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ABSTRACT
Bromodiborane, B2H5Br, was prepared by mixing bromine and
diborane. The resulting unstable BszBr was separated from its
equilibrium mixture by standard fractionation techniques in a high

1

vacuum system. The infrared spectrum in the 4000 to 250 cm™ * region

was obtained for BZH Br in both the gaseous state and as a frozen

5
solid film. Frequency assignments were made by correlation with
B2H5D and BZHSCH3 assignments.

The preparation of chlorodiborane, BZHSCl , was attempted by
mixing BCls and ByHg. All attempts to separate BZHSCI from its
equilibrium mixture were unsuccessful as were all attempts to observe
its formation by absorption spectrum of the gas mixture.

The writer wishes to express his appreciation for the assitance

and encouragement given him by Professor J. W, Schultz of the U. S.

Naval Postgraduate School in these investigations.

ii



Section

I

II

III

TABLE OF CONTENTS

Title
INTRODUCTION
EXPERIMENTAL METHODS
1. Preparation of Diborane
2. Attempted Preparation of Chlorodiborane
3. Preparation of Bromodiborane
4. Infrared Spectrum of B2H5Br

INTERPRETATION OF INFRARED SPECTRUM OF
BzH Br

5
1. Symmetry of BszBr
2. TFrequency Assignments

DISCUSSION OF RESULTS

BIBLIOGRAPHY

1ii

Page

11

15

24
24
27
30

32



FIGURE

100

LIST OF ILLUSTRATIONS

Initial method of producing BzHG
Primary method of producing B2H6

Comparison of BszBr spectra when pure and
after decomposing for an hour at room
temperature

Comparison of B Hg and BZHSBr spectra

2

BszBr spectrum on expanded scale
BszBr spectrum in cesium bromide region
B,HgBr spectrum as solid film

BoH_Br spectrum as solid film

5

The character of the normal vibrations of
"bridge" diborane

Correlation of frequencies for terminally
substituted diborane

iv

PAGE

18

19

20

21

22

23

25

28



I INTRODUCTION

The vibrational spectra of BzHG and BZDG are well understood and
relatively little doubt remains regarding assignments of fundamentals./1-4/
The effects on the vibrational spectrum of diborane when deuterium is
substituted for one of the terminal protium atoms /5/ and the effects of
CH,_ -and C

3 2
assignment of some bands believed to be caused by the -B,H, fragment./6/

H;- groups substituted on diborane /6/ have led to the

The examination of spectra of the halodiboranes (Bszcl and BszBr)

would be a further check on the assignments given for the —BzH fragment

5

and should assist ultimately in elucidating structures of more complex

boron hydrides.



II. EXPERIMENTAL METHODS

1. Preparation of diborane.

Preparation of a monohalogen-substituted diborane requires the
preparation of the intermediate, diborane, itself. The procedure first
used for producing diborane was that suggested by R. Turner. /7/ Six
grams of powdered potassium borohydride, KBH4, (97% pure obtained
from Metal Hydrides Company, Beverly, Mass.) were placed in a 500
milliliter three necked flask equipped with a magnetic stirrer. (Fig. 1)
Through one neck passed dried hydrogen gas. The gases evolved were
emitted through another neck. Through the third neck, 4N HZSO4 was
allowed to drop onto the powdered KBH4. The reaction was quite vigo-
rous and was essentially complete after the addition of about 40 ml of
acid, but 250 ml in all were added to insure completion. The gases
given off were passed through a dry ice cooled trap and then a liquid
air cooled trap where the product was collected. The non-condensed
gases were allowed to pass through a mercury bubbler under a hood.

During thirteen such processes in which the acid dropping rate,
the stirring rate, the sweeping gas rate and the temperature of the
reaction were all varied, the yield of pure BZH6 as established by
infrared spectrum never exceeded three percent. Along with the poor
yvield there was generally a high contamination due to CO2 in the
product gases. In fact, the percent contamination rose irregularly
with each experiment. All evidence pointed to the KBH4 actually con-
taining some carbonate as an impurity. The KBH4 evidently absorbed

2
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COjy and moisture from the air each time the KBH4 container was opened,
and the borohydride reacted to form a carbonate. The carbonate in turn
reacted with the acid to liberate CO,.

