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ABSTRACT 

Boolean algebra has  long played a veil known role in the develop- 

ment of mathematical  logic, but even in the proposition*! calculus there 

are many problems still to be investigated.    Among these is the question 

of the feasibility of identifying the statement calculus with a Boolean 

algebra other than the (0,  1) algebra.    The theory of Boolean algebra as 

required for a study of the algebraic aspects of logic is formulated. 

Characteristics of the equality relation are discussed and the proposi- 

tions! calculus is outlined with early emphasis on the equivalence clas- 

ses,  \p} and  ^l].    The concepts of truth values,  truth functions and 

truth sets are developed.    Through these concepts,  the statement calculus 

is  identified with a Boolean algebra consisting of more than two element«.. 

' 
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1.     Boolean Algebra 

As necessary Introductory material in the development of the pres- 

ent thesis,  this section defines and characterizes a Boolean algebra in 

terms of Its set-theoretical aspects.    A summarization of the properties 

of Boolean algebra relative to the discussion Is Included. 

A Boolean algebra Is defined as a non-empty set with two binary 

operations, U (union) and 0 (intersection),  and one unary operation, 

'   (complementation).     (These operations are called union,  intersection 

and complementation because they will uave  the same properties as the 

corresponding operations  in the special Boolean algebra of sets.) 

The  following set of axioms   [16]   are assumed as characterizing the 

operations of union,  intersection and complementation.   (The number of 

axioms In this set is not a minimum number required to establish a 

Boolean algebra but is satisfactory for the development of the material 

In this section.) 

1.     AUB s BUA ;   AP^B = B^A 

11.     AU(BUC)  = AUB(UC)   ; AA(BftC)  >   (K/\fi)f\C 

ill.     (AAB)UB •   B   J   An(AUB)  = A 

Iv.     Ari(BUC)   r   (AAB)U(AAC)   ;   AU(BOC)   «   (AUB)n(AUC) 

v.     (AAA')ÜB =  B   ;   (AUA^OB -  B 

To relate  the Boolean algebra to set  theory,  we define a field of 

sets as any non-empty class 0 of subsets of a  fixed non-empty space X   „ 

where (S> Is closed with respect to the set-theoretic union.  Intersection 

and complementation.     Then every field of  sets  is a Boolean algebra with 

the Boolean operations Vj , ^ »   '   • 

As a particular example [S]]»  let P(X) be the power set of X  ,   i.e. 
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the class of all subsets of X. P(X) is a field of sets as defined above 

and. therefore, a Boolean algebra. 

As a consequence of the above axioas, various results can be es tab- 

llshed and are susnarized below. 

The Idenpotent laws A s AUA and A s AOA follow directly froa the 

axloos. 

Proa the absorption laws, it follows that if one of AoB a A or 

AUB : B holds, then so does the other relation.  In case 

AOB s A and AUB s B , 

we say that A is contained in B and write A Q B where the relation 

G: is called the (Boolean) inclusion. 

If the Boolean algebra ^ is a field of sets, then the Boolean in- 

clusion C coincides with the set-theoretic inclusion and has the follow- 

ing properties (those which define a partial ordering \j7\, 

1.  A^A (reflexive) 

ii.  if A€B and B^A. then A « B (antisymmetric) 

iil. if A<^B and B«S.C, then A^C (transitive) 

where A, B, C are arbitrary elements of the Boolean algebra (b. 

The eleaent A/1 A'  la called the zero element (or zero) and is de 

noted by 0. It can be shown Q6] froa the axioms and the Inclusion re- 

lation that AHA' does not depend on the cholc .• of A in (B and that 

the zero is unique. 

The eleaent ADA' (which also aay be shown to be independent of 

the choice of A and unique) is called the unit eleaent and will be 

denoted by 1. 

A familiar principle In Boolean algebra is the duality principle, 



which follows primarily from the symetrical nature of the operations 

O and C) .    For example the set axioms remain unchanged if U Is re- 

placed by n and H is replaced by U .  Tt» substitutions of U  by f\ 

and n by J transforms the unit element Into the scro element and the 

zero element into the unit. Therefore, given a statement about (J > r\ » 

0,1. the dual statement is obtained by substituting C\  for Vj , vj 

for r\ , 1 for 0,  and 0 for 1. As a consequence of the principle of 

duality, we can restate the axioms using only O and ' , And, as duality 

appears in every development of the Boolean theory, a cholc between two 

possible approaches should be made; the dual then follows as a natural 

consequence.  In the development of logic, emphasis is placed on truth 

and probability (with "1" for "tiue").  The dual approach would emphasize 

falsity and refutablllty (with "0" for "false"). 

Closely related to the concept of duality, the De Morgan formulas 

provide a convenient method for transforming relations involving U 

and ' Into relations involving A and * In the following manner: 

(AÜB) ' s A'AB* ; (AHB)' s A'UB' 

The element A AB' is denoted by A-B and called the diffeienca of 

A and B.  If the Boolean algebra Is a field of sets, then A - £ coin- 

cides with the set-theoretic difference of sets A and B. Some useful 

properties of difference are: 

A^B if and only if A - B s 0 

and A^B if and only if A'vJB = 1 

Elements A.B in B are disjoint if AHB z 0.  It then follows 

that 

An(8-A) » 0 

since Ar\(B - A) . A^BOA1) = Br\(Ar>A") z  B^O = 0 

3 



2.     Equality. 

Throughout the first section,  the equality tyabol  " »  " wet tacitly 

used in the sense of logical identity.    Through everyday usage, the 

equality relation is considered as a synonym for either identity 01  a 

qualified degree of likeness.    But at Stoll (17^ has pointed out. If 

the relation 5.s restricted to eleswnts having identical fom,  then,  in 

general.  It is not possible  to generate a Boolean algebra.    Set rela- 

tions, however, can be developed under " *  " as identity by use of the 

Axiom of Extent:    If    A    and    B    are sets and if,  for all    x,    x € A    if 

and only if    xeB,     when    A • B.    For example,   through the Axiom of Ex- 

tent,  it can be »nown that the commutative relation,    AUB s BtjA,  is a 

consequence. 

