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ABSTRACT

A method is developed, using the quadratic form of canonical un-

coupled state variables as a Lyapunov function to determine the switch^

ing logic for a quasi-optimum control of a non-linear dynamic system »

Analytio arguments are presented to support the method, which is capable

of being extended to any order system and any number of controls „ sub-

jeot to certain praotical limitations noted in the analysis

A computational scheme for determining the canonical state variables

and control functions is presented and a topological interpretation is

made of the choice of variables used for the control logic calculation.,

The controller based on the method described is applied to a non~

linear second-order system. Phase trajectories for both the uncontrolled

and controlled systems are obtained by means of a digital computer simula=

tion* Various aspects of the theoretical limitations of the method pre-

sented are investigated and the experimental results are analyzed with

respect to the theoretical predictions,,

#The system is postulated to be described by a system of differential
equations of known form e

ii
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lo Introduction.,

The stability of dynamic systems whose equations of motion are such

that their solutions are difficult or impossible to obtain in closed form

may successfully be analyzed by means of Lyapunov"s Second Methodo

We have a given dynamic system described by the set of differential

equations as

x m gjx); £(0) = (1-3)

Then £ referring to Fig„ (l-l), the origin*, according to LaSalle and

5
Lefschetz iss

stable whenever for each R ^A there is an r ^R such
that if a path (a motion) g* initiates at a point x° of
the spherical region S(r) then it remains in the spherical
region S(R) ever after 5 that is, a path starting in S(r)

never reaches the boundary sphere H(R) of S(R)g

asymptotically stable whenever it is stable and in addition,

every path g"*" starting inside some S(R«) 9 R~\ o., tends to tlsry patn g"*" starting msiae some t>(Rc ) 9 R^
origin as time increases indefinitely?

the

unstable whenever for some R and any r s no matter how small s

there is always in the spherical region S(r) a point x
such that the path g through x reaches the boundary sphere
H(R)

<-Ki&J

Figo (l-l) Geometric Interpretation of the Various Types

of Stabilityo



Now suppose we have a given dynamic system described by the set of

differential equations written in vector form as

x = £(x,u) (1-2)

or

x = Fx Du + g (x,u) (1-3)

where F is a constant square matrix, D is the control distribution

matrix, u is the control function vector, and £ (x,u) contains terms of

a second and higher power in x and u. The linearized form of the equa=

tion is

x = Fx 4 Du (1-4)

and can be said to adequately describe the motion of the system for

small values of x.

According to Kalman and Bertram , a Lyapunov function may be de-

fined as some scalar function of the state variables V(x) with the fol-

lowing properties: (a) V(x) } 0, V(x)( when x £ Xg, where Xg is the

equilibrium state, and (b) V(x) V(x) s when x Xg.

We wish to apply Lyapunov' s Second Method to the design of a con-

troller so as to return the state vector (x) to a position of equilib-

rium (xg) in some optimum manner. No loss of generality will result

if we choose (x_g) to be the origin of the state space, and henceforth

the equilibrium position will be considered as such,

Lyapunov stated that if a Lyapunov function V(x) exists (being

positive definite) in some neighborhood of the origin, and if -V(x)

is also positive definite in some neighborhood of the origin, the

system is asymptotically stable .

In general the metho d employed will be to make V(x) as negative as

possible in order to drive the system to the origin as quickly as

possible.



The Second Method of Lyapunov leaves open to the individual inves-

tigator the choice of a particular Lyapunov function to be used in the

analysis of a given system. For a given system then s there are possibly

an unlimited number of such functions • The quadratic form of the canoni-

cal state variables as the particular Lyapunov function employed in

the design of the controller was governed by the simplification obtained

in the control logic.

Analysis and design for a controller of a linear, stationary system

using the quadratic form procedes in a straightforward manner,, In the

case of a non-linear system however, the limitation that the linear ap-

proximation is sufficiently accurate only within some region surrounding

the equilibrium position poses a rather severe restriction on the extent

of the state space for which a given control can be useful*

In order tc overcome this limitation to some degree the controller

was designed in such a manner that the control logic was obtained by

successive linear approximations to the actual system at points on the

system trajectory.

For best performance of the system the time involved in the calcula=

tion of the control logic should be infinitesimal so that there would be

no appreciable time delay in the application of the proper control func-

tion. That is, the system state vector would not have moved from the

point (x, ), where the state variables were sampled, to a new position on

the trajectory, (xo) where the control function was actually applied

o

In actual practice a finite calculation time is of course necessary

so that the state vector will always have moved from the point of sampling

before the new value of control function can be appliedo

For plants with long time constants, such as might exist in chemical

or metallurgical processes or ship stabilization systems, presently

3



available digital computers have computation speeds adequate to success-,

fully provide on line, real time control.

Application of this method to plants with short time constants will

depend upon increased speeds of the computers and the development of more

refined methods of calculation*



2. Theory,

If we have given a Lyapunov function V(x) a x Px we may assert

that the equilibrium state xe of a linear dynamic system

x = F^c (2-1)

is asymptotically stable if and only if given any symmetric positive-

definite matrix Q, there exists a symmetric, positive definite matrix P

which is the unique solution of the set of linear equations described by

pTp 4 PF = _Q . (2-2)

A simple procedure for calculating the control logic attributed to

R.W. Bass procedes as follows: Choose Q^> arbitrarily. P>0 may then

be calculated from (2-2). ||x||2p will then be a Lyapunov function for the

system (2-1). We now choose u(t) so as to make V (x) as negative as

possible. Let

V(x) a xTPx = ||x||
2P, then

V(x) » xTPx 4 xTPx . (2-3)

We wish to consider the effect of control on V. Taking the transpose

of (1-4) we obtain

£
T

- xTFT t uTDT (2-4)

and

V(x) s xVpx + xTPFx + uTDTPx + xTPDu

or

V(x) s xT(FTP + PF)x * 2uTDTPx .

T
Since P is symmetric, DP PD. Simplifying this gives

V(x) -xTQx 4 2uTDTPx

or v(x) = -||X
||

2
Q 2ii

TDT^ • (2- 5 )

* / \ T T
To make V(x) as negative as possible we want the term 2u D Px to be

as negative as possible. Therefore the control logic is given as



Ui (t) a -ai sgn (HTTx) ± (2-6)

where the a^ are constants denoting the maximum allowable magnitudes of

each individual control effort u^. It is obvious from (2-6) that in

order to make the term 2u D Px as negative as possible the individual

controller u. (t) must always exert a maximum effort

,

and in such a

direction that the term

-ai sgn (DTPx) i

is, in fact, negative. Thus the control logic becomes merely logic for

detecting the appropriate switching points of the "bang-bang" controller

Ui(t).

