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ABSTRACT

Complementary binary sequences were invented by Golay in an in-
vestigation of infra-red multi-slit spectrometry, This dissertation
formalizes the basic results obtained by Golay and develops new concepts
and techniques for examining the characteristics of these special binary
codes. This work has developed new understanding of the structure and
methods for the decomposition of complementary sequences.

Complementary sequences have the property of an infinite correla-
tion peak to ambiguity ratio when detected with a matched filter, These
binary sequences should find much application as pseudo-random noise
modulation signals for both radar and communications systems,

A discussion of the need for such sequences is included in the intro-
duction and is followed by a state of the art description., An operations
group on the sequences is formulated and the proofs of several theorems
concerning the operations group are given in a rigorous manner, One
reason for developing the operations group is the application to elimina-
tion of redundance in the computer search for new codes.

Several invariant properties of complementary codes are proved
through the use of the Hamming distance concept, Many more invariant
properties of the sequences are demonstrated through the introduction of
a Hamming vector, The concept of a Hamming vector is extremely use-
ful as a complementary code decomposition tool. A large number of
theorems are proved to enhance its use in this field.

Several computer searches for complementary sequences are
described and the actual computer programs for the CDC 1604 are in-

cluded in the Appendix,
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CHAPTER 1
INTRODUCTION

Search radars of today are required to obtain smaller and smaller
targets at ever increasing ranges. This has led to many different tech-
niques of summing radio frequency energy to obtain these long ranges.
Complementary sequences are well adapted for coding the RF energy
pulses to give a summing of the returning RF energy in the echo, The
present work is more concerned with the characteristics of complemen-
tary codes such as their operation groups, Hamming distances and
Hamming vectors, than it is with their application as modulating signals
for RY carriers, However, the introduction will develop the radar
problem as a vehicle to emphasize the use of these codes in future. appli-
cations in radar. Their application will probably be equally important
in the communications field. The initial work in complementary sequen-
ces was directed toward an infra-red application, but it is felt that the
eventual application of these sequences will spread to many different
fields.1 »

The usual approach to the problem of increasing radar range is to
look for ways of varying some of the parameters in the radar range
equation which will lead to a greater maximum range.

The radar range equation is:

[P, Ga_sD

R =f—

max 1p 142
min

1/4

where Pt = peak transmitted power in watts,

Pmin = minimum peak detectable signal in watts,

S = scattering cross section of target in units
consistent with range,

G = gain of transmitting antenna,

A = effective area of receiving antenna in
consistent units,
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D = a composite loss factor for transmission lines,
atmospheric losses, etc.

The parameters under the control of the design engineer are Ae,G,
Pmin and Pt’ Ae and G are fixed by various considerations such as
antenna beamwidth, side lobe suppression, physical size of the antenna,
etc., , and are not truly available as adjustable parameters beyond small
variations., Therefore the two parameters for the designers to optimize
are Pmin and Pt"

Pmin is basically limited by three factors: Johnson noise in the
input circuits, shot effect and other noises in the first tube, and cosmic
noise picked up by the antenna, Pmin approaches KBT# in a perfect
receiver, where K is Boltzrpann's constant, B 1s the bandwidth and Ta.

&)

is the absolute space temperature, Pmin is currently being reduced
toward the above value through the utilization of parametric amplifiers,
masers and other low noise devices., Another method of reducing Pmin
is through pulse integration, since noise voltage averaged over a period
of time has a value approaching zero while the signal values are additive,
However, in most cases this integration of pulses can also be considered
as an increase in transmitted energy, It will be considered from that
viewpoint in this paper. There are two basic types of integration, co-
herent and noncoherent, Coherent integration gives a gain of approxi-
mately N, where N is the number of pulses integrated and noncoherent
integration gives a gain of approximately /N, Both of these values are
compared to a single pulse3. The values are respectively the upper
bound for coherent integration and the lower bound for noncoherent
integration,

There are basically three different integration time bases possible

in a radar system. One is the antenna scan to antenna scan where the



operator or a computer, decides if the echoes from previous scans were
signals or noise. The second method of integration 1s the interpulse
method whe re the cathode ray tube, a delay line, or a computer sums up
the hits within one antenna scan of the target, The third method is intra-
pulse integration, or pulse compression, where different portions of
one radar transmitted pulse are summed up. Complementary codes are
used in one scheme of intrapulse integration,

An examination of how the transmitted power or energy since
Et = Pt A T, can be varied is now in order, From this relation, it is
seen that there are two basic methods for increasing the transmitted
energy: either increase peak pulse power, or increase the pulse width,
A common method of increasihg radiated energy has been to increase
the peak power, This method has proven both expensive and wasteful as
many radar transmitter tubes are peak power limited while only dissipa-
ting a very small percentage of their average power capability, and
radar modulators are taxed with a very similar problem. The alterna-
tive did not look very promising at first, since to increase pulse duration
normally reduces the high frequency content of a pulse, which in turn
reduces range resolution capabilities. However, intrapulse modulation
retains the high frequency content of a narrow pulse, while increasing
the energy content to that of a pulse of long duration. Intrapulse modula-
tion allows the summing, required in intrapulse integration, for
detection in a radar receiver,

There are two methods of intrapulse modulation, the digital method
and the analog method, Although the emphasis in this paper is on
digital modulation schemes - the analog system will now be briefly
mentioned since it is a part of the overall picture., Figure 1.1 contains

the graphs used in the explanation of the chirp radar scheme4, In

K.
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this analog method of intrapulse modulation the frequency of the outgoing

pulse is swept linearly upward with time as is shown in Figure 1. 1-b,
This gives a large high frequency content to the pulse while at the same
time maintaining a long pulse duration. Upon reception the signal is
passed through a reversed time delay, delaying the low frequencies more
than the highs, as is shown in Figure 1,1-d. This allows all the fre-
quency components of energy to arrive at the output simultaneously,
giving a large and narrow output pulse. The type of filter used in the
delaying process is known as a matched filter and is discussed in
Appendix I, The procedure here is seen to be quite simple: first we
generate energy components with various frequencies at different times,
.

and then we delay all compone;lts so that they arrive at the output
simultaneously.

As a preliminary to the digital type intrapulse modulation consider
a transmitted waveform such as in Figure 1.2, This waveform con-
sists of three pulses of unit length with spacing between them of one and
three time units respectively. This waveform is then fed into a delay
line in the receiver which has the delays shown in Figure 1.2-b. The
output is either a one or a zero except at the exact match of signal to
filter; the output is then three as is shown in Figure 1,2-c. The three
pulses have therefore been summed as though they were one, at the
time between 6 and 7 units. These pulses still contain all the high
frequency components of the short pulse of unit length but have effec-
tively three times the energy transmitted in a single pulse at the time
of exact match. There are two features to be noted about this output,
first it has been delayed in time and second there are secondary pulses

at various undesired times which might be classified as coding noise.
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I will consider any undesired signal which might be mistaken for a true
signal as noise. These two features will be discussed in some detail
in the true digital intrapulse modulation schemes to be discussed later,
The scheme just considered is somewhat inefficient since seven
units of time are required to radiate three units of energy. If in the
transmitted signal all the spaces with zero energy output in the pulse
envelope had also had an output, seven units of energy would have been
radiated in seven units of time. One might use some sort of frequency
shift or phase modulation to accomplish this purpose, still utilizing of
course the same output tube. Consider the same waveform as before
with the units of energy coded as plus and minus by the modulator by
means of phase shift modulation of either zero or 180°, The waveform
is as shown in Figure 1.3-a. Upon reception this waveform is now fed
into a delay line in the receiver as shown in Figure 1,3-b. "A'" repre-
sents a straight-through amplifier, Figure 1.3-c¢ shows the output of
the delay line summer with respect to time. The output energy is now
seven times that of a single j)ulse and has the frequency content, and
therefore the range resolution, of one of the single pulses. A time delay
in the output is again apparent, as are a number of noisy sub-peaks,
This was a code picked at random and the results were good. There are
certain classes of codes which are optimal, having even smaller noisy
sub-peaks, These codes are of length 2".1 and have been studied

5,6,7

extensively. They are known as L codes or pseudo-random noise
codes. An example of one of these pseudo-random noise codes is

-+ --+++, where the minuses and pluses indicate the phase of the RF
signal, When this particular noise code is impressed upon its matched
filter, Figure 1, 4-b, the output of this summed delay line is as shown

in Figure 1,4-c. It is to be noted that the maximum height of the

8
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"hash' (sub-peaks) is one, with a main peak of seven, whereas in the
previous example picked at random the hash had a height of two.
Elaspas has made a study and design of a radar utilizing this form of
modulation and matched filter detection. 8 He infers that codes of
reasonable length should be used, For example, a code of length 127
would be a reasonable length to obtain the benefits of a pseudo-random
matched filter radar. An optimum code of this length has a maximum
subpeak of 13, which gives a good coding signal-to-noise ratio.

There is a way, however, to completely eliminate the hash, al-
though this required the transmission of two separate sequences. Both
of these sequences could be transmitted through one output tube witlll a
moderate band width, These codes which eliminate the hash are known
as complementary codes, ? An example of a complementary code pair
being detected by a matched filter pair is shown in Figure 1.5, The
two codes being transmitted will be called A and B for convenience,
with their respective matched filters also being labeled in a similar
fashion, The receiver output, after the complementary codes are detec-
ted by the matched filter and their outputs summed, is shown in Figure
l.5-g. This demonstrates, as was mentioned before, that the hash level
is zero, This lack of hash is indicative of an infinite coding signal-to-
noise ratio, This particular feature is the prime advantage of complemen-
tary sequence pairs over other forms of noise modulation. Figure 1,5-g

shows the same amount of delay as did all the other forms of matched
filter detectors, and shows that the sum of all the energy sub-pulses is
incorporated into the main pulse at exact match.

Each of the systems described in this introduction has had the char-
acteristic that the transmitted signal is spread over a wide frequency
spectrum. This has in itself two advantages: One is that enemy detection
of the signal becomes more difficult, and the other is that even after
detection the jamming of a wide spectrum noise-like signal becomes

10



extremely difficult, Since the characteristics just described are de-
sirable for a secure communication system as well as for a radar
system, all of the advantages that accrue for the complementary se-
quence modulation in radar would apply in a communications scheme,

The initial major objectives of this investigation we re two in
number,

1. The formulation of a set of operations on complementary
sequences which form a group, along with a theoretical
study of the invariant properties of such a group.

2, The search for new complementary codes. An exhaustive
computer search for a new code of length 26 was made
as well as a partial search for codes of length 34,

During the investigation two more major objectives were added
to the work,
These were:
3. The application of Hamming distance to both the comple-

mentary sequences and their group formulation,

4, The application of Hamming vectors to complementary
sequence pairs and also to their group formulation,
The original objectives were oriented toward the generation of
new codes, while the last two objectives were oriented toward the
decomposition of codes. All of these objectives were attained and
consititute a large portion of the rest of this work. The next chapter
is a study of complementary sequences designed to bring the reader
to the state of the art, and contains some proofs which have not ap-

peared elsewhere, 1,2,9,11,12

Chapter 3 is the formulation of the
operations group on complementary sequences and, along with several

theorems and proofs it also contains the identification of this operations

11



group with a known group. Chapter 3 as written requires only a min-
imum of group theory knowledge. Chapters 4 and 5 have to do with
the Hamming distance and Hamming vectors of complementary sequen-
ces both in standard form and in group form, Chapter 6 1is a short
chapter and is concerned with the proof of two theorems used in the
searching for new codes. Chapters 7 and 8 describe the computer
search for new kernels of length 26 and 34 respectively, the actual
computer programs used being listed in the appendicies, The last
chapter, Number 9, contains the summary, conclusions, and suggestions

for future research in this interesting field.

==
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CHAPTER 11
COMPLEMENTARY SEQUENCES

This chapter is presented to provide a background in complemen-
tary sequences to enable the reader to better understand the material
in later chapters. Most of the material in this chapter is an adaptation
of Golay's "Complementary Series' with expansions and deletions to
fit the needs of this paper. ? The formalization of some proofs and the
addition of new proofs given here have not appeared in print elsewhere;
however, it is obvious from the tone of Golay's work that he was aware
of these proofs. This modification of Golay's work is offered for com-
pleteness of the dissertation and not as new work,

In the introduction a pair of codes of length n were discussed which
had the characteristic that when detected by matched filters, the sum of
the two filter outputs was everywhere zero, except where the signal
patterns had zero time delay with reference to the filter patterns, At
the zero pattern delay time the output was 2n, leading to an infinite
coding signal-to-noise ratio, A study of the necessary and sufficient
conditions for this to be true will now be considered,

Assume a complementary code pair (A, B) and suppose that one of
the pair, i.e. A, is longer than the other. If this be true then there will
be an output from the A filter with no cancelling output from the B
filter. This is not allowed; therefore the A and B codes must be of
equal length, Therefore assume a code A, n bits in length, with
elements a, through an, where each a.i is either +1 or -1, Also,
assume a second code B, n bits in length, with elements bi similarly
defined. Detect each of these codes with a matched filter (the time
inverse of the code) and then sum the outputs of the A filter and the
B filter. At time 1 (see Figure 2.1) the signals a; and b; have

entered the filter segments a and bn respectively, Since at this

13
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time the delay between signal pattern and filter pattern is not zero, the
summed output voltage must be zero, This gives the condition aja_ +

blbn = 0. Attime 2 (Figure 2,1) the signals are one segment farther

into the filter and the output must again be zero, giving CIE +
a,a_ + bl bn-l 4 bzbn =0,
At time 3: al a_ . 2+a2an_1+a,3an+blbn_2+b2bn_ l+b3bn =0
Attime r (r#n): aja .\ 433, ) (1) ... 42 a +bb g
rn 1 ntl-r
+bb =0
r n
At time n: alal + azaz F oo + anan +b1.b1 F oo oo + bnbn =2n

for at time n the pattern of the signal must exactly match the pattern

of the filter, The explicit statement of the conditions given above for all

times is
i=n-j i=n-}
Fo= % aa 4 T by, =0 40 5
i=1 i=1 _ .
= 2n j= 0

An examination of the equation at time 1 (j= n - 1) shows the following
eight possible solutions:

a a b b

1 n 1 .n
1 1 1 -1
1 1 -1 1
-1 -1 1 -1
-1 -1 -1 1
-1 1 1 1
1 -1 1 1
-1 1 -1 -1
1 -1 -1 -1

These possibilities show that if the A pair are alike, the B pair must
be unlike, and if the A pair are unlike, the B pair must be alike. The
equation at time 2(j=n-2) indicates that if the number of likes (like pairs,
i.e. alard an_l,) of the A code and the number of unlikes (unlike

pairs) of the B code are equal, and if the number of unlikes of A

equals the number of likes of B, the equation is satisfied, Extending

15



this reasoning to time r shows again that if the likes of A equal the
uhlikes of B and if the unlikes of A equal the likes of B the equation
is again satisfied,

It will now be proved that the last half of the previous statement is
not necessary, since the first half of the statement contains the necessary
and sufficient requirement,

Let U
a

numbe r of unlike pairs in A for the spacing specified.
(j in equation Z.1)

Let L_ = number of like pairs in A for the spacing specified,
a (j in equation 2.1)

Let Ub = number of unlike pairs in B for the spacing specified.
(j in equation 2, 1)

Let Lb = number of like pairs in B for the spacing specified.
(j in equation 2, 1)

Assume that L = U we want to prove that U_ = L.
a a

bl
Since the sum of the number of like pairs at each spacing with the num-
ber of unlike pairs at the same spacing must equal the total number of
possibilities,

U, +L =n-(n-r) for r #n where n is the length of the code
and (n-r) is the number of units of time delay
from exact match,

For the same reason

Ub + Lb = n-(n-r),

But since Ub = L ,
a

Ua + Ub = n-(n-r).

Therefore U_= L, .
a b

The definition of a complementary pair of sequences will now be

given, A pair of binary sequences of equal length with the number of

like pairs of one sequence equal to the number of unlike pairs of the

other sequence for each possible spacing is said to be a complementary

code,

16



Two schemes of representation will be used in this paper, These
schemes will be used interchangeably at the convenience of the author.
The first representation is the one already presented where each a;
and bi is either +1 or -1. The operation used in this case is
ordinary multiplication. The second representation will use the opera-
tion of modulo two addition denoted by @, where the elements a, and
bi are either 0 or 1, That these two groups (1,-1;») and (0,1; &)

are insomorphic is shown in the following tables.

- | -1 0 0 1
1 1 -1 0 0
21| -1 1 1 0

The first form will normally be used when correlating of the codes
with their matched filter is unde r discussion while the second form will

normally be used when discussing the intrinsic properties of the indi-

vidual codes.

The necessary and sufficient condition for a pair of sequences to be

complementary, is in terms of the modulo two representation

izn-j i=n-j “
Fj = : ij : (ai@a.iﬂ) = i2= . (bi{Bbiﬂ.@I) for all j, 1<j<n-1 {2.2)

or an equivalent formulation by change of summation index

= i
5 5
finee =1 @008 s = o GRELT LR (2.3)

The above L is standard summation. If modulo two summation is
desired the symbol ¥ will be utilized. (The equivalent conditions are
given since they are both used in formal proofs in a later portion of

the paper. Due to the possibility of confusion it seems more appropriate

17



to introduce the second form now rather than later when needed. )

Ua = Lb has been used to represent these same equations, and will be
used elsewhere in the paper when it 1s more convenient to use it,

An interesting property of any system of codes is the possible in=
variances it may have under various types of transformations., It
therefore seems appropriate to consider the possible transformations
on a complementary sequence pair which leave the pair complementary
and of the same length after the transformation. A necessary tool for

this study is the property that ai@ai-l-j =a.® ,F-Li

i where the symbol

+]

a, means the complement of as 0=1,

]

= 0,
Theorem 2.1
The modulo two sum of a pair of binary numbers is equal to
the modulo two sum of their complements,
The truth of the theorem is obvious from the following exhaustive

table of four possibilities:

o]
*
D

a. ®a.

io %itj 1 it
1 & 1 = 0 1 ¢ 1 = 0 & 0 = 0
1 & 0 = 1 1 ¢ 0 = 6 1 = 1
0 ® 1 = 1 0 1 = 1 @& 0 = 1
0O & 0 = 0 0% 0 =1 & 1 = 0
Therefore a, %ai_l_j = él @ ;LH-J .
xR B3 3

In each of the following proofs it will be considered that A and B
are a complementary sequence pair of length n. Complementing each
element in a code is called complementing the code,

Theorem 2, 2
Complementing the A code, or the B code, or both the
A and B codes, results in a pair of complementary codes. (The

proof is given just for the A code but is i1dentical for the B code and

18



from both of these for the A and B codes.)
By hypothesis
i=n-j
Fj = = (aiQ ai+j)
i=1 i=1

Complementing the A code transforms

a.— a.,
i i

but by Theorem 2.1

20 b T Y
Upon substitution
i=n - j 1=n-j
s & 3 = = 2 — )
F. (ai(BaH_j) e (bi®b1+J®1,.

Ul
Therefore complementing the A code has no effect on complementarity,

3

and similarly for the B code or for both codes.
ok s s
Interchanging the first and last bits of a code, the second and next

to last bits, the third and third from last bits, and so on is called time

inversing or time reversing a code,

Theorem 2. 3
Time inversing the A code, or the B code, or both the A

and B codes, results in a complementary pair, (This proof is again

just for the A code, but also applies to the B code and therefore to

both the A and B codes.)

By hypothesis

i=n-j i=n-j

£ - (a; @, = (b @b, 01).

The time inverse of A causes each

17 Pn4l-ic
A code shows that

Applying this time reversal just to the

19



i=n-j i=n-j
F.= 5 (a.6a. ) -
=1 1 M a

B Pt e
Expanding both expressions for a few terms and remembering that
modulo 2 addition is commutative as is regular addition we see that

(on the left) (on the right)

for j=n-1, Fn-1=a1@an Fn_1=an$a1

for J=n-2, Fn—Z =2,8a |+ az@ a Fn-Z = anﬂ) a,ta 4 6 aj -

These expressions indicate that by a change in summation index the two
forms of F_] are equal, as is the case, Therefore time reversing the

A code has no effect on the complementary property, and similarly for

the B code and for boththe A and B codes.
% Lk £
The altering of a code is a transformation where every other bit of

both codes is complemented. In a different portion of the paper a dis-
tinction is made between altering odd bits and altering even bits, In the
following proof, however, just the even bits are altered, although a
slightly modified proof would hold for altering the odd bits,

Theorem 2. 4

The result of altering a complementary pair of sequences is

again a complementary sequence pair,

Since the codes are a complementary pair,
i=n-j i=n-j
.= Z L z : "y .
F_] 2 (aiQal_H) o (b1 ®b1+JlB 1)

I

Divide the Fj into two groups, Fk for j= an even number and Fr
for j= an odd number, The portion of the above equations for j= an

even number is
izn-k i=n-k
= z
F S e . (b, b,
i=1 =1

6 1).

k
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For the theorem to be true, when ] is an even number the above set
of equations Fk must be satisfied for all k when the pair is altered.
(The proof is given only in terms of A, but duplicate steps must also
be applied to B.)

When i=an even number, then itkzan even number. In the alter-
ing process since all even bits are complemented a; @ i~ éi@5i+k :
but by Theorem 2.1 these are equal. When i=an odd number, then
itk = an odd number and these are not affected by the altering process,
since only even bits are complemented, Therefore Fk is invariant
under altering, or symbolically Fk = Fkalt’

Examination of Fr where r is an odd value of j, shows that of

the pair a., a; one of the bits is complemented and the other is un-

+r
changed,

= a.® a .

a,0a,  _(a®a,  oraba, ) i % Pitr

Therefore Fr = (n-l)-Fr for both the A code and the B code.

alt
This signifies the likes of the A code for odd spacings are changed into
unlikes, and the unlikes of the A code for odd spacings are changed into
likes; however, for each change in A there is an opposite change in
B so the total likes in A still equals the total unlikes in B for each
spacing, It is to be noted that altering both the even and the odd bits is
the same as complementing both codes.

%* %* *

The operation of interchanging the A and B codes, although
trivial, is also a transformation. There are a total of sixty four pos-
sible transformations. These can all be generated by combining the
above listed transformations, They will be discussed much more thor-

oughly in Chapter 3.
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Whenever a new facet of a pair of sequences such as the comple-
mentary property is discovered, it is natural to wonder just how general
this property might be, One question of interest would be the possible
length limitations of the code pairs that might be forced by the comple-
mentary property. The following proof due to Golay shows that
complementary sequences must have a length n of the form n=x2+yz,
where n is an even integer and x and y are integers., The first
theorem to be proved demonstrates that n must be an even integer
and the second theorem shows the x2+y2 form.

Theorem 2.5
A necessary condition for a sequence pair to be complementary
is that their length be an even number.

By hypothesis

i=n-j i=n-j
T, = Y a.Ba. . = 2 b.e. .61 .
] AT i 1+) i=1 1 1)
Let G. = F. modulo 2, so that
J i=n- j i=n-j
G. = B a.®a.. . = ) b. ®b., . @ 1 .
] iz1 1 1+) i=1 1 14

An expansion of G for a few different values of j will suggest the

proof. Start with j=n-1.

Gn-l = alﬁ)an = b1®bn® 1,
Gn-Z = al(Ba.n_I(Ba,Z@an = blﬂ}bnu 1Q)l®bz®bn$l,
Gn-3 =a1®a,n_2@an_ 1$an_](})a3®an=b19bn_2$l (an_1$1@b3$bn 1.
Change the order of the sums in Gn—Z and G__5 to achieve the following:
2
Gn_2=a1 %az@an_lﬁalfbl@bzé)bn_ 1®bn 9 ? 1,
3
Gn_3=a1@a29a3$an_2@an_ 1‘Ban:b1@b2®b3®bn~2®bn=1$bn@ ? 1,

In general for j=n-r

@cooca

G ®a__ ®a =b 6b

n_r=a1$a2@"..@ar(}}an_(r+1)@an_lr+2)$o.q 2
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T

. G)br(Bb &b (an_ lé)bn(B ? 1,

n-{4+1 n-(r+2)®' o

and for j=n-(r+l)
=a1®a2®. N @are}arﬂgan-r@an-(ri—l)@ e ‘Ban_ ]€Ban=b19b2@. ..
r+l
° g)br‘BbPHan-ra)bn-(r+z)ﬂ;bn-(r+2)a)" .v 9 %7

Gn-(r+1)

1.