A further analysis of the equality relation ^18}   leads to the con- 

clusion that equality satisfies the axioms  lead^-ig to the definition of 

an equivalence relation as a relation    r    in a set    A    such that; 

1.    x r x    for all    x    in    A    (reflexive) 

11.    If    x r y,     then    y r x    (sysnetric) 

ill.    If    x r y    and    y r s,  then    x r z    (transitive) 

The main feature of equivalence relations  is  that  it divides all meui- 

bers of a set    A    into disjoint subsets called equivalence classes,     de- 

noted by [x]  ,  and defined by fV] :/y6A|x r yl   with  the i-aslc proper- 

ties: 

1.    x € {x\ 

11.     if    x r y,     then ^x3 = W^ and conversely. 

As a partition of a set    A    is a disjoint collection (X of non' 

empty and distinct subsets of    A    such that each member of    A    is a 
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member of exactly one member of ^L,   it  follows  that  the collection of 

distinct equivalence classes Is a partition of    A. 

The fAct  that an equivalence relation defines a parCition (and con- 

versely) demonstrates that the reflexive, symmetric and transitive axioms 

are adequate  to assure the desired separation into classes, and hence 

that they characterise equality.    Consequently, any equivalence relation 

may be called an equality relation. 

Throughout this investigation of the properties of Boolean algebra 

and the propositional calculus  to follow,  the problem will be  to identify 

elements which, although not of identical form, exhibit a certain like- 

ness denoted by the basic relation,   s   .    This equals relation must  le   ' 

to a partition of the basic set, and  is therefore an equivalence rela- 

tion. 

It is  then necessary -o be more explicit about the meaning of 

equality and so we re-deflne a Boolean algebra (S> to include    r    as a 

primitive term as follows: 

Cb   =     (B, Vj , O ,   ',   t   ) 

such that  the  following axioms are satisfied: 

1.     :   is an equivalence relation in    A 

11.     If    A s B,   then    AOyC a BAC    for all C 

ill.     If    A r  B,   then    A'   r  B* 

iv.     Axioms of Section  I are satisfied. 

Then it can be shown that if    A =  B,    it follows that Aüc S  BlJC 

for all    C    as  11.  and ill.   above postulate a substitution principle. 

Thus  to use a Boolean algebra as  a model  it is necessary  to inter- 

pret equality as well as  the other elements  in the deflniens. 



3. Propositloiul Calculus. 

Historically, George Boole developed the theory of Boolean algebra 

(Algebra of Logic) au an aid in Investigating the "laws of thought". 

It is not surprt^lng then that there are «any important applications of 

Boolean algebra to the theory of Matheaatical Logic 

This section is intended to develop the necessary concepts of prepo- 

sitional calculus and to show its connection with Boolean algebra. 

The usual way to see the connection between Boolean algebra and 

logic is to begin by examining the «anner in which sentences are coa- 

bined by means of sentential connectives \]l73>  Let S0 be an arbitrary 

non-empty set containing at least two members (these roenbers of SQ  are 

to be called prime statements). If p6 S0 , then associated with p we 

must assign a truth value T or F. Then let A „ V > *, be distinct 

objects not contained in S0 (where, intuitively, V , A » '• are to be 

thought of as the logical connectives "or", "and", "not", respectively). 

The set S0 can Chen be extended to a set S (the members of 

which are to be called oaposite statements) by adjoining all statements 

which can be formed by using the sentential connectives in all possible 

(but finite) ways. Then if p, q are in S0, p', pAq, pVq are in 

S so that S is closed under the operations ', A  , V . 

The propositional calculus is concerned with the truth values of 

composite statements in terms of one of the truth-value assignments 

(r for "true" or P for "false") to the prime statements and in terms of 

the interrelations of the truth values of composite statements having 

some prime components in co—on. 

If p and q are in S ,  then pAq and q/\P are distinct 

, 
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elements in S but truth value ■••■• to require Chat if p and q are 

sentences, then "p and q" and "q and p" should have a certain degree of 

likeness (or the same truth value). 

Two propositions of the propositions! calculus are said to be 

equivalent (eq) if they have the sane truth value, so that in the 

intuitive example above 

p A   q      eq  q ^ P 

which corresponds with the law of Boolean algebra 

A n B s    BOA 

Here, then the elements r\  and : of the Boolean algebra correspond 

with the elements /\ and eq of the propositlonal calculus..  Similarly, 

the elements \J  and ' correspond with V and ' respectively, and the 

laws of Boolean algebra also hold for the logic of propositions.  In 

addition, there exists an interpretation of Boolean algebra axioms as 

follows: 
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Thus the propositlonal calculus is a Boolean algebra and henceforth 

Boolean symbols and logic symbols will be freely Interchanged. 

The elements of S which correspond with the 0 and 1 of the 

Boolean algebra are PAP"  and pVp", respectively.  Considering the 

elements of S as sentences, a statement of the form pAp'  ("both p 

and not p") is intuitively "false". A statement of the form pVp" 

("p or not p"), on the other hand would seen to be "true" - and 13 so 



treated In classical Aristotlean logic. 

The truth value of composite statement?  is defined In accordance with 

"truth tables".    Truth table definitions for the connectives "not" (nega- 

tion) .  "and" (conjunction), and "or" (disjunction) are given In the fol- 

lowing table.  \V\ 

Negation       Conjunction       PisJunction 

p q P' PAq pvq 

T T F T T 

T F F F 1           T 

F T T F T 

1 , 
1 

F T i            F 1           F               1 
Table 1 

Negation, Conjunction and Disjunction 

These definitions are intuitively clear.     If a statement Is true, 

its negation is false (and vice versa).    For the conjunction of two state- 

ments to be true,  it is necessary that both prime statements be true.     The 

disjunction is used in the inclusive or meaning:    "p    Is true or   q   is 

true or both are true". 

