UNCLASSIFIED

AD NUMBER

AD482373

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors;

Adm ni strative/ Operational Use; 1964. O her
requests shall be referred to Naval
Post gr aduat e School, Monterey, CA.

AUTHORITY
NPS [tr 23 Sep 1971

THISPAGE ISUNCLASSIFIED







SOME BOCLEAN REPRESENTATIONS

OF THE PROPOSITICNAL CALCULUS

* k5 % * %

Leonard A. Snider




=

SOME BOOLEAN REPRESENTATIONS

OF THE PROPOSITIONAL CALCULUS

by
Leonard A. Snider

Lieutenant Commander, United States Naval Reserve

Submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE
with major in
Mathematics

United States Naval Postgraduate School
Monterey, California

1964

-




R 2l

A

SOME BOOLEAN REPRESENTATIONS
OF THE PROPOSITIONAL CALCULUS
by

Leonard A. Snider

This work is accepted as fulfilling
The thesis requirements for the degree of
MASTER OF SCIENCE
with major in
Mathematics
trom the

United States Naval Postgraduate School

Faculty Advisor

WO ethl Lol

Chairman
Department of Mathematics
and Mechanics

Approved:
-

P .AJLL{O/?

cademic Dean




ABSTRACT

Boolean algebra has long played a well known role in the develop-
ment of mathematical logic, but even in the propositionsl calculus there
are many problems still to be investigated. Among these is the question
of the feasibility of identifying the statement calculus with a Boolean
algebra other than the (0, 1) algebra. The theory of Boolean algebra as
required for a study of the algebraic aspects of logic is formulated.
Characteristics of the equality relation are discussed and the proposi-
tional calculus is cutlined with early emphasis on the equivalence clas-
ses, (0} and {_ﬂ The concepts of truth values, truth functions and
truth sets are developed. Through these concepts, the statement calculus

is identified with a Boolean algebra consisting of more than two elements,
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1. Boolean Algebra

As necessary introductory material in the development of the pres-
ent thesis, this section defines and characterizes a Boolean algebra in
terms of its set-theoretical aspects., A summarization of the properties

of Boolean algebra relative to the discussion is 1included.

A Boolean algebra is defined as a non-empty set with two Yinary
operations, ) (union) and N (intersection), and one unary operation,

' (complementation)., (These operations are called union, intersection
and complementation because they will uave the same properties as the
corresponding operations in the special Boolean algebra of sets.)

The following set of axioms [16:) are assumed as characterizing the
operations of union, intersection and complementation. (The number of
axioms in this set is not a minimum number required to establish a
Boolean algebra but is satisfactory for the development of the material
in this section,)

i. AUB = BUA ; ANB = BNA

ii. AU(BUC) = AUB(UC) ; AN(BNC) = (ANB)AC

iii. (ANB)UB = B ; AN(AUB) = A

iv. AN(BUC) = (AAB)U(ANC) ; AU(BNC) = (AUB) 1 (AUC)
v. (ANA')UB = B ; (AUA')NB « B

To relate the Boolean algebra to set theory, we define a field of
sete as any non-empty class (D of subsets of a fixed non-empty space X ,
where ® 1is closed with respect to the set-theoretic union, intersection
and complementation, Then every field of sets is a Boolean algebra with
the Boolean operations U ,/, ' .

As a particular example [S], let P(X) be the power set of X , 1.e.




the class of all subsets of X, P(X) is a field of sets as defined above
and, therefore, a Boolean algebra.

As a consequence of the above axioms, various results can be estab-
lished and are summarized below.

The idempotent laws A : AUA and A = ANA follow directly from the
axioms.

From the absorption laws, it follows that if one of ANB = A or

AUB = B holds, then so does the other relation. In case

ANB = A and AUB = B ,
we say that A {is contained in B and write A< B where the relation
< {is called the (Boolean) inclusion.

If the Boolean algebra & 1is a field of sets, then the Boolean in-
clusion T coincides with the set-theoretic inclusion and has the follow-

ing properties (those which define a partial ordering [17],

1. A<A (reflexive)
ii. 4if ACB and BSA, then A s B (antisymmetric)

11f. 1f ACB and B%C, then ASC (transitive)
where A, B, C are arbitrary elements of the Boolean algebra (.

The element A/)A' 4is called the zero element (or zero) end is de-
noted by 0. It can be shown [16] from the axioms and the inclusion re-
lation that ANA' does not depend on the choic: of A in @ and that
the zero is unique.

The element A U A' (which also may be shown to be independent of
the choice of A and unique) is called the unit element and will be
denoted by 1.

A femiliar principle in Boolean algebra is the duality principle,

.




which follows primarily from the symmetrical nature of the operations
Uand ). For example the set axioms remain unchanged if U s re-
placed by M\ and M is replaced by . The eubstitutions of \J by N
and (\ by U transforms the unit element into the zero element and the
zero element into the unit. Therefore, given a statement about (J , N ,
0, 1 , the dual statement is obtained by subetituting N\ for \J , ()
for (\ , 1 for 7, and 0 for 1. As a consequence of the principle of.
duality, we can restate the axioms using only (\and ' . And, as duality
appears in every development of the Boolean theory, a choic: between two
possible approache; should be made; the dual then follows as a natural
consequence. In the development of logic, emphasis is placed on truth
and probability (with "1" for '"true"). The dual approach would emphasize
falsity and refutability (with "0" for "false").