In the case where there is only one controller the vector u may be

of the form such that u (0,0,0 . « • u)» The system equation is

then of the form

x

~ Dn "bn-l

. . .

1

1

. -b. u

(2-7)

where the b^ are the coefficients of the characteristic equation of the

unforced system, taken in reverse order.

If we make the equivalence transformation from the physical state

space to a canonical state space denoted by the matrix equation

y_ - Gx (2-8)

then by differentiating we get

£ s G± (2-9)

and equation (1-4) becomes



We choose G such that

G" lFG = _A. (2-10)

v/here .A. is a diagonal matrix with the same eigenvalues as F"

.

For the system with one controller such as described by (2-7) we

may further choose the particular transformation matrix G such that

GT^Du = £

where E* = (a, a, a, . . .a) • This has the effect of weighting the

value of all the state variables equally in determining the sign of u(t).

If the P of (2-2) is chosen to be the identity matrix I and the =j\=

matrix substituted for F, equation (2-2) becomes

jSji I A. - -Q. (2=11)

If all the real parts of the eigenvalues of F are negative, so then are

all those of _A_ , and Q is positive definite. Also

Hx) = £T(JL T + A)l* 2ET£. (2-12)

The first term on the right side of (2-12) is again negative and the

control logic is given by the second ternu For a single controller,

we have
n

u(t) - -a sgn ( E Y±) • (2-13)
i

In other words the switching function is such that the control must

change sign whenever the sum of the n canonical state variables changes

sign.

Consider the given form

2. " -A- L + " D— •

#It is always possible to perform the equivalence transformation (2-10)

provided F has no repeated eigenvalues. A system described by an nth order
differential equation having repeated roots may be transformed into a par=

tially uncoupled set of 1st order differential equations. It will be

assumed that the systems considered in this paper have no multiple roots.



If we take the LaPlace transform we get

sY(s) - j(0) = -A-Y(s) + (H-DuCs)

or

Y(s)(sl --A-) = ^(0) + GT^uCs) . (2-14)

Since from (2-6) the control variable should assume only values of + a

©r - a_ , we stipulate that it is a constant during a given control

period (between switchings). We then have the LaPlace identity

(G-lDu)(s) = _L .

s

Solving (2-14) for a given component y^ we get

Yi(s)(s -\
± ) - yi (0) + J-L

or

Yi(8 ) = 7
Ii^L > _J1__ . (2-15)

• (s -X
i ) s(s -X A )1

Then the time domain solution of (2-15) is

7±W - yi(0)e
X it £i- (1 -e

Xit
)

*-i

or

\ ±
t a.

yi (t) = |yi(0) 4 —L\ e* 1
- * . (2-16)

» <^i J X ^

An interesting result becomes apparent from this solution as t in-

creases without bound. For the case where \^ is negative (a consequence

of Q being positive definite) we see that

y^t) _*. *
; t -*» oo

This result indicates that although this form of controller is useful in

making v(x) more negative in an asymptotically stable system, it will not

result in V(x) -+ as t -+ OO if u is a function of the type seen in

Fig. (2-1).



i

Ht

"-i

-^-

- " ai

U'A

Fig. (2-1) Control Function U^ As An Ideal Relay.

In fact it will result in a condition of chatter-motion around the origin

as the controller becomes dominant at points in the state space where the

yi<||e||: where ||e|| assumes some particular small value.

This objectionable feature may be overcome in the case of asymptoti-

cally stable systems by choosing the control function of the form shown

in Fig. (2-2) below so that the controller is effectively disengaged

within some region arbitrarily close to the origin, allowing the system

to reach the equilibrium condition in an unforced manner.

J

*r 1

H*i

1 a >

m

Fig. (2-2) Control Function V^ As A Relay With Dead Zone.

If the uncontrolled system were such that one (or more) roots con-

tained positive real parts, (in this case -Q can no longer be positive

definite) then for some particular points in state space, it is still



possible that

v(x) = -|x2 ||q .

However V(x)>0 and remains so»

Consider a plant governed by the equations
dx/dt = Fx + Du(t)

where the control variables are subject to the constraints,

|ui(t)| < aj < oo (i = 1, . . ., m) • (2=17)
This is essentially the relay or saturating servo problem,.

The problem is to return every initial state to the origin<>

It is well known that if F has eigenvalues with posi-
tive real parts then there are some states which cannot be
returned to the origin by any control subject to the con=
straints (2-17)4 .

If a controller of the form described is applied to the unstable

system, it is apparent from (2-5) that control may be maintained so long

as the inequality (2-18) below exists .^ That is

-||x|| 2Q + 2uTDTPx < Oo (2=18)

From the solutions (2-16) the behavior of each y^(t) for 0<t<k s

where k denotes the switching period is as in Fig. (2=3)«

Fig. (2-3) Plot of y^t) vs. Time For \x
±

= -a
i

sgn (EfyJ^
Stable Eigenvalue.

10



->- i

a;

3T;

Fig. (2-4) Plot of yi(t) vs. Time For u^ *

Unstable Eigenvalue, y^(0)>| ai

I Xi

.aj_ sgn (E v^,

Fig. (2-5) Plot of JTi(t) vs. Time For u± = -a
i

sgn (E x^i*
Unstable Eigenvalue, yj(0) <l aj I .

I Xi I

In the event that the system distribution matrix D were such that

the controls were uncoupled, i.e. for each y^ there were a corresponding

u^, then it would be possible to design a controller whose individual

elements changed sign at the zero crossings of the individual state

variables.

11



From Figo (2-5) it can be seen that the element would switch at

t s To It is possible to calculate T^ ^(y^O)) from (2-16) for

the case where "^^>0 9 y^(0)>0, u^ <0 a

yi(t) * jyi(o) - ..,.

a
.