In analyzing the poor yield for the reaction, it was decided that
the highly exothermic reaction caused much steam to form from the 4N
acid, and this steam hydrolyzed the B,Hg rapidly to form B (OH) 3+H,.
No matter how slow the reaction, or how cool, the hydrolysis destroyed
the majority of the BZHG formed. The only modification to the reaction
that could solve the problem was to use concentrated HZSO4 and eli-
minate the water; however, dropping concentrated HZSO 4 onto solid
KBH4 -- even in an inert atmosphere of helium -~ was far too vigorous
a reaction to be safely done in the laboratory. The concentrated acid
plus borohydride approach had been published /8/ though with the
recommended modification that the solid KBH4 be added slowly and in
small amounts to the concentrated sulfuric acid instead of vice versa.

Since the original yields were so low, a switch was made to the
new procedure of adding the solid KBH,4 to the acid. Two hundred milli-
liters of concentrated HZSO4 were placed into a 500 ml three necked
flask equipped with a magnetic stirrer. (Fig. 2) One neck still con-
tained the sweeping gas inlet, but the sweeping gas now utilized was
dried helium. The second neck was attached to a cold finger condenser
containing dry ice and acetone. The product gases passed by the cold
finger condenser through a trap at about -1'30°C (ligroin at its melting
point) and were collected in a trap at liquid air temperature. Any

4
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noncondensable gases were allowed to pass through a mercury bubbler
into a hood. The cold finger condenser plus the -130°C trap were fairly
effective in eliminating the previous CO2 contamination, but small
amounts still persisted in the collected product. To the third neck of the
flask was connected an Erlenmyer flask equipped with a tube at right
angle to the flask. The tube was connected to the neck of the reaction
flask via a ball joint and socket. Seven grams of KBH4 powder and a
magnetic rod were placed inside the Erlenmyer flask.

By manipulating the Erlenmyer flask via the freedom of the ball
joint while at the same time moving the magnet in the powder, small
amounts of KBH4 were allowed to drop into the acid (which was cooled
by an ice bath to slow the reaction). While the control of the rate of
solid addition was not too good, it was satisfactory. In spite of the
cooling, stirring, inert atmosphere, and slow addition of reactant,
the reaction was extremely vigorous with some small amount of burning,
or flashing, accompanying production of many fine particles of free
sulfur. The sulfur rapidly covered the inside of the reaction flask and
prevented visual observation of the reaction rate. The whole system
was under a pressure of helium of about five psig. The decision as to
when to add another small portion of solid could be made by watching
the pressure gauge fluctuate as the product gases were evolved. The
reaction was so rapid that the pressure often rose three to four psi upon
the addition of some solid. During several of these preparations of

B,Hg, the pressure rose on the system sufficiently to blow out some

6



corks installed in the outlet line as safety valves. The addition of
solid KBH4 to concentrated HZSO4 consistently gave yields of about

50% B, H.

oHg s and this method was utilized for the preparation of all the

BoHg used thereafter.

The BaHg that was collected in the liquid air cooled trap con-
tained the impurities SO and CO2 in large quantities. The B,Hg was
purified by repeated fractional crystallizations in a vacuum system.
This process was accomplished by detaching the liquid air cooled
collecting trap from the preparation system as shown in Fig. 1 and
reconnecting the still frozen trap to the vacuum system. Once the trap
was integral to the vacuum system, the product gas, BoHg, was sepa-
rated by repeatedly passing the gas mixture through traps at -76°C,
-950C, -130°C and -195°C. The ByH, was collected in the ~195°C
trap as condensed vapor out of the -130%trap.

2. Attempted preparation of chlorodiborane.

Once an ample supply of BZHG was available, attempts to produce
BZHSCI were commenced. The chosen approach to preparing B2HsCl was
essentially that of Schlesinger and Burg /9/ in which freshly prepared

BzHG is placed into a coﬁtainer containing BCl3 in near stoichiometric
amounts according to: 5B2H6 + 2BClz=6 B2H5 Cl. Since Schlesinger
and Burg /10/ reported an equilibrium situation and fairly rapid kinetics
such that it is nearly impossible to separate pure BoHg C1, the plan
was to place the BpHg and BCl; into a standard IR gas cell and follow
the process of the equilibrium and the formation of B2H501 by observing

7



the absorption spectrum of the gas mixture. Resolution of the BZHSCI
was to be accomplished by external compensation for the B2H6 present
in the mixture.