Closely related to the concept of duality, the De Morgan formulas
provide a convenient method for transforming relations involving U
and ' into relationz involving /M and ' in the following manner:

(AUB) ' = A'\B’' ; (ANB)' = A'UB'

The element ANB' is denoted by A-B and called the differencz of
A and B. If the Boolean algebra is a field of sets, them A - B coin-
cides with the set-theoretic difference of sets A and B. Some useful
properties of difference are:

ASB {f and only if A - B = 0

"

end ASB {if and only if A'UB =1

"

Elements A,B in B are disjoint if ANB : 0. It then follows

that
AN(B-A) = 0

since AN(B - A) = AN(BNA') = BN(ANA') = BNO =0

3




2. Equality.

Throughout the first section, the equality symbol " » " was tacitly
used in the sense of logical identity. Through everyday usage, the
equality relation is considered as a synonym for either identity or a
quelified degree of likeness. But as Stoll [1f1 has pointed out, if
the -elation is restricted to elements having identical foram, then, in
gereral, it is not possible to generate a Boolean algebra. Set rels-
tions, however, can be deveioped under " : " &s identity by use of the
Axiom of Extent: If A and B are sets and {f, for all x, x ¢ A ({f
and only {f x<B, . her A = B. For example, through the Axiom of Ex-
tent, it can be anown that the commutative relation, AUB =z BUA, is a
consequence,

A further analysis of the equality relation [}3] leads to the con-
clusion that equality satisfies the axioms lead..g to the definition of

an equivalence relation as a relation r in a set A such that:

{i. xrx for all x in A (reflexive)
i1, If xry, then yr x (symmetric)

iii. 1f xry and yr z, then xr z (transitive)

The main feature of equivalence rclations is that it divides all wew-
bers of a set A 1into disjoint subsets called equivalence classes, de-
noted by [k] , and defined by [ﬁj = {yeEA |xr y} with the tasic proper-
ties:

1. x ¢ (x)
1. 1f xry, then (x] : {?) and conversely.
As s partition of a set A 1is a disjoint collection (A of non-

empty and distinct subsets of A such that each member of A 1is 2

4
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member of exactly one meaber of (L, it follows that the collection of

distinct equivalence classes is a partition of A,

The fact that an equivalence relation defines a partition (and con-

versely) demonstrates tha*t the reflexive, symmetric and transitive axioms

are adequate to assure the desired zeparation into classes, and hence
that they characterize equality. Consequently, any equivalence relation
may be called an equality relation,

Throughout this investigation of the properties of Boolean algebra
and the propositional calculus to follow, the problem will be to identify
elemeats which, although not of identical form, exhibit a certain like-
ness denoted by the basic relation, - . This equals relation must le.
to a partition of the basic set, and is therefore an equivalence rela-

tion.

It is then necessary fo be more explicit about the meaning of

equality and so we re-define a Boolean algebra (B to include as a

primitive term as follows:
@:(B»U.f\,'»=)

such that the following axioms are satisfied:

f. = 1is an equivalence relation in A

L. I1f A

B, then ANC = BNC for all C

iii. If A =B, them A' = B'

iv. Axioms of Section 1 are satisfied.
Then it can be shown that if A = B, it follows that AUC : BUC
for all C as ii. and 1ii. above postulate a subs-itution principle.
Thus to use a Boolean algebra as a model it is necessary to inter-

pret equality as wel! as the other elements in the definiens.




3. Propositional Calculus.

Historically, George Boole developed the theory of Boolean slgebra
(Algebra of Logic) as an aid in ianvestigating the '"laws of thought”,

It is not surpri..ag then that there are many important spplications of
Boolean algebra to the theory of Mathematical Logic.

This section is intended to develop the necessary concepts of prcpo-
sitional calculus and to show its connection with B.olean algebra.

The usual way to see the connection between Boolean algebra and
logic is to begin by examining the manner in which sentences are com-
bined by means of sentential connectives (17]. Let S, be an arbitrar
non-empty set containing at least two members (these members of S, are

to be called prime statements). If p€ S, , then associated with p we

must assign a truth value T or F. Then let A, Vv, ', be distinct
objects not coatained in S, (where, intuitively,V ,A , ', are to be
thought of as the logical connectives 'or', "and", "not", respectively).

The set S, can then be extended to a set S (the members of

which are to be called cimposite statements) by adjoining all statements

which can be formed by using the sentential connectives in all possible

(but finite) ways. Then if p, q are in S,, P', PAQ, PVq are in
S so that S 1is closed under the operations ‘', A ,Vv .

The propositional calculus is concerned with the truth values of
composite statements in terms of one of the truth-value assignments
(I for "true" or F for "false") to the prime statements and in terms of
the interrelations of the truth values of composite statements having
some prime components in common.

I1If p and q are in So’ then pAq and qAPp are distinct
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elements in S but truth value seems to require that if p and q are
sentencea, then "p and q'" and ''q and p" should have a certain degree of
likeress (or the same truth value).

Two propositions of the propositional calculus are said to be
equivalent (eq) 1if they have the same truth value, so that in the
intuitive example above

PAQqQ eq qA p
which corresponds with the law of Boolean algebra

ANB = BN A

Here, then the elements M\ and = of the Boolean algebra correspond

with the 2lements A and eq of the propositional calculus. Similarly,
the elements \U and ’/ correspond with V and ’/ respectively, and the
laws of Boolean algebra also hold for the logic of propositions. In

addition, there exists an jnterpretation of Boolean algebra axioms as

follows:
B u m / 1 0 x
S vV A\ /" pvp' pAP’ eq

Thus the propesitional calculus is a Boolean algebra and henceforth i
Boolean symbols and logic symbols will be freely interchanged.