1.A e
i —!^L , let

yi (t)
s

then

{
yi(o)

a* ^ X t
T a

^ I e
x

« L
X

giving
X.T a.

e

i I AiyiCO)-*!

and

I

Xi ^ i Vi<°>-»i
(2-19)

From (2-19) it is clear that for y^O) 9 T s _JL_ ln(l) - S

indicating that this system also will result in chatter-motion around

the origino

Seleotion of a control function u^ of the form of Fig, (2-2) would

be unsatisfactory in this case because the uncontrolled system is un-

stable at the origin* A better form of function would be that of the

form of a saturating amplifier with a high gain. (See Fig Q (2-6)

)

(iW
*

Fige (2-6) Control Function uj With the Characteristics of a

Saturating Amplifier*

12



Employing LaSalle and Lefschetz 5 s definitions of stability des=>

cribed in Section 1 9 , a system whose eigenvalues all have negative real

parts is asymptotically stable with no control s merely stable with a

"bang-bang" controller (Fig. (2-1)), and again asymptotioally stable if

the controller contains a dead zone as in Fig„ (2-2) Given an arbit-

rary H(R), a system with eigenvalues lying in the right half plane is

defined as unstable, and the same system with a controller of the form

described may be defined as stable if X is restricted to lie within

some S(r) whose radius r is of some necessarily small value. The

restrictions on the allowable values of r are necessarily related to

the constraints on the magnitudes of the control functions (2-17),

Given a non-linear system described by the equation z * F(x)x,

the linear approximation of the non-linear system referred to by Kalman

and Bertram may be obtained by a Taylor series expansion of the coef-

ficient matrix F(x) at the origin. The linearized^ constant, matrix F

<iF° (x)
has the elements 1 , . (The matrix F is the Jacobian of F(x)

d xi

with respect to x at x s x(0) s 0) •

Suppose a system described by the equation

x = F(x)x + Du

is to be controlled in an environment where the disturbances are of

such a magnitude as to carry the state variable beyond the region of

validity of the linear approximation given by (1=4). Referring to

Fig. (2-7), this condition corresponds to an x° lying outside of S(r)

By expanding F(x) about the point x° and obtaining the Jacobian of

F(x) with respect to x at x s x° we may obtain a linear approxima=

tion at x°

x = F x Du . (2-20)

13



Figo (2-7) Geometric Interpretation of Successive Linear
Approximation Process

Control logic based on this approximation will be valid while the

trajectory remains within the spherical region S(p) c If S(p ) is the

region of validity of the linear approximation due to the n*** sampling*

then by an iterative process such that the trajectory from Xn to Xn

always remains inside S(pn ) we may obtain an optimum control policy

based on the particular Lyapunov function employed for the complete

trajectory for x° to xe o

14



3. Application of Theory to Design of a Single Controller.

It was shown in Section 2. that the control logic resulting from

the choice of the quadratic form of the uncoupled state variables as

the system Lyapunov function is of the form

u(t) » -a sgn
J ^pi Y±\

when the system has only one controller • Thus, the control problem is

reduced to determining the sign of the sum of canonical state variables

and insuring that the control, u(t), assumes the opposite sign© The

steps involved in this process consist of the following!

lo Measuring the physical state variables (x)o

2* Calculating the canonical state variables (yO from the
measured (x).

3. Forming ^ yi»

4* Applying the proper control u(t) -a sgnVy^o

As was shown in Section 2», the variables (yj may be calculated by

the equation

y_ s G~ Xx . (3-1)

-1
The problem then reduces to evaluating G ,

It may be shown that a matrix G such that

G^FG = J\_ (3=2)

where_/\-is a diagonal matrix, may be formed by calculating the eigen-

vectors of the matrix F and constructing an array in which each eigen-

vector is a particular column of the array* Once a G has been obtained

it is merely necessary to calculate the inverse, G"% in order to be able

to calculate the state variables (^[)«

The elements of the diagonal matrix _/\=are the eigenvalues of F

If the system is oscillatory the elements of _A- will necessarily be

complex,. Since the elements of the coefficient matrix F of the original

15



differential equation are all real, consideration of (3-2) reveals tl

for an oscillatory system there must be complex elements in G and G".

When G is complex, care must be taken in evaluating G*'* If we

let G a (feG + j$G, and attempt to form G"1 - (dlG)^ 1
«. j(Ag)"1

difficulty arises immediately Since oomplex roots arise in conjugate

pairs, there will be two eigenvectors (oolumns) of (C&G) due to the

identical real parts of the conjugate pairs These vectors will be

identical, and therefore linearly related so that ((&G) will be singulars

Similar reasoning shows that (<»G) will also be singular, so that it is

impossible to obtain (&G)" 1 and (<$ G)* 1
,

Let us form a new matrix H in the following manner If the order

of G is n, the order of H will be 2n so that for every complex element

of G there will be four elements of H arranged in a square pattem<> The

two elements on the principal diagonal of the square have a value equal

to the real part of the corresponding complex element of G„ The ab-

solute values of the remaining two elements are equal to the imaginary

part of the corresponding complex element of G s the element in the lower

left hand corner, taking the positive sign, while that in the upper right

hand corner, the negative sign c Where the corresponding element in G

is real, zeros appear in the locations in H corresponding to the missing

imaginary parts ©

If now we form H^, then we may obtain the elements of G"^- from

the proper locations of H~l

However since we are interested in obtaining the (yj corresponding

to the measured (x), the simplest procedure is to form the 2 x n sup-

plementary vector (x) which has alternately the real and imaginary

parts of the physical state variables Since these state variables may

16



be measured and have physical significance, they may only be real, so

that (x) consists of the values of the state variables alternating with

zeros. Matrix multiplication of E~ l on the right by (x) results in a

2 x n column vector whose elements are the real and imaginary parts of

the canonical space variables (y_) o

EXAMPLE , The product of a complex 2x2 square matrix and a

column vector with real elements

yi

y2

R
11

4 jI
ll

R
12 + J J 12

R21 + JJ 21 ^2 4 ^22

Then

*1

y2

R
ll
x
l

4 ^ll^l *
R
12
x
2 4 J I123C

2

R
21
x
l

4 J I 21
3C
1

4 R
22
x
2 4 J I 22

X
2

Rearranging gives

yi (R11X1 * R12x2) 4 a( IH3C
l

4 I
12
x
2 )

y2
a (R

21
X
1 4 hz^ 4 ^ I

21
3C
1

4 X
22x2)

Suppose instead we form a 4 x 4 matrix of the form H" » Then

and

<&7l
Rn #11 R

12 -^12 X^

Jtyi +jin Rll tfilZ R12
K

&y2
R21 *#21 R22 '0 I22 x

2

i y2_ O^l % J*22 R22

(ky1
- R

11
X
1

4 hz*Z
I

A yx = J 1!!^! 4 PizH

ay2
s R21x

l 4 R22x5

&y2 Ji 2in J I 223C
2

Rearranging gives

yi * ( Rllxl + R12x2> + O^l^l + x 12x2)

(3-3)

(3-4)

17



y2 - (R
2 1
X
1 + R22x2) + ^hlx

l + X
22
X2^

which is identical to (3-3) and (3-4).