Forming the sum G r@ G will leave only five terms in the

- n-(r+1)

equation since Gn-r and Gn-(r+1) differ only in a g a4y br+1’
and a, bcause

r r+1

g 1@ g l=1,

1 1

n-r G)Gn-(r-l-a) - ar+1®an-r - br+1®bn-r® I
Adding b &b modulo 2 to both sides of the equation gives
r+l "n-r i
ar+1®an-r@br+1®bn-r= 1. (2.4)

Let n=2s-1 and r=s-1; then to satisfy the equation just derived
ase)aZs-l-s+l (Bbs gsz-l-s+1 = aSG)aSQbSQbS= 1, which
is obviously false,
Therefore n cannot have the form 2s-1 and must be an even number.
* s i« .
Equation 2,4 which was a step in the previous proof, is a very
important necessary condition for a pair of codes to be complementary
and will be referred to in the future as the parity check, The next
theorem which shows the n=xz+y‘2 form, starts with the basic assump-
tion that A and B are a complementary pair of length n.
Theorem 2.6
A necessary condition for a pair of codes to be complementary

is that their length be the sum of the squares of two integers.

By hypothesis

i=n-j i=n-j
= . = b.& ).
Fj i=21 (a,i 9ai+J®1) i:.-»l ( i b1+J)

Assume that the A code satisfies Fj and that the A sequence contains
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p ones and n-p zeros. The A code has aweight of p. Similarly
assume that the B code satisfies F_j and that its sequence contains

q ones and n-q zeros, The B code has a weight of q, For the total
likes in the A code, each bit is matched against each other bit exactly
once, For the total unlikes in the B code each bit is again matched
against each other bit once, There are two possibilities of likes in the
A code, 1 matched against 1, and 0 matched against 0. The total
number of like pairs for the A code is therefore the number of com-
binations of p ones taken 2 at a time plus the number of combinations
of n-p zeros taken 2 at a time, for the unlike pairs in the B code_,

q ones are matched against n-q zeros,

2

This gives the equation
p(p-1) (_rl_—g)_(zn-p~1) el )
expanding and simplifying
n=n2- 2qn+2q2+2p2- 2np,
adding and subtracting 2pq gives
n=n2— 2qn+2q2+2p2- 2np+2qp- 29p,
collecting terms gives
n= n2+q2+p2 +2gp-2np-2nq + p2 -2pq -I-q2
combining terms gives
n= (n-p-q)° + (p-q)° (2.5)
Therefore complementary sequence lengths are permissible only in

lengths which are even numbers and formed by the sum of two squared

integers.

* A *
A list of all possible code lengths up to 200 with the number of

ones allowed in the A and B codes is given in Table 2.1,
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*Indicates possible kernel

Code Unordered
Lengths Weights of(A, B)
%2 (2,1)(1,0)
4 (3,3)(1,1)(3,1)
8 (6,4)(4,2)
*10 (7,6)(4,3)(7,4)(6, 3)
16 (10, 10)(6, 6)(10, 6)
%18 (12,9)(9,6)
20 (13,11)(9, 7)(11, 7)
*26 (l6,15)(11,10)
(15,10)(16,11)
32 (20, 16)(16,12)
*34 (21,18)(16,13)
(21,16)(18,13)
36 (21, 21)(15,15)(21,15)
40 (24,22)(18,16)
(24,18)(22,16)
%50 (30, 25)(25, 20)(29, 28)
(29, 22)(28,21)(22,21)
52 (31,27)(31, 25)
(25,21)(27, 21)
*58 (34,31)(27, 24)
(34, 27)(31, 24)
64 (36, 28)(36,36)(28,28)
68 (39,37)(31, 29)
(39,31)(37, 29)
72 (42, 36)(36, 30)
* 74 (43, 38)(36, 31)
(43, 36)(38, 31)
80 (46,42)(38, 34)
(46, 38)(42, 34)
*82 (46, 45)(37, 36)
(46, 37)(45, 36)
*90 (51, 48)((51,42)
(42,39)(48, 39)
*98 (56, 49)(49, 42)
100 (55, 55)(55, 45)(45, 45)

(57,51)(57,49)(51,43)

(49, 43)

3

Code Unordered
Lengths Weights of (A, B)
104 (58, 56)(58,48)(48,46)(56, 46)

*106 (60, 55)(51,46)(60,51)(55, 46)
116 (65, 61)(55,51)(65,55)(61,51)

%122 (67, 66)(56,55)(67,56)(66,55)
128 (72, 64)(64, 56)

*130 (72, 69)(72,61)(61,58)(64,57)

(73, 66)(73, 64)(64,57)(66,57)
136 (76, 70)(66, 60)(76, 66)( 70, 60)
144 (78, 78)(66, 66)(78, 66)

*146 (81, 76)(70, 65)(81, 70)( 76, 65)
148 (81, 79)(69, 67)(81,69)( 79, 67)
160 (88, 84)(76, 72)(88, 76)(84, 72)

%162 (90, 81)(81, 72)

164 (91, 83)(81,73)(91,81)(83, 73)

*1 70 (94,87)(83, 76)(94,83)(87, 76)

(92,91)(79, 78)(92, 79)(91, 78)

*178 (97,94)(97,84)(84,81)(94, 81)
180 (99, 93)(87,81)(99,87)(93, 81)

*194 (106,101)(93, 88)

(106,93)(101, 88)
196 (105,105)(91,91)(105,91)
200 (110,100)(108,106)(100,90)

(94, 92)(94,108)(106, 92)

All possible complementary
code lengths up to 200 with
unordered possible weights,

TABLE 2.1
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The shortest possible complementary pair 1s A=11, B=10, This pair or
any of its transformations is called a kernel of length two, or the quad.
A kernel is a basic length code which cannot be decomposed into shorter
length codes by an inversion of the standard generating methods to be
explained later. Some possible kernel lengths are 2, 10, 18, 26, 34,
50, etc., although codes for all of these do not exist. Complementary
sequences which are not kernels are called composite complementary
sequences,

The above list of kernel lengths did not include n=4 or n = 8
which are possible complementary sequence lengths. These if they
exist must therefore be composite. All possible codes of length four
can be generated from the exhaustive list of possibilities for four binary

digits given in Table 2,2,

0000 1000
0001 1001
0010 1010
0011 1011
0100 1100
0101 1101
0110 1110
0111 1111

Table 2,2, All Possible Binary Numbers of Length Four.

The unordered possible pairs of ones in the codes are (1,1), (3, 3)
and (3,1). Thus all possible codes of length four have either one 1 or
three 1's because of this limitation, This reduces the table to the

eight following numbers of length four:

0001 0111
0010 1101
0100 1011
1000 1110

The possible unordered (1, 1) code pairs are the following four:

1000 1000 0001 0001
0100 0010 0100 0010
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The possible unordered (3,1) pairs of codes are the following eight:

0111 0111 1110 1110 1011 1011 1101 1101
0010 0100 0100 0010 0001 1000 0001 1000

The possible unordered (3, 3) code pairs are
0111 0111 1110 1110
1011 1101 1011 1101
Comparing the last code to the kernel of length two, A=11, B=10,
shows that it might have been constructed by writing in time sequence
S,= AB=a.,a,b,b, = 1110,

1 1727172

= AB=a_a_b,b, = 1101,

S, el 2

The next to last sequence pair might have been formed by inter-
lacing A and B in the following manner:

1110,

ERSECsb @b

Tg = a,lBlaZbZ =

1011,

All the rest of the 16 pairs could be considered either as transforma-
tions of the last pair, or as being formed by the same two composite
generating operations used above on the 8 transformations of the ker-
nel of length two. A general proof will now be given to show that both
the time sequence scheme (S;, Sz) and the interlace scheme (T, T2)
will always form complementary sequence pairs providing that A and
B are a complementary sequence pair,

Theorem 2.7

If A=alaza-3 ....... a

are a complementary sequence pair, then

C=alazunuanblb200~on.nb

n

aj25a3..2 ]bz wosee D

are a complementary sequence pair,

D

n

27



Theorem 2,8
If (A, B) are a complementary sequence pair, then

C=ab,ab,....... a_b

1717272 n n

D_

|
p
—_—
on
—
p
o
oo
p

form a complementary sequence pair,

The following notation will be used in the proof:

i=n-j
U =% abda.,. forall j1<j<n-1
a i=] 1 1+]
_ i=n-j . .
La = 5 aiwai_'_j@l for all ja<j<n-1,
i=1

It is understood that the two CD sequences in the two theorems
above are not the same but because the proofs are identical two sets of
symbols will not be used., For.each spacing ) there are three possible
ways for bits to match, within A, within B, or from a bit of A to a
bit in B, These possibilities are denoted by La L'b and L. or Ua’
Ub’ Uab respectively,

The necessary and sufficient condition for C and D to be a
complementary sequence pair is given by LC = La+Lb+Lab and
Ud = Ua+UB <F UaB where Lc =U
Now L_=1U

a

dO
b and Lb i Ua by definition of complementary,
Adding

La + Lb - Ua+be
i i=n-1 i=n-1 L
= N 1 = . by
Ub = Ub since i§1 bi®b1+j b; i+)
so substituting
La + Lb = Ua + UB
All bit matches from A to B inthe C sequence are paired in the D

sequence with bit matches from A to B therefore,
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ab ab '’
and adding
La+Lb+Lab=Ua+U5+Ua5 or LC=Ud
ok e %k

Golay describes two other methods of generating composite sequen-
ces from shorter complementary sequences, These methods will not be
used too extensively in the rest of the paper and will therefore just be
mentioned rather than proved., Given two complementary sequences

pairs (A,B) (C,D), A of length m and C of length n.

Let
U, = ASTAS2 L. ASn phrpde pdn
Ua=ad9n . ....... &% ’Ben... ..... Bal, .
and
vo=a%BY e A B
va=Adnptn L eveenen. AT BT i

It can be shown that the pairs of U are complementary as are the pairs
of V. Where, if an exponent is a one the A or B code is left un-
changed, and if the exponent is a zero the A or B code is comple-
mented. The lengths of codes which can be generated from these two
methods are 2mn where m is the length of the (A,B) sequence pair
and n is the length of the (C,D) sequence pair. There is also another
special method of generation which applies only to codes of length 2T,
This method is explained in Chapter 5 where it is necessary for the
completeness of a proof,

The kernel of length 2, or the quad, has been discussed in the
previous pages., There are two kernels of length 10, These are
1001010001 and 1000000110, and a second kernel 0101000011 and
0000100110, The next possible kernel size is 18 and Golay has proved
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by exhaustive search that no kernel of this length exists, Kruskal has
since then completed the proof analytically. L3 One of the goals of the
writer in his study was to make an exhaustive search for codes of kernel
length 26, This search disclosed there was only one kernel of length
26, Chapter 7 of this paper describes this search in detail and

Chapter 8 describes attempts to find kernels of length 34,
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CHAPTER III
THE GROUP OF OPERATIONS

A large portion of this investigation is devoted to the set of allow-
able transformations on complementary sequences. These allowable
transformations possess the characteristic that the length of the sequen-
ces and the complementary property are invariant under transformation.
To be useful in searching for new kernels it is also desirable that these
transformations have the following features:

1. That they form a group for all general transformations,

Where a general transformation is one which can be
applied to any complementary code pair,

2. The transformations as represented be simple manipula-
tions on the elements of the group.

3. The supplementary characteristic (to be explained in
Chapter 6) be a property of the representation.

4, The parity check be easily made,

Some of these transformation operations were discussed, and the

proof of invariance given for all group generators, in the background
chapter, Chapter 2, on complementary sequences. As a continuation,
a brief review of the transformation operations and a tagging of symbols
to these operations will prove useful., Each basic operation symbol and
its definition is given in Table 3,1, More definitions are given than are
necessary to generate the group; however, the redundance seems to the
writer to be an aid to understanding.

A check through Table 3,1 shows that the transformations affect
the complementary sequence pair in four different ways, C; , Cz,

T, , Tz affect all the bits of one of the code pair. E,T,C affect all bits
of both codes, while A; and Az affect half of the bits of both codes. The
identity, I, of course has no affect on either code. A reasonable way

to form the elements of the group to account for the above affects would
be to divide each code of the pair into two units. These would be AQ

(even bits) and Al (odd bits), also BO (even bits) and BO (odd bits),
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T

Ay

Az

C,

The Identity

A code time reversal

a. —a .
i1 nt+l-1

b.

1 - bn+l-i

Time reversal of both codes

a. — a .
i ntl-i

b, = biti-1

Alter odd bits

a2i-17 %2121 %217 224

bai 1= baii1 P2~ by
Alter even bits

N SHR D

b2ic1 Pai-1 P2 P2

Complement the A code

Complement the B code

Complement both codes

a; = 3y
Some oOperations,

b. - b.
1 1

Exchange the A code with the B code

a; = b, TABLE 3,1
b; - a; 32 ¢



A

A = 858,800 00000 a
B =b1b3b5.,.° ..... b
B

e=bybabr ..o b
However, this particular division for representing the comple men-
tary sequences proves to be very awkward for the time reversal opera-
tions (T3 ,Tz, T) and for the ease of the parity check condition,
Fortunately, one simple change, that of time reversing the second and
fourth row (even bits of A and B), clears up these difficulties.1

The method for converting from a complementary sequence pair

into the standard group form is therefore

I=a.a.a .a

1 3 5"'. n-l
A=a.2535.. ... a a
1723 n-12n7<X 1=
—anan_zoooa.az (3.1)
III=b.b,b_ ... .. b
B=b bob,..... s lb_< Lo n-1
S IV=b b ,..... b
n n-2 2

If the matrix (I II 1II IV) is taken as the symbol for the above grouping
the Identity operation, I, should yield (I II III IV). Post multiplying

(I 1I III IV)

by gives (I II III IV), therefore I can be taken

[N eNe N
oo~ O
O OO0
— O OO

as the identity matrix of rank 4, using the operation matrix multipli-
cation on the right, Similarly T; has the effect of exchanging the first
and second columns yielding (II I III IV). Now post multiplying

(I II III IV) by

01 0 0

1 0 0 0 . 1ds (I I III IV) the desired result so the
0o o 1 o Ve s ( e desir s

0 0 0 1

matrix just used could represent T; . Similarly,
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1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0
-0 1 00 -1 00 0 _010 0._01 0 0
0 001 T o000 1% 090 1 0% 01 0

0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1

10 0 0 1 0 0 0 0 0 1 0
IR RGERCES L 0. T .0 0 _ 0 0 0 1
M= 9001 0% 001 0 =1 0 0 o0

00 0 1 0 0 0 1 01 0 0

Matricies are often a very convenient method of expressing trans-
formations. However, when the elements are few and the numbers in
them simple it is often more convenient to express the operation dif-
ferently, For instance (I II III IV) operated upon by T; yields

(II I III IV). This could be just as well expressed as

_I II Il 1V
TIIIOII IV

T,

This indicates that the top row is transformed into the bottom row by the
operation, or in even more shortened form, T; = (II I III IV) with the
top row understood which means, as is common practice, T; (I II III IV)

= (II I III IV), Another example is A, = (I Il III IV), [which means
Ay (IIIIII III) = (1 II IIT IV)] where the bar across I and III indicates
the negative element in the matrix or in actuallity the complement of the
portion of the code contained in I and III. Table 3,2 is a list of all
32 transforms generated from Table 3,1 both by symbol and group
element representation, There are actually 64 transform operations
in the entire group, However, the exchange operation (III IV I II) is
not considered along with all the 32 elements it would generate, In
this paper the pair (I II) and (III IV) are generally considered as
being an unordered pair, which eliminates the exchange operation,

The second feature listed under desirable characteristics, that

of simple manipulation of the elements of the group is satisfied,

The supplementary property which is discussed in Chapter 6 is

also satisfied by the formulation of groups from complementary
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sequences by this method., The parity check, aiebiwan+1-i9bn+1-i:l’
is also satisfied under all transforms and is easily checked since each

column of equation 3.1 is one solution of the parity check.

I=a,a

1 335.0...ai ..... an_1
II = a8 5 eeees a ti-iar (3.1)
II=bbb,.....b, ....b
L = bnbn—Z °°°° b;r.l-.l'-.lbl
I= (III III IV) R = (I II 1v 1D
A= (T 11 T 1IV) Q= (I T 1v IO
Ax= (I 1I 1II IV) P= (I 1 TV 1)
T,= (II I III IV) O= (O T 11 1v)
Te= (I II IV III) N=(II I IO IV)
T= (I I IV III) M= (I II Iv 1II)
Cy= (T II 111 1V) ) L= (I 1710 V)
Co= (I II TII 1IV) K= (I T17Tv I
c= (1T 1 IV) J= (T 1 IV T
Z= (II TTII IV) H= (I II IV T}
= (II I TII 1V) G= (II T I1v 1)
X= (II I 1II 1IV) F= (1T IIT 1v)
W = (II T III 1IV) D= (T II 11 IV)
V= (11 Iv T G = (I 1 IV TIiI
U= (I II IV III) B= (I I Iv T

S= (I 1 IV 1) = (II'T IV II)
E =(III IV I IJ)

Elements of the unordered operations group.

TABLE 3,2
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Another feature inherent in this formulation of the group, which is
very useful in searching for new kernels, is the interlace breakdown
into the group. This is useful because a kernel may be considered as the
interlace of two half length codes where, as will be shown in Chapter 7,
the number of zeros and ones in each half length code are easily pre-
dete rmined.

Although this group of operations is indeed a group, it has never
been proved formally, In order for a collection of elements to be a
group, they must satisfy the following four conditions:

1. A group has closure,

2. A group is associative under the group ope ration,
3, A group has an identity element,
4

. Each element in a group has an inverse,

That this operation group has closure is demonstrated by Table 3,3
which is the full multiplication table of this group of order 32, The
elements under the operation multiplication are associative since they
are expressible as matricies and matrix multiplication is associative,
The element I is the identity, and as seen from Table 3,3 all elements
have an inverse. Therefore these 32 elements have satisfied all the
requirements for a group.

There are three special subgroups of order 4 which within the
subgroup deal with only one type of operation, T; Tz TI, A; Az CI,
C; C2 CI. All of these subgroups have the unusual property that each
element in the subgroup is its own inverse, This group of order 32
has been identified as isomorphic with Senior's group number 44, i
This will be discussed in some detail at the end of this chapter,

A study of complementary codes in (I II III IV) form, or as we

will call it sequence quadruple form, reveals many interesting proper-
ties, Some of these properties and their formal proofs will follow,
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In these proofs the complementary pair (A, B) will be assumed to be of

1=]
length n. The symbol L, will mean izzl (aiganﬁ-j $ 1) for all
. . — i=j
<3< n- =
j» 1 £ j<n-1 and similarly Ugp S b.8b .. ..
i=1 1 n+i-j

Theorem 3.1

If (A,B) are a complementary sequence pair and if either (I,II)
or (III,IV) in sequence quadruple form are complementary, then the
other pair must also be complementary,

Assume (J,II) are comlementary.

1.

25 LI UII by the definition of complementarity,
3. UI = Ly by the definition of complementarity,
4.

Adding the equations in steps 2 and 3 gives
Lit+Lp=Yr+ U

5. Since only even spacings are concerned in the sequence
quadruple form, when related back to the original (A, B)
pair, the likes of A are equal to the unlikes of A for all
even spacings, This will be expressed as LA = UA for
even space,

6. L,=U_, and U,=Lg by the definition of complementarity,

A B B
Therefore LB=UB for even spacings.

8. LIII+UIII=kj since the total number of matches at any spacing
is equal to the likes plus the unlikes, and i1s dependent upon j.
LIV+UIV =kj.

10, Adding 8 and 9 gives Ly AU 4L +Us, = (LI[I+LIV)+
(UIH+UIV) = ij o

11, LIII”—‘IV = kj , by step 7.

12, -U.;;= 0 by subtracting the equation in step 8 from that

Lov-Ury
in step 11,

13. Therefore L and the (III, IV) pair is complementary.

v =Ym
Since the proof would have been the same if (III, IV) were
chosen complementary rather that (I, II), the general state-

ment is true,

dk e sk
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Theorem 3.2

If (A,B) are a complementary sequence pair in sequence quadruple

form and if one of the pair (I,II) or (III,IV) is not complementary

neither is the other.

L,
2.

Assume (I,II) not complementary.

There are two possibilities for (III,IV) either complementary
or not complementary.

Assume (III,IV) are complementary, then by the Theorem 3.1
the (I, II) pair must also be complementary, but this is con-
trary to assumption,

Therefore (III,IV) cannot be a complementary pair.

* B *

Theorem 3.3

A necessary and sufficient condition for (I,II) and (III,IV) to be

3
two complementary pairs when a complementary sequence pair is

written in the sequence quadruple form is if the likes for even spacing of

one of the code pair is equal to the unlikes at the same spacing for the

same code of the pair. First the sufficient portion:

1. LA = UA for even spacings,

A LI + LII = LA for even spacings.

3. Uj+U;=U, =1Ly for even spacings.

4, LI + LII + UI + UII = ZLA for even spacings by adding the
equation in step 2 and step 3,

5, LI + UI = kj since the total of likes and unlikes must equal the
possibilities,

6. LII+UII=kj"

7. L+ U, + L+ Uy = ij = ZLA by adding the equations in steps
5 and 6 and comparing to those in step 4.

8, Lyt L= kj rewriting step 2 with kj substituted for LA.

S Ly-Up= 0 subtracting the equation in step 5 from that in
step 8.
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10,

11.

Lz,

13,

14. Adding the two equations in step 13 gives L. +L 1= UI+U

s

Therefore LII = UI and (I,II) are a complementary pair and by

Theorem 3.1 (III,IV) are also a complementary pair.

For the proof of the necessary condition assume that (I,II) are

complementary and that UA < LA for some even spacing,
Therefore U+ U< Lyt LII for some even spacing.

However, by assumption (I, II) are complementary and

L.=U and UI=L

1 11 1I°

il -
This is incompatible with step 12, therefore it is necessary that
UA =L, or UB = Lg for all even spacings in order to have
(I, 1I) and (III,IV) complementary.

3 3 E

Theorem 3.4

2

If the sequence quadruple form of a complementary pair can be

transformed into the pattern (I II I TI), either the original pair is the

quad or (I,II) and (II,IV) are complementary pairs.

1‘

——

Given that (I II III IV) is transformable into (I II I II), and

is so transformed.

LI+LH+L1H+LIV=UI+UH+UHI+U1V= ij by the supplementary

property, Theorem 6.1.

L. =I== and UII=UI—I— since aiGal .= a.®a.,. by Theorem 2.1,

NS 11 +) 11
Therefore ZLI+ZLH= 2UI+2UH= ij by substituting into step 2,
and using the condition of step 1.
LI+LII= kj 5
LI+UI= kj since the total of likes and unlikes must equal all

possibilities.
Ly
Therefore L..=U. and (I,II) are complementary.

II I
Since (I,1l) are complementary, so are (I,II) and any general

UpF 0 subtracting the equation in step 6 from that in step 5.

transformations of (I,!I) and (III, IV},

sk b3 B3
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This last property should be extremely useful 1n decomposing long
codes, since it avoids the tedious task of checking to see if (I,II) are
a complementary pair, Whenever a complementary pair expressed in
sequence quadruple form has the pattern (I 1I I TI), certain additional
transformations are allowed which are not true in general, These
allowable operations are the time reversal of I and IIl, II and IV,
or both, Also allowed as an operation is the altering of either even bits
or odd bits for all four sequences. The proof of all these operations
being allowable is quite simple, but does require an addition to the no-
tation to cover these particular operations. Double or quadruple sub-
scripts will be used to denote these operations, T13, T24 and T12:34
represent respectively the time reversal of (I,III), (II,IV) and the

time reversal of both pairs, A14 represents the altering of the odd
bits in all four sequences while Asy stands for the altering of even bits
in all four sequences, Actually complementing any two, or all four of
the four sequences will also leave a complementary pair when reassem-
bled, but each of these operations is already accomplished by the
general transformations,

Theorem 3.5

Whenever a complementary sequence pair is put into sequence
guadruple and then transformed so that the resultant group pattern is
(I II I 1II), I and III, or II and IV, or both, can be time reversed
and the sequence pairs formed on reassembly from thequadruple, after the
operations (T13 T24 or T1234), will still be complementary sequence
pairs.,

1. Given, (A,B) is a complementary pair of length n transform-

able in quadruple form to (I II T TI), and is so transformed.