In the first attempt, about 70 mml of BCJI3 (obtained from Matheson
Co., Inc., Newark, Calif.) along with 50 mm of B2H5 were placed into
a ten centimeter long pyrex glass IR gas cell and periodic spectra were
taken to observe the reaction. Three new characteristic absorption
peaks (3200,1460, and 1360 Cm'l) were found; however, upon evacua-
tion of the cell, these peaks persisted on the inner surface of the NaCl
windows of the cell. One hundred millimeters of BCl3 were placed
into the cell by itself and the 3200 and 1460 Cm~1 peaks were observed
to decrease in intensity while the 1360 Cm~1 peak increased. Further-
more , upon evacuation of the cell and then filling with 50 mm BzHG
the opposite occurred -- the 3200 and 1460 Cm~1 peaks increased as
the 1360 peak decreased. Upon dismantling the empty IR cell, there
was observed what appeared to be a reaction product from the beeswax
and resin used to hold the NaCl windows in place on the glass cell.

To get away from the beeswax and resin interaction with the
reactants, the whole process was tried again utilizing IR-tran windows
and neoprene "O" rings as seals. The results were quite similar to
the time before, only this time the "O" rings were being attacked
instead of the wax and resin.

1a11 gas quantities are referred to by the pressure in the vessel
considered in units of millimeters of mercury at room temperature.

Usual vessel size was about 500 ml.

8



The idea of trying to watch the reaction as it took place in an IR
cell was abandoned. It was decided to place the reactants into a 500 ml
pyrex bulb sealed with a stopcock using relatively non-reactive Kel-F
grease. The intention was to periodically transfer the contents of the
reaction bulb to an IR cell for a few minutes and then transfer the gases
back and hope that the time within the IR cell would be insufficient for
the surface reaction previously observed to take place. Accordingly,
20 mm BoHg and 30 mm BCl3 were placed into the bulb. The bulb was

placed in a 0°C bath for three hours to hold the BCl_ in liquid form.

3
After the three hours, the bulb pressure had increased from 50 mm to

68 mm, and the IR spectrum showed some HC1 formed and some decrease
of BoHg. Also, 13 mm of the 68 mm total were noncondensable at liquid
air temperatures -- presumed hydrogen. Then the amount of each re-
actant in the bulb was increased to 110 mm B2H6 and 122 mm BCl3,,
and the O°C bath was repeated for four hours. This time there was a
pressure increase to 350 mm, and 160 mm of noncondensable (in liquid
air) gas was formed. There was some white solid formed in the vicinity
of the region occupied by the liquid BCl, (when at 0°C). Again the IR
spectrum showed a decrease in both reactants, but the only observable
product in the spectrum was HCl. Of course, there was also the H2
gas and the solid formed. An IR épectrum of the solid showed it to be
predominantly B{OH) 3. This would indicate that moisture managed to
leak into the bulb and hydrolyze the B2H6 accounting for the decrease

in B2H5 concentration. It was decided to try one more attempt to

9



produce an equilibrium mixture of BZH C1l, but this time there was

5
added to the old mixture (now mostly HC1 in the bulb at a pressure of
190 mm) another 66 mm of BCly and 90 mm of BoHg. Then the bulb was
subjected to a 70°C warm bath for six hours, and the mixture was
checked by IR spectrum. There was some small decrease in both BCl3
and BZHG concentrations and 40 mm of noncondensable (presumed hydro-
gen) were formed; however, no new product was noticeable in the spec-
trum. Then the bulb with its gaseous mixture of about 50 mm BCl3 .
75 mm BpHg and 200 mm HC1 was placed into another 0°C cold bath.
After four hours of cold bath treatment, the gas mixture was again
placed into an IR cell for a spectrum reading. The spectrum again
showed a decrease in both BZH6 and BCl3 with a small increase in

HC1. No new peaks were noticeable. In all the attempts to produce

BoH Cl, an IR spectrum was used to "isolate" the B2H501 , and evi-

5
dently if any B2H501 was produced it was in such small quantity
relative to the BZH6 present that its absorption spectrum was over-
shadowed by that of the ByHg.

