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ABSTRACT 

Complementary binary sequences were invented by Golay in an in- 

vestigation of infra-red multi-slit spectrometry.     This dissertation 

formalizes the basic  results obtained by Golay and develops new concepts 

and techniques for examining the characteristics of these special binary 

codes.    This work has developed new understanding of the structure and 

methods for the decomposition of complementary sequences. 

Complementary sequences have the property of an infinite correla- 

tion peak to ambiguity ratio when detected with a matched filter.    These 

binary sequences should find much application as pseudo-random noise 

modulation signals for both radar and communications systems. 

A discussion of the need for such sequences is included in the intro- 

duction and is followed by a state of the art description.     An operations 

group on the  sequences is formulated and the proofs of several theorems 

concerning the operations group are given in a rigorous manner.     One 

reason for developing the operations group is the application to elimina- 

tion of redundance in the computer search for new codes. 

Several invariant properties of complementary codes are proved 

through the use of the Hamming distance concept.    Many more invariant 

properties of the sequences are demonstrated through the introduction of 

a Hamming vector.     The concept of a Hamming vector is extremely use- 

ful as a complementary code decomposition tool.    A large number of 

theorems are proved to enhance its use in this field. 

Several computer searches for complementary sequences are 

described and the actual computer programs for the CDC   1 604 are in- 

cluded in the Appendix. 
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CHAPTER   I 

INTRODUCTION 

Search radars of today are required to obtain smaller and smaller 

targets at ever increasing ranges.    This has led to many different tech- 

niques of summing radio frequency energy to obtain these long  ranges. 

Complementary sequences are well adapted for coding the RF energy 

pulses to give a summing of the returning RF energy in the echo.     The 

present work is more concerned with the characteristics of complemen- 

tary codes such as their operation groups,   Hamming distances and 

Hamming vectors,  than it is with their application as modulating signals 

for RF carriers.    However,   the introduction will develop the radar 

problem as a vehicle to emphasize the use of these codes in future appli- 

cations in radar.     Their application will probably be equally important 

in the communications field.     The initial work in complementary sequen- 

ces was directed toward an infra-red application,  but it is felt that the 

eventual application of these sequences will spread to many different 

1      2 
fields.    ' 

The usual approach to the problem of increasing radar range is to 

look for ways of varying  some of the parameters in the radar range 

equation which will lead to a greater maximum range. 

The radar range equation is 

R max 

P. GA    SD t        e 

P     .     16TT 2 
mm 

1/4 

wh ere    P   = peak transmitted power in watts, 

P     .     = minimum peak detectable  signal in watts, mm r b 

S = scattering cross section of target in units 
consistent with range» 

G - gain of transmitting antenna, 

A    = effective area of receiving antenna in 
e consistent units, 



D = a composite loss factor for transmission lines, 
atmospheric  losses,  etc. 

The parameters under the control of the design engineer are A   ,G, 

P    .     and Pi#    A      and   G   are fixed by various considerations  such as 
mm t e 

antenna beamwidth,   side lobe  suppression,  physical size of the antenna, 

etc. ,   and are not truly available as adjustable parameters beyond small 

variations.     Therefore the two parameters for the designers to optimize 

are    P     .       and   Plt mm t 

P     .       is basically limited by three factors:    Johnson noise in the min J 

input circuits,   shot effect and other noises in the first tube,   and cosmic 

noise picked up by the antenna.     P     .       approaches    KBT     in a perfect r r     J min a r 

receiver,  where    K   is Boltzmann's constant,   B    is the bandwidth and T a 

is the absolute  space temperature.     P    .      is currently being reduced 

toward the above value through the utilization of parametric amplifiers, 

masers and other low noise devices.    Another method of reducing    P 
°        min 

is through pulse integration,   since noise voltage averaged over a period 

of time has a value approaching zero while the  signal values are additive. 

However,   in most cases this integration of pulses can also be considered 

as an increase in transmitted energy.     It will be considered from that 

viewpoint in this paper.    There are two basic types of integration,  co- 

herent and noncoherent.     Coherent integration gives a gain of approxi- 

mately   N,   where    N   is the number of pulses integrated and noncoherent 

integration gives a gain of approximately n/N,    Both of these values are 

3 
compared to a single pulse   .     The values are respectively the upper 

bound for coherent integration and the lower bound for noncoherent 

integration. 

There are basically three different integration time bases possible 

in a radar system.     One is the antenna scan to antenna scan where the 



operator or a computer,   decides if the echoes from previous  scans were 

signals or noise.     The second method of integration is the interpulse 

method where the cathode  ray tube,   a delay line,  or a computer sums up 

the hits within one antenna scan of the target.     The third method is intra- 

pulse integration,   or pulse compression,   where different portions of 

one  radar transmitted pulse are summed up.    Complementary codes are 

used in one scheme of intrapulse integration. 

An examination of how the transmitted power or energy since 

E   = P    A  T,    can be varied is now in order.    From this  relation,   it is 

seen that there are two basic methods for increasing the transmitted 

energy:   either increase peak pulse power,  or increase the pulse width. 

A common method of increasing radiated energy has been to increase 

the peak power.     This method has proven both expensive and wasteful as 

many radar transmitter tubes are peak power limited while only dissipa- 

ting a very small percentage of their average power capability,  and 

radar modulators are taxed with a very similar problem.     The alterna- 

tive did not look very promising at first,   since to increase pulse duration 

normally reduces the high frequency content of a pulse,  which in turn 

reduces range resolution capabilities.     However,   intrapulse modulation 

retains the high frequency content of a narrow pulse,  while increasing 

the energy content to that of a pulse of long duration.     Intrapulse modula- 

tion allows the  summing,   required in intrapulse integration,   for 

detection in a radar receiver. 

There are two methods of intrapulse modulation,   the digital method 

and the analog method.    Although the emphasis in this paper is on 

digital modulation schemes  - the analog system will now be briefly 

mentioned since it is a part of the overall picture.     Figure    1. 1  contains 

4 
the graphs used in the explanation of the chirp radar scheme   .     In 
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this analog method of intrapulse modulation the frequency of the outgoing 

pulse is swept linearly upward with time as is shown in Figure  1. 1-b. 

This gives a large high frequency content to the pulse while at the  same 

time maintaining a long pulse duration.     Upon reception the  signal is 

passed through a reversed time delay,   delaying the low frequencies more 

than the highs,   as is  shown in Figure    1. l-d„     This allows all the fre- 

quency components of energy to arrive at the output simultaneously, 

giving a large and narrow output pulse.     The type of filter used in the 

delaying process is known as a matched filter and is discussed in 

Appendix I.     The procedure here is  seen to be quite simple:   first we 

generate energy components with various frequencies at different times, 

and then we delay all components  so that they arrive at the output 

simultaneously. 

As a preliminary to the digital type intrapulse modulation consider 

a transmitted waveform such as in Figure    1. 2.     This waveform con- 

sists of three pulses of unit length with spacing between them of one and 

three time units respectively.    This waveform is then fed into a delay 

line in the receiver which has the delays shown in Figure    1.2-b.     The 

output is either a one or a zero except at the exact match of signal to 

filter;   the output is then three as is  shown in Figure    1. 2-c.    The three 

pulses have therefore been summed as though they were one,   at the 

time between    6   and    7   units.    These pulses  still contain all the high 

frequency components of the short pulse of unit length but have effec- 

tively three times the energy transmitted in a single pulse at the time 

of exact match.    There are two features to be noted about this output, 

first it has been delayed in time and second there are  secondary pulses 

at various undesired times which might be classified as coding noise. 
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I will consider any undesired signal which might be mistaken for a true 

signal as noise.     These two features will be discussed in some detail 

in the true digital intrapulse modulation schemes to be discussed later. 

The scheme just considered is somewhat inefficient since seven 

units of time are required to radiate three units of energy.     If in the 

transmitted signal all the spaces with zero energy output in the pulse 

envelope had also had an output,   seven units of energy would have been 

radiated in seven units of time.     One might use  some  sort of frequency 

shift or phase modulation to accomplish this purpose,   still utilizing of 

course the same output tube.    Consider the same waveform as before 

with the units of energy coded as plus and minus by the modulator by 

means of phase shift modulation of either zero or    180   „     The waveform 

is as shown in Figure    1. 3-a.     Upon reception this waveform is now fed 

into a delay line in the receiver as  shown in Figure    1.3-b.     "A"    repre- 

sents a straight-through amplifier.     Figure    1. 3-c    shows the output of 

the delay line summer with respect to time.     The output energy is now 

seven times that of a single pulse and has the frequency content,  and 

therefore the range resolution,  of one of the  single pulses.    A time delay 

in the output is again apparent,  as are a number of noisy sub-peaks. 

This was a code picked at random and the  results were good.     There are 

certain classes of codes which are optimal, having even smaller noisy 

sub-peaks.     These codes are of length 2-1    and have been studied 

extensively.    '    '       They are known as    L,   codes or pseudo-random noise 

codes.    An example of one of these pseudo-random noise codes is 

-+--+ + +,    where the minuses and pluses indicate the phase of the RF 

signal.     When this particular noise code is impressed upon its matched 

filter,   Figure    1. 4-b,   the output of this summed delay line is as shown 

in Figure    1. 4-c.     It is to be noted that the maximum height of the 

8 
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"hash" (sub-peaks) is one,   with a main peak of seven,  whereas in the 

previous example picked at random the hash had a height of two. 

Elaspas has made a study and design of a radar utilizing this form of 
Q 

modulation and matched filter detection.       He infers that codes of 

reasonable length should be used.     For example,  a code of length    127 

would be a reasonable length to obtain the benefits of a pseudo-random 

matched filter radar.    An optimum code of this length has a maximum 

subpeak of    13,   which gives a good coding signal-to-noise ratio. 

There is a way,   however,  to completely eliminate the hash,  al- 

though this  required the transmission of two  separate  sequences.     Both 

of these sequences could be transmitted through one output tube with a 

moderate band width.    These codes which eliminate the hash are known 

9 
as complementary codes.       An example of a complementary code pair 

being detected by a matched filter pair is  shown in Figure    1. 5.     The 

two codes being transmitted will be called   A   and   B   for convenience, 

with their respective matched filters also being labeled in a similar 

fashion.     The receiver output,  after the complementary codes are detec- 

ted by the matched filter and their outputs  summed,   is  shown in Figure 

1.5-g.    This demonstrates,  as was mentioned before,  that the hash level 

is zero.    This lack of hash is indicative of an infinite coding signal-to- 

noise ratio.     This particular feature is the prime advantage of complemen- 

tary sequence pairs over other forms of noise modulation.     Figure  1. 5-g 

shows the same amount of delay as did all the other forms of matched 

filter detectors,  and shows that the  sum of all the energy sub-pulses is 

incorporated into the main pulse at exact match. 

Each of the systems described in this  introduction has had the char- 

acteristic that the transmitted signal is spread over a wide frequency 

spectrum.     This has in itself two advantages:    One is that enemy detection 

of the  signal becomes more difficult,   and the other is that even after 

detection the jamming of a wide spectrum noise-like signal becomes 

10 



extremely difficult.    Since the characteristics just described are de- 

sirable for a secure communication system as well as for a radar 

system,  all of the advantages that accrue for the complementary se- 

quence modulation in radar would apply in a communications scheme. 

The initial major objectives of this investigation were two in 

number. 

1. The formulation of a set of operations on complementary 

sequences which form a group,  along with a theoretical 

study of the invariant properties of such a group. 

2. The search for new complementary codes.    An exhaustive 

computer search for a new code of length    26   was made 

as well as a. partial search for codes of length   34. 

During the investigation two more major objectives were added 

to the work. 

These were: 

3. The application of Hamming distance to both the comple- 

mentary sequences and their group formulation» 

4. The application of Hamming vectors to complementary 

sequence pairs and also to their group formulation«, 

The original objectives were oriented toward the generation of 

new codes,  while the last two objectives were oriented toward the 

decomposition of codes.    All of these objectives were attained and 

consititute a large portion of the rest of this work.    The next chapter 

is a study of complementary sequences designed to bring the reader 

to the  state of the art,   and contains  some proofs which have not ap- 

peared elsewhere« Chapter    3    is the formulation of the 

operations group on complementary sequences and,   along with several 

theorems and proofs it also contains the identification of this operations 

11 



group with a known group»     Chapter 3    as written requires only a min- 

imum of group theory knowledge.    Chapters   4   and    5   have to do with 

the Hamming distance and Hamming vectors of complementary sequen- 

ces both in standard form and in group form.    Chapter    6   is a short 

chapter and is concerned with the proof of two theorems used in the 

searching for new codes.     Chapters    7    and    8    describe the computer 

search for new kernels of length    26   and   34    respectively,   the actual 

computer programs used being listed in the appendicies.     The last 

chapter,   Number 9,  contains the  summary,   conclusions,  and suggestions 

for future research in this interesting field,, 

12 



CHAPTER   II 

COMPLEMENTARY   SEQUENCES 

This chapter is presented to provide a background in complemen- 

tary sequences to enable the reader to better understand the material 

in later chapters.    Most of the material in this chapter is an adaptation 

of Golay' s    "Complementary Series"   with expansions and deletions to 

9 
fit the needs of this paper.       The formalization of some proofs and the 

addition of new proofs given here have not appeared in print elsewhere; 

however, it is obvious from the tone of Golay's work that he was aware 

of these proofs. This modification of Golay's work is offered for com- 

pleteness of the dissertation and not as new work. 

In the introduction a pair of codes of length   n   were discussed which 

had the characteristic that when detected by matched filters,   the sum of 

the two filter outputs was everywhere zero,   except where the  signal 

patterns had zero time delay with reference to the filter patterns.    At 

the zero pattern delay time the output was    2n,   leading to an infinite 

coding  signal-to-noise  ratio.    A study of the necessary and sufficient 

conditions for this to be true will now be considered. 

Assume a complementary code pair (A, B) and suppose that one of 

the pair,   i. e.   A,   is longer than the other.     If this be true then there will 

be an output from the   A   filter with no cancelling output from the    B 

filter.     This is not allowed;    therefore  the    A   and   B    codes must be  of 

equal length.     Therefore assume a code   A,  n bits in length,  with 

elements   a,  through   a   ,    where each   a.    is either   +1    or   -1.    Also, 
1 ° n l 

assume a second code    B,  n bits in length,  with elements   b. similarly 

defined.    Detect each of these codes with a matched filter (the time 

inverse of the code) and then sum the outputs of the   A   filter and the 

B   filter.    At time    1  (see Figure 2. 1) the  signals a-,   and   b,   have 

entered the filter segments   a      and   b      respectively,,    Since at this ° n n r ' 

13 
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time the delay between signal pattern and filter pattern is not zero,  the 

summed output voltage must be zero.     This gives the condition   a--a    + 

b.b    = 0.    At time    2 (Figure 2. 1) the signals are one  segment farther 

into the filter and the output must again be zero,  giving   a.a      ,    + 

a,, a    + b. b     . + b->b    = 0. 2   n        1    n- 1 <£  n 

At time   3:   a. a     ->+a0a     ,+a,a +b,b     ,+b_,b     ,+b,b    = 0 1    n-2     2  n-1      3  n     1   n-2     2  n-1      3  n 

At time    r   (r 7^ n):   a,a   , .      +a-,a   . .    .     , . . ,,    , . 
'        1   n+l-r     2   n+l-(r-l)   „ . ..+a   a  +b,b   ,,      +. . . r  n      1   n+l-r 

+ b  b    =0 r  n 

At time   n:   a,a,  +a,a., + ....„. + aa    +b1b1+0.0...+ bb    =2n 1122 nnll nn 

for at time   n   the pattern of the signal must exactly match the pattern 

of the filter.    The explicit statement of the conditions given above for all 

times is 
i=n-j i=n-j 

b.b... 1   l+j 
= 2n        j = 0 

F. =       S      a.a.-.'f     S        b.b... =0 j^O        .        . 
J i=1        1   1+J T    i=1 1   i+J (2.1) 

An examination of the equation at time    1 (j= n -   1) shows the following 

eight possible solutions: 

a, a b, b 1 n 1 -n 

These possibilities  show that if the   A   pair are alikes  the   B   pair must 

be unlike,  and if the   A   pair are unlike,  the    B   pair must be alike.     The 

equation at time    2(j=n-2) indicates that if the number of likes (like pairs, 

i.e.   a   and   a     , ,)   of the   A   code and the number of unlikes (unlike 

pairs) of the    B   code are equal,   and if the number of unlikes of   A 

equals the number of likes of   B,   the equation is satisfied.    Extending 

15 



this reasoning to time    r    shows again that if the likes of   A   equal the 

unlikes of   B   and if the unlikes of   A   equal the likes of   B   the equation 

is again satisfied. 

It -will now be proved that the last half of the previous  statement is 

not necessary,   since the first half of the  statement contains the necessary 

and sufficient requirement. 

Let    U    = number of unlike pairs in   A   for the  spacing  specified. 
(j   in equation   2„ 1) 

Let   L    = number of like pairs in   A   for the spacing  specified« 
(j   in equation   2. 1) 

Let   U,   = number of unlike pairs in   B   for the  spacing  specified«, 
(j   in equation    2„ 1) 

Let    L,     = number of like pairs in    B    for the  spacing specified, 
(j   in equation    2". 1) 

Assume that   L    = UK,    we want to prove that   U      =    l_ 0 a D a D 

Since the  sum of the number of like pairs at each spacing with the num- 

ber of unlike pairs at the same spacing must equal the total number of 

possibilities, 

U    + L    = n-(n-r)    for    r 4 n   where    n   is the length of the code 
and   (n-r)    is the number of units of time delay 
from exact match0 

For the same reason 

Ufa + 1^ = n-(n-r). 

But since   U,   =  L  , b a 

Ua + Ub = n-(n-r). 

Therefore    U    = L, . a b 

The definition of a complementary pair of sequences will now be 

given.    A pair of binary sequences of equal length with the number of 

like pairs of one sequence equal to the number of unlike pairs of the 

other sequence for each possible  spacing is  said to be a complementary 

code. 
16 



Two schemes of representation will be used in this paper.     These 

schemes will be used interchangeably at the convenience of the author. 

The first representation is the one already presented where each    a. 

and   bj   is either   +1    or   -1.    The operation used in this case is 

ordinary multiplication.     The  second representation will use the opera- 

tion of modulo two addition denoted by   ©,    where the elements    a.    and 
l 

bi   are either   0   or    1.     That these two groups (1 ,- 1;« ) and (0, 1; » ) 

are insomorphic is shown in the following tables. 

• 1 -1 

1 1 -1 

-1 -1 1 

© 0 1 

0 0 1 

1 1 0 

where    1      -*       0 

-1      -       1 

The first form will normally be used when correlating of the codes 

with their matched filter is under discussion while the second form will 

normally be used when discussing the intrinsic properties of the indi- 

vidual codes. 

The necessary and sufficient condition for a pair of sequences to be 

complementary,   is in terms of the modulo two representation 
i=n-j i=n-j 

F   = S       (ai*a
i+i)   =      £       (b^b.^f&l)   for all j,   Kj<n-1      (2.2) 

J i=l "J i=l ^ 

or an equivalent formulation by change of summation index 
i=j i=j 
£ y 

f. =      .   .  (a.« a     .,.)   =   „   .   (b.« b      ... 9 1) (2  3) J i = l       i       n-j+i' i = l   *   l       n-j+i ' V-.J; 

The above E    is standard summation.     If modulo two summation is 

desired the symbol   S   will be utilized.     (The equivalent conditions are 

given since they are both used in formal proofs in a later portion of 

the paper.     Due to the possibility of confusion it seems more appropriate 
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to introduce the second form now rather than later when needed. ) 

U    = L,     has been used to represent these  same equations,  and will be ab ^ 

used elsewhere in the paper when it is more convenient to use it. 

An interesting property of any system of codes is the possible in= 

variances it may have under various types of transformations.     It 

therefore  seems appropriate to consider the possible transformations 

on a complementary sequence pair which leave the pair complementary 

and of the same length after the transformation.    A necessary tool for 

this study is the property that   a.©a.   . = a. © a. , •   where the  symbol 

a.    means the complement of   a.,   0=1»   1  = 0. 

Theorem 2. 1 

The modulo two sum of a pair of binary numbers is equal to 

the modulo two  sum of their complements. 

The truth of the theorem is obvious from the following exhaustive 

table of four possibilities: 

ä. © ä. , 
l        i+j 

1©1     =     0©0     =     0 

I    ©     Ö     =     0     ©     I     =      1 

5  ©   T    =    i    ©    o   =    i 

o   ©   o   =   o ö*ö=i«i    =   o 

Therefore    a. fa. , . = a. © ä. . . . 
l       i+j        i        i+j 

# % sje 

In each of the following proofs it will be considered that   A   and   B 

are a complementary sequence pair of length   n.     Complementing each 

element in a code is called complementing the code. 

Theorem 2. 2 

Complementing the   A   code,  or the   B    code,  or both the 

A   and   B    codes,   results in a pair of complementary codes.     (The 

proof is given just for the   A   code but is identical for the   B    code and 

18 

a. © a., 
l        i+j 

1     ©      1 = 0 

1      ©      0 = 1 

0     ©      1 — 1 



from both of these for the   A   and   B   codes. ) 

By hypothesis 
i=n-j i=n-j 

F.=      S     (a.» a.,.)   =     S (b. «b...«l). 
J i      i+J i        i+J 

i= 1 i=l 

Complementing the    A   code transforms 

a. -     a., 
l l 

but   by Theorem   2. 1 

a. v a.,-        = a.  9 a.,• . 
l        i+j l        l+j 

Upon substitution 
i=n-j i=n-j 

F.=       S      (ä.  •ä.J..)    =     S (b. « b., . © 1) . 
J        i=1 i        i+J1 isl i        i+J 

Therefore complementing the    A   code has no effect on complementarity, 

and similarly for the    B   code or for both codes. 

# * =>!< 

Interchanging the first and last bits of a code, the second and next 

to last bits, the third and third from last bits, and so on is called time 

inversing or time  reversing a code. 

Theorem Z„ 3 

Time inversing the    A   code,  or the    B    code,   or both the   A 

and   B    codes,   results in a complementary pair.     (This proof is again 

just for the   A   code,  but also applies to the   B   code and therefore to 

both the   A   and   B   codes. ) 

By hypothesis 
i=n-j i=n-j 

f. =      E      ( 
J i=l 

. « a...) S      (b   © b... 9 1). 
i        i+J i=l i        i+J 

The time inverse of   A   causes each 

a.  ~*   a   , -t    . „ 
l n+l-i 

Applying this time reversal just to the    A   code  shows that 
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1=11-j i = n-j 
F.   =     E       (a. ©a.,.)    -    S       (a   , .    .9 a     ,   ,.   ..  ). j . = 1    

v   i        i+j' i=1 n+l-i        n+l-(i+j) 

Expanding both expressions for a few terms and remembering that 

modulo    2   addition is commutative as is regular addition we see that 

(on the left) (on the right) 

for    i=n- 1,    F     .  = a,  0 a F      ,   =a    la, J n-lln n-lnl 

for J=n-2,   F     -> = a. 0 a     i   + a->0 a      F     , = a0a-> + a     ,0a,. n- d. I       n-1 2       n       n-2 n       2 n-1 1 

These expressions indicate that by a cha.nge in summation index the two 

forms of    F.   are equal,   as is  the case.     Therefore time  reversing the 

A   code has no effect on the complementary property,   and similarly for 

the   B    code and for both the   A   and   B    codes. 

The altering of a code is a transformation where every other bit of 

both codes is complemented.    In a different portion of the paper a dis- 

tinction is made between altering odd bits and altering even bits.     In the 

following proof,  however,  just the even bits are altered,   although a 

slightly modified proof would hold for altering the odd bits. 

Theorem 2. 4 

The result of altering a complementary pair of sequences is 

again a complementary sequence pair. 

Since the codes are a complementary pair, 
i=n-j i=n-j 

F.=      S       (a.0a.^.)      =      2       (b. 0b...« 1). 
J        i=l i+j' i=1        i        i+J 

Divide the    F.   into two groups,   F,     for   j=   an even number and   F 

for   j=    an odd number.     The portion of the above equations for    j= an 

even number is 
i=n-k i=n-k 

Fk=      *      ^i®ai+k)     =       .^      <bi®bi+kf1)' 
1=1 i=l 
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For the theorem to be true,   when   j   is an even number the above  set 

of equations    F,     must be satisfied for all   k   when the pair is altered, 

(The proof is given only in terms of   A,  but duplicate  steps must also 

be applied to   B. ) 

When   i=an   even number,  then    i+k=an   even number. In the alter- 

ing process  since all even bits are complemented   a. ® a. ., -» ä.<f)ä. ,,   , 
l        i+k        l     l+k 

but by Theorem   2.1    these are equal.     When   i=an   odd number,  then 

i+k = an odd number and these  are not affected by the altering process, 

since only even bits are  complemented.     Therefore    F      is invariant 
K. 

under altering,   or  symbolically   F,   = F,     , . 

Examination of   F      where    r   is an odd value of    i,   shows that of r J 

the pair    a.,   a..       one of the bits is complemented and the other is un- r l       l+r r 

changed. 

a. © a. , (a.® a. .        or   a.® a. .    )   =   a. # a. . l l+r -»      l       l+r l       l+r l l+r 

Therefore    F       .      = (n-l)-F      for both the    A   code and the    B    code, 
r alt        v        '      r 

This signifies the likes of the    A   code for odd spacings are changed into 

unlikes,  and the unlikes of the   A   code for odd spacings are changed into 

likes;    however,  for each change in    A   there is an opposite change in 

B    so the total likes in   A   still equals the  total unlikes in   B   for each 

spacing.     It is to be noted that altering both the even and the odd bits is 

the  same as  complementing both codes. 

* # * 

The operation of interchanging the   A   and   B   codes,  although 

trivial,   is also a transformation,,    There are a total of sixty four pos- 

sible transformations.     These  can all be generated by combining the 

above listed transformations.     They will be discussed much more thor- 

oughly in Chapter 3. 
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Whenever a new facet of a pair of sequences such as the. comple- 

mentary property is discovered,   it is natural to wonder just how general 

this property might be.     One question of interest would be the possible 

length limitations of the code pairs that might be forced by the comple- 

mentary property,,     The following proof due to Golay shows that 

2     2 
complementary sequences must have a length   n   of the form n=x  +y   , 

where   n   is an even integer and   x   and   y   are integers.     The first 

theorem to be proved demonstrates that   n   must be an even integer 

2     2 
and the second theorem shows the   x +y     form. 

Theorem   2. 5 

A necessary condition for a sequence pair to be complementary 

is that their length be an even number. 

By hypothesis 
i=n-j i=n-j 

F. =       E    a.0a. , . =        E      b.®b. . . 9 ]  . 
J       i=l      x     1+J i=l x     1+J 

Let   G. = F. modulo    2,   so that 
J J      i=n-j i=n-j 

G. =      S     a.® a.L      =       S       b. «b. , . • 1 . 
J        i=1        i       i+J i=l        i       i+J 

An expansion of   G   for a few different values of   j   will suggest the 

proof.    Start with   j=n-l. 

G     ,   = a, ©a      = b. 9b   9 1, n-1 In In 

G      0=a,«a     ,»a,®a    = b,®b     ,01Gb,®b   «1, n-2 1     n-1      2     n ln-1 2     n 

G      , =a,0a     ,0a      ,0a     ,0a,©a   =b,0b     ,01  0b      ,©10^ 0b    9 1 0 n-3        1      n-2     n-1     n-J      3     n     1      n-2 n-1 J     n 

Change the order of the  sums in   G     ,    and   G      -,   to achieve the following: 6 n-2 n-3 ö 

2 
G     ,=a. ©a,0a     ,0a =b,»b,®b     .®b    9    I   1, n-2      1        2     n- 1      n      1      2     n- 1     n , 

3 
G       =a ,0a-, ©a,0a     ,®a     , ©a   =b,»b,*b,«b     ->©b     ,®b  ©     g 1 . n-3      1      2      3     n-2     n-1     n      1      2      3     n-2     n-1      n 

In general for   j=n-r 

G       =a,®a,0. .. ©a  »a     .    .M®a     .   ,,,©,.. ©a     , »a  =b, ®b?®.. .. . n-r      12 r     n-(r + l)     n-(r+2) n-1      n     1      2 
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. ..»b  ©b     lA,,®b     .   ,,.•. „„©b     ,©b  ©     E    1 , 
r     n-(4+l      n-(r+Z) n-1      n        \ ' 

and for    j=n-(r + l) 

r + 1 
. ,»b   ©b   ,,©b       ©b     .        .©b     ,   .,.•..„.»     E     1 . r      r+1     n-r     n-(r+z)     n-(r+2) 1 

Forming the   sum   G        §   G      ,    ...    will leave only five terms in the b n-r n-(r+l) ' 

equation since   G and   G      .    , n.    differ only in a        ,   a   , , ,   b   , -, , ^ n-r n-(r + l) y n-r       r + 1        r+1' 

and   a,  bcause 
r r+1 
Si©       S    1 = 1. 
1 1 

G ©G     ,   ,   . = a   .,0a        = b   ..,«b       ©   1 . n-r        n-(r+a) r+1     n-r r+1     n-r 

Adding   b   +1©b modulo    2    to both sides of the equation gives 

a   , .©a       ©b   , .©b        = ~-l. (2.4) 
r+1     n-r     r+1     n-r 

Let   n=2s-l    and   r=s-l;   then to satisfy the equation just derived 

a  ©a-,      ,       .,  ©b    ©b-,      ,       , ,   = a  ©a  ©b  ©b  = 1,  which s     Zs-l-s+1        s        2s-l-s+l s      s      s     s 

is obviously false. 

Therefore    n   cannot have the form    2s-1    and must be an even number. 

sje »j< aje 
i 

Equation    2„ 4   which was a step in the previous proof,   is a very 

important necessary condition for a pair of codes to be complementary 

and will be  referred to in the future as the parity check.     The next 

2      2 
theorem which shows the    n=x   +y    form,   starts with the basic assump- 

tion that    A   and    B    are a complementary pair of length   n. 

Theorem   2. 6 

A necessary condition for a pair of codes to be complementary 

is that their length be the sum of the squares of two integers. 

By hypothesis 

Assume that the    A   code satisfies    F.    and that the   A   sequence contains 
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p   ones and   n-p zeros. The    A   code has a weight of p.    Similarly 

assume that the B    code satisfies    F. 
J 

and that its  sequence contains 

q   ones and   n-q zeros. The    B    code has a weight of   q.     For the total 

likes in the    A   code,   each bit is matched against each other bit exactly 

once.     For the total unlike s in the    B    code each bit is again matched 

against each other bit once.     There are two possibilities of likes in the 

A   code,     1    matched against   1,   and   0   matched against   0.    The total 

number of like pairs for the   A   code is therefore the number of com- 

binations of   p   ones   taken   2    at a time plus the number of combinations 

of n-p   zeros taken   2   at a time,  for the unlike pairs in the    B   code, 

q   ones    are matched against   n-q zeros. 

