

However, it was felt that the PN antages of hardware for addressing are suf-

ficient to warrant its inclusion, as we will discuss in describing -he functions

performed with Word Operation Logic.

8-20



The Mask Kad Compaiee,. viste"s are used in what is now a "conventional"

way for asociativt . M'xit is a "I" the corresponding bit

of the Compare Registei is Ased to •'• rinine whether a match on "1" or "0"

is to be tested for the corr17 -. a1ding , c.:ry word in the associative

memor"v. It will be noted th.... ae wa• and Compare registers overlap the

address field and bits L and L ot the Word Operation Logic. By overlapping

the address field, word selection is -.iabled since the Match Bit (M) will be set

for only that word in storage whose Address Field matches bits 72 through 83

of the Compare Register when the corresponding bits of the Mask Register are

all set to "I". By setting a "1" in bit 72 of both the Compare Register and the

Mask Register, and all "0's" in the bits 73 through 83 of the Mask, one half of

the memory words will be set to "Match" in a Compare operation; similarly

other "areas" of memory can be selected and identified, if it is desiraible to

do so, by using partial addresses. Bits 84 and 85 of the Mask and Compare

Registers are "link bits", whose operation -will be evident in the description of

the basic associative operations, next.

BASIC ASSOCIATIVE OPERATIONS

Each basic associative operation may be programmed as a bit in a micro-

instruction, and the operations are executed sequentially during executi.c of each

microinstruction. This section describes the basic associative opera , t-

provide information needed by a programmer if the machine were to be built.

Reference should be made to Figure 28 in reading this section. Also, the

8-21



definition of "word state" is needed. The word state is expressed by the con-

ditions of two flip-flops, MATCH and MATCH SELECT, for each word of the

memory. Basic associative operations are effected by control signals from the

Control Sequencer of the Associative Unit, but the operation is performed on a

given word only if its state is in the required condition.

1. Clear Match Select (CMS) If the MATCH SELECT flip flop is "on" it

will be turned off: i.e., if the word state is either (0, 1) or (1, 1) then operation

takes place to make the resultant word state (0, 0) ý- (1,0), respectively.

2. Clear Match (CM) For all words of the memory, if the word state is

(1, 0) the MATCH flip flop will be cleared and the resultant word state is (0, 0).

Note that a word whose state is (1,1) will not be affected; this provision allows

programmers to operate on words and leave them in the (1, 1) state if they wish

to eliminate such words from being processed by succeeding operations.

3. Match (MATCH) The MATCH operation sets the MATCH flip flop of

all memory words in the (0, 0) state, so that they go to the (1,0) state. An

interrogate signal is generated which samples gates on each data bit of the

words which make the transition (but not on words which were previously in the

(1,0) state). The interrogate signal will be gated as a NO MATCH signal for

any data bit which does not agree with the unmasked data in the 74 bits of the

Compare Register, of which 72 bits are the data portion and 2 bits are the link

bits, L1 and L2 . The result of a NO MATCH signal from the gated interrogation

signal Is that the word state reverts to (0, 0); otherwise, the word state remains

as (1,0). In a word which was not reset to (0, 0), the delayed interrogate signal

sets bits L1 and L2 of that register, the preceeding register, and the following

8-22



register according to the oontents of the Link Register. Recall that the Link

Register was specified as 6 bits. The first two bits control L 1 and L2 for the

preceeding register; the second two bits for the matched register; the third two

bits for the next register. Furthermore, control of Link bits is "set" only, not

reset, and the setting of a link bit is an OR of the conditions which can set it.

For example: if the contents of the Link Register are 100110, then the L bit

in the preceeding register to each match register is set, the L2 bit in each

matched register is set and the L1 bit in each following register is set. If the

match field contains ABC and storage is as below, then the storage will be as

indicated after the match operation for the above link register configuration.

Match Field/ Ll-bit/L 2 -bit/M-bit

ABX 0 0 0
ABY 1 0 0
ABC 0 1 1
ABD 1 1 0
ABC 1 1 1
ABC 0 1 1
AXY 0 1 0

4. Match Test (MT) A "match test" signal is emitted (from the Control

Sequencer) which polls the state of words in the memory until one is found in

the (1, 0) state, then the signal is gated through the word logic and returned as a

"match" signal to set a "match status" flip flop in the Control Sequencer. The

"match status" Is one of the conditions on which the current (or a successor)

microinstruction can be programmed to select an alternative address for the

next microinstruction. If no word in memory is in the (1,0) state, the match

status flip flop is reset by a signal from the last memory word to be polled. No

word states are changed by the MT operation.

8-23



5. Multi Read (MR) The contents of all memory words in the (1,0) state

are writtezn (as a Boolean OR) into unmasked bit positions of the Compare Re-

gister. No.word states are changed.

6. Mu!'i Write (MW) The contents of unmasked bit positions of the Com-

pare Register are written into corresponding bit positions of all memory words

in the (1,0) .-t.!te. No word states are changed.

7. Match Select (MSEL) A "fIrst-match test" signal, emitted from the

Control Sequencer, polls the state of memory words in succession, starting at

the lowest address, until ? word in the (1,0) state is found. The first word in

the kl, 0) state is ch-. .aed to the (0, 1) state and returns a "first match set"

signal to the Control Se,,aeacer. If no word is found in the (1,0) state, a "match

status reset" signal i, ,f"tmrned to the Control Sequencer.

8. Address Select fATEEL) The memory word whose extrinsic address is

the unmaskeo -or-.on ot Li Address Field of the Compare Register will be set

to the (0, 1) stawe, n- matter what state it had been in.

9. Read Address (fA) "'he extrinsic address of a memory word in he

(0, 1) state ia transuerred w ith lkdddress Field of the Compare Register. If

more than one memw ry word is wn the (0, 1) state, the contents of the Address

Field will be a logicaL OR (A the binary representation of the addresses of

those words. T he wor& haate is changed from (0, 1) to (1, 1) by this operation.

10. Read (R) The anmrased bit.- of the Compare Register are set to match

corresponding bits in a :zaemory word which is In the (0, 1) state. If more than

one memory woro is in tl* - , -itate, the read-out results in an OR of the

contents of thosc wordi i&to the C )mnpre Register, giving a "selective multiread"

.- 24



capability, but the expected usage of the read operation is to transfer the con-

tents of one memory word, only, to the Compare Register. The word state is

changed from (0,1) to (1, 1) by this operation.

11. Write (W) The unmasked bits of the Compare Register are written in

any memory register which is in the (0,1) state. The word state is changed

from (0,1) to (1, 1) by this operation.

12. Set Match Select (SMS) Any memory word in the (0, 1) state, as a re-

sult of a previous MATCH, is put in the (1, 1) state. This provides a useful

means for selecting registers (by MATCH) and putting them into an inactive

status, i.e,, into the (1, 1) state, from which they can subsequently be recalled

by a CMS operation. The word state is changed from (0, 1) to (1, 1) by the SMS

operation.,

Word Operation Logic

The associative memory and electronics associated with its operation are

indicated in Figure 27, with detail for only enough of the logic to indicate what

is involved in basic associative operations. Assume that some data configuration

exists in the Associative Memory Compare Register (AMCR), and in the Asso-

ciative Memory Mask Register (AMMR). An interrogate signal, simultaneously

applied to all words in the memory will test each data word to determine if its

data uva~ohes the unmasked data in AMCR. A signal will be produced for any

word in which one or more bits fail to match. The No Match signal is input to

the Word Operation L•gic, which is designed to control operations on the word

8-25



I Z

Rawa

fill, Ha

B-26



with which it is associated. The Word Operation Logic performs functions to

coordinate and respond to processor control signals. Further explanation of

the Word Operation Logic will clarify the role of the basic associative opera-

tions and make their meaning more precise, but before proceeding further the

reader is reminded that the design intent was to leave open the selection of

specific technology, at least for the data storage part of the associative memory.

The logic as shown here is intended to indicate logical functions, not the specific

implementations of them, which would, in implementation, take best advantage

of characteristics of the chosen technology.

The Word Operation Logic (WOL) exists for each word in associative memory.

One set of inputs to WOL is from two flip flop cells in the associated word, which

are called Match and Match Select. Match indis-ates whether the contents of the

word agree with the unmasked data register contents in a prior interrogation of

the memory. Mptch Select indicates whether the word has been selected for an

operation successive to the matching process. Other inputs to WOL are the No

Match signal, emitted when the AM word fails to match the masked data register,

and control signals from the processor which depend upon the microprogram

being executed. The control signals, in combination with the logical state of the

word, denoted as (M, MS), determine the next state of the word. To further

explain the response to control signals, consider Ftoure 28, in which the sord

states are shown as (0,0), (0, 1), (1,0 ) and (1, 1) to indicate the states of M and

MS. Transition from one state to another is made on occurrence of a command

signal, as indicated.

8-27



MATC

Figure 28. Associative Memory Word State Transition Diagram

8 -28



The Word Operation Logic also sets the "link bits", L1 and L of _ .h word,

when appropriate conditions are met. As a result of per )rming memory inter-

rogation on a MATCH command, L1 and L2 arc set according to the contents of

the Link Bit Register. Thus, L 1 an(' L2 may be set by either of the words con-

tinguous to the word in which they belong.

The state (0, 1) is unique in the respect that one, and only one, word of the

memory may be. put in the (0, 1) state at one time. A Match Select (MSEL)

operation must procede a read address operation, or a read or write operation

which is to be performed on one word only. Note that an address select com-

mand always sets the state to ,n, 1) for the selected word, no matter what state

i was in prior to the address select. All conditions which prepare the memory

so that a unique selecteck e'ord is to be operated on must leave one and only one

word in the (0, 1) st,

The microp-ogrammer provides the proper command cquence. For

example, the sequence

(1) Clear Match Select (CNIMI

12) Clear Match (CM)

will always put the words in the (0,.. state; in ft thest' two operations can be

done at one time by Clear Match and Clear Match Select hits in a single micro-

inst!%ction. The operation following this may be an Address Select (ADSEL) or

a Match, Match Select (MSEL) sequence to obtain one word of the memory in the

0, 1 state.

Multi-tead (MR) and Multi-- rite (MW) capability can be properly used

o~dy when h,, ..ords to be operative in the read or write are in the (1, 0) state,

8-29



and all other words are in some state other than (1,0). If all (or even some)

matched words have been operated upon by operations on a word-by word basis

Read, Write, or Read Address) and it is desired to start a new operation, it

is unnecessary to Match again if the match criteria have aot changed, since the

CMS signal will restore all words in the (1, 1) state to the (1, 0) state.