An attempt was also made to use vapor phase chromotography
(GLPC) to detect any new component, but no one column was found
that would detect B2H6, BCl3 and HC1 at one time. The most nearly
successful GLPC column was a 55 cm by 0.6 cm diameter tubing packed
with 30 - 60 mesh firebrick with mineral oil as the adsorbing agent. /11/
With this column operating at room temperature and 2.5 PSI, BZHG was

detected at an elapsed time of about 20 seconds. One GILPC run on

10



the final B HG” BC13, HC1 mixture detected a two percent yield of

2
unknown gas (percentage based on B’ZHG plus unknown equal 100) at
an elapsed time of about 25 seconds, or just after the BjHg. This
unknown gas was definitely not HC1 or BCl3 which were not detected
within any reasonable time by the column. Whether this two percent
was the elusive B2H501 was impossible to tell since the quantity was
too small to collect to analyze by IR or chemical means. It was de-
cided to abandon the attempt to produce B2H501 in favor of producing
the more stable B,H_Br.

5

3k Preparation of bromodiborane.

The planned method of preparing B2H5Br was that specified by
Stock /9/ in which B,Hg and either HBr or Br, are heated together for
about two hours until the substitution is complete. In the case of the
B2H5Br though, the compound is stable enough and sufficiently different
in vapor pressure to allow separation from its equilibrium mixture --
believed to be: /9,10/

6B,H, + 6Bry —=» 6B,HcBr + 6HBr T=5ByHg + 2BBry + 6Hbr

In the first attempt to produce ByHgBr, the method of warming
equal volumes of HBr and ByHg at 90°C for two hours was chosen. /9/
Approximately 100 mm each of freshly prepared BZHG and the middle
fraction of some commercially bottled HBr were placed in a 500 milli-
liter glass bulb. This bulb was placed into a hot bath for two hours,
and then the contents were transferred to an IR cell for a spectrum.
There was no noticeable change in the gas mixture except that two

11



millimeters pressure of noncondensable gas was formed. After trans-
ferring the gases back to the bulb, the bulb was heated at 90°C for
another four hours. This time there was a reaction. However, it
appeared that the major reaction was the result of heat causing the
grease on the bulb’s stopcock to thin sufficiently to allow air and
water vapor to enter, since there was a deposit of white solid left on
the inside of the bulb that later proved to be B(OH)3 according to an
IR spectrum. There was also 96 mm of noncondensable gas that
probably consisted of air plus H2 from the reaction BzHG + 6H,0 =
2B(OH) 3 + 6Hjy.

For the second attempt to produce B2H5Br, the method chosen
was the alternate method recommended by Stock /9/ in which a one
third stoichiometric amount of Br, is added to BoHg and heated at
100°C till the Br2 color disappears. The reaction being BoHg +
Brp—> B2H5Br + HBr. Accordingly, 180 mm of B,Hg were placed into
a 500 ml glass bulb equipped with a well greased stopcock, and then
61 mm pressure of Br2 was added. Once again there was moisture con-
tamination, but this time the stopcock was tight,and the moisture prob-
ably entered in accompaniment with the bromine. The Brz vapor had
been taken off of some liquid bromine via a vacuum system at room
temperature without any fractionating. Evidently there was enough
moisture present in the liquid bromine to be transferred over at room

temperature with the bromine vapor. Anyway, the now familiar result

12



of hydrolyzed ByHg yielding the white solid B(OH)3 plus hydrogen was
observed.

After cleaning the 500 ml reaction bulb for another try at producing
BoHgBr, 284 mm pressure of BzHG was placed into the bulb along with
72 mm of carefully fractionated bromine vapor. Taking special pre-
cautions to insulate the stopcock from the heat of the 100°C bath,
the mixture was heated for thirty minutes at which time the bromine
color had disappeared. After transferring the gases from the reaction
bulb to the vacuum system, it was found that about 30 mm of hydrogen
had been formed. Fractionation of the remaining gases resulted in 10 mm
pressure being isolated between temperatures of -130°C and -30°C.