The elements of S which correspond with the 0 and 1 of the
Boolean algebra are pAp' and pvVp', respectively. Considering the

elements of S as sentences, a statement of the form pAp' ("both p

and not p") 18 intuitively 'false'". A statement of the form pvp'

("p or not p"), on the other hand would seem to be "true'" - and i3 sc }




trested in classical Aristotlean logic.

The truth value of composite statemen.» is defined f{n accordance with
"truth tables". Truth table definitions for the comnectives '"not" (nega-
tion), "and" (conjunction), and "or" (disjunction) are given in the fol-

lowing table. {41

Negation Conjunction Dis junctio

P q p' PAQ PV q
T T F T T
T F F F T
F T T F T
| F F T F F
Table 1

Negation, Conjunction and Disjunction

These definitions are intuitively clear. If a statement is true,
its negation is false (and vice versa). For the conjunction of two state-
ments to be true, it is necessary that both prime statements be true. The
disjunction {8 used in the inclusive or meaning: 'p 18 true or q {is
true or both are true",

All the 16 truth functions of two variables can be 2xpressed in terms

of V, A, and '. For example, "if...then..." (msterial implication,

conditional), and "if and only if" (material equivalence; dbiconditional)

which are consequences of the definitions of Table 1, are listed in the

following table:




T

Conditional Biconditional
P q P'Vveq (rAQ) Vv (p'AQ’)
T T T T
T F F F
F T T F
F F T T
Table 2

Conditional and Biconditional

The conditional p'\V'q 1is commonly denoted p-—>q, so that p—» g
is an alternate way of indicating material implication. p—>q repre-
sents the assertion that for each possible pair of corresponding values
Po» 9, of the statements p and q, 'either Po is false or, if
P, is true, then 9, is true also'.

The biconditional is commonly denoted by the symbol pe>q. Then
p&>q asserts "either p and q are true or p and q are false '
In comparing the biconditional with identity, it is seen p - q weans
that p and q are the same statements while p&>q means that »p
and q have the same truth value.

The following table combines the truth tables of Tables 1 and 2
with the remainder of the 16 different truth functions of two prime

statements. (ﬁ}

|
:
:
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False; never
And; both
Only p

2

i

]

|

i

Only q |
q ’

Or else !
]

either

neither

alike; Lf and
only if

not q

if q, then p
not p :
if p, then q

nor (neither...,ncr)|

2. — S . S
0 0000 P : Inconsisteant
1 0001 PAQq | Dis junction
2 6010 PA Q' ;

3 0011 p ‘

4 [ 0100 5 AL '

5 o101 | q :

6 ' 0110 (pAqQ') V (P'A Q) | Symmetric
; Difference

f 7 i o111 PY a ' Conjunction
: 8 i 1000 P'Aq ~ Double stroke
; 9 I 1001 PAQ YV (P'A Q) E Biconditional
‘ |
0 | o010 ¢’ ;

1, 1011 pvq' | Conditional

i .

12 | 1100 p' "

;13 } 1101 p'vq Conditional
14 . 1110 P'vq' Scheffer stroke
15 1111 T Tautology

Table 3

True; always

The 16 Truth Functions of Two Statements

The truth table definitions are arranged in a convenient row forn

with 0 for F and 1 for T. Column 1 is the decimal equivalent of

n
the binary number in column 2. Column 2 is the 22 possible truth func-

tions of n = 2 propositions. Column 3 are the possible combinations of

the sentential connections V, A,

. Column 4 lists the usual names




Lacae, LRI

of the expressions listed in Column 3. Column 5 lists the common verbal
expressions applied to the propositions of column 3 {}5].

For example, 13 is the decimal equivalent of 1101 as 1.23-+ 1.22 +
0.2 +1 :-13. This binary number represents p'Vq as the only zero
in 1101 occurs in the column where p x 1 and q z 0 , thus correspond-
ing with the truth table for the conditional ("if p, then q") as derived
in Table 2.

Some of the logical functions defined inm Table 3 are of equal {m-
portance with the basic ones defined in Table 1. #6 is known as the
exclusive or and asserts 'p or q but not both". The exclusive or is

normally symbolized by paq and called the symmetric difference. #8,

called the double stroke, uses the symbol, p#+ q. #14 is called the

]

Scheffer stroke of p and q, asserts 'either p’ or q' or both" and

is denoted by the symbol, pi{q.

A proposition is a tautology (or is valid) if fts truth value fs T
under all assignments of truth values to its prime statements. (#15 of
Table 3 is then a tautology as it is true for all assignments of T or
F to p or gq.)

The traditional approach to establishing a set of tautologies (a
subset of S) is to establish an initial set of tautoclogies and then
provide a rule for new tautologies from the old [}]. As part of this
procedure some abbreviations of admissible sequences (members of S) are
formed:

1. 1f p and q are members of S, then write pAgq
for ((p') v (q'))’

i{. write p->q for p'vgq

11




ii4. write p&>q for p—>q A q—>p

Then an initfal set of tautologies consists of the sequences of one of
the following forms: 1

’ i. pvp-op ]

ii. p—>pVvyq
iii. pvq—qVvp {

iv. (p—=9)> ((r=2>p)y (r—q))

Then new tautolc;gies can be formed by the following rule of infer-
ence (modus ponens): If p 1s a tautology and if p-5 q 18 a tautology,
then q 1s a tautology.

Case #1 of Table 3 is #n fllustration of the class of propositions
called inconsistent (propositions which are false for all assignments of

a T or F to the prime statements). All the other propositions (includ-

ing #15) are consistent as they are true for some assignment of T or F
to the prime statements.

One proposition implies another if there is no assignment of truth
values which makes the first proposition true and the second fzlse.