All the  16 truth functions of tiro variables can be sxpressed in  terms 

of V,   A  » «"d     '.     For example,  "If. .. then, . . " (material Implication.; 

conditional), and "if and only if" (material equivalence; biconditional) 

which are consequences of the definitions of Table 1, are listed in the 

following table: 



q 

Condition«I   j 

pVq 

Biconditional    1 

1  p (PAq) V (p'Aq1) 

'    T T T T 

T F P P 

P T T P 

i    P P T T 

Table 2 

Conditional and Biconditional 

The conditional p's/q Is coononly denoted p->q# so that p-^q 

is an alternate way of indicating naterlal Implication.  p—>q repre- 

sents the assertion that for each possible pair of corresponding values 

Ho»  q  of the statements p and q, "either p  is false or, If 

p  is true, then q  is true also". ro no 

The biconditional Is cotmnouly denoted by the symbol p-s >q.  Then 

p<e-r>q asserts "either p and q are true or p and q are false " 

In comparing the biconditional with identity, It Is seen p - q means 

that p and q are the same statements while p<£-*q means that p 

and q have the same truth value. 

The following table combines the truth tables of Tables 1 and 2 

with the remainder of the 16 different truth functions of two prime 

statements (VJ 
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1 

2 

3 

4 

b 

6 

7 

8 

9 

10 

11 

112 
I 
113 

14 

15 

 2__.. 

0 0 0 0 

0 0 0 1 

0 0 10 

0 0 11 

0 10 0 

0 10 1 

0 110 

0 111 

10 0 0 

10 0 1 

0 10 

1 0 1 I 

110 0 

110 1 

1110 

1111 

_3  

Inconsistent 

Disjunction 

P 

P A q 

P A q" 

P 

P'A q 

q 

(pAq') V (p'A q) i   Symnetrlc 
'   Difference 

P V " 

p'Aq' 

Conjunction 

Double stroke 

(PA q) V (p'A q') i Biconditional 

c' 

PVq' 

P' 

p'vq 

pWq* 

T 

Conditional 

Conditional 

Seheffer stroke 

Tautology 

False; never 

And; both 

Only p 

P 

Only q 

q 

Or else 

either 

neither 

alike; if and 
only If 

not q 

If q, then p 

not p 

If p, then q 

nor (neither.. 

True; always 

.nor 

Table 3 
The 16 Truth Functions of Two Statements 

The truth table definitions are arranged In a convenient row form 

with 0 for F and 1 for T. Column 1 Is the decimal equivalent of 

the binary number In column 2. Column 2 Is the 2£ possible truth func- 

tions of n ■ 2 propositions. Column 3 are the possible combinations of 

the sentential connections V , A « * •  Column 4 lists the usual names 

10 
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of the expressions listed in Column 3. Column 3 lists the coonon verbal 

expressions applied to the propositions of column 3 \_IS]. 

For example, 13 is the decimal equivalent of 1101 as 1.23+- 1.2^-^ 

0.2 -V- I : 13 .  This binary number represents p'Vq as the only aero 

in 1101 occurs in the column where pal and q * 0 , thus correspond- 

ing with the truth table for the conditional ("if p, then q") as derived 

In Table 2. 

Some of the logical functions defined la Table 3 are of equal Im- 

portance with the basic ones defined in Table 1.  #6 is known as the 

exclusive or and asserts  "p or q but not both".  The exclusive or Is 

normally symbolized by pAq and called the symmetric difference.  #8, 

called the double stroke, uses the symbol, pt q.  #14 is called the 

Seheffer stroke of p and q, asserts "either pJ or q' or both" and 

Is denoted by the symbol,  p^q. 

A proposition is a tautology (or is valid) if Its truth value is T 

under all assignments of truth values to its prime statements.  (#13 of 

Table 3 is then a tautology as it is true for all assignments of T or 

F to p or q- ) 

The traditional approach to establishing a set of tautologies (a 

subset of S) is to establish an initial set of tautologies and then 

provide a rule for new tautologies from the old (jO.  As part of this 

procedure some abbreviations of admissible sequences (members of S) are 

formed: 

1.  if p and q are members of S,  then write pA q 

for ((p'W (q'))' 

11. write p-^q for pVq 

11 



ill.    write    jxj-^q    for    p-^qAq-^p 

Then an Initial set of tautologies consists of the sequences of one of 

the following forms: 

1.    pVp-^p 

11.     p->pv/q 

111.     pvq—>qVp 

lv.     (p-^q)-^ ((r-^p)_, (r--»q)) 

Then new tautologies can be  formed by the following rule of infer- 

ence  (modus ponens):    If    P    Is a tautology and If    p-> q    Is a tautology, 

then    q    Is a tautology. 

Case 41 of Table 3 Is en Illustration of the class of propositions 

called Inconsistent (propositions which are false for all assignments of 

T    or    F    to the prime statements).    All the other propositions (include 

Ing #15) are consistent as they are  true for some assignment of    T   or    P 

to the prime statements. 

One proposition Implies another If there  is no assignment of truth 

values which makes the first proposition true and the second false. 

(This  logical Implication Is  Illustrated by #11,    pVq"     for    q-^ p, 

and by #13,    p'vq    for    p-> q. ) 

Two propositions are equivalent If they imply each other.    Combin- 

ing this definition with the discussion on tautologies  leads to a mechani- 

cal procedure for deciding If a proposition Ic a tautology by an examina- 

tion of its truth table:    Two propositions    p    and    q    are called logic- 

ally equivalent If   p^-^q    Is a tautology. 

It can then be shown that the logical equivalence of propositions 

Is an equivalence relation for: 

12 
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I.     (p*^p)->(p<-*p)     :     (P'V p) A   (p'v P)-^(P"V p) A   (p'Vp) 

z    (p vp)V(p,vp) 

=    Ovis 1 

It.     (p^>q)-^(q^p)    :     [(P V q)MqV p)] ' V [(q'v P) A (p W q)^ 

•      gpVq)A(p,Vq,)3v[(pVq")A(pWq)l 

z     (pVl)A(q,Vl)A(qVl)A(p,Vl)     .   I 

Hi.     (p<-^q)A(q<->r)-^(p't^r) 

■      (fp'Aq'WCpAq)]' V     ^q'A r') V (q At)} ' 

V^p'Ar')V(pAr)) 

r     |[(pVq)A(pVq•)] v[(qVr)A(q,Vr')]v[l'] ^    1 

The propositlonal calculus is,  then, characterized by: 

i.     the  logical equivalence of propositions as an equivalence 
relation, 

ii.     the subset of tautologies,  and 

iii.     the set    S    of all fomulas of the  theory based on the  two- 
valued algebra of propositions. 