This gives the equation 

PiPlil-    +    (£l£Hn-p-l)    =    q(n-q) 

expanding and simplifying 

2 2        2 n=n   -2qn+2q   +2p   -2np, 

adding and subtracting 2pq gives 

2 2        2 n=n   -2qn+2q   + 2p   -2np+2qp-2qp, 

collecting terms gives 

n= n   +q   +p    +2qp-2np-2nq + p    -2pq +q 

combining terms gives 

n= (n-p-q)     + (p-q) (2. 5) 

Therefore complementary sequence lengths are permissible only in 

lengths which are even numbers and formed by the sum of two squared 

integers. 

# * * 

A list of all possible code lengths up to    200   with the number of 

ones allowed in the    A   and   B    codes is given in Table    2. 1. 
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^Indicates possible kernel 

Code 
.Lengths 

*2 

4 

8 

*10 

16 

*18 

20 

*Z6 

32 

*34 

36 

40 

*50 

52 

*58 

64 

68 

72 

*74 

80 

*82 

*90 

*98 

100 

Unordered 
Weights of(A,B) 

2,1)(1,0) 

3,3)(1,1)(3,1) 

6,4)(4,2) 

7,6)(4,3)(7,4)(6,3) 

10, 10)(6, 6)(10, 6) 

9)(9,6) 12 

13 

16 
15 

20 

21 
21 

21 

24 
24 

30 
29 

31 
25 

34 
34 

36 

39 
39 

42 

43 
43 

46 
46 

46 
46 

51 
42 

56 

55 
57 
49 

11 

15 
10 

16 

18 
16 

21 

22 
18 

25 
22 

27 
21 

31 
27 

28 

37 
31 

36 

38 
36 

42 
38 

45 
37 

48 
39 

49 

55 
51 
43 

(9,7)(11, 7) 

11,10) 
16,11) 

16,12) 

16,13) 
18,13) 

15,15)(21,15) 

18,16) 
22,16) 

25,20)(29,28) 
28,21)(22,21) 

31,25) 
27,21) 

27,24) 
31,24) 

(36,36)(28,28) 

31,29) 
37,29) 

36,30) 

36,31) 
38,31) 

38,34) 
42,34) 

37,36) 
45,36) 

(51,42) 
(48,39) 

49,42) 

55,45)(45,45) 
57,49)(51,43) 

Code Unordered 
Lengths Weights of (A, B) 

104 (58,56)(58,48)(48,46)(56,46) 

*106 (60, 55)(51 ,46)(60,51)(55,46) 

116 (65, 6l)(55,51)(65,55)(6l,51) 

*122 (67,66)(56,55)(6 7,56)(66,55) 

128 (72, 64)(64,56) 

*130 (72,69)(72,6l)(6l,58)(64,57) 
(73, 66)(73, 64)(64, 57)(66, 57) 

136 (76,70)(66,60)(76,66)(70,60) 

144 (78, 78){66,66)(78l66) 

*146 (81, 76)(70,65)(81,70)(76,65) 

148 (81,79)(69,67)(81,69)(79,67) 

160 (88, 84)(76,72)(88,76)(84, 72) 

*162 (90,81)(81,72) 

164 (91,83)(81,73)(91,81)(83,73) 

*170 (94,87)(83,76)(94,83)(87,76) 
(92,91)(79,78)(92,79)(91,78) 

*178 (97,94)(97,84)(84,81)(94,81) 

180 (99,93)(87,81)(99,87)(93,81) 

*194 (106,101)(93s88) 
(106,93)(101,88) 

196 (105,105){91.91)(105,91) 

200 (110, 100)(108, 106)(100,90) 
(94,92)(94,108)(106,92) 

All possible complementary 
code lengths' up to 200 with 
unordered possible weights. 

TABLE    2.1 
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The shortest possible complementary pair is    A=ll,   B = 10.     This pair or 

any of its transformations is called a kernel of length two,  or the quad. 

A kernel is a basic length code which cannot be decomposed into shorter 

length codes by an inversion of the standard generating methods to be 

explained later.     Some possible kernel lengths are 2,   10,   18,  26,   34, 

50,   etc.    although codes for all of these do not exist.     Complementary 

sequences which are not kernels are called composite complementary 

sequences. 

The above list of kernel lengths did not include   n=4    or   n = 8 

which are possible complementary sequence lengths«     These if they 

exist must therefore be composite.     All possible codes of length four 

can be generated from the exhaustive list of possibilities for four binary 

digits given in Table    20 2. 

0000 1000 
0001 1001 
0010 1010 
0011 1011 
0100 1100 
0101 1101 
0110 1110 
0111 1111 

Table    2.2.     All Possible Binary Numbers of Length Four. 

The unordered possible pairs of ones in the codes are (1, 1),   (3,3) 

and (3, 1).     Thus all possible codes of length four have either one    1    or 

three    l's   because of this limitation.    This reduces the table to the 

eight following numbers of length four: 

0001 0111 
0010 1101 
0100 1011 
1000 1110 

The possible unordered (1, 1) code pairs are the following four: 

1000 1000 0001 0001 
0100 0010 0100 0010 
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The possible unordered   (3, ])   pairs of codes are the following eight: 

Olli Olli 1110 1110 1011 1011 1101 1101 
0010 0100 0100 0010 0001 1000 0001 1000 

The possible unordered    (3,3) code pairs are 

0111 0111 1110 1110 

1011 1101 1011 1101 

Comparing the last code to the kernel of length two,  A=l 1 ,  B=10, 

shows that it might have been constructed by writing in time sequence 

Sx = AB=a1a2b  b2    =    1110, 

S2 = AB=a1a2b1b2   =    1101. 

The next to last sequence pair might have been formed by inter- 

lacing   A   and   B   in the following manner: 

Tx = anb^^b,    =    1110, 

T2 = a.B a2b2   =   1011. 

All the rest of the    16   pairs could be considered either as transforma- 

tions of the last pair,  or as being formed by the  same two composite 

generating operations used above on the    8   transformations of the ker- 

nel of length two.     A general proof will now be given to show that both 

the time sequence  scheme    (Si ,  S3)    and the interlace scheme (T1}  T2) 

will always form complementary sequence pairs providing that   A   and 

B   are a complementary sequence pairu 

Theorem   2„ 7 

it   J\—a 13->30.Boo.u.a     iä 
1   Z   3 n-1   n 

B=b,b-,b     ..... .b     ,b 1   Z   3 n-1   n 

are a complementary sequence pair,  then 

1   Z n   1   Z n 

D = ana_.a0..a  b, b,. . „ . „.   b 1   Z   3       n   1   Z n 

are a complementary sequence pair. 
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Theorem   2. 8 

If   (A,   B)   are a complementary sequence pair,  then 

C = a,b.,a.,b->„„.„.„.a  b 1   1    Z   L n  n 

D = a1b1a2b2o._o_anbn 

form a complementary sequence pair„ 

The following notation will be used in the proof: 
i=n-j 

U      =   S      a.» a.. for all   jl<j<n-l a        i=i      i       l+J j     _ j _ 

L     =   1=Ln~Ja.§a., • ® 1 for all   ja< j<n-l . a Si     l+j J     — •> — 
i=l 

It is understood that the two CD  sequences in the two theorems 

above are not the same but because the proofs are identical two sets of 

symbols will not be used.    For,each spacing    j   there are three possible 

ways for bits to match,  within   A,  within   B,   or from a bit of   A   to a 

bit in   B.     These possibilities are denoted by   L      JL,     and   Li  or   U   , 

U, ,  U   ,     respectively« 

The necessary and sufficient condition for   C   and   D   to be a 

complementary sequence pair is given by    L    = L +L, +L ,     and 

U , = U   +Ur  + U  r    where    L    = U ,. 
d a     b ab cd 

Now    L    = U,     and    L,   = U     , r.   ... t , . ab b a   by definition ol complementary. 

Adding 

La + ^b = Ua+Ub' 

but -i -i i=n-l i=n-l 
U,   = Ur      since       S     b.«b..       =       E    be * *> i+: 

b b _,       l     l+j _- _ T 

so substituting 

i=l J i=l 

L    + JL   = U    + Uc a tD a b 

All bit matches from   A   to   B   in the   C    sequence are paired in the    D 

sequence with bit matches from   A   to   B   therefore, 
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ab        ab 

and adding 

L    + L,   + L ,   = U    +Uc + Ur or    L.    = U, a c) ab a b ab cd 

Golay describes two other methods of generating composite sequen- 

ces from shorter complementary sequences.     These methods will not be 

used too extensively in the  rest of the paper and will therefore just be 

mentioned rather than proved.    Given two complementary sequences 

pairs (A, B)  (C,D),    A   of length   m   and   C    of length    n. 

Let 

Ux = ACl AC?  . . ACn   Bdl Bdf. . . . ..... Bdn 

? (2.6) 
TT        _     A^n AU1        "R^TL RC1 

and 

V     -    ACl   R^1 ACn   R^n 

V2 = Adn B5n   . Adl BSl. 
(2.7) 

It can be  shown that the pairs of    U    are complementary as are the pairs 

of   V.     Where,   if an exponent is a one the    A   or    B   code is left un- 

changed,   and if the exponent is a zero the    A   or   B    code is comple- 

mented.     The lengths of codes which can be generated from these two 

methods are    2mn   where   m   is the length of the (A,B) sequence pair 

and   n   is the length of the   (C , D) sequence pair.     There is also another 

special method of generation which applies only to codes of length   2   . 

This method is explained in Chapter    5   where it is necessary for the 

completeness of a proof. 

The kernel of length 2,  or the quad,   has been discussed in the 

previous pages.     There are two kernels of length    10.     These are 

1001010001   and    1000000110,   and a second kernel    0101000011    and 

0000100110.    The next possible kernel size is    18   and Golay has proved 
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by exhaustive search that no kernel of this length exists,,    Kruskal has 

13 since then completed the proof analytically. One of the goals of the 

writer in his study was to make an exhaustive  search for codes of kernel 

length    26.     This  search disclosed there was only one kernel of length 

26.    Chapter   7   of this paper describes this  search in detail and 

Chapter    8   describes attempts to find kernels of length   34. 
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CHAPTER    III 

THE   GROUP   OF   OPERATIONS 

A large portion of this investigation is devoted to the set of  allow- 

able transformations on complementary sequences.     These allowable 

transformations possess the characteristic that the length of the sequen- 

ces and the complementary property are invariant under transformation. 

To be useful in searching for new kernels it is also desirable    that these 

transformations have the following features: 

1. That they form a group for all general transformations. 
Where a general transformation is one which can be 
applied to any complementary code pair. 

2. The transformations as represented be simple manipula- 
tions  on the elements of the group. 

3. The supplementary characteristic  (to be explained in 
Chapter 6) be a property of the representation. 

4. The parity check be easily made. 

Some of these transformation operations were discussed,   and the 

proof of invariance given for all group generators,   in the background 

chapter,   Chapter 2,  on complementary sequences.    As a continuation, 

a brief review of the transformation operations and a tagging of symbols 

to these operations will prove useful.     Each basic operation symbol and 

its definition is given in Table    3. 1„    More definitions are given than are 

necessary to generate the group;    however,   the  redundance  seems to the 

writer to be an aid to understanding. 

A check through Table    3. 1    shows that the transformations affect 

the complementary sequence pair in four different ways.    Cj. ,   C2 , 

T-i ,   T2   affect all the bits of one of the code pair,    EST,C   affect all bits 

of both codes,  while    Ai and   As affect half of the bits of both codes«     The 

identity,     I,   of course has no affect on either code.    A reasonable way 

to form the elements of the group to account for the above affects would 

be to divide each code of the pair into two units.    These would be    A 

(even bits) and   A    (odd bits),   also   B    (even bits) and   BQ (odd bits). 
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The Identity 

a. -» a. 
l l 

b. -b. 
i        i 

Ti A code time   reversal 

ai  ~'an+l-i 

b.   -b. 
l l 

B   code time reversal 

a.   -  a. 
l l 

b.   - b     ,   . l n+1 -1 

Time reversal of both codes 

ai   ~*  an+l-i 

b.   - b   , .    ? l n+1 -1 

Ai Alter odd bits 

a2i-l"a2i-i        a2i "  a2i 

b->.   , -» b->.   , b->. -» b-,. 2i- 1        2i-1 2i 2i 

A3 Alter even bits 

a2i-l"  a2i-l        a2i"  a2i 

b-,.    ,      b,.   , b0.     b9. 2i- 1 2i-1 2i        L\ 

Complement the    A   code 

a. -     a. 
1 1 

b. -     b. 
1 1 

Complement the    B   code 

a. -*     a. 
1 1 

b. -     b. 
1 1 

Complement both codes 

a. -*     a. 
1 1 

b. -    b. 
1 1 

Some    operations, 

Exchange the    A   code with the    B   code 

ai     -    bi TABLE    30 1 
b*     -    a.1. 32 

1 1 



Ao " ala3a5 °'an-l 

A
e 

= a2a4a6* ••* • •* *• an 

B    = b.b-bc. ...... ..b     , o 1   3   5 n-1 

Be = b2b4b6 ••••bn 

However, this particular division for representing the complemen- 

tary sequences proves to be very awkward for the time reversal opera- 

tions (Ti ,T2 >   T) and for the ease of the parity check condition. 

Fortunately,  one simple change,  that of time reversing the second and 

14 fourth row (even bits of   A   and   B),   clears up these difficulties. 

The method for converting from a complementary sequence pair 

into the standard group form is therefore 

A= a^a^a^.^.^.a     i^_ —-r 1   c.   i n- 1   n * 

I_ala3a5 an-l 

II-anan-2# * * * * a2 (3.1) 

III=b  b,b,- b      . 
B=b.b,b, b     ,b  ( 

1   £   J n-ln       \ r-ir  1.   u T- MV=b  b     -,..... b-, n  n- £ c 

If the matrix (I   II   III   IV) is taken as the  symbol for the above grouping 

the  Identity operation,   I,   should yield (I    II   III   IV).     Post multiplying 

(I   II   III    IV) 

10     0     0 

by        o     0     ?     0     §ives t1   n   In   IV)>   therefore I   can be taken 

0     0     0      1 

as the identity matrix of rank   4,  using the operation matrix multipli- 

cation on the right.    Similarly   Ti has the effect of exchanging the first 

and second columns yielding (II I   III   IV).     Now post multiplying 

(I   II   III   IV)   by 

0     0 . 

yields  (II   I    III   IV) the desired result so the 

0      10     0. 
10     0     0 
0     0      10 
0     0     0      1 

matrix just used could represent   Ti .     Similarly, 

33 



1 0     0 0            1 0 0 0 
0 
0 

1    o 
0     1 

0   -      0 
0  U2_ 0 

1 
0 

0 
1 

0 
0 

0 0     0 

0     0 
0     0 

1            0 

1     0 
0      1 

0 0 1 

10     0     0 0      10     0 
T_0     10     0T_l00     0r 

2~   000      1000      1^ 
0     0      10 0     0      10 

I    0     0     0 10     0     0 
A .           0100 0100 

1-        0    0     1     o A2-    0     0     1     0     ^ "     1     0     0     0 
0001 0001                  0100 

Matricies are often a very convenient method of expressing trans- 

formations.     However,  when the elements are few and the numbers in 

them simple it is often more convenient to express the operation dif- 

ferently.     For instance (I   II   III   IV) operated upon by   Ti yields 

(II    I   III   IV).     This could be just as well expressed  as 

_ I   II   III   IV 
1      II   I   III   IV    • 

This indicates that the top row is transformed into the bottom row by the 

operation,   or in even more  shortened form,   Ti = (II   I   III   IV)   with the 

top row understood which means,  as is  common practice,    Ti (I   II   III IV) 

=      (II   I   III   IV).    Another example is    Ax = (I  II III TV),   [which means 

Ai (I II III   III) = (I II UT IV)]  where the bar across    I   and   III   indicates 

the negative element in the matrix or in actuallity the complement of the 

portion of the code contained in   I   and    III.     Table    3, 2    is a list of all 

32    transforms generated from Table    3. 1    both by symbol and group 

element representation.     There are actually    64   transform operations 

in the entire group.     However,   the exchange operation (III   IV    I   II)    is 

not considered along with all the    32   elements it would generate.    In 

this paper the pair   (I   II)   and   (III   IV)   are generally considered as 

being an unordered pair,  which eliminates the exchange operation. 

The second feature listed under desirable characteristics,  that 

of simple manipulation of the elements of the group is   satisfied. 

The supplementary property which is discussed in Chapter    6   is 

also satisfied by the formulation of groups from complementary 
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sequences by this method.     The parity check,  a.®b.©a   ,,    .<Bb   .,    . = 1, 
' ' 11     n+l-i     n+l-i 

is also satisfied under all transforms and is easily checked since each 

column of equation 3. 1    is one  solution of the parity check. 

a i— a-, a«ac . « .. . a.., lib l n- 1 

ll=aa     TO.«., a ,,    . a n   n-Z 
III=b1b3b5 

n+l-i a2 
. b.  . . .. b 

n-1 

IV = b   b     o . . . - .b* • • • 1*), 
n  n-Z n+1- 1   2 

(3.1) 

I = 

Ai= 

A2= 

Ti= 

T3= 

T = 

Ci= 

C3= 

C = 

Z = 

Y = 

X = 

w = 

V = 

u = 

s = 

(I II 

(T ii 

(i IT 
(ii i 

(i II 

(II i 

(T fi 

(i ii 

a TI 
(ii i 

(IT i 
(IT i 

(II I 

(1 II 

(I II 

(i "n 

III   IV) 

Tii iv) 
in ivj 

III IV) 

IV III) 

IV III) 

III IV) 

in IV) 

TT! Tv) 

"Tu iv) 

HI IV) 

III   IV) 

in Tv) 

iv in) 
iv in) 

iv" in) 

R = (i TT iv in) 
Q = (u I iv  Si) 
p = (IT i Tv  in) 

0 = (n fm iv) 

N = (H i In Tv") 
M = (T ii iv  in) 

1 = (n"i 1 Tv) 
K = (i Ti Tv nT) 

j = (IT 1 Tv TTl) 

H = (I II Tv Tny 
G = (IT T iv ill) 

F = (I TT iii" IV) 

D = (T ii in Tv) 
O - (ii l Tv iii) 

B = (TT i iv TTT) 
IT = (iiTTv  iu) 

IV    I   II) E = (III 

Elements of the unordered operations group. 

TABLE 3.Z 
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« ™ rH        rH rH        TO 
■s.bHüfqcK!z;ütf>DW!>HX>«hfiWHhi2oütHuaft'il<iH 

CJ rH       rH       TO Ltf rH 

cftawbiat3>p2:HffiMoj^tHüüwt>XiSiHfts]<!HbHü<! 
TO rH TO       rH rH CM 

rqoift fS.Ö(äH(i!ffiW2;H!z;EHOJüO!>MisiD>:RX<i;bHüH<l 

rH TO     H rH CM 

R<1<PHüU>1D CfHhJOHffitHSM^ciXisiwHciimX^UHbBa 
TO tH     TO ^H TO 

pt,<!<|flUülHOjPQOH^J2:M|IlEH Ü^SlSl Ixj^^lDCMaHU^^PH 

rH TO rH TO      rH 
üHbiatPQ2;OüDffltft>!5tsiHI<lfl^BWHffi2;ujHPHa<:<!u 

TOTO rH TO rH rH 

ffi   ME"lSr>   WaO^aPPflH     t-llR-llfiHNXbHÜÜJÜOHtJDiDrH^H 

H       TO TO      rH TO rH 
bUöHarHMJüS>tfwDc<i>«!H^<l!i!2;rHHhrHOüfq tftPu 

N TO rH TO rH       rH 

MK2;^ßjDbÜHiraatFHfH<fl<irH>'aüüEHHHü!?r>w^Xo 
H TO rH TO      H TO 

TO H TO rH TO rH 

2BMHlm>öuopH tapq<lrH<fHr<lS]HbH'®.ü^üEHDp3>MJ 
l-H TO TO rH rH TO 

^JHOr<!^ü,affi^R<Jhr4rqatWt>UHbüÖ2:HMr5rHpCH^ 

rH rH rH (V TOTO 

TO      TO rH rH rH       TO 
ft tfflaHbmKiJ^SWffiHrH JOHü5ra>>N<!rHPü~&üüfH 

r~* (» H TO TO        rH 
Olffl     trHbEH>N<|r<lffiEHr51JOfH^ÜHflJtDH[flX<)>rH'SlÖÜÜR 

« rH TO rH rH 01 
tft>WDMHPHpHrHb'S.HÜÜÜHÜ JHO)P4<l   tRXtslffiS^OX     f", 

EH TO rHTO ^HTOrH^ 

tu   Möö^SffirH^Küh^büüüHOrH tpqfia^KirHriEHMHJrH 

I—I TO TO rH       rH TO H W 

03    RcOtf^M tflHHübiS.HüUühJrNa<!rqhH<!KrHffiOrH^    J 
PR 

rH TO rH TO CM rH "<j 
>pilDWffi2:aoJt<ns.biEHüHüürHOpq tpiHpH<!r<;p|!>Hi^EH1jE-'rS   EH 

r-> TO rH TO       TO       rH 

^jxjtsiiHHjEHOtöüüHübö H^SIM H<<<;pHpHmtfaWrHO!iiA> 

TO TO rH rH rH TO 

SOHSlrHO^PHCQüüüH-atHÖbKSflh t^a^pqDnlEHMBÄ 

rH rH CM TO <~f       TO 
Hlsl«räHJ(iHfqöHUÜÜH'SlbÜHW^<!afl|:tDP4>OrHr?;Km 

rO 
ce e 

EH o 
-r-! 

Ö -P 
o c6 

•H rr 
-P <D 
c6 PA 
u O 

•H 
i—1 II 
Pn 

•H >^—* 
-P PH 
i—1 o 
3 E- 
2 "—' 

co ,—. 
Ö a. 
o ^ 

■H •r- 

-P K 
c3 *. - 
U 
CD 
ft 
O 

rH rH TO TO rH TO ^H>r^os^c«f>o^uut5^"Q.EH2Wr^pm<dftwpi^ 

TO       rH TO       rH <-t TO 
Bö^.bPHaHHHMbt-rHXHNrS^^SffiOMJürHU tPflfto 

TO rH rH 0} rH TO 
H2;wWbiSHH9ta(rqoiR<iirH<l^Hö'Siübü1juO(fl!HXisirH 

rH TO rH TO rH       TO 
HOrHhJH^HHHrH^fl^rqft tatfDüüöUbMia2siKt>mffi 

TO rH rH TO TO        rH 
<JRfn<iüH^M(iHJrH^OWS;EH!i;b^>HpiNlt>aDi tüü'S.Öpq 

^fi^Hüisl^a^OJrH^iiiMSHbrHräCiäXMfHDcqüüö^t 

TO       rH TO       rH rH       W 
üüüH<|<! JWbr<r«^rHW(Sr>bPMarHO!i!hHBrH~S.Rft  tpqö 

TO rH rH TO TO      rH 
uüHüp[i(r;tcia>r<!rHNb!>rH«! tflhiHW02;üHb<<iF4aH 

rH TO H TO rH     TO 
üHüüftP02:ciHtsi>X«rab>-rqr:9lJE'r?K1SMEH<!<!0!PHb 

rHOüü^^HHPHr<I!rH!><!:3£]>pCOKO*rHO!^2 
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Another feature inherent in this formulation of the group,   which is 

very useful in searching for new kernels,   is the interlace breakdown 

into the group.     This is useful because a kernel may be considered as the 

interlace of two half length codes where,  as will be shown in Chapter    7, 

the number of zeros and ones in each half length code are easily pre- 

determined. 

Although this group of operations is indeed a group,   it has never 

been proved formally.     In order for a  collection of elements to be a 

15 group,   they must satisfy the following four conditions: 

1. A group has closure. 

2. A group is associative under the group operation. 

3. A group has an identity element. 

4. Each element in a^ group has an inverse. 

That this operation group has closure is demonstrated by   Table    3. 3 

which is the full multiplication table of this group of order   32.    The 

elements under the operation multiplication are associative  since they 

are expressible as matricies and matrix multiplication is associative. 

The element   I   is the identity,  and as seen from Table    3.3   all elements 

have an inverse.     Therefore these   32   elements have satisfied all the 

requirements for a group. 

There are three  special subgroups of order   4   which within the 

subgroup deal with only one type of operation,   Tx T3 TI,   Ai As CI, 

Ci C2 CI.     All of these  subgroups have the unusual property that each 

element in the subgroup is its own inverse.     This group of order    32 

has been identified as    isomorphic with Senior's group number   44. 

This will be discussed in some detail at the end of this chapter. 

A study of complementary codes in (I   II   III   IV) form,   or as we 

will call it sequence quadruple form,   reveals many interesting proper- 

ties.    Some of these properties and their formal proofs will follow. 
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In these proofs the complementary pair (ASB) will be assumed to be of 
i=j 

length   n.    The  symbol    L.    will mean     S     (a ,4)a   ,.   . f 1)   for   all 
J\ . _, l     n+i-j 

j,   1 < j < n-1    and similarly   Uß =   ^ b ^b 

i=l     i     n+i"J ' 
Theorem   3. 1 

If   (A,B)    are a complementary sequence pair and if either    (I, II) 

or   (111,1V)   in sequence quadruple form are complementary,  then the 

other pair must also be complementary. 

1. Assume    (I, II)    are comlementary. 

2. L   = UTT   by the definition of complementarity. 

3. Uy = LJJ   by the definition of complementarity. 

4. Adding the equations in steps    2   and   3   gives 
Li + LII = ui + uir 

5. Since only even spacing s are concerned in the sequence 
quadruple form,  when related back to the original    (A,B) 
pair,  the likes of   A   are equal to the unlikes of   A   for all 
even spacings0     This will be expressed as    L.   = U.    for 
even space. 

6. L   =U.p.    and   U .=!_!_   by the definition of complementarity« 

7. Therefore    LT,=UT,    for even spacings. 

8. LiTTT+UTXX=k.    since the total number of matches at any spacing 
111      HI     J 

is equal to the likes plus the unlikes,  and is dependent upon   j. 

9. LIV+UJV =k.. 

1 0„     Adding    8   and   9   gives    LTj,+UTTT+L,TV+UT,y. = (LjTj+LiTy) + 

(um+uIV) = Ik. . 

1 **     L,III+LIV = kj ' by step   7- 

1 2.      Li     -UTTT= 0    by subtracting the equation in step    8   from that 

in step    1 10 

1 3.      Therefore    LTV =Um   and the  (III,   IV) pair is complementary. 

Since the proof would have been the  same if   (IIIS  IV)    were 

chosen complementary rather that   (I,   II),  the general state- 

ment is true» 
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Theorem    3„ 2 

If    (A,B)    are a complementary sequence pair in sequence quadruple 

form and if one of the pair    (I, II)    or   (III, IV)   is not complementary 

neither is the other. 

1. Assume    (I, II) not complementary. 

2. There are two possibilities for    (III, IV)    either complementary 
or not complementary. 

3. Assume (III, IV)   are complementary,   then by the Theorem 3.1 
the    (I, II)   pair must also be complementary,  but this is con- 
trary to assumption. 

4. Therefore    (111,1V)   cannot be a complementary pair. 

* * * 

Theorem    3. 3 

A necessary and sufficient condition for    (I, II)   and   (III, IV)   to be 

two complementary pairs when a complementary sequence pair is 

written in the sequence quadruple form is if the  likes for even spacing of 

one of the code pair is equal to the unlikes at the same spacing for the 

same code of the pair. First the sufficient portion: 

1. L     = U       for even spacings. 

2. Li   + LiTT = L. .    for even spacings. 

3. U, + U,, = U .   =. L.    for even spacings. 

4. LT + LTT + UT + UTT = 2L.    for even spacings by adding the 

equation in step   2   and step    3. 

5. LT + UT = k.    since the total of likes and unlikes must equal the 

pos sibilities. 

6. Ln + UII = kr 

7. LT + UT + LiTT + UTT = 2k. = 2L,.    by adding the  equations in steps 
I 1 11 11 J -n- 

5   and    6    and comparing to those in step   4. 

8. L,T + LTT = k.    rewriting step    2   with   k.    substituted for    L,.. 
I II J ö J A 

9. L,     -  UT = 0    subtracting the equation in step    5   from that in 

step    8. 
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10. Therefore    L... = U,   and    (I, II)    are a complementary pair and by- 

Theorem   3.1    (III, IV)   are also a complementary pair, 

11. For the proof of the necessary condition assume that   (I, II)    are 

complementary and that   U     < L,      for some even spacing. 

12. Therefore    LL + UTT < L.. + L,       for some even spacing. 

13. However,  by assumption (I, II)   are complementary and 

L, = UJJ   and   U   = L 

14. Adding the two equations in step   13   gives    LT+L,T = UT+UTT . 

15. This is incompatible with step    12,  therefore it is necessary that 

U .   =  L.     or    Ug = Lg   for all even    spacings in order to have 

(I, II)   and   (111,1V)   complementary. 

# i|« * 

Theorem   3.4 

If the sequence quadruple form of a complementary pair can be 

transformed into the pattern (I   II   I   II),   either the original pair is the 

quad or   (I, II)   and   (II, IV)    are complementary pairs. 

1. Given that (I   II   III    IV)    is transformable into    (I    II   I   II),    and 

is  so transformed. 

2. L^+L^+Ljjj+Ly-y^Uj+Ujj+UJ,J+UJV= 2k.   by the supplementary 

property,   Theorem   6.1. 

3. LTT=]jpj-   and   UTT=Uy^-     since   a.©a   , .= a.®a.   .   by Theorem   2. 1. 

4. Therefore    2L, +2L, T= 2UT+2UTJ= 2k.   by substituting into step   2, 

and using the condition of step    1. 

0.        ]_i _T J_J _ -=   K..   . 

6. L +U.= k.    since the total of likes and unlikes must equal all 

possibilitie s. 

7. LTT-UT= 0    subtracting the equation in step    6   from that in step    5. 

8. Therefore    L= U     and   (I, II)   are complementary. 

9. Since    (1,11)    are complementary,   so are  (I,~lT)   and any general 

transformations of   (I, ll)    and   (III, IV). 