(This logical implicatfon is illustrated by #l1, pvq' for q-p,
and by #13, p'vq for p->q.)

Two propositions are equivalent if they iamply each other. Coabin-
ing this definition with the discussion on tautologies leads to a mechani-
cal procedure for deciding if a pr_oposition ic a tautology by an examina-
tion of its truth table: Two propositions p and q are called logic-

ally equivalent if p&>q 1is a tautology.

It can then be shown that the logical equivalence of propositions
is an equivalence relation for:

12
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i.

if.

iif.

(rePpP)>>(Pep) (P'VPIA(P'VP)OMP'VP)A (P'VP)

(p VP)'Vvp'vr)

ovli =1

[(e'varacave)'via've Ap'V q))
evar A vavieeva arprvall

(PVL)A(Q'VIDIAQVDA(P'V]Y) =1

(r& q)—> (9 p)

(PO P A@QEO ) (peT)
: [eraaveeaar] v L@ arvigan)
\IGP'AI")V(P/\T)]
= [evorevael v[avona@vevin) - 1

The propositional calculus is, then, characterized by:

i.

it.

i1,

the logical equivalence of propositions as an equivalence
relation,

the subset of tautologies, and

the set S of all formulas of the theory based on the two-
valued algebra of propositions.

13




4. Congruent Algebras

The set of axioms established for the Boolean algebra included the
equality relation and the substitution principle. Whea the propositional
calculus was identified as a Boolean algebra with equality meaning logi-
cal equivalence such a relation is a natural congruvence relatison., In
this study of Boolean algebra as related to propositional calculus,
there are reasons for intrcducing &n equivalence relation, @ ; other
than the natural one. Then attention cin be centered on l!/9 as the
basic set whose elements are the © -equivelence classes.

The relation @ in B is called a congruence relation [17] if.

i. © 1is an equivalence relation in B

1i. If a8b, then anc 6 bNc for all c

iii. If aeb, then a'db’

A congruence relation is called proper 1f © is not the univ-rsal
relation fn B. (If © 1is the universal relation, then 29b if and
only if a,b€¢B {implies [a} - B for all a in B. Then B/y : flfg
which cannot constitute a Boolean algebra.)

Various properties of proper congruence relations follow from the
definition; among them are,

1) If adc and bed , then aNbecNd (which {s a theorem analo-
gous with the substictutivity property discussed earlier).

If B/6@ 13 the set of O - equivalence classes, {[a]l, this pro-
perty becomes:

2) 1f (a] = (c] and (b} = (d] , then [an§ : {en d:l

In addition, it follows from the third requirement of congruence

relations that {a]' - {2 . Define binary operations @, QO io B/g

14

|
|




such that
1. (a] ® Wb
ii. (@1 © )

and observe that

er s

ry
A

[a] » (Ble>aeb defines equality in B/g as set equality.
Then, by verification of the asxioms of the Boolean algebra, it can
be shown that B/@ is a Boolean algebra (called the Boolean algebra
induced by 0).
Therefore, from a Boolean algebra, B, and a proper congruence
relation @ on B, another Boolean zlgebra, R/6, may be derived. The

elements of B/O are the @ -equivalence classes and the operations of B/@

are defined in terms of those of the original algebra using representa-
tives of equivalence classes. 1r 6 is different from the equality re-
lation in B, then B/6 may be essentially different from B.

Further rolationships of the Boole~n algebra, B/8, to the Boclean
algebra, B, under a proper congruence relatica will ove pointed out
following a discussion of the propetties of homomorphisms and isomorphisms

Lect B and C be Boolean algebras. A mepring g8 of B onto C
is said to be a Lon__.orphiuf}m-l provided the mapping preserves intersec-
tions and complements, that is

g (anb)

re

g8 () N g (b)

g (a') (g(a))’

L1

As a consequence of the definition,
3) g(a-b) = g(aNb'y - g(s)N g(b')
= g(a) ) (g{»))' - g (a) - g(b)

The homomorphism transforms the zero amd unit of B onto the zero and

L5




unit of C, which is ambiguously denoted also by O and 1:
4) g(0) =0 ; g{l) =1
as g(0) : g(ana') = g(a) N\ (g(a))' = 0
and dually for g(l1) = 1

The homomorphisa g preserves the inclusion;
(1f aS beo>aNnNb' = 0, then g(a) & g(b)).
Por 1f bz aUb; g(b) = g(aV b) s g(a) ') g(b)
A one-to-ome homomorphism is called an isomorphiss and the algebrz B
and C are isomorphic if there exists an isomorphism g of B onto C.
Then 3'1 is an {somorphiem of C onto B.
In order that a one-to-one mapring B onto C be an isomorphism,

1

it is necessary and sufficient that both g and g =~ preserve the in-

clusion. (This theorem then implies (4)), [16].

A homomorphism g of B 4into C 1is an isomorphism if and only if
g'l (0) contains only the zero of B, that is
5) g(a) = 0 implies that a = 0

Returning to the derived Boolean algebra B/©, additional theorems,

definitions and concepts of a proper congruence relation are presented [17}.
Let © be a proper congruence in a Boolean algebra B and define i
the functions p : B—5B/@ by p(a) ={aJ. Then p 4is & homomorphism.
(p is called the natural mepping of B onto B/8.)
The algubra B/®@ of @ - equivalence classes is a homomorphic irage
of B under the natural mepping on B onto B/®. If the algebra C {is

& homoavrphic isags of B, then C {s fsomorphic *c some B/©. Moreover,

if £ : BC 1ic the homomorphisaz at hand, then f = go p where p {s

the matural mapping of B onto B/6 and g is an isomorphism of B/6

16




onto C, where "FOLP is the composition of the mappings ‘fand Y.