Note that Set Match Select (SMS) changes the state from (1,0) to (1, 1). This

operation may be used to initially select a set of words (by Match) and then tem-

porarily exclude them from any other operation. SMS will not be operative on

any word not in the 1, 0 state. The usefulness for set theoretic operations can

b~e illustrated by considerinf '.hat all words of memory can be matched on char-

acteristics A and B; then P IS command is given to eliminate all words in the

conjunction of A and B. Fo) wing this, separate matches on A and B will give

the sets A9 and _AB, respectively. If desired, the membership in each of the

thiee sets AB, AXB, and XB, could have been tested by algorithmic counting;

if these three sets are included in a large set whose membership is also re-

quired, it, too, can be identified by MATCHt operation and a following sequence

of MSEL and counting operations. This sequence of operations is suggested,

for e:ample, in pattern classification programs.

Another capability for setting aside words wnich are not to be considered

in a successor operation is through the use of the tag bits whic'i the programmer

may define in the data part of the memory. The procedure would be to first

identify words to be set aside by a Match oy'r-qtion. Then Multi-Write a tag

bit far all matching words. The set ip for the next operation would include

8-30



writing a "1" in the AMMR and a "0" in the AMCR for the tag hit, so that no

words previously tagged in this bit position could be set to a Match State.

The use of linking is through a successful MATCH operation, and the ap-

propriate setting of link bits in AMCR. The setting of link bits L and L.,

for word n in the memory may be accomplished through a match on word n,

word n+l-, or word n-i, depending upon the contents of the Link Bit Register.

This operation is, thus, dependent on programmed control, and has been in-

cluded in the Associative Unit by considerations which were found to ie sig-

nilficant in the text processing and pattern classification studies.

MATCH SELECT i4G a signal which polls the word iog: for each word in

succession, until a word in the (1,0) state is sampled. The first word in the

(1, 0) state is set to the (0, 1) state and a response is transmitted to set the

,MATCH SET flip flop, transmitting a signal to the AU control unit. The time to

find the first word which matche3 is, therefore, primarily the transmission delay

in propagating the MATCH SELECT test pulse plus the time to turn on the .,ip

flop. MATCH TEST is similar to the MATCH SELECT; it polls the word logic

until a word in the (1, 0) state is found and, then provides a response indicating

that a match does exist in at least one memory word. MATCH TEST does not

alter the state of any word.

SUMMARY

The design of the associative processor has been carried to the point where

a conceptual description has been presented, the basic operations (or "machine

8-31



language") have been defined, and the logic at the memory word level has been

indicated. By drawing on the experience acquired in specifying machines to solve

selected non numeric problems, decisions on functions to be included in the as-

sociative processor have been made with a view to enhancement of non numeric

processing capability. This capability is required for certain intelligence sys-

tem functions. Thus, the basis has been established by which a hardware imple-

mentation could proceed. The choice of technology for the associative memory

elements is left open, since the state-of-the-art is dynamic, and promising
1

developments may be imminent in both magnetic technology and integrated cir-

cuits. 2 ' 3 Nevertheless, the design has been specified sufficiently so that logical

design would follow by the use of state-of-the-art design techniques, from the

description of the logic at the memory word level.

The complete design of the associative processor would require many more

details than presented in this report. The microinstruction format, as given in

Figure 25 is not completely specified and lacks detail which would indicate all of

the possible ways to transfer data in preparation for executing a sequence of basic

associative operations. The complete specification of the machine and its use

would also require detailed description on the generation of microroutines and

1. Rajchman, J. A., "Memories in Present and Future Generations of Computers",
IFEE Spectrum, Vol. 2, No. 11 pp 90-96; 1065.

2. Phillips, A. B., "Monolithic Integrated Circuits," IEEE Spectrum, Vol. 1,
No. 6 pp 83-102; 1964.

3. Richmond, W. H., "integrated Circuits for Commercial Computers," Data-
marion, Vol. 11, No. II, pp. 29-33- 1965.

8-32



Section IX

CONCLUSIONS AND RECOMMENDATIONS

Six associative processor designs have been presented; tive of these are

special-purpose processors designed to include features which optimize Pro-

cessing in certain selected problem areas, and one is a general-purpose asso-

ciative processor. All designs included at least one associative memory and the

capability for parallel processing by performing the same operation simulta-

neously on all words in the memory. The emphasis throughout the study was on

the characteristics and significant features of the problems, and a unique pro-

cessor was designed for each problem. However, it was possible to identify

characteristics which the different designs possess in common, and these

characteristics are included in the general-purpose processor.

The most important ditference in concept, in the transition from individual

special-problem processors to the general-purpose associative processor

(covered in Section VIII), is the departure from the view that a general-purpose

computer is~associated as a cortrolling computer with an associative memory.

Instead, a relatively autonomous Associative Unit is propoced, containing its

own "stored-in" program sequences to guide its operations through a set of

cornr'lex tasks. The controlling General Processor Unit requires minimal time

for communication with the Associative Vnit, generally at the start and com-

pletion of a task, but not during performance of a task by the Associative Unit.

9-1



In the design of an asociative file processor unit (ste Section V), it was

recognized that the most slv-.1 flcant gains could be made by devising means

wnii. minirr'ze the amount of data transfer to a central processor. The capacity

!x the bulkl iiore was considered tW be of the order of 80 mi~iion 8-bit characters,

i. e., much greater than would be reasonably assumed for an associative memory

nut repres-,,tative of the capacity required for data files in military command

,and intelligence systems. Li conventional systems, techniques have been devel-

oped for directly positioning the access mechanism to read records that contain

data to be tested for values of specified parameters (or fields) and combinations

of these parameters, which are usually expressed in terms of Boolean connectives.

However, a large number or records must be transferred from the bulk file to

the CPU (which makes the logical and numeric checks to select those qualifying

as responses to a query). In some cases, the amount of data transferred in

searching can be reduced byindexing and chaining techniques. However, such

techniques reduce overall system efficiency by substantially increasing the time

required to add new records. The associative file processor retains the capa-

bility for using indexes in the CPU by which the disk access mechanism is

positioned so that only records relevant to the query will be read, but associative

cireuitry has been designed so that field values in the records are compared with

qiery pararetars while reading the records. Thus, it is possible to select only

qualifying records for transmission to the CPU. This results in a very signifi-

cant saving in transmission time, usage of CPU random-access memory, and

CPU processing time.

9-2



The results of the formatted file processor study have importance beyond

the objective of designing a general-purpose associative processor. A bulk file

unit of the type described would be a significant benefit to a conventional data

processing system as well as to an advanced design; it might be regarded as an

"intelligent channel" when compared with present-day usage and access to bulk

files via computer data channels.

The problem of pattern classification (discussed in Section VI) was studied

with the object of deriving the mathematical formulation of the problem in terms

of operations which, if implemented in hardware, would facilitate solution of

the problem. Measures of "similarity" derived in various independent efforts

were considered as models of the classification process, and their defining

parameters were put on a common basis. This was possible despite the fact that

the different models cannot be derived from one another. The required capa-

bilities were found to be:

1. Ability to rapidly calculate sum and intersection functions of vectors
with binary components,

2. Ability to rapidly find subsequences of vectors which match given
sequences.

3. Ability to compute rapidly the inner product function of two vectors
having positive integers as components.

While it is considered reasonable to implement the second capability in hard-

ware, it is very doubtful that the cost of hardware implementation of the other

two functions would be justifiable. In the final design, an algorithmic method of

obtaining the first and third functions to recommended.

9-3



Significant increases in operating speeds are possible in the implementation

of an associative processor for the solution to the data extraction problem. It

was observed in Section 11 that the problem is logically divided into three func-

tional segments: Text Input, Text Search, and Formatting and Output. The first

of these is concerned with the initial editing of the text as it is received in the

processor, the second covers the area of the actual extraction of the data from

the text, and the third relates to the process of formulating the actual output in

the manner desired by the user.

The gains to be made in the parallel processing of textual data result from

the feasibility of searching in parallel for several items similar in format,

Additional gains are possible when one considers processing more than one

similar document at a time. The systerm throughput time for documents other

than the first few in any batch would be diminished, since the performance of

later functions could be overlapped with performance of input functions.

At a slightly more detailed level, the processor is organized in a manner to

facilitate the processing of strings of characters using the shift capability of the

mask and compare registers. The organlzatlon of the storage into single chrx-

acter cell- further reflects the character-orlented nal ire of the problem. The

examinat-on of characters and strings of characters may proceed at the charac-

ter level or at the bit level by means of the mask capability designed into the

processor. This impnoes no arbitrary restriction on the type of manipulation

available to the user of this processor and opens the way to extensive manipula-

tions of the data not easily done on more conventional organizations.

9-4



The design of an associative processor for dictionary search processing

(described in Section III) was based upon the premise that major gains would be

possible if the effective data processing rate in the processor could be increased.

The design results from the consideration of the data flow in such a system.

Significant gains result from the parallel searching by the memory unit involved

and from the technique of performing, in parallel, the separate functions of dif-

ferent phases of the process. The properties of the text yield clues to the

solution of the second part of the problem in that a large proportion of the text

with respect to the actual terms used is redundant. This is because a small

percentage of unique words (types) account for a large percentage of total words

(tokens) in narrative English text. Samples studied indicate that less than 1

percent of the unique words (e.g., THE, OF, A, FOR) account for 45 to 50 percent

of the total words: 99 percent of the unique words represent the remaining 50 to

55 percent of LUe text.

This techniue of parallel processing by means of an extra, high-speed

module in the processor can yield a gain of 50 percent in the overall processing

time for the dictionary task. This decrease in the processing time will be in

addition to the gains real'szed from the associative properties of the processor

embodied in the main processing element. The suggestion for processor design

is that dictionary search be done in two phases: a small high-speed memory for

the 1 percent of the unique words and a larger memory for the remaining 99

percent.

The memory unit of the input processing module as well as that of the

dictionary processing module has the capability of linking adjacent registers of

9-5

ri



the memory during the search. This allows the programmer to ignore the

problem of packing 4is data in some special code in order that the data will fit

compactly in one register. The requirement for algorithmic retrieval or storage

of an actual address of the corollary information desired is eliminated by this

feature. Thus, additional information about some word can be stored in the next

highest register in the memory, and the program merely "links higher" on exact

match to be able to extract this information without having to know its address in

the memory.

The design of the associative processor for the compilation of statistics on

textual material (covered in Section IV) is related in organization and function to

the dictionary processor. The relation of processing speed between the two

subprocessors Is similar in each of the above processors and is so for the same

reasons. The associative processor is therefore organized to take advantage of

the same potential time savings found in the dictionary processor. The design

is oriented to take advantage oi the possible reduction in data flow to the central

processor and at the same time to accomplish this reduction in data flow in par-

allel with the operations of the central processor. Thus, the design allows for

the word breakup processing and identification of the highest-frequency words

in paraP!e' with the looking up of words already found and placed in the dictionary.

The preprocessing of the text in the first processor results in a decreased data

flow in the second proce'dor. Since the first processor is also independently

programmed, the table of special words and definitions of word boundaries may

be changed to reflect the characteristics of the current data sample.