* * * 
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This last property should be extremely useful in decomposing long 

codes,   since it avoids the tedious task of checking to see if    (I, II)   are 

a complementary pair.     Whenever a complementary pair expressed in 

sequence quadruple form has the pattern   (I II   I   IT),    certain additional 

transformations are allowed which are not true in general.     These 

allowable operations are the time reversal of   I   and    III,   II   and    IV, 

or both.    Also allowed as an operation is the altering of either even bits 

or odd bits for all four sequences.     The proof of all these operations 

being allowable is quite  simple, but does require an addition to the no- 

tation to cover these particular operations.    Double or quadruple  sub- 

scripts will be used to denote these operations,    T,_,T?4    and T,-,-.,, 

represent respectively the time reversal of   (I, III),   (II, IV)    and the 

time reversal of both pairs.    A, .    represents the altering of the odd 

bits in all four sequences while   A->.    stands for the altering of even bits 

in all four sequences.    Actually complementing any two,   or all four of 

the four sequences will also leave a complementary pair when reassem- 

bled,  but each of these operations is already accomplished by the 

general transformations. 

Theorem   3. 5 

Whenever a complementary sequence pair is put into sequence 

guadruple and then transformed so that the resultant group pattern is 

(I   II   I IT),   I   and   III,  or   II   and   IV,   or both,   can be time reversed 

and the sequence pairs formed on reassembly from thequadruple, after the 

operations    (T T2      or   T1234)'    will still be complementary sequence 

pairs. 

1. Given,   (A,B)    is a complementary pair of length   n   transform- 

able in quadruple form to   (I   II   I "IT),   and is  so transformed. 

2. (I, II)   is a complementary sequence pair by Theorem   3.4. 
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3. Therefore    (I_, II),   (I.H]   and   (I, II)    are complementary pairs 

by Theorem   2. 3. 

4. From this it is  seen that the original sequence quadruple after 

the operations    T13,T24   and   T.,-,    are    (I   II J   TTJ, 

(I   II   I _H)    and   (1^  II    I_ TT).    When interlaced in the customary 

manner to form pairs,   the pairs they form will be complementary 

sequence pairs by Theorem    2. 8. 

* J|C 5jc 

Theorem   3. 6 

Whenever a complementary sequence pair is put into sequence quad- 

ruple and then transformed so that the  resultant group pattern is    (I   II 

I   II),   the operation   A, .,    the altering of odd bits,   or the operation 

A-, .,   the altering of even bits,  will allow the quadruple upon reassembly 

to still be a complementary pair. 

1. By hypothesis   A   and   B   are a complementary pair which 

when expressed in sequence quadruple form are transformable 

to    (I   II   I "TT),   and is so transformed. 

2. (I, II)    is a complementary sequence pair by Theorem    3.4. 

3. (I, II)   when operated upon by either   A,    or   A-,    is  still a 

complementary pair by Theorem   2.40 

4. If the symbol (1, 2) is used for the pair (I, II) altered it is 

seen that the pair formed from the interla.ce of (12 12) is 

a complementary pair by Theorem   2«, 8. 

* * * 

These last two theorems should prove quite useful when trying to 

estimate an upper limit on the possible number of composite comple- 

mentary sequences of any particular length.     An example to illustrate 

the use of Theorem   3.5    might prove helpful.     Taking pair number one 

from Appendix    II, 
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A=11010001 11011110 

B=1000010010001011 

1=10001011=1 

11=01 111011 = 11 

111=10001011 = 1 

IV = 1 ooooioo =ir 

Since this is already in   (I   II   I   II)   form without transforming it, 

T. ,   can be applied directly giving 

1=11010001 

11=01111011 

111=11010001 

IV = 10000100. 

Reassembling   gives 

A^llllOOllOlOlOllO 

B^lOlOOllOOOOOOOll 

which is identical with number three in Appendix   II. 

As an example,  to illustrate the use of Theorem   3.6,  applying   A-,, 

to the  same    (A,B) pair gives 

1.=11011110 

2.=00101110 

3.=11011110 

Z„=11010001, 

reassembling give 

As=1011011110111000 

B3=1110001011101101. 

This is the same as number    6   in Appendix   II   with the transformation 

TCS=£>  applied. 
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Unorde red Unordered 
Transform Equivalent Transform Equivalent 

1. I = (I II   I   ' ny A2 17. R = (I Ti   Ti T) O 

2. Ai=(l   II  T ny C 18. Q = (II 1   Tl 1) J 

3. A3=(I IT  I n) I 19. P = (If I   II   I) T 

4. T! = (II    I    I "TT) s 20. o = (TT I   l TT) R 

5. T2=(I   II "IT i) X 21. N = (II   I   T  II) U 

6. T =(II   I TT i) p 22. M= (T n Ti i) Y 

7. Ci=(T H   I IT) F 23. L = (Ti 1 T ii) V 

8. c3=(i ii 1 ii) D 24. K = (1 Ti   II T) Z 

9. C =(TTTT ii) Ai 25. J = (Ti T II T) Q 

10. z =(ll T T IT)) K 26. H = (i  II  nl) "w 

11. Y =(Tf  I 1 ii) M 2 7. G = Tn T TT I) B 

12. x =(TT I  I n) T2 28. F = (i Ti 1 TT) Ci 

13. W =(II 1   I ii) H 29. D = (T   II    I   II) c3 

14. v =(T II TT T) L 30. IT  =   (II    I    II    T) <t> 

15. U =(1   II   II i) N 31. B = (TT I Ii  T) G 

16. s =(I IT II i) Ti 32. 0 = (II T II   I) 

E = (I  Ti   I  II) 

IT 

A3JI 

Redundance due to   (I   II   I   II). 

TABLE    3.4 
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The    (I   II   I   II)   form,   or one of its transforms,   appears quite 

often in the study of composite complementary sequences.     Since two 

of the components are the same,   and the other two are complements, 

it iß reasonable to assume that some of the transforms are redundant, 

that is yield indistinct results.     Table    3„ 4    lists all the transforms 

with the elements    I,   II   and their complements.     If   (As B)    are taken 

as an ordered pair,   the number of different codes formed from the 

transformation group are    32   instead of   64   because    As(I   II    I   II) 

and   E(I   II   I   XT]   are the same.     If   (A,B)   are taken as an unordered 

pair the number of transforms forming different codes is decreased 

from   32    to    16.     Table    3.4   lists each transform with its unordered 

mate. 

The only possibility of having less than    16    unordered pairs of 

codes which are distinct would be if the group form could be transformed 

into the pattern    (III   I).     The only case known to the writer where 

this is true is the quad.     For one version of the quad this is 

A=ll B=10 

1=1 

11=1 

111=1 

IV=0. 

Table    3. 5    shows the eight ordered pairs,   or if the cross index column 

is used the four unordered pairs, for the quad.     The four possible code 

transformations for the quad are: 

12 3 4 

A=     11 11 00 00 

B=     10 01 10 01. 
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Pattern 

1. (I   I    I  1) 

2. (Till) 

3. (I 1  i  i) 

4. (I  I 1 I) 

5. (TT  I I) 

6. (Till) 

7. (I T T i) 

8. (Till) 

Cross index number 
for unordered pairs 

3. 

6. 

1. 

8. 

7. 

2. 

f. 

4. 

Transforms with pattern 
for ordered pairs 

I,TltH,TT 

Ax.Y.V.B 

A3,W,S,0,      E 

T3,T,C2,N 

CLO.K, J 

C,M, L,G 

Z.R.Q.F 

X.U.P.D 

Redundance due to   (I   I   I 1), 

TABLE    3.5 

This exhausts the transformations of special types and the  redun- 

dancies    caused by   (I   II   I   II).     The operations group will now be 

compared to Senior's group number   44   of length   32    as was mentioned 

earlier in this chapter. 

The identification of   any group with a group in Senior's list,   is 

accomplished through establishing a one to one correspondence between 

16 As will be demonstrated,   Senior's group num- 
group generators. 

ber   44    of order    32    is in one to one correspondence with the unordered 

operations group of complementary sequences expressed in sequence 

quadruple form.     Therefore the two groups are isomorphic. 

Senior's generators will be given in lower case letters,  while those 

of the operations group will be in their  standard upper case  symbols. 

Five generators are required for Senior's number    44;    let these be 

a,b,c,d,e.     The following relationships between generators are re- 

quired for Senior's    44: 

1. a2=b2=c2=d2=e3 = l where    1    is the identity. 

2. b"ab=a,   c-1ac=a,  d_1ad=a       where   x  1 is the inverse of   x, 
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3. c-1bc=b,  d_1bd=b, 

4. d_1cd=c, 

5. e   1ae=a,  e   ^e^, 

6. e   1ce=ca,  e   1de=bd. 

A check of the above  requirements  shows that   a,b,c,d   form an 

abelian group of order    16   while the   "e"    generator is commutative 

only with   a,b   and is non-commutative with   c,d. 

Let   a=Ci,   b=Cs,   c=Tlf  d=T3,  e=Ax .    From Table    3,3    it is seen 

that the following relations are true. 

1. C? = Cl= Tf = T|= A?=I 

2. C2C1 C3 = Ci,  Ti Ci Ti = Ci ,  T3 Ci T3 = Ci . 

3. Ti C2 Tx = C3 . 

4. T3 Tx T3 = Ti . 

5. AxCi Ax = Ci ,      Ax C2 Ai = C3 . 

6. Ax Tx Ai =    Ti  d = 0,      A1T3A1=   C3 T2 =   H. 

This one to one correspondence between the generators of Senior's 

group number   44    and a set of generators from the unordered operations 

group on complementary sequences is necessary and sufficient to prove 

the two groups are    isomorphic. 

The diagrams for Senior's group number   44   of order   32   and 

those for its  subgroups were used as a guide line to check the generation 

of subgroups from the operations group of unordered complementary 

sequence pairs.     These  subgroups of order    1,2,4,8   and   16   are  shown 

in Appendix   IV.    All groups that were  shown in Senior' s diagrams are 

included in these charts;    however,   Senior's diagrams included only 

normal subgroups and,  although much care was taken in the generations 

of the subgroups of the operations groups   there is a possibility that 

Appendix   IV   is not exhaustive due to some undetected non-normal sub- 
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Senior in conjunction with others has rewritten his work and 

17 
changed his designating method. Under this new method his 

number   44   of length   32    is now    /^.a. .     The ordered operations group 

of length    64   is also identified as     /^-a.,, 

An identification of the group with Miller's number   23    of order 

32    was also accomplished for those who prefer the substitution group 

1 8 
method of identification. 
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CHAPTER   IV 

HAMMING   DISTANCES   OF   COMPLEMENTARY   SEQUENCES 

The Hamming distance is a well known property of certain classes 

of codes. This very useful property has had most of its applica- 

tions in the fjelds of binary error detecting and error correcting codes. 

This chapter will demonstrate the usefulness of Hamming distances in 

the field of complementary sequences,   as both the code pairs and their 

sequence quadruple formulation have certain invariances in Hamming 

distance under various conditions. 

The Hamming distance,  D(U, V),  of two binary vectors or sequences 

U    and   V   is defined as the number of positions in which these"two binary 

vectors differ. 

i=n 
D(U,V) =       S       u. «   v. (4. 1) 

i=l        a 

For example,  the Hamming distance of the two binary vectors 

U=1011001 

V=0111001 
7 

is    D(U,V) =   S    u.    •   v.    = (1 + 1+0+0+0+0+0) = 2 
i=l     1 1 

The Hamming weight or just weight of a binary vector is its distance 

from the null vector. 

Theorem   4. 1 

All complementary sequence pairs of length n have a Hamming 

distance of   n/Z. 

By hypothesis 

and 

J\~ 3- -i   a- -» 3   ^ i>    e    «    e    »    •    "*  1   L   5 n 

B=b.b;)b-,. . . . . . b 

A   and   B   form a complementary sequence pair. 
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1. All complementary sequence  pairs  satisfy the parity check 

ai*an-i+l    §bi§bn-i+l    =    1. for all 

i,   1 < i < n/2 by equation   2. 4„ 

2. Since    mod 2   addition is commutative 

a. «b. «a     ...   ©b     . ,,   = 1  . l       l       n-i+1       n-i+1 

3. Therefore either   (a. ®b.) =  1    or (a     . , .   ©b     . , .) ,  but not li v   n-i+1        n-i+1' 
both. 

4. For each   i,     1 < i < n/2    one of the two vector positions in 

step    3    will have a one and the other vector position a zero. 

Summing up over all possible    i,   gives    n/2   for the 

Hamming distance. 

When a complementary sequence pair is decomposed into a sequence 

quadruple,   each pair of sequences in the quadruple,   which form one of 

the complementary pairs,  has a Hamming distance which will be shown 

to be characteristic of the code length,,     The  sum of the two pairs of 

Hamming distances from the quadruple is an invariant and is equal to 

n/2   the Hamming distance of the complementary sequence pair. 

For example, 

A=1001010001 

B=1000000110 

are a complementary sequence pair of length    10. 

Decomposing them into the  standard sequence quadruple,   (I   II   III   IV), 

give s 

I = 10000 

II = 10110 

III = 10001 

IV = 01000 
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I    9   II   =-00110 D(I,H) = 2 

III    0   IV   =    11001 D(III, IV) = 3 

I    ©   II    ©   III    ©   IV =11111    D(I'«n, IIHUV) = 5 . 

This distance is half the length of the complementary sequence pair, 

and is  required because of the necessary condition of the parity check. 

If the distances    (2,3)    for the pairs given in the above example are 

taken as an unordered rather than an ordered pair,  this   (2,3) pair 

will be invariant through all general transformation operations. 

All of the general transformations on the sequence quadruples 

have one or more of the following properties: 

1. Change the order of   (I, II)    or    (III, IV)    or both, 

for example, Tx  ,   T3,  T . 

2. Complement the pairs    (I, II)    or   III, IV) or both, 

for example,   Ci  ,Cs ,C . 

3. Complement one from the pair    (I, II)    the other from 

the pair   (III, IV), for example,    Ai ,  Az . 

4. Exchange   (I, II)    for   (III, IV),  for example,    E. 

Since all operations in the group can be generated by multiplication 

from the  set listed above,  an examination of the effect on Hamming 

distance by these transformations will be adequate to prove the invar- 

iance. 

Theorem   4. 2 

A change in order of   (I, II)    or   (III,   IV)    or both will not change 

the Hamming distances of the pairs    (I,II),   or   (111,1V),, 
n 

1. By definition   D(U,V)=     S    u, •   v. 
i= 1 

2. u. ®v. = v.  ©u.    modulo    2    addition is commutative 
li li 

i=n i=n 
3. DfU.V) =     E    u   ©v.   =       E   v. ©u.     =D(V,U) 

i=l      *       ' i=l     1 

$ % # 
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Theorem   4.3 

Complementing    (I,H)    or   (III, IV)    or both will not change the 

Hamming distances of the pairs    (I, II)    or   (III, IV). 

1. u. 9 v.    =   ü.      # v. by   Theorem   2.1 
liii ' 

2. Therefore    T, u. «   v.    =   £ ü.    ©   v. 
ii li 

3. and   D(U,V) = D(TJ,V) 

* * * 

If it is assumed that the length of the  sequence quadruples formed 

from the complementary sequence pairs have a length   K   and that the 

distance of the first pair is   R,  then the following theorem can-be proved: 

Theorem   4.4 

Complementing one of the pair   (I, II)    and one of the pair   (III, IV) 

results in the exchange of their Hamming distances,   or expressed dif- 

ferently,   gives the same distance pair in opposite order. 

1. Let D(I,II)=R,     therefore 

D(III, IV) = K-R 

as the parity check requires D(I<HI, III'«]V)=K 

2. Complement one of the first pair in the    (I II   III   IV) form, 
and also complement one of the  second pair. 
Each vector position that was formerly alike and summed 
to zero is now different and sums to one. 
Similarly each vector position that was formerly different 
and summed to one is now alike and sums to zero. 

3. D(l", II) =   D(I,H)    =    K-R   from    2. 

4. D(III,IV)    =   D(III.IV)    =   K-(K-R)    =R   from   2. 

s|« * * 

Theorem   4. 5 

The exchange operation has the effect of changing the order of 

Hamming distances of the pairs    (I, II)    and    (111,1V)    when expressed 

in sequence quadruple form. 
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1. The pairs   (1,11)    and   (III, IV)    are not changed in any way 
except by position in the exchange operation. 

2. The only way to effect the Hamming distances of a pair of 
vectors is to change some of the components of the vectors. 

3. Therefore the two weights are the  same but reversed in 
order. 

An examination of the Hamming distances for the known kernels of 

2,   10   and    26   is now in order as these distances are a characteristic 

of the kernel,  as are the vectors formed in the process of obtaining the 

distances by the modulo    2    sums. 

The first case to examine is the trivial case for the kernel of 

length   2. 

A=ll B=10 

Broken down into sequence quadruple representation 

1=1 D(I,II)=0 

11=1 

111=1 D(III, IV) = 1 

IV = 0 

There are two kernels for length    10   to be examined. 

A=1001010001 
B=1000000110 

1=10000 I® 11=00110 D(I,II)=2 

11=10110 

111=10001 III0IV=11OO1 D(III,IV)=3 

IV=01000 

and 

A=0101000011 
B=0000100110 

1=00001 I®    11=10010 D(I 
11=10011 

111=00101 III©    IV=01101 
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Both kernels of length    10   have the unordered Hamming distances of 

(2,3) when expressed in sequence quadruple representation.    However, 

their "Hamrring vectors",   the unordered pairs (0Q1 10, 1 1001)   and 

(10010,01101)   are different and are characteristic of the kernel of 

their origin under all possible transformation operations.    Hamming 

vectors will be considered at length in the next chapter and proof of the 

above  statement will be deferred until then. 

There is only one kernel of length    26 (Chapter 7) and it is 

A=01001101111010111100111010 
B=10110010000111111100111010 

1=0010111110111 I   $   11=0000001101010 D(I,II)=   4 
11=0010110011101 

111=1101001110111 III   $   IV=1 111 110010101 D(III,IV)=   9 
IV=0010111100010 

This is a complete listing of the Hamming distances for all known 

kernels and it is exhaustive for   n=2,10,18    and    26.     It is worthwhile 

to note that the  sum of the unordered pairs of distances is always equal 

to one half the length of the code and that the Hamming vectors of the 

pairs are complements.     Both of these conditions are due to the parity 

check being a necessary condition. 

A natural extension of the Hamming distances of kernels is the 

consideration of Hamming distances of composite codes when put into 

sequence quadruple form.    Six different code pairs  of length eight are 

listed in Table    4„ 1.     These pairs will be examined for a possible in- 

variance.    After this in variance is noted a general proof will be given 

for the characteristic distance of composite codes. 

The first four examples in the table when decomposed into  sequence 

quadruple representation  have    (I,II)    and   (III, IV)    as code pairs which 

are  still complementary.    These codes are half the length of the original 

pair,  and being complementary,  have a Hamming distance one half of 

their length,  or n/4 as compared to the original codes of length eight. 
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(a) A=11111001 
B=11001010 

H=(00110011) 

1=1110 I ©    11=0101 D(I, II) = 2 
11=1011 

111=1011 III®   IV=1010 D(III,IV) = 2 
IV=0001 

(b) A=IIIIOIIO H-rooiinoin 
B=11000101 H-(OOllOOll) 

1=1101 I   ©   11=1010 D(I,II) = 2 
11=0111 

111=1000 III   ©   IV=0101 D(III,IV)=.2 
IV=1101 

(c) A=IIIOIIOI H-rooooinn 
B=11100010 H-(UOOOllll) 

1=1110 I   ©   II =0011 D(I, II) = 2 
11= 11 01 

111=1101 III   ©   IV =1100 D(III,IV) = 2 
IV=0001 

(d) A=IIOIIIIO H-roooomn 
B=11010001 H-(OOOOllll) 

1=1011 I   ©   11=1100 D(I, II) = 2 
11=0111 

111=1000 III   ©   IV = 0011 D(III,IV) = 2 
IV=1011 

(e) A=11101011 
B=11100100 

(f) A=10111110 
B=10110001 

H=(00001111) 

1=1111 I   ©   II = 0110 D(I, II) = 2 
11=1011 

111=1100 III   ©   IV = 1001 D(III,IV) = 2 
IV=0101 

H=(00001111) 

1=1111 I   ©   11=1001 D(I, II) = 2 
11=0110 

111=1100 III   ©   IV=0110 D(III,IV) = 2 
IV=1010 

Some Hamming distances and vectors 
of codes of length   8. 

TABLE   4„ 1 
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An examination of the last two examples in the  table  shows that 

although the    (I, II)   and   (III, IV)    pairs are not complementary their 

Hamming distance is  still   n/4   when compared to the original codes 

of length eight.    That this feature is true in general will now be proven 

by examining and exhausting all the known ways of generating composite 

codes. 

Theorem   4. 6 

Every composite code of length   n    (generated by one of the standard 

methods) when expressed in the sequence quadruple representation will 

have   D(I, II) = D(III, IV) = n/4. 

There are presently known four general ways of generating com- 

posite codes from shorter codes,  (there is also the method applicable 

only to codes of length   2r   given at the  end of the proof).     These are: 

1. Time Sequence 

Si = AB 

S2 = AB 

2. Interlace 

Tx = a^a^...anbn 

T3 = a1'B1a2b2...anbn 

3. Time Sequence Exponential 
c1     c2 cm   dl    d2 dm 

Ui = A   lA   \ . . A ™B   _B   *. . . . B  m 

d        d       n di    c        c        i c, 
TT .    m.    m-1       A    lp,   m„   m-1     R   1 U3 = A       A       ,...A     B       B ...B 

4. Interlace Exponential 
c,    d.    c,    d., cd 

V1 = A   ^^A  2B   2..10.A  mB   m 

d       c        d       .    c       , d      c. 
V2 = A  mB  mA  "^B  m_1.....A   lB   l 

Throughout this proof it will be considered that    (A,B) are a comple- 

mentary pair of length    r    and   (C,D)    are a complementary pair of 

length    m. 
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The parity check   a. ®    a .    ® b.    § b   , ,    . =   1    is a necessary l n+l-i l n+l-i / 

condition for a sequence pair to be complementary.     One of the simplest 

methods for making the parity check is to fold both codes in the middle 

and double them back on themselves. This procedure is shown in 

Figure   4.1.    Each 

ala2a3-'"---ai ••■•an/2-ian/2 

n  n-l n+1-1   . . . . *nf2+fn/z+l 

blb2b3 bi •••°bn/2-lbn/2 

b  b   -1 b 
n n n+l-i    * " '*bn/2+2bn/2+l 

Foldover Parity Check Method 

Figure    4."1 

column in Figure   4. 1    satisfies the parity check.    If code pairs are 

written in the sequence quadruple form such as in Figure   4. 2  ,  it is 

seen that the columns of this array are the same as the column in the 

first array with rearrangements in order provided it is allowed that 

the columns 

a a r u 

a and       a 
u r 

b b r u 

b b u r 

are the same.    Since modulo   2   addition is the operation used in 

making the parity check and in determining Hamming distance,  and the 

use of each column involves only modulo    2   addition which is commu- 

tative,  the two columns can be considered the same.     Therefore the 

fold-over method of grouping and the sequence quadruple form of grouping 

have invariant columns,   order being ignored, 
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äld-är      »I      ,,,,,,      , 3. -*        3. 1 lib n- 3    n- 1 

n  n-Z 4 2 

1   3 n- i     n- 1 

bb      ,   ......... b ,       b 0 n  n-Z 4 2 

Sequence Quadruple Form 
of Parity Check 

FIGURE   4. 2 

Now consider the composite generating methods. 

1. Time Sequence 

Si = AB 

S3 =AB~        writing in the fold-over parity check form   . 

ä,ä,a„   a     -, a      .a 12   3 r-2   r-1   r ^, .    ,... ,-, 
»rVl b3     >3    *I "(A.B)-r/2 

d.a^n~(gil(l    3. -j 3, | 3. 

6 6 B!br<        D(A.H)-r« 
r   r- 1 3        2        1 

The top pair are complementary and therefore have a distance of 

r/2,   similarly the bottom two  rows are complementary and have a dis- 

tance of   r/2   by Theorem   4. 1.    To write the time  sequence code in 

sequence quadruple form would not change the distance since it would be 

purely a reordering of the parity check columns.     Therefore    D(I,II) 

would equal    r/2   as would   D(HI,IV).     In terms of the composite code 

of length    n   D(I, II)=D(III, IV)= r /2 = n/4   whether or not    (I, II)    and 

(III,rV)   happen to form complementary pairs. 

2. For the interlace scheme the (I, II) pair and the (III, IV) pair 

are obviously complementary sequences by construction and will have a 

distance of   r/2 = n/4. 

3. Writing the time sequence exponential pair in fold-over form 

§ives        U1=AClAC2. .... ACm 

d.       d J where the  symbol   B   means   B   time 
B   mB ......Bl reversed. 
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U2=;A_mA_m:!     A_l 

c,    c c 
B   lB   Z     B   m 

The B's    are all time  reversed but the time  reversal of one of the 

complementary pairs does not change the complementary property 

D(A,B)=D(A,B) = r/2.    For each bit of the   C    code and   D   code there 

is a distance    r/2    since every   A   is matched with some transformation 

of   B   for each of these bits.     There are a total of   m   bits in the   C 

code and in the   D   code,  therefore the total distance of   \J\   folded back 

on itself is    m x r/2 = mr/2.    Similar reasoning gives    U3   folded back 

on itself a distance of   mr/2.     A rearrangement of the columns will not 

change the Hamming distances      Therefore    D(I,Il)=mr/Z   and 

D(II1, IV) = mr/2,   since the total length of the code is    n=2mr,   0(1,11) = 

D(III,IV)=n/4. 

The interlace exponential scheme is the last general method of 

code generation to be considered.     Written in the fold-over form it gives 

V1=AClBdlAC2Bdz. .... A
C™/Z

B
dm/2 

_   m.    mB   m-1 ß   m/2+1    cm/2 + l 

V2=AdmBCmAdm"!.... A
dm/2+lB

Cm/2+l 
c,      d,      c, C/-,        d,-, 

BAB B   m/2     A  m/2 

Again each   A   is matched with some transform of   B,  D( A, B)=D(A, B)= 

D(A,B),   etc.   = r/2.    As before,   rearranging columns  into sequence 

quadruple form will not effect the Hamming distances.     The distance of 

the top two rows is    mr/2    and the bottom two rows    (V2)    also is equal 

to    mr/2.     The total length of the code is    2mr,    therefore 

D(I, II)=P(III, IV)=mr/2=n/4. 

5. When composite codes are of length    2   ,   they are  sometimes 

formed in a special way from the interlaced sections of a complementary 
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pair.     These sections or pieces of the codes must be of length   p=2^ 

where    j<r.     Using the symbols    A^a^^a^ . . . a   ,    A^  =a   +1a   +2. . . 

a,      and so,   the following pair would be complementary if   A   and   B 

formed a complementary pair. 

S,   =A   B  A-,   B-,      A      ,   B      , lp      p   p   Zp   Zp np/p   np/p 

S,   =A  B  A,   B, A      ,   B      , Zp      p    p   Zp   Zp np/p   np/p 

Rather than try to use the general term to prove that   D(I, II)=D(III, IV) 

= n/4   as was done in the previous cases,  a short general example of 

length   8    will be used.    These two codes    (A,B)   of length eight will be 

interlaced four bits at a time    (p=2)    to form a code of length    16. 

S14=a1a2a3a4b1b2b3b4a5a6a7a8b5b6b7bg 

S24=a1a2a3a4b1b2b3B4a5a6a7agS5B6B7b8 

Writing this composite pair in fold-over form yields 

S14=a1a2a3a4b1b2b3b4 

bgb7b6b5a8a7a6a5 

S24=ala2a3a4BlS2B3B4 
S8S7B6S5a8a7a6a5 

D(A,B)=4   by Theorem   4. 1.    S,.    folded over is just a column 

rearrangement of the complementary pair    (A,B),   and since a re- 

arrangement of columns does not effect Hamming distance,   the Hamming 

distance of   S, .    folded-over is also   4.     Similar reasoning holds for S-> . 14 Z4. 

Since the standard sequence quadruple form is again just a re- 

ordering of the columns,  the distance of the (I, II)    pair and the 

(III, TV)    pair is    n/4.     For this example, 

I=a1a3b1b3a5a7b5b7        ^ ^ 

II=b8b6a8a6b4b2a4a2 
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III=a. a,b, b,aca7bj-b7 

D(III, IV)=4 

IV=b  b6a  a6b   b2a  a2 

D(I®II,III©IV)=8. 

Therefore any composite complementary sequence pair when written in 

sequence quadruple form has   D(I, II)=D(III, IV)=n/4, 

* * * 

Although there is no proof that the    4    standard generating methods, 

plus the special one applicable only to   2      codes,  are the only way to 

form complementary codes which are composite,  an exhaustive search 

of code lengths    16   and    20    revealed no codes which were not formed 

by these standard generating methods. 

The full usefulness of the2 Hamming distance property is,  of course, 

not yet known.     The property of the distance of the complementary pair 

being equal to half the code  length as  shown in Theorem   4. 1,    is used 

in many of the proofs  in the chapter on Hamming vectors.     This property, 

D(A,B)=n/2,  indicates that the code pairs are orthogonal.    Because of 

this orthogonality property the leakage of an   A   code carrier into the 

B   code filter,   or vice versa,  will have no effect on the output at exact 

match. 

The primary use the writer has found for the Hamming distance of 

the    (I, II)   and (III, IV)    pairs,   has been the error check that this invariant 

property offered in decomposing codes by hand.     One possible use for the 

invariance of   D(I,II) and   D(III,IV)    could be in the  search for kernels of 

new lengths. If a characteristic Hamming distance for unknown kernels 

could in some way be deduced, based only on length, this invariant prop- 

erty of distance would act as a most powerful screen in the search. The 

(I, II) and (III, IV) pairs are themselves orthogonal, unless the code is a 

kernel. This may provide other possible methods for searching for new 

codes.     It is  difficult to  say in advance what utilization will be made of any 

invariant property,  but it is fairly safe to say that the property will find use. 
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CHAPTER   V 

THE HAMMING VECTORS OF COMPLEMENTARY SEQUENCES 

The Hamming distance between the code pairs in a complementary 

sequence was shown by Theorem   4. 1    to be one half the length of the 

code.     This Hamming distance was obtained by first finding what I shall 

call the Hamming vector,   H(A,B)= A $ B   or for convenience just 

H=A€>B,  and then counting the number of ones   H   contains.     The Ham- 

ming vector is itself useful in recognizing the composition of a composite 

code when it is desired to break the code down into shorter lengths.     This 

decomposition might be used to find previously unknown kernels,   or to 

set an upper bound on the possible number of pairs of codes of any length. 