As a consequence of these theorems it follows that the homomorphisms
of a Boolean algebra are in one-to-one correspondence with the proper
congruence relations on the algebra.

If © is the equality relation, then the elements of B will map
onto one of the equivalence classes {0) or [1}. 1If a proposition in B
is refutable, then its image in B/® 1is equal to 0. If a proposition
in B is provable, then its image in B/@ 1is equal to 1. Then, with

@ the equality relation, {1} is the class of all tautologies and, as

stated in the last eoction, 2 necessary and sufficient condition for
P = q is that the biconditional of p and q bLe a tautology.

Then as was uoted in the interpretation of Boolean algebra axioms
in the previous section, S becomes & Boolean algebra after idemtifica-
tion of equivalent formulas. This Boolear algebra is called the Linden-
baum algebra of the propositional calculus @6:\ 2

The fundamental completeness theorem of the propositional calculus

[12] states that the formulas obtained from the set of axioms by means

of the rules of inference coincides with the class of all tautologies.

The completeness theorem can be obtained from the fundamental representa-
tion theorem stating that every Boolean algebra is isomorphic to a field
of sets, and conversely, the fundamental representation theorem for

Boolean algebra can be directly deduced from the completeness theorem [7]

17




5. Alternate Approaches to Truth-Values.

In defining the propositional calculus, a primary objective was to
ensure that equivalent propositions were assigned the same truth-value.
At the conclusion of the previous section, it was demonstrated that any
tvo-valued homurphism gave a truth-valuation of the elements of S upon
assignment of T or F to propositions according as the equivalence
class is assigned to T or F. This procedure resulted in the truth-
tabie solution and the collapse of the Boolean algebra to the (0, 1)
algebra.

Various other aspects of the truth-value problem are discussed in
this section. One of these will lead to the development of a general
theory of truth-values in terms of truth-functions mapping the elements
of the Boole a algsbra onto a "larger" algebra thau the (0, 1).

A fi1 .c consideration involved in solving logical problems by the
pro; ‘S .ional calculus is embodied in the method of elimination which
states that the making of a statement is an asuertion of the non-existence
of some of the classes E13). Thus, logical reasoning involves elimination
of situations which conflict with clearly definable rules expressed by a
statement,

Two statements divide the universe into four classes characterized
by possession or non-possession of a specified status. These four
classes are pAq, PAQ', P'A q, and p'Aq'. (These four disjoint
classes are the "atoms'' of the Boolean algebra. Their union is a tau-

. tology.) [l.]
The other truth-functions of twvo variables can be expressed as

exact equivalents in terms of these atoms.

13




For example:
. T:=0AQDV(PAQ)V(P'AQ YV (P'AQ')

. pvgz ((PAQ)V (PAQ') V (P'A Q) A (P'AQ")!

iil. peq:z ((PAQV (P'AQY)) AWP'A A (PAQ"))!

v. p—q =2 ((PAQ) V (P'AQV(P'AQ")) N(PAQ')’

These relations illustrate the following theorem. : [14:]

If B {s a Boolean algebra with m (finite) elewents, then B {is
isomorphic to B,, the Boolean algebra of all subclasses of the class of
all atoms in B.

Thus, the i6 truth-functions of two variables are expressed in forms
distinct with respect to truth-value. If one of T or F 1is assigned
to the prime statements, then the Boolean algebra (0, 1) would result,
For example, if p¢ (0] and q ¢ {1} , then (using the decimal equiva-
lents of Table 3):

o]
10

As a further example of expressing the truth-functions in terms of

0, 1, 2, 3, 4, 8,9, 10)

(5, 6, 7, 11, 12, 13, 14, 15)

the others, it has been shown [12] that p'A q' and p'v/ q' are both
statements in terms of which all the other functions may be expressed.
For example, the Scheffer stroke connective, p | q = p'V q', has the

following relations with the other truth-functions: (15|
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0 0

1 Vvl lq)
2 Pveva) Llpveva)
3 P
“ vy a) L{at i)
5 q
6 Gieiali(ey i a)
7 (plp)d (alq)
8 vt @ba) Viepevm ey a)
9 Gip) @il (pLa)
10 (qV q)
11 qV (p V¥ q)
12 pVop
13 plGVq)
14 PVq
15 1

Table &

Truth-functions expressed in items of the
Scheffer stroke connective

In the testing of theorems by machines, which is a central problem
of modern logic, complete truth tables are essential. But if a machine
is built primarily for solving problems in which one wishes tc know what
truth values for individual terms are uniquely determined by a given
set of statemencts, it is possible to establish a process that dispenses
wvith the requirement of scanning truth tables. Truth tables can be scanned

rapidly if only a few terms are involved, but as the number of terms
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increases, the scanning time increases at an accelerating rate. If the
scanning procedure is eliminated, the exact status of each variable be-
ing investigated by a logic machine would be shown after each new state-
ment is entered.

The digital computer solves problems in the propositional logic by
assigning binary numbers to the various truth functions. These truth
numbers for the 16 truth functions of two variables are shown in colummn 2
of Table 3. Truth numbers for various relations can be combined by sim-
ple arithmetical rules to determine the validity, consistency, or incon-
sistency of compound statements. For example if the final truth number
is 1111, then the compound statement is a tautology.