9-6



The results of several studies thus indicate that the concept of one or more

small general-purpose associative processors of varying speeds and capabilities

located in the data flow path would be highly desirable. This is evident in the

overall simplification of the programming of the system that results, and in the

-, overlapping .mrid consequent net decrease in the number of operations that each

processor is required to execute for this task.

The results of the study of the associative processing designs and techniques

z.•!ea- to nnm-nmmeric data processing indicate that there exist severai areas of

investigation requiring further study. The development of the concept of the

associative channel processor, with the resultant savings in operation times for

file processing, is a prime area for additional design effort leading to the con-

struction of a feasibility model. This model would use current technology and

could be implemented for use with a variety of general-purpose processors.

The adaptation of this concept for use with current hardware does not preclude

its use with associative hardware of the future. Such processors, described in

Section VIII, will enable the search procedure to be made even moriQ effective

than it is in conjunction with the current hardware available as a general-jpurpose

computer. This Improvement can be accomplished by means of more sophisti-

cated techniques for analyzing the queries to be sent to the channel processor for

search of the file. Aspects of the queries that are parallel can be detected

currently with very laborioub techniques, which -ould cut down nm th overall

speed increase available from the use of thts device %1t0 a conventional

processor.

9-7



i

I

It is evident that, while the associative file processor is being developed.

considerable gains are possible from the study of advanced probiems and the

techniques for their solution both on current equipment and on associative and

non-associative equipment of the future. Using extensions of the problem

models (as stated in Sections II through V), techniques can be developed for

exploiting information inherent in the data that it is not now practical to extract.

The problem of automatic data extraction is currently critical in a number of

areas and will become more critical whan optical character readers are per-

fected and more widely used. An inct ..ashig number of formatted and send-

formatted reports are being produced aod transmitted, with an increasing need

for techniques to extract data from these reports for storage and display.

Because processing requirements on current machines are excessive,

they appear to be a prime candidate for the application of, and techniques

developed for, associative hardware. Together with the associat'.ve charnel

processor mentioned above, tV.Is hardware would add capability to large for-

matted file systems and improve their effectiveness.

9-8



L
APPENDIX I

ADDITIONAL INSTRUCTIONS

LINK RIGHT Each bit position of the compare register correspond-

ing to a ,,I,' bit in the mask register is compared to

storage. A link bit is set to one in the next adjacent

registers to those registers where all ';compared" bits

matched. If the resk. bit in the instruction is I and a

mismatch occurs, the link bit is set to zero, othcr.wise

the link bit is unchanged on a mismatch. A correspond-

Ing bit may oe set or cleared in the matched register

by inclusion of another one bit in the instruc-tion.

Format: LRi, j

LINV' LEQ FT Each bit position of the compare register correspond-

ing to a "1" bit in the mask register is comparcd to

storage. A link bit is set to "1" in the preceding

adjacent registers to those registers where all "com-

pared" bits matched. If the reset bit in the instruction

is I and a mismatch occurs, tie link "It Is set to zero,

otherwise the link bit is zinchanged on a mismatch. A

corresponding bit may be set or cleared in the matched

reggi.ter by inclusion of another one bit in the instruction.

Format: LLI, j

A-I



"TNTTERSECT Erch bit position of tire c;npare register corr- sp )ornd -

in, to "1" bits in the mask io.Oier is comparlM to

storage logically. A pulse is generated in the first

counter position for each matching position in the

memr ry register. A delay is made for each storage

bit. No pulses are generated when corresponding

positions do not match.

Fora.zt. IN

NEAREST MATCH The contents of the compare register corresponding

to "1'" bits in the mask register are compared numeri-

cally to each storage register. A match bit in the

register(s) having the smallest numeric difference is

(are) set to one. Bit positions of storage corresponding

to "0" bits in the mask register are ignored.

Format: NM

%,L\TCII GREATER The contents of the compare register corresponding to

"1" bits in the mask register are com,'pared numerically

to each storage register. A match bit is set to on(, in

each storage register exceeding the compare register.

Bit position of storage corresponding to "fe" bits in the

mask register are Ignored.

Format: MNW

A-2



MATCH LESS The contents of the compare rempster (orr(tsponding tol

"1" bits in the mask regster arc co..mpared numerically

to each storage register. A match bit is set to one in

each storage register exceeded by the compare register

bit positione of storage- corresponding to "$" bits in the

mask i-gister are ignored.

Format: 'viL

CLEAR COUNTERS The counters in memory wnhue corresponding match

bit(s) is (are) set are set to zero. When no bit(s) is

specified in the instruction, all counters are set to

zero. (main memory only)

Format: CCNI, N2 ' . , Nk

INNER PRODUCT The bits of cach character position of the comparison

register corresponding to "I" bits in the mask register

are multiplied against the corresponding character

position in small storage. The resultants are accumu-

lated in accumulator registcrs associated with each

storage position. (Smaii ifltztt'y" ,,liy)

Format: IP

TANSMIT N consecutive cells of storage are transmitted from

main storage to high speed storage. Transmission

begins at the first cell in which the T-ma t ch bit is set

A-3



and -tinucs for the qmaller of the following numbers

of cells; the number N, specified In the Instruction, or

the our-bor K, of cells available In the higt apeed

memory. Starttng position in high speed memory is

specified In the Instruction. The T-niatch bit is turned

off !n main memory when data transfer co'nnionrccs.

Format: T, N, K

CLEAR ACCUMU- The accumulators in memory whose corresponding bits
LATORS

are set are set to zero. When no bits are specified in

the instruction, all i~ccumulators are set to zero.

(Small memory only)

Format: CA, Nl, N

A-4

II



BIB[I l);R(AtII'I

Ahrons, I. W. , Burns, L. L. Jr. , 'Superconduct i-, M'm,,ri,'< , ('.(omPLut r
design, p. 12, Jan 64.

Air Force Systems Command, "Implicitly Programmed Systems Working Group,"
Vol. U, USA-L Exploratory Development Program In Information Process-
ing Technology, AFSC, Wash. D.C., Al) 458 660, DIV 32/1, Oct 64.

Alexander, D. C., Dennard, R. It., Post, V. L., "A Delay Line Approach To
Associative Memory," IBM Advanced Systems--Endicott, N.Y., 17.022,
May 61.

Almendinger, V. V. , "Span Reference Manual (Systerm Oprntionl (Statistical Pro-
cessing and Analysis)," SDC, Santa Mc ica, Calif., AD 613 284, 30/1,
32/1, Feb 65, 33 pp.

Almendinger, V. V., "Span Reference Manual Data Files Manipulation and Pro-
cessing," SDC, Santa Monica, Calif. , AD 613 289, DIV 30/1, 32/1,
Mar 65, 92 pp.

Amdahl, G. M., "New Concepts In Computing System Design," IBM Research,
HC-526, IBM CONFIDENTIAL, 5 Au, "Ii.

Am%-hl, G. M., Blaauw. G. A., Brooks, F. P. Jr., "Architecture of the IBM
Svstem/360," IBM Journal of Research and Development, Vol. 8, No. 2,
Apr 64.

Anderson, J. L., "Search on Range Aisociativ-c Memory" !2M '"-?h. ni5•k's ,,
Bulleiin, Vol. 5, No. 5, Disclosuie #75,627, Oct 62.

Andercon. J. P., "A Computer For Direct Execution of Algorithmic Languages,"
Proc. EJCC, 61.

Anderson, J. P., et al, "D825 - A multiple-Computer System for Comma:nd
and Control," Proc. FJCC, 62.

Aoki, M. , Estrin, G., "The Fixed-Plus -Variable Computer System In Dynamic
Programming Formulation of Control System Optimization Problems -

Part I," RPT. No. 60-6;,, UCLA, May 61, 33 pp.

Auizieni8, A. , "Signed-Digit Number Representations for Fast Parallel Arithme-
tic," IRE. Transaction on Flectronic Computers, Vol. EC-10, pp. 389-
400, Sept 61.

Baldwin F. R., et al, "A Multiprocessing Approach To A r-arge Computer
System," I"M Systems Journal, Sept 62.

Ball, J. C,, et al, "On The Use Of The Solomon Parallel Processing Computer,"
FJCC, 62.

B-1



Barbieri, R., "Computer List Processing Languages:," IBM Data Systems,
Poughkeepsie, New York, TR 00. 1209, 11 Nov 64.

Barnard, J. D., Behnke, F. A. , Linquist, A. B. , Seeber, I. I. , "Structure

of a Cryogenic Associative Comptuer," 113M Data Systems, Poughkeep-
sie, New York, TR 00. 1050, IBM CONFIDENTIAL, 23 Sep 63,

Barnum, A. A., Knapp, M. A., "Computer Organization," spartan Books, 63.

Beatty, J. C., "On Some Properties of the Semi-Group of a Machine Which Are
Preserved Under State Minimization," IBM Research, RC-1199,
22 May 64.

Beatty, J. C., Muroga, S., "File Memory Addressing," IBM Research, RC-
1282, IBM CONFIDENTIAL, 18 Sep 64.

Behnke, F. A., Plonsky, A. T., "Associative Storage Techniques," IBM Kings-
ton, TP 61-1376, AF-30(602)2161.

Behnke, F. A., Plonsky, A. T., "Associative Storage Technology," IBM Kings-
ton.

Behnke, F. A., Rosenberger, G. B., "Cryogenic Associative Proc,-'or," Fixual
Report, IBM-Kingston, New York, RADC-TDR-63-432, AF 30(602)2608,
IBM CONFIDENTIAL, 3 Sep 63.

Belady, L. A., "Measurements on Programs - One Level Store Simulations,"
IBM Research, RC-1420, IBM CONFIDENTIAL, 15 Jun 65, 67 pp.

Bennett, R. W., Julius Bergcr, H. Y., "A Special Purpose Microprogram For
The Preprocessing ot Input Data," IBM Advanced Systems, Endicott,
New York, 17-153, 65A00925-MFO11, IBM CONFIDENTIAL, Nov 64.

Bledsoe, W., Browing, I., "Pattern Recognition and Reading by Machine," Proc.
EJCC, 59, p. 225-232.

Bloom, L., Cohen, M., Porter, S., "Considerations in the Design of a Compu-
ter with High Logic-To-Memory Speed Ratio," Proc. Gigacycle 'Comput-
ing Systems Sessions, AIEE Winter General Meeting, Jan 62, p. 51..

iBobrow, D. G., Raphael, B., "A Comparison of List Processing Languages,"
COMM. ACM, Vol. 7, No. 7, Apr 64.

Branning, H. F., "Randam: Random Access Non-Destructive Advanced Memory,"
IBM Federal Systems, Owego, N.Y., 61-503-2, 61-RHA.

Brenda, J. G., "A Systematic Analysis of Equipment Selection and Data Allocation
Strategies for Shared Computer Systems," IBM Advanced Systems, Endi-
cott, New York, 17-158, Dec 64.