13 



4.    Congruent Algebras 

The sec of axloas established for the Boolean algebra included the 

equality relation and the substitution principle.     When the proposition«! 

calculus was identified as a Boolean algebra vith equality aeaning logi- 

cal equivalence such a relation it a natural congruence relation.    In 

this study of Boolean algebra as related to propositional calculus, 

there are reasons for introducing an equivalence relation, 0 ,    other 

than the natural one.    Then attention can be centered on B/9    a» the 

basic set whose eleaents are the    8^equivalence classes. 

The relation    9    in    B    is called a congruence relation  [u]  lfl 

1.    8    is an equivalence relation in    B 

11.     If    a9b,    then    aPvc B br\c for «11 c 

ill.    If    adb.    then    aW 

A congruence relation is called proper if    9    is not  the univrsal 

relation in    B.     (If    9    is  the universal relation,  then    a9b    if and 

only if    a,b£B    implies   [a]   s B    for all    a    in    B.    Then    B/ft : fh\ 

which cannot constitute a Boolean algebra.) 

Various properties of proper congruence relations  follow fros the 

definition; among them are; 

1) If    adc    and b0d   ,   then    aObecAd (which Is a theorem analo- 

gous with the substitutivlty property discussed earlier). 

If B/9    is the set of    9 - equivalence classes,    (0*3}.  this Pro- 

perty becomes: 

2) If    [a]   r   [c]   and  [b]   =   [d]   , then  [aP» §    = [en d] 

In addition, it follows from the third requirement of congruence 

relations that  [a]'  :  {*'}   .     Define binary operations (?) , Q   in    B/ö 

14 
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such that 

i.    W© [b]  .   (if   b\ 

u.   [*y 0 [b] i (5 • B\ 

and observe that 

[a]   « ^b|<e^a©b    defines equality In B/e as set equality. 

Then, by verification of the smicms of the Boolean algebra,  it can 

be shown that B/e Is a Boolean «Hgebra  (called the Boolean algebra 

Induced by    9). 

Therefore,  fro« a Boole&n algebra.    B,    and a proper congruence 

relation    8    on    B,  another Boolean algebra,    R/9, may be derived.     The 

elements of B/O are the e -equivalence classes and the operations of B/e 

are defined In tenas of those of  the original algebra using representa- 

tives of equivalence classes.     If    &    Is different fron the equality re- 

lation  In    B,     then    B/e    nay be essentially different  fron    B 

Further relationships of the BoM»--n algebra,    B/e,     to the Boolean 

algebra,    B,    under a prope: congruence relation will oe pointed out 

following a discussion of  the  propetcies of honomorphisns and isonorphlsns 

Let    B    and    C    be Boolean algebras.     A nup )ing    g    of    B    onto    C 

is said to be a honmorphlenr,]L6\ provided the napping preserves  intersec- 

tions and conplenents, that is 

g (a >"\ b)    =    g U) H g (b) 

g (a') z    (g(a»" 

As a consequence of the definition, 

3)    g (a-b)    £    gUOb')    .    g(*}Kg{b'} 

=    g(«) A UW    --     g («)   " g(b) 

The !hononorphlsn transforms  the  7rro and unit of    B    onto the  zero and 

15 
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unit of    C,    which in «blguously denoted also by   0 and 1: 

4) g(0) » 0 ; g(l) s 1 

«•    t(0) . t(« r\ •') r f(«)r\ (gU))'  s 0 

and dually for   g(l) * 1 

The hoaoaorphlim    g    preserve« the iaclueioa; 

(if   a & b*-» a r\ b'  . 0, then g(a) Q g(b)). 

For If   b . « U b; g(b) s g(aü b) • g(a) >J g(b) 

A one-to-one hoaoaorphlaa is called an laoaorpiita« aad the algebra    B 

and   C   are laeaerphtc if there exliti an leoaorphleai   g   of   B   onto   C. 

Then g"1 is an leoanrphls« of   C    onto    B. 

In order that a one-to-one aapping B onto C be an isoaorphlsn, 

it is necessary and sufficient that both g and g preserve the in- 

clusion.    (This thaoraa then iaplUs (4)). [16]. 

A hanaaerphiM   g   of   B   into   C    is an iaoaorphlsei if aad only if 

g      (0) contains only the aero of B, that is 

5) g(a) : 0   iaplias that   a ■ 0 

Returning to the derived Boolean algebra B/e, additional theorem, 

definitions aad concepts of a proper congruence relation are presented {li}. 

Let   9   be a proper congruence in a Boolean algebra   B   aad define 

the functions    p : B-^B/O    by    p(a) :[ej.    Then    p    is * hoanaorphlsn. 

(p is called the natural sapping of   B   onto   B/0.) 

Thu alg^tbra    B/B    of • - equlvelenc« classes is a hoaoaorphic irege 

of   B   under the natural aappiag on   B   onto    B/0.    If the algebra   C    is 

a iuMKM^rphic ina^ of    B,  then    C    is isoeorphic  to soa»    B/O. Moreover, 

if    f : B->C    is the hoaoaorphisa at hand, Chen    f -. g o p    «here    p    ia 

the naturaX aappiag of    B    onto    B/O    and    g    ia an iaoaorphiaa of B/e 
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onto    C(    where   ^Po^>    Is the composition of the Mappings   <P «ul   ^. 

Aa a consequence of these theoreow it follows that the hoacMorphlaas 

of a Boolean algebra are in one-to-one correspondence with the proper 

congruence relations on the algebra. 