2. (I,II) is a complementary sequence pair by Theorem 3.4,
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3. Therefore (I,II), (I,1I) and (I,1I) are complementary pairs
by Theorem 2,3,

4., From this it is seen that the original sequence quadruple after

the operations T13,T24 and T1234 are (I II I 11y,

(I IT I E and (I II 1 T}, When interlaced in the customary
manner to form pairs, the pairs they form will be complementary
sequence pairs by Theorem 2, 8.
% A *
Theorem 3,6
Whenever a complementary sequence pair is put into sequence quad-
ruple and then transformed so that the resultant group pattern is (I II
I TI), the operation A14, the altering of odd bits, or the operation
Asye the altering of even bits, will allow the quadruple upon reassembly

to still be a complementary pair.

1. By hypothesis A and B are a complementary pair which
when expressed in sequence quadruple form are transformable

to (I II I II), and is so transformed.
2. (I,II) is a complementary sequence pair by Theorem 3, 4.
3. (I,II) when operated upon by either A, or A, is still a

complementary pair by Theorem 2.4.

4, If the symbol (1,2) is used for the pair (I,II) altered it is
seen that the pair formed from the interlace of (1 21 2) is

a complementary pair by Theorem 2. 8.
S ES e
These last two theorems should prove quite useful when trying to
estimate an upper limit on the possible number of composite comple-
mentary sequences of any particular length. An example to illustrate
the use of Theorem 3.5 might prove helpful. Taking pair number one

from Appendix II,
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A=1101000111011110
B=1000010010001011
I=10001011=1
II=01111011=1I
111=10001011=1
IV=10000100 =TT

Since this is already in (I II I II) form without transforming it,

T13 can be applied directly giving

I=11010001

II=01111011

111=11010001
IV=10000100,

Reassembling gives

A'=1111001101010110
B'=1010011000000011

which is identical with number three in Appendix II.
As an example, to illustrate the use of Theorem 3.6, applying A24

to the same (A,B) pair gives

1.=11011110
2,=00101110
3.=11011110
2.=11010001,

reassembling give

A®=1011011110111000
B®=1110001011101101,

This is the same as number 6 in Appendix II with the transformation

TGCo=0 applied.
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Unordered Unordered
Transform Equivalent Transform Equivalent
1=(I11 1 1) As 17 R=(1T1 71 7) o)
A=(1 11 T Ty C 18, Q=117 J
Ax=(I 11T 1 1I) 1 19, P=(IT1 11 1 T
T,=(II 1 1 1) S 20, O=(T1 171D R
To=(I II 11 1) X 2, N=(I1 1 T I1I) U
E= (™ T 1) P 22, M=(T T 11 ) Y
C,=(T IT 1 ) F 23 ) 1L =R ST \'
Ce=(1 I1 1 11) D 24, K= T 17 Z
C =T TITT 1 Ay 25, J=(1 T 17 Q
Z =(I1 TTT)) K 26, H=(1 11 II'T) W
Y=(IT 1T 27. G={I1 T B
X=(IT 11 1) T2 26, F=(1 11T G
W =(I1 I I 1I) H 29, D=(T O 1 1) Cs
vV =(T 11 11 1) 30, w=(IT1 I 110 O
U =(1 II II 1) N 31, B=(T 11 I @
S =(I 1T 1I I) T, 32, ©O©=(11 1111 ™

E=(I T I 1] Ag,l

Redundance due to (1 1I I TI).

TABLE 3.4
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The (I II I II) form, or one of its transforms, appears quite
often in the study of composite complementary sequences. Since two
of the components are the same, and the other two are complements,
it is reasonable to assume that some of the transforms are redundant,
that is yield indistinct results. Table 3.4 lists all the transforms
with the elements I, II and their complements, If (A,B) are taken
as an ordered pair, the number of different codes formed from the
transformation group are 32 instead of 64 because Asz(I II I 1)
and E(I II I II) are the same. I (A,B) are taken as an unordered
pair the number of transforms forming different codes is decreased
from 32 to 16. Table 3.4 lists each transform with its unordered
mate,

The only possibility of havir;g less than 16 unordered pairs of
codes which are distinct would be if the group form could be transformed
into the pattern (I 1 I I). The only case known to the writer where
this is true is the quad. For one version of the quad this is

A=11 B=10
I=1
II=1
I1I=1
IV=0,
Table 3.5 shows the eight ordered pairs, or if the cross index column

is used the four unordered pairs, for the quad. The four possible code

transformations for the quad are:

1 2 3 4
A= 11 11 00 00
B= 10 01 10 01,
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Transforms with pattern Cross index number

Pattern for ordered pairs for unordered pairs
1., (I 1 1°7) I,T,,H, 3.
2, (TI1TT A,Y,V,B 6.
3. (IT1171) A2, W,S,0, E 1.
4, (I 1711 T5,T,Cz N 8.
5, (TT1T1) C.,,0,K,J 7.
6. (I T T1I C,M,L,G 2.
7. (I TTI Z,R,Q,F f.
8. (T11 1) X,U,P,D 4,

Redundance due to (I I I 1),
TABLE 3,5

This exhausts the transformations of special types and the redun-
dancies caused by (I II I TI), The operations group will now be
compared to Senior's group number 44 of length 32 as was mentioned
earlier in this chapter.

The identification of any group with a group in Senior's list, is
accomplished through establishing a one to one correspondence between
group generators. As will be demonstrated, Senior's group num-
ber 44 of order 32 is in one to one correspondence with the unordered
operations group of complementary sequences expressed in sequence
quadruple form. Therefore the two groups are isomorphic,

Senior's generators will be given in lower case letters, while those
of the operations group will be in their standard upper case symbols,
Five generators are required for Senior's number 44; let these be
a,b,c,d,e. The following relationships between generators are re-

quired for Senior's 44:

1. a2=b2=C2=d2=e2=1 where 1 1is the identity,

1

2. b 4b=a, ¢ lac=a, d 'ad=a where x 'is the inverse of x,
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3. ¢ 'be=b, d 'bd=b,
4. d 'cd=c,

5, e lae=a, e 'be=b,
6. e lce=ca, e ‘de=hd.

A check of the above requirements shows that a,b,c,d form an
abelian group of order 16 while the "e'" generator is commutative
only with a,b and is non-commutative with c,d.

Let a=C,, b=C;, ¢c=T,, d=Tg3, e=A; . From Table 3,3 it is seen
that the following relations are true.

1. T = CE=- G ase AE

2, CC1Cz=Cy, T1C1T:=Cy, ToC,Tz=C;.

3. Tl Cg Tl = Cz o
4:. Tg Tl Tg = Tl - .
5, A;Ci A = Cl ) A; Cz Ay =Csz.

6. Ay T Ay= T C1=0, A3 Tz Ap = C2Tz= H,

This one to one correspondence between the generators of Senior's
group number 44 and a set of generators from the unordered operations
group on complementary sequences is necessary and sufficient to prove
the two groups are isomorphic,

The diagrams for Senior's group number 44 of order 32 and
those for its subgroups were used as a guide line to check the generation
of subgroups from the operations group of unordered complementary
sequence pairs. These subgroups of order 1,2,4,8 and 16 are shown
in Appendix IV. All groups that were shown in Senior's diagrams are
included in these charts; however, Senior's diagrams included only
normal subgroups and, although much care was taken in the generations
of the subgroups of the operations group; there i1s a possibility that
Appendix IV 1is not exhaustive due to some undetected non-normal sub-
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Senior in conjunction with others has rewritten his work and
changed his designating method. L Under this new method his
number 44 of length 32 is now P4a1. The ordered operations group
of length 64 is also identified as /’258.1,

An identification of the group with Miller's number 23 of order

32 was also accomplished for those who prefer the substitution group

method of identification,
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CHAPTER IV

HAMMING DISTANCES OF COMPLEMENTARY SEQUENCES

The Hamming distance is a well known property of certain classes
of codes. 10 This very useful property has had most of its applica-
tions in the f;elds of binary error detecting and error correcting codes.
This chapter will demonstrate the usefulness of Hamming distances in
the field of complementary sequences, as both the code pairs and their
sequence quadruple formulation have certain invariances in Hamming
distance under various conditions,

The Hamming distance, D(U, V), of two binary vectors or sequences
U and V is defined as the number of positions in which these two binary

vectors differ.

i=n
D(U,V)= £ u.® v. (4. 1)

. i 1
i=1

For example, the Hamming distance of the two binary vectors

U=1011001
V=0111001

7
is D(U,V)= % u, @ v, = (1+140+04+04+04+0) = 2
i=1

The Hamming weight or just weight of a binary vector is its distance
from the null vector,

Theorem 4.1

All complementary sequence pairs of length n have a Hamming
distance of n/2.

By hypothesis

and

B=b1b2b3. G@ooc bn

A and B form a complementary sequence pair.
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All complementary sequence pairs satisfy the parity check

a.®a @bi &b 1, for all

i n-it+l n-i+l

i, 1<i<n/2 by equation 2, 4,
Since mod 2 addition is commutative

a. 8b. 8a &b 183
1 S

n-i+l *°n-i+l
Therefore either (ai G)bi) =1 or(a

both,

n-i+l @bn-ii-l) » but not
For each i, 1< 1< n/2 one of the two vector positions in

step 3 will have a one and the other vector position a zero,

Summing up over all possible i, gives n/2 for the

Hamming distance.

When a complementary sequence pair is decomposed into a sequence

quadruple, each pair of sequences in the quadruple, which form one of

the complementary pairs, has a Homming distance which will be shown

to be characteristic of the code length. The sum of the two pairs of

Hamming distances from the quadruple is an invariant and is equal to

n/2 the Hamming distance of the complementary sequence pair.

For example,

A=1001010001

B=1000000110

are a complementary sequence pair of length 10.

Decomposing them into the standard sequence quadruple, (I II III IV),

gives

I = 10000
I = 10110
IIT = 10001
IV. = 01000
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I % II = 00110 D(L, 1) = 2
III § IV = 11001 D(III, IV) = 3
I & II & III & IV =11111 D(I®IL III®IV) =5 .

This distance is half the length of the complementary sequence pair,
and is required because of the necessary condition of the parity check,
If the distances (2,3) for the pairs given in the above example are
taken as an unordered rather than an ordered pair, this (2,3) pair
will be invariant through all general transformation operations,
All of the general transformations on the sequence quadruples

have one or more of the following properties:

1. Change the order of (I,II) or (III,IV) or both,

for example, T, , "Tg, T .

2, Complement the pairs (I,II) or IIT,IV) or both,

for example, C, ,Cz,C .

3 Complement one from the pair (I, II) the other from

the pair (III,IV), for example, A;, Az.

4, Exchange (I,II) for (III,IV), for example, E.

Since all operations in the group can be generated by multiplication
from the set listed above, an examination of the effect on Hamming
distance by these transformations will be adequate to prove the invar-
iance.

Theorem 4,2

A change in order of (I,II) or (III, IV) or both will not change
the Hamming distances of the pairs (I,II) or (III,IV).

n
L. By definition D(U,V) = & u. & v.

i=1 !

2. u. &v. = £ @ui modulo 2 addition is commutative
1 1
1=n i=n
3. D(U,V)= £ u #&v. = I v.&u =D(V,U)
3= . 1 1 . 1 1
1=1 izl
% 3 %



Theorem 4.3

Complementing (I, II) or (III,IV) or both will not change the

Hamming distances of the pairs (I,II) or (III,IV).

1. u, ®v, = Ei L4 v, by Theorem 2.1
2, Therefore Yu. ® v. = S u. & v.
i 1 i i
3. and D(U,V) = D(U,V)
b3 % sk

If it is assumed that the length of the sequence quadruples formed
from the complementary sequence pairs have a length K and that the
distance of the first pair is R, then the following theorem can-be proved:

Theorem 4.4

Complementing one of tlr;e pair (I,II) and one of the pair (III,IV)
results in the exchange of their Hamming distances, or expressed dif-
ferently, gives the same distance pair in opposite order,

1, Let D(I,II) = R, therefore
D(III, IV) = K-R
as the parity check requires D(I&II, III'$#IV)=K
2. Complement one of the first pair in the (III III IV) form,
and also complement one of the second pair.
Each vector position that was formerly alike and summed
to zero is now different and sums to one,
Similarly each vector position that was formerly different
and summed to one is now alike and sums to zero.
3. D(L,II) = D(I,II) = K-R from 2,
4, D(III, IVv) = D(III,IV) = K-(K-R) =R from 2,
sk ok kS
Theorem 4.5
The exchange operation has the effect of changing the order of
Hamming distances of the pairs (I,II) and (II[,IV) when expressed

in sequence quadruple form.,
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1. The pairs (1,1I) and (III,IV) are not changed in any way
except by position in the exchange operation,

2 The only way to effect the Hamming distances of a pair of
vectors is to change some of the components of the vectors,

e Therefore the two weights are the same but reversed in
order.

x ok %*

An examination of the Hamming distances for the known kernels of
2, 10 and 26 is now in order as these distances are a characteristic
of the kernel, as are the vectors formed in the process of obtaining the
distances by the modulo 2 sums. -

The first case to examine is the trivial case for the kernel of
length 2,

A=11 B=10

Broken down into sequence quadruple representation

1=1 D(I, 1II)=0
11=1

111=1 D(III, IV)=1
IV=0

There are two kernels for length 10 to be examined.

A=1001010001

B=1000000110

1=10000 I6& II=00110 D(I, II)= 2
11=10110
111=10001 1116 I1Vv=11001 D(111,1V)= 3
Iv=01000

and

A=0101000011
B=0000100110

1=00001 18 I11=10010 D(1, II)= 2
11=10011

111=00101 I1I1@ Iv=01101 D(111,IV)= 3
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Both kernels of length 10 have the unordered Hamming distances of
(2,3) when expressed in sequence quadruple representation, However,
their '""Hamming vectors', the unordered pairs (00110,11001) and
(10010,01101) are different and are characteristic of the kernel of
their origin under all possible transformation operations. Hamming
vectors will be considered at length in the next chapter and proof of the
above statement will be deferred until then,

There is only one kernel of length 26 (Chapter 7) and it is

A=01001101111010111100111010
B=10110010000111111100111010

1=0010111110111 I & II=0000001101010 D(1,1I) = 4
I1I=0010110011101 ’

II1=1101001110111 III & Iv=1111110010101 D(III,IV)= 9
IVv=0010111100010

This is a complete listing of the Hamming distances for all known
kernels and it is exhaustive for n=2,10,18 and 26, It is worthwhile
to note that the sum of the unordered pairs of distances is always equal
to one half the length of the code and that the Hamming vectors of the
pairs are complements. Both of these conditions are due to the parity
check being a necessary condition,

A natural extension of the Hamming distances of kernels is the
consideration of Hamming distances of composite codes when put into
sequence quadruple form, Six different code pairs of length eight are
listed in Table 4.1, These pairs will be examined for a possible in-
variance., After this invariance is noted a general proof will be given
for the characteristic distance of composite codes.

The first four examples in the table when decomposed into sequence
quadruple representation have (I,II) and (III,IV) as code pairs which

are still complementary. These codes are half the length of the original
pair, and being complementary, have a Hamming distance one half of
their length, or n/4 as compared to the original codes of length eight,
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(a)

(b)

(c)

(d)

(e)

(f)

A=11111001
B=11001010

I=1110
II=1011
II1I=1011
IV=0001
A=11110110
B=11000101

I=1101
I11=0111

II1=1000

Iv=1101
A=11101101
B=11100010

I=1110
II1=1101

III=1101

Iv=0001
A=11011110
B=11010001

I=1011
II=0111

III=1000

Iv=1011
A=11101011
B=11100100

I=1111
II=1011

II1=1100

Iv=0101
A=10111110
B=10110001

I=1111
II=0110

II1=1100
Iv=1010

H=(00110011)

I8 1I=0101
IIT & Iv=1010

H=(00110011)

I & II=1010

III 8 IVv=0101

H=(00001111)

I & II=0011

IIT & IV =1100

H=(00001111)

I & II1=1100

IIT 8 IV = 0011

H=(00001111)

I & I1=0110

IIT & IV = 1001

H=(00001111)

I & II=1001

IIT & IV=0110

D(I,II) = 2
D(III, IV) = 2
D(I,II) = 2

D(III, IV) = ,2

D(I,II) = 2

D(III, IV) = 2

D(I,II) = 2

D(III,IV) = 2

D(I,II) = 2

D(III, IV) = 2

D(I,II) = 2

D(III, IV) = 2

Some Hamming distances and vectors

of codes of length 8,

TABLE 4.1
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An examination of the last two examples in the table shows that
although the (I,II) and (III,IV) pairs are not complementary their
Hamming distance is still n/4 when compared to the original codes
of length eight, That this feature 1s true in general will now be proven
by examining and exhausting all the known ways of generating composite
codes,

Theorem 4,6

Every composite code of length n (generated by one of the standard
methods) when expressed in the sequence quadruple representation will
have D(I, ) = D(IIL, IV) = n/4,

There are presently known four general ways of gene ratiné com-
posite codes from shorter caodes, (there is also the method applicable
only to codes of length 2T given at the end of the proof), These are:

1. Time Sequence
Sy = AB
Sz = AB

2. Interlace

=t blaz 2 En
Ta = a B 2 2 .. bn
3. Time Sequence Exponential
c c € d d d
Uy=ala?. . a™'B%...B™
d d d Chn © c
Us=a Pa ™! alp ™ ™) B!
4., Interlace Exponential
c, d, c, d c d
v,=A !B 'a °B Z..:,,A R
d c d C d, c
V2=AmB mAm-le-l ..... A lBl

Throughout this proof it will be considered that (A,B) are a comple-
mentary pair of length r and (C,D) are a complementary pair of

length m.
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The parity check a; 9 a o bi @b 1 is a necessary

n+l-i ntl-i -

condition for a sequence pair to be complementary. One of the simplest
methods for making the parity check is to fold both codes in the middle
and double them back on themselves., 9 This procedure is shown in

Figure 4,1. Each
a1a2a3.......ai ....an/z_.lan/z

ntl-1.... an/2+1an/2+l

3 N L)

PpPyleeeeeaibypii oo Pryze2Basa

Foldover Parity Check Method
Figure 4.1
column in Figure 4.1 satisfies the parity check. If code pairs are
written in the sequence quadruple form such as in Figure 4.2 , it is
seen that the columns of this array are the same as the column in the
first array with rearrangements in order provided it is allowed that

the columns

a a
r u
a and a
u T
b b
T u
b b
u 7

are the same., Since modulo 2 addition is the operation used in

making the parity check and in determining Hamming distance, and the
use of each column involves only modulo 2 addition which is commu-
tative, the two columns can be considered the same, Therefore the
fold-over method of grouping and the sequence quadruple form of grouping

have invariant columns, order being 1gno red.

b



313335......... an_3 an—l

n n_z ......... a4 az
gl ot S b ,b_
BEDRIPSE . . ey b, b,

Sequence Quadruple Form
of Parity Check

FIGURE 4,2
Now consider the composite generating methods.

1. Time Sequence

Sl = AB
Ss; =AB writing in the fold-over parity check form
a,aja a a a
2 00000 - -
blb 3 br Zbr lbr D(A,B) = r/2
rr-1°°"°" 3 - 1
818580 c00ee a a a
5152 3 1_)r—ZBr- lBr D(A,B) = r/2
r r-1 3 2 1

The top pair are complementary and therefore have a distance of
r/2, similarly the bottom two rows are complementary and have a dis-
tance of r/2 by Theorem 4.1. To write the time sequence code in
sequence quadruple form would not change the distance since it would be
purely a reordering of the parity check columns, Therefore D(I,II)
would equal r/2 as would D(III,IV). Interms of the composite code
of length n D(I,II)=D(III,IV)= r/2 = n/4 whether or not (I,II) and
(III, IV) happen to form complementary pairs,

2. For the interlace scheme the (I,II) pair and the (III,IV) pair
are obviously complementary sequences by construction and will have a
distance of r/2 = n/4.

3. Writing the time sequence exponential pair in fold-over form

. C © C
SvES U,=A lA 2 A ™
d d 1 d where the symbol B means B time
B MB M ....Bl reversed.
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The B's are all time reversed but the time reversal of one of the
complementary pairs does not change the complementary property
D(A,B)=D(A, B) = r/2. For each bit of the C code and D code there
is a distance r/2 since every A is matched with some transformation
of B for each of these bits. There are a total of m bits in the C
code and in the D code, therefore the total distance of U; folded back
on itself is m x r/2 = mr/2. Similar reasoning gives U; folded back
on itself a distance of mr/2. A rearrangement of the columns will not
change the Hamming distances Therefore D(I,Ji)=mr/2 and
D(IIT, IV)=mr/2, since the total length of the code is n=2mr, D(I, II) =
D(III, IV)=n/4,

The interlace exponential scheme is the last general method of

code generation to be considered, Written in the fold-over form it gives

© d, c d @ d
T, Uy DG G B il
d @ d d ©
- 2
_E_’: rné m§ m.l....§ m/2+lé m/2+1
d ¢ d d c
VazA mB m m-.l.“.A m/Z+lB m/2+1
c d, c c d
1_3- 1_1}11_3_ 2 g’ m/{2 ém/Z

Again each A is matched with some transform of B, D(A,B):D(A,§)=
D(A,B), etc. = r/2. As before, rearranging columns into sequence
quadruple form will not effect the Hamming distances. The distance of
the top two rows is mr/2 and the bottom two rows (Vz) also is equal
to mr/2. The total length of the code is 2mr, therefore
D(I, II)=D(I1I, IV)=mr/2=n/4.

Gn When composite codes are of length 27, they are sometimes

formed in a special way from the interlaced sections of a complementary
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pair, These sections or pieces of the codes must be of length p=2J

.< . = =
where j<r, Using the symbols Ap aj2ya3ay.. . 20, AZp do+13pt2r -

aZp and so, the following pair would be complementary if A and B
formed a complementary pair,

S, =A B A, B, ..... A

B
lp ""pp 2p 2p np/p np/p

S, =A B A B
p

A B
2p p 2p 2p np/p np/p

Rather than try to use the general term to prove that D(I,1I}=D(11I,1IV)
=n/4 as was done in the previous cases, a short general example of
length 8 will be used. These two codes (A,B) of length eight will be
interlaced four bits at a time (p=2) to form a code of length 16,

S14%8)2,833,b bybsbjagacasagbsbebobg

S24721222324D15,03P 253427280 55,b7bg
Writing this composite pair in fold-over form vyields

S a.a b.b,b,b

147212223242 1°2°3%
bgbob bagazacas
24=f1?za3f4b1b2b3b4
b 8b 7‘5 6b5a8a7a6a5

S

D(A,B)=4 by Theorem 4.1, 514 folded over is just a column

rearrangement of the complementary pair (A,B), and since a re-
arrangement of columns does not effect Hamming distance, the Hamming

distance of 814 folded-over is also 4, Similar reasoning holds for 824

Since the standard sequence quadruple form is again just a re-
ordering of the columns, the distance of the (I,I1) pair and the
(II,IV) pair is n/4. For this example,

l=a.a,b.b,a_,a-b.b
1737173957577 D(1, I)=4

II=b b

g 6a8a6b b,a

4922432
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Ml=a a3b,bsa a bb,

D(1II, IV)=4

IV=b_b b,b,a

8°6%8%6 432

D(I8I1, T1I18IV)=8,
Therefore any composite complementary sequence pair when written in
sequence quadruple form has D(1,11)=D(III,IV)=n/4.