IB-



Brenza, J. G., Jackson, R. C.. Rhodes, W. H. Jr., Winger, W. D. , "A
Built-In Table Lookup '.rithmetic Unit."

Brown, J. R. Jr., "A Semi-Permanent Associative Memory and Code Con-
verter," Special Technical Conference on Nonlinear Magnetics, Los
Angeles, Nov 61.

Bucholz, W., "File Organization and Addressing," IBM Systems Journal, Vol. 2,
Jun 63.

Burroughs Corp., "The Descriptor, a Definition of the B-5000 Information Pro-
cessing System," Burroughs Corp. , Detroit, Michigan, Bulletin 5000-
2000L-P, Feb 61.

Bussell, B,, "Properties of a Variable Structure Computer System in the Solu-
tibn of Parabrlcc Partial Differential Equations," PhD Dissertation,
UCLA, Aug 62.

Bussell, B., Estrin, G., "Design of a Fixed Plus Variable Structure Computer
for the Solution of a Diffusion Equation," Part I, UCLA, AD 263 883,
DIU 15/1, 25/1, 30/1, Jul 61.

Carr, J. J., "Evaluation of Electronic Memories Including SHMOO Transfluxor
Memory Device," Frankford Arsenal, AD 445 122 L DIU 8,/i, 30/1;
RESTRICTED ijIS'I: Attn Franktoru Arsenal, Phila.

Caschera, J., "Research on Ferret Associative Memory," Philco Corp. , W'i-

low Grove, Pa., AD 453 096, DIV 30/1, 31 Aug 64 - 30 Nov 64.

Chadurjian, F., "Comparator," U.S. Patent No. 2,973,508, Feb 61.

Chesarek, J., "The Stored Program Calculator, SPC-A Small High Perform-
ance Computer," IBM Advanced Systems, IBM CONFIDENTIAL, Oct 64.

Chu, Yaohan, "A Destructive-Readout Associative Memory," IEEE Trans. on
Electronic Computers, Vol. EC-14, No. 4, p. 600, Aug 65.

Clark, W. A., Farley, B. G., "Generalization of Pattern Recognition in a Self-
Organizing System," Proc. WJCC, 55, pp. 86-91.

Comfort, W. T., "A Modified riuiianui avixchine," r,&u. FJCC, 53.

Comfort, W. T. , "Highly Parallel Y -chines, " IBM Owego, IBM Tech R1pt.

62-825-496, Oct 62.

Comfort, W. T. , "Multiw,:,d List Items," IBM Owego, IBM Tech. Rpt. 61-907-

198, Nov 61.

B-3



Computer Command and Control Co.., "Applic ition of Associative Memot ies t-;
the Weapon Assignment Problem of NTDS, " Computer Comrnand and
Control Company, ONR Report No. 13-101-8 (SECJIET), Contract
*NOnr 4068(00), Naval Analysis Group, SECRET.

Computer Command and Control Co)., "Associative Memory Computer System
Description and Selectcd Naval Applicationb ," Computer Command and
Control Co. , 1.0 Apr 65.

,Computer Comm, ma and Control Co. , "Summary of Investigation '-i Absociative
Memoriet. " Rpt. No, 5, Compuzter Command and Controi Co. , 15 Jan 64.

Computer Command and Control Co. , "Ppttern Recognition Process for Bubble
Chamber Pictures, " Computer Command and Control Company, ONR
Report No. 2-102-2, Contract # NOnr 4068(00), Naval Analysis Group.

Conway, M. E. ,"A Multiprocessor System Design," Proc. FJCC, p. .139,
Nov 63.

Corbell, R. C., "Tunneil Diode Associative Memory," Master's Thesis UCLA,
Jun 62.

Corneretto, A. , "Associative Memories, A Many-Pronged Design Effort,"
Electronic Design, p. 40, 1 Feb 63.

Corneretto, A., "3ý-K BIT Associative Memory Works at Hoom~ Temperature,"
Electronic Design, 5 Jul 62.

CT. ;hlow, A. j. , "Generalized Multiprocessing and Multiprogramming Systems,"
Proc. FJCC, 63.

Danylchuck, I. , Perutbui, A. J. , Sagal, M. W. , "Plated W±i M"-i Fl
Memories," Intermag Proceedings, Washington, D. C.., Apr 64.

Davies, P. M. , "A Superconductive Absoclative Memory," Proc. SJCC, May 62,
p. 7 9.

Davies, P. M. , "Design of an Associative Computer," Proc. Pacific Computur
Conference, Pasadena, California, Mar 63, p. 1019.

Davies, P. , '"The Associative Computer.' Proc. Pacific Computer Conferen~c,
California Institute of Techaiology, 15 Mar 63.

Deronald, C. H. , Fotheringham. J. A. , "The ALTAS Computer," Datamation,
May 61.

Dreyfuss, P. , "System Design z3f the Gamma 60," Proc. WJCC, 58.

B-4



Duda, W. L., Elfant, R. F., "Electronically Addressable Bulk Memories,"

IBM Research, Yorktown Heights, New York, RC-1250, IBM CONFI-
DENTIAL, 10 Aug 64.

Dunham, B., North, J. H., "The Problem of Selecting Logically Efficient Build-

ing Blocks and Hookups," IBM Research, Yorktown Heights, New York,
RC-785, 18 Sep 62.

Elfant, R. F., "Design and Cost Estimate for Electronically Addressable Bulk
Memory," IBM Research, Yorktown Heights, New York, RC-1292,
IBM CONFIDENTIAL, sep 64.

Elmendorf, W. R., "Program Sequencing and Storage Addressing in a Multi-
Processing System," IBM Research, Yorktown Heights, New York,
RC-501, IBM CONFIDENTIAL, 4 Aug 61.

Erikson, A.. J., "Magnetic Thin-Sheet Memory," Quarterly Report, RCA De-
fense Electronics Products, Camden, N.J., AD 460 381, DIV 30/1,
17/1; 1 Jun 64-30 Sep 64.

Erickson, D. K., Hughes, J., Turner, R. L., "Information Storage and Re-
trieval System," IBM General Products, San Jose, Calif., PT-2909-F,
IBM CONFIDENTIAL, Apr 65.

Estrin, G., Fuller, R., "Algorithms for Content Addressable Memory Organiza-
tions',"' Proc. Pacific Computer Conference, Pasadena, Calif., Mar 63.

Estrin, G., "Organization of Computing Systems - The Fixed Plus Variable
Structure Computer," Proc. WJCC, San Francisco, Calif., 3-5 May 60,
pp 33-40.

Estrin, G., Fuller, R., "Some Applications For Content-Addressable Memories,"
Proc. FJCC, Las Vegas, Nev., Nov 63.

E van,., Fi.'Fkowsky, J. H., "A Correction Scheme to Use Imperfect Memry.
Array With No Reduction In Speed," IBM Advanced Systems, IBM CON-
FIDENTIAL, 20 Mar 64.

Evans, J., Florkowsky, J. H., "Multiple Addressing for Fixed-Tag Associative
Memories," IBM Advanced Systems, Endicott, New York, TR-17-138,
IBM CONFIDENTIAL, 17 Jan 64.

Ewing, R. G., Davies, P. M., "An Associative Processor," Proe. FJCC, Vol
26, Part 1, Oct 64, p. 147.

Falkoff, A. D., "Algorithms For Parallel Search Memories," IBM Research,
Yorktown Heights, New York, RC-533, Aug 61.

B-5



Falkoff, A. D., "Algorithms for Parallel Search Memories," IBM Research,
Yorktown Heights, New York, RC-658, IBM CONFIDENTIAL, Apr 62.

Falkoff, A. D., "Algorithms for Parallel Search Memories," Journal of the
ACM, Oct 62, P. 488.

Falkoff, A.D., "Formal Description of Processes-The First Step In Design
Automation," IBM Research, Yorktown Heights, New York, NC-510,
15 Jun 65.

Falkoff, A. D., "Program Sequence Control In A Multiprocessing System Using
Associative Storage," IBM Advanced Systems, Mohansic, New York,
Technical Memo No. 15, IBM CONFIDENTIAL, 28 Sep 60.

Fan, G., Mee, C. D., "A Beam Addressable Memory File," RC-1346, IBM
Research, Yorktown Heights, New York, RC-1346, IBM CONFIDEN-
TIAL, 7 Jan 65.

Farber, D. J., et al, "Snobol, A Strink Manipulation Language," J. ACM,
Vol. H, No. 2, Jan 64.

Farrar, J. M. Jr., Courtney, R. H. Jr., "Associative Memory Applications
for Intelligence Data Processing," IBM Federal Systems Division,
Rockville, Maryland, IBM CONFIDENTIAL, 29 Dec 61.

Feldman, J. A., "Aspects of Associative Processing," Lincoln Lab, MIT,
Lexington, Mass., AD 614 634, DIV 30/1, Apr 65.

Ferris, Ronald J., "An Analysis of the Multiple Instantaneous Response File,"
RADC, Griffiss AFB, N.Y., AD 610 131, DIV 32/1, 30/1; Dec 64.

Fildes, J. J., Zeitler, G. Jr., "A Memory Address Controller for Tele-
Processing Systems," IBM Data Processing, Poughkeepsie, New
York, 30 Apr 62.

Fleisher, H., "Combinatorial Techniques for Performing Arithmetic and Logi-
cal Operations," IBM Research, Yorktown Heights, New York, RC-289.

Flynn, M. J., "Operations In an Associative Memory," PhD Thesis, Purdue
University, BTP-62-1782, APFILS, Jun 61.

Flynn, M. J., Machol, R. E., "Logical and Functional Specification of an Asso-
ciative Memory," IBM Data Systems, TR 00. 852, 15 Feb 62.

Frate, G. J., Stromick, S., "Compendium of Storage and Retrieval Devices
and Techniques," RADC, AD 450 182L, DIV 30/1, RESTRICTED DIST:
RADC ATTN EMIIG, Sep 64.

B-6



Frei, E. H., Goldberg, J., "A Method for Resolving Multiple Responses In a
Parallel Search File," IRI Transactions on Electronic Computer-,
Vol. EC-10, No. 4, Dec 61, pp. 718-722.

French, W. K., "Associative Memory", IBM Patent, U. S. Patent No. 3,123,706,
3 Mar 64.

French, W. K., "Associative Memory," U. S. Patent No. 3,131,291, Apr 64.

Fuller, H. W., McCormack, T. L., "Study and Investigation of Technique tor
Constructing Medium-Speed Random Access Mass Memory, LFE
Electronics, Boston, Mass., AD 614 8?21, DIV 30/1, 14/1, 25/1, 26/1;
Mar 65.

Fuller, R. H., "Content-Addressable Memory Systems," UCZA, AD 417 644,
DIV 30/1, Jun 63.