If   9 is the equality relation, than the elewents of    B   will aap 

onto one of the equivalence classes \0"\ or \l\ .     If a proposition In   B 

is refutable,  then its lauge in    B/0   is equal to   0.    If a propoaition 

in    B    is provable, then its iaags in    B/d   is equal to   1.    Than, with 

e    the equality relation,   \l\ is the class of all tautologies end, as 

stated in the laat section, a necessary and sufficient condition for 

p • q    is that the biconditional of   p    and   q    be a tautology. 

Then as waa noted in the interpretation of Boolean algebra axioaa 

in the previous section,    S    becoaes a Boolean algebra after identifica- 

tion of equivalent fnraulas.    This Boolean algebra is called the Linden- 

bauu algebra of the propositional calculus  Q.6^. 

The fundeswntal coapleteness  theorem of the propositional calculus 

| I2l  states that the formulas obtained from the set of axioms by «mans 

of the rules of inference coincides with the class of all  tautologies. 

The completeness theorem can be obtained from the fundamental representa- 

tion theorem stating that every Boolean algebra Is isomorphic to a field 

of sets, and conversely, the fundamental representation theorem for 

Boolean algebra can be directly deduced from the completeness theorem \j\ 
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5.    Alternate Approaches to Truth-Values. 

In defining the proposltional calculus, a primary objective was  to 

ensure that equivalent propositions were assigned the tarnt truth-value. 

At the conclusion of the previous section.  It was deaonstrated that any 

two-valued hoaorphlsa gave a truth-valuation of the elenents of   S    upon 

assignnent of   T   or   F    to propositions according as the equivalence 

class is assigned to   T    or   P.    This procedure resulted in the truth- 

table solution and the collapse of the Boolean algebra to the    (0,   1) 

algebra. 

Various other aapects of the truth-value problea are discussed In 

this section.    On« of these will lead to the developasnc of a general 

theory of truth-values in tens of truth-functions napping the elements 

of the Boole a algsbra onto a "larger" algebra than the (0,  1). 

A f 1   >t consideration involved in solving logical prob leas by the 

prof   J.ional calculus is eabodied in the method of eliaination which 

states that the making of a statement is an assertion of the non-existence 

of some of the classes  [li].    Thus, logical reasoning Involves elimination 

of situations which conflict with clearly definable rules expressed by a 

stateaent. 

Two statasients divide the universe into four classes characterized 

by possession or non-possession of a specified status.    These four 

classes are   pAq, pAq', p'A q. and p'Aq*.    (These four disjoint 

classes are the "atoms" of the Boolean algebra.    Their union is a tau- 

tology.) [i] 

The other truth-functions of tvo variables can be expressed aa 

exact equivalents in terms of these atoms. 

ia 
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For example: 

i.     T r  (pAq) V (pAq'W^'Aq) V (p'Aq') 

11.     pvq *  «pAqW   (pAq") V (p'A q» A  (p'A q')' 

III.     p<H>q :  ((PAq) V (p'Aq')) A ((p'A q) A (pAq1))' 

Iv.     p-^q «  ((pA q) V (P'A qW (p'A q')) A (pA q')' 

These relation« ILLustrace Che following Cheoreet :   [lü\ 

If B Is a Boolean algebra with ■ (finite) elevents, then B la 

laoaorphic Co B^, the Boolean algebra of all subcleases of the class of 

all aeons in   B. 

Thus,  Che 16 truth-functions of two variables are expressed In forms 

distinct with respect Co truth-value.    If one of    T    or    F    is assigned 

to  Che prime statements,  Chen Che Boolean algebra (0,  1) would result. 

For example, If   p € \o] end    q € ^1]  , Chen (using Che oecioal equiva- 

lents of Table 3): 

[OQ    r    (0,  1, 2,  3, 4, 8, 9, 10) 

\i\    :    (5,  6,  7,   11,  12,  13, 14.  15) 

As « further example of expressing Che truth-functions In terms of 

the others. It has been shown {12}   that   p'A  q"    and    p'v q'    «re both 

statements In terms of which all Che other functions may be expressed. 

For example, the Scheffer stroke connective,    p ^ q : p' V q', has Che 

following relations wich Che other  truth-functions;   \l5j 

■I' 
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r 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

(p V q) ^ (p ^ q) 

[p V (p ^ q))   4 \_P Mp >V q)] 

P 

\q i (P si q)J   ^ [q ^ (P A, qg 

q 

[q J, (p i q)] i[pb (P 4/ qj 

(p i p) 4 (q i q) 

^p ^ p) i (q ^  q)]   ^   ((p ^ p) i (q V q)] 

(p 4* p) -t (q 4 q) ^ (p 4^ q) 

(q i q) 

q I (p V q) 

p V p 

p i (p 4/ q) 

p I q 

1 

Table 4 

Truth-functions expressed in Item» of the 
Sehe ffer stroke connective 

In the testing of theorems by Machines, which is e central problem 

of modem logic, complete truth tables era essential.    But if a machine 

is built primarily for solving problems in which one wishes to know what 

truth values for individual terms are uniquely determined by a given 

set of statesMnts, it is possible to establish a process that dispenses 

with the requirement of scanning truth tables.    Truth tables can be scanned 

rapidly if only a few terms are involved,  but as the number of terms 
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increases, the scanning time increases at an accelera' Ing rate. If the 

scanning procedure is eliminated, the exact status of each variable be- 

ing investigated by a logic machine would be shown after each new state- 

ment is entered. 

The digital computer solves problems in the propositional logic by 

assigning binary numbers to the various truth functions. These truth 

numbers for the 16 truth functions of two variables are shown in column 2 

of Table 3. Truth numbers for various relations can be combined by sim- 

ple arithoetical rules to determine the validity, consistency, or incon- 

sistency of compound statements. For example if the final truth number 

is 1111, then the compound statement is a tautology. 

As an example of "mechanised reasoning" in finding an "answer" to 

a logical problem involving a large number of prime statements, consider 

a problem with the following rules: [ill 

If B, then C 

A if and only if D 

A or else B 

The logic machine is then set up in the following fashion: 

Diagram 1 
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where  the OR ELSE,  IF THEN,   IF AND ONLY IF circuits perform electronic- 

ally  the definitions of Table  3 and where the  leads    3,   I,   2    will be 

live     (s  I)     if the corresponding rules are satisfied,  or will be 

grounded    (: 0) if the rules are not satisfied. 