It is evident from the above discussion that in the case of an oseil°

latory system the transformation

£ = G^x (3-5)

may map a given physioal state variable x^ from a point on the real

axis to some point in the complex plane. Thus for a given coordinate

axis in the physical n- space there is a complex plane in the canonical

space*

Since, however, there is a one for one correspondence between points

in the two spaces, a control which succeeds in reducing all state vari-

ables to zero in the canonical space will have also reduced the real

state variables to zero.

The computation method employed to determine the transformation

matrix G was based on a computer program MA.TSUB, programmed by

Louis W. Ehrlich of the University of Texas, which calculates eigen-

values and eigenvectors of a matrix up to order 50. The general method

employed is to make an initial guess for each eigenvector of the matrix

F and to converge on the correct value by an iterative scheme due to

E.E. Osborne . The original program employed a guess of 1.0 for all com-

ponents of the eigenvectors Since it was assumed that the system

matrix F was not changing at more than a moderate rate, a modification

was made to the program so that the most recently calculated value for

each eigenvector was selected as the initial guess for a new calculation

thereby speeding the computation. The output of the MATSUB program was

also modified so that the eigenvectors were arranged into two n x n

matrices corresponding to the real and imaginary parts of the transfor-

mation matrix G,

18



Prom the two n x n matrices the 2n x 2n matrix H was formed and the

inverse taken. The canonical state variables were then determined and

the proper control calculated and applied

»

The path of the system trajectory in the physical space (x) was

then calculated for a selected time interval between sampling instants

by the Runge-Kutta-Gill method. Instantaneous values of the elements

of the coefficient matrix F » F(x) were calculated for the new sam-

pling point and the procedure repeated until the trajectory in the

canonical space was within a pre-set epsilon region of the origin or

a given time had elapsed.

Initially the ideal case was simulated by holding the solution of

the system trajectory at the sampling point until the new calculation

of the control function was made and the control applied Simulation of

the non-ideal case, a finite calculation time, was affected by applying

the control calculated at the (n-l) samplings at the time of the n^h

sampling. This is equivalent to a controller continually applying a

new control as soon as it can perform the sampling and control cal-

culations.

Simplified flow charts of both the ideal and non-ideal case siraula=>

tions are presented in Appendix I. The computer program in FORTRAN

language (for the ideal case) is also included in Appendix I«
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4. Simulation of Control of a Non-Linear Second Order System.

A. Background.

The non-linear VanderPol equation

X - (1 -x2 ) x + x - (4-1)

was selected as the system on which to evaluate the controller. Al-

though it is only a second order equation it was felt that since it

is quite non-linear it would be a fair test of the controller and the

two dimension phase space has the advantage of making graphical analysis

more simple.

The equation exhibits a stable limit cycle of the general shape

shown in Fig. (4-1).

^ X

Fig. (4-1) Phase Portrait For an Uncontrolled VanderPol Equation.
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Referring to (4-1), when x 0, the system is most unstable. For

this point the roots are +.5 ± j.866. It was determined from trajec-

tories of the uncontrolled system obtained by digital computer analysis

that when the system was in the limit cycle the maximum excursion of

displacement was ~ 2.1925. This value was substantiated by an analog

computer simulation. From (4-1) the eigenvalues, or roots, of the system

when the displacement reaches its maximum value in the limit cycle were

calculated to be -3.5235 and -.2835 so that the locus of roots of equa-

tion (4-1) during a complete circuit of its stable limit cycle is shown

in Fig. (4-3).. \ -X~\J J .
1 i + j*

.5 +i .866

-3.5235 -.2835 + CT
^_

-3 -X -il

.5 -3 .866

Fig. (4-3) Root Locus of the Uncontrolled VanderPol Equation

in Stable Limit Cycle.

Examination of Fig. (4-1 ) or equation (4-1) reveals that the system be-

comes unstable whenever |x| < 1.0 and becomes stable again whenever

|x|> 1.0. Thus the equation presents the controller with the problem

of controlling a system which contains at various times, stable real

roots, stable complex roots, and unstable complex roots.

It is informative to observe that a stability analysis of the

VanderPol equation by Lyaounov' s Second Method yields precisely the
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same results as the more familiar methods of analysis such as the root

locus.

Rewrite (4-1) in vector form. Then

or

and

i * [-? (l-x*)] £ (4-2)

x
x

= Xg (4-3)

x2 = ~xl + (l-xj)xg . (4-4)

Choose

then

V(x) = ||x|| - x* 4 4

V(x) - 2X2XX + 2x2x2 (4-5)

and from (4-3) and (4-4),

v"(x) = 2x
l
x2 + 2xg(-x^ + (l-x^Xg)

or

V(x) = 2x|(l-x*) (4-6)

so that V(x) is positive definite but -V(x) is not for jx,|<l. There-

fore the region near the origin (-l<x<l) is unstable. This is pre-

cisely the result obtained by observing that the root locus passes into

the right half plane whenever |x]J<l.

B. Procedure.

It was decided to initially investigate the action of the control

with no time delay between calculation of the control and its application

in order to verify that the method of control and the simulation pro-

cedure (described in Section 3.) were feasible. First a family of tra-

jectories of the system with no control effort was obtained from

various initial conditions chosen inside and outside the limit cycle

23



(Graphs A-l through A-8). Trajectories were then obtained using the same

initial conditions with the control system activated (Graphs B-l through

B-8). The sampling rate was set at .3 seconds and u was set at 1*0. An

arbitrary epsilon region surrounding the origin was established so that

the trajectory was considered to have reached the origin when the sum

of the canonical state variables squared was less than .001. Whenever

the trajectory entered the epsilon region of the origin the solution

was terminated.

Effects on the trajectories due to varying sampling rates (Graphs

C-l through C-5) were then investigated, and finally two trajectories were

obtained for the system simulating the effect of finite calculation time

(Graphs D-l and D-2). These trajectories all were started from an

initial condition close to the uncontrolled limit cycle trajectory.

The simulation program included a sub-roatine for the graphical pre-

sentation of the system trajectories. The graphs noted above are pre-

sented in Appendix II.
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D, Discussion of Digital Computer Simulation *

Comparison of the trajectories of the controlled and uncontrolled

systems starting from the same initial conditions (Graphs A-l through

A-8 and B-l through B-8) clearly indicates that the control system with

a control effort = 1.0 and a sampling rate of .30 seconds" is capable

of driving the system into the unstable region surrounding the origin and

maintaining it within some region of lesser extent than that enclosed by

the system's uncontrolled limit cycle. Referring to Fig. (l-l), if the

radius of S(R) were established for this system as R .5, then the con-

trolled system might be defined as stable while the uncontrolled system

would be defined as unstable. Graph B-l, initial conditions x .2,

x = .2, illustrates the system trajectory in the region close to the

origin. The chatter-motion mode of operation is readily apparent.