Fuller, R. H., Bird, 14. M. , Medici;, J. N., "Associative Processor Study,"
Librascope Div. , Glendale, Calif. , AD 1308 427 DIV 30/1, Oct 64.

Fuller, R. H., Estrin, G., "Some Applicat" ns for Content-Addressable Mem-
ories," Proc. FJCC, Nov 63. p. 495.

Fuller, R. H. , Saizer, J. M. , "Assciative Processor Study," General Precision
Inc., AD 608 427, Oct 64.

Futami, K., et. al. , "The Plated-Woven Wire Memory Matrix," Interman Pro-
ceedings, Washington, D. C., Apr 64.

Ga", R3. G., "A Hardware-Integratid GPC/Search Memory," Proc. IFIPS 1964,
FJCG, 64.

Gelernter. H. , "System Requi "ements of a Digital Computer for the Manipula-
tion of List Structures," IBM.

G,)ldberg, J. Crtuon, M. W. , "large Files for Infocmation Retrieval Based on
Simultaneous Interrogatkon of All Items," Proc. Symposium on Large-
Cnacity Memory Techniques, May 61, p. 63.

Goldstinc, 4orwitz, Karp, Miller, 'On the Parallel Execution of Macro Instruc-
tilns," IBM Research, Yorkton Heights, New York, RC-126?, IBM
CONFIDENTIAL, 17 Aug 64.

Gi)odyear Aircraft Corp. , "Colleetion of Note- on Associativ,, Memory," lheport
No. , GEI 10857, Akron, Ob'o, Oct 62.

Gr-cn, B. F., "Computer Languages for Symbol Mahnipulation." IUF t'ransac-
tlions on Electronic Compu~ers, Dec 61.

1B-7



Greene, J. E., Dean, R. F., Updike, B. M., "Mlcroprogrammed Implemen-
tation of the IBM System/360-30 Machine Organization," General
Products, Endicott, New York, TR-01. 813, Jun 64.

Gregory, J., McReynolds. R, "The Solomon Computer," IEEE Trans. On Elec-
Lronic Computers, Vol. EC-12, No. 5, Dec 63.

Griffith, J. E., "An Intrinsically Addressed Processing System," IBM Systems
Journal, Vol. 2, Sept-Dec 63.

Griffith, J. E., "Table Lookup Computers," iBM Data Systems, Kingston, New
York, TR-21. 053, IBM CONFIDENTIAL, 14 Mar 62.

Griffith, J., "Techniques for Advanced Information Processing Systems,"
First Congress on the In-ormation System Sciences, Hot Springs, Va.,
18-21 Nov 62.

Hawkins, J., K., "Self-Organizing Systems-A Review and Commentary," Proc.
IRE, 1961, Vol. 49, pp 51-48.

Hellerman, H., "A Compilei and Machine Organization for Parallel Processing
of Algebraic Expressions," IBM Advanced Systems, Endicott, New York,
Report No. 17-150, IBM CONFIDENTIAL, Dec. 64.

Hellernoan, H. H., "A Directory Control System for Multiprogramming," IByli
Research, Yorktown, New York, RC-1095, Oct 63.

Hellerman, H., "Experimental Personalized Array Translation System," Comm.
ACM, Vol. 7, No. 7., 64.

Hellerman, if. , "On the Organization of a Multi-Programming-Multiprocessing
System," IBM Research, Yorktown Heights, New York, RC-522, IBM
CONFhvkNTIAL, 5 Sep 61.

Herwitz, P. S., "Harvest System," IBM Research, Yorktown Heights, New York,
RC-64, Nov 58.

Holland, J. R., "A Universal Computer Capable of Executing an Arbitrary Num-
ber of S&b-Programs Simultaneously," Proc. EJCC, Bostui, 1-3 Dec 59.

Holland, J., "Interative Circuit Computers," Proc. WJCC, 60.

Holum, B. A., "Some Uses of an Associative Memory As a Real-Time Control,"
IBM Corporation, New York, New York, SRI Term Paper No. 11-31, IBM
CONFIDENTIAL, Apr 64.

B-8

I-



Itughes Aircraft Co., A Proposal for the Study of Associative Processing Tech-
niques," Rpt No. FP 63-16-276, Hughes Aircraft Co. , 14 Oct 63.

Iiunt, R. T., Snider, D. L. , Suprise, J., Boyd, If. N. , "Study of Elastic Switch-
ing For Associative Memory Systems," Good Year Aircraft Corp, DDC,
Feb 64.

IBM, "As- -ciative Processing Techniques," IBM Proposal to RADC RTD, GRIFISS
A- B, RFP # 64-423, 9 Oct 63,

IBM Advanced Systems Division, "A Proposal for the Study of Advanced Informa-
tion Retrieval Techniques ," IBM Advanced Systems, Yorktown Heights,
New York, IBM Proposal to USA/SSA, Ft. Monmouth, 30 Mar 62.

IBM Data Processing Division, "File Organization Techniques for Direct Access
Storage Devices," IBM Data Procr-sing, Mechanicsburg, Pa., IBM
CONFIDFNTIAL.

IBM Federal Systems Division, "An Associative Memory Using Superconductive
Techniques," IBM Federal Systems, Rockville, Maryland, TP60-3500
to RADC, 13 Sep 60.

IBM Federal Systems Division, "Associative Processor," IBM Proposal to
RADC-AFSC, GRIFFISS AFB, 19 Jun 64.

IBM Federal Systems Division, "Cryogenic Associative Memory Techniques,"
IBM Proposal to RADC GRIFFISS, FSD-Rockville, AFPI-465 (d) (1).

IBM Federal Systems Division, "Hybrid Associative Computer Study," IBM Pro-
posal to RADC, Rome, iew York, 29 Jun 64.

IBM Federal Systems Divisiou, "Study of the Applications of Parallel Search
Memories," IBM Proposal to AFC-ESD HIANSCOM Field, FSI) Rock-
ville, ES-3-438L-3267/SI3M, 29 Mar 63.

IBM Federal Systems Division, "Logical Memory Study," IBM Rockville-AF
Cambridge Research Center, 7 Nov 60.

Lerson, K. E., "Formalism In Programming Languages," COMM. ACM,

Vol. 7, No. 2, Feb 64.

Iverson, K.E., "Recent Applications of a Universal Programming l.anguage,"
IBM Research, Yorktown, New York, NC-511m 15 Jun 65.

1



Johnson, L. It., "An lndircct Chaining Method for Addressing on Secondary
Keys," Communications of the ACM, May 6(1.

Johnson, L. R., "On Operand Structure, Representation, Storage and Search,"
IBM Research, Yorktown, New York, RC-603, 5 Dec 61.

Johnson, L. R., McAndrew, M. Ii., "On Ordered Retrieval From an Associa-
tive Memory," IBM Journal of Research and Developmnt, Vol. 8, No. 2,
Apr 64, p. 189.

Joseph, E. C., Kaplan, A., "•Target-Track Correlation with a Search Memory,"
Proc. 6th National Cony. on Military Electronics, Jun 62, p. 255. .

Jutzi, W\ , "The Magnetic Pulse Field of the Bit Line in the Megabit Thin Mag-
netic Film Memory," IBM Research, Yorktown, New York, RZ-150,
IBM CONFIDENTIAL, 22 Sep 64.

Kantariya, G. V., "Parallel Micro-Programming and the Principles of Design
of Central Control Units for Digital Computers," AERO Space Technol-
ogy Div., Library of Congress, AD 299 737, DIV 30/1, Dec 62.

Kaplan, A.. "A Search Memory Subsystcyr for a General Purpose Con.,,uter,"
Proc. FJCC 1963, p. 193.

Kilburn, T., et al, "One Level Storage System," IRE Transactions on Elec-
tronic Computers, (also PGEC Apr 62), Apr 62.

King, G. W.. "Table Luokup Procedures in Data Processing," IBM Research,
Yorktown, New York, NC-166.

Kiseda, J. R., "A 128-Word, 36-Bit Magnetic Associative Memory," IBM Re-
search, Yorktown, New York, NC-358, IBM CONFIDENTIAL, 17 MVar 64.

Kiseda, J. R., Peterson, ff. E., Seelbach, W. C., Teig, M., "A Magentic As-
sociative Memory," IBM Journal of Research and Development, Vol. 5,
No. 2, Apr 61.

Koener, R.* "A Memory Array Searching System," U.S. Patent No. 3,031,650.
Apr 62.

Kolsky, H. G., "General Description of a Low-Cost Computer Organization Based
on the Dynamic Streaming of Records," IBM Research, Yorktown, New
York, RJ-210, 23 Feb 62.

Kochen, M., "Experimental Study of 'ltypothes-Fzarmation' by Computer," IBM
Research, Yorktown, New York, RC-294, 25 May 60.

Kovalick, V. F. , "Literature References on: Modular Computer Organization,
Parallel & Multi-Processor Computers," IBM Federal Systems, Owego,
New York, IBM CONFIDENTIAL, 14 Nov 62.

13-10



Kurtz, G. , Neilson, R. , Schiff, A. , Smith, G. , "Table Lookup Study Model,"
IBM Federal Systems, Kingston, New York, IBM CONFIDENTIAL,
3 Aug 6 2.

Ledley, R. S. , "Organization of Large Memory Systems," Proc. Large-
Capacity Memory Techniques for Computing Systems, May 61, p. 15.

.Lee, C. Y., "Intercommunicating Cells, Basis for a Distributed Logic Compu-
ter," Proc. FJCC, Philideiphia, Pa. , Dec 62.

Lee, C. Y., Paull, M. Y., "A Content Addressable Distributed Logic Memory
With Applications to Information Retrieval," Proc. IEEE, Jun. 63.

Lee, E. S. , "Associative Techniques with Complementing Flip- Flops," Proc.
SJCC, May 63, p. 381.

Lee, E. S. , "Solid State Associative Cells," Proc. Pacific Computer Confer-
ence, Calif. Inst. of Tech. , 15-16 Mar 63.

Le ine r, A. L. , et. al. , "Concurrently Operating Systems," Proc. IFIPS, 59.

Lewin, M. H-. , "Retrieval of Ordered Lists From a Content -Addressed Memory,"
RCA Review, Vol. M11I, No. 2, Jun 62, pp. 215-229.

Lewin, M. H-. . Beelitz, H. R. , Rajchman, J. A. , "Fixed, Associative Memory
Using Evaporated Organic Diode Arrays, " Proc FJCC, Nov 63, p. 10 1.

LFE Inc. , "Study and Investigation of Technique for Constructing Medium-Speed
Random Access Mass Memory," Laboratory for Electronics Inc.,
AD 6 14 83 1, Mar 65.

Linidquist, A. B. , "An Application for a Small, Fast Associative Memor * to IU!-
duce the Access Time for Instructions in Loops," IBM Corporate, New
York, New York, IBM Term Paper No. 4-39, 19 Dec 61.