Although there is no proof that the 4 standard generating methods,
plus the special one applicable only to 2 codes, are the only way to
form complementary codes which are composite, an exhaustive search
of code lengths 16 and 20 revealed no codes which were not formed
by these standard generating methods,

The full usefulness of the’Hamming distance property is, of course,
not yet known, The property of the distance of the complementary pair
being equal to half the code length as shown in Theorem 4.1, 1is used
in many of the proofs in the chapter on Hamming vectors, This property,
D(A,B)=n/2, indicates that the code pairs are orthogonal, Because of
this orthogonality property the leakage of an A code carrier into the
B code filter, or vice versa, will have no effect on the output at exact
match,

The primary use the writer has found for the Hamming distance of
the (I,II) and (II1,IV) pairs, has been the error check that this invariant
property offered in decomposing codes by hand. One possible use for the
invariance of D(I,II) and D(IIl,IV) could be in the search for kernels of

new lengths., If a characteristic Hamming distance for unknown kernels
could in some way be deduced, based only on length, this invariant prop-
erty of distance would act as a most powerful screen in the search, The
(I, 1I) and (III,IV) pairs are themselves orthogonal, unless the code is a
kernel., This may provide other possible methods for searching for new
codes, It is difficult to say in advance what utilization will be made of any

invariant property, but it is fairly safe to say that the property will find use,.
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CHAPTER V
THE HAMMING VECTORS OF COMPLEMENTARY SEQUENCES

The Hamming distance between the code pairs in a complementary
sequence was shown by Theorem 4,1 to be one half the length of the
code, This Hamming distance was obtained by first finding what I shall
call the Hamming vector, H(A,B)= A ® B or for convenience just
H=A®B, and then counting the number of ones H contains, The Ham-
ming vector is itself useful in recognizing the composition of a composite
code when it is desired to break the code down into shorter lengths. This
decomposition might be used to find previously unknown kernels, or to
set an upper bound on the possible number of pairs of codes of any length.

An examination of each of the methods for generating 1onge.r codes
from shorter ones as explained in Chapter 2 will show that each method
has a characteristic Hamming vector form, although it may be necessary
to time reverse one of the codes to obtain this form. The method of
generating codes of length 2", which does not apply to complementary
codes in general, will also be studied with its characteristic Hamming
vector,

In the following proofs (A,B) form a complementary code pair of
length n while (C,D) form a complementary code pair of length m.
The symbol (0)® or just 0" will mean a string of n zeros, similarly
(01)n will symbolize a string of n zero ones, and (a..l(l)bi)n will be a
string of n elements equal to (ai@bi) .

Theorem 5.1

The time sequence form of generating a composite code has the
characteristic Hamming vector H=(0)n(1)n.

Use the time sequence generating method on (A, B) to form
Sl= AB
Sa= AB . 62



Take the Hamming vector of (S;, Sz), H=S; & So= 0™1"™, this is
(5.1)

seen to be true by inspection and definition of modulo 2 sum.,
A% * e
Theorem 5.2
The interlace form of generating a composite code has the charac-
teristic Hamming vector H=(01)n.

Use the interlace generating method on (A,B) to form

Ti=a;bja,byazbs . cn.. ... a b
T3=albla2b2a3b ......... aan .
Take the Hamming vector of (T, Tp), H=T, & To=(01)", (5. 2)

this is seen to be true by inspection and definition of modulo 2 sum.,

% s %
Theorem 5.3

The time sequence exponential form of generating a composite code
has the characteristic Hamming vector H={(c K éd )n {c,6d )n
1 " "m 2" m-1

n

n - - \n
(c_.84,)" (d; 8c_)"....d_oc)".

Use the time sequence exponential method on (A,B) and (C,D)

to form d. 4 d

U,=A lA 2... ......... A mB_
c

Take the Hamming vector of (Up, Uz),

n n n - .n
H=U.,® U> =(c1®dm) (czﬂ}dm ) R (Cm@dl) (dl@cm) ve

-1
- \n (5.3)
(dm(B Cl) .

This is seen to be true by inspection and definition of modulo 2 sum.

e H 3

It is to be noted that each of theTheorems 5.1,5.2,5.3 have
Hamming vectors which are antieymmetric about their center. This is

required to satisfy the fold-over method of making the parity check,
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Theorem 5.3 also shows that along with the anti-symmetric characteristic
the Hamming vector for time sequence exponential composition has unit
clusters of n zeros or n ones and is also anti-symmetricin both halves,
This is easily seen because the first sum is (cl@dm) while the last sum
to operate on the A code is (cmG)dl), but it is known through the parity
check that cl@dm@cmﬂ)dl = 1. Therefore one of the sums (cl@dm) or
(cm(ydl) must be zero and the other must be one, To summarize, for
the time sequence exponential form of composition the first half of the
Hamming vector is antisymmetric about its center (the quarter length
point) and the first half and the last half of the vector are also anti-syms=
metric,

Theorem 5.4 will concern the interlace exponential method of
forming composite codes and it will be seen that this method will again
form a Hamming vector anti-symmetric about its center, but with a dif-
ferent arrangement of the clusters of zeros and ones,

Theorem 5,4

The interlace exponential method of generating a composite code has
the characteristic Hamming vector H‘—'(cl(l)dm)n(dlwc-:m)n(cz@dm_l)n. v
(c_ @d;)"(d_oc )"

Use the interlace exponential method on (A,B) and (C,D) to form
cy d1 <, da c d

Vi=A B A “BT....ATB ™

drn “m dm-l d1 E:1
V2=A B A cooooo A B .

Take the Hamming vector of (Vi, Vz)

n S n n n n
H=V;:8 V= (c 1(!)dm) (dl@cm) (c Zq)dm_ 1) o DI (cm@dl) (dm@cl) (5.4)
This is seen to be true by inspection and definition of modulo 2 sum.

b3 &R 3k

The interlace exponential method again gives a Hamming vector

which is anti-symmetric about its center due to the condition of satisfying
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the fold-over form of the parity check, but its clusters of zeros or ones
are now <2Zn in length rather than just n as was the case for the time
sequence exponential method of generation. This characteristic of
clusters of 2n in length is caused by the necessary condition of the
parity check for the (C,D) code pair, For example, the first two clusters
are (clll)dm)n and (dlﬂ)ém)n and the second two clusters are (czwdm_l)n
and (dzﬂ)ém_l)n. Applying the parity check to the i=l and i=2 bits
in the (C,D) pair gives the following two equations:

c

bc 6d. 064 =1 and $c 6d , 6d =zl |
m 1 m m-1 "2 m

1 €2 -1
Adding one modulo 2 to both sides of both equations and rearranging
gives (c I(Bdm) (B(dl(chQl) =0 and (CZ(Bdm_l) (B(dzﬂ)cm_l@ 1)=0, It is
true in general that x ® 1 = x; therefore (c.,®d_) &(d,8c_)=0 and

> 1 m 1 m
( C = c
\czﬂ)dm_l) ] (dZQCm_l) 0. The sums (c1 & d.m) and (d1 & cm) must
be alike to satisfy this constraint with each of the sums giving n ones
if unlike, or n zeros if alike, and since the pairs are in time sequence
the clusters must be in groups of 2n, A similar reasoning will show
that the parity check for i=2 gives identical results for the third and
fourth terms in the Hamming vector for the interlaced exponential form
of generating composite codes, Therefore equation 5,4 can be written

2n 2n 2n

H(Vi,Ve)=(c; ®8d_ )" (c,®d )" ....(d 6c)"" . (5.5)

Before going into the special case applicable only to codes of length
2" it might prove helpful to give an example of generating a code by one
method and then decomposing it, to show that it could have been composed
by a second method. The time sequences exponential scheme will be the

generating method used,

A=10 C=1001010001
B=11 D=1000000110
U,;=1001011001100101011011000000000000111100
Up=0110100101010101011000111111001100111100

H=U,8U; =1111111100110000000011111111001100000000
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In passing it should be noted that the shortest clusters of zeros and ones
in H are of length 2 and that H is anti-symmetric about its center,

If U, is now time reversed, indicated by U1 , the complementary

pair is now:

U,=0011110000000000001101101010011001101001

Uy=0110100101010101011000111111001100111100

H = U1 ® Uz=0101010101010101010101010101010101010101 = (01)20

This form of the Hamming vector indicates that H is composed of an

interlace pair of length 20. Decomposing both U1 and Uz by assum-

ing an interlace pair gives

U,=01100000010111010110
~ 01100000011000101001

H = 000000000011111¢1111 = 0! 9110

Uz= 01100000010111010110
10011111100111010110

H=11111111110000000000 = 1.%*°

The Hamming vector of U1 indicates that this code of length 20
was composed by the time sequence method from codes of length 10,

If the form AB is assumed for the codes of length 10 then

A=0110000001
B=0111010110

This (A,B) pair is seen to be the transformation ETC1= EG on the
original kernel of length 10 which was used to generate the code by a
different method, Similarly the pair from Uj;is also a transformation
of the original (C,D) pair. Therefore the given code of length 40
could have been generated by two different methods.

A second example will now be given using the same (A,B) and
(C,D) kernels as were used in the first example, but his time utilizing
the exponential interlace scheme of generation rather than the time se-

quence exponential form,
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A=10 C=1001010001

B=11 D=1000000110
V,=1011010001001000010010000100011101111000
Vz=0100101110110111010001110100011101111000

H=v.6Vy, =1111111111111111000011110000000000000000

Note that the smallest cluster is four, as would be expected of an inter-
lace exponential scheme with the (A,B) pair of length two. The H
vector is again anti- symmetric about its center, Time reversing V;
gives

V1=0001111011100010000100100001001000101101
Vz=0100101110110111010001110100011101111000
H=V1t®V2 =0101010101010101010101010101010101010101 = (01)‘20

As before this form of H indicates an interlace code pair. Decomposing

both V1 and V2 into interlace code pairs gives

V,=00111101000100010110
T 01101000010001000011

H =01010101010101010101 = (01)'°

V2=00111101000100010110
10110111101110111100

H =10101010101010101010 = (10)1°

V1 and V; both break down into interlaced pairs of length 10, The top

row of V1 breaks into A=0110000001, B=0111010110 which is the

transformation EG operating on the original (C,D) pair as in the
previous example, Each of the codes for Vz; would break down in
similar fashion to some transformation of the original (C,D) code pair,
One use for the method just shown could be to search for larger
kernels than those currently known. An example might be kernels of
length fifty found through the use of time sequence exponential or inter-
lace exponential, where both (A;B) and (C,D) are codes of length 10,
These would form codes of length 200. From this as a starting point,

a decomposition to codes of length 100 and then to length 50 might
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be possible through this technique, This technique will be discussed
much more thoroughly towards the end of this chapter, but it is neces-
sary to consider the special case of 2" code composition and the
Hamming vectors of the sequence quadruple form before continuing with
this interesting possibility.

The special generating method which is applicable only to codes of
length 27 is actually a generalization of both the time sequence and the
interlace methods. As mentioned in the previous chapter, this method
takes a code pair of length 2" and from them forms a code pair of
length 7 . The allowable combinations are formed by interlacing
pieces of the A code and the B code of length Zm, whe re m;,O,l,Z,. .T.

As an example a code of length 8 can be used to generate codes of
length 16, In this case r=3 and m has the possible values 0,1,2, 3.
These values of m give section lengths of 1,2,4,8 respectively,

A=a1a2a3a4a5a6a7a8
B=b1b2b3b4b5b6b7b8
for m=0,
Sl1=a1b1a2bza3b3a4b4a5b5a6b6a7b7a,8b8
SZl=a151a252a B3a.4’54a5’55a6’56a 7B7a’838
H=Sll(I¥S21 =0101010101010101 =(01)8 = (O1 11)8
This is exactly the same as the interlace procedure which is a standard
generating method,
The section lengths are 2 bits long for m=1,
81p7a12,b)byagababyasagbsbyaaghoby
227212201 b22 3240 3P 42574 B P2 725B 7Py

2.2,4
H=512®S22 =0011001100110011 =(0"1")",

S
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m=2 gives

51472135343 b bybsbasasazagbsbbobg

Sp47212p232,b bybib a a,aqa0b b bobg
_ E 442
H=S ,05,, =0000111100001111 = (0*1%)%,

For m=3 the lengths are eight, which is the entire code.
S,1g=AB
S,g=AB,
This is the same as the time sequence form giving a Hamming vector
H=0000000011111111 = (0%15),

The Hamming vectors from this special construction are altering
clusters of zeros and ones, each cluster being the length of the' segment
used in the generation.

Theorem 5.5

Complementary sequences of length 2r+1 formed from an (A, B)

pair of length n=2" using the special generating method with segments
" m 2n/m
of length m have a characteristic Hamming vector H=(0"1")

Use the special generating method utilizing segments of length m

of the pair (A,B) to form

Slm=a1a2a3' cedm ble" ° bm am+la m+2... 42m bm+lbm+2' p 'bn
Sy 32850 2, Bybyu b A e oeeay B P2 o Py
Take the Hamming vector of (Slm’ SZm)
r N m,m,2n/m
H=S, @S, = (07 1°) .

This is seen to be true by inspection and definition of modulo 2 addition,
s % £
It now seems suitable for completeness to include a theorem which
has been alluded to many times but not proven, This is the anti-sym-

metric property of all Hamming vectors of complementary sequences.
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Theorem 5.6
The Hamming vector of a complementary sequence pair has a pat-

tern which is anti-symmetric about the cénter of the Hamming vector,

l. A=ajajaza, ........ .oa 12n
B=hb 1b2b3b4 ......... bn- 1bn is a complementary pair of
length n
2. H(A,B)= h1h2h3h4. . hn/Z" N hn by definition of Hamming vector
3. a. & an+1-i$ bi & bn+1-i =1 by equation 2.4
4, ai & bi = hi
and both by definition of h,
> 2415 O Ppyrg =By
6. h, 8 h o1 =L
7. Add (hn+1-i ® 1) to both sides of the equation
8. Bpp1.i =By :

Make a change of reference to the center of the vector, which lies
between m/2 and m/2 + 1, rather than the end by having i=n/2 -r then
ntl-i=n/2+41 + r

=h

9. ]’1/2.

hn/Z-—r +l14+r for all 0 <r<n/2 -1 by step 8,
10, Therefore the Hamming vector is anti- symmetric about its

center when it is formed from a complementary pair,
* % #

The Hamming vectors of (I,Il) and (III,IV) 1in the sequence quad-
ruple form are invariant under transformation if H(I,II}) and H(III, IV)
are taken as an unordered pair. The following four theorems which
parallel Theorems 4.2,4.3,4.4,4.5 on Hamming distances will dem-
onstrate this characteristic of unordered Hamming vector pairs.

Theorem 5.7

A change in the order of (I,II) or (III,IV) or both will not change

H(I, II) or H(III,IV), .



1. H(U, V)=ui & v. by definition.
2. u, & vy =V, @ u, since modulo 2 addition is commmutative,

3. therefore H(U,V) = H(V,U)
EZ # *
Theorem 5.8
Complementing the pair (I,II) or (III,IV) or both will not change
H(I, 1) or H(II,IV).
1. H(U,V) = us ) v by definition,

2, u, @v.=u. 8v. by Theorem 2.1,
i i i i

3. therefore H(U,V) = H(U, V).
* - ES

In the following proof it is assumed that each vector I,II, I‘II, IV is
of length m. It is also necessary to show that %X = x. This is easily
seen sincex® l=x and x @ 1=>={, therefore x =x 6 (18 1)=x,

Theorem 5.9

Complementing one of the pair (I,II) and one of the pair (III,IV)
exchanges the Hamming vectors H(I,II) and H(III, IV).

Iza;a a,........ a

17375° n-1
II=anan_Zo 6o 6o o e az
III=b1b3b5. ...... bm—l
IV-"—b b '2 ..... . b
m m 2
1, H(I,II)=h1h2h3h4. . hm'
2. H(III, N)=h1h2h3h4 “““““ °hm because of the parity check.
3. H(I, 11)=H(I, II) =h1h2h3h4 ..... hm"

4, H(TI, V) =H(I11,TV) = h A h b b B =h hohoh, ooh
5. Therefore H(I,IN)=H{III,IV) =H(II,IV),
6. and H(III, IV) = H(I, II) =H(I, TI),

3 EA3 %
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Theorem 5.10
Exchanging the (1,1II) pair with the (IIJ,IV) pair exchanges their
Hamming vectors,

1, A change in the Hamming vector can only be caused by a bit
change,

2, Exchanging the (I,II) pair with the (IIl,IV) pair changes
position but not bits,

% # A

Earlier in this chapter codes of length 40 generated from the quad
were decomposed into kernels of length 10 by use of the Hamming
vector, The conjecture was made at that point that perhaps codes of
length 200 manufactured from kernels of length 10 could be decomposed
into kernels of length 50. In order to prove this decomposition is not
possible several more theor;ms are necessary, These theorems will
be proved before proceding to the decomposition problem,

Theorem 5,11

Under all possible general transformations of a complementary pair
where n » 2 there are only four possible Hamming vectors, two of
which are complements of the other two,

1. (A,B) are a complementary pair of length n where n)» 2,

2, H(A,B) = HO interlaced with He’ where HO are the odd bits
of the Hamming vector and He are the even bits of the Hamming vector

in reverse order, The symbol H:Hi * Hj will be used for HO inter-
laced with He in exactly the same manner that (1,11) and (II,IV) are

interlaced to form A,B. Also hi = a.ini as before,

3. Let H;=(18lll)=a,®b,,a,8b,...a 8b, , =hhshs...h ;.
H,=(181V)=a 8b ,a ,0b ,...a,8b, =h h o...h;,
H,=(18 1V)=a 6b ,a,8b ,..... UL LTRSS N P T
H, =(ll8lll)=a 8b,,a ,8b;..... a,bb =M K .. W,



4,

therefore

5, If h.=u.8v., then h
i 71 i

therefore

by Theorem 2.1,

H(T,V) = H(U, V) =(U, V)

and FI1=('1‘@111) = (I®IIT) H3=(T€9IV) = (I81V)
H,=(T181V) = (110TV) H4=(I_I$III) = (II1I1),
6. H) *H, =h;h,h, ... k.
H,*H, =h h , .....h,
7. But h ,, =h 5, ,,, by Theorem 5.6,
8. H *Hy=h h,.......h & oo hh
H, *H, = Bl EZ""""’Bn/Z LIIRRE PLIE
9. b e o Te NH BOESES ﬁ;"‘ﬁ“ﬁj = HZ % ﬁl
10, H, *H, = 1/111/12 ..... .
11, Hy *Hy =KW K ,..... LIp
12, R o 7R oy
13, Therefore H3 % H4 = ﬁ4 % I—T; = _1:14 * ﬁ3.
14, Table 5.1 is an exhaustive list of transformations on a

complementary pair in the sequence quadruple form with the Hamming

vector for each transformation,

H

) *Hy H; *Gy, H

3

only possibilities which exist,

are possible and by steps 9 and

complements of one another.

%

*H4

, H4*H and their complements are the

3
Therefore only four Hamming vectors

13 they occur in pairs which are
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TRANSFORMATION HAMMING VECTOR COMMON VECTOR

I (III III IV) H(I)=H *H, H(I)
C, (I II III IV) H(C )_I:I HZ H(I)
C, (I II TII IV) H(CZ-HI ﬁz H(I)
C (T T1 TI1I TV) H(C) =H *H, H(I)
Al (I 11 TII 1V) H(A,)=H,*H, H(I)
A, (1 TI III iV) H(A,)=H, *H, H(I)
T, (II 1 III IV) H(T,)=H,*H, H(T,)
T, (I II IV III) H(T,)=H;*H, H(T )
T (II I IV II]) H(T) =H,*H, H(I)
Z (II T TII 1IV) H(Z)-H4>'H3 H(T,)
Y (IT 1 TII 1V) H(Y) =H,*H, H(T,)
X (TT 1 1II TV) H(X) -H4 H3 H(T,)
\ (I1 T 1II TV) H(W) =H, *H, H(T;)
v (T 11 1V '1II) H(V) = 3«<ﬁ4 H(T,)
U (T 11 TV 111) - H(U) =H;*H, H(T,)
S (1 II IV 1II) H(S) -H3>'H4 H(T,)
R (1 II 1V T1I]) H(R) =H;*H, H(T,)
Q (I1 T 1v 1) H(Q) =H,*H, H(I)
P (IT 1 IV 111) H(P) =H,*H, H(1)
0 (T1 T 1II 1IV) H(O) =H4*H3 H(T )
N (I1 1 TII TV) H(N) =H'49?13 _I:I(Tl)
M (T II 1v 1II) H(M):ITI3*H4 H(T,)
L (I1 T TII 1IV) H(L) =H,*H, H(T,)
K (T TI TV TI1) H(K) =H,*H, T—I(Tl)
J (IT T IV 1II) H(J) = H,*H, H(I)
H (I II TV TII) H(H) -H3*H4 H(T,)
G (IT' T 1V 1III) H(G) =H,*H, H(I)
F (1 TI TII 1IV) H(F) =1?11*ﬁ2 H(])
D (T II III IV) H(D) =H, *H, H(I)
m (I1 I IV T1I) H(r) =H,*H, H(I)
B (IT 1 1V TII) H(B):ﬁz*ﬁl H(I)
%)) (I1 T IV III) H(0) =H, *H, H(I)

The E transformation just permutes the first two and last two pairs

of (I II III IV) and since modulo 2 addition is commutative no change
would take place in the H vector, The last column identifies all
Hamming vectors in terms of two vectors and their complements.

TABLE 5.1
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Theorem 5.12

If a complementary pair (A,B) of length n is operated upon by a
complementary pair (C,D) of length m to form codes U;, Uz by the
time sequence exponential method, or to form codes V; , Vz by the inter-
lace exponential method and either U; or Uz is time reversed, symbo-
lized by U or if Vi or Vzis time reversed symbolized by V then

)Zm

H(U) = H(V) = H(A', B! where the (Al ,B!) pair indicates some

general transformation of the original (A, B) pair.

1, A ® B = H(M). where B indicates the time reverse of
- the original B

2. A & B = H(H).

3. B & A = A 8 B =H(T,).

4. B & A = A & B=H(L).

5. Referring to Table 5,1,

H(M)=H(T1)’
H(H)=H(T,),
H(L)=H(T,).
@ € c d
6. Ui=a "A“......A™B ' .. .. ..Bm
m d 1 dl E:m €1
Uz=A ™A 0L, A"B™......B
and
© d @ @ d
vi=a 'B 'A’....AT™B ™
d c dm—l dl )
Va=A "B MAMNI.A B

Time reversing one of the pair in each, for example, the use

of Tz vyields

¢y c, S d1 dm
U, = A A o cocaosc A )5 “sooooo B

c c c d d
§2=_ 1 132 13mél ...... ém

B o dl c, C dm

Vi=A B A ... e... A B

c d, ¢ c_ d

1

Vo= B 51132, .e. B WA



7. H(U) and H(V) consist of clusters of (ACi o Iéci) and
clusters of (Bdi & A di).
8. The Hamming vectors for these clusters have the following
four possible forms:
A® B,A0B, BoA, andB 8 A,
These four possible vectors were seen in steps 1,2,3,4,5 to all be
equal to H(T;). If U; and V; had been time reversed, using the
operation T,, the result would have been H (T,).
10, Since all the clusters are identical and there is a cluster for
each of the m bits in C and each of the m bits in D,
H(U) = HV) = [H(Tl)]z,m forr Usl o i e e
in general

1

2Zm = pu—
where (A ,B ) signifies some transfor-

H(U) = H(V) = H(A", BY)
mation of (A , B).
sk X *
Theorem 5.13
The kernel of length 2 when operated on by a complementary pair
by either the time sequence exponential or interlace exponential method
can always be decomposed at least once by the interlace me thod.
1. If one of the code pair formed by either exponential method
is time reversed, H(U) = H(V) = H(A', BY) A by Theorem 5, 14,
2. There are only two possible Hamming vectors for the
quad, 01 and 10,
30 fiHerefore H(U-) = H(V ) = (D0)2E3 o (il0)caan IO tRRn IR S

are decomposable by the interlace me thod.

b * e
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Theorem 5.14
A complementary pair (Ui, Uz} formed by the time sequence
exponential method cannot be decomposed by the time sequence method.
1. Let (Uy, Uz) be a complementary pair of length 2mn formed
from the complementary pair (A,B) of length n operated
upon exponentially by the complementary pair (C,D) of
length m, formed in the same manner as in Theorem 5, 3,

.

2. H(U)=(c; 8 dm)%(c,8d )", .(c_8d))™d 8c )"...(d_8c))"

1

3. The first mn bits in H(U) are m clusters composed of n
zeros or n ones dependent upon the bits of H(C,D),

4, By Theorem 5.1 H=0"" ™% op M0 ™0

, for decémposition
of a code of length, Zmn by the time sequence method,

5. This requires the distance of (C,D) be zero or m, but by
Theorem 4.1 D(C,D) = m/2, therefore H(U) is not decom-
posable by the time sequence me thod.