To arrive at a solution, a trial solution is assumed and then modi- 

fled by a "feedback" process to remove  features Inconsistent with the 

rules.     For example, suppose the  Initial configuration  is    A'B'C'D'. 

The  first rule  (If    B,     then    C)  is  satisfied so point    I     is  live;    the 

second rule  (A    if and only if    D)   is  satisfied so point    2     it  live 

but the  third rule (A    or else    B)  is not satisfied,  so point    3    is 

grounded,   indicating that a change  Is  required in the status of    A   or 

B.    This change could be accomplished by a "feedback" signal  from the 

ground at point    3    as shown in the  following modification to diagram 1; 

/    * / 
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1    A 
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If the status of    A   were changed,  then the condition to be tested 

would be    AB'C'D",  for which rule    2    Is not satisfied,    equlrlng a 

change  to    AB'C'D.    AB'C'O    does satisfy all the rules and  is  therefore 

an answer to the problem.     If all  the answers (the other two are AB'CD 

and    A'BCD') are desired, a new Initial configuration would have to be 
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entered and Che process repeated. 

In the search for equivalence classes other than [o] and  [l^, the 

following definition is made; 

Let 3^,    =    [f  1   £   : ^"^f1»^!  *    The me,llbers of 3"   arc to be 

called truth functions   {if} and consist of all mappings of prime state- 

ments into    T,F   where    f(p) s T    is to be interpreted as "the prime 

statement    p    has  truth value    T". 

The discussion and examples of this section have been intended to 

imply the feasibility of identifying the proposltional calculus with a 

Boolean algebra other than the (0,1) algebra.    Here, for example, no 

assumption as to the number of elements of    B    have been made and each 

element may have an arbitrarily assigned truth value. 

So far, the discussion has been concerned with decldable proposi- 

tions, those which are either true or false.    Another kind of problem 

arises with a formula like 

x4-y   r    5 

where   x   and   y    «re variable symbols representing arbitrary numbers. 

Formulas of this type represent proposltional functions [9^.    Replacement 

of the variable symbols    x   and    y    by arbitrary but specific numbers 

always results In a unique proposition to which the words "true" or 

"false" can be applied. 

A proposltional function may then be defined as a formula which con- 

tains one or more variable symbols whose allowable values are the members 

of some specific set.    The proposltional function becomes a proposition 

for any substitution of allowable values of the variables.    Then the 

truth function,    f (p),    of the proposltional function,    p,    becomes a 

23 

i   n 



member of ^r if a determination of    f(p) r T   or    f(p) r F   can be made. 

As an aid In developing further equivalence classes, a partially 

ordered system [2] Is defined as any set   P   with a binary relation 

such that 

1.    p ^. p, for all   p6P    (reflexive) 

11.     if    p ^ q, and    q ^ p,  then   p : q    (antisymmetric) 

ill.     if    p 4 q and    q ^   r,  then    p ^ f   (transitive) 

It has been shown \l\ that the partial ordering relation symbol 

" ^ "    is equivalent to the material implication symbol    " —> ", so that 

for truth functions the following properties hold: 

i.     0^ f ^l 

11.     f ^f for all    f 

ill.     If    i4zg   and    g^f.    then    f:g 

iv.    If    f ^ g   and    g ^r h,    then    f ^ h 

v.     f ^ g   if and only if    f /\ g z t 

vi.     f ^ g   if and only if    f V g s g 

vli.     f 4 g    if and only if    f A g'  « 0 

vili.     f ^ g   if and only if    f' v 8 * I 

These properties are clear'y satisfied for the Boolean algebra 

(0,  I)   .    Thus    f ^ g    is equivalent to the requirement that whenever    f 

has the truth value 1,  the value of    g   must also be    I.    This require- 

ment can be rephrased as "whenever    f    is true,    g   must also be true," 

which is equivalent to    f —^ g. 

This ordering relation can then be applied to the truth functions 

of Table 3 using the property    (v),    f ^ g    If and only if    f A g = t . 
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co obtain the conditional relations: 

0 ^l,  2, 3, 4,  5, 6,  7, 8, 9,  10,  II,  12,  13,  14,  15 

1 43, 5,  7, 9,  11,   13,  15 

2^3, 6,  7,  10,  11,  14, 15 

3^7,  11,  15 

4^5, 6,  7,   12,  13,   14,  15 

5 4 7,  13,  15 

6 ^7,  14,   15 

7^15 

8^9,  10,  11,  12,  13,  14, 15 

9 ^ 11,  13, 15 

10 4 11,  14,  15 

11 4 is 

12 ^ 13,  14,  15 

13 ^15 

14 ^ 15 

15^15 

These relations then deteraine 16 classes such that given any condi- 

tional coaposite statement with one truth function as the antecedent and 

another as the cocs iqueit,    then it can be iaseediately deterained If the 

stateatnt is a tautology.    For exaaple,    8 ^ 11 (i.e.    f(p'A q') —* 

^(q'V P)) is a tautology. 

The partial order relation la not an equivalence relation, as  the 

tovmrnr has the antisyasMitrie property and the latter requires symmetry. 

The    " ^"    was defined by abstracting the properties of order for real 

numbers.    Every pair of two real nuabers    a    and    b   are comparable. 
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However, for set inclusion, sa. , it Is possible to have an ineonparable 

pair of subsets.    For exaaple,    p and p* (or any truth function and its 

coapleaent) are not cooparable as they are never sianltaneous    1   or   0. 