Lindquilst, A. B. , "An Associative Local Store," IBM ITL Meeting on Matchine
Organization, IBM CONFIDENTIAL, Nov 63.

Lindquilst, A. B. . "Associative Memory for Highly Parallel Systvrn," Proc.
FJCC, Las Vegas, Nev. , 12-14 Nov 63.

Lindquist. A. B. , "Coding of Trees for Use In an Associ1tive Memorv,' 11M
Corp.3 , 3 Aug 62.

Lindquist, A. B. , "Cryotron Associative Memory Cell," IBM cata Systems,
Poughkeeaysie, New York, 6sC-01774-MFOO4, Mar 65.

Lonergan, W. ing. P. ,"Design of the B-5000 System," Datamation, May 61.

B-I I



ItI
Long, T.. R., "Electrodeposited Memory Elements for a NonDestructive Mem-

ory," Journal of Applied lhysics, May 60, Supplement to Vol 31, No. 5,
•=- pp 123s- 124s.

Louis, H. P., Shevel, W. L. Jr., "Storage Systems - Present Standards and
Anticipated Developments," IBM Research, Yorktown, New York,
RC-1222, 23 June 64.
=--! .

Love, H. H., Savitt, D. A., "Associative Processing Techniques Study,"
RADC-TR-65-32, Hughes Aircraft, FR-65- 11-18, AF30(602)-3279,
AD-616-620 DIV 30/2, Apr. 1965.

Luckfield, W. J. , "A Multiple File Organization for Information Retrieval Sys-
tems," TIE 6408-0857, IBM CONFIDENTIAL.

Lussier, R. R., Schneider, R. P. , "All-Magnetic Content Addressed Memory,"
Electronic Industries, Mar. 63, p 92.

McAteer, J. E., Capobianco, J. A., Koppel, R. L. , "Associative Memory
System Implementation and Characteristics," Proc IFIPS, 1964 FJCC.

McCarthy, J., et al, "LISP 1.5 Programmers Manual, MIT Press, 1962.

McCormick, B. H., Divilbiss, J. L., "Tentative Logical Realization of a Pat-
tern Recognition Computer," Digital Computer Laboratory, University
of Illinois, Report No. 403.

McDermid, W. L., Peterson, H. E., "A Magnetic Associative Memory System,"
IBM Journal of Research and Development, Vol. 5, No. 1, Jan. 1961.

Mclnnes, D. S., "A Micro-Programming Approach to Optical Scanning," Item
No. 6408-0844, KWIC Index to TIE.

Macklin, D., "Dual M2M - Multiprocessor Communication System," SRI Paper
"9-37, Ch-NY, Aug 63.

Maher, R. J., "Problems of Storage Allocation in a Multiprocessor Multipro-
grammed System," Comm. ACM, Oct, 1951.

Mann, H. T., Rogers, J. L., "A Cryogenic 'Between-Limits' Associative
Memory," Proc. Nat. Aerospace Electronics Convention, May 62,
p. 359.

Mcggitt, J. E., "A Character Computer for High Level Language Interpreta-
tion," IBM Systems Journal, Vol 3, No. 1, 1964.

B3-12



Minnick, R. C., "Magnetic Comparators and Code Convertors," Symposium o,,
the Applicat-T-i of Switching Thbory in Space Technology, Sunnyvale,
California, Feb. 62.

Mueller, 0., "A Very Small, Very Low Cost Computer for Use as a Black Box
Computer," IBM Research, ')rktown, New York, RC-1206, 3 Jun 64.

Mullery, A. P., "A Procedure-Oriented Machine Language," IEEE Transac-
tions on Electronic Computers, Aug. 1964.

Mullery, A. P., et al, "ADAM -A Problem Oriented Symbol Processor," S~SXC I1J63.

Mullery, A. P., Rice, R., Schauer, R. F.. "Specifications for ADAM and
ABEL," IBM Research, Yorktown, New York, RC-631, IBM CONFI-
DENTIAL, 1 Mar 62.

Muroga, S., "Application of Group Theory and Cooing Theory to File Memory
Addressing," IBM Research, Yorktown, New York, RC-1025.

Muth, V. 0., Scidm-ire, A. K., "A Memory Organization for an Elementary
List Proce Aing Computer," IEEE Transactions on Electronic Com-
puters, Ju. 3 1963.

Nelson, R. A., "Problems in Automatic Storage Allocation," IBM Research,
Yorktown, New York, RC-601, IBM CONFIDENTIAL, 27 Nov 61.

Nelson, R. A., "An Experimental Data Processing Machine," IBM ITL Meeting
on Programming, IBM CONFIDENTIAL, Dec 62, p 267.

Newell, A., "Information Processing Language V Manual," Prentice Hall, 1964.

Newell, A., Tonge, F. M., "An Introduction to Information Processing L ;-

uage V," Comm ACM, Apr. 1960.

Newell, A., "On Programming A Highly Parallel Machine to be an Intelligent
Technician," land Corp., Santa Monica, Calif., AD 616 585, DIV
30/2, 1 April 1960.

Newell, A., "A Note On the Use of Scrambled Addressing for Associative Mcm-
ories," Unpublished Paper, Dec. 1962.

Newhouse, V. L., Fruin, R. E., "A Cryogenic Data Addressed Memory,"
Proc. SJCC, May 1-3, 1962, p. 89.

Newhouse, V. L., Fruin, R. E., "Data Addressed Memory Using Thin-Film
Cryotrons," Electronics, 4 May 62, p. 31.

B-13



mk

mI
mI

Newman, E. G., Winter, L. F , "Magnetically Controlled Variable Logic,'
IBM Data Systems, Kingston, New York, IBM Journal of Research and
Development Vol. 8, No. 3, July 1964.

Nolan, J, F., Armenti, A. W., "An Experimental 0, :,ine Data Storage and
Retrieval System," Lincoln t..bs Inst. of Tech., J Feb 195, Lexing-
ton. Mass , AD 615 658, DIV 30/2, 32/3.

O'Neil, R. W. "Simulation of Some Multi-Processing Systems," IBM Research,
Yorktown, New York, RC-824, IBM CONFIDENTIAL, 23 Oct 62.

0YNeil, H. W., "Some Notes on the Absoiuae Cure Lct .- i,,n _b1 !B M Re-
search, Yorktown, New York, RC-600, IBM CONFIDENTIAL, 3 Jan 62.

Perkins, R., McGee, W. C., "Programmed Control of Multi-Computer Systems,"
Proc. IFIPS, 1962.

Peris, Thornton, "Symbol Manipulation by Threaded Lists," Comm ACM, Vol. 3,
No. 4, April 1960.

Petersen, H. E., "Content Addressing and Information Retrieval," IFJP'z Con-
gress '62, Munich, Germany, Aug. 1962.

Petrick, S. R., "Use of a List-Processing Language in Programming Simplifica-
tion Procedures," AF CRL, Bedford, Mass. , AD 273 759, DIV 30/1.

Philco, "Research on Ferret Associative Memory," Philco Corp. , Willow
Grove, Pa. , AD 458 798, DIV 30/1, 30 Nov 64 - 28 Feb 65.

Phister, M., "Logical Design of Digital Conmputere," John Wiley & Sons. New
York, New York, 1958, pp 144-167.

Plonsky, A. T., "Tag-Ordered Associative Memory," IBM Tech. Disclosure
Bulletin, Vol 5, No. 8, Disclosure No. 131,099, Jan. 19'i3.

Porter, R. E., "The RW-400-A New Polymorphic Data System," Datamation,
Jan/Feb 1960.

Pritchard, J. P., Jr., "Fabrication and Testing of Cryogenic Associative Mem-
ory Planes," Texas Instruments, Inc., Dallas, Texas, AD 616 491,
DIV 30/2 25/A, 5 May - 13 Dec 64.

Pritchard. J. P., Jr., Wald, L. D., "Design of a Fully Associative Cryogenic
Data Processor," Proc. of the International Conference on Nonlinear
Magnetics, Apr. 64, p 2-5-I.

B-14



Prywes, N. H., ct al, "Interactions of Compuiter Language and Machine De-
sign,"' Final Report, RAD)C-TDR-62-584, AD 292 033, Oct. 1962.

Prywes, N. S. , Gray, H. J. , "The Organization of a Muitilist-Type Associative
Memory," IEEE Transactions on Communications and Electronics,
No. 68, Sep 63.

Raffel, J., Crowther, T. S., "A Proposal for an Associative Memory Using
Magnetic Films, AD 612 832, Div 32, 25.

Raffel, J. 1. , Crowther, T. S. , "A Proposal for an Associative Memory Using
Magnetic Films, " Lincoln Lab, MIT, Lexington, Mass., AD 454 538
Div 30/1, Mar. 64.

Rajchman, J. A. , "Computer Memoriee: A Survey of the State 01 th~e Art,-
Proc. IRE, Vol. 49, Jan. 1961, pp 104-127.

RCA, "High Speed Data Processor System Research Project Lightning,"' RCA
Electronic Data Processing Division, Camden, New Jersey, AD 240
499, Dec. 1959.

RCA, "Magnetic Thin-Sheet Memory," RCA - Defense Electronics Products,
Camden, New Jersey, AD 460 381, Jtvn- 1, 64 - Sept 30, 634.

Rice, R., Schauer, R. F." Terman, L. M., "High to Low Qider Numeric Proc-
essing," F-IBM Research, Yorktown, New York, Jan 20, 1962.

Richards, Paul, "Parallel Programming," Technical Operations Research,
Burlington, Mass., AF 33 (600) - 35191, BTP 62-0376, AD 261 623.
Div 15/1.30/1, Aug 60.

Robbi, A. D., Ricci, R. , "TranPfouxor Content- Addssiable Memory," Proc.
of the International Confermmce on Nonlinear Magnetics, Apr. 64,
p 8-3-1.

Roberts, M. deV., "A Programming Proposal for a Computer Design," IBM
Research, Yorktown, New York, RC.194. IBM CONFIDENTIAL,
Aug 29, 1962.

Foberts, M. deV., "Associative MtmorRes and the One Level Storc," IBM Re-
search, Yorktown, New York, RC-807, IBM CONFIDENTIAL, Sept 26.
1962.

Rogers, J. L." , "Research on Cryogenic Associative Memories," Quarterly
Progress Report for Period Ending 30 Nov 1962, Space Technology
Labs, TP 64oM-4668, 16 Jan 1963.

B-15



IW .

Rogers, J. L. , "Research on Cryogenic Associative Memories," Quarterly
Progress Report lur Period Ending 28 Feb 1963, Space Technology
Labs, 11 Apr 1963.

Rogers, J. L. , "Research on Cryogenic Associative Memories," Quarterly
Progress Report for Period Ending 30 May 1963, Space Technology
Labs, 8 Aug 1963.

Rogers, J. L. , Wolinsky, A., "Associative Memories and Their Cryogenic
Implementation," TRW Space Laboratories, Redondo Beach, Calif.,
8670-6C07-RU-O00, DDC, Dec 63.