The theoretical analysis of Section 2., predicting that by employ-

ment of this type of controller, an unstable system could be made stable,

but not asymptotically stable, and that a chatter-motion mode of

operation would result around the origin, is substantiated.

Examination of Graphs C-l through C-5 reveals that an increase in the

control system sampling rate causes the trajectory, having once arrived in

the neighborhood of the. origin, to remain thereafter within a smaller re-

gion of the origin than the same system operating with a low sampling rate.

Curves B-3 and C-3, both trajectories for the identical initial condi=

tions and system parameters, demonstrate remarkably different trajectories,

each of which eventually arrives in a neighborhood close to the origin.

#The time interval between successive calculations of the control
function. The Runge-Kutta integration of the trajectory employed an
interval of 0.03 seconds.
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Examination of the calculated data revealed that in the case of

Graph D-3 the initial values of the canonical state variables were

yi = .75 - j.1561

y2 = .75 j.1561

while in the case of Graph C-3 the values were

yx - .75 -j.1561

y2 .75 -j.1561 .

Since the control function u -1.0 sgn ( 5Z0&y^ + ^2 A Ya) i

it is evident that u assumed a different sign in each case. That this

was so can be determined by examination of the diverging paths of the

trajectories in the two cases.

It seemed evident that the more direct trajectory should be the

correct one, however the possibility was raised that there might not

be a unique solution for the control function. Six additional runs

each exactly coincided with the more direct trajectory B-3, indicating

that oerhaps an error in calculation led to the selection of the op-

posite value of control function rather than there being two possible

solutions for the control function.

The computation routine had been programmed so that the inverse

transformation matrix was printed at each sampling point. It was dis-

covered that the transformation matrices in the two cases were

not identical.

INITIAL INVERSE TRANSFORMATION MATRIX FOR GRAPH B-3

.35820E-10 .64051E-00 .50000E-00 .40032E-00
-.64051E-00 .35820E-10 -.40032E-00 .50000E-00
-.35820E-10 -.64051E-00 .50000E-00 -.40032E-00
.64051E-00 -.35820E-10 .40032E-00 .50000E-00
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INITIAL INVERSE TRANSFORMATION MATRIX FOR GRAPH C~3

.37180E-08 .64051E-00 o 50000E=00 C 40032E=00
-.64051E-00 .37180E-08 - o 40032E~00 .50000E-00
o50000E-00 .40032E-00 .65670E-09 .64051S-00

-.40032E-00 e 50000E-00 -.64051E-00 <>65484E-09

In order to determine if two solutions were possible, the two in-

verse matrices were checked against the original matrix to see if both

were valid

The original matrix was calculated by hand in the same manner that

the computer was programmed to do

The procedure is illustrated below.

The initial F matrix was I and the initial eigenvalues were

- 625 * j.7806. Then for the first eigenvalue

X,

L? -U2 6J |_*y
(-.625 + j.7806) y

or

*
2

= (-.625 * j e 7806)x
1

Xj = (-.625 - j.7806)x
2

so that

x« - l e

Xj = -o625 - j.7806 „

In a similar manner, for the second eigenvalue

*2 1.0

-.625 j.7806 .

Then the 2n x 2n matrix becomes

625 -.7806 -.625 O 7806

e 7806 - v 625 -.7806 -.625
1 1

1 1

When this matrix is multiplied by the inverses, B-3 and C-3, only the

inverse B-3 results in the identity matrix, demonstrating that the
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calculation resulting in C-3 is not an independent correct solutions

Comparison of the false trajectory with the correct one indicated

the possibility of there being at least two other instances of erroneous

calculations besides the one at the origiro These are indicated by the

abrupt changes in direction (outward) of the trajectory at the points

x = ,65, y = 0.6, and x s -.5, y s .45 . Calculations similar

to the one carried out above verified the fact that erroneous determina-

tions of the correct control function had been made*

The similarity of the trajectories of curves C-l„ C-2 and D»l in

the fourth quadrant raises the interesting comparison between the control

obtained by Lyapunov's method and the method of optimum control employing

the calculation of the optimum switching lines in negative time as dis-

cussed by I Flugge-Lotz and H A o Titus

We may speoulate that there is some optimum switching line for

this system, emanating from the origin in a manner similar to that

in Fig. (4-4),

*~X

Fig. (4-4) System Optimum Switching Line,
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The optimum trajectory for this system would then proceed from the

initial condition to its first intersection with the optimum switching

line, change the sign of its controller^, and proceed along the optimum

switching line to the origin.

It appears evident that the method of switching logic discussed in

this paper selects a switching time too soon in the cases of curves C~l

and C-2, In the case of curve D-2 the system appeared to be in a state

of indecision. The switchings at points A and C undoubtedly would have

brought the trajectory initially closer to the origin than the one

finally selected at B. The switchings at B and D served only to hinder

the system response. Investigation of the computer data again indicated

erroneous calculations made for switchings at points Bj> C and D, although

the resulting decision at C proved to be a correct one.

Graphs D-l and D-2, showing the simulation of the system operating

under non-ideal conditions, again substantiate the fact that higher

sampling rates generally produce more satisfactory operation of the

system. It is interesting to note that the controlled system operating

with a time delay of .3 seconds eventually settles into a stable limit

cycle of approximately one half the size of the uncontrolled system.

The effect of the controller on the excursions of the system roots

as the state point travels along a trajectory for a particular initial

condition is demonstrated in Figs. (4-5) and (4-6) „ The numbers indicate

time in seconds to reach the position indicated,.

The root locus for the uncontrolled system starting from initial

conditions x .5, x = .5 is illustrated in Fig. (4-5). The roots

attain their most stable positions after the trajectory has settled into

its stable limit cycle.
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12.7

r
7.3

12.7

Fig, (4-5) Root Locus for Uncontrolled System* Initial
Conditions x 5, x = #5»

As the controlled trajectory approaches the region of chatter-

motion surrounding the origin, the root locations depart very little

from their most unstable position ( + ,,5 ± j,866) because maximum

instability occurs when x s 0, The most stable root positions on

the controlled system root locus occur early in the solution while

the trajectory is relatively far from the origin.

Fig. (4-6) Root Locus for Controlled System, Initial
Conditions x = .5, x s .5.
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5, Conclusions .

