

Author(s)	Gay, Warren L.
Title	Machine calculations of energy transfer phenomena in a bombarded lattice.
Publisher	Monterey, California: U.S. Naval Postgraduate School
Issue Date	1963
URL	http://hdl.handle.net/10945/12578

This document was downloaded on May 22, 2015 at 08:06:58

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

MACHINE CALCULATIONS OF ENERGY TRANSFER PHENOMENA IN A BOMBARDED LATTICE WARREN L. GAY

U.S. MAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

> DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

MACHINE CALCULATIONS OF ENERGY TRANSFER

PHENOMENA IN A BOMBARDED LATTICE

* * * * *

Warren L. Gay

MACHINE CALCULATIONS OF ENERGY TRANSFER PHENOMENA IN A BOMBARDED LATTICE

by

Warren L. Gay // Lieutenant, United States Navy

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN PHYSICS

United States Naval Postgraduate School Monterey, California

MACHINE CALCULATIONS OF ENERGY TRANSFER

PHENOMENA IN A BOMBARDED LATTICE

by

Warren L. Gay

This work is accepted as fulfilling

the thesis requirements for the degree of

MASTER OF SCIENCE

IN

PHYSICS

from the

United States Naval Postgraduate School

ABSTRACT

This computer simulation investigates the ways in which an embedding lattice influences a collision event. Low energy events were studied with a Born-Mayer potential function; high energy with a Thomas-Fermi-Firsov potential. Conclusions were: (1) the lattice will increase ranges for particle energies above 400 ev; (2) the apparent mass concept is not a valid description of events in a lattice; (3) lattice effects will significantly modify the low energy portion of the target atom energy distribution function; (4) there is no evidence that a copper atom will "rebound" from a copper lattice.

The writer wishes to express his appreciation for the assistance and encouragement given him by Associate Professor Don E. Harrison, Jr. of the U. S. Naval Postgraduate School in this investigation.

TABLE OF CONTENTS

Section		Title	Page
1.	History		1
2.	Objective		6
3.	Procedure		7
4.	Potentials		12
5.	Results		13
6.	Conclusions		18

Appendix

I	General Discussion of the Program	45
II	Block Diagram	48
III	Detailed Flow Chart	52
IV	Definition of Variables	73
v	Program Listing	78
VI	Potentials	90

LIST OF ILLUSTRATIONS

figure		Page
1.	The Model	20
2.	Face (100) of Lattice Core	21
3.	Impact Area	22
4.	Typical Computer Output	23
5.	Typical Computer Output	24
6.	Triangular Computer Output	25
7.	Geometrical Effects of the Lattice Face	26
8.	Geometrical Effects on 100 ev Bullet	27
9.	Output Triangle for 80 ev Bullet	28
10.	Output Triangle for 40 ev Bullet	29
11.	Output Triangle for 25 ev Bullet	30
12.	Output Triangle for 100 ev Bullet	31
13.	Output Triangle for 80 ev Bullet	32
14.	Output Triangle for 40 ev Bullet	33
15.	Output Triangle for 25 ev Bullet	34
16.	Output Triangle for 100 ev Bullet	35
17.	Output Triangle for 80 ev Bullet	36
18.	Output Triangle for 40 ev Bullet	37
19.	Output Triangle for 25 ev Bullet	38
20.	Output Triangle for 5 kev Bullet	39
21.	Output Triangle for 10 kev Bullet	40
22.	Output Triangle for 30 kev Bullet	41
23.	Output Triangle for 5 kev Bullet	42
24.	Output Triangle for 10 kev Bullet	43
25.	Output Triangle for 30 key Bullet	44

1. History.

Radiation damage is the overall term applied to erosion, disruption, or rearrangement of a crystal lattice by bombardment of ions or atoms. Sputtering, a phenomena sometimes observed in radiation damage, applies to the process of lattice atoms being ejected or "knocked out" of the crystal. The sputtering process was first observed in 1852 by Grove¹ in the cathodes of electrical discharge tubes.

Since Grove's observation, experimental and theoretical physicists have been attempting to develop a sputtering theory that will predict measurable experimental quantities as a function of mass ratio, position in the periodic table, energy of bombarding particle and angle of incidence. To date, no such complete theory is available.

A tremendous volume of material has been written on the subject of sputtering since its discovery. In 1955, Irvine² listed 306 papers concerned with the sputtering process. These early papers disagree violently because important experimental conditions were not obtained or simply ignored; consequently many of the conclusions reached are contradictory.