Rogers, o,. L. , Wolinsky, A., "Research on Cryogenic Associative Memories,"
v---1 c~irnmary Report. 28 May 64, "RW Snace Tc:t-1". Labs., QhTI;U-
3E,39(1001), 1 Jun 62 - 30 May 64.

Rosengerger, J., Lindquist, A. B., Seeber, R. R., "Cryogenics Memory Plane
Interconnection Techniques," IBM Poughkeepsie, Poughkeepsie, New
York, AD 622 819, DIV 30/2, 8/2, Oct 65.

Rosenblatt, F. , "Perceptrod.. Simulation Experiments," Proc. IRE, 1960, Vol.
48, pp 301-309.

Rosin, R. F. , "An Organization of an Associative Cryogenic Computer," Proc.
SJCC, San Francisco, Calif. , May 62, pp 203-212.

Rosin, R. F., "List Structures and Their Implementation Through Advanced
Ulachine Design," IBM Research, Yorktown, New York, RC-297,
Aug 60.

Ross, D. T., "A Generalized Technique for Symbol Manipulation and Numerical
Calculation," Comwx ACM, Vol. 4, No. 3. Mar. 1961.

Roth, J. P. , "Systematic Design of Automata,"1 IBM Research, Yorktown, New
York-, PC - 14 25, 16 Jun 65.

Rothm~an. S., 'The RW-40 Data Processing System, " Proc. Auto-Math Con-
fernece, International Congrcss of Infornv-ttion ProcessL-ig, Paris,
June 1959.

Rowe, A. J. , Brock, P.,. "Use of Hybrid Computing in Design Automation,"
Hughes Aircraft, Rand Corp. , AD 613 002, Mar 65.

Rowlav*a, (7. A., Berge, W, 0., "A 300 Nanosecond Search Memory,", Proc.
FJ`CC, Las Vega. N'ev., Noy 1963.

•Jm B---



Rybak, Franklyn M. , "Study to Determine the ApplicabiAlity of the Solorion Com-
puter to Command and Control," Vol 1. Information Storage, iletrieval
and Commi.wication System Control, Westinghouse Electric, Baltimore,
Md. , AD 454 765, Div 30/1 5/1, Oct. 64, 194 p.

Saguis, J. C. , Stuckert, P. E. , "Cross Core Memory Element, " IBM Research,
Yorkdtowna, New York, RC-767, IBM CONFIDENTIAL, Sc.pt. 62.

Schouer, R. F. , 'Variable Field Length: Its Effect on the ADAM System Design,"
IBM Research, lorktown. New York, RC-1138, 6 Mar 64.

Schauer, R. F. , Meggitt, J. E. , "Evaluating the L~ogical Design of the Problern
oriented Symbol Processor," Final Report, IBM Research, Yorktown,
New York, AF 19(628)-3257, 1 Nov 63.

Schlaeppi, H-. P. , "A Formal Language, for Describing Machine Logic, Timing
and Sequence (LOTIS),"' IBM Research, Yorktown, New York, RZ-125,
24 Dec 63.

Schlaeppi, Ii. P. , "Notes on Microprogramming of D)igital Systems," IBM Re-
search, Zurich, Switzerland, RZ-33, July 11958.

Schoene, L. P., Jr., Murray, P. J. , "The Application of List Processing
Techniques to Intelligence Data Processing," Final Report, IBM-FSD,
Rockville, Md., Task No. 0273, IBM CONFIDENTIAL, 31 Dec 62.

Seeber, R. R. , Jr. , Lindquist, A. B., "Associative Logic for Highly Parallel
Systems," Proc FJCC, Las Vegas, Nev. , Nov. 12-14, 1963, p. 489.

Seeber. R. R., Jr. , Lindquist, A. B., "Associative Memory with Ordered Re-
trieval," IBM ,Jouruaal of Research andDe 01met Vol. 6, No. 1,
Jan. 1962, p. 126.

Seeber, R. R, , Jr. , Scriver, A. J. , "Associative Self -Sorting Memory," Proc.
EJOC, Vol. 18, Dec. 1960.

Seeber, R. R. , Jr., "Associative Self-Sorting Memory Revised,'" IBM Da&ta Sys-
* tems, Poughkeepsie, New York, TR-00, 756, Nov. 60.

Sceber, R. R.., Jr. , "Cryogenic Associative Memory, " Natiirnal Conference of
* the ACM, Aug. 1960.

Seeber, R. R. , Jr. , Lindquist, A. B., "Mass Fabrication, Highly Parallel S~ys-
tems, and Associative L-nglc," IB3M, !`,ughkeepsie, New York, TIC'
63AS 0518, IBM CONFIDENTIAL., 22 May 629.

Seeber, R. R.,. Hartman, F. B. , "Memory and Circuits Therefor," U. S. P. tent
No. 3,121,217, Feb 64.

B-17



Seeber, H. R. , "Symbol. Manipulation With an Associative Memory Preprints,"
National Conference of the AkCM, Sept 61.

Selfridge, 0. G. , "Pattern Recognition and Modern Computers," Proc. WJCC,
1955, pp 91-:,03.

Shahbender, R. , et al, "Laminated Ferrite Memory," Proc. F.JCC, Las Vegas,
Nev., Nov. 1963.

Shaw, J. C. , et al, "A Command Str'ucture for Complex Information Process-
ing," Proc WJCC, 1958.

Shay, G. , Jr., Spruth, W. G. , "Analysis of a File Addressing Method."

Shooman, Win., "Parallel Computing with Vertical Data," SDC, Santa Monica,
Calif. , AD 276 593, Jan 1961.

Shooman, W., "Parallel Com'putiiLg With Vertical Data, " Proc EJC C, New York,
Dec 13-15, 1960.

Simmons, G. J., "Appiication of an Associatively Addressed Distributed Memory,"
Proc. SJCC, Apr 64, p. 493.

Simmons, G. J. , "A Mathematical Model for an Associative Memory,'" Sandifk
Corp,. Report, SCR-641, April 1963, Sandia Corp. Report, SCR-621,
April 1963.

Singer, T., Schupp, P., "Associative Memory Computers Lf.im the Program-
ming Point of View," Mitre Corp. , ESD-TDR-63-245, AD 416 301,
Aug 1963.

Slade, A. E. , McMahon, H. 0. , "A Cryotron Catalog Memory System."- Proc.
E-TCC, Dec 56. p 120.

Slade, A. E. , Smallmaju, C. R. , "Thin-Film Cryotron Catalog Memory," Auto-
matic, Aug. 1960, p, 48.

Slade. A. E. , "The Woven Cryotron Memory," Proc. hr~ernational Symposium
on the Theory of Switching, 1959, p. 326.

Slotaick, D. L. , et &Il, "The Soloman Computer - A Preliminary Report,"
Workshop oln Computer Organization, A. Bart m and M. Knapp, Editors.

SlotnicYr L. , horck, W. C. , Mc~eynolds, "The Solomon Computer," Prue.
~,San Francisco, Calif. , Mi's 1962.

Smith. E. ."A Directly Coupled Mulitpr-teesilng. Syntem," IBM Systems
Jouirn=l sept/Dec 1963.



Smith, R. V., "A Programmed Associative Memory for Use in Compiling,"
SRI - Term Paper No. 2-43, IBM Corporate, New York City, IBM
CONFIDENTIAL, 28 Apr 1961.

Smith, R. V., Senzig, D. N., "Computer Organization for Array Processing,"
IBM Research, Yorktown, New Yock. RC-1330, 9 Dec 64.

Space Technology Labs, "Feasibility Ttudy for a Cryogenic Associative Memory,"
"Report: Proposal 0739.00, July 1961.

Sperry-Rand Corp., "UNIVAC Search Memory," MO 5562, Sperry-Rand Corp.,
Univac Park, St. Paul, Minn.

Sproul, W. W., "Microprogram Computers with Minimum Redundancy Memories,"
IBM-FSD, Owego, New York, 63-533-014, Dec. 1963.

Stainford Research Institute, "Development of a Multiple Instantaneous Response
File," The AN/GSQ-81 Document Data Indexing S',t, AD 609 126, Stan-
ford Research Instituto, Menlo Park, Calif., Oct 1964.

Strachey, "Time Sharing in Large Fast C "np'iters,"1 Proc. IFIPS, 1959.

Tapscott, R. P., "An Algorithm for the Reduction of Intermediate Storage Utiliza-
tion Costs," RC-599, IBM Research, Yorktown, New York

Th.impson, R. N., Wilkinson, J. A., "The U 25 Automatic Operating and Sched-
uling Program," Pr,)c SJCC, ,963.

Toxen, A. M., Burns, M, J., "Critical Fields of Thin Superconducting Films,
11 Mean Free Path Effects in indium-Tin Alloy Films," IBM Research,
Yorktwa, New York, Sept 10, 1962.

TRW, "Cor'puter Associative M'.2mory Study," TRW--Space Technology Labs,
Re-dondo Beach, Calif., AD 442 950, Div 30/1, July 64.

TRW, 'Computer Associative Memory Final Repcrt," TRW Inc., DDC, TP 64K1-
5764, Not for For. Dist., 15 Jul 64.

Turin, R., "Assignment of !nventor,. of a Variab'e Structure Computer," PhD
Dissertation, U.C.L.A., Jan. 1963.

Tuttle, G. T., "How to Quiz a %,ole Memory at Once," Electronics. 15 Nt'V 63,
p 43.

Ulr, L., Voesler, C., "A Pattern Recognition Program that Generates, Evalu-
ates and Adjusto Its Own Operato, s," WJCC. May 1961, pp 555-569.

B-15



Unger, S. H., "A Computer Oriented Toward Spatial Problems," Proc, IRE,
Oct. 1958, pp 1744-1750.

Wagner, E. G., "An Approach to Modular Computers I. Spider Automata and
Embedded Automata," IBM Research, Yorktown, New York, RC-1107.
Jan. 1964.

Wagner, E. G., "Modular Computers 1H. Graph Theory and the interconnection
of Modules," IBM Research, Yorktown, New York, RC-1414, 4 Jun 65.

Wagner, E. G., McCarthy, J., "Tag Memory," U. S. Patent No. 3,093,814,
Jun 63.

Wang, C. P., Ruehli, A. E., "A Transis~or-Tunnel Diode Cell for Associative
Memories and Multiple-Word Access Memories," 65C-001359-MFOO3,
IBM CONFIDENTIAL.

Wanner, V. R., "The Logical Design of a Multi-Channel Device for the Retrieval
of Information," ONR Report No. ACR-93, April 1964.

Webster, W. W., "Problems In Utilizing Tabular Languages, with Examples
Drawn from 1401 Card Program Generator," IBM Corporate, New York
City, Dec 19G1.