An examination of each of the methods for generating longer codes 

from shorter ones as explained in Chapter   Z   will show that each method 

has a characteristic Hamming vector form, although it may be necessary 

to time reverse one of the codes to obtain this form.     The method of 

generating codes of length   Z   ,  which does not apply to complementary 

codes in general,  will also be  studied with its characteristic Hamming 

vector. 

In the following proofs    (A,B)   form a complementary code pair of 

length   n   while    (C,D)   form a complementary code pair of length   m. 

The symbol   (0)      or just   0      will mean a string of   n   zeros,   similarly 

(01)      will symbolize a string of   n   zero ones,  and (a.8Kb.)      will be a 

string of   n   elements equal to   (a.©b.) . 

Theorem   5. 1 

The time sequence form of generating a composite code has the 

characteristic Hamming vector   H=(0)   (1)   , 

Use the time sequence generating method on   (A, B) to form 

Si= AB 
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Take the Hamming vector of   (Si,   S3),   H=Si © Ss= 0   1   ,    this is 
(5.1) 

seen to be true by inspection and definition of modulo    2    sum. 

Jfi 3j< jfi 

Theorem   5. 2 

The interlace form of generating a composite code has the charac- 

teristic Hamming vector   H=(01)   . 

Use the interlace generating method on   (A,B)   to form 

Ti=a, b, a-.b-.a-jb, a  b *      1    1   Z   Z   3   3 nn 

T2=a, b, a0bTa0b0 a  b 11ZZ33 nn 

Take the Hamming vector of   (T1( T3),  H=Ti 9 T3=(01)n, (5. Z) 

this is  seen to be true by inspection and definition of modulo Z  sum. 

Theorem   5. 3 

The time sequence exponential form of generating a composite code 

has the characteristic Hamming vector   H=(cn§d    )    (c Jd       n)    ... 0 1      m Z     m-1 

(c    Vd.f (d. €>c    )n. ...d    ®5.)n . mil       m ml 

Use the time  sequence exponential method on    (A,B)    and   (C,D) 

to form ,       j j c,     c-, c        d,    d-> a 
U1=A   lA  2 A  mB_   1B_2..........   B_m 

d        d       , d,    c        c       , c 1 
US=A mA ^r.1 A   XB   mB   "V.1........ B   l . 

Take the Hamming vector of    (Ui  ,   U2 ), 

,n   ,      . , ,n ,       . ,   .n,,   _-     .n 
H=U!® U2 =(c,W    )      (c,»d       ,)  . ... .(c    ©d.)   (die     ) 1     m Z     m-1 ml 1     m 

<dm^l> 

m 
n (5.3) 

This is  seen to be true by inspection and definition of modulo Z sum. 

s|; * * 

It is to be noted that each of theTheorems    5.1,5.2,5.3    have 

Hamming vectors which are anti-6:ymmetric about their center.     This is 

required to satisfy the fold-over method of making the parity check. 
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Theorem   5. 3   also shows that along with the anti-symmetric characteristic 

the Hamming vector for time sequence exponential composition has unit 

clusters of   n   zeros or   n   ones and is also   anti-symmetric in both halves. 

This is easily seen because the first sum is   (c n ©d    )   while the last sum 
1     m 

to operate on the   A   code is    (c    ©d, ),    but it is known through the parity 

check that   c,©d    ©c     ©d.   =  1 .     Therefore one of the sums    (c. ©d    )    or 
1      m     m      1 1     m 

(c     ©dn )   must be zero and the other must be one.     To  summarize,  for 'ml 

the time sequence exponential form of composition the first half of the 

Hamming vector is    anti-symmetric about its center (the quarter length 

point) and the first half and the last half of the vector are also anti-sym*- 

metric. 

Theorem   5.4   will concern the interlace exponential method of 

forming composite codes and it will be  seen that this method will again 

form a Hamming vector anti-symmetric about its center,  but with a dif- 

ferent arrangement of the clusters of zeros and ones. 

Theorem    5. 4 

The interlace exponential method of generating a composite code has 

the characteristic Hamming vector   H=(c,©d    )   (d,8c     )   (cJd       ,) 0 1       m 1      m L     m-1' •    • 

(c    »d,)n(d    ©c,)1 

m     1 m     1 

Use the interlace exponential method on    (A, B)    and   (C s D)    to form 
c,    d,    c-,    d-> cd 

V1=A   ^A  2B   ?....  A  mB_  m 

d        c        d       ! d,    c, 
V2=A  mB  mA  "I".1....  A   lB   l. 

Take the Hamming vector of   (Vi,Vg) 

H=V!® Vs= (c,»d    )n(d1©c    )n(c,©d       ,f. ...(c    ©dn)
n(d    ©Cl)

n     (5.4) 1 x   1     m'       1     m'       2     m-1 m     1     m     1 

This is seen to be true by inspection and definition of modulo 2 sum. 

* * * 

The interlace exponential method again gives a Hamming vector 

which is anti-symmetric about its center due to the condition of satisfying 
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the fold-over form of the parity check,  but its clusters of zeros or ones 

are now   2n   in length rather than just   n   as was the case for the time 

sequence exponential method of generation.     This characteristic of 

clusters of   2n    in length is caused by the necessary condition of the 

parity check for the    (C,D) code pair.     For example,   the first two clusters 

are    (cnfd    )      and   (d,©c     )      and the  second two clusters are (c,§d       ,) 
1      m 1      m L      m- 1 

and   (d->®c       ,)   .    Applying the parity check to the    i=l    and   i=2   bits 

in the    (C,D)   pair gives the following two equations: 

cnOc    «d,»d    =1 and        c,,«c       ^fd-^d       ,=1  . 1     m      1     m &     m-1      c     m-1 

Adding one modulo   2   to both sides of both equations and rearranging 

gives    (c,»d    ) •{d,©c     §1) =0   and   (c,»d       , ) ©(d7»c       ,»1)=0."   It is ° 1     m 1      m £     m-1 L     m-1       ' 

true in general that   x <B  1 = x;    therefore    (c . <Bd    ) ©(d,©c     )=0   and 
■> 1ml      m 

{c0©d       ,) © (d,0c        n) = 0 .     The sums    (cn  ® d    )    and   (d,   0 c     )   must c     m-1 c.     m-1 1 m 1 m 

be alike to satisfy this constraint with each of the  sums giving    n   ones 

if unlike,   or   n    zeros if alike,   and since the pairs are in time  sequence 

the clusters must be in groups of   2n.    A similar reasoning will show 

that the parity check for   i = 2   gives identical results for the third and 

fourth terms in the Hamming vector for the interlaced exponential form 

of generating composite codes.     Therefore equation   5.4   can be written 

H(V1,V2) = (cL • dm)2n   (c2«dm_1)2n....(dm»c1)2n
0 (5.5) 

Before going into the special case applicable only to codes of length 

2      it might prove helpful to give an example of generating a code by one 

method and then decomposing it,   to  show that it could have been composed 

by a second method.     The time sequences exponential scheme will be the 

generating method used. 

A=10 C=1001010001 
B=ll D=1000000110 

Ux= 1001011001100101011011000000000000111100 

U2=01101001010101010110001 111 11001100111100 

H=U!©U2      =1111111100110000000011 Uli 11001100000000 
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In passing it should be noted that the shortest clusters of zeros and ones 

in   H   are of length    2   and that   H   is anti-symmetric about its  center. 

If   Ui  is now time reversed,   indicated by   U.   ,     the complementary 

pair is now: 

Ui=0011110000000000001101101010011001101001 

U3=0110100101010101011000111111001100111100 

H = U    9 U2=0101010101010101010101010101010101010101 = (oi)20 

This form of the Hamming vector indicates that   H   is composed of an 

interlace pair of length   20.     Decomposing both    U.     and   Us   by assum- 

ing an interlace pair gives 

Uj=01100000010111010110 

01100000011000101001 

H =0000000000111111111 1 = o10i10 

U2=011000000101110101 10 

10011111100111010110 

H = 11111111110000000000 = i10o10 

The Hamming vector of   U.    indicates that this code of length   20 

was composed by the time sequence method from codes of length    10. 

If the form   AB    is assumed for the codes of length    10    then 

A=0110000001 
B=0111010110 

This    (A,B)    pair is seen to be the transformation ETC,= EG     on the 

original kernel of length    10    which was used to generate the code by a 

different method.     Similarly the pair from   U2 is also a transformation 

of the original    (C,D) pair,,     Therefore the given code of length   40 

could have been generated by two different methods„ 

A second example will now be given using the same    (A, B)   and 

(C,D)    kernels as were used in the first example,  but his time utilizing 

the exponential interlace scheme of generation rather than the time  se- 

quence exponential form. 
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A=10 C=1001010001 

B=ll D=1000000110 

Vx= 1011010001001000010010000100011101111000 

Va=0100101110110111010001110100011101111000 

H=V1«V2      =1111111111111111000011110000000000000000 

Note that the smallest cluster is four,   as would be expected of an inter- 

lace exponential scheme with the    (A,B)    pair of length two.     The    H 

vector is again anti- symmetric about its center.     Time  reversing    Vj 

gives 

VjsOOO1111011100010000100100001001000101101 

V7=0100101110110111010001110100011101111000 

H=V    §V2     =0101010101010101010101010101010101010101 = (01)20 

As before this form of   H   indicates an interlace code pair.    Decomposing 

both   V,    and   V,    into interlace code pairs gives 

Vj=00111101000100010110 

01101000010001000011 

H  =01010101010101010101 = (01)10 

V3= 00111101000100010110 

10110111101110111100 

H = 10101010101010101010= (10)10 

V,    and   V2 both break down into interlaced pairs of length    10.    The top 

row of   V      breaks into   A=01 10000001,  B = 0111 0101 10   which is the 

transformation   EG   operating on the original   (CSD)   pair as in the 

previous example.     Each of the codes for    V2   would break down in 

similar fashion to some transformation of the original    (CSD) code pair. 

One use for the method just shown could be to  search for larger 

kernels than those currently known.    An example might be kernels of 

length fifty found through the use of time  sequence  exponential or inter- 

lace exponential,  where both   (ASB)   and   (C,D)   are codes of length 10. 

These would form codes  of length   200o     From this as a starting point, 

a decomposition to codes of length    100    and then to length    50    might 
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be possible through this technique,,     This technique will be discussed 

much more thoroughly towards the end of this chapter,  but it is neces- 

sary to consider the special case of   2      code composition and the 

Hamming vectors of the  sequence quadruple form before continuing with 

this interesting possibility. 

The special generating method which is applicable only to codes of 

length   2      is actually a generalization of both the time sequence and the 

interlace methods.    As mentioned in the previous chapter,  this method 

takes a code pair of length    2      and from them forms a code pair of 

r+1 
length    2 .     The allowable combinations are formed by interlacing 

pieces of the   A   code and the    B    code of length   2     ,   where m=, 0, 1, 2, . ,r. 

As an example a code of length    8   can be used to generate codes of 

length    16.     In this case    r=3   and   m   has the possible values    0,1,2,3. 

These values of   m   give section lengths of    1,2,4,8    respectively. 

B=b1b2b3b4b5b6b7b8 

for   m=0, 

Sll=albla2b2a3b3a4b4a5b5a6b6a7b7a8b8 

S21=albla2b2a3b3a4b4a5b5a6b6a7b7a8b8 
o 118 

H=S11§S21     =0101010101010101 =(01)    = (°   !) 

This is exactly the same as the interlace procedure which is a  standard 

generating method. 

The section lengths are    2   bits long for    m=l. 

S12=a1azb1b2a3a4b3b4a5a6b5b6a7a8b7bg 

S22=ala2blb2a3a4S364a5a6b5b6a7a8b7B8 

H=S12©S22    =0011001100110011 = (0212)4, 
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m=2 gives 

S14=ala2a3a4blb2b3b4a5a6a7a8b5b6b7b8 

S24=a1a2a3a4b1b2b3b4a5a6a7a8b5b6b7b8 

H=S14»S24    =0000111100001111 = (0414)2, 

For   m=3    the lengths are eight,   which is the entire code. 

S18=AB 

S28=AB, 

This is the same as the time  sequence form giving a Hamming vector 

H=0000000011111111  = (0818). 

The Hamming vectors from this special construction are altering 

clusters of zeros and ones,  each cluster being the length of the segment 

used in the generation. 

Theorem   5. 5 

r+1 
Complementary sequences of length    2 formed from an   (A, B) 

r 
pair of length   n=2    using the special generating method with segments 

2n/m 
of length    m have a characteristic Hamming vector   H=(0     1     ) 

Use the  special generating method utilizing  segments of length   m 

of the pair    (A, B)    to form 

o-i     =a1a-1a0...a      b1D-)...b      a     • ia      . ~       a 0      b     ■ i b     l0...b 
lm     12   3 m     1   2 m    m+1    m+2. . .    2m    m + 1   m+2 n 

o ~     =a,a^a0...a      b, b18, . b      a     , , a     .-)•.• a0      b     • -i b     ,-}••• b    . 
2ml23 ml2 m    m+1   m+2 2 m    m+1   m+2 n 

:m" 
Take the Hamming vector of   (Sn      ,   S0 & l   lm       2i 

H=S.     ®S?      =   (0mlm)2n/m. 
lm      2m 

This is seen to be true by inspection and definition of modulo 2   addition. 

It now seems  suitable for completeness to include a theorem which 

has been alluded to many times but not proven.     This is the anti-sym- 

metric property of all Hamming vectors of complementary sequences. 
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Theorem   5. 6 

The Hamming vector of a complementary sequence pair has a pat- 

tern which is anti-symmetric about the center of the Hamming vector. 

1. A=aia2a3a4  .    a^^ 

B=b.b.,b»b . . . . .    b      ,b is a complementary pair of 
l   u   j   *± n— in       _ 

length   n 
2. H(A,B)= h h,h,h     ..h   /?. . *h     by definition of Hamming vector 

3. a. © a   , .    .© b. © b   , ,   .  = 1 by equation   2. 4 l n+l-ii n+l-i 7i 

4. a. © b.  = h. 
and both by definition of   h. 

5. a,, . © b lT .=h , n n+l-i   n+I-i   n+l-i 

6. h. © h , . . =1 l    n+1-l 

7. Add (h   . ,    .  © 1) to both sides of the equation n+l-i ^ 

8. h   , .    .  = h. n+l-ii 

Make a change of reference to the center of the vector,   which lies 

between m/2    and    m/2 + 1,   rather than the end by having    i=n/2 -r   then 

n+l-i=n/2+l  + r 

9. h    ._ = h   ., +l+r   for all   0 < r <n/2 -1 by step   8. n/Z-rn/<i —     _ i x- 

1 0.      Therefore the Hamming vector is anti-symmetric about its 

center when it is formed from a complementary pair. 

* * * 

The Hamming vectors of    (I, II)    and    (III, IV)    in the sequence quad- 

ruple form are invariant under transformation if   H(I,II)   and   H(III, IV) 

are taken as an unordered pair.    The following four theorems which 

parallel Theorems    4.2,4.3,4.4,4.5    on Hamming distances will dem- 

onstrate this characteristic of unordered Hamming vector pairs. 

Theorem   5. 7 

A change in the order of   (I, II)    or   (III, IV)    or both will not change 

H(I,II)   or   H(III,IV). 70 



1. H(U,V)=u.  ® v. by definition. 

2. u.  $ v.  = v. © u.  since modulo    2    addition is  commutative, 
liii 

3. therefore   H(U,V) = H(V,U) 

alt s[c 5|< 

Theorem   5. 8 

Complementing the pair (I, II) or (III, IV) or both will not change 

H(I,II)   or   H(III,IV). 

1. H(U,V) = u. « v. by definition, 

2. u. © v. = u. (& v. by Theorem   2. 1, 
liii ' 

3. therefore    H(U,V) = H(U,V). 

* * * 

In the following proof it is assumed that each vector I, II, 111,1V is 

of length m. It is also necessary to show that x = x. This is easily 

seen sincex§ l=x   and   x ®    l=x,    therefore   x = x © (1 ©   1) = x. 

Theorem   5. 9 

Complementing one of the pair    (I, II)    and one of the pair    (III, IV) 

exchanges the Hamming vectors    H(I,II)    and   H(IIIS IV). 

i— a1a^.ar.......a     ■■ 13   5 n-1 

n   n- L L 

Illsb.b.b,... . . ...b       . 13   5 m-1 

IV=b    b    -2 b7 mm L 

1. H(I>II)=h1h2h3h4_____hrn. 

2. H(III,IV)=h1h2h3h4 ••••fcm   because of the parity check. 

3. H(I,II)=H(I,lI)   =h1h2h3E4 hm. 

4. H(lil,IV)=H(III,'TV) = H1H2R3E4H5. . . Em ^h^h^. .. . hm . 

5. Therefore    H(I, II)=H(TTl,IV) = H(IH,IV), 

6. and   H(III, IV) = H(I, II) =H(I,H). 

* * * 
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Theorem   5„ 10 

Exchanging the    (I, II)    pair with the    (III, IV)    pair exchanges their 

Hamming vectors. 

1. A change in the Hamming vector can only be caused by a bit 
change. 

2. Exchanging the    (I, II)    pair with the    (III, IV)    pair changes 
position but not bits. 

* * * 

Earlier in this chapter codes of length   40   generated from the quad 

were decomposed into kernels of length    10   by use of the Hamming 

vector.     The conjecture was made at that point that perhaps codes of 

length    200    manufactured from kernels of length    10    could be decomposed 

into kernels  of length    50.     In order to prove this decomposition is not 

possible several more theorems are necessary.     These theorems will 

be proved before proceding to the decomposition problem. 

Theorem    5.11 

Under all possible general transformations of a complementary pair 

where    n > 2   there are only four possible Hamming vectors,  two of 

which are complements of the other two. 

1. (A,B)    are a complementary pair of length   n   where    n >  2, 

2. H(A,B) = H      interlaced with   H   ,  where   H      are the odd bits 
' ' o e o 

of the Hamming vector and   H      are the even bits of the Hamming vector 

in reverse order.     The symbol    H=H.   *   H.    will be used for   H    inter- 

laced with    H      in exactly the same manner that   (I, II)   and   (III, IV)   are 
e 

interlaced to form   A, B.     Also    h. = a.§b.    as before. 

3. Let H1 = (I»III)=a1®b1,a3§b3. . . an_]»bn_1 = h^h^ . . hR_ j , 

H2=(II®IV)=an$bn,an_2»bn_2...a2tb2 = hnhn_2„..h2> 

H3 = (I» IV)=a1®bn, a3©bn_2. . . . . an_ 1®b2=H1Ü3U5. .. \_ l, 

H  =(II$III)=a  ©b^a       »b-. ....a7»b     , =tf  tf     ,. .. *L. 4 n     1      n- c.     J c.     n-i      n  n- L a 
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4. u.® v.  = u.® v. by Theorem   2.1, 
liii ' 

therefore 

(T©TT1)=H1       (1T«Tv)=H2      (1«IV)=H3       (iT®Tii)=H4. 

5. If   h. = u.®v.,   then   h.® 1= h.  = u.®v. ® 1  = ü.® v. = u.® v. 
ill l ill liii 

therefore 

H(U,V) = H(U,V)=(U,V) 

and Hjsfl&III) = (I©IU) H  ={T«IV) = (I®TV) 

H2=(n®iv) = (ii®Tv)       H4=(TT(HII) = (n«iii). 

6. H^  * H2 = h^h^h. hn. 

H, * H.  = h  h     .    h.. 2 1 n  n- 1 1 

7. But   hn/2_r=hn/2 + 1 + r   by Theorem    5.6. 

8. HL  *H2 =hY h2 
hn/2Rn/2'"R2^1 

H.,  * H.   = h.  h,. ...... h/?    h    .   ... h,h  . 2 1 12 n/Z      n/2 Z   1 

9. Therefore    Hj * H2 -  H2 * Hj  =    H2 * H 

10. H3*H4=141K2   .....   Kn. 

11. H4*H3=l4nKn_1.....l41. 

12- Rn/2-r=Kn/2 + l+r. 

13. Therefore    H3 * H    = H^"*"H^" = H4 * H 

14. Table    5. 1    is an exhaustive list of transformations on a 

complementary pair in the  sequence quadruple form with the Hamming 

vector for each transformation. 

H.   * H0,   H-,  * G, ,  H*H.,   H  *H,    and their complements are the 1 22 1.3      443 c 

only possibilities which exist.     Therefore only four Hamming vectors 

are possible and by steps    9    and    13   they occur in pairs which are 

complements of one another. 

•** ste sjc 
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TRANSFORMATION 

I          < I II in IV) 

cl (T ii in IV) 

cz (i II m W) 

c (T Ti Tn Tv) 

Al fi  n HI IV) 

Az (i TT in iv") 

Tl iii  i in IV) 

Tz [i  ii IV in) 

T [ii  i IV in) 

Z (ii 1 TiT "IV) 

Y [IT i Tu IV) 

X [IT i in Tv) 

w II 1 in IV) 

V [T II IV TTi) 

u T II Tv in) 
s i IT Tv in) 

R i IT IV in) 

Q II T IV in) 
P IT i Tv in) 

O Ti 1 in IV) 

N II  i Tu "IV) 

M T II IV in) 
L Ti I Tn Iv) 
K T Ti Tv HI) 

J ITT Tv Tii) 

H i ii Tv TTi) 

G ITT IV in) 
F i Ti Tn IV) 

D T ii in fv) 
1T II i Tv "ml 

B IT i IV HI) 

0 II 1 Tv in) 

HAMMING VECTOR 

H(I)=H1*H2 

H(C ^=1^*11., 

H(C2=H1*H2 

H(C) =H1*H2 

H(A1)=H1^ :H, 

H(A2)=Hl*H2 

H(T1)=H4*H3 

H(T2)=H3*H4 

H(T) =H2*H1 

H(Z) =H4*H3 

H(Y) =H4*H3 

H(X) =H4*H3 

H(W) =H4*H3 

H(V) =H3*H4 

H(U) =H3*H4 

H(S) =H3*H4 

H(R) =H3*H4 

H(Q) =H2*Hj 

H(P) =H2*H1 

H(O) =H4*H3 

H(N) =H4*H3 

H{M)=H3*H4 

H(L) =H4*H3 

H(K) =H3*H4 

H(J) =H2*Hj 

H(H) =H3*H4 

H(G) =H2*H1 

H(F) =H1*H2 

H(D) =n^Üz 

H(TT) =H2*H1 

H(B)=H2*H1 

H((b)=Hz*Hl 

COMMON VECTOR 

H(I) 

H(I) 

H(D 

H(I) 

H(I) 

H(I) 

H(Tj) 

HtTj) 

H(I) 

HCTj) 

H(T1) 

H(Tj) 

H(Tj) 

H(T1) 

HtTj) 

HtTj) 

5(1^) 
H(I) 

H(D 
H^) 

HiT^ 

H^) 

H(TL) 

HtTj) 

H(D 
H(TX) 

H(I) 

H(I) 

H(D 
H(I) 

H(I) 

H(I) 

The   E   transformation just permutes the first two and last two pairs 
of   (I   II   III    IV)    and since modulo   2   addition is commutative no change 
would take place in the   H   vector.    The last column identifies all 
Hamming vectors in terms of two vectors and their complements. 

TABLE    5.1 
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Theorem   5.12 

If a complementary pair   (A,B)   of length   n   is operated upon by a 

complementary pair   (C, D)   of length   m   to form   codes   U1}   U2   by the 

time sequence exponential method,  or to form codes   Y\ ,   V2 by the inter- 

lace exponential method and either   U]. or   Us is time  reversed,   symbo- 

lized by   U   or if   Vi or   V3 is time  reversed symbolized by   V   then 

H(U)   = H(V) = H(A1,   B1 )2m   where the  (A1 , B1)   pair indicates  some 

general transformation of the original    (A, B)   pair. 

1. A  ®   B   =   H(M) . where    B   indicates the time reverse of 
the original   B 

2. A   0    B   =   H(H). 

3. B   0   A   =   A   0   B =H(TX). 

4. B   0   Ä   =   X   0   B«H{L). 

5. Referring to Table    5. 1, 

H(M)=H(T1), 

H(H)=H(T1), 

H(L) = H(T1). 
c,      c-> c d, 

6. Ui=A      A      A        B     „ Bm 
d       d       , d,       c c, 

U2=A  mA  "7.1.... A   l   B   m. ......   B   l 

and 

1  „   1   .   2 A   m .„   m Ci      dn      c, c d 
Vi=A      B       A      A        B_ 

d c d       ,       d,      c, 
V2=A mB   mA.r?:!.A   X B   \ 

Time reversing one  of the pair in each,   for example,   the use 

of   T2   yields 
cn        c, c        d, d 

TT         A    1     A   <- A    m„   1 j-,   m Ux = A        A     A       B     ...... B 
c,        c-, cd, d 

U3=B   1    B   2 B   mA   \.....A   m 

and j 
cn        d.      c-, cd 

V1 = A_X    B   l A_2   A_mB   m 

c ,       dn      c, cd 
,. T-> ! A 1     D       ^ T3       mA       m 

V2=B_        A      B     ........    B       A 
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c. c. 
7. H(U) and   H(V)  consist of clusters of   (A 1 © B  1)   and 

d. d. 
clusters of   (B  1 « A    1). 

8. The Hamming vectors for these clusters have the following 

four possible forms: 

X ©   B  ,  A © B ,    B © A,     and B   ® A. 

These four possible vectors were seen in steps    1,2,3,4,5   to all be 

equal to    HfTx).     If   Ui   and   Vi   had been time reversed,   using the 

operation   Tx,  the  result would have been    H (Tx). 

1 0.        Since all the clusters are identical and there is a cluster for 

each of the    m   bits in   C    and each of the m   bits in   D, 

H(U) = HV) =   [H(T!)]2,m   for   U2   or    V3   time  reversed or 

in general 

?m 1        1 

H(U) = H(V) = HfA^B1) where    (A ,B ) signifies some transfor. 

mation of (A ,B). 

Theorem   5.13 

The kernel of length   2   when operated on by a complementary pair 

by either the time  sequence exponential or interlace exponential method 

can always be decomposed at least once by the interlace method. 

1. If one of the code pair formed by either exponential method 

is time  reversed,    H(U)   = H(V) = H(A1,B1) 2m by Theorem 5. 14. 

2. There are only two possible Hamming vectors for the 

quad,   01    and    10. 

3. Therefore    H(U-)   =   H(V-) = (01 )2m or (10)2m   both of which 

are decomposable by the interlace method. 
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Theorem   5.14 

A complementary pair   (\J\,   U2)   formed by the time  sequence 

exponential method cannot be decomposed by the time sequence method. 

1. Let   (Ux ,  U2 )   be a complementary pair of length    2mn formed 

from the complementary pair    (A, B)    of length   n   operated 

upon exponentially by the complementary pair    (C,D)    of 

length   m,   formed in the same manner as in Theorem    5. 3. 

2. H(U)=(c,  » dm)n(c?»d       ,)n..,(c    •d1)
n(d.»c     )n. . . (d    ®c, )n. 1 2     m-1 m     11      m m      1 

3. The first   mn   bits in   H(U)    are    m    clusters composed of   n 

zeros or   n   ones dependent upon the bits of   H(C,D). 

. „     _,, c   ,    TT   „mn, mn . mn „mn    r        , 4. By Theorem    o. 1    H=U        1 or    1 U        ,  ior decomposition 

of a code of length, 2mn   by the time sequence method. 

5. This  requires the distance of   (C,D)   be zero or   m,    but by 

Theorem   4.1    D(C,D) = m/2,   therefore    H(U)    is not decom- 

posable by the time  sequence method. 

6. If   Ux   or   U2   is time  reversed    H(U) =H(A1,B1)  m   by 

Theorem   5.12. 

7. This is incompatible with the form   H=0       1 since it would 

require the first   m/2    clusters of   H(A1,B1)   to have a distance 

of zero and the second   m/2    clusters of   H^A^B1)   to have a 

distance of   n.     Both are impossible by Theorem   4. 1    which 

requires a distance of   n/2. 

# * * 

Theorem   5.15 

A complementary code pair   (Vi.Vs)   formed by the interlace ex- 

potential method (using the  same definitions and symbols as Theorem 5. 4) 

can be decomposed by the time sequence method only if   H(C,D)= 

Qm^m/2 Qr    xm/2 Qm/2. 
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1. H(V) = (ci«dm)2n(c2«dm_1)2n
o...(cm«d1)

2n   by Theorem 5. 4 

and equation   5. 5. 

2. The clusters of zeros and ones in this Hamming vector are in 

lengths of   2n   and are dependent in value upon the bits of H(C,D) 

3. H=0       1 is the requirement for decomposition of this code 

by the time sequence method. 

4. If   H(C,D) = 0 1 or its complement,   it will satisfy step 3 

,„2nxm/2 ,,2n,m/2   nmn, mn   „/Tr. ,   ..     , r. since    (0      ) (1      ) =0       1       =H(V),   and it also  satisfies 

Theorem   4. 1. 

5. If   Vi   or    V3   is time  reversed    H(V) =H(A1, B1)2™   by 

Theorem    5.12. 

6. This is incompatible with the form   H=0       1 since it would 

require the first   m/2    clusters of   H(A1,B1 )   to have a distance 

of zero,  and the  second m/2    clusters to have a distance of   n. 

Both are impossible by Theorem   4, 1    since it requires a 

distance of   n/2. 

7. Step    4    showed that   H(C,D) = 0m'    lm   .     This  satisfies the re- 

quirement for the time   sequence decomposition by inspection. 

Any other arrangement of   H(C„D) would fail to allow decom- 

position. 

>li # * 

Theorem    5.16 

Any complementary sequence pair (Vi, Va) formed by the interlace 

exponential method as in Theorem 5.4 (using the same definitions and 

symbols),   the quad as the    (C,D) pair,   is time  sequence decomposable. 

1. The quad has only two possible Hamming vectors,     01 and    10. 
/ ?        /? 

2. This  satisfies the form   H=0 1        '     where    m=2,   the quad 
length. 

3. Vi   and    V2 are therefore time sequence decomposable by 
Theorem   5. 1 5. 
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Theorem   5.17 

A complementary pair formed by either exponential method is de- 

n/2 
composable by the interlace method if and only if   HJA1, B1) = (01) or 

I j 
(10) .   All definitions and symbols are assumed to be the  same as 

those in Theorems    5. 3 , 5.4    and    5. 12„ 

1. By Theorem    5. 2   these codes are decomposable by the inter- 

lace method only if they are of the form   H=(01)        or (10) 

2. H(U)    and   H(V)   are clusters of at least   n   ones or   n   zeros 

and therefore cannot have the form    (01) 

3. H(U) and   H(V) = H(A\ B1)2™   by Theorem    5.12. 

4. If and only if   HfA1, B1)   has the form   (01)n/2   or   (10)n'2can 

H(U)   or   H(V)=   [(01)n/2]   2m = (01)nm,   or using    10    instead 

of   01,   (10)       .     This  satisfies the  requirement of Theorem 

5. 2    that the Hamming vector be of the form (01)      or    (10)   . 