An IR spectrum of this 10 mm pressure in a 500 ml volume resulted in a
logical spectrum for BojHgsBr. No HBr appeared in the spectrum con-
taining BszBr, but HBr was found in the fraction between -190°C and
-130°C confirming a substitute reaction and effective fractional separa-
tion. To confirm the identity of BszBr, a vapor pressure reading was
desired, and therefore more product was required. The original 10 mm
of BZHSBr was frozen in liquid air, and the remaining gases from the
original mixture were allowed to come to equilibrium again in the 500 ml
reaction bulb. This time no heat was applied, the reaction bulb re-
maining at room temperature. Twenty four hours later, another ten
millimeters pressure of BszBr in a volume of 500 ml was collected
from the equilibrium mixture by fractional condensations on the vacuum
system between baths of -130°C and -30°C. An IR spectrum of this

13



frgction was identical with the previous sample. This product was
frozen with the previous sample and saved in an evacuated tube kept

at liquid air temperature. Still the total amount of BszBr collected
was insufficient to obtain a positive vapor pressure and confirm the
sample as monobromodiborane. Consequently, another 115 mm pressure
of carefully fractionated bromine plus 110 mm pressure of diborane was
added to the previous equilibrium mixture in the 500 milliliter pyrex
reaction bulb. A trace of bromine color persisted in the flask even after
48 hours at room temperatures, but heating the flask to 70°C for twenty
minutes caused all color to disappear. Following the same separation
techniques that produced the other two samples of ten millimeters
pressure in a volume of 500 milliliters, a pressure of 18 millimeters of
BszBr was obtained. After checking the spectrum of the third sample
with that of the previous two, the three samples were combined. The
reaction vessel was warmed at 70°C to speed the kinetics of the
reaction back toward equilibrium during the time between separations

of the BpHcBr from the equilibrium mixture. Three more fractions of
total pressure of 36 millimeters in a 500 milliliter volume were separated
from the mixture. In all, a total of 74 millimeters pressure of BoHgBr
was collected in a 500 milliliter volume. This quantity was ample for
checking vapor pressure, and the resulting vapor pressure of 42 mm

at -44°C agreed exactly with that found by Schlesinger and Burg /10/
and predicted by Stock. /9/ Another vapor pressure check gave a
pressure of 95:mm at -30°C and also agreed exactly with Stock's value./9/

14



A Infrared Spectrum of ByHsBr.

The infrared absorption spectrum was measured over the range
250 -- 4000 cnil by means of a Perkin - Elmer Model 221 spectro-
photometer equipped with CsBr and NaCl prism-~grating interchanges.
The instrument was equipped with a housing so that it could be swept
out with dry nitrogen. In this way the effect of water vapor absorption
on the spectra was reduced to a minimum. In the low frequency region
(250 -~ 650 cm™1), the CsBr prism was used, while the NaCl prism
was used for the higher region. The resolution achieved was approxi=
mately uniform throughout the spectrum at about three cm"1 . The band
maxima were measured with a precision of about three cm~l, The gas
absorption cells used were two cells ten cm in length with NaCl
windows on one and CsBr windows on the other. Another five cm
long micro gas cell equipped with IR-tran windows was used to resolve
some weak bands.

The stability of the BZHSBr in the gas phase at room temperature
was such that products of dissociation were noticeable as shoulders
or small pips in the infrared spectrum after about thirty minutes.

(See Fig. 3) Consequently, each gas phase spectrum required fresh
separation of BzHSBr from its dissociation products. The change in
the spectrum corresponding to the formation of BZHG and BBrg, the
dissociation appeared to follow that reported by Schlesinger and
Burg: /10/

6 B,H.Br = 5ByHg+ 2BBrj

275
15



The solid BZHSBr spectrum was obtained from a film of B2H5Br
frozen onto a CsBr window held at liquid air temperature by a brass
holder being in intimate contact with both the window and the liquid
air. The brass holder and its window were enclosed in an evacuated
cell also equipped with CsBr windows. The results of the absorption

measurements are presented in Figs. 3 through 8 and Table I.