Weinstein, H., "Proposals for Ordered Sequential Detection of Simultaneous
Multiple Responses," IEEE Trans. on Electronic Computers, Oct. 63,
p. 564.

Westinghouce Corp., "Study and Investigation to Develop Compiler Techniques Re-
quired for Programming the Parallel Network Computer," Westinghouse
Defense and Space Center, Baltimore, Md., AD 602, Div 3 '1, Jun 64.

Westinghouse Corp., "Parallel Network Computex (Solomon)". Westinghouse,
FBaltimore, Md., AD 419 318, Div 30/1, 8/1, April 1963.

Westinghouse Corp.. "Multiple Processing Techniquea," Westinghouse, Balti-
more, Md. , AD 602 693, Div 30/1, June 64.

Westinghouse Corp., "Parallel Network Computlers (Solomon) Solomon Bread-
board Terhnical Report," Westlnghouse Electric Corp., Air Arm Divi-
sion, Baltimore, Md., AF 30(602)2724, AD 419316, 15 Apr. 1963.

Wigington, R. L., "A Machine Organization for a General Purpose List Proceq-
sor," IEEE Transactions on Electronic Computers, Dec. 1963.

Winters. R. E. , "sqecial Intelligence Processo,,'" Progress Report, Jan-Dec
1962, IRAD 0270, IBM-FSD, May i963.

B-20



Wiseman, N. E., "Applications of List Processing Methods to the Design of
Interconnections for a Fast Logic System," Electrical Communication,
ITT, Vol 38, No. 3, 1963.

Yang, C. C., Tou, J. T., "Systematic Design of Cryogenic Logic Circuits,"
Computer Sciences Lab, AD 617 501, Div 30/2 25/6, 1964.

Yngue, V. H., COMIT, Comm ACM, Mar 1963.
-4

Younker, E. L., Heckler, C. H., Jr., Masher, D. P., Yarborough, J. M.,
"Design of an Experimental Multiple Instantaneous Response File,"
Proc. SJCC, Apr. 64, p 515.

Younker, E. L., Heckler, C. H., Jr., Masher, D. P., Yarborough, J. M.,
"Development of a Multiple Instantaneous Response File: the AN/GSQ-
81 Document Data Indexing Set," Stanford Research Institute, Menlo
Park, California, AD 609 126, Dlv 32/1, 30/1, Oct 64.

Zucker, M. S., Griffin, J. F., Haimes, M. J., Patton, S. K., "Control Sys-
tems Technology," IBM Advanced Systems, Endicott, New York, TR-
17-058-RD, Dec 61.

B-21



UNCIASSIFIED
Secuirity Classification

DOCUMENT CONTROL DATA.- R&D
(10c,,tap' c184011198tion .*ItMM, hodu. e1 abstmt enW ndMxing aWfstiejo ,m be mt.red boAn OW ~9 .' mI.pon 1. cts...I.d)

fORIGINIATING ACTIVIY (Coo.waefte .ito 20 OIcPe.YSCCVRIV C LAISIIICATION

£Federal Systems Div !JNCLASSIFIED
IBM4 Corp 26 GROUP
7220 Wisconsin Ave. Bethesda. Nd 2001h N/A

3 RRPORIT TITLE

A Advanced Computer Organiz~ation

4 O1ESCRIPTIVE NOTES (?j." 01 Nee en. in'ht.J.. daot.)

Final Report
5 A UTHOR(S) (L"I name, Nolh~ neine. NIlet.I

Baker, F.T. Schenken, J.D.
Forbes, C.H. friest, W.E.
lacobs, N. Walker, T.P., r

* REtPO RT DATE tdr. VOAL t. OF PAGE1s 7. No. OF --

February 1966 MyI6 0 9
Sm, CONTRACT OR GRANT NO. 01041INATOW8 RIPORT "U";-A.~s)

AF3O(602 )-3573
b. PROJUCT NO

CTask # 4540 Sk. JT8"=~PORT NO(S) (Anyo .*.,ww~bw fiteewaybde~toed

RAD-TR-66-11i8
10 AVA ILARILITY/LIMITATION NOTICES: This documnt is subject to specisl export controls

and each transmitta~l to foreign governments or foreign nationals may be md
only with prior approval of RADC (ENLI), GAPE, N.Y. 1344o.O

II. SUPPLEWENTARY NOTES1 IS SPONSORINGO LITARV ACT IVITYfRomn Air Development Center
Griffing AFB, New Tork 1344~0

13 A@STRACT

this study resulted in a design of an #dvanced general-purpose computer,
including its functional organization and programming. The I1eslrn is based
on content-addressable parallel starch memories and thwe computer has parallel
processing capability. It resulted from investigations in several important

aea of non-numeric processing and symbol manipulation, are. the design studies
&wh~ich were carried out in each area. In addition to the general-purpose
computer and the individual design studies, a number of associative piocos-.
sing techniquies were developed for use with such equipment.

DD FO**. 1 473 UKCLASIMED
Swiuity Cussihilcatoa

I~i



- Stecurity Clasification_______

1.LINK A I LINK 8 LINK C
KayE WOD ?t9 W ROLM wT ROLM VIl

Associative Processor
Associative Memory
Content-Addressable Memory
Parallel Search Memory
Non-N~meric Processing
Symibol Manipulation
Data Extraction
Indexing
Word Frequency
Formatted Files
Pattern Recognition
Textual Error Correction

INSTRUCTIONeS- . .L
I.ORIGINATING ACTIVITY: Ents- the new sad address mi~oad by security classification. using ttaiidard statements
ofth. contractor, subcontractor. grantee. Department of Do- s=c as:

iso.. activity or other Organisation (corporase author) issuing (1) "Qualfied requastors may obtain copies of this
Ouh e port. report from DDC.'1

2.. REPO tT SECU3TY CLASUFICAT IO It Eato th eo ver. (2) " Fo reign announcem ent sod diesaeai a lon of thisall saCurity classilication of the report. Indicate uttotborpry O snt uhrs"Restricted Date" is included, Marking is to be in seated.D I nta~hezo.
slic* With appropriate securIty rOgulatloas. (3) "U. &. Government stlem! s may obtain copies of
2b. GROUP: Automatic dowpagrding is specified is DOD this report directly frm. DDC. Other qualiL~d DDC
rective 5200. 10 *ad Armed Forces Industrial Manual. Ent.10 ismsr hal reqig through
the group number. Also, when applicable, show that optional
murkings have been used for Group 3 ind ' roup 4 as glitho (4) 11U. &.minlitary igsacies may obtain copies of this
ized. roport dimectly frou DOC. Other qualified uoser
3. REPOT TMfE- Zoom the complato report tit!* lin all shall requost through
capital letters. TiI"I~ in all cases should ho usclsealfled.
If a mesamr.gful tlt. ceamo be selected without celseaftca'
;11-%, show title classification In all Cepitl@l is weatwheeik (S) "All distribution of this reort is coatrolled. Qual.
itamediately following the titlle. ifled DDC users shall roqucat through
4. DIC"IPT!VE NOTES It appropriate, enter thea type of_______________
report. eag. iuterina. progrels. summery. annual, of Raul1. It the rear has bes furnished to %he Office of Techolcal
Give the ienclusive date" whosea specific reporting period in Services, D~ow I -VA of Coesaisce. for Wei to thte public. Ladi-
covered, Coto this fact end eaterw the Fice, if knows
5, ATIrrIR(11) 3'.. the seem~s) of suthov(s) as mown as IL SUPPLE1119ARY NCTU. Use for additlemak sepIm~e
of in the topft. twotoo tam". first asm. Ewa*e ititala Im met"s
Ifst miltary. show mesh and branh of service, The sauto af
the puincipal jgbar ý* an sheelowa llowsmu rcqirmeaft IL U'ONVORINO MU=fART ACTIVITY,, Rom the mawe of

the daerotamtsl Project *#ifc*or labovsereiy spoemotaig (par'
& REPORT DATE. Later the dat* of the "pr asW da. ow ) thbe rcsesrch omed are a"om lmohkso as*"
mtonth. year, or mouth, ye' it More thee es date app...w
on the rporr, see dote of publlcatieos 13 $1USI3ACT; Rawe an habtraet givb hing e * sr ad factual

av~r f7 CM* dotmctW taletlve Of the .01M~ . *"a thoog7.. TMA16 MNCIN OF PAORL The totl -%op cou"' It masr *Sloe ps r eloewhItre in 1bo body of the tecbhedo re-should follow 00Asr pegiancloa procAthwes. La.. eatr She owti 11 *dditiosci uwo in, sowais. ws otumatioc sootI *boll,
number (Jf Pages cowatelslo loformseOtt. be at-obed.
7C~ Numba Or UEVEraItCla Rove the tolt) al de of It to hlIsly dsslblI that theo shetroct of cleassified to"ort
Wooremaco Cited it the 14ort. behalegakiested. Lath pategregh of ib. abstract s"el sand wit%
S.. COPTACT 3K 0*AWT N1IMIA 1f eppeprifte. eat.' as 'Mllcatl of Ow military seelaitt CW ~Iaa cstha of the La-
sihe spplcomesl. mamo of thew cosw*tt or WOat aider 011kchl for-otle n Is * porispinh. #"epwt"sse Be fF). (s). (c). a. (ui)
tall reort win "Putt#& 7%ere Isalle sitlblteo go *a lasog of the abstract. Raw.
Sb. lk, & Sd PILOJBCT N1JMER SMAte the OprplopSt wsr. *A owgeresd leftsit 1a hoe ISO to 3225 we
military daportwme Idostificaustea.ich as preleti "W4ater.I Ipwu~asetehielysctgb e~

*sh~iSO~i in . s~teb ~& . ~ w absot phimaeo tint chatactierte a repo a"d an be used to
Soe OUIlA"*SK *RPONT NUMMV atwer th* sin adornl 41111111 for I atalegsg Io Iest P eryX wsords must ha
cial rpow welor by "Whac the dotuloat will be identified selected *ago soi asaeclaity classibctias i 14-q.Jas mfdai-
ead %Lantftlled ',y the orlaosaing activity. TWO salke W4011 hiers. such &as- sepsto model de1Alpotlo. tradeNom. Military
ho wetqu to Ithe ropar. Pald 4:ads *As**. @**rook )ocosios. may be Woed asi hep
W~ OfRl~ RIPborT NUM1111s): lIsthe repeo %I hogs~ words but will ba followesd by an kuliestinis of tscineical call-
sageism mny ether rOwel amobar fenter by tho 5edvn~5 test. Tb* ec"Jaww&t a4 lItsh. mrele0. mei*4$ts Ws epleel.
of by t0o apos.-sr). also 404W this mehlb s).

10. AVAfl.A86LITT/IUTAT11DR1 NOTIC92 Lame. sas Me________________________

list 10.40 aa fther dlsosset"Ise of the vPIN 60 et*er ftes

%cscity cuesciflceUo