A brief description of the method used to prove that codes of length 

200   formed from kernels of length    10,   cannot be decomposed into ker- 

nels of length   50,   will now be given as a guide to the actual proof of the 

theorem.     The method used is     to     exhaust all possible methods of de- 

composition by examining all possible Hamming vectors for the    (A,B) 

and   (C,D) pairs.     Table    5.2    lists all possible Hamming vectors for 

kernels of length    10. 

Kernel    1 Kernel   2 

A=1000000110 A=1001101111 

B=1001010001 B=1100001010 

The   4 possible Hamming vectors.       The 4 possible Hamming vectors, 

0001010111 0101100101 

1110101000 1010011010 

0000101111 1100101100 

1111010000 0011010011 

All possible Hamming vectors of kernels of length    10. 
TABLE    5.2 
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The two methods of generating codes of length   200   from kernels 

of length    10   are the time sequence exponential method and the interlace 

exponential method given respectively by 

U1=A   lA 2....A   10B   X Bd10 

TT     /l0Ad9        AV
E10 Jl (5"6) 

U3=A       A     . . . A     B        B 

cl       dl       c2       d2 c10   d10 
V1=A   L    B_     A  L   B   L A   iUB   iU 

V3=Adl°B'10Ad9    ^......J"^ 
(5.7) 

where    (A,B)   and    (C,D)   are kernels of length    10. 

The Hamming vectors of these codes of length   200 are anti-sym- 

metric about their centers and are in clusters of    10    zeros or    10   ones 

for    H(U),   and in clusters of   20    zeros  or    20    ones for the    H(V)    vector. 

Time reversing either    Ui    or   U2   and similarly either    V^    or   V2    , 

gives    20   clusters of Hamming vectors of the forms listed in Table 5. 2, 

since each of the    20   A   codes is now matched with some transform of B. 

The known possible ways for kernels of length   50   to generate com- 

posite codes of length   20   are: 

1. Either interlace or time sequence kernels of length   50   to 
form composite codes of length    100    and then either inter- 
lace or time sequence these    n=100   codes to form composite 
codes of length   200. 

2. Take kernels of length   50   and either time sequence expo- 
nential or interlace exponential with the quad to form codes 
of length   200. 

3. Take kernels  of length   2    and either time sequence exponen- 
tial or interlace exponential with kernels of length    50. 

An examination of all possible Hamming vectors of length   200   from 

each of these methods will show the incompatability of these Hamming 

vectors with those  generated by the kernels of length    10. 

Theorem   5.18 

No codes of length    200   formed from kernels of length    10    can be 

decomposed into kernels of length    50   by standard methods of decomposi- 

tion. 80 



Given   Ux   U2   and   Vi    V3   both complementary pairs of length 

formed by the time sequence exponential and interlace expo- 

nential methods as given in equations    5. 6   and   5. 7 respectively. 

The time sequence method of decomposition is  impossible for 

each of the following Hamming vectors for the following reasons. 

a. H(U)    can never be decomposed by time sequence. 
Theorem   5. 14. 

5   5 
b. H(V)    requires a form   0   1      by Theorem   5. 15. 

Table    5. 2    contains no vector of this form. 

c. H(V )    and   H(U)     can never be decomposed by time 

sequence.     Theorems    5.14,15. 

The interlace  sequence method of decomposition is impossible 

for each of the vector forms for the following reasons. 

a. H(U)    and   H(V)    can never be decomposed by interlace. 

Theorem   5.17. 

b. H(V)     and    H(U )    are decomposable by interlace only if 

H(A1,B1) is of the form   (01)5   or   (10)5   by Theorem  5. 17. 

Table 5. 2   contains no such vectors. 

Assume that one of the Hamming vectors    H(U)    or   H(V)    has a 

second exponential form,   first with the kernel of length   2 

operated on exponentially by the kernel of length   50,   and 

secondly by the kernel of length    50    operated on exponentially 

by the quad.     Let   H1 be the designator for the Hamming 

vectors of the    2   and   50    combinations. 

a. Consider first the quad acted on exponentially by the 

kernel of length   50.     U\U)= H^V) = H^A1, B1).    But since 

A^B1 is the quad,   by Theorem    5. 13,  it is decomposable 

by the interlace scheme.     This is not possible  since 

step    3   above exhausted all possible interlace decompo- 

sitions. 

b. Next consider the kernel of length    50   acted on exponen- 

tially by the quad.     Considering first the exponential 
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interlace scheme,   by Theorem    5. 15    if    H1(C,D)=01 or    10, 

which it does for the quad.     Therefore the code is time  se- 

quence decomposable.    However,  in step   2   all of these time 

sequence possibilities were exhausted and therefore this de- 

composition is not possible.    H1(U)   would have a form con- 

taining either    50   zeros or    50    ones in clusters.    For the 

original    10    length codes to form these would require   a 
5   5 0   1      Hamming vector which is not listed in Table    5. 2. 

This exhausts all possible Hamming vectors that might lead to de- 

composition,  therefore codes of length   200   formed from kernels of 

length    10   cannot be decomposed into kernels of length   50   by standard 

methods. 

* * # 

Table    5.3    shows the pcfssible Hamming vectors for codes of 

length   26. 

A=01001101 1110101111001110 10 

B=101100100001 111 11100111010 

The   4   possible Hamming vectors. 

11111111111101000000000000 

000000000000101 111 11 111 111 

11101110111010100010001000 

000100010001010111011101 11 

All possible Hamming vectors of the kernel 
of length 26. 

Table 5. 3 

An examination of Table    5. 3   which is exhaustive for the Hamming 

vectors of length   26 and Table    5.2   for    10,   shows that the next two 

theorems can be proved by identical methods  to those used in Theorem 

5. 18.     Since these proofs exactly parallel that of Theorem   5. 18   they 

will not be given. 

Theorem   5.19 

Complementary pairs of length    520   formed from the time sequence 
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exponential or interlace exponential from kernels of length   26   and    10 

cannot be decomposed by standard methods into kernels of length    130. 

* * # 

Theorem   5. 20 

Complementary pairs of length    1352   formed from the time  sequence 

exponential or interlace exponential method from kernels of length    26 

cannot be decomposed by standard methods into kernels of length    338. 

'fi % % 

The study of Hamming vectors thus far has disclosed that a pattern 

r    /niln/2 «n/2 ,n/2 . . ,,,»,« 
oi    (01) or    U 1 or their complements in either the    (A,B) 

pair or    (C,D) pair,  is required in order that a code formed from one 

kernel length by an exponential method be decomposed into a pair from 

a different kernel length.     The quad is only kernel which thus far satis- 

fies this criteria.    However,   the other kernels come close,   as a check 
if 

4       4 2 2 
shows that   0   101      and    (01)   10(01)      are among the Hamming vectors of 

12        12 
length    10,   and 0      101       is a Hamming vector of length    26. 

If the  quad is involved in the formation of composite codes it makes 

their decomposition more likely.     This is  shown in Theorem    5. 12    and 

Theorem   5. 16.     Appendix    II   demonstrates this fact quite clearly since 

it contains all codes of length    16,   less   some operational redundancies. 

Each of the code pairs and its time inverse is decomposable by some 

method into  shorter length codes.     Appendix    III   lists all the pairs of 

length   20,   less some operational redundancies.    Each code pair or its 

time inverse can be broken into its originating pair through the use of 

Hamming vectors,  but no code and its time inverse can both be decom- 

posed by the  standard Hamming vector methods. 

The writer would like to end this chapter with a conjecture that 

kernels of length   50    do not exist.     This conjecture is based upon three 
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bits of evidence,   the proof of Theorem   5„ 18   being the first«     The second 

2      Z     Z      2 
piece of evidence is based upon the fact that    50=7  +1   =5   +5   .     From this 

one might assume that codes of   200 formed from    10's    might cover just 

one  set of the ones determined by equation   2„ 5„    This proved not to be 

true however,   since the number of ones in both the exponential formations 

of codes of length   200   from kernels of length   10,   if they were decompo- 

sable into kernels of length   50,  would exhaust all possible unordered 

pairs of ones for   n=50   as determined by equation   2«, 5„     The last bit of 

evidence to base this conjecture upon is that the code length is not twice 

a prime number.     The only previous kernel which might have existed,   but 

was not twice a prime number,   was    n=18,   and it did not exist.    Similar 

reasoning extends this conjecture to kernels of length    130   and   338. 
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CHAPTER   VI 

SUPPLEMENTARY AND   CYCLIC    COMPLEMENTARY   CODES 

This chapter is concerned with two classes of codes.     The first of 

these classes consists of quadruples of sequences with the property that 

the total number of likes at each spacing equals the total number of un- 

2 
likes at the same spacing.     These are called supplementary codes.       The 

second class of codes,  which will be defined later,   consists of the cyclic 

complementary codes.     Both of these code types have complementary 

sequence pairs as a possible subset;    this allows the use of their prop- 

erties as  screens in the  search for new kernels. 

Supplementary codes will be discussed first,   since the    n=26    search 

involved the use of this property as a screen,   while the cyclic  comple- 

mentary property was not used until the  search for kernels of length   34. 

Only one theorem will be proved for each of these types of codes,   since 

these two theorems were the only ones applied in the actual search for 

new kernels. 

If u . u^u, u 
1   <£   3 n 

v, v-,v_ v 
12   3 n 

w, w_w_ w 
12    3 n 

x. xnx, x   are sequences of zeros and ones and 
12   3 n 

satisfy the constraint of equation    6. 1,   they form a quadruple which is 

supplementary. 

E    (u.«u   ,.    .®l)+(v.«v   ,.    .®1) + w.©w   , .    .»l}+x.lx .91) = l     n+i-j l     n+i-j l      n+i-j I     n+i-j 
i=l 

j 
T,   (u.*u   ,.    .) + v.0v   .,    •) + (wiw   ,.    .) + x.®x    ,.    .)=2j (6.1) .   , *   l     n+i-j' l     n+l-j        x    l      n+i-j' l     n+i-j'     J 1        ' 

for all j,   1 _< j_< n -  1.    Note that there are    2j   like pairs and   2j   unlike 

pairs at a spacing of   n-j. 
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For simplicity in the proof,   we use the symbolism that was used in 

Chapter 2, 
j 

let LTT =   S   u. $ u   ,.   . « 1 for all j,   1 < j < n- 1 
U      .    .     l n+i-j J        — J — 

i=l J 

j 
UTT =   E   u. © u   , . 

U     .   ,     l        n+i-j 
i=l J 

A restatement of equation    6. 1    in this  symbolism is 

hi + Ly + Lw + Lx = Uy + Uv + Uw + Ux (6. 2) 

Theorem    6. 1 

Any complementary sequence pair,   (A,B),  written in standard 

(I   II   III   IV)   form has the property that  .1,11,   III   and   IV   area 

supplementary quadruple. 

1. LiA = UR and UA=L,R by the definition of complementary. 

2. Considering just the even values of   j    rather than all values, 

LA=Lj + Ln, 

uA=ui+uir 

LB=LHI + LIV 

UB=UIII + UIV 

3. Lj + Lu =Um + Uiv. 

4-      LIII
+L

IV
=U

I 
+ uir 

5. Adding the equations in steps    3    and   4    gives 

Li + Ln + Lm + Liv = ui + Un + um + urv • 
6. This is the  same as  equation    6. 2   and    I,   II,   III,   IV   formed 

in the  sequence quadruple form from a complementary pair 

are supplementary. 

Since the supplementary property applies only to the even spacings 

in a code pair,   the converse,   that all interlaced supplementary quad- 

ruples are complementary,   is not true. 

* * * 
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The cyclic complementary property is useful in itself for a communi- 

cations or telemetering  system;    however,  at this time our concern is 

for its property as a necessary condition for a code pair to be complemen- 

tary.    A cyclic  sequence or code,  as the name suggests,   is a never 

ending  sequence of zeros and ones which has a period of n bits. A cyclic 

complementary sequence pair,   is a pair of cyclic codes,   each of period 

n,  where the number of likes of one  sequence equals the number of un- 

likes of the other sequence for   n   possible matches for all spacings 

from    1    to   n-1,   or stated in terms of the bits of the   A   and   B codes 

n i=n 
C.=     S   a.« a     ...     =   E   b.®     ...» 1       l<j<n-l. (6.3) 

J       i=1     i       n-j+i . = 1     i   n-j+i - J- 

where   a   . . = a.    and   b   ,.  = b.    since the period is   n. n+i l n+i    »   l c 

Theorem   6. 2 

A complementary sequence pair   (A, B)    of length   n,   if written in a 

cyclic fashion,   is always a cyclic complementary pair of period   n. 

1. Since    (A, B)    are a complementary pair they satisfy 
equation   2. 3. 

j i=j 
f. =   E  a.® a       ..     =   S     b.® b      ...»   1     for j,   l = i=n-l. 

j l       n-j+i l       n-j+i J'        J 

l = 1 J'* i=i 

2. Expanding for   f,    gives 

a, ® a    = b. © b  ©  1    which is equal to   a  ® a,  = b  » b. » 1. 
lnln nlnl 

3. Expanding for   f     ,    gives 

(a,® a,) + (a,® a.) + a,® a.)+.... (a     ,® a  )=(b.®b,®l) + v   1       2        x   2       3 3       4 n-1       n 1     2 

(b2® b3® 1) + (b3© b4® 1) +.. . .. «+(bn_1® bn® 1). 

4. Adding the equations of step    2    to  step    3    gives    C,. 

5. Similarly expanding   f-,   gives 

(a,® a     ,)+(a,la  ) = (b, ® b„   -,® 1) + (b?® b  ® 1) 1       n-1 2       n 1       n-1 VZ       n 
which is equal to 

(an-1® &1) + (an® a2) = (bn-1® bj» 1) + (bn® b2 ®   1). 
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6. Expanding    f     ?    gives 

(ai«a3) + (a2§a4) + (a3©a5) + . . . (an_2»an) = (b^b^ 1) + 

(b2»b4$l) + (b3®b5©l) + + (bn_2®bn©l) 

7. Adding the equations of step    5    to step   6    gives    C?. 

8. Continuing this same procedure through all possible values of 

i   would show that   C. = f. + f      ..     Therefore the cyclic com- 

plementary constraint equations are based on the  sum of two 

restricted portions of the complementary constraint equations. 

Therefore all complementary pairs have to be cyclically 

complementary.     The converse is not necessary true since 

C .    is a sum,   and in a sum the addend and augend are not 

unique. 

* * * 

Since   C. = f. + f      ■ ,   each constraint of the complementary property 
J J J 

is used twice as    j   varies from    1    to   n-1;    therefore    C.    is symmetric 

and is centered at   C    i?.     In the application of the cyclic complementary 

property in Chapter   8,   half of the characteristic cyclic number is de- 

leted due to this  symmetry property. 

Both of the screens described in this chapter were suggested by 

14   19 Dr.   Golay;        ' however,  to the best of my knowledge the   theorems 

and their proofs have not appeared in print. 
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AN   EXHAUSTIVE    SEARCH   FOR   KERNELS   OF   LENGTH   26 

CHAPTER   VII 

In his paper Golay emphasized the need for an exhaustive search for 

complementary code pairs of length   2 6.     This chapter describes  such a 

search.     The purpose of this search was to determine if there were any 

kernels of length   26    and if any of these exist,   the number of such 

kernels.     It would prove very difficult to surmise the number of kernels 

in a code of this length predicated on the  known kernels of other lengths, 

since    n=2    had one kernel,   n=10    had two,  and   n=18   had zero.     An ex- 

haustive search for kernels of length    26    might throw some  light on a 

possible general method for finding kernels of longer lengths,   or might 

disclose some sort of pattern showing the distribution of kernels among 

the possible code lengths. 

The only feasible method to accomplish this search was with a high 

speed digital computer.     This chapter is concerned with the computer 

program and the  results  of the exhaustive  search for kernels of length 26. 

52 At first glance it would appear that there are    2 possibilities to 

be screened for an exhaustive search for all possible kernels of length 

2 6. Although this is true, the application of some of the theorems de- 

veloped in the earlier chapters immediately eliminates from considera- 

52 tion large blocks of the    2        possibilities which are either redundant or 

impossible.     This is a very necessary procedure since even with the 

highest speed computers of today it would be impossible to investigate 

this number of possibilities in a life time. 

The program was developed for the CDC  1604;   this computer ac- 

complishes approximately   200,000    operations per second.     This  speed 

coupled with the powerful screens used in programming made possible a 

reduction of the computer run-time to approximately    75   hours.    Abrief 

outline of the various   screens  used and their reduction factor will now be 
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given before  continuing in more detail with the actual programming 

techniques used.     The word code or code pair as used in this cha.pter 

and also in the next chapter will be understood as possible complemen- 

tary code pair. 

The first screen utilized was the number of ones which must appear 

2 2 
in each of the code pairs.     This was given by   n=(n-p-q)     + (p-q) 

as derived in chapter    2,   where    n   is the length of the code,     p   is the 

weight of the    A   code and   q   is the weight of the    B    code.     The possible 

solutions for   n=26   were the unordered weight pairs    (16,15),   (16,11), 

(11, 10),   (15, 10).    The pair (p=l6,  q=15)   was arbitrarily chosen to be 

used in the program.     This  reduced the total number of possible code 

, 952   Q   ..15    , .      261 26! _    .   ..13       „,. pairs from   2     ssoxlO        down to   i / i  i A ;— x    , j |  , t (    ^   4x10       .     This 

was a reduction by a factor of   200,   which brought the life time search 

down to a little less than a year,   but this amount of time was still not 

feasible for a computer search.    Golay remarked in a footnote that a 

complementary pair might be thought of as being composed of two inter- 

9 
laced half length codes,   in this case   n=13.  '      Since it was obvious the 

total number of ones in both of the interlaced pair must equal the number 

of ones in one of the complementary code pair,   equation    2. 5   was 

applied again,  this time for   n=13.     The unordered weight possibilities 

for   n=l3 were    (9, V), (9, 6),  (6,4),   (7,4).     In order to be compatible with 

the (16, 15) pair for   n=26,   the  (9, 7) pair was  selected for the code con- 

taining    16    ones and the  (9, 6) pair was chosen for the other code which 

contained    15   ones. 

The basic problem had now been reduced to all possible combinations 

of the four thirteen bit sequence families.     This was equal to 

13' 13' 13' 13' q,   ,;     x    Q)  ' t     x   m   A—■ x   -n ', |    =    715x715x1716x1716   or approximately 

12 1.5x10 possibilities.     Although this  reduced the problem by one more 
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order of magnitude it was still much too large for a practical search. 

Dr.  Golay in a private communication with the author pointed out the 

possibility of using the  supplementary characteristic as an additional 

14 
screen. Theorem    6. 1    gives the necessary and sufficient condition 

that  complementary codes  sequence quadruple form be supplementary 

sequence quadruples.     The codes of length    13    were therefore categor- 

ized according to their first    3   and last    3   bits.     The number of like 

pairs at spacing twelve,   at spacing eleven,  and at spacing ten was com- 

puted for each of the    13   bit sequences.     For example,   0111100111011 

has    0   likes for spacing twelve,     1    like for spacing eleven,  and   3    likes 

for  spacing ten.     The block number given to    0111100111011    was there- 

fore    013.     Out of sixty four possible combinations only eighteen different 

block numbers were generated for each of the two' number sequences of 

all possibilities of thirteen bits with nine ones and with seven ones.    An 

examination of Figure   7. 3 reveals that there are a widely varying number 

of members within each of the blocks.     The supplementary characteristic 

states that the total number of like pairs for each spacing must equal the 

total number of unlike pairs for the  same  spacing.    With four codes at a 

spacing of twelve there are   4   possibilities,   therefore two of them must 

be likes;    at a spacing of eleven there are eight possibilities,   therefore 

four of them must be likes;   and likewise at a spacing of ten there are 

twelve possibilities of which six must be likes to satisfy the  supplemen- 

tary property.     Block numbers were added for each possible combination 

to see if the total were    246,   and in cases where the total was    246   those 

particular codes within these blocks were  then sent to the next necessary 

but not sufficient condition for the codes to be complementary.     If the 

total was not    246,  the blocks of codes were rejected.    The power of this 

screen is  shown in the example where say two of the blocks had code 
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numbers    000,   00 0.     The only possible combination to add to    246 

would be    123, 123   for the other two codes.     This cuts the total number 

of possibilities in this particular block combination down from 

106 

1716x1716 = 2. 9x        to only   64    possibilities.     Although this admittedly 

was the most extreme example,   this screen reduced the number of 

Q 
possible codes  checked to about   2x10      or further reduction of three 

orders of magnitude. 

The next necessary condition to be checked was the parity test, 

equation   2.4.    All code quadruples which satisfied the parity test were 

then sent to the necessary and sufficient like pair,   unlike pair check for 

each spacing.     The like,  unlike check subroutine was quite long and also 

involved word unpacking.     This subroutine which was ignored in the 

calculation of run time increased the computer search time from a calcu- 

lated    70    hours to an actual run time of the order of    75    hours. 

The half length codes in the program were interlaced in the same 

manner as was done in the operations group formulation.     This method 

of combination made the parity check easy to calculate since the bit 

positions  in the computer words were the  same as the  sequence posi- 

tions of the codes.    Modulo    2   addition was directly applied to the code 

quadruple to form a vector of all ones,   providing the parity test held. 

If the code vector was not all ones the code quadruple was rejected. 

It is to be noted that by selecting the ordered   (16,15)   pair for the 

number of ones in the   A   and    B    code,  the operations Ci,   C2   ,  and   C 

were eliminated from possible redundant consideration.     These were 

eliminated by their requirement for   (10,15),   (16,11),    and    (10,11) 

ordered pairs of ones respectively,  based on equation    20 5.     The inter- 

lacing of the half length codes with ordered pairs of    (9, 7)    ones and 

(9,6)   ones  respectively eliminates from consideration the operations 
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Generate all possible 
numbers    13   bits long 
with   9   ones. 

\' 

Generate all possible 
numbers    13   bits long 
with    7   ones 

\/ 

Classify each code with a 
supplementary number. 

\' 

Classify each code with a 
supplementary number. 

Separate into 
Supplementary blocks. 

I Store for use 
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V 

Halt 

Yes 
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Supp.   Blocks 
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Parity check.      [ 

No 
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\/ 

Unpack words 
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Like-unlike test 

No 

Flow Chart for Computer Search 
For Kernels of Length 26. 

FIGURE    70 1 
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Ti ,  T3 ,   T    and   Ai since these would have required   (7,9,) (9,6), 

(9,7)(6,9),   (7,9)(6,9)   and   (4,7)(4,6)    ones respectively.     The only basic 

transformation not deleted by controlling the weight in each of the code 

quadruples was   A3.     This is seen to be true because if the pair 

(9,7)(9,6)   has the operation   A3   performed on it,   the  result is (9,6)(9,7). 

If this code is now transformed by the trivial exchange operation,  E,  a 

code pair of the original form is generated.    The scheme which was used 

to eliminate the   A3   redundancy will be discussed late in this chapter. 

Figure    7. 1    is a rough flow diagram for the program used in the 

exhaustive search for kernels of length    26.     With modifications in data 

as necessary,   this program was also used for exhaustive searches of 

composite codes of    16   and ^20. 

A brief description of the blocks in Figure    70 1 will give the reader 

some familiarity with the programming philosophy used in this  search. 

The actual programs as written for the CDC   1604 are given in Appendix V. 

The number generation subroutine is able to generate any number up 

to   48   bits in length (word size of the 1604) with any number of ones up 

to a maximum of   48.    This is accomplished in the  1604 by inserting a 

number of the form   00000...00001111..,, Ill    into the accumulator, 

where the total length of the number is    48   bits and it contains    p   ones 

and has a code length of   n.     This number is then shifted left   48-n bits. 

This shifted result is then checked to see if it is negative,  which indicates 

a one in the most significant bit position.     A procedure is now set up to 

count a one or zero and then shift left one bit and repeat the process for 

the entire   n   bits.     If   p ones are counted the number is  stored,   if not it 

is  rejected.     A number one  larger than its predecessor is inserted into 

the  system and the process is  repeated until the ones are all in the 

uppermost bit positions,, Q . 



Blocks    2,3,4   are used to compute a  supplementary characteristic 

number for each of the    715   thirteen bit numbers with   9    ones and also 

for each of the    1716    thirteen bit code numbers with   7   ones;    then in 

accordance with their supplementary numbers these are  stored into 

group blocks.     The supplementary number was derived by using a mask 

to expose for consideration only the first    3   and last    3   bits of each of 

the    13   bit code numbers.     These masked numbers were then compared 

with an exhaustive list of all possible combinations of zeros and ones in 

these    6   bits.    These    64   possible combinations were in an   M   to one 

correspondence with a list of    18   possible supplementary characteristic 

numbers  (see Figure    7.2).    This correspondence allowed the temporary 

attachment of this  supplementary number to each of the codes.    The code 

numbers were rearranged into blocks according to supplementary number 

and at the same time had their temporarily attached supplementary 

number deleted.     This part of the program is purely for putting the data 

into a useable  state and is used only once per run.     The rest of the pro- 

gram is highly iterative. 

Consideration of the    (I   II   III   IV)    form of the possible    26   bit 

codes,   shows that each of the    18   blocks of    I,   II,   III, and    IV    must be 

compared against each other indicating    1 8x1 8x1 8x1 8 £21 05, 000 possible 

block comparisons.     This was cut down somewhat by use of a slightly 

different technique.    This was accomplished by loading the computer 

accumulator with   246   and from this subtracting the first block number 

of   I,  then subtracting the first block number of   III,  and then subtrac- 

ting the first block number of    II.    Rather than subtracting the Block 

number of    IV,   the difference obtained was instead checked against all 

all possible block numbers of    IV    to see if it was listed,,     Since if the 

block number did exist only one could exist.     This procedure cut the 
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possible number of block comparisons by a factor of eighteen and left 

only   5800   combinations to examine  rather than    105,000.    If the block 

did exist all the codes within this    (I   II   III   IV)   block grouping were 

then given the parity test.    If the    IV   block number did not exist   II   was 

stepped ahead one block number and the process repeated.    After    II 

had cycled through its    18   block numbers,     III   was then stepped ahead 

one block number and the entire process  repeated.     Similarly when    III 

had cycled its    18    block numbers,     I   was   stepped ahead and the process 

repeated.     To avoid the    As operation redundancy,  whenever   I   was 

stepped up one block number   III   was started from this same block 

number rather than at the first block number.    This avoided the block 

number combinations   (I   III), and   (III   I)   both appearing except when 

block   I   was equal to block   III.     This block number cycling allowed a 

vantage breakpoint for partitioning the program into suitable size in- 

crements for computer run times» 

The parity check was made by adding(Modulo    2)    a code from   I 

to a code from   III   to a code from   II.     This  resultant was then checked 

to see if it existed as a code in the list from the    IV   block,    If it did 

exist it was complemented and then sent to be unpacked for the necessary 

and sufficient like,  unlike test.    If it did not exist another set of codes 

was sent in and the process repeated until all possible code combinations 

in   (I   II   III)   were exhausted, 

The methods used in the unpacking and like-unlike  subroutines are 

quite straight forward and will not be amplified here,   although it is to be 

noted that the like-unlike subroutine is not limited in the lengths of the 

codes it can test,   up to the machine  storage size,  whereas all the other 

subroutines,   since they use packed words,  do have quite  restrictive 

code length limitations. Q, 



This program was first used to make an exhaustive search for 

codes of length   10   for test purposes since all kernels of this length 

were known.  After this satisfactory checkout the exhaustive  search for 

codes of length    26   was undertaken. 

During the first part of the computer run for   n=26   Dr.   Golay in- 

formed the writer by personal correspondence that he had discovered a 

kernel of length   26,   using a   "by-hand" technique. The exhaustive 

search revealed only a transformation of the code pair that Dr.   Golay 

had discovered.     Therefore it was proved that only one complementary 

kernel of length   26   existed and that it was (ignoring allowable trans- 

formations) 

A=0100 1101 111010111100111010 

B=10110010000111111100111010  . 
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Supplementary Number of   13 Number of    13 
Characteristic bit codes with bit codes with 
Number nine ones seven ones 

0 14 70 

20 14 70 

110 28 140 

1 44 112 

11 44 112 

21 44 112 

101 22 56 

111 88 224 

121 22 56 

2 14 70 

12 98 196 

22 14 70 

102 28 140 

112 70 56 

122 70 56 

13 44 112 

103 22 56 

123 35 8 

Total 715 1716 

Number of codes within each 
supplementary block for   n=26 

Figure    7. 2 
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CHAPTER   VIII 

A   PARTIAL   SEARCH   FOR   KERNELS   OF    LENGTH   34 

The next possible kernels for investigation after length   26   were 

those of length    34.    As will be shown in this chapter an exhaustive 

search for kernels of length   34   was not feasible.     However,  an impor- 

tant subset of possible kernels was exhaustively searched and a scheme 

which can be adapted to the general search was programmed.    No ker- 

nels were found in this partial search.     To use the  same method of 

attack as that used on   n=Z6   did not seem too feasible,  both because of 

the length of time involved in the  search and because there would be no 

guide to searching,  beyond random      picking of possibilities until all 

possibilities were exhausted.     The length of time involved for an ex- 

haustive search of   n=34   was estimated fairly reasonably by checking 

the number of possible codes of length   26   against the number of pos- 

sible codes of length    34,   since the time for the    26   search was known 

with reasonable accuracy.     For   n=26   there were    715x715x1716x1716» 

12 
1.5x10        code possibilities at one point in the screening process.     At 

the same point in the  screening process for   n=34   codes there were 

12376x12376x19448x19448^ 5, 8x10        possibilities,  which is a ratio of 

4 
4x10      to one as compared to   n=26.    A time estimate from the    26 

4 6 length code to the    34   length code was therefore    75x4x10   =3x10      hours. 

This length of time was of course not practical for a search of an ex- 

haustive nature. 

The use of the cyclic complementary property as a screen was 

pointed out by Dr.   Golay as highly practical because some reasonable 

19 guess could be made as to which cyclic  sets might contain a kernel. 