6. If Uy or U: is time reversed H(U) = I—I(:’&]‘,B:")Z'rn by
Theorem 5.12,

7.  This is incompatible with the form H=0""1"" gince it would
require the first m/2 clusters of H(A',B!) to have a distance
of zero and the second m/2 clusters of H(Al,Bl) to have a
distance of n, Both are impossible by Theorem 4.1 which
requires a distance of n/2,

% % %*
Theorem 5.15
A complementary code pair (Vi,Vz) formed by the interlace ex-

potential method (using the same definitions and symbols as Theorem 5. 4)

can be decomposed by the time sequence method only if H(C,D)=
GV g gl
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2n 2n 2n

1. H(V) = (le)dm) (CZQdm_l) R (cm® dl) by Theorem 5, 4
and equation 5, 5,
. The clusters of zeros and ones in this Hamming vector are in

lengths of 2n and are dependent in value upon the bits of H(C, D).

I]f]l'l1 mn

3. H=0 is the requirement for decomposition of this code

by the time sequence method.

4. I H(C,D)=0™/2 m/2

or its complement, it will satisfy step 3

2nym/2 j2mym/2_gmnimn_giyy ) ,0d it also satisfies

since (O

Theorem 4.1.

5. If Vi or V3 is time reversed H(V) =H(A1,Bl)2rn by
Theorem 5.12,
6. This is incompatible with the form H=0""1™" gince it would

require the first m/2 clusters of H(A!, B' ) to have a distance
of zero, and the second m/2 clusters to have a distance of n.
Both are impossible by Theorem 4.1 since it requires a
distance of n/2,

m/21m2. This satisfies the re-

7 Step 4 showed that H(C,D)=0
quirement for the time sequence decomposition by inspection,
Any other arrangement of H(C,D) would fail to allow decom-

position,

* * %

Theorem 5.16
Any complementary sequence pair (Vji, Vz) formed by the interlace
exponential method as in Theorem 5.4 (using the same definitions and

symbols), the quad as the (C,D) pair, is time sequence decomposable,

The quad has only two possible Hamming vectors, 01 and 10,

2. This satisfies the form H=0"/21™/2 where m=2, the quad
length,
3. V: and V3 are therefore time sequence decomposable by

Theorem 5.15.
b3 ES 78 X



Theorem 5,17
A complementary pair formed by either exponential method is de-

composable by the interlace method if and only if H(A', B*)=(0] )n/2.

(10)*/2,

All definitions and symbols are assumed to be the same as
those in Theorems 5.3,5.4 and 5,12,

1. By Theorem 5,2 these codes are decomposable by the inter-
lace method only if they are of the form H:(Ol)nm or (10)nm.

2, H(U) and H(V) are clusters of at least n ones or n zeros

and therefore cannot have the form (Ol)nm,

3. H(U) and H(V)= H(A?, BY)Z™ by Theorem 5,12,
4, If and only if H(A!,B') has the form (01)“/2 or (10)‘1/2 can
H(U) or H(V)= [(O_l)n/z] S ™ 5 s 10 nskeed

of 01, (lO)nm. This satisfies the requirement of Theorem
5.2 that the Hamming vector be of the form (Ol)r or (10)r.
* LS #
A brief description of the method used to prove that codes of length
200 formed from kernels of length 10, cannot be decomposed into ker-
nels of length 50, will now be given as a guide to the actual proof of the
theorem. The method used is to exhaust all possible methods of de-
composition by examining all possible Hamming vectors for the (A, B)
and (C,D) pairs. Table 5.2 lists all possible Hamming vectors for

kernels of length 10,

Kernel 1 Kernel 2

A=1000000110 A=1001101111

B=1001010001 B=1100001010

The 4 possible Hamming vectors. The 4 possible Hamming vectors,

0001010111 0101100101
1110101000 1010011010
0000101111 1100101100
1111010000 0011010011

All possible Hamming vectors of kernels of length 10,
TABL]*;’05. %



The two methods of generating codes of length 200 from kernels
of length 10 are the time sequence exponential method and the interlace

exponential method given respectively by

(o C c d
Up=a 'a %....a 1'% 1 ... .B%o
d d d, ¢ c (5. 6)
Us=A RO 9...A g 10.,.....B !
C d c d C d
VicA 1 B-l NG B_z“.‘.“.A 10B_10 -
d1o €10 99 9 d1g._¢1 )
Ve=A B A B enconoe A B

where (A,B) and (C,D) are kernels of length 10,

The Hamming vectors of these codes of length 200 are anti-sym-
metric about their centers and are in clusters of 10 zeros or 10 ones
for H(U), and in clusters of 20 zeros or 20 ones for the H(V) vector.
Time reversing either U; or Uz and similarly either V; or V3 ,
gives 20 clusters of Hamming vectors of the forms listed in Table 5. 2,
since each of the 20 A codes is now matched with some transform of B.

The known possible ways for kernels of length 50 to generate com-
posite codes of length 20 are:

1. Either interlace or time sequence kernels of length 50 to

form composite codes of length 100 and then either inter-

lace or time sequence these n=100 codes to form composite
codes of length 200,

D Take kernels of length 50 and either time sequence expo-
nential or interlace exponential with the quad to form codes
of length 200,

3. Take kernels of length 2 and either time sequence exponen-
tial or interlace exponential with kernels of length 50,

An examination of all possible Hamming vectors of length 200 from
each of these methods will show the incompatability of these Hamming
vectors with those generated by the kernels of length 10,

Theorem 5.18

No codes of length 200 formed from kernels of length 10 can be

decomposed into kernels of length 50 by standard methods of decomposi-

tion. 80



Given U; Uz and V; V, both complementary pairs of length
formed by the time sequence exponential and interlace expo-
nential methods as given in equations 5,6 and 5.7 respectively.
The time sequence method of decomposition is impossible for
each of the following Hamming vectors for the following reasons.

a. H(U) can never be decomposed by time sequence.
Theorem 5,14,
5.5

b. H(V) requires a form 0717 by Theorem 5,15,
Table 5.2 contains no vector of this form.

c. H(V) and H(U) cannever be decomposed by time

sequence, Theorems 5.14,15,
The interlace sequence method of decomposition is impossible
for each of the vector forms for the following reasons.

a. H(U) and H{V) can never be decomposed by interlace.
Theorem 5.17.

b. H(V) and H(U) are decomposable by interlace only if
H(A', B} is of the form (Ol)5 or (10)5 by Theorem 5,17,

Table 5.2 contains no such vectors,
Assume that one of the Hamming vectors H(U) or H(V) has a
second exponential form, first with the kernel of length 2
operated on exponentially by the kernel of length 50, and
secondly by the kernel of length 50 operated on exponentially
by the quad, Let H! be the designator for the Hamming
vectors of the 2 and 50 combinations.

a. Consider first the quad acted on exponentially by the
kernel of length 50, HYU)= H(V)= H'(A',B*). But since
A', B! is the quad, by Theorem 5,13, it is decomposable
by the interlace scheme., This is not possible since
step 3 above exhausted all possible interlace decompo-

sitions.

b. Next consider the kernel of length 50 acted on exponen-

tially by the quad. Considering first the exponential
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interlace scheme, by Theorem 5,15 if H*(C,D)=01 or 10,
which it does for the quad, Therefore the code is time se-
quence decomposable. However, in step 2 all of these time
sequence possibilities were exhaustedand therefore this de-
composition is not possible, H(U) would have a form con-
taining either 50 zeros or 50 ones in clusters. For the
original 10 length codes to form these would require a

0515 Hamming vector which is not listed in Table 5, 2.

This exhausts all possible Hamming vectors that might lead to de-
composition, therefore codes of length 200 formed from kernels of
length 10 cannot be decomposed into kernels of length 50 by standard
methods.,

% * *
Table 5.3 shows the possible Hamming vectors for codes of

length 26,
A=01001101111010111100111010
B=10110010000111111100111010
The 4 possible Hamming vectors.
11111111111101000000000000
00000000000010111111111111
11101110111010100010001000
00010001000101011101110111

All possible Hamming vectors of the kernel
of length 26,

Table 5.3
An examination of Table 5.3 which is exhaustive for the Hamming
vectors of length 26 and Table 5.2 for 10, shows that the next two
theorems can be proved by identical methods to those used in Theorem
5.18, Since these proofs exactly parallel that of Theorem 5.18 they
will not be given,

Theorem 5.19

Complementary pairs of length 520 formed from the time sequence
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exponential or interlace exponential from kernels of length 26 and 10
cannot be decomposed by standard methods into kernels of length 130,
* £ £
Theorem 5.20
Complementary pairs of length 1352 formed from the time sequence
exponential or interlace exponential method from kernels of length 26
cannot be decomposed by standard methods into kernels of length 338,

b3 e Sie

The study of Hamming vectors thus far has disclosed that a pattern

n/2 .- 0n/Z 1n/Z

of (01) or their complements in either the (A, B)

pair or (C,D) pair, is required in order that a code formed from one

kernel length by an exponential method be decomposed into a pair from
a different kernel length., The quad is only kernel which thus far satis-
fies this criteria, However, the other kernels come closeﬂ, as a check

shows that 041014 and (01)210(01)2

length 10, and 01210112 is a Hamming vector of length 26,

are among the Hamming vectors of

If the quad is involved in the formation of composite codes it makes
their decomposition more likely, This is shown in Theorem 5,12 and
Theorem 5.16. Appendix II demonstrates this fact quite clearly since
it contains all codes of length 16, less some operational redundancies,
Each of the code pairs and its time inverse is decomposable by some
method into shorter length codes, Appendix III lists all the pairs of
length 20, less some operational redundancies. Each code pair or its
time inverse can be broken into its originating pair through the use of
Hamming vectors, but no code and its time inverse can both be decom-
posed by the standard Hamming vector methods.

The writer would like to end this chapter with a conjecture that

kernels of length 50 do not exist, This conjecture is based upon three
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bits of evidence, the proof of Theorem 5,18 being the first., The second
piece of evidence is based upon the fact that 50= 7Z+1Z=52+52. From this
one might assume that codes of 200 formed from 10's might cover just
one set of the ones determined by equation 2,5, This proved not to be
true however, since the number of ones in both the exponential formations
of codes of length 200 from kernels of length 10, if they were decompo-
sable into kernels of length 50, would exhaust all possible unordered
pairs of ones for n=50 as determined by equation 2.5, The last bit of
evidence to base this conjecture upon is that the code length is not twice
a prime number. The only previous kernel which might have existed, but

was not twice a prime number, was n=18, and it did not exist, Similar

reasoning extends this conjecture to kernels of length 130 and 338,
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CHAPTER VI
SUPPLEMENTARY AND CYCLIC COMPLEMENTARY CODES

This chapter is concerned with two classes of codes, The first of
these classes consists of quadruples of sequences with the property that
the total number of likes at each spacing equals the total number of un-
likes at the same spacing. These are called supplementary codes. 2 The
second class of codes, which will be defined later, consists of the cyclic
complementary codes. Both of these code types have complementary
sequence pairs as a possible subset; this allows the use of their prop-
erties as screens in the search for new kernels.

Supplementary codes will be discussed first, since the n=.26 search
involved the use of this property as a screen, while the cyclic comple-
mentary property was not used until the search for kernels of length 34,
Only one theorem will be proved for each of these types of codes, since
these two theorems were the only ones applied in the actual search for
new kernels,

If ujusu

geee e

V1V2V3°°°°'°°Vn
n

x1x2x3. ceeee o X are sequences of zeros and ones and

WleW3......W

satisfy the constraint of equation 6.1, they form a quadruple which is

supplementary.
i=j
5 (uiGunH_j(Bl) + (vi®vn+i_j$l) + wiq;wn_l_i_j@l) + xiexn+i-j®1) _
i=1
j .
iil(uiﬂ)un_l_i_j) + vi@vn_l_l_j) + (Wi®wn+i-j) + xiéﬁxn+i_j)=23 (6.1)

for all j, 1 <j<n -1, Note that there are 2j like pairs and 2j unlike

pairs at a spacing of n-j.
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For simplicity in the proof, we use the symbolism that was used in
Chapter 2,

J
Y u. $u &1 for all j, 1 <j< n-1

let L lp
Al 1 n+i-)

18]

Uy

J
Y u. §u

i=1 & n+i-j
A restatement of equation 6,1 in this symbolism is
Lp + Ly + Ly + Ly = Uy + Uy + Uy + Uy (6. 2)
Theorem 6,1
Any complementary sequence pair, (A,B), written in standard

(I II III IV) form has the property that I,II, III and IV are a

supplementary quadruple.

1. LA=UB and UA= LB by the definition of complementary.
e Considering just the even values of j rather than all values,
LA=LI + LII’
UA=UI + U
L=ty + Loy
Ug=Unr t Ypy-
R Uit U
4. LyptLlgy=Up t Uy
5. Adding the equations in steps 3 and 4 gives
Lit Lyt Lyp ¥ Ly = Up ¥ U # U + Upy -
6. This is the same as equation 6,2 and I, II, IIT, IV formed

in the sequence quadruple form from a complementary pair
are supplementary.
Since the supplementary property applies only to the even spacings
in a code pair, the converse, that all interlaced supplementary quad-

ruples are complementary, is not frue,

B % x
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The cyclic complementary property is useful in itself for a communi-
cations or telemetering system; however, at this time our concern is
for its property as a necessary condition for a code pair to be complemen-
tary. A cyclic sequence or code, as the name suggests, is a never
ending sequence of zeros and ones which has a period of n bits. A cyclic
complementary sequence pair, is a pair of cyclic codes, each of period
n, where the number of likes of one sequence equals the number of un-
likes of the other sequence for n possible matches for all spacings

from 1 to n-1, or stated in terms of the bits of the A and B codes

n i=n
=] - =% 2 n g j -
@ _Z aiG) N 2 biG)n_J_hG) 1 1<j<n-1. (6.3)
i=1 1=1 0
where a =3y and bn+i ==bi since the period is n.

Theorem 6.2
A complementary sequence pair (A,B) of length n, if written in a
cyclic fashion, is always a cyclic complementary pair of period n.

1. Since (A,B) are a complementary pair they satisfy
equation 2.3,

fj =i=2i a.i(B an'j+i =i-21 bi‘p bn-j+ia> 1 for j, l1=j=n-1.

ZE Expanding for f1 gives

a.®a =b . &b &1 whichisequalto a ®#a, =b 8b.86 1,
n 1 n n 1 n

1 1

I Expanding for fn-l gives
(a.IG) a,z) + (a,Z(B a3) + a3$ a.4) +.... (a.n_ 1&) a.n)=(b1&>b26)1) +
(bZG) b36) 1) + (b36) b,® ) +....c.4(b 1@ bnﬂ) 1).

4, Adding the equations of step 2 to step 3 gives Cl’

5. Similarly expanding fZ gives

(a®a )+(a@a )= (b @b ;81)+(b,0b 81)

which is equal to
(an-le al) + (an(}) aZ) = (bn_l(}) b, & 1) + (bn(B b2 @ 1).
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Expanding fn; > gives

(alﬂ)a3) + (a29a4) + (a3(9a5) + ... (an_2

(b2®b4@1) + (b3@b5@1) Toaoar (bn_z@bHQI)

a )= (b,8b,0 1) +

1

Adding the equations of step 5 to step 6 gives C,.

Continuing this same procedure through all possible values of
J would show that Cj = fj +E s The refore the cyclic com-
plementary constraint equations are based on the sum of two
restricted portions of the complementary constraint equations,
Therefore all complementary pairs have to be cyclically
complementary, The converse is not necessary true since

Cj is a sum, and in a sum the addend and augend are not
unique, E

* % x*

Since Cj = fj + fn-j’ each constraint of the complementary property

is used twice as j varies from 1 to n-1; therefore Cj is symmetric

and is centered at Cn/Z' In the application of the cyclic complementary

property in Chapter 8, half of the characteristic cyclic number is de-

leted due to this symmetry property,

Both of the screens described in this chapter were suggested by

. Golay;

Ly LY however, to the best of my knowledge the theorems

and their proofs have not appeared in print,
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AN EXHAUSTIVE SEARCH FOR KERNELS OF LENGTH 26
CHAPTER VII

In his paper Golay emphasized the need for an exhaustive search for
complementary code pairs of length 26. This chapter describes such a
search, The purpose of this search was to determine if there were any
kernels of length 26 and if any of these exist, the number of such
kernels. It would prove very difficult to surmise the number of kernels
in a code of this length predicated on the known kernels of other lengths,
since n=2 had one kernel, n=10 had two, and n=18 had zero. An ex-
haustive search for kernels of length 26 might throw some light on a
possible general method for finding kernels of longer lengths, or might
disclose some sort of pattern showing the distribution of kernéls among
the possible code lengths., .

The only feasible method to accomplish this search was with a high
speed digital computer. This chapter is concerned with the computer
program and the results of the exhaustive search for kernels of length 26,

2°2 possibilities to

At first glance it would appear that there are
be screened for an exhaustive search for all possible kernels of length
26, Although this is true, the application of some of the theorems de-
veloped in the earlier chapters immediately eliminates from considera-
tion large blocks of the 252 possibilities which are either redundant or
impossible, This is a very necessary procedure since even with the
highest speed computers of today it would be impossible to investigate
this number of possibilities in a life time.

The program was developed for the CDC 1604; this computer ac-
complishes approximately 200,000 operations per second, This speed
coupled with the powerful screens used in programming made possible a

reduction of the computer run-time to approximately 75 hours. A brief

outline of the various screens used and their reduction factor will now be
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given before continuing in more detail with the actual programming
techniques used. The word code or code pair as used in this chapter
and also in the next chapter will be understood as possible complemen-
tary code pair,

The first screen utilized was the number of ones which must appear
in each of the code pairs, This was given by r1=(n-p—q)2 + (p-q)2
as derived in chapter 2, where n is the length of the code, p 1is the
weight of the A code and q is the weight of the B code., The possible
solutions for n=26 were the unordered weight pairs (16,15), (16,11},
(11,10), (15,10). The pair (p=16, q=15) was arbitrarily chosen to be

used in the program. This reduced the total number of possible code

15 26! 26! 13 .
dOWI_J tOTmE— X T)—:—ln— ~ 4%10 H ThlS

was a reduction by a factor of 200, which brought the life time search

pairs from 252:(,8x10

down to a little less than a year, but this amount of time was still not
feasible for a computer search, Golay remarked in a footnote that a
complementary pair might be thought of as being composed of two inter-
laced half length codes, in this case n=13, 9 Since it was obvious the
total number of ones in both of the interlaced pair must equal the number
of ones in one of the complementary code pair, equation 2,5 was
applied again, this time for n=13, The unordered weight possibilities
for n=13 were (9,7),(9,6), (6,4), (7,4). In order to be compatible with
the (16,15) pair for n=26, the (9, 7) pair was selected for the code con-
taining 16 ones and the (9, 6) pair was chosen for the other code which
contained 15 ones.

The basic problem had now been reduced to all possible combinations

of the four thirteen bit sequence families. This was equal to

13! 13! 13! 13!
gr 47 * or4r X fTer TN 6!

Lo 5x1012 possibilities, Although this reduced the problem by one more
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order of magnitude it was still much too large for a practical search,

Dr. Golay in a private communication with the author pointed out the
possibility of using the supplementary characteristic as an additional
screen, & Theorem 6.1 gives the necessary and sufficient condition
that complementary codes sequence quadruple form be supplementary
sequence quadruples. The codes of length 13 were therefore categor-
ized according to their first 3 and last 3 bits. The number of like
pairs at spacing twelve, at spacing eleven, and at spacing ten was com-
puted for each of the 13 bit sequences. For example, 0111100111011
has 0 likes for spacing twelve, 1 like for spacing eleven, and 3 likes
for spacing ten. The block number given to 0111100111011 was there-
fore 013. Out of sixty four possible combinations only eighteen different
block numbers were generated for each of the tw&§ number sequences of
all possibilities of thirteen bits with nine ones and with seven ones, An
examination of Figure 7.3 reveals that there are a widely varying number
of members within each of the blocks. The supplementary characteristic
states that the total number of like pairs for each spacing must equal the
total number of unlike pairs for the same spacing. With four codes at a
spacing of twelve there are 4 possibilities, therefore two of them must
be likes; at a spacing of eleven there are eight possibilities, therefore
four of them must be likes; and likewise at a spacing of ten there are
twelve possibilities of which six must be likes to satisfy the supplemen-
tary property. Block numbers were added for each possible combination
to see if the total were 246, and in cases where the total was 246 those
particular codes within these blocks were then sent to the next necessary
but not sufficient condition for the codes to be complementary., If the
total was not 246, the blocks of codes were rejected. The power of this

screen is shown in the example where say two of the blocks had code
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numbers 000, 000. The only possible combination to add to 246
would be 123,123 for the other two codes. This cuts the total number
of possibilities in this particular block combination down from
1716x1716 = 2, 9x106to only 64 possibilities. Although this admittedly
was the most extreme example, this screen reduced the number of

9

possible codes checked to about 2x10° or further reduction of three
orders of magnitude,.

The next necessary condition to be checked was the parity test,
equation 2.4. All code quadruples which satisfied the parity test were
then sent to the necessary and sufficient like pair, unlike pair check for
each spacing. The like, unlike check subroutine was quite loné and also
involved word unpacking. This subroutine which was ignored in the
calculation of run time increased the computer search time from a calcu-
lated 70 hours to an actual run time of the order of 75 hours.

The half length codes in the program were interlaced in the same
manner as was done in the operations group formulation, This method
of combination made the parity check easy to calculate since the bit
positions in the computer words were the same as the sequence posi-
tions of the codes, Modulo 2 addition was directly applied to the code
quadruple to form a vector of all ones, providing the parity test held.

If the code vector was not all ones the code quadruple was rejected.

It is to be noted that by selecting the ordered (16,15) pair for the
number of ones in the A and B code, the operations C;, Cz , and C
were eliminated from possible redundant consideration, These were
eliminated by their requirement for (10,15), (16,11), and (10,11)
ordered pairs of ones respectively, based on equation 2.5, The inter-
lacing of the half length codes with ordered pairs of (9,7) ones and

(9, 6) ones respectively eliminates from consideration the operations
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T,, Tz, T and A; since these would have required (7,9,) (9, 6),

(9, 7)(6,9), (7,9)6,9) and (4,7)(4,6) ones respectively, The only basic
transformation not deleted by controlling the weight in each of the code
quadruples was Az, This is seen to be true because if the pair
(9,7)(9,6) has the operation Az performed on it, the result is (9, 6)(9, 7).
If this code is now transformed by the trivial exchange operation, E, a
code pair of the original form is generated, The scheme which was used
to eliminate the Az redundancy will be discussed late in this chapter.

Figure 7,1 is a rough flow diagram for the program used in the
exhaustive search for kernels of length 26, With modifications in data
as necessary, this program was also used for exhaustive searches of
composite codes of 16 and 20.