The operation of the controller in regulating a simulated non-

linear system described by the VanderPol equation supports the theo-

retical predictions developed in the design* The solution obtained by

this method is seen to be less than optimum because the logic does not

cause the control to switch at the optimum switching curve. It is

apparent from the figures that the sampling rate for determining the

eigenvalues, and hence changes in control action, is critical for this

to be an effective control design procedure. With the fine sampling

the system disturbances were rapidly and effectively controlled*

There exist today very few direct techniques for the control of

non-linear systems. The procedures studied here provide such a tech-

nique. The method has the advantage of being applicable to non-

linear time varying systems of any order. It does however require a

digital computer in the control link.
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APPENDIX I

FLOW CHARTS AND FORTRAN LANGUAGE PROGRAM
FOR DIGITAL COMPUTER SIMULATION

37



START
(INITIALIZE)

1t

CALCULATE
EIGENVECTORS
OF COEFFICIENT

MATRIX F

*
FORM

INVERSE
MATRIX

*

CALCULATE

z

^y^ is5 ^s. YES
STOP

J[
NO

CALCULATE AND
APPLY CONTROL

A

CALCULATE NEW
TRAJECTORY AND

X AT END OF
SAMPLING PERIOD

OLD EIGENVECTORS

ARE INITIAL
GUESS FOR NEW
EIGENVECTORS

*
FORM NEW

COEFFICIENT

A MATRJ[X F

Fig. 1-1 FLOW CHART FOR IDEAL CASE SIMULATION,
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START
(INITIALIZE)

i\

CALCULATE
EIGENVECTORS
OF COEFFICIENT

MATRIX F

*
FORM

INVERSE
MATRIX

*
CALCULATE

/^ IS N. YES
STOP<. t, ^s *~

OLD EIGENVECTORS
ARE INITIAL
GUESS FOR NEW
EIGENVECTORS

J so

CALCULATE
CONTROL

t
FORM NEW

COEFFICIENT
MATRIX F

s' ^\^ YES^ INITIAL \__£>
SAVE CALCULATED

CONTROL
SET CONTROL

a 0.0
Ir \^loop r/

T NO

CALCULATE NEW
TRAJECTORY AND
X AT END OF
SAMPLING PERIOD

SAVE CALCULATED
CONTROL

SET CONTROL =

PREVIOUS CONTROL

1 \

Fig. 1-2 FLOW CHART FOR FINITE CALCULATION TIME SIMULATION
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YEXPm + DUBINVd.J) * X=XP(J,1)

,R = CO
DO 100 3 I = 1,NN

5 SQUARE OF CANONICAL RADIUS V£
o YSQR = YSQR v Y * YEXP(I)

66 - LINE) 1400, 1401, 1 1+ 1

1 '* C INT 1200

F
100 CTCR

]UC1
r \4 2C2 ' T ' X^^^R(2),{iVALUES(I 5 J),I = l,2},J=l,2),(YEX^:} 7 I-;

'1203
|UDUBINVU,J),J«l f NN> f I-l f NN)

1402 till! 1200^ !^2,U03 f lM3
LINE = 4
GO TO 1404

1*403 PRINT 1205
- •«- 3

C TESTS FCR CLOSENESS TO 0RIG1

IS8S i^0° S
: JSgRM005.1303.1303

C
1

CALCULATION OF CONTROL FUNCTION
DO 10 06 I = 1

1006 YRSUM = YRSUM + YEXP(I)
UOP = - SIGNF I, YRSUM)

1SI ^!^[pfT; mWW' 2)) -
] °- E- b

> "2.702.T01
7o0 VALUES (2 , 1 }= -VALUES ?2, 15

70S gSWfSii'
2

'-?
"VA,-UE S<2. 2)

t
TDEL = T + DELTA

J304 JFCTDEL - T - DT). 1300 , 1301 , 1301300 IF TDEL - TF) 1302,777,777
1302 AR< MM, 1) «j.t F

GO^S'fooBJ *
{K °

'
XRCn * XR(1))

1303 CONTINUE
,^, ' 21202 ,.
1202 7j2^:-TR

PRINT ill 202
41 202 FORMAT! 25H*s
-

. PRINT 1202 ',
" 7/7 CONTINUE

INSIDE EPSILOM///)

RADIUS VECTOR///)
, YSQR

C ALL
X

GRAPH f NUMPTS , X 1 , Y 1 , 8

}

GO TO 7000

13re^R^ FOR SAMPLING PERIOD

1405 k\l\ hlh
HE) 1U °5

'
,4 °6 ' U06

LIME = 4
1406 PRINT 1202,T,XRt 1 ) , XR { 2

)

LINE = LINE + 1

I Ft SCO - NUMPTS) 1304,750,750
750 NUMPTS =

I rS + 1

f3U » ' DU

rsj - xr< i)
Yl{ 1PTS) = XR( 2)

ro n
END
SUBROUTI (M, j , XR 7 DT , UOP)

JI§8!^tfWl5&
,xpoT(20,

•
XCI20)

'
C(U1

1 ) =0.0
C(2) =C5
Cf3) = 0.5
C(41 =1.0
00 105 I =1,4 •

TC = T C ( I ) * DT
DC 1051 J = KM

!051 XC(J) = XR(J) 4- C(I) * AK( T-] ,j)CALL DERIV iTC , XC , XDOT J UOP M )

a



1052 +2.0* AK(2,J) 2,C*AK(3,J) + AK( 4, J ) ) /6.

XR(20>, ARC 20^20) ,AI(20,20),GR(20,20),GI(2G,

* XR(1) +AR(M,2) * XR(25 + UOP

922

519

917
811

523
9

403
C NEX
C, P

i 504
4

5

10

11

12

13

106

109

1U

1

I = 1 , N
J * 1 , N

CR(I,J)
CR( I, J)
CI Clf J)
CHI, J)
TO IA
TO I

TO ID
530 TO IA
40 TO IB
523 TO IC

1050 J =1,M
AK (I.J) = OT » XOOT{ J)
DO 105 2 J =1 ,M

J) =XR(J) +(AK(1,J)
END
SUB ROUT I ME DERIV (T
DIMENSION XDOT (20) ,

0) ,VALU£S(2t 20)
N AR , A 1,GR,GI, VALUES

)T( 1) = XR12)
XDOT( 2) = AR(M, 1

)

.ROUTINE GSUB (M , ALRS , ALIS )
rt „ nn „ MV

DIM. IN AR(20-20) t AU20,20) r
BR(20, 20) ,BI ( 2 0*20) , CR( 20. 20 > •

CI (20,20),XR(20) ,X1 (20) ,YR{20),YI <20 ) , VALUES ( 2, 20

)

,GR(20,20) ,

GI( 20,20)
COMMON CR ,CI tGRiGIt VALUES
N = M
LOOP =
DO 5)9
DO 519
BRC It J)
ARC It J)
Bid, J)
AI ( I, J)
ASSIGN 917
ASSIGN 811

-• M
GO TO 555
GO TO ID
ASSIGN 914
ASSIGN
ASSIGN
ASSIGN
ISL=-1
GO TO 92 ' !