This would lead to a hybrid "by-hand" and computer search.     It would 

also be easier to document the areas searched by the cyclic  method as 

compared to the supplementary method and would therefore avoid the 
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duplication of effort by future n=34 length searchers.    As will be dis- 

cussed at some length,  there is in addition an even more important 

reason leading to the decision to substitute the cyclic complementary 

property for the supplementary property as a screen. 

The generation of cyclic  sets which are to be utilized in the search 

for new kernels,   is accomplished in a somewhat unusual fashion.     This 

method of classifying,  puts within the same  set all possible numbers 

which are cyclic permutations of one another,  as is to be expected; 

however,   there are also contained within the  same     set     all numbers 

which are formed by the  removal of every other bit in a cyclic fashion 

until all bits are used.    As an example the five bit number    11010   will 

be used to show all the numbers contained within its     set.        First, 

selecting every other bit,   starting with the first bit,   and repeating on 

the result gives:       I. 11010 

2. 10011 

3. 10101 

4. 11100 

1. 11010 

and second,  by permuting the bits of each of these in the normal cyclic 

permutation manner yields 

1. 11010,    01101,    10110,    01011,    10101 

2.      loon,   liooi,   moo,   oiiio,   ooiii. 

It is not necessary to generate the cyclic permutations from    3    and   4 

since they are contained within   1    and    2. 

Counting cyclically   the number of likes for each spacing gives the 

code number    1331   for    1    and the code number    3113   for   2„     These 

code numbers  start with a spacing of    1    and include up through a spacing 

of   n-1    or four in this particular example«     The code number   3113 

means that at a spacing of one there were    3    likes in    10011   counted 

cyclically,    at a spacing of two there was    1    like,  at a spacing of three 
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there was    1    like,  and at a spacing of four there were    3   likes.     The 

example just given is  somewhat trivial since all binary numbers of 

length    5   with   3    ones fall into the same set.     However,   this is not the 

case for   n=Z6   as there are    7    sets for codes of length    13    with   9 

ones and    76    sets for codes of length    13    with    7   ones. 

An examination of the kernel of length   26,   shows  that its sequence 

quadruple of codes came not from four different cyclic sets as one 

would expect but came instead from just two cyclic   sets. 

Using the kernel form 

A=01001101111010111100111010 

B = 101100100001 1111 1100111010     one can decompose this into 

1=0010111110111 

11=0010110011101 

111= 1 101001110111 

IV= 0010111100010 

Using    I   to form its cyclic  set gives: 

1. 0010111110111 

2. 0111111001101 

3. 0111011111010 

4. 0101100111111 

1. 0010111110111 

Now take    3    and write it twice,  this gives    01110111(1101001110111) 

11010.     Picking off from the ninth to the twentieth second bit gives a 

code which is the same as    III   above.     Therefore    I   and   III   are 

members of the same cyclic set.    Similarly take    II   and form its 

cyclic  set;   this gives: 

1. 0010110011101 

2. 0110111001010 

3. 0111000101011 

4. 0100001110111 

5. 0001111100101 
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6. 0011011011100 

7. 0101110011010 

8. 0010100111011 

9. 0110101000111 

10. 0111011100001 

1 1. 0101001111100 

12. 0001110110110 

1. 0010110011101 

To make a comparison between   II   and   IV   the complement of   IV   will 

have to be used in order that it will have    7   ones as does    II„ 

IV=  1101000011101 

Writing   4   from this list of    12   twice gives    01000011101(1101000011101)11. 

Picking off from the twelfth to the twenty fifth bit gives   TV,   which in- 

dicates that    II   and   IV   are from the same cyclic set. 

A check of kernels of length    10   to see if their quadruples came 

from cyclic  sets in pairs,  as the    26   kernel did,  proved that both ker- 

nels of length    10    did in fact come in pairs.     This was meaningless 

however,   since as was  seen in the example of length five with three 

ones,   there was only one cyclic  set possible for each pair. 

In the hope that if the kernel existed in the    n=34   case,   it would 

also be formed with   I,   III   from one cyclic  set and   II,   IV from another 

cyclic  set,   the program was modified.     This change along with giving an 

exhaustive search for code possibilities taken two at a time from cyclic 

sets would also give an estimate of the computer run time for the ex- 

haustive search in general using the cyclic complementary property. 

This was the primary reason for the change in the program. 

Eight octal digits were used to designate the cyclic complementary 

number for each of the    12,376   possible half codes of length    17   with 

11    ones and for each of the    19*448   possible half codes of length    17 
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with    10   ones.    Only eight digits were necessary as each cyclic count 

of spacing   i   actually counts both the    i   spacing and the    n+l-i    spacing 

simultaneously.     This was demonstrated by step   8 in the proof of 

Theorem   6.2.     The example of the code of length five given earlier in 

this chapter showed this  symmetric property,  as the code numbers were 

1331    and    3113.     The first two digits of these cyclic complementary 

designators contain all the information available. 

The revision made to the computer program was not too extensive 

as only blocks    2,3,4,5    in Figure    7.1    were modified to handle the 

cyclic complementary property rather than the supplementary property. 

Of course all blocks were modified to handle codes of length   34    rather 

than codes of length   26. 

One difficulty encountered was the lack of computer memory for the 

large blocks of data,  and it was necessary to  store the cyclic  sets on 

magnetic tape rather than in the main memory core as the    26    case was 

handled.     The cyclic  sets were then called in two at a time for checking. 

This slowed the search down a little,  but by no more than    1%   of the 

total time.     Figure    8„ 1  is a block diagram of the process of obtaining 

the cyclic complementary numbers and it will be worthwhile to  remember 

the memory size restriction when reviewing the procedure used. 

A general description of Figure    8. 1    will show the differences in 

the method used in the search for   n=34   kernels as compared to that 

used for   n=26   kernels.     The procedure in the   n=34   data formation was 

identical with that of   n=26   as far as the initial possible number genera- 

tion was concerned.     (Block    1    in Figures    7„ 1    and   8, 1).    There was 

an immediate departure from the old method in blocks    2,3,  and   4 

where one of the    17   bit numbers with    11    ones was  shifted left    17   bits 

and then added to itself.     This formed a    34   bit number which was 
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actually the    17   bit number written twice in time  sequence.    A mask 

was then put over the  last    17    bits and this masked number was used, 

with an equality search of the    12,3 76    generated    17   bit numbers,   to 

identify this particular number in the list.    After the number equal 

to the  reference number was located in the generated list it was tagged 

a one,   indicating cyclic   set one.     The whole    34   bit number was then 

shifted right one bit and a mask used to again pick off the last    17   bits. 

The search through the list and tagging with the group number was re- 

peated.    After cycling through all    17   possible cyclic  codes and tagging 

each,   the original   34   bit number was now repeatedly long right shifted 

one bit and then right shifted one bit.    A long right shift saves the bit 

which is pushed off the   A   register and stores it in the   Q    register, 

while the  right shift just pushes the extra bit off the end of the    A reg- 

ister.     Therefore every other bit of the    34   code was  saved in   Q   and 

this formed a new    17   bit code within the same complementary cyclic 

set.     This code was then formed into a double length code and the list 

of all possible    17   bit numbers with    11    ones was  searched and tagged 

with a one and the process which was first described to generate cyclic 

permutations was  repeated.     This process of first forming    17   cyclic 

permutations of a code and then taking every other bit,  was continued 

until the possible code which was originally operated upon reappeared. 

Then cyclic  set   2   was started and tagged accordingly,  and so on 

through   98    sets.    The    19.448 codes of length    17   with    7   ones were 

classified in exactly the  same manner and formed   150   cyclic comple- 

mentary possibility sets. 

After each series of sets were formed a mask was used to search 

the set tag numbers and pick off each set for transfer to magnetic tape. 

To insure that the pick-off was exhaustive,  a zero was inserted on the 

list in place of each removed tagged number. 
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The sets were now ready to be called back into the computer for use 

in the  search.     Normally only one set was  called in at a time because 

the pair from the    I,   III    set was checked against all the    II,   IV    sets 

before a new I,   III   set was called into the computer.     The    I,  III    sets 

contained the    11    weight codes while the    II,   IV    set contained the    7 

weight codes.     When a set was called into the computer each cyclic 

permutation     subset     of   17    possible codes was given a cyclic  comple- 

mentary number to categorize the entire  subset.     Each group contained 

either   4   or    8   of these cyclic subsets»     These  subset numbers were 

formed by counting the likes for the    I,   III   codes and the unlikes for the 

II,   IV   codes for the eight unique  spacings.     The codes within the  subsets 

were checked against each other only if the likes equaled the unlikes of 

the cyclic complementary subset numbers for all spacing,   or    LT   + 

LIII = UII + UIV 

Figure    8. 1    is joined to Figure    7., 1    just beyond block   5    and takes 

the place of blocks    1,2,3,4,5   in Figure    7. I.    The same feedback paths 

shown in    Figure    7. 1    to insure the checking of all codes within a set 

and to feed in a new set after a check has been completed,  are  still in 

operation for the same purpose.     Appendix   VI   contains the computer 

program for Figure    8. 1. 

The total run time for the   n=34    search,  taking    I,   III   from the 

same cyclic  set and   II,   IV   from another cyclic  set was approximately 

15   hours.    No codes were found.    An extrapolation from this run time 

5 
to the exhaustive run time for   n=34   gives    15x1 50x98 caZ. 2x10      hours, 

which although one order of magnitude less than the supplementary 

method,  is  still not reasonable. 

A second partial search for   n=34   kernels was attempted after 

observing that the kernel of length    1 0 
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A=0101000011 

B=0000100110 

with its center quad removed yields 

A^OlOlOOll 

B^OOOOOllO 

which is a complementary pair of length    8.     Breaking   A1, B1   into its 

(I   II   III   IV)    configuration    gives 

1=0001 

11=1011 

111=0001 

IV=0100 

where    (I,  II)    and   (Ills,   IV)   are both complementary pairs. 

An attempt was made to draw an exact parallel from this observa- 

tion to codes of length   34.    One possible solution to equation   2.5   which 

determines the number of ones necessary in each of the kernels of 

length   34   is    (21,18).     If this  same equation is applied to codes of 

length   17,  two of the possible  solutions are   (11,10)   and   (11,7).    The 

(11, 10)   pair when interlaced will total   21    ones,  and similarly the 

(11, 7)    pair when interlaced will total    18    ones.    Whereas the kernel of 

length    10   with the quad removed had a sequence quadruple form with 

codes of length   4,   the    34    code with the quad removed would have a 

sequence quadruple form with codes of length    16.     Appendix   II   gives 

a list of all possible codes of length    16   with weight    10    in the    A code 

and weight    6   in the    B    code.     This list does not include the  results of 

the time reversal transformations which have to be included since weight 

is invariant under   Tx ,   T2 and   T»     It was observed that if these codes 

of length    16   were interlaced to form codes of length    32   and then sep- 

erated in the middle and the quad   A=ll,   B = 10    inserted,   all conditions 

as far as the number of ones  required in both interlace codes of   17   to 
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form codes of length    34   would be satisfied.    An example might serve 

to clarify the preceding  statements. 

C=0101111111000110 

D=1001001100001010 

is a complementary pair of length    160     Using the interlace method to 

form a pair of length    3 2   gives 

A=0110001110101 111 1010000001101100 

B=00110110111110101111010100111001  . 

Splitting this   A,B    pair in the center and adding the quad to this center 

gives 

A^OllOOOlllOlOllll    11    1010000001101100 

B^OOllOllOlllllOlO    10    1111010100111001   . 

Breaking this pair into standard   (I    II    III   IV)   form gives 

1=01011111111000110 
11=01010000111001001 

111=01011111111000110 
IV=10101111000110110 . 

I   has    11    ones.     Interlacing    I   with   II8   which has    7   ones,   yields 

a total of   18   ones.    Similarly   III   has    11    ones,  and   IV   has    10   ones. 

When these are interlaced the code of length    34   has    21    ones.     In the 

actual computer run the codes of length   16   with    6   ones were converted, 

by complementing,  into codes with   10    ones.    Therefore both the   A   and 

B   codes contained    10   ones.    An exhaustive list of these and their time 

reversals was generated.    Each code of length    16    was then split in the 

center and a zero inserted for the ninth bit, forming an over all code of 

length    17   with    10    ones.    A second list was then formed,  using a one 

rather than a zero for the inserted ninth bit,  forming codes of length    17 

with    11    ones. 

These two lists of numbers were then fed into the program of 

Figure    7. 1    at block two,  and the regular supplementary check program 
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was used.     The codes with    11    ones were used for   (I,   III)   and the 

codes with    10    ones were used for    (II,   IV)„    When these codes were 

combined in the interlace scheme,    I   interlaced with    II   gave    21    ones 

and   III   interlaced with   IV   gave    18   ones.    All four interlace combina- 

tions   (I   II   in   IV), (II   I   III TV), (I   II   IV    III) and   (II   I   IV   III)   were 

run exhaustively.     The run time was approximately three hours and no 

codes were found.     These partial searches for   n=34   are documented 

here because they represent two fairly obvious approaches to the prob- 

lem,  and it would be very wasteful of time for someone to duplicate this 

effort.    The program as given in the appendix can with a  slight modifica- 

tion be used for an exhaustive  search for kernels of length   34    or for a 

partial search based upon other    "judicious guesses". 
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CHAPTER   IX 

CONCLUSIONS 

The study which has been presented here had two principal objec- 

tives.    The first objective was to make an exhaustive  search for kernels 

of length   26   to determine whether they existed,  and if they did exist, 

to determine the number of such kernels.     The second objective was to 

develope a methodical scheme of code decomposition from composite 

codes back to their generating kernels.    We shall summarize in this 

chapter the ways in which each of the major portions of this dissertation 

is  related to the accomplishment of these objectives.     Also a number of 

suggestions for further research will be presented. 

The operations group and its family of theorems were originated to 

formalize the elimination of possible redundancies in the  search for new 

kernels.     The predetermination of the number of ones in each of the 

sequence quadruple vectors was a vital screen that eliminated many 

such redundancies.    Also,   the  starting of both the    I   and   III   vectors 

from the same possible supplementary code groups eliminated an ad- 

ditional half of the possible codes.     The theorems in the operations 

group chapter also were useful in the code decomposition part of the 

problem,   since they show the necessary and sufficient conditions for 

the    (I,   II)   and   (III,   IV)   pairs tobe complementary.     Theorem   3.4, 

which states that if the sequence quadruple form is    (I   II   I   TTJ   then 

(I,   II)   must be a complementary pair,   is most helpful since the process 

of checking for complementarity is very tedious by hand methods. 

Hamming distances were the next major topic considered.     They 

were found to be useful in a number of the proofs in the Hamming vector 

chapter.     They were also a great aid in checking hand decomposition, 

since it was easy to determine whether D(I, II)=D(IIIs, IV)=n/4   for compo- 

site codes or whether they had the characteristic distance in the case of 

kernels. Ill 



Hamming vectors were the most powerful tool developed in this 

paper for code decomposition.    The theorems cover all known possible 

decompositions and also give strong  support to the conjecture that ker- 

nels of length   50   do not exist»     The Hamming vector concept should 

allow a fuller understanding of complementary sequences in general, 

due to its characteristic qualities such as anti-symmetry,  and also be- 

cause there are only four possible configurations of Hamming vectors 

for any code pair.    Similarly in sequence quadruple form it is easy to 

check whether a decomposed code may be complementary by using its 

Hamming vector. 

Several exhaustive searches for codes of various lengths were con- 

ducted during this  research.     The most important of these was the 

search for kernels of length   26.    This  search revealed that only one 

kernel existed.    An exhaustive search for codes of length    16   and   20 

revealed that all codes of these lengths were generated from shorter 

codes by standard methods.     This gives considerable  strength to the 

conjecture that these generating methods are the only ones. 

The possibilities for future research in this field of complementary 

sequences are many.    Some of these follow directly from this paper 

while others lie quite far afield from the ideas exposed here.    An inter- 

esting extension of the present work would be an exhaustive search for 

kernels of length   34.     It is felt that the cyclic complementary screen 

which was used in the partial search is not powerful enough,  and a 

better screen is needed before this search can be conducted on an ex- 

haustive basis using today's computers»     The writer had considered the 

combination of both the cyclic and supplementary properties as screens 

in the  same  search.    However,  a full study was not made of the gain 

which might be obtained by this screening procedure.    The programming 
112 



of such a screen would not prove too difficult and,   since the cyclic 

property would logically be the first screen of the two to be used,   the 

areas of search could still be catalogued quite easily. 

If it would be possible to determine,  before the search,  the charac- 

teristic Hamming distances   D(I,   II)   and   0(11,   IV)   of kernels,   these 

would act as a most potent screen in the search for new kernels.     It is 

therefore felt that further research on characteristic Hamming dis- 

tances of kernels could prove quite fruitful for future applications. 

It was conjectured that kernels of length    50, 130   and    338    do not 

exist,   based on several pieces of evidence,   which although strong are 

not conclusive.     Further investigation along these lines might offer a 

conclusive proof without the necessity for an exhaustive search,   since 

an exhaustive search for these length codes approaches the impossible. 

During the investigation of kernels of length   50   the writer noticed an 

oddity which might be worthy of further investigation. 

One kernel of length   10   is 

A=1001010001 

B=1000000110. 

Divide both the    A   and   B    codes into segments of length   Z,  then 

A=10 01 01 00 01 

B=10 00 00 01 10. 

Now let the symbols    10=A,01=Ä,    ll = B,    and   00=B.   Forming a code 

of length    50   by this method of using symbols of portions of the quad 

to represent kernels of length   10   gives 

Ki=AÄABÄ 

K3=ABBAA. 

This code pair of length    50    satisfies the parity check,   and also equa- 

tion    Z. 5    for the number of ones in both full codes and in the four half 

codes.    Several examples were checked in this fashion for both kernels 
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of length    10,  and all satisfied the same conditions as did this example, 

but of course none of them satisfied the necessary condition for com- 

plementarity.    Along with helping to search for codes of length   50,  this 

offers a possibility for research in that all kernels  seem to have 

various characteristics in common.    However,  the quad seems more 

flexible.     Of the four known kernels,  the quad is the only one thus far 

discovered that can be used to build up composite codes by one method 

of generation and then these codes can be decomposed by a different 

method.     Therefore a study of kernel characteristics might lead to 

easier ways of generating new kernels,   or at least of determining 

whether they exist for the various possible lengths. 

Another possible field of research is cyclic complementary codes. 

A communications   system is more likely to use a cyclic complementary 

carrier modulation instead of straight complementary modulation due to 

the continuous nature of the carrier.     Therefore an investigation of 

these codes  seems quite in order. 

Two other topics worthy of research in the complementary sequence 

field are the various correlation functions of complementary sequences 

and the frequency spectra of these sequences.    For secure communica- 

tions purposes it is important to have a code that is noise-like.    A 

uniform distribution of ones and zeros gives a noise-like appearance to 

the code.    For example,  the complementary pair 

A=11010001 

B=11011110 

is a typical complementary code pair of length   8.     If the bits of the   A 

code are considered in a cyclic fashion one,   two,   and three bits at a 

time,   the  results are  remarkably uniform as is  seen in Table    9. 1. 

This uniformity in output would make it extremely difficult for someone 
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monitoring the code to decide if he had noise or an actual signal on his 

receiver.    However,  it is  seen that the   B   code is not nearly so uniform 

and would be easier to detect as a signal. 

A code 

Bits Number Two Bits Numb er Three Bits       Nun 

1 4 1 1 2 111                       1 

0 4 10 2 110                       1 

01 2 101                       1 

00 2 011                       1 

100                       1 

010                       1 

001                       1 

000                       1 

B code 

1 

0 

6 

2 

11 4 111 2 

10 2 1 10 2 

01 2 101 2 

00 0 011 2 

100 0 

010 0 

001 0 

000 0 

Noise uniformity of a complementary 
pair of length   8„ 

TABLE    9. 1 

An investigation of a large number of codes by the above technique would 

be useful in determining the most noise-like code pairs,   where noise- 

like is defined as a uniform output with bits taken one,   two,   three,  etc. 

at a time.     This might in turn lead to some general characteristic of 

most-noise-like complementary sequence pairs. "* 
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Another important study would be the autocorrelation function of 

each code pair.    This is  synonymous with the output of a code detected 

by its matched filter.     For example»   the autocorrelation of the code    A 

given above is 

10-30-10-18-10-10-301 

where the outputs in time are  read from left to right.     The autocorrela- 

tion of the    B    code is 

-10       3       0       10       18 0       10       3       0-1. 

The autocorrelation functions are important from two standpoints.     First, 

if a portion of the  system should need to be shut down for repairs or 

routine maintenance,  a good autocorrelation function would allow opera- 

tion on just one carrier.    Second,  the frequency spectrum of the trans- 

mitted signal is the Fourier transform of this autocorrelation function. 

Therefore,  one way to study the spectrum is first to autocorrelate and 

then to take the Fourier transform of the transmitted signals.     The more 

widespread the  spectrum,  the more difficult is a jamming procedure. 

A study of the cros scorrelation functions of complementary sequence 

pairs is also very important because of the difficulty of isolating the    A 

code    RF    carrier from the    B    code  receiver.     It was pointed out in 

chapter 4 that because the   A   code and the    B   code were   orthogonal,  at 

exact match cross  talk would be no problem.     However,   when the  signals 

are not at exact match cross talk might be a large  source of noise.    An 

investigation of the c ros scorrelation functions of the    A   and   B    code 

pairs might lead to a class  of complementary sequences where the 

problem of crosstalk is minimized. 

Another class  of correlation functions which are important are 

those where cyclic errors are created in the  received signal detected by 

the matched filter.     These errors could be caused by a linear shift in 
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the phase of the received signal«     There may be certain classes of 

complementary sequences where the loss in coding  signal-to-noise ratio 

is minimized when noise is caused by an error of this type.    This par- 

ticular class of signals would be extremely important in an air search 

radar application. 

A study of the maximum number of different composite codes for 

any length would be an important contribution to the field,  because for 

anti-jam reasons it is very important to be able to change codes,  and 

the more codes with good characteristics that are available the better. 

The last study to be  recommended is an analysis of the autocorrela- 

tion functions,   frequency spectra, cross correlation functions ,  and 

linear phase   shift correlation functions for codes of lengths from    100 

to    200.     The purpose of this investigation would be to determine if 

certain kernels are capable of forming composite codes of better char- 

acteristics than othe rkernels for radar applications. 

In conclusion,   the writer feels that complementary sequence pairs 

will prove very important in future applications to both radar and com- 

munications  schemes,    However,  much research must be done to pick 

optimal classes of these codes for such applications.     This paper has 

offered many tools to be  used by future  investigators of complementary 

sequences.    These tools have found important applications in their 

present state, but additional investigations along the lines of operations 

groups,   Hamming weights and Hamming vectors    should further in- 

crease their usefulness. 
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GLOSSARY   OF   SYMBOLS   AND   TERMS 

(A,B) 

(I   II   III   IV) 

D(U,V) 

H(U,V) 

A_ 

Alter 

Complementary 
code 

Complement a 
code 

Composite code 

Cyclic  comple- 
mentary code 

Hamming Distance 

Hamming vector 

Hamming weight 

Kernel 

Quad 

Sequence 
Quadruple 

Supplementary 
code 

Time inverse 

Weight 

A complementary pair of binary sequences, 
see  equation    2„ 2. 

A complementary pair of binary sequences in 
sequence quadruple form,   see equation   3. 1. 

The Hamming distance of two binary vectors, 
see equation   4. l„ 

The Hamming vector of two binary vectors, 
see the first page of Chapter    5. 

Means interlace two Hamming vectors in a pre- 
scribed manner,   see Theorem   5. 11,   step   2. 

Is transformed into. 

The time inverse of a binary sequence or 
vector   A. 

Means to complement every other bit of both 
codes of a complementary code pair. 

A pair of binary sequences which satisfy 
equation   2„ 2,  also called a complementary 
sequence pair,   a complementary sequence 
and sometime just a pair or code. 

Means change the  sign or take the complement 
of a binary sequence. 

A complementary code which is reducible to a 
shorter code       length by standard methods. 

A pair of binary sequence which satisfy 
equation    6. 3. 

The number of bits in which two binary sequence 
differ,  notation is    D(A, B),   see equation   4. 1. 

A binary vector or sequence formed by the 
modulo    2    sum of binary sequences. 

Hamming distance of a binary sequence or vector 
from the null vector.     It is the number of ones 
in a binary vector. 

A set of complementary codes which is irreducible. 
The term is  sometimes used for a member of the 
set. 

A kernel of length   2. 

A complementary code pair expressed as in 
equation    30 I . 

A quadruple of binary sequences which satisfy 
equation    60 1. 

Means to make the first bit of a binary sequence the 
last bit, the second bit next to last, and so on; also 
called time reverse. 

See Hamming weight. 
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EXPLANATION   OF   FORMAT    OF   THE   APPENDICIES 

Appendix   I   on matched filters is self-explanatory.    Appendix   II 

is the  result of an exhaustive search for codes of lengh    16.     There were 

96    code pairs found by the computer after the program screens had 

eliminated most of the  redundancies.     The format of Appendix    II gives 

the   A   code,  the   B   code,   H(A, B),   and H[Ti (A, B)] which signifies 

time  reversing the   A   code.     It is worthwhile to note that each code pair 

and the pair formed by the time  reverse of   A   were decomposable. 

From these    192    possible decompositions    48    were interlace,    48   were 

time sequence,   and   9 6   were    2      special method,  with   48    each of two 

different kinds. 

Appendix   III   is the  result of an exhaustive search for codes of 

length   20.     The format of Appendix   III   gives the   A   code,   the    B code, 

if it is  required,  the time reversal operation used to put   H(A, B) in 

standard form,   H(A,B) and from which of the    2   kernels of length    10 

the generating codes came.    All of the    24   code pairs or their time 

inverse were decomposable.    There are    12   from each kernel,     8   of 

each of these interlace and the other   4    are time sequence. 

Appendix   IV    is a diagrm of all the  subgroups of the operations 

group.      It    starts      with the subgroup of order    1    and works up to 

those of order    16.     An   x   in the  row indicates that the operation at 

the top of the column is a member of the  subgroup. 

Appendix   V    is the CDC   1604 computer program in   AR   format 

and also in machine language for the    26    length search.     There are 

slight modifications in the various  sections of the program required 

for other length codes.    Appendix   VI   is also in both   AR   and machine 

language,  and is for codes of length   34.     This program parallels 

Figure    8. 1,  whereas the program in Appendix   V   parallels Fig.   7. 1, 
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APPENDIX   I 

MATCHED   FILTERS 

A Matched Filter is by definition a filter which maximizes the peak 

signal-to-noise ratio.     Deterioration of the signal wave form is accepted 

in order to obtain the desired maximum ratio. 

One tool needed for the derivation of the matched filter character- 

istics is the Schwarz inequality which is a special case of the Holder 

inequality. One representation of the Schwarz inequality is 

f °° 2r°° 2 T °° ? 
|  J       x(w) y (w) dw   |  < J     |x(w) J   dw J       |  y(w)   |   dw (A 1. 1) 

It is to be noted that the equality holds when   y(w)   is the complex 

conjugate of   x(w).    Rewriting equation   A 1. 1    gives 

2 
x(w) y(w) dw  j 
 <    1 (A 1.2) 

J       x(w) I   dw J     |y(w)  dw 

The derivation for the matched filter given here closely parallels 

23 
that of Turin. 

Let f(t) be a signal impressed across a filter whose frequency 

characteristic is H(jw). F(jw), the frequency spectrum of f(t), is 

given by the Fourier transform of   f(t)„ 

F(jw) =     J f(t) e "Jwtdt. 
00 ' 

G(jw) is the frequency spectrum of the output after passing through 

the filter 

G(jw) = H(jw) F(jw), 122 



or transforming back to the time domain the output signal voltage is 

n oo 

g(t) =   _Jm H(jw) F(jw) e JWtdf. (A 1. 3) 

Since at some time,    t =  h,    g(t) must be a maximum, 

max g(t) = g(A) =   J_raH(jw) F(jw) e JW*df. (A 1.4) 

To complete the derivation it will be necessary to obtain the total 

noise power,  and the total power in the  signal.    If the noise is assumed 

to be white noise of   N   watts per cycle,  the output noise power density is 

No = N  |  H(jw)   |2, 

and the output noise power is therefore 

05 p     00 

Jm    NQdf = J^  N[H(jw)|clf. (A 1.5) 

The total energy contained in the  signal is 

E = j       f2(t) dt, 
-00 

which is also 

p      00 

E = J       |F(jw)|2df, (A 1.6) 

by Plancherel's Theorem.     It is to be noted that   E    is a constant not 

dependent upon the filter used. 

The output power signal-to-noise ratio for the maximum output is 

therefore 
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(g(A)i
z = i r F^> H(jw>gjwAdf r 

p   CO 

o Nj        H(jw)   "df 
-co 

Dividing this equation by a constant will not effect the time of maximum 

signal output;    therefore dividing by   E,   equation   A 1. 6 ,   gives 

N  |  g(A)   |2  _    | I      F(jw) H(jw) e jwA df  I   2 

E N 
o |  H(jw)|2df   J       | F(jw)|2 df (A 1.7) 

If the right hand side of equation    (A 1. 7)    is compared-to the 

Schwarz inequality   (A 1.2)   with   x(w) = F(jw) e J y(w) = H(jw), 

the two expressions are the same.     But for the expression to be max- 

imum    y(w)    must equal the complex conjugate of   x(w),   therefore 

H(jw) = F(-jw) e "JWA. 

A matched filter is therefore a filter whose frequency character- 

istic is the complex conjugate of the  signal spectrum to which is matched. 

The output signal for a given signal applied to a matched filter is 

therefore 

g(t) = Jro   iFwfe^-^ 

at   t =  A    the output is 

g(A) =    j        |F(jw|2 df 

This is the  same as equation   A 1. 6   which is all the energy con- 

tained in the  signal.     Therefore at exact match all the energy in the 

pulse is in the output signal. 

124 



APPENDIX   II 

Exhaustive Search for Codes 
of Length   1 6. 