16



TABLE I. Table of frequencies of BZHSBr bands and
their assignments

Frequency, Cm~
(GaS BZHsBr)

2618
2603
2580
2532
2516
249é

2340
1727
1621

1572
1540
1488

1174
1155

1064
1049

934
904
817

661
496

1

Intensity

Strong
Strong
Strong
Strong
Strong
We;k

Very Weak
Weak
Medium

Very Strong
Medium Shoulder

Medium

Weak
Weak

Medium
Medium

Weak
Weak
Weak

Strong
Strong

Frequency Ccm~! Intensity Assignment
(Solid B,HcBr)
B-H asym.,
2610 Strong inphase
(type B)
2582 Strong ~Hasym. ;
out of phase
(type A)
B-H sym.,
2518 Strong in phase
type B
impurity
2440 Very Strong ?
2358 Medium ?
2333 Very Weak ?
2282 Very Weak ? :
1727 Medium B-H asym.,
out of phase
(type A)
1620 Very Weak B2H§ impurity
1580 Very Strong (B-H asym.,
éin phase
1554 Strong Shoulder ?
?
1488 Very Strong -BoH- com-
bination
1445 Medium ?
BzHﬁimpurity
BH,
deformation
(?)
1142 Very Strong ?
%BH
de[%rmation
1042 Very Strong ?
941 Weak i
?
905 Strong BH, wagging,
out of plane
816 Strong BH2 wagging
in plane
659 Strong ?
496 Strong B-Br Stretch

17
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III. INTERPRETATION OF INFRARED SPECTRUM OF ByHBr

5
1, Symmetry of BoHs5Br.

The presently accepted model of diborane /2/ is a bridge model
in which two boron atoms and four terminal hydrogens lie in one plane
while the same two boron atoms and the bridge hydrogens (designated H')
lie in another plane perpendicular to the first. The configuration is
shown below. /14/ The molecular dimensions were obtained by a careful

electron diffraction study. /15/

The hydrogen atoms with a li.ga‘ncy of one, have a H-B distance of .
1.187 + 0 .030°A. The bridging hydrogen atoms with a ligancy of two,
have a B-H distance of 1.334 + 0.027°A. The distance between the
boron atoms is 1.770 + 0.013°A.

Since there are eight atoms in B2H6, the 3N less six fundamental
vibrations total 18 and are numbered according to Bell and Longuet-
Higgins, /12/ and are illustrated in Fig. 9 and described in Table II.

Hedburg, Jones and Schomaker /1 6/\report the structure of
bromodiborane, BZHSBr, as essentially identical with that of diborj;ane ;
except that a bromine atom replaces one of the non-bridging hydroge‘n

atoms. Therefore, the symmetry of B2H5Br is reduced t6 one plane
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(designated as symmetry point group Cs by Herzberg /13/) passing
through the bromine, the two boron atoms and the remaining terminal
hydrogens but passing perpendicular to the plane through the bridging
hydrogens. There are only two vibrational species possible. Vibra-
tions causing change of dipole moment within the plane of symmetry
are species A', and vibrations causing dipole changes out of the plane
are species A''. /13/ All 18 fundamental vibrations for B2H5Br are
infrared active. The 18 fundamental vibrations are composed of 12A°
species and 6A'' species. The symmetry relations for B2H5Br are also
summarized in Table II.

There are three band types to be expected in the B2H5Br spectrum,
Band type A refers to an absorption band in which there is a sharp center,
Q branch, flanked by the nearly as intense P and R rotational envelopes.
B-type bands refer to bands’ in which the center Q branch is absent and
only the flanking P and R branches remain. Band type C refers to a band
in which there is a sharp Q branch but no P or R branches are evident.
B2H5Br is an asymmetric top type molecule, and change of dipole
moment parallel to the axis of smallest moment of inertia, the minor
axis, and in the plane of symmetry produces A-type bands of species
A'. Dipole moment changes perpendicular to the minor axis and in the
symmetry plane yield B-type bands, also of species A'. Out of plane
vibrations producing dipole moment change parallel to the line through
the two bridge hydrogens yield C-type bands of species A''., Some of

the in-plane, A', vibrations actually exhibit hybrid AB character. /5/
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2, Freguency Assignments.

The spectrum of BszBr can best be analyzed by examining a small
frequency range at a time utilizing the assignments given for diborane
by Lord and Nielsen /1/ and correlating the expected shifts due to the
terminal bromine with the shifts reported for B,HsD and B,H CH,. /5,6/
See Fig. 10 for a pictorial illustration of the corellation.