As an example of ''mechanized reasoning" in finding an "answer" to
a logical problem involving a large number of prime statements, consider
a problem with the following rules: Cll] |

If B, them C
A 1if and only if D
A or else B

The logic machine is then set up in the following fashion:

<] =]

oR \E o = ﬁH.D
ELSE THER) oNLY | F
\ lj
3 I 5
Diagram 1
21
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where the OR ELSE, IF THEN, IF AND ONLY IF circuits perform clectrontc;
ally the definitions of Table 3 and where the leads 3, 1, 2 will be
live (= 1) 1if the corresponding rules are satisfied, or will be
grounded (= 0) if the rules are not satisfied.

To arrive at a solution, a trial soclution is assumed and then modi-
fied by a "feedback" process to remove features inconsistent with the
rules, For example, suppose the initial configuration is A'B'C'D'.

The first rule (if B, then () is satisfied so point 1 is live; the
second rule (A if and only if D) is satisfied so point 2 i3 live;
but the third rule (A or else B) is not satisfied, so point 3 1is
grounded, indicating that a change is required in the status of A or
B. This change could be accomplished by a "feedback'" signal from the

ground at point 3 as shown in the following modification to diagram 1:

// /_h\
4 \/ i-—L— ‘
’l A }\ | R
\\—\ _/ /

" /

\\ R ’ ‘IF A»E) /

b eus oLy 15 ~
~ e
3 | /A

Diagram 2

If the status of A were changed, then the condition to be tested
would be AB'C'D', for which rule 2 1is not satisfied, ~equiring a
change to AB'C'D. AB'C'D does satisfy all the rules and is therefore
an answer to the problem. 1If all the answers (the other two are AB'CD
and A'BCD') are desired, a new initial configuration would have to be ‘

22




entered and the process repeated.
In the search for equivalence classes other than [0] and (1), the
following definition is made:

Let I, = {f | £ : so—e('r,ﬂ} . The members of 3—0 are to be

called truth functions [17] and consist of all mappings of prime state- ?

ments into T,F where f(p) = T 1is to be interpreted as "the prime
statement p has truth value T".

The discussion and examples of this section have been intended to
imply the feasibility of identifying the propositional calculus with a
Boolean algebra other than the (0,1) algebra. Here, for example, no
assumption as to the number of elements of B have been made and each
element may have an arbitrarily assigned truth value.

So far, the discussion has been concerned with decidable proposi-
tions, those which are either true or false. »nother kind of problem
arises with a formula like

x+y = 5
where x and y are variable symbols representing arbitrary numbers.

Formulas of this type represent propositional functions (9) Replacement

of the variable symbols x and y by arbitrary but specific numbers
always results in a unique proposition to which the words ''true" or
"false'" can be applied.

A propositional function may then be defined as a formula which con-

tains one or more variable symbols whose allowable values are the members
of some specific set. The propositional function becomes a proposition
for any substitution of allowable values of the variables. Then the

truth function, £ (p), of the propositional function, p, becomes a
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member of 3’ if a determination of f£f(p) : T or f(p) = F can be made.
As an aid in developing further equivallence classes, a partially

ordered system (2] is defined as any set P with a binary relation

such that
i. p &£ p, for all péP (reflexive)
ii. if p £ q, and q < p, then p = q (antisymmetric)

i1i. 4f p £ qand q < r, then p <  (transitive)

It has been shown Y_l_] that the partial ordering relation symbol
n& o §g equivalent to the material implication symbol " —> ", so that
for truth functions the following properties hold:
i, 0£f£<£1
1., f<£f for all f
iii. 1If f<4g and g< f, then f:g
iv. If f<£g and g<h, them f<h
v. f<g 1fandonly i1f f A g =z f
vi. f<g ifandonly if fV g=2¢g
viil. f4£g if andonly if Z Ag s 0

viii. f<£g if and only if f'\s g =1

The se properties are clear‘y satisfied for the Boolean algebra
(0, 1) . Thus £< g is equivalent to the requirement that whenever f
has the truth value 1, the value of g must also be 1. This require-
ment can be rephrased as "whenever f 1is true, g wmust also be true,"
which is equivalen? to f — g.

This ordering relation can then be applied to the truth functions

of Table 3 using the property (v), f <g if and only if fA g : [,
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to obtain the conditional relations:

0£1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15

1<3,5,7,9, 11, 13, 15

2£3,6, 7, 10, 11, 14, 15

347,11, 15

4£5,6, 7, 12, 13, 14, 15

5&7, 13, 15

6 %7, 14, 15

1415

8<9, 10, 11, 12, 13, 14, 15

9 €11, 12, 15

10 £ 11, 14, 15

11 £15

12 £13, 14, 15

13 £15

14 <15

15 £ 15

These relations then determine 16 classes such that given any condi-
tional composite stateaent with one truth function as the antecedent and
another as the cocrs :quert, chen it can be immediately determined if the
statement is a tautology. For example, 8 &« 11 (i.e. f£(p'Aq') —
£f(q'v p)) is a tautology.
The partial order relation is not an equivalence relation, as the

former has the antisymmetric property and the latter requires symmetry.
The " <" was defined by abstracting the properties of order for real

numbers. Every pair of two real numbers a and b are comparable.
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However, for set inclusion, < , 1t is possible to have an incomparable
pair of subsets. For exsmple, p and p' (or amy truth function and its

complement) are not comparable as they are never simultansous 1 or 0.