During this period two important theories were proposed. Kingdon and Langmuir³, in 1923, developed a momentum transfer theory which agreed quite well with experimental data they had obtained for thoriated tungsten filaments. The "evaporation theory" was proposed in 1928 by von Hippel and Blechschmidt⁴ and improved by Townes⁵ in 1944. It assumes that the incident

¹W. R. Grove, Phil. Trans. Roy. Soc. London, <u>142</u>, 87 (1842).
²M. M. Irvine, Dissertation, Lehigh University (1955).
³K. H. Kingdon and I. Langmuir, Phys. Rev. <u>22</u>, 148 (1923).
⁴A. von Hippel and E. Blechschmidt, Ann. Physik <u>86</u>, 1006 (1928).
⁵C. H. Townes, Phys. Rev. <u>65</u>, 319 (1944).

particles heat a small volume of the crystal to a very high temperature and subsequently surface atoms evaporate. More recently (1953), Harrison⁶, following a suggestion made by Keywell⁷, presented a statistical theory of sputtering which could be placed somewhere between the two models mentioned above. We will not present details of these theories. We must mention however, that they do not provide an adequate description of the sputtering process.

The trend in sputtering theories has recently been toward the consideration of the individual collision processes within the lattice. Henschke⁸ has used this approach in his theory of sputtering and Harrison and Magnuson⁹ have also applied it, with modifications, to the theoretical study of sputtering threshold energies.

The theoretical work performed by Henschke uses the momentum transfer concept initiated by Kingdon and Langmuir³ to account for all the experimental phenomena observed at low incident particle energy. His basic treatment of collisions between atoms in a lattice is based on the assumption

...that the collisions described can be treated with the general principles of classical mechanics, using impulsive forces, in a manner similar to the well-known collisions with restitution.¹⁰

However, he did not in all cases use the masses of the individual particles involved in the equations pertaining to the two body collisions. Instead he postulated an "effective" mass. If the collision is between a surface

⁶D. E. Harrison, Jr., Phys. Rev. <u>102</u>, 1473 (1956).
⁷F. Keywell, Phys. Rev. <u>87</u>, 160 (1952).
⁸E. B. Henschke, Phys. Rev. <u>106</u>, 737 (1957).
⁹D. E. Harrison and G. D. Magnuson, Phys. Rev. <u>122</u>, 1421 (1961)
¹⁰See reference 8, p. 738.

atom and a moving ion or atom and is such that the surface atom is struck on its "inside" hemisphere, according to Henschke, an effective mass is not required and the two particles involved can be considered to have their actual masses. Should the collision of an atom or ion be directed inward from the target lattice surface, Henschke states,

The bulk of the target is behind the struck atom and produces a very large 'effective' mass compared to the mass of the ion or to the mass of the target atom.¹¹

The reason Henschke did not assume pure elastic collisons was stated as

Energy losses are due to the fact that the target atom is coupled rather strongly with the atoms of the lattice. Before the moment of highest compression is reached, the ion and the struck atom exchange energy with the neighboring atoms of the lattice. Debye waves are thus excited and dissipated irreversibly into the lattice.¹²

He goes on to state,

...the final step in each sputtering process at any angle of incidence of the ion can be generally described as a collision of the ion with an upper surface atom, in which this atom is hit on its inside hemisphere so as to obtain an impulse with a component in the direction of the outward normal to the surface. If the energy transferred in this direction to this target atom by the impact of the ion is equal to or greater than the heat of vaporization, with which the atom is assumed to be bound to the crystal lattice plane, then this atom is ejected in the collision.¹³

Early study in radiation damage was precipited by the advent of the nuclear reactor. Recently however, with the imminent possibility of thermonuclear power production and ion propulsion engines for space vehicles, other practical applications of the processes involved in radiation damage have

¹¹E. B. Henschke, Phys. Rev. <u>121</u>, 1290 (1961).
¹²See reference 8, p. 738.
¹³See reference 8, p. 737.

become extremely important.

Robinson and his co-workers¹⁴ have made theoretical studies of the ranges in solids of atoms having energies from 1 to 100 kev using digital computer techniques on the basic assumption that the moving atom loses its energy through repeated binary elastic collisions with atoms of the solid. The masses used in these calculations are the true masses of the interacting particles, but they note that their assumption is certainly not valid below 100 ev. Gibson et. al.¹⁵ have also taken advantage of the speed available with modern digital computers in the study of radiation damage. They do not assume binary collisions but instead use iteration techniques employing Newton's equation of motion to solve the complex many body problem. The initial success of these programs have encouraged their originators to explore further the possibilities of these techniques. Although the computer programs are designed to study radiation damage, the basic principles involved are also important in sputtering.