Returning to the developaent of equivalence classes for the ■eabers 

f   of  3:   ,    truth values for formulas can be developed in the following 

•anner: 

For any feg. , with p, q € S , define o o 

I) «(P1) r JT if f(p) z  P 

P if f(p) s T 

I . ft if f(p) « T or f(q) . T 

P otherwise 

{ T if f(p) = T and f(q) z  T 

P otherwise 

Then if r is any fornula in S - S0> f(r) can be derived fro« 

the above definitions through a finite sequence of aesibers of S0 using 

the sentential connectives A » V » ' •     For example if r 5 p V q where 

p s pl A ql 4md <« = Pi A *•! • then 

f (r) = f(P) V f(q) = f(p[ A qj) V f (pl A qj) 

T    if    f(p[A ql)  r T    or    f(Pj A ql)  = 

.F    otherwise 

A    flf    £(pp s T and    ti^y r T, or 
TUf    fCpO . T 

P   otherwise 

««d   f(qj) = T 

■H 
if    f(p) s P   and    f(q) s T. or 

If    f(p) s T   and   f(q) s P 

^ P    otherwise 
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which agrees with the truth values of the syeMtrlc difference fuactf.oa. 

Usually, as in Tables I, 2 «nd 3, f Is oaltted end it Is under- 

stood that a particular truth function f is being exeadned. If values 

of f(p) and f(q) were specified, then exactly one row (eolunn of 

Table 3) would be sufficient to detemine the valu« of f(r>. 

We define an equivalence relation In S by: 

if P, q 6 S, then p : q ^f(p) = f(q) for all f ^ ^-Q. {two pro- 

positions p and q are equivalent if and only if truth table values 

ere identical.) 

Then as f (pV p') = j T if f(p) « T or f(p') = T 

(. F otherwise 

s T if f(p) s T or f(p) = F 

s T for all f €. ä . l«t I s pV p' for p € S o c 

Similarly, let 0 « pA p*. and it then follow« that 

f(l) s T for all f e 3- . end 

f (0) « F for all f fe 3"0 

Thus there exists a function, f, assigning to each fomula of S of 

the propoaitional calculus a truth-value, T or F. For the foraulas of 

Tables I and 2, these asslgonents can be expressed in the following fora: 

i. fCp') > T if end only if f(p) « F 

ii. f(pVq) « T If and only if f(p) or f(q) z  T 

ill. f(pAq) 8 F if and only if f(p) or f(q) . F 

iv. f(p-^q) : F if and only if f(p> : T and f(q) < F 

or f(p-^q) s T if and only if f(p)^ f(q) 

v.  f (p^* q) s T if and only if f (p) r f (q) 
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The truth table aethod pvovides an adequate asaas of cxprasaing all 

possible truth fuactltms of any maber of prlae ttataaents.    If    f *■ ^ 0 

Is selected than tha statasent calculus reduces to the (0,1) algebra. 

Otherwise, there «111 be nore then two aqulvalaaee classes bv the above 

definitive    thus the proposltlonal calculus is adaqurte to express all 

truth function* and is said to be fitactionally coeylata ^3] 

The 16 truth functions of two wrguaents,    f0(p,q) , f^Cp.q) 

of Tsble 3 are of three different kinds.    Taut »logons truth functloos are 

functions whose values are true regardless of the truth or T^lsahood of 

their ergoaedts.    Coatradlctory truth functions are functions «hose values 

are false regardless of the truth or falsehood of their argmenta.    Con- 

tingent truth functions are functions which are true for soae values of 

their arguaents and falsa for others. 

Mother aspect of truth values is developed through the concept of 

a truth set, which is defined as follows:  [idQ 

Let 1/be a sat of logical possibilities, and p, q    r.., be state- 

ments relative to tL i    lAt P, Q, R„...   be the subsets of % for vhlch 

stateasnts   p, q, r are respectively true;  then we call P.  Q, R,... 

the truth sets of stateaaats p, q, r  

For the exaaple on 'Mechanised reasoning" in this section, V^ is the 

set of 16 logical possible coabioationa of the letters    A, B, C, D    and 

their negation;    p, q, r    are the stateaaats "if    B, then   C",    ''A if 

and only if D", and "A or else B", respectively;  and the truth sets 

F.Q.k are AB'C'D,  AB'CD,  sad A'BCD*. 

The concept of the equality of two functions bacoaes clearer if 

thought of in terms of truth sets.    Let    f    and    g   be two functions 
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defined on the saae doaaln   0.    The statc«ent    f(x) s g(x)    detenlnet 

a certain truth «et conaistlng of elenenc«    x   for which the two func- 

tions happen Co have the aaae value.    The truth aet say be eapty, If the 

two functions have no cn—on value.    The truth aet «ay be all of D, 

which then laplles that   f : 8*    Thua, the two functions are equal if 

£(*) = 8(x)   haa aa its truth aet the entire doaMln. 

The definition of truth aet above la equivalent to the following 

formulation of the problea:    (Mote:    Material la fro« clasa notes taken 

in a courae on Boolean Algebra preeented by Dr. Peter W.  Zehna of the 

Nevel Poatgraduate School, Monterey.    A aearch of the literature Ly Che 

author of this thesis felled to show that this approach is available 

elaewhere.) 

Let    S   be the Boolean algebra of the proposition«! calculus.    For 

every   p 6 S, define Che truth aet of   p,    denoted gr  • by 
P 

th«n   3(?)   4j0    for all   p 6 S. 

The truth set of    p    haa the following properties; 

!) 3v = ^p)' 
Proof: f 6 ä   , ** fCp') * T^f(p) s r& f fä"-*^ « €   (&■„)' 

<^pv q * ^pvJ STq 

Proof: f € J      ^£fe^      or    f 4 2   #* f(p) : T    or 
^WH p ^q 

f(q) , T<*0 f(pvq)  : T^ t^^Xj^ 
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Proof: ffe3rp/vq^   f 13-p «ad £ ^ ^q^ f(P) = T 

and f(q) • TO f(PAq) « T^fC^pf)^ 

*)  P » q ^ ä-p = ^-q 

Proof: I) Suppose p r q  Then f(p) = £(q) for all f 6 ^ . Thu« If 

f 6 2r , then f(p) = T : f(q) so that f <S-£q. «»d con- 

versely.  Hence iD = 3"a 

11) Suppose 3rp = Jrq'  If f(P) = T' then ^^p» •nd so 

f f S-q. and f(q) : T.  If f(p) r F. then f ^ ^p, then 

f ^^r , «o f(q) s P. Hence, p = q. 
'     q 

Proof:    I)    f fe ä:o ^ f(0) = T  ^^ s * 

11)    f tr ^j =^   f(l) = T   -j ^ s a" 