ISL=0
ALR = ALRS
ALI = ALIS
IT=1
DO 504 1=1,

M

T TWO INSTRUCTIONS DESIGNATE INITIAL
RECEDING EIGENVECTOR SOLUTION
XR{ I )=GR{ I, LOOP)
XI ( I)=GI ( W600?)
DO 5 1*1. N I
AR( I, I )=ARU, I )-ALR
AH I,I) = AI( I, I )-ALI
I J=l
BIG=0.
DO 13 I=1,N
YRC I )=0.
YI{ I)=0.
on ii j=i ? n
YRC I i=YR(IH-AR( I , J)*XR (J )-AI U , J ) *XI (J)
YI ( I)=YI ( I )+AI{ I ,J)*XRU ) + AR{ I ,J)*XI { J)
AM=YR( I)*YR( I )+YI(I )*YI( I)
IF (AM-BIG) 13,13,12
BIG=AM
JJ=I
CONTINUE
IF (BIG) 109,106,109
ICT^IOOO
J J = N
ISL =* 1

GO TO 92
RQNR=0.
RQNI=0.
ROD=0.
DO 14 1=1,

N

IR=RQNR+XR( I ) *YR{ I

)

+XI ( I ) *YI ( I

)

RQNI=RQNI+XR( I)*YI ( I )-XI ( I )*YF ( [ )

R3D =RQD + XR( I) *XR ( I

)

+XI ( I ) »X I v I -

Ay,UR = RQNR/RQD

GUESSES FOR EIGENVECTOR

12



/RQD
IUR+AiMUI*AMUI

81 TS=0.
DO 15 I = 1 , N

150TS=TS+( YRJ I )-AMUR*XR( I ) + AMUI*XI< I ) )**2+
*XHI)-AMUI*XR(I))**2

%t XR ( I ) = { YR ( J J ) *YR (I ) +Y I ( J J 5 * Y I ( I ) ) / BI G
16 XIm = {YR{JJ)*YI(I)-YI

. R(I))/BIG
A K i J J } — j o

XI { JJ)=0.0
IF (TS / RQD - 10.E-4) 20,20,18
IF { IJ - 20 19,20,20

9 IJ=IJ+1
; rn 10

20 ICT=IJ
T2 = IJ + 20
R=AMUR+ALR
.I=AMUI+ALI
I — N

DO 310 I=1,N
,

ARC I, I)=AR(I t I)-AMUR
310 AI ( I, I )=AI ( I , D-AMUI

GO TO 29
09 DO ICO I=1,N

(1,1 ) = AR(I,I)-ALR
100 AI( 1,1 )=AI C I ,

I

J-ALI
2 9 U=IJ*1

535 DO 27 1 = 2, 1^

1.1 = 1 — 1

DO 27 J=I, IM1
21 FM=AR{ I, J)*ARl I , J ) +A I ( I , J ) *AI { I , J

)

R< J » J WAR ( J t J ) +AI (J, J ) *A I ( J, J

)

„ ' I) 24,24,22

T1=AR(J,k]
T2=AI(J t K)
AR{ J, K)=AR(|( ,K)

[ J , K ) = A I { f , K J

AR(I,K)=T1
23 MU,K)=T2

T1=XR(J)
T2=XI(J)

( J)=XRi I)
XI( J)=XI (II
XR(I)-T1
XI ( I )=T2
T 1 = f ;-s

=SM
S M = T

1

24 Ir' (SM) 25,27,25
25 IF (FM) 90,27,90
90 8?" C

f

A
.5i

I
.

, H!* J)+Aici,j)»Ai(j,jn/sM
DO ^o K=J,MM

„ ARn,KJ=AR(I ,K)-RR«AR{ J,KWRI*AI {

26 AI( I,K)=AI(I ,K)-RR*AI { J , K) -R I *AR {

AR { I , J ) =0.
- [ I, J)=0.

( ! 5=XR( I )-RR«XR(J )+RI*XI( J)

27 ^!N^ ,n -RR*XUJ, -RI * XR,J '

GO TO IA
530 SMALL=1000.

DO 28 K=1,MM
T K K = K

I]
=^{ ,5*K)*AR{K,K) + AnK,K)*AI(K,KJ

__ ^ ir ii\j /r>0,r52»750
?50 IF (T1-SMALL) 751,23,28
751 SMALL=T1

K

J , K )

23 CONTINUE
GO TO ID

13



752

30

974
753

32

33

31

41

42

43

45

46
49

47

60

:

1 16
755
50

55

51

52

G3

53
93

501
40
402

L KK
USD 753,30,30
=

1

r=2000
974 1=1,

XRCD-0.0
I)=0.0

YR( IZ) = 1.0
YI(IZ}=C.C

12
>1,C

IF (IZ-MM) 33,32,33
111 = 2

DO 31 I^IZZ ,

;

YR{ I )=0o
YI ( I)=0.
IZZ=MM-I Z+2
IF (IZ-1) 95,49,95

= 1

BIG-O.
I=IZZ,MM

II=MM-I«-1
^ 1 1 -e-

1

<;:

; = o.
SI=0.
IF ll-l) 42,44.4 2
>:0 43 K=KK
SR = SR+AR ( I I ,

K

} *YR ( K ) - A I ( I I , K ) * Y I ( K

)

SI=SI+AR(II.K)*YI (KJ+AI (II,K>*YR{K)
T1=AR( 11,11 i*AR{ II,II)+AHII,II)*AI( II, II)

! 1 1 ) = ( AR( 1 1 , 1 1 ) » { XR { 1 1
} -SR ) +A I ( 1 1, 1 1 ) * ( XI ( II ) -SI

)

) /T

1

YI( II ) = ( ARf II,ID*CXI( ID-SI )-AI (II, ID*(XR{ ID-SR) )/Tl
AM=YR (II) »YR ( 1 1 ) + Y I ( I I ) * Y I( I I)
IF (AM-8IG). 46,46,45
J J = I

T

BIG=-
CONTINUE

4 7 1=1 , MM
I J = ( YR ( J J 5 *YR { I ) +YI { J J ) *Y I ( I ) ) / BI G

XHI} = (YRUJ)*YI(I)-YICJJ)»YR(I))/BIG
! J J ) = 1 . .