Returning to the development of equivalence classes for the members
f of & o’ truth values for formulas can be developed in the following
manner:
For any f & ao. with p, q € so' define
1) £") ={r 1f £(p)
F 1f f£(p)

F

T

2) f(pv q) = (T 1f £(p) s Tor f£(q) T
{F otherwise

3) f(pnAq) = [T1f f(p) =T and f£f(q) = T
{P othervise

Then i{f r is any formula in S - So, f(r) can be derived from
the above definitions through a finite sequence of members of S, using

the sentential connectives A,V , /. For example if r z p V q where

|>=l>1'/\q1 and q:pll\ql'. then

£(r) = £(p) V £@) = £(p] A q)) V£GP A q))

(T 1f £(PjA q) =T or £(pAq]) =T

\F otherwise

. {15 £(p}) = T and £(q;)
if f(py) = T and f(qi)

T, or

T

L F otherwvise

{u f(p) = F and f(q) = T, or
1f f(p) s T and f(q) = F

. k F otherwise q
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l which agrees with the truth values of the symmetric differsnce functfoa.
Usually, as in Tables 1, 2 and 3, f 1is omitted and it {s under-

} stood that a particular truth function f is being examined. If values

of f(p) and f(q) were specified, then exactly one row (column of

Table 3) would be sufficient to determine the valuz of f(r).

We define an equivalence relation in S by:
1f p,qe S, them p:q &£(p) - £(q) for all fe . (Two pro-
positions p and q are equivalent if &nd only L{f truth table values

* are identical.)

n
-

Then as f (pv/ p')

{r Lf £(p) = T or £(p')
F othervise

T Lf£ £(p) =T or f(p) = P

T for all f€ 30. let 1:pvp' forp€ s
Similarly, let 0 = pA p', and it then follow= that
£(1) = T for all fe 30, and

£(0) = F for all fec I,

Thus there exists a function, f, assigning to each formula of S of |

the propositional calculus a truth-value, T or F. For the formulas of

Tables 1 and 2, these assignments can be expressed in the following form:
i. f(p') = T if and only if f£(p) = ?
if. f(pvq) =T if and only 1if f(p) or f(q) = T

11f. £(pAqQ) = F if and only if f£f(p) or f(q) = F

iv. f(p—>q) = F if and only if f£f(p) = T and £f(q) = F
or f(p—>q) = T if and only if £(p) € f(q)

v. f(p6>q) = T if and only if f£f(p) - £(q)

27 1
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The truth table method p.ovides an adequate means of exprecsing all
possible truth functiens of any number of prime statements. If 563‘,
is selected then the statement calculus reduces to the (0,1) algsbra.
Othervise, there wili be more than two aquivelence classes by the sbove
definition. Thus the propositional calculvs is adequrte to express all

truth functions and is said to be functiovnally complet: E.‘!]

The 16 truth functions of twe azguments, f.(p.q)....., f15(p.q)
of Table 3 are of three different kinds. Tautologous truth functions are
functions whose values are true regardless of the trath or Ielsshood of

their argumeats. Comtradictory truth functions are functions whose values

are false regardless of the truth or falsehood of their arguments. Con-
tingent truth functions are functions which are true for some values of
their arguments and false for others.

Another aspect of truth values is developed througk the concept of
a truth set, vhich is defined as follows: {10]

Let [ be a set of logical possibilities, and p, q r... be state-
ments relative to }{ ; let P, Q, R,... be the subsets of ‘I for which
statements p, q, Ir,.... &re respectively true; then we call », Q, R,...
the truth sets of statements p, G, T,....

For the example on '"mechanized reasoning” in this section, 1/(4 is the
set of 16 logical possible combinations of the letters A, B, C, D and
their negation; p, q, r are the statemeats "if B, then C", "A if
and only if D", and "A or else B", respectively; and the truth sets
P,Q,R are AB'C'D, AB'CD, amd A'BCD'.

The concept of the equality of two functions becomes clearer if

thought of in terms of truth sets. Let f and g be two functions
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defined on the same domain D. The statement f(x) : g(x) determines
a certain truth set consisting of elements x for which the two func-
tions happen to have the same value. The truth set may be empty, if the
two functions have nc common vaiue. The truth set may be all of D,
which then implies that f - g. Thus, the two functions are equal {if
f(x) = g(x) has as its truth cset the entire domain.

The definition of truth set above is equivalent to the following
formulation of the problem: (Note: Material is from class notes taken
in a course on Boolean Algebra presented by Dr. Peter W. Zehna of the
Naval Postgraduata School, Monterey. A search of the literature Ly the
author of this thesis failed to show that this approach is available

elsevhere.)

Let S be the Boolean algebra of the propositional calculus. For

every p £ S, define the truth set of p, denoted &‘ , by
| 4

3, - {f ¢dy | o « 1
thea %p) g__}o for all p& S.
The truth set of p has the following properties:
1) 3’?1 < (&P)
Proof: feap,@f(p') : TOP) = PS¢ T @ e (5)
2 2
) Fpyqr FUE,
Proof: fe} ©feI or fi) @f(p):T or
PVvq P q

£(a) = T4 £(PVQ) = T& fe UG

29




o~ oo

i Qqu 2 3N a'q

Proof: fegrpu@ £ed and fegq@ £(p) = T

and f(q) : TS f(P/\‘I)zT@f‘gpﬂgq

Proof: 1) Suppose p - q Then f(p) - £(q) for all fe 3' . Thus {f

f & 3-?. then £f(p) = T = £(q) so that f C—&q, and con-

versely. Hence ép = g'q

{1) Suppose a-p = &q" If f{(p) = T, then f¢& g'p, and so

£€3q and £(q) = T. If £(p) = F, then f ¢ 39, the

f¢3~q , s0 f(q) : F. Hence, p - q.
5y Z,.0; 3 %
Proof: 1) fe3F DEO) =T DT : 6

T%g’i:g‘

(Then: p & S 1is a tautologye<> a—p =:3)