(Then:    p e S    Is a tautology^ 3rp s ^ ) 

6)    p -^ q    1« a tautology^ ^   <Z £■ 

Proof:    1)    Suppose    p-^q    Is a tautology.    Then   3rp_^q - 5     : 

11)    Suppose   Jh    C 5"   •     (,rhen tlie converse follows by revers- 

ing the above steps.) 
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7)    If   \py, $2'  "'   > pnl    are tacoaalstcnc, than 

i»i 

Proof; jp » •••• P \ Inconsistent ^ for all f € ^ , 

f (Pi) s P for some 1 ^9 for «11 f e ^ , 

f < J ,  for SOM I <^ for «11 f € S" , 

f 6 Ä(M:(A M^^^(AJ4 
4=^ n S-.. = • 

1=1 

i 
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6. Summary and Recoomcndatlons 

This thesis has considered some of the relations between Boolean 

algebra and the propositional calculus. In particular, the concepts of 

truth value, truth functions end truth sets were defined and developed. 

The Boolean algebra operations of union, intersection and comple- 

mentation were shown to have the seme properties as the corresponding 

operations in the algebra of sets. Later these operations were shown to 

be analogs of the logical sententiel connectives, "or", "and", and "not". 

The equality symbol was discussed In Its varioua uses as identity 

in form or as showing a specified degree of likeness in an equivalence 

relation. Characteristics of equivalence relations and partitions were 

discussed. Section 2 ended with the conclusion that it was necessary to 

interpret equality in using Boolean algebra as a model. 

The propositional calculus was outlined in a standard way to develop 

the necessary concepts and to show its interpretation as a Boolean alge- 

bra. A 'truth table" vas established In terms of the connectives "or", 

"and", and "not" for the 16 truth-functions of two variables. The 

properties of these functions were discussed and the table was used to 

illustrate varioua concepts throughout the thesis. The main character- 

istics of the propositional calculus were summarised at the conclusion 

of Section 3. 

Properties of congruence relations, hooomorphlsms and isomorphisms 

were then discussed. From a Boolean algebra, B, and a proper congru- 

ence e on B, an Induced Boolean algebra B/B was developed. Section 

A concluded with the observation that If B is the equality relation» 

then the elements of the Boolean algebra, B, will map onto one of the 
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equivalence clessee,   \0\ or    \i] , 

Section 5 developed concepts designed to show that e Boolean elgebra 

of the statement calculus any consist of aore then the    (0, 1)   algebra. 

Background aatariel and exaeqtles led to a discussion of truth functions. 

Truth functions were developed frca fundeaentel concepts of napping 

stetenents into the set   |T, FJ ,    As another eepect of the problesi 

truth sets were introduced and their properties studied. 

Most of the aaterlal of the thesis could have been developed within 

the frenework of free Boolean algebras ^.    A subset   S   of en algebra 

A    ISBSSSSSS   A   if   S    is not included in any proper subalgebre of A. 

If, aoreover, every function fro«   S    into en elgebra   B   has a    (neces- 

sarily unique) extension that is e hoMsorphisa fro«   A   to   B,    then   S 

is a sat of free aeneretore of   A.    An algebra is free if it has a eat 

of free generators. 

The following ere illustrations of soae concepts of free Boolean 

algebras related to the ■atarial of this thesis: 

1)    Every four-eleaent Booleen algebra is a free Booleen algebra 

with one free generator [jLbj. 

Hence ell of the following sub-algebras of the Boolean algebre of 

Table 3 are exeaples of free Booleen algebras: 

(0, lk 14,  15) (0, 5,  10,  15) 

(0, 2.  13,  15) (0. 6. 9.  15) 

(0. 3, 12.  15) (0,  7, 8,   15) 

(0, 4, 11, 15) 

with either of the two eleewnts distinct from 0, 15 serving es e free 

generetor. 
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2) A finite Boolean algebra is free if and only if it has 2A ele- 

ments. It then has n free generators and 2 atoas. 

Thus» for 0 8 2, the 16 elements would be generated by the two free 

generators, p and q, and would consist of the four atoms, PA <!» 

p A<r. p'A «i» and P'A q*« 

The main concern of this thesis is with the propositional calculus 

and its associated algebraic aspects in the theory of Boolean algebra. 

More tatailed studies in logic belong to the monadic functional calculus, 

the pure first-order functional calculus, and the functional calculus 

with equality whose algebraic aspects are found in smnadic algebras, poly- 

adic algebras, and cylindric algebras respectively \j>]. 

A monadic (Boolean) algebra is a pair (A, 3 ), where    A    is a Boolean 

algebra and   3 1** quantifier on   A.    The monadic algebra is generalized 

to the concept of a quantlfleT algebra (A, I, 3   )    where    I    is a set of 

valuables. 

The theory of cylindric algebras  (which could also be called quanti- 

fier algebras) alms at providing a class of algebraic structures that 

bear the same relations to (first-order) predicate logic as the class of 

Boolean algebras bears to sentential logic [&]* 

Quantifier algebras are found to be an inefficient logical tool as 

they do not allow for treatment of  transformation of variables.    This 

limitation then leads to the development of polyadic algebras (A. I» S, 3   ) 

with   S    a function from transformations on   I    to   A. 

The algebraisation of various portions of predicate logic has its 

origins in the nineteenth century.    Pierce end Schroderj developed the 

logic of binary predicates.    Tarski expanded the subjecic further in the 
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for« of aodem algebraic theory dealing with etructuret called reUtloa 

algebra« [WQ. 

At a recomndatlon for further study, an invectigatlon of the con- 

cepts and aethods of free Boolean algebras should prove helpful In 

establishing algebraic structures for logic«    For exsaple, a next step 

following the «aterial of this thssis would be the introduction end etudy 

of quentifiers.    Then,  the exsninetion of the predicate calculus would 

coincide with the study of Boolean algebras with unions and intersections 

corresponding to the logical quantifiers.    The algebres of predicate 

calculi are the free algebraa of this class of Boolean algebras ^16}. 
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