I JJ)=0»0 :.
-

92 OG 6C1 1=1 »

N

DO 601 J = 1 ? N
: I, J)=BR{,£ ,J)

AI(1,J)=BI(I,J>
IF (ISL) 755,50,60
GO TO IC
ALR=0,
ALI=0.

= 0.0
DO 52 1=1,

N

YR( 1 )=0»
YI( I )=0.
GO 51 K=1,N
YRC I )=YR( I )+AR( I,K) *XR(K )-AI ( I ,K)*XI (K)
YIU)=YI(D+AR{I,K)ftXI(K) + AI(I,K)ftX^(K)
ALR=ALR+XR( I )«YR( I)+XI!I)*YIII)
ALI = ALI+XR( D*YI (I)-XI(I )»YR(I )

SUM=SUM+XR( I) »XR( I ) +XI ( I )»Xi ( I

)

A!."; = alr/Su:-]
=ALI/SUM

AM=ALR»ALR+ALI*ALI
TS = 0*
DO 5 3 1 = 1 p M
T1=YR( I )-ALR»XR( i)+ALI*XI( I)
T2 = YI ( I )-Al.R«XI ( I J-ALIftXR(I )

TS=TS+T1*T1+T2«T2
IF (TS / SUM - 10.E-14) 60,60,301
IF (IJ-MIT2) 99, 400, MOO
IF (IT - 3) 402,990,402

R = ALR + .1

-:-.;' <-



60
63

61

AL

IS

IF
V]
72
XR
XI

63

62
65

XI
DO

T2
AR
AI
AR
AI
DG
7?
12
AR
A

I

AR
A T

' = AL

70 h
. =

S { 1

S(2

I JJ
XI (JJ
J J I

J J .

N)=T1
-T2

6£ K =

iLR

I + .1

yLOOP) =
,LQOP) = ALI
) 61,65,61
)

)

UN)

AR( JJ
=AIUJ
J o ? K /

JJ,K)
N , K ) =

K} =

66

6C0
700

701

702

-

DO
DO
AR
Ai
DO
DO

81
DO
DO

A I

IF

AI

62 K =
AR (K
AI(K,
K, JJ)
K, JJ)
K , N ) =

K , N ) =
1

1,N
,K)
tK)
-AR(N,K)
= AI (,\|,K)
7 7

72
ltN
J J 3

'J J)
=AR{ K,N)
= A I { K , N

)

72

66 1 =
66 J=
It J) =

I V J )
=

600 I

600 J
I , J )

=

I, J) =
702 I

702 J
I , J )

=
It J) =
( I- J)
I, l) =

Itlh
TINUE

I 3 N
1 ,N
AR( I s

AIM,
= l f M
= I«N
ARff,
Aid,
= lt-M
= i;h
CRU,
Z
VA:

J)-XR(I)*AI (N+1,J)-XI(I )»AR(N+1 Jj)

J ;

J)

J)
J)
701 .702
I )-ALR
I) -ALI

1 1

ASSIGN 911 ''TO I

A

GO TO 535
530 TO A

IB
IC

914 ISL=-T
915 DO 703 1 = },;-:

I I)=0.
XI ( i )=0.
ASSIGN 753 70
ASSIGN 7 04 70
GO 70 530
ASSIGN 525 TO IC
CO TO 92
DO 920 I = 1,m
T TWO INSTRUCTIONS FROMEIGENVECTORS XR AND XI
GRi I , LOO?) = XR( I)
GI ( I, LOOP) = XI! T

}

ASSIGN 40 TO IB
LOOP = LOOP -f- 1

IF(N-l) 921,67,523
ALR =ARM,1>

°' ,D^
ALI=AI(1 ,1)
VALUES! 1 -LOOP) = ALR

703

916

704
NE

920

525
67

TRANSFORMATION MATRICES GR AND GI FROM

VALUESC2,LC0P) =
N=0
GO TO 700
GO TO 4000

ALI



3

1CC0

1

3000
4000

990
991
992

2
10

11

12

13

1U

15
20
30

32

33

35
36
34
1*0

41

42
43

5

75

f'lA —

SAVE
VALU
VALU

SAVE
GfUK
GR(K

E

GKK
G I ( K
CONT
GO T

FORM

SUBR
DIME
OG 1

DO 1

000

= V
I

E

MX-J
ES( 1

ES(1
= V

ES(2
000

,J)
= G

10. ** 20

- VALUE S( 1,1)) 3
ALUESt 1,1)

3, 1000

I

,M
»J
AL
tH

J

K =
R(

I(
,MX) =
,J3 =

INUE

1 .4
X}_

UES
X) =

)
=

1,M
K I M
GR(
SAV
K , M
GI (

SAV

000,1
= VALUES* 1 , J)

I AX
( 2 , MX )

VALUES (2, J)
SAVE

X)
K t J )

E
X)
K f JJ
E

T 99
AT(15H NO CONVERGENCE)

1

1 X(
DO 2
X ( K

,

DO 3
K? =
Z-0.
DO 1

ir-n

K P = K
CONT
IF(L
CO 1

Z = A[
A( t~

,

OUT I

N S 1

1 = 1

J=l
J)=0

;< } = i

4 L-

2 K=
-ABS
SF(A

[NUE
-KP)
4 J =

L,J)
J)=A
,J) =

5 J=
L , J

)

J)~X
, J ) =
BSF{
-N)3
L + l

6 K =
(K ; l

3 J =
J)=A
5 J =
J)=X

3 1 =
+ 1-1
3 J =

-N)
= 11 +
-2 K=
A{ II
J) =

1

75
KER--2

CONTINUE
END
END

DO 1

Z = X(
ML,
IF (A
IF(L
LP1 =
DO 3
IF (A
R A T

I

no 3
A(K,

X(K,
CCNT
CONT

1 1-;-;

DO 4
S=^0 U

IFl I

IIP!

s=s+,
XI II
KER;
GO

NE GAUSS3(N,E?,A,X,K
N A (40, 40), X( 40,40)

,N-
• Q
• N
*Q
1 9.W

L,N
F(A(K,L)))11,12,12
Uy-L) )

13^0,20

(KP, J)
7

1 »

N

(KP, J)
Z
A(L,L) )-EP) 50,50,30
1,34,34

LP! ,N
) )32,36,32
K,L)/A(L,L)
L P 1 , N
(K, J)-RATIO*A(L, J)
ltN
IK, J)-RATIO»X(L, J)

1,N

1 i N

41,43,43

1 1 P 1 , N
. K ) * X ( K , J )

( XC 1

1

,J)-S)/A( II ,11)

ER)

430



APPENDIX II

GRAPHS
DF &ZW11ATED SYSTEM TRAJECTORIES

44
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