«00-^^ ■>* ^ fM<M(\](M(M(M(M(M (MM (M (M 
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       .      .    o^(Mfo^mvor-ooa~-o^Hr\]co-<tf 
-HrvJCO-^LTlxOt^-OOa^^H^H—!-H^H^H^H^-I^H^C\)(MrMC\]rN] 
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i-H O O O O O •—I •—( i-H i-H O O 
.-H^Hi-H^HOOOOi-Hi-Hi-Hi-H 
oooooooooooo 
OOOO'OO'—(  o  ■—<0"-HO 

i-Hi-Hi-Hf-H.—JI-HI-HI-HO'-HO,—'O1—'O'—'O'—•O'-HI-HO'—'   O 
I-HI-HI-HI-HOOOO'—'"—'I-HI-HOOOOI-HI-H^HI-HOOOO 
I-HI-HI-HI-HI-HI-HI-HI-HI-HO<-HO'-HOI-HO'-HI-HI-HI-HI-HP-HI-HI-H 

OOOOOI-HI-HI-HOOOOI—I'—I   i-H   i-H   i—ti-HOOi—«i-^OO 
OOOOOOOOOOOI-HOF-HI-HI-HOOOOOOOO 
I-HI—IOOI—«I-HOO"—'I-HOOI-HI-HOOOOOOI-HI-HI-HI-H 
OOI-HOOOOO'OI-HI-HI-HI-HI-HI-HI-HI—t   O   I-H   I-H   I-H   I-H   I-H   I—* 
OOOI-HOOOI-HOI-HOOOI-HOOOOOI-HOOOO 
I-H   O   O   I-H   i—H   O   O   ■—<iOi—Hi—Hi—li—-i-Hi-Hi-Hi-Hi—HI-HI—li-Hi-Hi—Hi—H 

<3^I-HI—HOOI—Hi—nOOOOi-Hr—«OOI-HI-HOOI-H»-HOOI—Hi—H 
I-HOOOI-HOOOI-HI-HI-HOI-H.—ti-Hi-H.—HOoOOoQO 
OOOI-HOOOI—HOOI—H  .—t  O  O  o  ■—<  ■—<  O  I—H>-HOOOO 
I-HI-HI-HI-HOI-HOI—IOOOI—HO>-HOOI-HI-H —i ,—| i—I i-H i-H i-H 
0000"-Hi—HOI-HOOOOOI-HI-HI-HI-HI-HOOOI—IOO 
IOI-HI-HI-HI-HI-HI-HI-HI-HO'-HOI—HO'—HO'-HO'-HOO'-HO'-H 
OI-HI-HI-HOOOOOI-HI-HI-HOOOOOOOOOI-HI-HI-H 

oo ■tf U"> vD r- oo o- o r—1 OO 00 "* JO sO r- oo o o ^ -NJ oo ■^ m •J3 
r~ r- r- r- r- r~ r- 00 00 00 00 00 00 oo 00 00 oo CT- o o o o^ o^ o 

128 



APPENDIX   III 

Exhaustive Search for Codes 
of Length    20. 

0J 

C 
u 
V 

HNNNNNNNNNNHHHHH      ,—i     .—i      r-i      r-i      ■—i     (M 

-, O     O     O     O o o oo ffi^^H^H^OOOOOOOO^OoOO^iOOOO^,^, 
^H^H^^H1—«        ■—I^H^H^i—I        r-H        r^ ,_,   ^        ^        --H        •"-! ,_,   •—I        ^_^ ^_^ --^       r-i        ,_, 

oooo   ^^^^"^ürizr^rcro   ^zr ^* c^r ^ °   ^H" ,—* ,—i ^^ o o 
,_,     ^H     ^H     r-i       oooooooo^       oooo^        oooo ^"*     ^~L 

O      O      O      O     . _-_           ■    . •    • -    w     O     • •    -^     • •    ■ .     O      . •    w    _-    —•     O     o 

OHHHHi-iH-ii-ti-iH-it-i^h-iHMH-ii-ii-iH     ^   _   ._-    -,    H    H 

■—i      .—I o      --^      --^      O      ■—IOI—l      O      r-H      O      O      ■—I      r-H      r-H      I—li—IOOOOOO 

OI—i ■—ir-HOOOOOOOOr—i      i—i      r-H      o     O     O      ■—i      r-H     o     O      O     O 
■—I     O r—i      O     •—I      •—i      O      O      O      O      r—I      •—i     •—i      r—'      ■—i      ■—ti—i      O     i—i      •—*     r—I      «—i      r—i      O 

O     O O      O      ■—i      ■—li—i      i—IOOOOOI—i      i—i      O      O     O     O      O     S-H      ■—lOO 
■—i      i—l i—l      •—i      O      O      •—l      r-H      r-H      r—»OO«—l      O      O      O      O      O      •—l      ~H      •—i      i—I      O      "—' 
i—i     o O      •—*-      ■—ii—(•—ir—ioOOOOOOr-H,—lOOO'—'      •—i      O      O 
■—ti—(I—(i—IOI—IOI—IOI—IO"—<OI—IO"—<00>—tOr-»OOO 
•—i     O •—lOOOOOOOOOOOOOOi—i     O     O      O     O     O      .—i 
Or—' ■—< -—* r-H i I r-H r—t r-H r-H r-H i lOO"—I O r-H i—* O r—' O ' !•—Ir—I 

Or—i      O      O      r-H      .—'OOr—ir-HOOOOOOOOOOOOr—IO 

P^OOi—I O i—I i—I"—I"—I I—Ir—I I—I I—I ■—Ir—I O r—I O O •—( O i—• O "—< •—I 

O  O  O  r-H  o  O  •—!•—i  O  O  r-H  r-i  ■—lOOOOi—lOOOOr—lO 
Oi—IOi—I  i—I  O  ■—lOr—IOi—lOOOr—l  O  -H  i—IOi—IOi—IOi—I 
oooooooooooooooooooooooo 
r—I O O "—I O O i—It—It—Ir—lOOi—IOOOO'—li—Ir—Ir—lf—li—Ir—I 

OOOOOOOOr-Ir-Ir-Ir-Hr-Ir-Ir-lOOOr-1 r-l O O O -"H 
OOOO«—Ir—lOOOOi—<■—<■—!•—li—li"I i—I r—Ir—Ir-Ir-tr-Hr—Ir-( 

•—lOr—lOOOOOr—Ir—Ir—Ir—*OOOr—Ir—Ir—Ir—tr-HOOOr—I 

■—*i—li—lOOr-HOr—lOr—lOr—*•—li—!•—Ir—Ir—'■—IOOOO'—' O 

Or—lOOOOOOOOOOOOOr—Ir—lOOOr—I I—I I—lO 

Oi—lOOOr-tOr—lOr—i o i—< r—lOOOOr—ir—!•—ir—ir—lOr—i 

■—li—!■—lOOOOOOOOOOi—li—lOOOi—ir—(OOOi—I 

i—i      O      ■—lOOOr—ir—ir—ir—lOOr-nOOOOOOOOOr-HO 

O O O O r—I r-H r-H i I O O O O O ' 'r—lOOOOOr—Ir—* O O 

OOOO"—'•—lOOOOr—lr—IOi—Ir—Ir—Ir—Ir—(OOOOrMO 

>—lOO"—li—li—ir—li—lOOOOOOOi—li—lOOOi—li—lOO 

OOOOr—lOr-HOr—lO' 'O1-lOp—lOr—Ir-HOi—»Or—I r—I i 1 

Or-HOr-iOOOOOOOO—IOOOOOOOOO^HO 
OOOr—lOOOOOOOOOr—i  O  •—i  O  O  i—'Or—lOOi—i 
OOr-^Or^r^OOr-Hr-HOOOOOOOr^OOOOOO 

■—lOr—*r—lOOOOOOOOOO1 lOr—lOOr—lOr-Hr—IO 
i—I O O O O O r—4 < lOOr—l—^OOOOOr-HOOOOr-Hr—I 

Or—lOr—lOrMOr—lOr—lOr—IOi—«Or—lOr—Ir—lOr—I O O r—I 

OOOOOOOOOOOOOOOOOOOOOOOO 

Ol Ir—lOr—Ir—IOOOO«-Ir—lOr—*' I r—I r—lOOOOOOO 

OOOO00O0--<•—!■—Ir-Hr-Hr-Hr-HOOOr-Ir-lOOOr-1 

r—I r—I i—Ir—lOOr—Ir—Ir—Ir—lOOOOOOOOOOOOOO 

Or—lOr—lOOOOr^r—li—li—Ir—lOO" Ir—lO1-Ir-HOOr—'O 

r—lOOOr—lOr—IO'—• O ■—'Or—I O O O O O ' 1' ' ' ' r—I O O 

OOr—lOOOOOOOOOOOOr—ir—ir—lOOr—!■—lOO 

Ovliri'^t<uOvDt~-oooNOr^i\lro-^LnsOt~-oooNOi—i     co     co     •>* 
r—lr-Hr-H,—Ir-Ir-Hr-Hr-Hr-Ir-lf\Jf\Jr\Jf\]CM 
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APPENDIX     IV 

Subgroups   of   the   Operations   Group 
eq 

OJ 

Pi 

m 

> 

X 

-5} X 

"la x 

O X 

•-o x 

W X 

►J X 

s x 

S3 X 

O X 

X 

&- X 

ox x 
0) 
OX X 

OX XX 
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f. 

cq 

P-t 

OJ 

o 

< 
H 

« 

12! 

O 

03 
ü 

o 

X 

X 

X 

X 

X 

X 

X 

X 

X 

?S rS rS ^S 

X      X 

X     X      X     X     X     X 

X      X      X      X      X      X 

?S ?S rS rS f*S 
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t 

PQ 

FM 

OJ 

CO 

w 

> 

SI 

n 

M 

O 

EH 

X 

X 

X! 

X 

X 

X 

X 

X 

X 

X 

X     X 

X X 

X XX 

XXX 

X 

X 

X X 

X X 

XX X 

X      X 

X XX 

XXX 

o 

o 

o 

XX XX 

xxxxxxxxxxxxxxxxxxxxxx 
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fc 

ffl 

ft 

O! 

tf 

CO 

1=) 

!> 

> 

!*! 

H 

SI 

P 

ft 

< 

X 

ÜJ X X 

K X 

!"3 X 

M X 

►J X 

S X X 

& X 

o X X 

^H X X 

TO 
X X 

E-i X X 

O X X X 

0) 
C_> X X X 

X      X 

X 

X     X 

X 

X 

X 

X 

X 

X     X 

X 

X 

X     X 

X X 

X 

X 

X X X 

X X 

X 

X 

X 

X 

X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X 

X X 

X X 

X X 

X 

X X X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X      X 

X      X 

O        XttXXXXX 

M      xxxxxxxxx 

X      X 

xxxx xxxx 

X      X      X      X      X      X 

X 

X 

X 

X 

X     X 

X 

X 

X     X 

X      X 

X      X 

X      X 

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOCO 
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t X X X X X 

CQ X X X X X 

PM X X X X X 

OJ X X X X X 

P=; X X X X 

w X X X X 

p X X X X 

> X X X X 

> X X X X 

X X X X X 

>H X X X X 

M X X X X 

P X X X X X X X 

PM X X X X 
0 

X X X 

X X X X X X X 

X X X X X X X 

•Q. X X X X X 

Ci3 X X X X X 

K X X X 

^ X X X X X 

W X X X X X 

►J X X X X X 

2 X X X X X 

£5 X X X X X 

O X X X 

E-i X X X X X 

E-i X X X 

H 
X X X 

O l>* X X X X X X X X X X 

(0 o X X X X X X X X X 

r-l 
O X X X X X X X X X 

xxxxxxxx 

0000000000000000 

rS rS rS rS ?S ?S rN 

vO     ^D     O     ^     vD    ^     ^ 
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APPENDIX   V 

REMARKS   ON   COMPUTER   PROGRAM 

In Appendix   V    the addresses from 60000    to    60035   are block    1 

of Figure    7. 1,    All numbers used in the program are octal.     The program 

as written is for codes of length   Z6,   so most of the program deals with 

half length codes of length    13.     Words to be changed for different length 

codes are    60000 (mask of ones for half length code as determined by- 

weight),    60001    (length of half code minus one  [upper half],  and length 

of memory word minus length of code  [lower half]),   60004 (length of 

half code),   60034 (last sequence in code list).     For exactly the  same 

reasons respectively change    60015,  60016,  60021    and   60032. 

Addresses    17000   to    17045    separate the sequences into blocks by 

supplementary number.    Index register   2   must be entered with    100 

before  starting.     Addresses to be changed here are    17000 (mask of first 

3    and last   3   bits),   17005 (contains the total number of sequences for 

both half length codes),   17007 (contains the number of sequences with 

7    ones),   17015 (contains a mask for half length codes),     17026    (contains 

the number of sequences with    9    ones),   17032, 17033    (have for their 

instruction address the base word    50000    plus the number of half codes 

with    7   ones),   17034    (contains a mask for code length). 

Addresses    10000    to    10106    are the repetitive part of the program. 

The only memory address needing modification here for different length 

codes is    10106    which contains    SVN   a mask equal to the one half code 

length. 

Addresses    7200    to    7252   contain the unpacking subroutine and the 

like-unlike  subroutine.     7201,7207,7215,     and    7223    all contain the 

half code length.     Similarly   7204,7207,7220,7223    and    7230   all contain 

the full code  length or the length modified by one or two to fit the program 

needs. 135 



The  15000    to    15100    series is all possible bit arrangements for 

the first    3   and the last    3    bits of codes of length    13,    while    16000   to 

16100   is a list of supplementary block numbers in one to one correspon- 

dence with this  list. 

The    10300   and   10400    series respectively contain the number of 

codes in each supplementary block for the half length codes of weight 

9    and weight    7. 

16000    to    16020    is the final list of the    18    supplementary block 

numbers and is in one to one correspondence with the    10300   and    10400 

series. 
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ORG 60000 

60000 10 0 00177 ENA 0 177 
20 0 60035 STA 0 KEEP 

60001 50 1 00006 REP ENI 1 6 
05 0 00043 ALS 0 43 

60002 22 3 60006 IT AJP 3 CHG 
50 0 00000 ENI 0 0 

60003 07 0 00001 BACK LLS 0 1 
04 0 00000 ENQ 0 0 

60004 54 2 00015 ISK 2 15 
75 0 60002 SLJ 0 IT 

60005 72 0 60035 AG RAO 0 KEEP 
75 0 60001 SLJ 0 REP 

60006 55 1 60003 CHG UP 1 BACK 
07 0 00001 LLS 0 1 

60007 04 0 00000 ENQ 0 0 
22 0 60011 AJP 0 REC 

60010 50 2 00000 WOF ENI 2 0 
75 0 60005 SLJ 0 AG 

60011 12 0 60035 REC LDA 0 KEEP 
20 6 50000 STA 6 50000 

60012 51 6 00001 INI 6 1 
50 0 00000 ENI 0 0 

60013 64 0 60034   ' EQS 0 NTVS 
76 1 60010 SLS 1 WOF 

60014 50 0 00000 ENI 0 0 
57 6 60300 SIL 6 60300 

60015 10 0 00777 ENA 0 777 
20 0 60035 STA 0 KEEP 

60016 50 1 00010 PER ENI 1 10 
05 0 00043 ALS 0 43 

60017 22 3 60023 TI AJP 3 GHC 
50 0 00000 ENI 0 0 

60020 07 0 00001 KCAB LLS 0 1 
04 0 00000 ENQ 0 0 

60021 54 2 00015 ISK 2 15 
75 0 60017 SLJ 0 TI 

60022 72 0 60035 GA RAO 0 KEEP 
75 0 60016 SLJ 0 PER 

60023 55 1 60020 GHC UP 1 KCAB 
07 0 00001 LLS 0 1 

60024 04 0 00000 ENQ 0 0 
22 0 60026 AJP 0 CER 

60025 50 2 00000 FOW ENI 2 0 
75 0 60022 SLJ 0 GA 

60026 12 0 60035 CER LDA 0 KEEP 
20 6 50000 STA 6 50000 

60027 51 6 00001 INI 6 1 
50 0 00000 ENI 0 0 

60030 64 0 60032 EQS 0 SVTN 
76 1 60025 SLS 1 FOW 

60031 50 0 00000 ENI 0 0 
76 0 04321 SLS 0 4321 

60032 00 
00 

0 
0 

00000 
17760 

SVTN OCT 17760 
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60033 50 
50 

0 
0 

00000 
00000 

ENI 0 0 

60034 00 
00 

0 
0 

00000 
17700 

NTVS OCT 17700 

60035 00 
00 

0 
0 

00000 
00000 

KEEP OCT 

ORG 

0 

17000 
17000 04 0 16007 START ENQ 0 16007 

44 1 50000 LDL 1 50000 
17001 64 2 15000 EQS 2 15000 

75 0 17045 SLJ 0 WHOA 
17002 12 2 16000 LDA 2 16000 

05 0 00030 ALS 0 30 
170 03 70 1 50000 RAD 1 50000 

51 1 00001 INI 1 1 
170 04 50 2 00100 ENI 2 100 

50 0 00000 ENI 0 0 
17005 54 3 04477 ISK 3 4577 

75 0 17000 SLJ 0 START 
17006 50 1 00000 ENI 1 0 

50 2 00000 ENI 2 0 
17007 50 5 03264 TOP ENI 5 3264 

50 0 00000 , ENI 0 0 
17010 04 0 00777 TRY ENQ 0 777 

50 0 00000 ENI 0 0 
17011 06 0 00030 QLS 0 30 

12 1 15500 LDA 1 15500 
17012 05 0 00030 ALS 0 30 

20 2 30000 STA 2 30000 
17013 66 5 50000 MEQ 5 50000 

75 0 17020 SLJ 0 NEXT 
17014 72 2 30001 RAO 2 30001 

12 5 50000 LDA 5 50000 
17015 04 0 17777 ENQ 0 17777 

50 0 00000 ENI 0 0 
17016 47 3 30002 TAR STL 3 30002 

50 0 00000 ENI 0 0 
17017 51 3 00001 INI 3 1 

75 0 17010 SLJ 0 TRY 
17020 51 1 00001 NEXT INI 1 1 

51 2 00400 INI 2 400 
17021 10 0 00400 ENA 0 400 

05 0 00030 ALS 0 30 
17022 50 0 00000 ENI 0 0 

70 0 17016 RAD 0 TAR 
17023 50 3 00000 ENI 3 0 

50 0 00000 ENI 0 0 
17024 54 6 00022 ISK 6 22 

75 0 17007 SLJ 0 TOP 
17025 50 1 00000 ENI 1 0 

50 2 00000 ENI 2 0 
17026 50 5 01313 POT ENI 5 1313 

50 0 00000 ENI 0 0 
17027 04 0 00777 YRT ENQ 0 777 

50 0 00000 ENI 0 0 

138 



17030 06 0 00030 QLS 0 30 
12 1 15500 LDA 1 15500 

17031 05 0 00030 ALS 0 30 
2 0 2 20000 STA 2 20000 

17032 66 5 53 264 MEQ 5 53264 
75 0 17037 SLJ 0 TXEN 

17033 72 2 20001 RAO 2 20001 
12 5 53264 LDA 5 53264 

17034 04 0 17777 ENQ 0 17777 
50 0 00000 ENT 0 0 

17035 47 3 20002 RAT          STL 3 20002 
50 0 00000 ENI 0 0 

17036 51 3 00001 INI 3 1 
75 0 17027 SLJ 0 YRT 

17037 51 1 00001 TXEN       INI 1 1 
51 2 00200 INI 2 200 

17040 10 0 00200 ENA 0 200 
05 0 00030 ALS 0 30 

17041 50 0 00000 ENI 0 0 
70 0 17035 RAD 0 RAT 

17042 50 3 00000 ENI 3 0 
50 0 00000 ENI 0 0 

17043 54 6 00022 « ISK 6 22 
75 0 17026 SLJ 0 POT 

17044 76 0 00000 SLS 0 0 
50 0 00000 ENI 0 0 

17045 50 6 77777 WHOA     ENI 6 77777 
76 0 04444 SLS 

ORG 
0 4444 

10000 
10000 10 0 00246 PERO      ENA 0 246 

50 0 00000 ENI 0 0 
10001 15 4 15500 SUB 4 15500 

15 1 15500 SUB 1 15500 
10002 15 2 15500 SUB 2 15500 

50 3 00022 ENI 3 22 
10003 64 3 15500 EQS 3 15500 

75 0 10005 SLJ 0 BK 
10004 75 0 10010 SLJ 0 COMPR 

50 0 00000 ENI 0 0 
10005 54 2 0002z BK             ISK 2 21 

75 0 10000 SLJ 0 PERO 
10006 54 1 00021 SKB           ISK 1 21 

75 0 10000 SLJ 0 PERO 
10007 76 0 00000 SLS 0 

50 0 00000 ENI 0 0 
10010 57 1 10074 COMPR  SIL 1 BAG 

12 0 10074 LDA 0 BAG 
10011 24 0 10104 MUI 0 TWOH 

14 0 10062 ADD 0 COREA 
10012 20 0 10033 STA 0 AMC 

56 4 10075 SIU 4 FAG 
10013 12 0 10075 LDA 0 FAG 

24 0 10104 MUI 0 TWOH 
10014 70 0 10033 RAD 0 AMC 

56 2 10076 SIU 2 SAG 
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10015 12 0 10076 
24 0 10 073 

10016 14 0 10063 
20 0 10034 

10017 56 3 10077 
12 0 10077 

10020 24 0 10073 
14 0 10064 

10021 20 0 30035 
12 1 10300 

10022 05 0 00030 
14 0 10071 

10023 20 0 10053 
12 4 10300 

10024 05 0 00030 
14 0 10072 

10025 20 0 10054 
12 2 10400 

10026 05 0 00030 
14 0 10070 

10027 20 0 10052 
12 3 10400 

10030 20 0 10100 
50 0 00000 

10031 50 3 00000 
50 2 00000 

10032 50 4 00000 
50 6 00000 

10033 12 3 20002 
42 4 20002 

10034 42 2 30002 
53 6 1 01 00 

10035 64 6 30002 
75 0 10052 

10036 42 0 10106 
75 4 07200 

10037 12 0 10076 
24 0 10073 

10040 14 0 10065 
20 0 10041 

10041 12 2 00000 
75 4 07214 

10042 12 0 10074 
24 0 10105 

10043 14 0 10066 
20 0 10044 

10044 12 4 00000 
75 4 07206 

10045 12 0 10075 
24 0 10104 

10046 14 0 10067 
20 0 1004 7 

10047 12 3 00000 
75 4 07222 

10050 57 2 10101 
57 3 10102 

AMC 

BMC 

BTMC 

BNP 

ATNP 

AONP 

LDA 0 SAG 
MUl 0 FORH 
ADD 0 COREB 
STA 0 BMC 
STU 3 LAG 
LDA 0 LAG 
MUl 0 FORH 
ADD 0 CORBT 
STA 0 BTMC 
LDA L 10300 
ALS 0 30 
ADD 0 AINC 
STA 0 LAA 
LDA 4 10300 
ALS 0 30 
ADD 0 AAINC 
STA 0 LAAA 
LDA 2 10400 
ALS 0 30 
ADD 0 BINC 
STA 0 LBA 
LDA 3 10400 
STA 0 LDD 
ENI 0 0 
ENI 3 0 
ENI 2 0 
ENI 4 0 
ENI 6 0 
LDA 3 20002 
SCM 4 20002 
SCM 2 30002 
LIL 6 LDD 
EQS 6 30002 
SLJ 0 LBA 
SCM 0 SVN 
SLJ 4 FOURTH 
LDA 0 SAG 
MUl 0 FORH 
ADD 0 BONP 
STA 0 BNP 
LDA 2 0 
SLJ 4 SECOND 
LDA 0 BAG 
MUl 0 TTHOU 
ADD 0 ATWP 
STA 0 ATNP 
LDA 4 0 
SLJ 4 THIRD 
LDA 0 FAG 
MUl 0 TWOH 
ADD 0 AOWP 
STA 0 AONP 
LDA 3 0 
SLJ 4 FIRST 
SIL 2 UNO 
STL 3 DOS 
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10051 57 4 10103 SIL 4 TRES 
75 0 07230 SLJ 0BEG1NEQ 

10052 54 2 00000 LB A ISK -> 0 
75 0 10033 SLJ 0 AMC 

10053 54 4 00000 LAA ISK 4 0 
75 0 10033 SLJ 0 AMC 

10054 54 3 00000 LAAA ISK 3 0 
75 0 10033 SLJ 0 AMC 

10055 53 1 10074 LIL 1 BAG 
52 4 10075 LIU 4 FAG 

10056 52 2 10076 LIU 2 SAG 
52 3 10077 LIU 3 LAG 

10057 75 0 10005 SLJ 0 BK 
50 0 00000 ENI 0 0 

10060 53 2 10101 REL LIL 2 UNO 
53 3 10102 LIL 3 DOS 

10061 53 4 10103 LIL 4 TRES 
75 0 10052 SLJ 0 LBA 

10062 12 3 20002 COREA LDA 3 20002 
42 4 20002 SCM 4 20002 

10063 42 2 30002 COREB SCM 2 30002 
53 6 10100 LIL 6 LDD 

10064 64 6 30002  , CORBT EQS 6 30002 
75 0 10052 SLJ 0 LBA 

10065 12 2 30002 BONP LDA 2 30002 
75 4 07214 SLJ 4 SECOND 

10066 12 4 20002 ATWP LDA 4 20002 
75 4 07206 SLJ 4 THIRD 

10067 12 3 20002 AOWP LDA 3 20002 
75 4 07222 SLJ 4 FIRST 

10070 54 2 00000 BINC ISK -> 0 
75 0 10033 SLJ 0 AMC 

10071 54 4 00000 AINC ISK 4 0 
75 0 10033 SLJ 0 AMC 

100 72 54 3 00000 AAINC ISK 3 0 
75 0 10033 SLJ 0 AMC 

10073 00 
00 

0 
0 

00000 
00400 

FORH OCT 400 

100 74 00 
00 

0 
0 

00000 
00000 

BAG OCT 0 

100 75 00 
00 

0 
0 

00000 
00000 

FAG OCT 0 

100 76 00 
00 

0 
0 

00000 
00000 

SAG OCT 0 

10077 00 
00 

0 
0 

00000 
00000 

LAG OCT 0 

10100 00 
00 

0 
0 

00000 
00000 

LDD OCT 0 

10101 00 
00 

0 
0 

00000 
00000 

UNG OCT 0 

10102 00 
00 

0 
0 

00000 
00000 

DOS OCT 0 

10103 00 
00 

0 
0 

00000 
00000 

TRES OCT 0 

10104 00 
00 

0 
0 

00000 
00200 

TWOH OCT ?00 
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10105 00 0 00200 TTHOU OCT 20000000000 
# 'fi 00 0 00000 

ORG 7200 
07200 75 0 00000 FOURTHSLJ 0 

04 0 00000 ENQ 0 0 
07201 03 0 00015 LRS 0 15 

50 5 00000 ENI 5 00000 
07202 07 0 00001 FOURTHLLLS 0 1 

20 5 07101 STA 5 7101 
07203 10 0 00000 ENA 0 0 

51 5 00001 INI 5 1 
07204 54 5 99931 THRU4 ISK 5 31 

75 0 07202 SLJ 0 FOURTHL 
07205 75 0 07200 SLJ 0 FOURTH 

50 0 00000 ENI 0 0 
07206 75 0 00000 THIRD SLJ 0 

04 0 00000 ENQ 0 0 
07207 03 0 00015 LRS 0 15 

50 5 00030 ENI 5 30 
07210 07 0 00001 THIRD L LLS 0 1 

20 5 07100 STA 5 7100 
0 7211 51 5 77774 INI 5 77774 

10 0 00000 . i ENA 0 0 
0 7212 54 4 7 7 774 THRU3 ISK 5 77774 

75 0 07210 SLJ 0 THIRD L 
0 7213 75 0 07206 SLJ 0 THIRD 

50 0 00000 ENI 0 0 
07214 75 0 00000 SECOND SLJ 0 

04 0 00000 ENQ 0 0 
0 7215 03 0 00015 LRS 0 15 

50 5 00000 ENI 5 00000 
0 7216 07 0 00001 SECONDL LLS 0 1 

20 5 07001 STA 5 7001 
0 7217 10 0 00000 ENA 0 0 

51 5 00001 INI 5 1 
07220 54 5 00031 THRU2 ISK 5 31 

75 0 07216 SLJ 0 SECONDL 
07221 75 0 07214 SLJ 0 SECOND 

50 0 00000 ENI 0 0 
07222 75 0 00000 FIRST SLJ 0 

04 0 00000 ENQ 0 0 
07223 03 0 00015 LRS 0 15 

50 5 00030 ENI 5 30 
0 7224 07 0 00001 FIRST L LLS 0 1 

20 5 07000 STA 5 7000 
07225 51 5 77774 INI 5 77774 

10 0 00000 ENA 0 0 
07226 54 5 77774 THRU1 ISK 5 77774 

75 0 07224 SLJ 0 FIRST L 
07227 75 0 07222 SLJ 0 FIRST 

50 0 00000 ENI 0 0 
07230 10 0 00032 BEGINEQ ENA 0 32 

20 0 07247 STA 0 N 
07231 1 1 0 77776 INA 0 77776 

60 0 07233 SAU 0 BEGIN 
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07232 60 ■o ,07243 SAU 0 CHECKEQ 
50 4 00000 ENI 4 0 

07233 50 1 00000 BEGIN EN1 1 
50 0 00000 ENI 0 0 

0 7234 57 1 07251 BIG LOOP SLL 1 TEMP 
50 3 00000 ENI 3 00000 

07235 50 2 00000 ENI 2 00000 
53 4 07251 LIL 4 TEMP 

07236 12 2 07000 SMALLER LDA 2 7000 
15 4 07000 SUB 4 7000 

07237 22 1 07240 AJP 1 BSECTION 
51 3 00001 INI 3 00001 

07240 12 2 07100 BSECTION LDA 2 7100 
15 4 07100 SUB 4 7100 

07241 22 0 07242 AJP 0 ADV 
51 3 77776 INI 3 77776 

07242 51 2 00001 ADV INI 2 00001 
50 0 00000 ENI 0 0 

07243 54 4 00000 CHECKEQ ISK 4 
75 0 07236 SLJ 0 SMALLER 

0 7244 55 3 10060 UP 3 REL 
51 1 77776 INI 1 77776 

07245 55 1 07246   , UP 1 RESET 
76 0 064000 SLS 0 64000 

07246 51 1 00001 RESET INI 1 1 
75 0 07234 SLJ 0 BIGLOOP 

07247 00 
00 

0 
0 

00000 
00000 

N DEC 

07250 00 
00 

0 
0 

00000 
00000 

NMINUS1 DEC 

07251 00 
00 

0 
0 

00000 
00000 

TEMP DEC 

07252 00 
00 

0 
0 

00000 
00000 

ONE DEC 

ORG 10300 
10300 00 

00 
0 
0 

00000 
00016 

OCT 16 

10301 00 
00 

0 
0 

00000 
00016 

OCT 16 

10302 00 
00 

0 
0 

00000 
00034 

OCT 34 

10303 00 
00 

0 
0 

00000 
00054 

OCT 54 

10304 00 
00 

0 
0 

00000 
00054 

OCT 54 

10305 00 
00 

0 
0 

00000 
00054 

OCT 54 

10306 00 
00 

0 
0 

00000 
00026 

OCT 26 

10307 00 
00 

0 
0 

00000 
00130 

OCT 130 

10310 00 
00 

0 
0 

00000 
00026 

OCT 26 

10311 00 
00 

0 
0 

00000 
00016 

OCT 16 
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10312 00 0 00000 
00 0 00142 