A brief description of the blocks in Figure 7.1 will give the reader
some familiarity with the programming philosophy used in this search,
The actual programs as written for the CDC 1604 are given in Appendix V,

The number generation subroutine is able to generate any number up
to 48 bits in length (word size of the 1604) with any number of ones up
to a maximum of 48, This is accomplished in the 1604 by inserting a
number of the form 00000...00001111...111 into the accumulator,
where the total length of the number is 48 bits and it contains p ones
and has a code length of n., This number is then shifted left 48-n bits,
This shifted result is then checked to see if it is negative, which indicates
a one in the most significant bit position, A procedure i1s now set up to
count a one or zero and then shift left one bit and repeat the process for
the entire n bits. If p ones are counted the number is stored, if not it
is rejected. A number one larger than its predecessor is inserted into
the system and the process is repeated until the ones are all in the

uppermost bit positions. 94



Blocks 2,3,4 are used to compute a supplementary characteristic
number for each of the 715 thirteen bit numbers with 9 ones and also
for each of the 1716 thirteen bit code numbers with 7 ones; then in
accordance with their supplementary numbers these are stored into
group blocks, The supplementary number was derived by using a mask
to expose for consideration only the first 3 and last 3 bits of each of
the 13 bit code numbers., These masked numbers were then compared
with an exhaustive list of all possible combinations of zeros and ones in
these 6 bits. These 64 pbssible combinations were in an M to one
correspondence with a list of 18 possible supplementary characteristic
numbers (see Figure 7.2). This correspondence allowed the .temporary
attachment of this supplementary number to each of the codes. The code
numbers were rearranged into blocks according to supplementary number
and at the same time had their temporarily attached supplementary
number deleted, This part of the program is purely for putting the data
into a useable state and is used only once per run, The rest of the pro-
gram is highly iterative,

Consideration of the (I II Il IV) form of the possible 26 bit
codes, shows that each of the 18 blocks of I, II, III, and IV must be
compared against each other indicating 18x18x18x18 105,000 possible
block comparisons. This was cut down somewhat by use of a slightly
different technique, This was accomplished by loading the computer
accumulator with 246 and from this subtracting the first block number
of I, then subtracting the first block number of ITI, and then subtrac-
ting the first block number of II, Rather than subtracting the Block
number of IV, the difference obtained was instead checked against all
all possible block numbers of IV to see if it was listed. Since if the

block number did exist only one could exist, This procedure cut the
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possible number of block comparisons by a factor of eighteen and left
only 5800 combinations to examine rather than 105,000. If the block
did exist all the codes within thas (I II III IV) block grouping were
then given the parity test, If the IV block number did not exist II was
stepped ahead one block number and the process repeated. After II
had cycled through its 18 block numbers, IlI was then stepped ahead
one block number and the entire process repeated. Similarly when III
had cycled its 18 block numbers, I was stepped ahead and the process
repeated. To avoid the Az operation redundancy, whenever I was
stepped up one block number III was started from this same block
number rather than at the first block number. This avoided th‘e block
number combinations (I III),and (III I) both appearing except when
block I was equal to block III, This block number cycling allowed a
vantage breakpoint for partitioning the program into suitable size in-
crements for computer run times.,

The parity check was made by adding(Modulo 2) a code from I
to a code from III to a code from II. This resultant was then checked
to see if it existed as a code in the list from the IV block, If it did
exist it was complemented and then sent to be unpacked for the necessary
and sufficient like, unlike test. If it did not exist another set of codes
was sent in and the process repeated until all possible code combinations
in (I II III) were exhausted.
‘ The methods used in the unpacking and like-unlike subroutines are
quite straight forward and will not be amplified here, although it is to be
noted that the like-unlike subroutine is not limited in the lengths of the
codes it can test, up to the machine storage size, whereas all the other
subroutines, since they use packed words, do have quite restrictive

code length limitations,

96



This f)rogram was first used to make an exhaustive search for
codes of length 10 for test purposes since all kernels of this length
were known. After this satisfactory checkout the exhaustive search for
codes of length 26 was undertaken,

During the first part of the computer run for n=26 Dr, Golay in-
formed the writer by personal correspondence that he had discovered a
kernel of length 26, using a ”by-ha.nd"technique.ZI’20 The exhaustive
search revealed only a transformation of the code pair that Dr. Golay
had discovered. Therefore it was proved that only one complementary
kernel of length 26 existed and that it was (ignoring allowable trans-
formations)

A=01001101111010111100111010
B=10110010000111111100111010 ,
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CHAPTER VIII
A PARTIAL SEARCH FOR KERNELS OF LENGTH 34

The next possible kernels for investigation after length 26 were
those of length 34. As will be shown in this chapter an exhaustive
search for kernels of length 34 was not feasible. However, an impor-
tant subset of possible kernels was exhaustively searched and a scheme
which can be adapted to the general search was programmed. No ker-
nels were found in this partial search, To use the same method of
attack as that used on n=26 did not seem too feasible, both because of
the length of time involved in the search and because there would be no
guide to searching, beyond random  picking of possibilities until all
possibilities were exhausted. The length of time involved for an ex-
haustive search of n=34 was estimated fairly reasonably by checking
the number of possible codes of length 26 against the number of pos-
sible codes of length 34, since the time for the 26 search was known
with reasonable accuracy, For n=26 there were 715x715x1716x1716=
1, 5x1012 code possibilities at one point in the screening process. At
the same point in the screening process for n=34 codes there were
12376x12376x19448x19448+= 5, 8xlO16 possibilities, which is a ratio of
4x1 O4 to one as compared to n=26. A time estimate from the 26
length code to the 34 length code was therefore 75x4xlO4=3xlO6 hours,
This length of time was of course not practical for a search of an ex-
haustive nature.

The use of the cyclic complementary property as a screen was
pointed out by Dr. Golay as highly practical because some reasonable

19

guess could be made as to which cyclic sets might contain a kernel.

This would lead to a hybrid ""by-hand'" and computer search. It would
also be easier to document the areas searched by the cyclic method as

compared to the supplementary method and would therefore avoid the
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duplication of effort by future n=34 length searchers. As will be dis-
cussed at some length, there is in addition an even more important
reason leading to the decision to substitute the cyclic complementary
property for the supplementary property as a screen.

The generation of cyclic sets which are to be utilized in the search
for new kernels, is accomplished in a somewhat unusual fashion., This
method of classifying, puts within the same set all possible numbers
which are cyclic permutations of one another, as is to be expected;
however, there are also contained within the same set all numbers
which are formed by the removal of every other bit in a cyclic fashion
until all bits are used. As an example the five bit number 11010 will
be used to show all the numbers contained within its set. First,

selecting every other bit, starting with the first bit, and repeating on

the result gives: 1. 11010
Bic 10011
3. 10101
4, 11100
e 11010

and second, by permuting the bits of each of these in the normal cyclic

permutation manner yields

1. 11010, oOl101, 10110, O©01011l, 10101
B 10011, 11001, 11100, 01110, OOI11l1l,

It is not necessary to generate the cyclic permutations from 3 and 4
since they are contained within 1 and 2,

Counting cyclically the number of likes for each spacing gives the
code number 1331 fo.r 1 and the code number 3113 for 2, These
code numbers start with a spacing of 1 and include up through a spacing
of n-1 or four in this particular example. The code number 3113
means that at a spacing of one there were 3 likes in 10011 counted

cyclically, at a spacing of two there was 1 like, at a spacing of three
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there was | like, and at a spacing of four there were 3 likes. The
example just given is somewhat trivial since all binary numbers of
length 5 with 3 ones fall into the same set. However, this is not the
case for n=26 as there are 7 sets for codes of length 13 with 9
ones and 76 sets for codes of length 13 with 7 ones,

An examination of the kernel of length 26, shows that its sequence
quadruple of codes came not from four different cyclic sets as one
would expect but came instead from just two cyclic sets,

Using the kernel form

A=01001101111010111100111010
B=10110010000111111100111010 one can decompose this into

I=0010111110111

II=0010110011101
III=1101001110111
IV=0010111100010

Using I to form its cyclic set gives:

. 0010111110111
. 0111111001101
0111011111010
0101100111111
0010111110111

[ UV I S
L] »

Now take 3 and write it twice, this gives 01110111(1101001110111)
11010. Picking off from the ninth to the twentieth second bit gives a
code which is the same as III above. Therefore I and III are
members of the same cyclic set. Similarly take II and form its
cyclic set; this gives:

. 0010110011101
0110111001010
0111000101011
0100001110111
. 0001111100101

(S R A S
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6. 0011011011100
7. 0101110011010
8 0010100111011
9. 0110101000111
10. 0111011100001
11. 0101001111100
12, 0001110110110
1. 0010110011101

To make a comparison between II and IV the complement of IV will
have to be used in order that it will have 7 ones as does II,

IV= 1101000011101

Writing 4 from this list of 12 twice gives 01000011101(1101000011101)11,
Picking off from the twelfth to the twenty fifth bit gives IV, which in-
dicates that II and IV are from the same cyclic set.

A check of kernels of length 10 to see if their quadruples came
from cyclic sets in pairs, as the 26 kernel did, proved that both ker-
nels of length 10 did in fact come in pairs. This was meaningless
however, since as was seen in the example of length five with three
ones, there was only one cyclic set possible for each pair,

In the hope that if the kernel existed in the n=34 case, it would
also be formed with I, III from one cyclic set and 1II, IV from another
cyclic set, the program was modified, This change along with giving an
exhaustive search for code possibilities taken two at a time from cyclic
sets would also give an estimate of the computer run time for the ex-
haustive search in general using the cyclic complementary property,
This was the primary reason for the change in the program,

Eight octal digits were used to designate the cyclic complementary
number for each of the 12,376 possible half codes of length 17 with
11 ones and for each of the 19,448 possible half codes of length 17
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with 10 ones. Only eight digits were necessary as each cyclic count
of spacing i actually counts both the i spacing and the n+l-i spacing
simultaneously, This was demonstrated by step 8 in the proof of
Theorem 6.2. The example of the code of length five given earlier in
this chapter showed this symmetric property, as the code numbers were
1331 and 3113, The first two digits of these cyclic complementary
designators contain all the information available,

The revision made to the computer program was not too extensive
as only blocks 2,3,4,5 in Figure 7,1 were modified to handle the
cyclic complementary property rather than the supplementary property.
Of course all blocks were modified to handle codes of length 34 rather
than codes of length 26,

One difficulty encountered was the lack of computer memory for the
large blocks of data, and it was necessary to store the cyclic sets on
magnetic tape rather than in the main memory core as the 26' case was
handled. The cyclic sets were then called in two at a time for checking.
This slowed the search down a little, but by no more than 1% of the
total time, Figure 8.1 is a block diagram of the process of obtaining
the cyclic complementary numbers and it will be worthwhile to remember
the memory size restriction when reviewing the procedure used.

A general description of Figure 8.1 will show the differences in
the method used in the search for n=34 kernels as compared to that
used for n=26 kernels, The procedure in the n=34 data formation was
identical with that of n=26 as far as the initial possible number genera-
tion was concerned. (Block 1 in Figures 7.1 and 8.1). There was
an immediate departure from the old method in blocks 2,3, and 4
where one of the 17 bit numbers with 11 ones was shifted left 17 bits

and then added to itself., This formed a 34 bit number which was
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actually the 17 bit number written twice in time sequence. A mask
was then put over the last 17 bits and this masked number was used,
with an equality search of the 12,376 generated 17 bit numbers, to
identify this particular number in the list, After the number equal
to the reference number was located in the generated list it was tagged
a one, indicating cyclic set one. The whole 34 bit number was then
shifted right one bit and a mask used to again pick off the last 17 bits,
The search through the list and tagging with the group number was re-
peated, After cycling through all 17 possible cyclic codes and tagging
each, the original 34 bit number was now repeatedly long right shifted
one bit and then right shifted one bit. A long right shift saves‘the bit
which is pushed off the A reggister and stores it in the Q register,
while the right shift just pushes the extra bit off the end of the A reg-
ister. Therefore every other bit of the 34 code was saved in Q and
this formed a new 17 bit code within the same complementary cyclic
set. This code was then formed into a double length code and the list
of all possible 17 bit numbers with 11 ones was searched and tagged
with a one and the process which was first described to generate cyclic
permutations was repeated. This process of first forming 17 cyclic
permutations of a code and then taking every other bit, was continued
until the possible code which was originally operated upon reappeared.
Then cyclic set 2 was started and tagged accordingly, and so on
through 98 sets. The 19,448 codes of length 17 with 7 ones were
classified in exactly the same manner and formed 150 cyclic comple-
mentary possibility sets.

After each series of sets were formed a mask was used to search
the set tag numbers and pick off each set for transfer to magnetic tape.

To insure that the pick-off was exhaustive, a zero was inserted on the

list in place of each removed tagged number.
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The sets were now ready to be called back into the computer for use
in the search. Normally only one set was called in at a time because
the pair from the I, III set was checked against all the II, IV sets
before a new I, III set was called into the computer, The I, IIIl sets
contained the 11 weight codes while the II, IV set contained the 7
weight codes, When a set was called into the computer each cyclic
permutation subset of 17 possible codes was given a cyclic comple-
mentary number to categorize the entire subset. Each group contained
either 4 or 8 of these cyclic subsets, These subset numbers were
formed by counting the likes for the I, III codes and the unlikes for the
II, IV codes for the eight unique spacings. The codes within :che subsets
were checked against each other only if the likes equaled the unlikes of
the cyclic complementary subset numbers for all spacing, or LI +
Lyp = U * Yy

Figure 8.1 is joined to Figure 7.1 just beyond block 5 and takes
the place of blocks 1,2,3,4,5 in Figure 7.1, The same feedback paths
shown in Figure 7.1 to insure the checking of all codes within a set
and to feed in a new set after a check has been completed, are still in
operation for the same purpose. Appendix VI contains the computer
program for Figure 8. 1.

The total run time for the n=34 search, taking I, III from the
same cyclic set and II, IV from another cyclic set was approximately
15 hours, No codes were found. An extrapolation from this run time
to the exhaustive run time for n=34 gives 15x150x98 =2, 2.x105 hours,
which although one order of magnitude less than the supplementary
method, is still not reasonable,

A second partial search for n=34 kernels was attempted after

observing that the kernel of length 10
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A=0101000011
B=0000100110

with its center quad removed yields

A*=01010011
B*=00000110

which is a complementary pair of length 8, Breaking A%, B! into its
(I II III IV) configuration gives

1=0001
II=1011
I11=0001
Iv=0100

where (I, II) and (III, IV) are both complementary pairs,

An attempt was made to draw an exact parallel from this observa-
tion to codes of length 34. ’One possible solution to equation 2.5 which
dete rmines the number of ones necessary in each of the kernels of
length 34 is (21,18). If this same equation 1s applied to codes of
length 17, two of the possible solutions are (11,10) and (11,7). The
(11,10) pair when interlaced will total 21 ones, and similarly the
(11,7) pair when interlaced will total 18 ones, Whereas the kernel of
length 10 with the quad removed had a sequence quadruple form with
codes of length 4, the 34 code with the quad removed would have a
sequence quadruple form with codes of length 16, Appendix II gives
a list of all possible codes of length 16 with weight 10 in the A code
and weight 6 inthe B code. This list does not include the results of
the time reversal transformations which have to be included since weight
is invariant under T, , Tz and T, It was observed that if these codes
of length 16 were interlaced to form codes of length 32 and then sep-

erated in the middle and the quad A=11, B=10 inserted, all conditions

as far as the number of ones required in both interlace codes of 17 to
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form codes of length 34 would be satisfied, An example might serve
to clarify the preceding statements.,

C=0101111111000110
D=1001001100001010

is a complementary pair of length 16, Using the interlace method to

form a pair of length 32 gives

A=01100011101011111010000001101100
B=00110110111110101111010100111001 .

Splitting this A,B pair in the center and adding the quad to this center

gives
A'=0110001110101111 11 1010000001101100
B'=0011011011111010 10 1111010100111001

Breaking this pair into standard (I II TIT IV) form gives

I=01011111111000110
II=01010000111001001

I11=01011111111000110
IV=10101111000110110 .

I has 11 ones, Interlacing I with II, which has 7 ones, yields
a total of 18 ones. Similarly III has 11 ones, and IV has 10 ones,
When these are interlaced the code of length 34 has 21 ones, In the
actual computer run the codes of length 16 with 6 ones were converted,
by complementing, into codes with 10 ones, Therefore both the A and
B codes contained 10 ones. An exhaustive list of these and their time
reversals was generated, Each code of length 16 was then split in the
center and a zero inserted for the ninth bit, forming an over all code of
length 17 with 10 ones. A second list was then formed, using a one
rather than a zero for the inserted ninth bit, forming codes of length 17
with 11 ones.

These two lists of numbers were then fed into the program of

Figure 7.1 at block two, and the regular supplementary check program
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was used, The codes with 11 ones were used for (I, III) and the
codes with 10 ones were used for (I, IV), When these codes were
combined in the interlace scheme, I interlaced with II gave 21 ones
and III interlaced with IV gave 18 ones., All four interlace combina-
tions (I II III IV),(II I III TV), (I II IV III) and (Il I IV III) were
run exhaustively, The run time was approximately three hours and no
codes were found. These partial searches for n=34 are documented
here because they represent two fairly obvious approaches to the prob-
lem, and it would be very wasteful of time for someone to duplicate this
effort. The program as given in the appendix can with a slight modifica-

tion be used for an exhaustive search for kernels of length 34 or for a

partial search based upon other 'judicious guesses''.
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CHAPTER IX
CONC LUSIONS

The study which has been presented here had two principal objec-
tives., The first objective was to make an exhaustive search for kernels
of length 26 to determine whether they existed, and if they did exist,
to determine the number of such kernels, The second objective was to
develope a methodical scheme of code decomposition from composite
codes back to their generating kernels, We shall summarize in this
chapter the ways in which each of the major portions of this dissertation
is related to the accomplishment of these objectives., Also a number of
suggestions for further research will be presented.

The operations group and its family of theorems were ofiginated to
formalize the elimination o{ possible redundancies in the search for new
kernels., The predetermination of the number of ones in each of the
sequence quadruple vectors was a vital screen that eliminated many
such redundancies. Also, the starting of both the I and III vectors
from the same possible supplementary code groups eliminated an ad-
ditional half of the possible codes. The theorems in the operations
group chapter also were useful in the code decomposition part of the
problem, since they show the necessary and sufficient conditions for
the (I, II}) and (III, TV) pairs to be complementary., Theorem 3,4,
which states that if the sequence quadruple form is (I II I T) then

(I, II) must be a complementary pair, is most helpful since the process
of checking for complementarity is very tedious by hand methods.

Hamming distances were the next major topic considered, They
were found to be useful in a number of the proofs in the Hamming vector
chapter. They were also a great aid in checking hand decomposition,
since it was easy to determine whether D(I,II)=D(111,1V)=n/4 for compo-

site codes or whether they had the characteristic distance in the case of

kernels. 111



Hamming vectors were the most powerful tool developed in this
paper for code decomposition, The theorems cover all known possible
decompositions and also give strong support to the conjecture that ker-
nels of length 50 do not exist, The Hamming vector concept should
allow a fuller understanding of complementary sequences in general,
due to its characteristic qualities such as anti-symmetry, and also be-
cause there are only four possible configurations of Hamming vectors
for any code pair. Similarly in sequence quadruple form it is easy to
check whether a decomposed code may be complementary by using its
Hamming vector,

Several exhaustive searches for codes of various lengths.were con-
ducted during this resear’ch.c The most important of these was the
search for kernels of length 26. This search revealed that only one
kernel existed. An exhaustive search for codes of length 16 and 20
revealed that all codes of these lengths were generated from shorter
codes by standard methods. This gives considerable strength to the
conjecture that these generating methods are the only ones,

The possibilities for future research in this field of complementary
sequences are many. Some of these follow directly from this paper
while others lie quite far afield from the ideas exposed here, An inter-
esting extension of the present work would be an exhaustive search for
kernels of length 34. It is felt that the cyclic complementary screen
which was used in the partial search is not powerful enough, and a
better screen is needed before this search can be conducted on an ex-
haustive basis using today's computers, The writer had considered the
combination of both the cyclic and supplementary properties as screens
in the same search. However, a full study was not made of the gain

which might be obtained by this screening procedure. The programming
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of such a screen would not prove too difficult and, since the cyclic
property would logically be the first screen of the two to be used, the
areas of search could still be catalogued quite easily.

If it would be possible to dete rmine, before the search, the charac-
teristic Hamming distances D(I, 1I}) and D(Il, IV) of kernels, these
would act as a most potent screen in the search for new kernels, It is
therefore felt that further research on characteristic Hamming dis-
tances of kernels could prove quite fruitful for future applications.

It was conjectured that kernels of length 50,130 and 338 do not
exist, based on several pieces of evidence, which although strong are
not conclusive., Further investigation along these lines might. offer a
conclusive proof without the’necessity for an exhaustive search, since
an exhaustive search for these length codes approaches the impossible.
During the investigation of kernels of length 50 the writer noticed an
oddity which might be worthy of further investigation,

One kernel of length 10 is
A=1001010001
B=1000000110,

Divide both the A and B codes into segments of length 2, then
A=10 01 01 00 01
B=10 00 00 01 10.

Now let the symbols 10=A,01=A, 11=B, and 00=B, Forming a code
of length 50 by this method of using symbols of portions of the quad
to represent kernels of length 10 gives

K.=AAABA
Ko=ABBAA,

This code pair of length 50 satisfies the parity check, and also equa-
tion 2.5 for the number of ones in both full codes and in the four half

codes. Several examples were checked 1n this fashion for both kernels
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of length 10, and all satisfied the same conditions as did this example,
but of course none of them satisfied the necessary condition for com-
plementarity. Along with helping to search for codes of length 50, this
offers a possibility for research in that all kernels seem to have
various characteristics in common., However, the quad seems more
flexible. Of the four known kernels, the quad is the only one thus far
discovered that can be used to build up composite codes by one method
of generation and then these codes can be decomposed by a different
method, Therefore a study of kernel characteristics might lead to
easier ways of generating new kernels, or at least of determining
whether they exist for the various possible lengths,

Another possible field (3f research is cyclic complementary codes,
A communications system is more likely to use a cyclic complementary
carrier modulation instead of straight complementary modulation due to
the continuous nature of the carrier, Therefore an investigation of
these codes seems quite in order.

Two other topics worthy of research in the complementary sequence
field are the various correlation functions of complementary sequences
and the frequency spectra of these sequences, For secure communica-
tions purposes it is important to have a code that is noise-like, A
uniform distribution of ones and zeros gives a noise-like appearance to

the code. For example, the complementary pair

A=11010001
B=11011110

is a typical complementary code pair of length 8. If the bits of the A
code are considered in a cyclic fashion one, two, and three bits at a
time, the results are remarkably uniform as i1s seen in Table 9.1.

This uniformity in output would make it extremely difficult for someone
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monitoring the code to decide if he had noise or an actual signal on his
receiver. However, it is seen that the B code is not nearly so uniform

and would be easier to detect as a signal,

A code
Bits Number Two Bits Number Three Bits Number
1 4 11 2 111 1
0 4 10 2 110 1
01 2 101 1
00 2 011 1
100 1
010 1
001 1
000 1
B code
11 4 111 2
0 2 10 2 110 2
01 2 101 2
00 0 011 2
100 0
010 0
001 0
000 0

Noise uniformity of a complementary
pair of length 8,

TABLE 9.1

»

An investigation of a large number of codes by the above technique would
be useful in determining the most noise-like code pairs, where noise-
like 1s defined as a uniform output with bits taken one, two, three, etc,
at a time. This might in turn lead to some general characteristic of

most-noise-like complementary sequence pairs, =
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Another important study would be the autocorrelation function of
each code pair. This 1s synonymous with the output of a code detected
by its matched filter. For example, the autocorrelation of the code A
given above is

1 0o -3 o0 -1 0o -1 8 -1 o -1 0 -3 0 1
where the outputs in time are read from left to right., The autocorrela-
tion of the B code is

-1 0 3 0 1 o0 1 8 1 0 1 0 3 o0 -1,

The autocorrelation functions are important from two standpoints, First,
if a portion of the system should need to be shut down for repairs or
routine maintenance, a good autocorrelation function would ailow opera-
tion on just one carrier. Second, the frequency spectrum of the trans-
mitted signal is the Fourier transform of this autocorrelation function.
Therefore, one way to study the spectrum is first to autocorrelate and
then to take the Fourier transform of the transmitted signals. The more
widespread the spectrum, the more difficult is a jamming procedure.

A study of the crosscorrelation functions of complementary sequence
pairs is also very important because of the difficulty of isolating the A
code RF carrier from the B code receiver., It was pointed out in
chapter 4 that because the A code and the B code were orthogonal, at
exact match cross talk would be no problem. However, when the signals
are not at exact match cross talk might be a large source of noise. An
investigation of the crosscorrelation functions of the A and B code
pairs might lead to a class of complementary sequences where the
problem of crosstalk 1s minimized.

Another class of correlation functions which are important are
those where cyclic errors are created i1n the received signal detected by

the matched filter., These errors could be caused by a linear shift in
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the phase of the received signal. There may be certain classes of
complementary sequences where the loss in coding signal-to-noise ratio
is minimized when noise is caused by an error of this type. This par-
ticular class of signals would be extremely important in an air search
radar application,

A study of the maximum numbe r of different composite codes for
any length would be an important contribution to the field, because for
anti-jam reasons it is very important to be able to change codes, and
the more codes with good characteristics that are available the better.