1) fe F = £(1)

6) p—>q is a tautology&y a—p - g'q

Proof: 1) Suppose p—>q 1is a tautology. Then g'p—v,ng z

3’9'\/«1 poand (Fpry ' pAq % (\é'q
25N G F <&,

1) Suppose Q-P < g'q +« (Then the converse follows by revers-

ing the above steps.)
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7) If {pl, Pas cees pu‘g are inconsistent, then

[n\grpi : 9

11

Proof: {pl. ve s pn.ﬁ inconsistent & for all f ¢ 3" R

£(pi) = F for some 14& for all f C-a',

’ fcg.', for some 1& for all feg'.
Py
~ !
fé 1\'3)1 3"1) ) (1('\1 3p1>4=,5»C<
&5 ’C\l 3“,1 =0

31




6. Summary and Recommendations.

This thesis has considered some of the relations between Boolean
algebra and the propositional calculus. In particular, the concepts of
truth value, truth functions and truth sets were defined and developed.

The Boolean algebra operations of union, intersection and comple-
mentation were shown to have the same properties as the corresponding
operations in the algebra of sets. Later these operations were shown to
be analogs of the logical sentential connectives, "or", "and", and "not".

The equality symbol was discussed in its variocus uses as identity
in form or as showing a specified degree of likeness in an equivalence
relation. Charactecistics of equivalence relations and partitions were
discussed., Section 2 ended with the conclusion that it was necessary to
interpret equality in using Boolean algebra as 2 model.

The propositional calculus was outlined in a standard way to develop
the necessary concepts and to show its interpretation as a Boolean alge-
bra. A *truth table'" was established in terms of the connectives "or',
"and", and "not" for the 16 truth-functions of two variables. The
properties of these functions were discussed and the table was used to
illustrate various concepts throughout the thesis. The main character-
istics of the propositional calculus were summarized at the conclusion
of Sectiom 3.

Properties of congruence relations, homomorphisms and isomorphisms
were then discussed. From a Boolean algebra, B, and a proper congru-
ence 6 on B, an induced Boolean algebra B/® was developed. Section
4 concluded with the observation that if 6 is (he equality relation,

then the elements of the Boolean algebra, B, vill map oanto one of the
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equivalence classes, [0—) or \'_1} .

Section 5 developed concepts designed to show that a Boolean algabra
of the statemsnt calculus may consist of more than the (0, 1) algsbra.
Background material and examples led to a discussion of truth functioms.
Truth functions were developed from fundamental concepts of mapping
statements into the set {T. l’} . As another aspect of the problem
truth sets were introduced and their properties studied.

Most of the material of the thesis could have been developed within
the framework of free Boolean algebras {6|. A subset S of an algebra
A generates A if S 1is not included in any proper subalgebra of A.
1f, moreover, every function from S into an algebra B has a (neces-
sarily uniqus) extension that is a homomorphism from A to B, then S

is a set of free generators of A. An algebra is free if it has a set

of free generators,

The following are illustrations of some concepis of free Boolean
algebras related to the material of this theais:

1) Every four-element Boolean algebra is a free Boolean algebra
with one free ganerator [16_]

Hence all of the following sub-algabras of the Bcolean algebra of

Table 3 are examples of free Boolean algsbras:

(0, 1, 14, 15) (0, 5, 10, 15)
(0, 2, 13, 15) (0, 6, 9, 15)
(0, 3, 12, 13) o, 7, 8, 15)

0, 4, 11, 15)
with either of the two elements distinct from O, 15 serving as a free

generator.
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2) A finite Boolean algebra is free if and only if it has 22 ele-

ments., It then has n free generators and 2" atoas.
Thus, for n = 2, the 16 elements would be generated by the two free

and would consist of the four atoms,

generators, p and q, PAQ,

PAG', P'A q, and p'A q°.

The main concern of this thesis iz with the propositional calculus
and its associated algebraic aspects in the theory of Boolean algebra,
More weatafiled studies in logic belong to the monadic functional calculus,
the pure first-order fuanctional calculus, and the functional calculus
with equality whose algebraic aspects are found in wmonadic algebras, poly-
adic algebras, and cylindric algebras respectively i6].

A monadic (Boolean) algebra is a pair (A, 3 ), where A 1is & Boolean
algebra and 3 is a quantifier on A. The monadic algebra is generalized
to the coacept of a quantifier algebra (A, I, § ) where 1 1is a set of
valuables.

The theory of cylindric algebras (which could also be called quanti-
fier algebras) aims at providing a class of algebraic structures that
bear the same relations to (first-order) predicate logic as the class of
Boolean algebras bears to sentential logic [B].

Quantifier algebras are found to be an inefficient logical tool as

they do not allow for treatment of transformation of variables. This

limitation then leads to the development of polyadic glpebras (A, 1,8, )
with S a function from transformations on I to A.

The algebraization of various portions of predicacr logic has its
origins in the nineteenth century. Pierce and SChrodeﬁ developed the

{
logic of binary predicates. Tarski expanded the subjeqt further in the

/
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form of modern algebraic theory dealing with structures called relatiom
algebras (19].

As a recommendation for further study, an investigation of the con-
cepts and methods of free Boolean algebras should prove helpful in
establishing algebraic structures for logic. For example, s next step
following the material of this thesis would be the introduction and study
of quantifiers. Then, the sxamination of the predicate calculus would
coincide with the study of Boolean algebras with unions and intersections
corresponding to the logical quantifiers. The algebras of predicate

calculi are the free algebras of this class of Boolean algsbras Y_IQ
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