The work just discussed is very sensitive to the mathematical form of the interatomic potential. The Born-Mayer, Bohr (screened Coulomb), and the Thomas-Fermi-Firsov are some of the potentials used in these calculations. The ability of any of the potential functions to describe a physical situation is highly dependent upon the energy range under consideration and the specific atoms or ions involved. No single potential has yet been devised that satisfactorily represents the interaction under all circumstances.

¹⁴O. S. Oen, D. K. Holmes, and M. T. Robinson, Jour Appl. Phys. <u>34</u>, 302 (1963).

¹⁵J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, Phys. Rev. <u>120</u>, 1229 (1960)

An obvious unresolved question is inherent in these theories. The many body approach and the two body assumption, with a minimum energy limitation, appear to be reasonable approaches to the problem. Both methods describe possible events in a lattice, but are they compatable? The general use of the two body approach is desirable because of its simplicity. The problem to be studied is: when can the two body collision be assumed, if at all, and should an "apparent" mass, as proposed by Henschke⁸, be employed?

2. Objective.

We intend to investigate theoretically the energy transfer process between an incoming copper atom and a copper lattice. The many body approach, using computer techniques similar to Gibson et. al., will be utilized and then compared with the simple two body solution. We hope the results will provide some quantitative answers to the questions posed in the preceding section.

3. Procedure.

The representative crystal lattice consists of a cube of 63 atoms arranged in a face centered cubic structure. This arrangement gives a total of 63 atoms. These atoms are free to move, if disturbed. In an effort to simulate a larger lattice, the movable 63 atoms are surrounded on all sides by stationary immovable atoms positioned as a continuation of the crystal. This procedure also gives the bombarded face some characteristics similar to a binding energy.

In order to simplify the calculations, we defined a quantity called the "lattice unit". One lattice unit is equal to half the length of a cube side. For copper, the length of a cube side is 3.614A, therefore one lattice unit is 1.807A. A three dimensional Cartesian coordinate system is used for reference with the origin placed with a (100) face of the movable 63 atom "core" parallel to the x-z plane at y=0. Any penetration into the lattice core from this plane is in the + y direction. The immovable atoms surrounding the core are in the x-z plane at y=-1 and y=5, the x-y plane at z=0 and z=6, and the y-z plane at x=0 and x=6. For convenience all atoms are numbered. Number one is the "bullet", numbers 2-64 are the "core" and 65-172 are the immovable atoms.(see Fig. 1)

The program depends upon a potential function subroutine; so potential modification is accomplished without any changes in the main program. The Born-Mayer and the Thomas-Fermi-Firsov have been used in the present work (see Appendix VI for exact forms and constants). All calculations are with the potential in "eroded" form. To "erode" a potential, the value of the potential at the nearest neighbor separation is subtracted from the value of the potential at smaller distances. The eroded form makes the

potential zero at distances greater than nearest neighbors.

The interaction between atoms is represented by an eroded repulsive potential. Also, the entire lattice is initially at absolute zero since no vibrational energy is simulated. These two approximations imply that the lattice has no potential or kinetic energy before interaction with the bullet and all the energy in the lattice at any time thereafter is derived from the bombarding atom.

We realize that each atom in the lattice is contained in some type of "potential well", but we are measuring the energy from the ground state level of this "well" rather than from the true zero of potential at infinite separations. Thus, before interactions with the bullet, our lattice is not held together by the surrounding stationary atoms as in the Gibson et. al.¹⁵ model because the erosion also has removed all forces. Forces appear only when atoms move from their equilibrium positions.

The use of an eroded potential does not provide as good a model as the one used by Gibson et. al., but it reduces the computer time required for calculations.

The "binding energy" created by the layer of fixed atoms covering the front face is probably much too large, but it does approximately simulate the behavior of the next layer of atoms.