The last study to be recommended 1s an analysis of the autocorrela-
tion functions, frequency spectra, cross correlation funct.ions, and
linear phase shift correlatipn functions for codes of lengths from 100
to 200, The purpose of this investigation would be to determine if
certain kernels are capable of forming composite codes of better char-
acteristics than other kernels for radar applications,

In conclusion, the writer feels that complementary sequence pairs
will prove very important in future applications to both radar and com-
munications schemes, However, much research must be done to pick
optimal classes of these codes for such applications, This paper has
offered many tools to be used by future investigators of complementary
sequences, These tools have found important applications in their
present state, but additional investigations along the lines of operations
groups, Hamming weights and Hamming vectors should further in-

crease their usefulness,

117



GLOSSARY OF SYMBOLS AND TERMS

(A, B)
(I II I IV)
D(U,V)
H(U,V)

s

A
Alter

Complementary
code

Complement a
code

Composite code

Cyclic comple-

mentary code

Hamming Distance

Hamming vector

Hamming weight

Kernel

Quad

Sequence
Quadruple

Supplementary
code

Time inverse

Weight

A complementary pair of binary sequences,
see equation 2, 2.

A complementary pair of binary sequences in
sequence quadruple form, see equation 3.1,

The Hamming distance of two binary vectors,
see equation 4, 1,

The Hamming vector of two binary vectors,
see the first page of Chapter 5,

Means interlace two Hamming vectors in a pre-
scribed manner, see Theorem 5.11, step 2.

Is transformed into.

The time inverse of a binary sequence or
vector A,

Means to complement every other bit of both
codes of a complementary code pair.

A pair of binary sequences which satisfy
equation 2,2, also called a complementary
sequence pair, a complementary sequence
and sometime just a pair or code,

Means change the sign or take the complement
of a binary sequence.

A complementary code which is reducible to a
shorter code length by standard methods.

A pair of binary sequence which satisfy
equation 6. 3,

The number of bits in which two binary sequence
differ, notation is D(A,B). see equation 4,1,

A binary vector or sequence formed by the
modulo 2 sum of binary sequences.

Hamming distance of a binary sequence or vector
from the null vector. It is the number of ones
in a binary vector,

A set of complementary codes which is i1rreducible,
The term is sometimes used for a member of the
set,

A kernel of length 2,

A complementary code pair expressed as in
equation 3,1,

A quadruple of binary sequences which satisfy
equation 6, 1.

Means to make the first bit of a binary sequence the
last bit, the second bit next to last, and so on; also
called time reverse.
See Hamming weight,
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10.

11,

12,

13,

14,

15,
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EXPLANATION OF FORMAT OF THE APPENDICIES

Appendix I on matched filters is self-explanatory. Appendix II
is the result of an exhaustive search for codes of lengh 16, There were
96 code pairs found by the computer after the program screens had
eliminated most of the redundancies. The format of Appendix II gives
the A code, the B code, H(A,B), and H[T, (A,B)] which signifies
time reversing the A code. It is worthwhile to note that each code pair
and the pair formed by the time reverse of A were decomposable.
From these 192 possible decompositions 48 were interlace, 48 were
time sequence, and 96 were 2" special method, with 48 each of two
different kinds,

Appendix III is the result of an exhaustive search for codes of
length 20, The format of Appendix III gives the A code, the B code,
if it is required, the time reversal operation used to put H(A,B) in
standard form, H(A,B) and from which of the 2 kernels of length 10
the generating codes came. All of the 24 code pairs or their time
inverse were decomposable. There are 12 from each kernel, 8 of
each of these interlace and the other 4 are time sequence.

Appendix IV is a diagrm of all the subgroups of the operations
group., It starts Wwith the subgroup of order 1 and works up to
those of order 16. An x in the row indicates that the operation at
the top of the column is a member of the subgroup.

Appendix V is the CDC 1604 computer program in AR format
and also in machine language for the 26 length search, There are
slight modifications in the various sections of the program required
for other length codes. Appendix VI is also in both AR and machine
language, and is for codes of length 34, This program parallels

Figure 8.1, whereas the program in Appendix V parallels Fig. 7.1,
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APPENDIX I
MATCHED FILTERS
A Matched Filter is by definition a filter which maximizes the peak
signal-to-noise ratio. Deterioration of the signal wave form is accepted
in order to obtain the desired maximum ratio,
One tool needed for the derivation of the matched filter character-
istics is the Schwarz inequality which is a special case of the Holder

inequality. 22 One representation of the Schwarz inequality is

i- 2t ) o 1

| x(w) y (w) dw | <J [x{w)|"aw J | y(w) |Tdw (A1.1)
- 0 -0 -0 .

It is to be noted that the equality holds when y({w) is the complex

conjugate of x(w). Rewriting equation A 1.1 gives

Z

| _fm x(w) y(w) dw |
< 1 (A1.2)

[==] [c2]

) x(w) |1 dw J_ ly(w) dw

The derivation for the matched filter given here closely parallels

that of Turin. i

Let f(t) be a signal impressed across a filter whose frequency
characteristic is H(jw). F(jw), the frequency spectrum of f(t), is

given by the Fourier transform of f(t).
F(jw) = L f(t) e “IWtar,

G(jw) is the frequency spectrum of the output after passing through

the filter
G(jw) = H(jw) F(jw), s



or transforming back to the time domain the output signal voltage is
foo] 3 t
glt) = _L H(jw) F(jw) e *¥'af, (A1.3)

Since at some time, t = A, g(t) must be a maximum,

o ) 2 1) o ) (A 1.4)
To complete the derivation it will be necessary to obtain the total
noise power, and the total power in the signal, If the noise is assumed
to be white noise of N watts per cycle, the output noise power density is
. 2
N, = N | H(jw) |7,

and the output noise power is therefore

[e=]

) N _df = Im N |H(jw) | %df. (A 1.5)

The total energy contained in the signal is
@
B = I fz(t) dt,
- 00
which is also
z 2
E=J) |F(jw)]|“af, (A 1.6)

by Plancherel's Theorem. It is to be noted that E 1is a constant not
dependent upon the filter used.
The output power signal-to-noise ratio for the maximum output is

therefore
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N : . Jwa 2
(g(A)]Z = l-.fm F(jw) H(jw) e df |

N

o N L |1 (jw) | 2af

Dividing this equation by a constant will not effect the time of maximum

signal output; therefore dividing by E, equation A 1.6, gives

N | g(a) IZ g ]Jm F(jw) H(jw) e 7% af | 2
B [l agw e [ FGw) |? af (A1.7)

If the right hand side of equation (A 1.7) is compared.to the
Schwarz inequality (A 1,2) with x(w) = F(jw) e jwa y(w) = H(jw),
the two expressions are tl';e same, But for the expression to be max-
imum y(w) must equal the complex conjugate of x(w), therefore
H(jw) = F(-jw) e I"°

A matched filter is therefore a filter whose frequency character-
istic is the complex conjugate of the signal spectrum to which is matched.

The output signal for a given signal applied to a matched filter is

therefore
=]

glt) = im |F(jw) |2 Jwit-8)

daf ,

at t= A the outputis

@

g(a) = Jm [F(jwl‘2 df .

This is the same as equation A 1,6 which is all the energy con-
tained in the signal. Therefore at exact match all the energy in the
pulse is in the output signal,
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APPENDIX II

Exhaustive Search for Codes
of Length 16,

(5150
glg0
g lg0
Nﬂwﬂwov
S
Nruow:
NAwowz
SO
Nﬂwﬁwov
NAwﬂwov
NAwowﬁv
Nﬁwowﬁv
NAwﬂ«ov
NAwﬂwov
Nﬂwowﬂv
NA«o«HV
glg0
¢ANONﬂV
g0g1

wﬁNﬂNov

glg0

wﬁmomﬁv
wﬁNﬁNov
g0g1=H
[(gv)TL1]

Z

00000O0TTOTTIOOTIOT
0000TO0TTITOOO0TOT
00000TTOOOTTIOTIOT
0ooOTTOOTOOTOTIOT
OTOTOOTTOLITO0000
OTOTITIOOTIITO00000
OTOTOTITO000TTIO000
O0IOTITTIOOTO0TI0000
[000TITOTOTO0000T
[00TTIT0O000000T0T
0T0000OTOTITIOOTO
0TOTO00000TTIOTIO
00000TOTOTTOOOT T
000TOTOO00TOOTIT
ITO0T00TOTOTO000
ITOTT000000T0TOO
10000TO0O0TTTOTIO0
000O0TTOOOTIOIOTIIO
00OTTTIOTO00TOOTO
[00T3T10T00TT0O000
OTOO0TO000TOO0TTT
[10000000TTOOTOT
[0T0T00T000000TT
ITOTO0OTOOTO000T
g

TOTOTOOTTTIOOTITI
TOTOOOTTIOTTIOTITT
[OTOTTOOTOOTIITI
TOTOOTTOOOTTIITIIL
ITTTTOOTITTIOOTIOTO
[TTTOOTIOTITIOIOTO
[TITTTTIOOTIOOTTIOTO
TITTOTIOOOTTIOTO
[OOOTTIOTIOITITIO
[oTOTITTITIOOTTIOITO
[OTTTITOOTTTOOTO
[OOTTTOOTITITIOTO
[TOOTOOTTIOIOTTIII
[TTOTOTTOOTOO0TITT
[ITTITOTO0TTIOO00TT
TIOTTOOOQTITIOTOTT
OOTOTTITIOTIOIITTIO
TOTOOTTOTITIITIOO
IOTTOTTITOTITITO000
OOTTITTTIIOOTITIOTO
[TTO00TOITTIOTIOT
OTTOTOTOTTIOOTTITT
[TITOOTTTIOTOTOOT
OTTTIOTITICOOTIOTT
A4

¥2
€2
ek
12
02
61
81
L1
91
i
B
6 [
A
11

. . O
oy —~

— N o F N O >~

125



00000TOTITTIOO0TITO
10000TTTOTO00TOO
000T000TTITOTIO00TO
100T00TTOTOT0000
01000T00T0000TTT
11000T1000000T0T
0T10T0000TOOTOOTT
ITOTO0TO0000T000T
000TTIOTTO000T0T00
0100TOTTO00TO000T
000TO00TIOTTIOTO00
0T0O0000TTIOTTOO0O0T
000TOTOOTITTIOOTOO
OTOO0TOOTITTIOO000T
000TTTITO0TO0O0TOO
OTOOTTITOO0TO0000T
000000TTIOTOTTIOOT
00TO000TTTIOTO00T
000T00TOO00O0TITIOT
00T TO000TO0TOTOT
0TOOO0OTTITIOTO0TO000
OTIO00TOTTTIO00000
0OTOTIOTIOO0000TTIOO
OTTIOTOOTO000TIO0O0
d

TOTOTTTIOTIOTIO00
OOTOTIOTTIIIOITIO
IOTTTIOTTIOTITIO00
OOTTTIOOTTIITITITIONO
TTTOTTTO000TIOTTIOT
OTTOTTOOTOTIOTITTT
ITITIOTO00TTIOOT
OTTTIOOOTIOTITIONT
O0OTTOTTITIOIOTI
TOTTIOTTITTITIO00001
OOOTTITTIOTIOTTIONT
[OTTITIITOTIOTTIO000T
[TI0TOTTITTITOO0TO0
OTOOTOTTIITIOITTO
ITTOTTTIOTIOTTOT00
OTOOTITIOIOTTITIO
TOTOTOOTITITIOONT
TO00TOTTIOTITTITIONT
[OTTTO00TOTIONTT
TOOTTOTOOO0TTIITITLT
TITOTTIOTTTITOO00TO
ITOOTITIOTTIOIOTO
TTITTTITO0TOTIOO0TIO
TTOTTTTOO00IOTITTO
Y

‘8%
LY
9%
KN4
47
ey
A7
1%
‘0¥
6¢
‘8¢
LE
9¢
e
Pe
33
2¢
‘¢
0¢
67
‘8¢
L2
0z
62

126



00 O o © o o o o o o o G oo e oo

[(g‘v)TL]

(10)
(10)
(1o)
(10)
(10)
(10)
(10)

wﬂﬁov
Nﬁwowﬁv
wauﬁmov
wﬂmomﬂv
Nﬁ¢ﬁwov
Nﬁwﬁwov
wﬂuouﬁv
wﬂuﬁmov
Nﬂwowﬁv
NAwowﬁv
wANONHV
Nﬁwﬁwov
wﬂmﬂmov
wﬂmﬁuov
NAwﬁwov
ANONH,

¥
Nﬂwowﬁv

o0 o o0 W o o o

00000TOTOOTTTOOT
00TOTTIOTO00TOO0T
000TO000IOOTIOITIOT
OOITTO0TO00000TOT
0T000TOOOTIITITO00
OTT0TTO00TOTO000
0T0OT00000TTOTTOO
QOTITTITO000TOO00TI00
00TO0O00OTOTTTIOTOO
0TT0000000TTOIOT
0000TOOTOTIOTITIOO
0rI0010000OOTIIOT
0OOTITIOIOIOOTO000
OIOTTITO00000TO0T
00T TOTOTIOTTO0000
OITTOTO000T1I0000T1
OTTT0OTO000TO000T
TO0T0000TTOOOTOT
0T000TTTOOOTIOOTO
0OTOTOOTTOO000TLTO
00000OTTOOTIOIOOTT
000TOOTOOTOOOTITT
IT000TI0TTIO0TO000
II0OTO00TTO000TO00
d

TOTOTTITTITIOOTIOOTT
10000TTTOTOOTIOTT
TOTTTOTTITOO000ITT
TOOTOOTITOTIOIIILT
TTTOTTITOTTIOTIOO0TO
TT000TIOTTTITIOTO
[TTTTIOTOTTI000TTIO
T10T00TOTTIOITIO
OOTOTTIOOTTTIIOTT
TOTOTTIOOTTITITOOT
OOTTTIOTOOTIOITTI
TOTTITOO0OO0TTITIOTIOT
TTIOTTOTTIOT L1000
OTTOTITTIOOTITTIOLO
TITTIOOTITOIOTITOO
OITTTIOTTOOTIOTITIO
T000TOTITIOTTITIO
TOTOOOTTTITITIOTTO
TOTTOTTITITTIOO00TO
TOOTTITTTITTOOT0TIO
TTOOTOTOTOOTTITT
TTTI000TOTOTTOITE
TITTIOTTIOTIOTO000TI
TIOTTTTOTO00TOTT
Vv

2
1L
oL
69
‘89
L9
‘99
°G9
¥9
€9
)
19
‘09
69
84
LS
9¢
‘6§
N4
€9
4
‘19
09
6%

127



g0g!

wﬁmﬁmov

wANONHV
0

1,0

0 o

(4

— o O

WAN
wAN

N
o o~
~

0,1
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
0,1

0 o
v o]

O O W W W 90

(o 0]

o @
(o 0]

Tl
1,0

NA¢

NAwﬁwov
NAwﬁwov

glgl
NAwowﬁv

g0g !

O0OTOOTITOO00TIOTO0O0
OITO000TTO0000TOT
000OTIOTIOTIOOTITTIO0O0
0T00000TTIOO00TIOT
0O00TIOTIOOTTIOTITO00
OLOTO000TTIOONTIOO0T
OOTTIOITO0TIOT0000
OTTT00T00T00000T
00T TO000O0OTIOIOITO
T00T00000TIOTITTIOO
O0TTOTIOTO0000TTO
TO0TOTIOTIO0000TTIO00
OIT000000T0TO0O0TT
IT0000000T0TTIO0T
OTTO0TOTO000000TT
TT000TI0T0000TIO00T
I0OTTO00TIOTO00000T
I0TTOT00000T000T
OTO00000TOTIOOTITIIO
OTO000TOO0O000TTITIIO
000TO00TIOTIONOTOTI
0OOTOTO0000TTIOTT
ITT0000TOT000T0O0
ITTO0TO0000TOTO00
d

OOTOOTTITITITIONONT
IOTOTITITTITIOOTIO0O0T
OOTIOTTIOTIOTIOTIITT
IOTTTITTIOTIO00TIOT
ITIOTOLITITIOTITIO000
OTTOOOTTIITITITOIO
ITTITIOTOTOO0TITITIO0O0
OITTIOOTIOIOITTIITO
[OOTTOTIOTTITTITITIOO
OOTTIOTIOTTITIONTO
TOOTITTITIOIOTITIOO
OOTTITTITIOIOOITIO
[TOOTOTOTITITIOOT
OTTIOTIOTOTITTIIOOTT
TIOOTITTITITIOIOTIOOT
OTTOTITITITITIOTIO000TT
TOTTOOOTIOITITIO
IOTTTIOTTIOO0TITIO
IOTTITTITOO0OTOO0TIITO
TOTTIOTIOOTTIOITIO
ITTO000TTIOTTIONT
TTIOTOTTOOO0TIOLT
TTIOTTITOOTOOTOTT
[TTO00TOOTTIOIOTT
v

96
G6
‘Y6
‘¢6
26
‘6
06
68
‘88
L8
98
'S8
¥8
€8
28
18
‘08
‘6L
‘8L
LL
1L
6L

L

128



APPENDIX III
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APPENDIX V
REMARKS ON COMPUTER PROGRAM

In Appendix V the addresses from 60000 to 60035 are block 1
of Figure 7,1, All numbers used in the program are octal, The program
as written is for codes of length 26, so most of the program deals with
half length codes of length 13, Words to be changed for different length
codes are 60000 (mask of ones for half length code as determined by
weight), 60001 (length of half code minus one [upper half], and length
of memory word minus length of code [lower half]), 60004 (length of
half code), 60034 (last sequence in code list). For exactly the same
reasons respectively change 60015, 60016, 60021 and 60032,

Addresses 17000 to 17045 gseparate the sequences int.o blocks by
supplementary number. Index register 2 must be entered with 100
before starting. Addresses to be changed here are 17000 (mask of first
3 and last 3 bits), 17005 (contains the total number of sequences for
both half length codes), 17007 (contains the number of sequences with
7 ones), 17015 (contains a mask for half length codes), 17026 (contains
the number of sequences with 9 ones), 17032,17033 (have for their
instruction address the base word 50000 plus the number of half codes
with 7 ones), 17034 (contains a mask for code length),

Addresses 10000 to 10106 are the repetitive part of the program.
The only memory address needing modification here for different length
codes is 10106 which contains SVN a mask equal to the one half code
length,

Addresses 7200 to 7252 contain the unpacking subroutine and the
like-unlike subroutine, 7201,7207,7215, and 7223 all contain the
half code length, Similarly 7204,7207,7220, 7223 and 7230 all contain
the full code length or the length modified by one or two to fit the program

needs. 135



The 15000 to 15100 series is all possible bit arrangements for
the first 3 and the last 3 bits of codes of length 13, while 16000 to
16100 is a list of supplementary block numbers in one to one correspon-
dence with this list.

The 10300 and 10400 series respectively contain the number of
codes in each supplementary block for the half length codes of weight
9 and weight 7,

16000 to 16020 is the final list of the 18 supplementary block
numbers and is in one to one correspondence with the 10300 and 10400

series,
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60000
60001
60002
60003
60004
60005
60006
60007
60010
€0011
60012
60013
60014
60015
60016
60017
60020
60021
60022
60023
60024
60025
60026
60027
60030
60031

60032

10
20
50
05
22
50
07
04
54
75
72
75
55
07
04
2
50
75
12
20
51
50
64
76
50
57
10
20
50
05
22
50
07
04
54
75
72
75
55
07
04
22
50
75
12
20
51
50
64
76
50
76
00
00

CO OO OO OO VNOOOHOOONODOODWO OO0 OHOOOOOONODOOROOONOODOWO OO

00177
60035
00006
00043
60006
00000
00001
00000
00015
60002
60035
60001
60003
00001
00000
60011
00000
60005
60035
50000
00001
00000
60034
60010
00000
60300
00777
60035
00010
00043
60023
00000
00001
00000
00015
60017
60035
60016
60020
00001
00000
60026
00000
60022
60035
50000
00001
00000
60032
60025
00000
04321
00000
17760

REP

IT

BACK

AG

CHG

WOF

REC

PER

TI

KCAB

GA

GHC

FOW

CER

SVTN

ORG

ENA
STA
ENI
ALS
AJP
ENI
LisS
ENQ
ISK
SLJ
RAO
SLJ
1JP
LLS
ENQ
AJP
ENI
SLJT
LDA
STA
INI
ENI
EQS
SLS
ENI
SIL
ENA
STA
ENI
ALS
AJP
ENI
LLS
ENQ
ISK
SLJ
RAO
SLJ
1JP
LLS
ENQ
AJP
ENI
SLJ
LDA
STA
INI
ENI
EQS
SLS
ENI
SLS
OCT
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60000

177
KEEP

43
CHG

15

IT
KEEP
REP
BACK

REC

AG
KEEP
50000

NTVS
WOF

60300
7
KEEP
10

43
GHC

15

TI
KEEP
PER
KCAB

CER
GA

KEEP
50000

SVTN
FOW

4321
17760



60033
60034

60035

17000
17001
17002
17003
17004
17005
17006
17007
17010
17011
17012
17013
17014
17015
17016
17017
17020
17021
17022
17023
17024
17025
17026

17027

50
50
00
00
00
00

04
44
04
75
12
05
70
51
50
50
54
75
50
50
50
50
04
50
06
12
05
20
66
75
72
12
04
50
47
50
51
75
51
51
10
05
50
70
50
50
54
75
50
50
50
50
04
50
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00000
00000
00000
17700
00000
00000

16007
50000
15000
17045
16000
00030
50000
00001
00100
00000
04477
17000
00000
00000
03264
00000
00777
00000
00030
15500
00030
30000
50000
17020
30001
50000
17777
00000
30002
00000
00001
17010
00001
00400
00400
00030
00000
17016
00000
00000
00022
17007
00000
00000
01313
00000
00777
00000

NTVS

KEE

P

START

TOP

TRY

TAR

NEXT

POT

YRT
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ENI

OCT

OCT

ORG
ENQ
ILDL
EQS
SLJ
LDA
ALS
RAD
INI
ENI
ENI
ISK
SLJ
ENI
ENI
ENI
ENI
ENQ
ENI
QLS
LDA
ALS
STA
MEQ
SLJ
RAO
LDA
ENQ
ENI
STL
ENI
INI
SLJ
INI
INI
ENA
ALS
ENI
RAD
ENI
ENI
ISK
SLJ
ENI
ENI
ENI
ENI
ENQ
ENI

COO0OUINHF OO OWOODOON—OWOWOOUINOUINO—~OOOOoODUINFOWONFMFEFONOIDNREO

17700

17000
16007
50000
15000
WHOA
16000
30
50000

100
4577
START
3264
77
30
15500
30
30000
50000
NEXT
30001
50000
17777

30002

TRY
400
400
30
TAR
2
TOP
1313

777



17030
17031
17032
17033
17034
17035
17036
17037
17040
17041
17042
17043
17044

17045

10000
10001
10002
10003
10004
10005
10006
10007
10010
10011
10012
10013

10014

06
12
05
20
66
75
72
12
04
50
47
50
51
75
51
51
10
05
50
70
50
50
54
75
76
50
50
76

10
50
15
15
15
50
64
75
75
50
54
75
54
75
76
50
57
12
24
14
20
56
12
24
70
56

COO0O OO OO WOOOO NN —-O0OWOWOOUNODING —O

NOOOPAROOOO— OO0 —OMNOOOWWNF OO

00030
15500
00030
20000
53264
17037
20001
53264
17777
00000
20002
00000
00001
17027
00001
00200
00200
00030
00000
17035
00000
00000
00022
17026
00000
00000
77777
04444

00246
00000
15500
15500
15500
00022
15500
10005
10010
00000
0002z
10000
00021
10000
00000
00000
10074
10074
10104
10062
10033
10075
10075
10104
10033
10076

RAT

TXEN

WHOA

PERO

BK

SKB

COMPR
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QLS
LDA
ALS
STA
MEQ
SLJ
RAO
LDA
ENQ
ENIJ
STL
ENI
INI

SLJ
INI

INI

ENA
ALS
ENI
RAD
ENI
ENI
ISK

SLJ
SLS
ENJ
ENI
SLS
ORG
ENA
ENI
SUB
SUB
SUB
ENI
EQS
SLJ
SLJ
ENI
ISK

SLJ
ISK

SLJ
SLS
ENI
S1L

LDA
MU |
ADD
STA
SIU

LDA
MU1I
RAD
SIU
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30
15500
30
20000
53264
TXEN
20001
53264
17777