10313 00 0 00000 
00 0 00016 

10314 00 0 00000 
00 0 00034 

10315 00 0 00000 
00 0 00106 

10316 00 0 00000 
00 0 00106 

10317 00 0 00000 
00 0 00054 

10320 00 0 00000 
00 0 00026 

10321 00 0 00000 
00 0 00043 

10400 00 0 00000 
00 0 00106 

10401 00 0 00000 
00 0 00106 

10402 00 0 00000 
00 0 00214 

10403 00 0 00000 
00 0 00160 

10404 00 0 00000 
00 0 00160 

10405 00 0 00000 
00 0 00160 

10406 00 0 00000 
00 0 00070 

10407 00 0 00000 
00 0 00340 

10410 00 0 00000 
00 0 00070 

10411 00 0 00000 
00 0 00106 

10412 00 0 00000 
00 0 00304 

10413 00 0 00000 
00 0 00106 

10414 00 0 00000 
00 0 00214 

10415 00 0 00000 
00 0 00070 

10416 00 0 00000 
00 0 00070 

10417 00 0 00000 
00 0 00160 

10420 00 0 00000 
00 0 00070 

10421 00 0 00000 
00 0 00010 

15500 00 0 00000 
00 0 00000 

OCT 142 

OCT 16 

OCT 34 

OCT 106 

OCT 106 

OCT 54 

OCT 26 

OCT 43 

ORG 
OCT 

10400 
106 

OCT 106 

OCT 214 

OCT 160 

OCT 160 

OCT 160 

OCT 70 

OCT 340 

OCT 70 

OCT 106 

OCT 304 

OCT 106 

OCT 214 

OCT 70 

OCT 70 

OCT 160 

OCT 70 

OCT 10 

ORG 
OCT 

15500 
0 
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15501 00 0 00000 
00 0 00020 

15502 00 0 00000 
00 0 001 10 

15503 00 0 00000 
00 0 00001 

15504 00 0 00000 
00 0 00011 

15505 00 0 00000 
00 0 00021 

15506 00 0 00000 
00 0 00101 

15507 00 0 00000 
00 0 00111 

15510 00 0 00000 
00 0 00121 

15511 00 0 00000 
00 0 00002 

15512 00 0 00000 
00 0 00012 

15513 00 0 00000 
00 0 00022 

15514 00 0 00000 
00 0 00102 

15515 00 0 00000 
00 0 001 12 

15516 00 0 00000 
00 0 00122 

15517 00 0 00000 
00 0 00013 

15520 00 0 00000 
00 0 00103 

15521 00 0 00000 
00 0 00123 

16000 00 0 00000 
00 0 00123 

16001 00 0 00000 
00 0 00123 

16002 00 0 00000 
00 0 00012 

16003 00 0 00000 
00 0 00012 

16004 00 0 00000 
00 0 00012 

16005 00 0 00000 
00 0 00012 

16006 00 0 00000 
00 0 00012 

16007 00 0 00000 
00 0 00012 

16010 00 0 00000 
00 0 00012 

16011 00 0 00000 
00 0 00012 

OCT 20 

OCT 110 

OCT 1 

OCT 1 1 

OCT 21 

OCT 101 

OCT 111 

OCT 121 

OCT 2 

OCT 12 

OCT 22 

OCT 102 

OCT 112 

OCT 122 

OCT 13 

OCT 103 

OCT 123 

ORG 16000 
OCT 123 

OCT 123 

OCT 12 

OCT 12 

OCT 12 

OCT 12 

OCT 12 

OCT 12 

OCT 12 

OCT 12 
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16012 00 0 00000 OCT 1 12 
00 0 001 12 

16013 00 0 00000 OCT 1 12 
00 0 00112 

16014 00 0 00000 OCT 1 12 
00 0 00112 

16015 00 0 00000 OCT 1 12 
00 0 00112 

16016 00 0 00000 OCT 122 
00 0 00122 

16017 00 0 00000 OCT 122 
00 0 00122 

16020 00 0 00000 OCT 122 
00 0 00122 

16021 00 0 00000 OCT 122 
00 0 00122 

16022 00 0 00000 OCT 1 
00 0 00001 

16023 00 0 00000 OCT 1 
00 0 00001 

16024 00 0 00000 OCT 1 
00 0 00001 

16025 00 0 00000 , OCT 1 
00 0 00001 

16026 00 0 00000 OCT 11 
00 0 00011 

16027 00 0 00000 OCT 11 
00 0 00011 

16030 00 0 00000 OCT 1 1 
00 0 00011 

16031 00 0 00000 OCT 11 
00 0 00011 

16032 00 0 00000 OCT 13 
00 0 00013 

16033 00 0 00000 OCT 13 
00 0 00013 

16034 00 0 00000 OCT 13 
00 0 00013 

16035 00 0 00000 OCT 13 
00 0 00013 

16036 00 0 00000 OCT 21 
00 0 00021 

16037 00 0 00000 OCT 21 
00 0 00021 

16040 00 0 00000 OCT 21 
00 0 00021 

16041 00 0 00000 OCT 21 
00 0 00021 

16042 00 0 00000 OCT 101 
00 0 00101 

16043 00 0 00000 OCT 101 
00 0 00101 

16044 00 0 00000 OCT 111 
00 0 00111 
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16045 00 0 00000 
00 0 00111 

16046 00 0 00000 
00 0 00111 

16047 00 0 00000 
00 0 00111 

16050 00 0 00000 
00 0 00111 

16051 00 0 00000 
00 0 00111 

16052 00 0 00000 
00 0 00111 

16053 00 0 00000 
00 0 00111 

16054 00 0 00000 
00 0 00103 

16055 00 0 00000 
00 0 00103 

16056 00 0 00000 
00 0 00121 

16057 00 0 00000 
00 0 00121 

16060 00 0 00000 
00 0 00000 

16061 00 0 00000 
00 0 00000 

16062 00 0 00000 
00 0 00002 

16063 00 0 00000 
00 0 00002 

16064 00 0 00000 
00 0 00110 

16065 00 0 00000 
00 0 00110 

16066 00 0 00000 
00 0 00110 

16067 00 0 00000 
00 0 00110 

160 70 00 0 00000 
00 0 00020 

16071 00 0 00000 
00 0 00020 

160 72 00 0 00000 
00 0 00102 

160 73 00 0 00000 
00 0 00102 

160 74 00 0 00000 
00 0 00102 

16075 00 0 00000 
00 0 00102 

16076 00 0 00000 
00 0 00022 

160 77 00 0 00000 
00 0 00022 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 103 

OCT 103 

OCT 121 

OCT 121 

OCT 0 

OCT 0 

OCT 2 

OCT 2 

OCT 110 

OCT 110 

OCT 110 

OCT 110 

OCT 20 

OCT 20 

OCT 102 

OCT 102 

OCT 102 

OCT 102 

OCT 22 

OCT 22 
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15000 00 0 00000 
00 0 00000 

15001 00 0 00000 
00 0 16007 

150002 00 0 00000 
00 0 10000 

15003 00 0 00000 
00 0 00001 

15004 00 0 00000 
00 0 14002 

15005 00 0 00000 
00 0 12004 

15006 00 0 00000 
00 0 04003 

15007 00 0 00000 
00 0 02005 

15010 00 0 00000 
00 0 16006 

15011 00 0 00000 
00 0 06007 

15012 00 0 00000 
00 0 04000 

15013 00 0 00000 
00 0 00002 

15014 00 0 00000 
00 0 16005 

15015 00 0 00000 
00 0 1200 7 

15016 00 0 00000 
00 0 02000 

15017 00 0 00000 
00 0 00004 

15020 00 0 00000 
00 0 16003 

15021 00 0 00000 
00 0 14007 

15022 00 0 00000 
00 0 14000 

15023 00 0 00000 
00 0 00003 

15024 00 0 00000 
00 0 16004 

15025 00 0 00000 
00 0 02007 

15026 00 0 00000 
00 0 12000 

15027 00 0 00000 
00 0 00005 

15030 00 0 00000 
00 0 16002 

15031 00 0 00000 
00 0 04007 

15032 00 0 00000 
00 0 10004 

ORG 
OCT 

15000 
0 

OCT 16007 

OCT 10000 

OCT 1 

OCT 14002 

OCT 12004 

OCT 04003 

OCT 2005 

OCT 16006 

OCT 6007 

OCT 4000 

OCT 2 

OCT 16005 

OCT 12007 

OCT 2000 

OCT 4 

OCT 16003 

OCT 14007 

OCT 14000 

OCT 3 

OCT 16004 

OCT 2007 

OCT 12000 

OCT 5 

OCT 16002 

OCT 4007 

OCT 10004 
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15033 00 0 00000 
00 0 02001 

15034 00 0 00000 
00 0 14006 

15035 00 0 00000 
00 0 06003 

15036 00 0 00000 
00 0 10002 

15037 00 0 00000 
00 0 04001 

15040 00 0 00000 
00 0 12006 

15041 00 0 00000 
00 0 06005 

15042 00 0 00000 
00 0 10001 

15043 00 0 00000 
00 0 06006 

15044 00 0 00000 
00 0 06000 

15045 00 0 00000 
00 0 04004 

15046 00 0 00000* 
00 0 02002 

15047 00 0 00000 
00 0 00006 

15050 00 0 00000 
00 0 16001 

15051 00 0 00000 
00 0 14005 

15052 00 0 00000 
00 0 12003 

15053 00 0 00000 
00 0 10007 

15054 00 0 00000 
00 0 04002 

15055 00 0 00000 
00 0 12005 

15056 00 0 00000 
00 0 02004 

15057 00 0 00000 
00 0 14003 

15060 00 0 00000 
00 0 16000 

15061 00 0 00000 
00 0 00007 

15062 00 0 00000 
00 0 14004 

15063 00 0 00000 
00 0 02003 

15064 00 0 00000 
00 0 14001 

15065 00 0 00000 
00 0 10003 

OCT 2001 

OCT 14006 

OCT 6003 

OCT 10002 

OCT 4001 

OCT 12006 

OCT 6005 

OCT 10001 

OCT 6006 

OCT 6000 

OCT 4004 

OCT 2002 

OCT 6 

OCT 16001 

OCT 14005 

OCT 12003 

OCT 10007 

OCT 4002 

OCT 12005 

OCT 2004 

OCT 14003 

OCT 16000 

OCT 7 

OCT 14004 

OCT 2003 

OCT 14001 

OCT 10003 
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15066 00 0 00000 
00 0 06004 

15067 00 0 00000 
00 0 02006 

150 70 00 0 00000 
00 0 12002 

15071 00 0 00000 
00 0 04005 

150 72 00 0 00000 
00 0 12001 

15073 00 0 00000 
00 0 10005 

15074 00 0 00000 
00 0 06002 

15075 00 0 00000 
00 0 04006 

15076 00 0 00000 
00 0 10006 

15077 00 0 00000 
00 0 06001 

OCT 6004 

OCT 2006 

OCT 12002 

OCT 4005 

OCT 12001 

OCT 10005 

OCT 6002 

OCT 4006 

OCT 10006 

OCT 6001 

END 

10106 00    0    00000 SVN OCT 17777 
00    0    17777 
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APPENDIX   VI 

ORG 7400 
07400 50 1 00000          ERAS ENI 1 0 

50 2 00000 ENI 2 0 
07401 50 3 00000 ENI 3 0 

50 4 00000 ENI 4 0 
0 7402 50 5 00000 ENI 5 0 

50 6 00000 ENI 6 0 
0 7403 10 0 00000 ENA 0 0 

20 1 600000 STA 1 60000 
0 7404 54 1 00210 ISK 1 2110 

75 0 07403 SLJ 0 /-l 
0 7405 50 0 00000 ENI 0 0 

53 1 50107 LIL 1 RETNA 
0 7406 54 1 00227 ISK 1 227 

75 0 07410 SLJ 0 BUS 
07407 76 0 06655 SLS 0 6655 

50 0 00000 ENI 0 0 
0 7410 57 1 50107          BUS SIL 1 RETNA 

50 1 00000 ENI 1 0 
0 7411 75 4 51000 SLJ 4 INPU 

50 0 00000 ENI 0 0 
07412 75 5 51032 SLJ 5 VERT 

12 0 50105, LDA 0 DUM7 
0 7413 20 0 07426 STA 0 SERE- 1 

50 0 00000 ENI 0 0 
0 7414 12 0 60200 LDA 0 60200 

22 0 07460 AJP 0 TAT 
07415 10 0 00210 ENA 0 210 

20 0 0 7 733 STA 0 TEM1 
0 7416 60 0 07450 SAU 0 JJ 

10 0 00007 ENA 0 7 
0 7417 20 0 07734 STA 0 TEM2 

60 0 07723 SAU 0 GOF 
0 7420 50 0 00000          UU ENI 0 0 

50 2 00001 ENI 2 1 
07421 04 0 00001          VV ENQ 0 1 

50 0 00000 ENI 0 0 
0 7422 06 2 00000 QLS 2 0 

44 1 60000 LDL 1 60000 
07423 01 2 00000 ARS 2 0 

20 0 07457 STA 0 PERE 
0 7424 04 0 00001 ENQ 0 1 

06 3 00000 QLS 3 0 
0 7425 44 1 60000 LDL 1 60000 

01 3 00000 ARS 3 0 
0 7426 42 0 07457 SCM 0 PERE 

22 0 07454 AJP 0 FRERE 
07427 51 2 00001          SERE INI 2 1 

50 0 00000 ENI 0 0 
0 7430 54 3 00020 ISK 3 20 

75 0 07421 SLJ 0 VV 
0 7431 72 0 07420 RAO 0 UU 

50 0 00000 ENI 0 0 
0 7432 54 4 00006 ISK 4 6 

75 0 07420 SLJ 0 UU 
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0 7433 

0 7434 

0 7435 

0 7436 

07437 

0 7440 

0 7441 

0 7442 

0 7443 

0 7444 

0 7445 

0 7446 

0 7447 

0 7450 

07451 

0 7452 

0 7453 

0 7454 

0 7455 

0 7456 

0 7457 

0 7460 

07461 

0 7462 

07463 

07600 

12 4 07600 ww 
50 0 00000 
05 4 00000 
05 4 00000 
05 4 00000 
05 4 00000 
05 4 00000 
05 4 00000 
20 4 07600 
50 0 00000 
54 4 00006 
75 0 0 7433 
10 0 00000 
50 0 00000 
14 4 07600 XX 
50 0 00000 
54 4 00006 
75 0 0 7442 
20 1 61000 
50 0 00000 
12 0 07455 
20 0 0 7420 
10 0 0000Q zz 
20 4 07600 
54 4 00006 
75 0 0 7446 
54 1 00000 JJ 
75 0 0 7420 
75 1 51034 
12 0 07734 
20 0 63100 
50 5 00000 
75 0 07700 
50 0 00000 
72 4 07600 FRERE 
75 0 0 742 7 
50 0 00000 YY 
50 2 00001 
00 0 00000 THSV 
00 3 77777 
00 0 00000 PERE 
00 0 00000 
10 0 00104 TAT 
20 0 0 7 733 
60 0 07450 
10 0 00003 
20 0 0 7734 
60 0 07723 
75 0 07420 
50 0 00000 

00 0 00000 MERE 
00 0 00000 
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LDA 4 MERE 
ENI 0 0 
ALS 4 0 
ALS 4 0 
ALS 4 0 
ALS 4 0 
ALS 4 0 
ALS 4 0 
STA 4 MERE 
ENI 0 0 
ISK 4 6 
SLJ 0 WW 
ENA 0 0 
ENI 0 0 
ADD 4 MERE 
ENI 0 0 
ISK 4 6 
SLJ 0 XX 
STA 1 61000 
ENI 0 o. 
LDA 0 YY 
STA 0 UU 
ENA 0 0 
STA 4 MERE 
ISK 4 6 
SLJ 0 ZZ 
ISK 1 0 
SLJ 0 UU 
SLJ 1 TERN 
LDA 0 TEM2 
STA 0 63100 
ENI 5 0 
SLJ 0 YEA 
ENI 0 0 
RAO 4 MERE 
SLJ 0 SERE 
ENI 0 0 
ENI 2 1 
OCT 377777 

OCT 

ENA 0 104 
STA 0 TEM1 
SAU 0 JJ 
ENA 0 3 
STA 0 TEM2 
SAU 0 GOF 
SLJ 0 UU 
FNJ 0 0 
ORG 7600 
OCT 0 



07700 

07701 

07702 

07703 

0 7704 

07705 

07706 

07707 

07710 

07711 

07712 

07713 

07714 

07715 

07716 

07717 

07720 

07721 

07722 

07723 

07724 

07725 

07726 

07727 

07730 

07731 

07732 

50 1 00000 YEA 
50 4 00000 
50 3 00000 
50 6 00000 
53 2 07733 
56 2 07725 
12 0 07733 
11 0 77776 
60 0 07726 
50 0 00000 
12 1 61000 RGE 
22 0 07726 
20 5 63000 
57 3 07730 
64 2 61000 BALE 
75 0 0 7 725 
10 0 00000 
20 2 61000 
12 0 07730 
24 0 07731 
14 0 07732 
20 0 07714, 
16 0 07456 
50 0 00000 
44 2 60000 TUB 
20 4 62000 
12 1 61000 
50 0 00000 
54 4 00020 
75 0 07707 
51 3 00001 
51 5 00001 
57 2 50104 
10 0 00000 
65 2 61000 
75 0 07725 
53 2 50104 
50 0 00000 
54 6 00000 GOF 
75 0 07705 
76 0 04444 
50 0 00000 
50 2 00000 ELSE 
55 4 07735 
54 1 00000 PATE 
75 0 07705 
75 1 07742 
75 0 07737 
00 0 00000 ERE 
00 0 00000 
00 0 00000 RTY 
00 0 00100 
44 2 60000 TAP 
20 4 62000 
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ORG 7700 
ENI 1 0 
ENI 4 0 
ENI 3 0 
ENI 6 0 
LIL 2 TEM1 
SIU 2 ELSE 
LDA 0 TEM1 
INA 0 -1 
SAU 0 PATE 
ENI 0 0 
LDA 1 61000 
AJP 0 PATE 
STA 5 63000 
SIL 3 ERE 
EQS 2 61000 
SLJ 0 ELSE 
ENA 0 0 
STA 2 61000 
LDA 0 ERE 
MUI 0 RTY 
ADD 0 TAP 
STA 0 TUB 
LDQ 0 THSV 
ENI 0 0 
LDL 2 60000 
STA 4 62000 
LDA 1 61000 
ENI 0 0 
ISK 4 20 
SLJ 0 BALE 
INI 3 1 
INI 5 1 
SIL 2 DOL 
ENA 0 0 
THS 2 61000 
SLJ 0 ELSE 
LIL 2 DOL 
ENI 0 0 
ISK 6 0 
SLJ 0 RGE 
SLS 0 4444 
ENI 0 0 
ENI 2 0 
UP 4 SIGNAL 
ISK 1 0 
SLJ 0 RGE 
SLJ 1 FOP2 
SLJ 0 FOP1 
OCT 0 

OCT 

LDL 
STA 

100 

2    60000 
4    62000 



07733 00 
00 

0 
0 

00000 
00000 

TEM1 OCT 0 

07734 00 
00 

0 
0 

00000 
00000 

TEM2 OCT 0 

07735 04 0 77777 SIGNAL ENQ 0 77777 
76 0 02040 SLS 0 2040 

07736 51 1 00001 ELSE1 INI 1 1 
75 0 07705 SLJ 0 RGE 

07737 12 1 62000 FOP1 LDA 1 62000 
20 1 10000 STA 1 A 

0 7740 54 1 00777 ISK 1 777 
75 0 07737 SLJ 0 FOP1 

07741 76 0 00111 SLS 0 111 
50 0 00000 

A 
ENI 
EQU 

0 0 
10000 

07742 12 1 62000 FOP2 LDA 1 62000 
20 1 11000 STA 1 B 

0 7743 54 1 00777 ISK 1 777 
75 0 0 7 742 SLJ 0 FOP2 

0 7744 75 0 50000 SLJ 0 50.000 
50 0 00000 ENI 

ORG 
0 0 

50000 
50000 50 3 00000, ENI 3 0 

50 4 00000 ENI 4 0 
50001 50 5 00000 ENI 5 0 

60 6 00000 ENI 6 0 
50002 53 1 63100 LIL 1 63100 

53 2 63101 LIL 2 63101 
50003 56 1 50061 SIU 1 INFC 

56 1 50060 SIU 1 INFB 
50004 56 2 50057 SIU 2 INFA 

53 4 63101 LIL 4 63101 
50005 50 1 00000 ENI 1 0 

50 2 00000 ENI 2 0 
50006 50 3 00000 ENI 3 0 

50 0 00000 ENI 0 0 
50007 12 1 63000 JMP2 LDA 1 63000 

14 2 63000 ADD 2 63000 
50010 15 3 63010 SUB 3 63010 

50 0 00000 ENI 0 0 
50011 64 4 63010 JMP1 EQS 4 63010 

75 0 50063 SLJ 0 SWHE 
50012 56 1 50073 SIU 1 TE3 

57 2 50100 SIL 2 TE4 
50013 56 3 50101 SIU 3 TE5 

56 4 50102 SIU 4 TE6 
50014 50 4 00020 ENI 4 20 

50 1 00000 ENI 1 0 
50015 50 2 00000 ENT 2 0 

50 3 00000 ENI 3 0 
50016 12 0 50073 LDA 0 TE3 

24 0 0 7731 MUI 0 RTY 
50017 14 0 50064 ADD 0 DUM1 

20 0 50103 STA 0 DEL 
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50020 12 0 50100 LDA 0 TE4 
24 0 07731 MUI 0 RTY 

50021 70 0 50103 RAD 0 DEL 
20 0 50030 STA 0 INFl 

50022 12 0 50101 LDA 0 TE5 
24 0 07731 MUI 0 RTY 

50023 14 0 50065 ADD 0 DUM2 
20 0 50031 STA 0 INF2 

50024 12 0 50102 LDA 0 TE6 
24 0 07731 MUT 0 RTY 

50025 14 0 50065 ADD 0 DUM2 
20 0 50031 STA 0 INF 2 

50026 12 0 50102 LDA 0 TE6 
24 0 07731 MUI 0 RTY 

50027 14 0 50066 ADD 0 DUM3 
20 0 50032 STA 0 INF 3 

50030 12 1 10000 INFl LDA 1 A 
42 2 10000 SCM 2 A 

50031 42 3 11000 INF2 SCM 3 B 
50 4 00020 ENI 4 20- 

50032 64 4 11000 INF3 EQS 4 B 
75 0 50052 SLJ 0 INSKIP 

50033 42 0 50067  • SCM 0 TRENSE 
7 5' 4 00017 SLJ 4 FOURTH 

50034 12 0 50100 LDA 0 TE4 
05 0 00036 ALS 0 36 

50035 14 0 50070 ADD 0 DUM4 
20 0 50036 STA 0 INF4 

50036 12 2 10000 INF4 LDA 2 A 
75 4 00016 SLJ 4 THIRD 

50037 12 0 50101 LDA 0 TE5 
05 0 00006 ALS 0 6 

50040 14 0 50071 ADD 0 DUM5 
20 0 50041 STA 0 INF 5 

50041 12 3 11000 INF 5 LDA 3 B 
75 4 00015 SLJ 4 SECOND 

50042 12 0 50073 LDA 0 TE3 
05 0 00006 ALS 0 6 

50043 14 0 50072 ADD 0 DUM6 
20 0 50044 STA 0 INF 6 

50044 12 1 10000 INF 6 LDA 1 A 
75 4 00014 SLJ 4 FIRST 

50045 57 1 50074 SIL 1 FAG 
57 2 50075 SIL 2 SAG 

50046 57 3 50076 SIL 3 LAG 
57 4 50077 SIL 4 GAG 

50047 75 0 00013 SLJ 0 BEGINEQ 
50 0 00000 ENI 0 0 

50050 53 1 50074 REL LTL 1 FAG 
53 2 50075 LIL 2 SAG 

50051 53 3 50076 LIL 3 LAG 
53 4 50077 LIL 4 GAG 

50052 54 00020 INSKIP ISK 3 20 
75 0 50030 
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50053 

50054 

50055 

50056 

50057 

50060 

50061 

50062 

50063 

50064 

50065 

50066 

50067 

50070 

50071 

50072 

500 73 

50074 

50075 

50076 

50077 

50100 

50101 

50102 

50103 

50104 

50105 

54 2 00020 
75 0 50030 
54 1 00020 
75 0 50030 
52 1 50073 
53 2 50100 
52 3 50101 
52 4 50102 
54 3 00000 INFA 
75 0 50007 
54 2 00000 INFB 
75 0 50007 
54 1 00000 INFC 
75 0 50007 
76 0 01111 
50 0 00000 
53 4 63101 SWHE 
75 0 50057 
12 1 10000 DUM1 
42 2 10000 
42 3 11000 DUM2 
50 4 00020 
64 4 11000, DUM3 
75 0 50052 
00 0 00000 TRENSE 
00 3 77777 
12 2 100000 DUM4 
75 4 00012 
12 3 11000 DUM5 
75 4 00011 
12 1 10000 DUM6 
75 4 00010 
00 0 00000 TE3 
00 0 00000 
00 0 00000 FAG 
00 0 00000 
00 0 00000 SAG 
00 0 00000 
00 0 00000 LAG 
00 0 00000 
00 0 00000 GAG 
00 0 00000 
00 0 00000 TE4 
00 0 00000 
00 0 00000 TE5 
00 0 00000 
00 0 00000 TE6 
00 0 00000 
00 0 00000 DEL 
00 0 00000 

B 
00 0 00000 DOL 
00 0 00000 
42 0 07457 DUM7 
2 2 0 07454 
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ISK 2 20 
SLJ 0 INF1 
ISK 1 20 
SLJ 0 INF1 
LIU 1 TE3 
LIL 2 TE4 
LIU 3 TE5 
LIU 4 TE6 
ISK 3 0 
SLJ 0 JMP2 
ISK 2 0 
SLJ 0 JMP2 
ISK 1 0 
SLJ 0 JMP2 
SLS 0 1 111 
ENI 0 0 
LIL 4 63101 
SLJ 0 INFA 
LDA 1 A 
SCM 2 A 
SCM 3 B 
ENI 4 20 
EQS 4 B 
SLJ 0 INSKIP 
OCT 377777 

LDA 2 A 
SLJ 4 THIRD 
LDA 3 B 
SLJ 4 SECOND 
LDA 1 A 
SLJ 4 FIRST 
OCT 0 

OCT 0 

OCT 0 

OCT 0 

OCT 0 

OCT 0 

OCT 0 

OCT 0 

OCT 0 

EQU 1 1000 
OCT 0 

SCM 0 PERE 
AJP 0 FRERE 



50106 42 0 0 7457 DUM10 SCM 0 PERE 
22 1 07454 AJP 1 FRERE 

50107 00 
00 

0 
0 

00000 
00000 

RET NA OCT 0 

50110 00 
00 

0 
0 

00000 
00000 

ANTER OCT 

ORG 

0 

51000 
51000 75 0 00000 INPU SLJ 0 0 

50 0 00000 ENI 0 0 
51001 57 6 51020 STL 6 CONT 

50 6 00004 ENI 6 4 
51002 50 0 00000 ENI 0 0 

10 0 00000 ENA 0 0 
51003 74 0 52031 EXF 0 52031 

74 7 52000 EXF 7 52000 
51004 20 0 57777 STA 0 57777 

10 0 60001 ENA 0 60001 
51005 61 0 00005 SAL 0 5 

74 5 57777 EXF 5 57777 
51006 12 0 57777 LDA 0 57777 

22 0 51.00 6 AJP 0 / 
51007 14 0 51014 ADD 0 CONSI 

20 0 00005, STA 0 5 
51010 50 0 00000 ENI 0 0 

74 7 52000 EXF 7 52000 
51011 74 7 52003 EXF 7 52003 

75 0 51015 SLJ 0 ERR 
51012 74 7 52005 EXF 7 52005 

75 0 51015 SLJ 0 ERR 
51013 53 6 51020 LIL 6 CONT 

75 0 51000 SLJ 0 INPU 
51014 00 0 00001 CONSI ZRO 0 1 

00 0 00000 ZRO 0 0 
51015 55 6 51016 ERR IJP 6 /+1 

75 0 51036 SLJ 0 EREX 
51016 74 0 52006 EXF 0 52006 

74 7 52000 EXF 7 52000 
51017 75 0 51002 SLJ 0 INPU+2 

50 0 00000 ENI 0 0 
51020 00 

00 
0 
0 

00000 
00000 

CONT OCT 0 

51021 50 
50 

0 
0 

00000 
00000 

ENI 0 0 

51022 50 0 00000 OUTPUT ENI 0 0 
74 0 52000 EXF 0 52000 

51023 57 1 51030 SIL 1 /+5 
55 1 51025 IJP 1 /+2 

51024 75 0 51031 SLJ 0 RTN2 
50 0 00000 ENI 0 0 

51025 10 0 60000 ENA 0 60000 
61 0 00005 SAL 0 5 

51026 74 0 52031 EXF 0 52031 
74 7 52000 EXF 7 52000 

51027 74 5 57777 EXF 5 57777 
74 7 52000 EXF 7 52000 
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51030 55 1 51027 UP 1 /-l 
50 0 00000 ENI 0 0 

51031 50 0 00000 RTN2 ENI 0 0 
76 0 02134 SLS 0 2134 

51032 75 0 00000 VERT SLJ 0 0 
50 0 00000 ENI 0 0 

51033 12 0 50106 LDA 0 DUM10 
75 0 51032 SLJ 0 VERT 

51034 50 5 00010 TERN ENI 5 10 
12 0 07734 LDA 0 TEM2 

51035 20 0 63101 STA 0 63101 
75 0 07700 SLJ 0 YEA 

51036 12 0 50107 EREX LDA 0 RETNA 
53 5 50110 LIL 5 ANTER 

51037 20 5 65000 STA 5 HOPET 
51 5 00001 INI 5 1 

51040 57 5 50110 SIL 5 ANTER 
50 5 00000 ENI 5 0 

51041 75 0 07400 SLJ 0 ERAS 
50 0 00000 

HO PET 
ENI 
EQU 
END 

0 0- 
65000 
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