In diborane, the B-H (terminal) stretching vibrations

1 region.

(~y,vg, =v11. ~1p in Fig.9 ) are in the 2500-2600 cm™
Terminally substituted monodeuterodiborane and methyldiborane also
show B-H stretch frequencies in this region. The asymmetrical stretch
frequencies are higher than the symmetric and are located at 2610 cm™ i
for the in phase ('VS) vibration and at 2580 cm™~! for the out of phase
('vl 1) vibration. The lower frequency symmetrical stretch band is
found at 2520 cm-l in BpHgBr.

The B-H' stretching frequencies ('VG and "v17) are found in the
1750 to 1550 cm'1 region with the strongest band found in the region
corresponding to the asymmetric, in phase, ~V17 in diborane. Thus
1572 cm'_l is assigned to the asymmetric in phase B-H' stretch, and
1730 cm'l corresponds to the asymmetric out of phase B-H"' stretch.

The fairly intense BHjy deformation bands reported at about
1150 cm™~1 for CH3ByHg /5/ appear shifted to the lower frequency of
about 1050 cm'l for BszBr. However, one apparent A-type band of

1

medium intensity still remains at 1155 cm™ " and probably corresponds

to one of the BH2 deformation bands that did not shift appreciably.
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The BH2 out of plane wagging frequency, corresponding to -v7
in BzHG' appears in the region from 1000 cm_1 to 900 cm™!. Ttisa
sharp C-type band of low intensity found at 904 cm~! for BZHSBr° The
BHz in plane wagging band, corresponding to Vg in diborane, is found
at a slightly lower frequency as another sharp band of medium intensity
at 817 cm~1,

Two other prominent bands stand out in the B2H5Br spectrum.
The fairly intense band at 1488 cm™1 corresponds well with the
—B,Hg combination band assigned as 1481 cm~! for CH3B,Hg /5/.
The other band is the intense low frequency absorption expected for
the B-Br stretch vibration and is found at 496 cm™!.
While there are other unassigned absorption peaks in the

B2H5Br spectrum, further correlation with CH3B2H5 and B2H5D fails to

yield any other firm assignments.
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IV. DISCUSSION OF RESULTS

All the band assignments have been made using the spectrum of
B2H5Br in the gas phase, The spectrum of B2H5Br in the solid phase
is included for completeness, and it was quite useful in helping to
determine whether a particular band was A-type or B-type. Although
the Q branch is missing in the B-type band of a gas, the solid spectrum
yields a simple peak at the vibrational frequency. Therefore, if there
was little or no shift in frequency for a particular band when going from
the gas phase to the solid phase, the type band was easily distin-
guishable. However, some of the bands do shift when in the solid
phase as compared to the gas phase, and not all the bands could be
determined as to type. Further infrared study of solid BZHSD and

CH . B,H

3B, Hs and correlation in the solid state might allow some more

firm band assignments for the —B2Hg fragment. No doubt some of

the bands in the 2200 - 2450 cm-1

region of the solid spectrum could
be assigned by a correlation of the solid spectra.

There is a large jump in the mass of the tefminally substituted
group when going from —CH3 or —-CD3 to bromine, and the correlation
of band assignments in the gas phase is not completely straightforward
throughout the spectrum. The chlorodiborane spectrum would be
especially useful in completing the correlation since it is of inter-

mediate mass relative to the methyl and bromo substituted diborane:

however, the greater electronegativity of the chlorine would complicate
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the correlation somewhat. Still the usefulness of an absorption
spectrum of chlorodiborane warrants another attempt at its preparation.
The attempts at preparing chlorodiborane for IR study in this
work were limited to mixing BZHG and BCl3 (or HC1) at a total pressure
of about one half an atmosphere. Preparation using the same techniques
only pressures of at least an atmosphere might be more fruitful. Although
the hope of separating the BZHSCI from its dissociation and equilibrium
compounds is remote, compensation for the BZH6 spectrum could be
accomplished readily by placing BZHB of near equivalent absorption
strength in the reference beam of the spectrometer. The interference
with the expected BZHSCI spectrum due to the spectra of HC1 and
BCl3 would be minimal, and compensation for the BZHG alone should

permit resolution of the BZH5CI bands.
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