20002

YRT

200
200
30

RAT

22
POT

77777
4444
10000
246

15500
15500
15500
22
15500
BK
COMPR

2l
PERO
21
PERO

BAG
BAG
TWOH
COREA
AMC
FAG
FAG
TWOH
AMC
SAG



10015
10016
10017
10020
10021
10022
10023
10024
10025
10026
10027
10030
10031
10032
10033
10034
10035
10036
10037
10040
10041
10042
10043
10044
10045
10046
10047

10050

12
24
14
20
56
12
24
14
20
12
05
14
20
12
05
14
20
12
05
14
20
L2
20
50
50
50
50
50
12
42
42
513
64
75
42
75
2
24
14
20
I} 2
75
12
24
14
20
12
75
12
24
14
20
12
75
57
57
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10076
10073
10063
10034
10077
10077
10073
10064
1003%
10300
00030
10071
10053
10300
00030
10072
10054
10400
00030
10070
10052
10400
10100
00000
00000
00000
00000
00000
20002
20002
30002
10100
30002
10052
10106
07200
10076
10073
10065
10041

00000
07214
10074
10105
10066
10044
00000
07206
10075
10104
10067
10047
00000
07222
10101

10102

AMC

BMC

BTMC

BNP

ATNP

AONP
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LLDA
MU1
ADD
STA
STU

LDA
MU
ADD
STA
LDA
ALS
ADD
STA
LDA
ALS
ADD
STA
LDA
ALS
ADD
STA
LDA
STA
ENI

ENI

ENJ

ENIJ

ENI

LDA
SCM
SCM
LIL

EQS
SLJ

SCM
SLJ

LDA
MU T
ADD
STA
LDA
SLJ

LDA
MU
ADD
STA
LDA
SLJ
LDA
MUT
ADD
STA
LDA
SLJ

SIL

SIL

WD WOOOCO R AROOOORNOOOORTOOONBERUWTEARNWOOWOOONOOOPLROOO—OOOOWOO OO

20002
20002
3000¢
LDD
30002
LBA
SVN
FOURTH
SAG
FORH
BONP
BNP

0
SECOND
BAG
TTHOU
ATWP
ATNP
0
THIRD
FAG
TWOH
AOWP
AONP
0
FIRST
UNO
DOS



10051
10052
10053
10054
10055
10056
10057
10060
10061
10062
10063
10064
10065
10066
10067
10070
10071
10072
10073
10074
10075
10076
10077
10100
10101
10102
10103

10104

57
75
54
75
54
75
54
75
53
52
52
52
75
50
53
53
53
75
12
42
42
53
64
75
12
75
12
75
Il 2
75
54
75
54
7
54
75
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
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10103
07230
00000
10033
00000
10033
00000
10033
10074
10075
10076
10077
10005
00000
10101
10102
10103
10052
20002
20002
30002
10100
30002
10052
30002
07214
20002
07206
20002
07222
00000
10033
00000
10033
00000
10033
00000
00400
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00200

LBA

LAA

REL

COREA
COREB
CORBT
BONP
ATWP
AOWP
BINC
AINC
AAINC
FORH
BAG
FAG

SAG

LDD
UNG
DOS
TRES

TWOH
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SIL
SLJ
ISK
SL.J
ISK
SLJ
ISK
SLJ
LIL
LIU
LIU
LIU
SLJ
ENI
LIL
LIL
LIL
SLJ
LDA
SCM
SCM
LIL
EQS
SLJ
LDA
SLIJ
LDA
SLIJ
LDA
SLJ
ISK
SLJ
ISK
SLJ
ISK
SLJ
OCT

OCT
OCcT
OCT
OCT
OoCT
OCT
OCT
OCT

OCT

4

TRES

O0BEGINEQ

S WO ROV W AEPLANCOCOOND VDO LWNOODWINE RO WOS Ao

0
AMC
0
AMC
0
AMC
BAG
FAG
SAG
LAG
BK

0
UNO
DOS
TRES
LBA
20002
20002
30002
LDD
30002
LBA
30002
SECOND
20002
THIRD
20002
FIRST
0
AMC
0
AMC
0
AMC
400

0

0

200



07203
07204
07205
07206
07207
07210
07211
07212
07213
07214
07215
07216
07217
07220
07221
07222
07223
07224
07225
07226
07227
07230

07231

00
00

75
04
03
50
07
20
10
51
54
75
75
50
75
04
03
50
07
20
51
10
54
75
75
50
75
04
03
50
07
20
10
51
54
75
75
50
75
04
03
50
07
20
51
10
54
75
75
50
10
20
11
60

o o
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00200
00000

00000
00000
00015
00000
00001
07101
00000
00001
99931
07202
07200
00000
00000
00000
00015
00030
00001
07100
17774
00000
77774
07210
07206
00000
00000
00000
00015
00000
00001
07001
00000
00001
00031
07216
07214
00000
00000
00000
00015
00030
00001
07000
77774
00000
77774
07224
07222
00000
00032
07247
77776
07233

THIRD L

TTHOU OCT

ORG
FOURTHSLJ
ENQ
LRS
ENI

FOURTHL LLS

STA
ENA
INI
THRU4 ISK
SLJ
SLJ
ENI
SLJ
ENQ
LRS
ENI
LLS
STA
INI
ENA
THRU3 ISK
SLJ
SLJ
ENI

THIRD

SECOND SLJ

ENQ
LRS
ENI

SECONDIL LLS

STA
ENA
INI
THRU2 ISK
SLJ
SLJ
ENI
SLJ
ENQ
LRS
ENI
FIRSTL LLS
STA
INI
ENA
THRU1l ISK
SLJ
SLJ
ENI

FIRST

BEGINEQ ENA

STA

INA

SAU
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20000000000
7200

0

15

00000

1

7101

0

1

31
FOURTHL
FOURTH
0

0

15

30

1

7100
77774
0
17774
THIRD L
THIRD
0

0

15
00000

1

7001

0

1

31
SECONDL
SECOND
0

0

15

30

1
7000
17774

77774
FIRST L
FIRST
32

77776
BEGIN



07232
07233

07234
07235
07236
07237
07240
07241
07242
07243
07244
07245
07246
07247
07250
07251

07252

10300
10301
10302
10303
10304
10305
10306
10307
10310

10311

60
50
50
50
57
50
50
53
12
15
22
51
12
15
22
51
51
50
54
75
55
51
55
76
51
75
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

0
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eajojooolololoNolololoNolelelNoNolNolNo

,07243

00000
00000
00000
07251
00000
00000
07251
07000
07000
07240
00001
07100
07100
07242
77776
00001
00000
00000
07236
10060
77776
07246 .,
064000
00001
07234
00000
00000
00000
00000
00000
00000
00000
00000

00000
00016
00000
00016
00000
00034
00000
00054
00000
00054
00000
00054
00000
00026
00000
00130
00000
00026
00000
00016

BEGIN

BIGLOOP

SMALLER LDA

BSECTION

ADYV

CHECKEQ

RESET

N
NMINUSI

TEMP

ONE

143

SAU
ENI

ENI
ENI
SIL
ENI
ENI
LIL

SUB
ATP
INi
LDA

SUB
AJP
INI
INI
ENI
ISK
SLJ
1JP
INI
1JP
SLS
INI
SLJ
DEC

DEC

DEC

DEC

ORG
OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OO+~ —WORONWORNWR®—ERNANW=O=BhO

CHECKEQ
0

0
TEMP
00000
00000
TEMP
7000
7000
BSECTION
00001
7100
7100
ADV
77776
00001
0

SMALLER
REL
77776
RESET
64000

1
BIGLOOP

10300
16

16

34

54
26
130
26

16



10312
10313
10314
10315
10316
10317
10320

10321

10400
10401
10402
10403
10404
10405
10406
10407
10410
10411
10412
10413
10414
10415
10416
10417
10420

10421

15500

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00

OO OO OO OO ODODOOOOO O

eNoloBoNeNolaoNoloNoNoRoRololoNeloNoNoNoNoNoleoNoNoNoNoNeoNoNoNoN e NoloNo N

oo

00000
00142
00000
00016
00000
00034
00000
00106
00000
00106
00000
00054
00000
00026
00000
00043

00000
00106
00000
00106
00000
00214
00000
00160
00000
00160
00000
00160
00000
00070
00000
00340
00000
00070
00000
00106
00000
00304
00000
00106
00000
00214
00000
00070
00000
00070
00000
00160
00000
00070
00000
00010

00000
00000

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

ORG
OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

ORG
OCT
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142
16
34
106
106
54
26
43

10400
106

106
214
160
160
160
70
340
70
106
304
106
214
70
70
160
70
10

15500



15501
15502
15503
15504
15505
15506
15507
15510
15511
15512
15513
15514
15515
15516
15517
15520

15521

16000
16001
16002
16003
16004
16005
16006
16007
16010

16011

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
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00000
00020
00000
00110
00000
00001
00000
00011
00000
00021
00000
00101
00000
00111
00000
00121
00000
00002
00000
00012
00000
00022
00000
00102
00000
00112
00000
00122
00000
00013
00000
00103
00000
00123

00000
00123
00000
00123
00000
00012
00000
00012
00000
00012
00000
00012
00000
00012
00000
00012
00000
00012
00000
00012
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OCT
OCT
oCcT
OCT
OCT
OCT
OCT
OCT
OCT
oCT
OCT
OCT
OoCT
OCT
OCT
OCT
OCT

ORG
OCT

OCT
OCT
OCT
OCT
OCT
OCT
OoCT
OCT

OCT

20

110

11
21
101
111

121

12
22
102
112
122
13
103
123

16000
123

123
12
12
12
12
12
12
12

12



16012
16013
16014
16015
16016
16017
16020
16021
16022
16023
16024
16025
16026
16027
16030
16031
16032
16033
16034
16035
16036
16037
16040
16041
16042
16043

16044

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
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00000
00112
00000
00112
00000
00112
00000
00112
00000
00122
00000
00122
00000
00122
00000
00122
00000
00001
00000
00001
00000
00001
00000
00001
00000
00011
00000
00011
00000
00011
00000
00011
00000
00013
00000
00013
00000
00013
00000
00013
00000
00021
00000
00021
00000
00021
00000
00021
00000
00101
00000
00101
00000
00111
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OCT

OoCT

OCT

OoCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OoCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

112
112

112

122
122
122

122

11
11
11
11
13
13
13
13
21
21
21
21
101
101

111



16045
16046
16047
16050
16051
16052
16053
16054
16055
16056
16057
16060
16061
16062
16063
16064
16065
16066
16067
16070
16071
16072
16073
16074
16075
16076

16077

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
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00
00
00
00
00
00
00
00
00
00
00
00
00
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00000
00111
00000
00111
00000
00111
00000
00111
00000
00111
00000
00111
00000
00111
00000
00103
00000
00103
00000
00121
00000
00121
00000-
00000
00000
00000
00000
00002
00000
00002
00000
00110
00000
00110
00000
00110
00000
00110
00000
00020
00000
00020
00000
00102
00000
00102
00000
00102
00000
00102
00000
00022
00000
00022
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OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT

OCT

111

111

111

111

111

111

103

103

121

121

110

110

110

20

20

102

102

102

102

22
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15000
15001
150002
15003
15004
15005
15006
15007
15010
15011
15012
15013
15014
15015
15016
15017
15020
15021
15022
15023
15024
15025
15026
15027
15030
15031

15032

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
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00000
00000
00000
16007
00000
10000
00000
00001
00000
14002
00000
12004
00000
04003
00000
02005
00000
16006
00000
06007
00000
04000
00000
00002
00000
16005
00000
12007
00000
02000
00000
00004
00000
16003
00000
14007
00000
14000
00000
000073
00000
16004
00000
02007
00000
12000
00000
0000%
00000
16002
00000
04007
00000
10004
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ORG
OCT

OCT

OCT

OCT

OCT

OoCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OoCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

15000

16007

10000

14002
12004
04003
2005
16006
6007

4000

16005
12007

2000

16003
14007

14000

16004
2007

12000

16002
4007

10004



15033
15034
15035
15036
15037
15040
15041
15042
15043
15044
15045
15046
15047
15050
15051
15052
15053
15054
15055
15056
15057
15060
15061
15062
15063
15064

15065

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
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00000
02001
00000
14006
00000
060073
00000
10002
00000
04001
00000
12006
00000
06005
00000
10001
00000
06006
00000
06000
00000
04004
00000
02002
00000
00006
00000
16001
00000
14005
00000
12003
00000
10007
00000
04002
00000
12005
00000
02004
00000
14003
00000
16000
00000
00007
00000
14004
00000
02003
00000
14001
00000
10003
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OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

2001
14006
6003
10002
4001
12006
6005
10001
6006
6000
4004

2002

16001
14005
12003
10007
4002

12005
2004

14003

16000

14004
2003
14001

10003



15066
15067
15070
15071
15072
15073
15074
15075
15076

15077

Hee

10106

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
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00000
06004
00000
02006
00000
12002
00000
04005
00000
12001
00000
10005
00000
06002
00000
04006
00000
10006
00000
06001

00000
17777

SVN
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OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

OCT

END

OCT

6004
2006
12002
4005
12001
10005
6002
4006
10006

6001

17777



07400
07401
07402
07403
07404
07405
07406
07407
07410
07411
07412
07413
07414
07415
07416
07417
07420
07421
07422
07423
07424
07425
07426
07427
07430
07431

07432

50
50
50
50
50
50
10
20
54
75
50
53
54
75
76
50
57
50
75
50
75
12
20
50
12
22
10
20
60
10
20
60
50
50
04
50
06
44
01
20
04
06
44
01
42
22
51
50
54
75
72
50
54
75
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00000
00000
00000
00000
00000
00000
00000
600000
00210
07403
00000
50107
00227
07410
06655
00000
50107
00000
51000
00000
51032
50105,
07426
00000
60200
07460
00210
07733
07450
00007
07734
07723
00000
00001
00001
00000
00000
60000
00000
07457
00001
00000
60000
00000
07457
07454
00001
00000
00020
07421
07420
00000
00006
07420

ERAS

BUS

uu

VvV

SERE
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ORG
ENI
ENI
ENI
ENI
ENI
ENI
ENA
STA
ISK
SLJ
ENI
LIL
ISK
SLJ
SLS
ENI
SIL
ENI
SLJ
ENI
SLJ
LDA
STA
ENI
ILDA
AJP
ENA
STA
SAU
ENA
STA
SAU
ENI
ENI
ENQ
ENI
QLS
ILDL
ARS
STA
ENQ
QLS
ILDL
ARS
SCM
AJP
INI
ENI
ISK
SLJI
RAO
ENI
ISK
SLJ
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400
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60000
2110
/-1

RETNA
227
BUS
6655

RETNA
INPU

VERT
DUM7
SERE-1

60200
TAT
210
TEMI
JJ

TEM?2
GOF

O O = O
o

oo
&
RS
= (@]

60000
PERE
FRERE

20
VvV
UvuU

uu



07433
07434
07435
07436
07437
07440
07441
07442
07443
07444
07445
07446
07447
07450
07451
07452
07453
07454
07455
07456
07457
07460
07461
07462

07463

07600

12
50
05
05
05
05
05
05
20
50
54
75
10
50
14
50
54
75
20
50
12
20
10
20
54
75
54
75
75
12
20
50
75
50
72
75
50
50
00
00
00
00
10
20
60
10
20
60
75
50

00
00
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07600
00000
00000
00000
00000
00000
00000
00000
07600
00000
00006
07433
00000
00000
07600
00000
00006
07442
1000
00000
07455
07420
00004Q
07600
00006
07446
00000
07420
51034
07734
63100
00000
07700
00000
07600
07427
00000
00001
00000
77777
00000
00000
00104
07733
07450
00003
07734
07723
07420
00000

00000
00000

WWwW

XX

ZZ

JJ

FRERE
YY
THSV
PERE

TAT

MERE

152

LDA
ENT
ALS
ALS
ALS
ALS
ALS
ALS
STA
ENI
ISK
SLJ
ENA
ENI
ADD
ENI
ISK
SLJ
STA
ENI
LDA
STA
ENA
STA
ISK
SLJ
ISK
SLJ
SLJ
LDA
STA
ENI
SLJ
ENI
RAO
SLJ
ENI
ENT
OoCT

OCT

ENA
STA
SAU
ENA
STA
SAU
SLJ
FNI
ORG
OCT
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Uuu
TERN
TEM2
63100
0
YEA
0
MERE
SERE
0

1
377777

0
104
TEMI
33
TEM2
GOF
uu

7600



07700
07701
07702
07703
07704
07705
07706
07707
07710
07711
07712
07713
07714
07715
07716
07717
07720
07721
07722
07723
07724
07725
07726
07727
07730
07731

07732

50
50
50
50
53
56
12
11
60
50
12
2
20
57
04
75
10
20
12
24
14
20
16
50
44
20
12
50
54
75
51
51
57
10
65
75
53
50
54
75
76
50
50
55
54
75
75
75
00
00
00
00
44
20
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00000
00000
00000
00000
07733
07725
07733
77776
07726
00000
61000
07726
63000
07730
61000
07725
00000
61000
07730
07731
07732
07714,
07456
00000
60000
62000
61000
00000
00020
07707
00001
00001
50104
00000
61000
07725
50104
00000
00000
07705
04444
00000
00000
07735
00000
07705
07742
07737
00000
00000
00000
00100
60000
62000

YEA

RGE

BALE

TUB

GOF

ELSE

PATE

ERE

RTY

TAP
153

ORG
ENI
ENI
ENI
ENJ
LIL
SIU
LDA
INA
SAU
ENI
LDA
AJP
STA
SIL
EQS
SLJ
ENA
STA
LDA
MUI
ADD
STA
LD
ENI
LDL
STA
LDA
ENI
ISK
SLJ
INI
INI
SIL
ENA
THS
SLJ
LiL
ENI
ISK
SLJ
SLS
ENI
ENI
1JP
ISK
SLJ
SLJ
SLJ
OCT

OCT

LDL
STA
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SIGNAL
0

RGE
FOP2
FOP1

0

100

60000
62000



07733
07734
07735
07736
07737
07740

07741

07742
07743

07744

50000
50001
50002
50003
50004
50005
50006
50007
50010
50011
50012
50013
50014
50015
50016

50017

00
00
00
00
04
76
51
75
12
20
54
75
76
50

12
20
54
75
75
50

50
50
50
60
53
53
56
56
56
53
50
50
50
50
12
14
15
50
64
75
56
57
56
56
50
50
50
50
12
24
14
20
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00000
00000
00000
00000
77777
02040
00001
07705
62000
10000
00777
07737
00111
00000

62000
11000
00777
07742
50000
00000

00000,
00000
00000
00000
63100
63101
50061
50060
50057
63101
00000
00000
00000
00000
63000
63000
63010
00000
63010
50063
50073
50100
50101
50102
00020
00000
00000
00000
50073
07731
50064
50103

TEMI1

TEM2

SIGNAL

ELSE

FOPI

FOP2

IMP2

JMP1

1
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OCT
OCT

ENQ
SLS
INI
SLJ
LDA
STA
ISK
SLJ
SLS
ENI
EQU
LDA
STA
ISK
SLJ
SLJ
ENI
ORG
ENI
ENI
ENI
ENI
LIL
LIL
SIU
SIU
S1U
LIL
ENI
ENI
ENI
ENI
LDA
ADD
SUB
ENI
EQS
SLJ
SIU
SI1L
SIU
S1U
ENI
ENI
ENi
ENI
LDA
MUI
ADD
STA
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50020
50021
50022
50023
50024
50025
50026
50027
50030
50031
50032
50033
50034
50035
50036
50037
50040
50041
50042
50043
50044
50045
50046
50047
50050
50051

50052

12
24
70
20
12
24
14
20
12
24
14
20
12
24
14
20
12
42
42
50
64
75
42
75
12
05
14
20
12
75
12
05
14
20
12
75
12
05
14
20
12
75
57
57
57
57
75
50
53
53
53
53
54
75
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50100
07731
50103
50030
50101
07731
50065
50031
50102
07731
50065
50031
50102
07731
50066
50032
10000
10000
11000
00020
11000
50052
500607 -
00017
50100
00036
50070
50036
10000
00016
50101
00006
50071
50041
11000
00015
50073
00006
20072
50044
10000
00014
50074
50075
50076
50077
00013
00000
50074
50075
50076
50077
00020
50030

INF'1
INF2

INF'3

INF4

INF5

INF6

REL

INSKIP
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LDA
MUI
RAD
STA
LDA
MUI
ADD
STA
LDA
MUT
ADD
STA
LDA
MUI
ADD
STA
LDA
SCM
SCM
ENI
EQS
SLJ
SCM
SLJ
LDA
ALS
ADD
STA
LDA
SLIJ
LDA
ALS
ADD
STA
LDA
SLJ
LDA
ALS
ADD
STA
LDA
SLJ
SIL
SIL
SIL
SIL
SLJ
ENI
LTL
LIL
LIL
LIL
ISK
SLIJ
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TE4
RTY
DEL
INF'1
TES5
RTY
DUM2
INF2
TE6
RTY
DUM2
INF 2
TE®6
RTY
DUM3
INF 3
A

A

B

20"

B
INSKIP
TRENSE
FOURTH
TE4
36
DUM4
INF4
A
THIRD
TES5

6
DUM5
INF5&
B
SECOND
TE3

6
DUM6b
INF6
A
FIRST
FAG
SAG
LAG
GAG
BEGINEQ
0

FAG
SAG
LAG
GAG
20
INF'1



50053
50054
50055
50056
50057
50060
50061
50062
50063
50064
50065
50066
50067
50070
50071
50072
50073
50074
50075
50076
50077
50100
50101
50102

50103

50104

50105

54
75
54
75
52
53
52
52
54
75
54
75
54
75
76
50
53
75
12
42
42
50
64
75
00
00
12
75
12
75
12
75
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
42
22
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00020
50030
00020
50030
50073
50100
50101
50102
00000
50007
00000
50007
00000
50007
01111
00000
63101
50057
10000
10000
11000
00020
11000,
50052
00000
77777
100000
00012
11000
00011
10000
00010
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

00000
00000
07457
07454

INFA
INEF'B

INFC

SWHE
DUMI
DUM2
DUM3
TRENSE
DUM4
DUMS5
DUMGb
TE3
FAG
SAG
LAG
GAG
TE4
TES
TE6
DEL

B
DOL

DUM?7
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ISK
SLJ
ISK
SLJ
LIU
LIL
LIU
LIU
ISK
SLJ
ISK
SLJ
ISK
SLJ
SLS
ENI
LIL
SLJ
LDA
SCM
SCM
ENI
EQS
SLJ
OoCT

LDA
SLJ

LDA
SLJ

LDA
SLIJ

OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT
OCT

EQU
OoCT

SCM
AJP
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20

INF'1
20

INF' 1
TE3
TE4
TES5
TE®6

JMP2
JIMP2

JMP2
1111

63101
INF A
A

A

B

20

B
INSKIP
377777

A
THIRD
B
SECOND
A
FIRST

0

0

0

11000

PERE
FRERE



50106
50107

50110

51000
51001
51002
51003
51004
51005
51006
51007
51010
51011
51012
51013
51014
51015
51016
51017
51020
51021
51022
51023
51024
51025
51026

51027

42
22
00
00
00
00

75
50
57
50
50
10
74
74
20
10
61
4
12
22
14
20
50
74
T4
75
T4
75
53
75
00
00
55
75
74
T4
75
50
00
00
50
50
50
T4
57
55
5
50
10
61
T4
T4
4
T4
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07457
07454
00000
00000
00000
00000

00000
00000
51020
00004
00000
00000
52031
52000
57777
60001
00005
57777
57777
51006
51014
00005
00000
52000
52003
51015
52005
51015
51020
51000
00001
00000
51016
51036
52006
52000
51002
00000
00000
00000
00000
00000
00000
52000
51030
51025
51031
00000
60000
00005
52031
52000
57777
52000

DUMI10

RETNA

ANTER

INPU

CONSI

ERR

CONT

OUTFPUT
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SCM
AJP
OCT

OCT

ORG
SLJ
ENI
S1L
ENI
ENI
ENA
EXF
EXF
STA
ENA
SAL
EXF
LDA
AJP
ADD
STA
ENI
EXF
EXF
SLJ
EXF
SLJY
LIL
SLJ
ZRO
ZRO
IJP
SLJ
EXF
EXF
SLJ
ENI
OCT

ENI

ENI
EXF
SI1L
IJP
SLJ
ENI
ENA
SAL
EXF
EXF
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