The calculations which move atoms are similar to those of Gibson et. al.¹⁵ Newton's equation of motion can be rearranged to give the change in velocity of a body acted on by an unbalanced force. ($F \cdot \Delta T / m = \Delta V$) The change in velocity can be related to a change in position if an average velocity is assumed ($X_{NEW} = \left[V + \Delta V \right] \cdot \Delta T + X_{OLD}$). The unbalanced force used in the first equation is an average force calculated by a double iteration procedure as follows: (1) assume an atom at position 1 with velocity 1

(2) calculate the total force on the atom as a result of all the other atoms in the lattice (this means normally only about 8-10 nearest atoms because the potential is eroded)
(3) call this calculated force, force 1, and use the equation of motion to move the atom to a temporary position, position 2.
(4) now repeat the force calculations for position 2, call this force 2.
(5) go back to position 1, and use the average of force 1 and force 2 to move the atom to a new position, position 3. Procedures 1 through 5 constitute one "time step". Forces are eroded in the same manner as potentials and are calculated by a subroutine based on the partial derivative of the potential function with respect to distance.

The basic value of ΔT is dependent upon the original energy of the bombarding atom. ΔT is the time in seconds required for the incoming atom to traverse one lattice unit. The atom will lose energy as it interacts with the lattice but ΔT remains unchanged. To add flexibility to the program, the basic value of ΔT can be multiplied by any desired factor (time step multiplier). ΔT is established at the beginning of the program and is constant for the duration of the calculations.

The bombarding copper atom is originally located in the plane $y = \sqrt{2}$ and given a velocity in the + y direction only. This requires the bombarding particle to approach perpendicular to the (100) face of the movable lattice core. The immovable atoms in the plane (y = -1) that cover the bombarded face do not interact with the bullet.

An impact area was chosen on the (100) face so that all points in this area would be representative of any point in a (100) plane. An impact point is defined as the location on the (100) face toward which the bombarding atom is directed. It may or may not actually pass through this point. By moving in 1/10 lattice unit increments, 36 impact points in the impact "triangle"

were assigned. (see Fig. 2 and 3).

For each case the two body problem is solved after the many body problem with the same double iteration scheme. Lattice atom number eight was assigned as the "target" in the many body lattice problem so that its motion could be compared with the simple two body problem. The geometrical relationship and physical constants of the two body problem correspond to those of the incoming atom and "target" in the crystal.

The program was written in FORTRAN language for use on a CDC 1604 computer. The input consists of the incoming particle mass and energy and the time step multiplier. From these inputs the bullet is assigned a location and an appropriate velocity component in the + y direction. Also calculated is the actual value of ΔT .

The next section of the program assigns coordinates to all atoms in the crystal, movable and immovable, gives each atom a number and sets their velocities equal to zero. If the distance between any two atoms is less than $\sqrt{2}$ lattice units, the force between these two atoms is calculated and stored in memory. This is done for each atom and the summation of all the forces calculated gives the resultant force on each particle.

The change in the velocities of all movable atoms as a result of unbalanced forces is calculated; then the original velocities of all particles and the calculated change in velocity are used to move atoms to temporary locations. The calculations to obtain resultant forces are repeated for the temporary locations, old and new forces are averaged and used to move all atoms to new locations. Forces and velocities are calculated as vector components using the coordinate system established for the lattice.

After each movement of all the atoms, the kinetic energy of the target is calculated and compared to its former value. The procedure is repeated

until the kinetic energy of the target reaches a maximum. The potential and kinetic energy of each movable atom is then calculated. The total energy of the entire lattice including bullet is also found and compared to the original "bullet" energy. This comparison gives a reasonable measure of the accuracy achieved. The two body problem is solved in the next section using the same iteration technique. Appendices I-V contain a detailed explanation of the program.

For each "run", the computer will solve the many body and two body problem 36 times, corresponding to the 36 different impact points. The form of the printed output for each impact point is shown in Fig. 4 and 5. The "triangular" output as seen in Fig. 6 indicates how two chosen parameters vary over the impact area.

The computer running time for each of the 36 impact points was 2-4 minutes, the time varying with the value chosen for $\triangle T$. We originally assumed that the accuracy of the results would increase for smaller and smaller values of $\triangle T$. We found that the value of $\triangle T$ which will give the minimum error in total energy appears to be a complicated function of the time step multiplier, the incoming bullet energy, and the impact point. By trial and error methods, we found that below 100 ev for the Born-Mayer potential, a time step multiplier of around 0.09 would produce reasonable errors at all impact points.

4. Potentials

The Born-Mayer potential is an exponential function of the internuclear separation with constants which may be obtained from experimentally measurable elastic moduli. The constants used in the program are the same as those of Gibson et. al.¹⁶, with special emphasis on their potential number two. Near equilibrium separations, the Born-Mayer potential is thought to be an adequate approximation. We expect the potential to fail for energies above a few hundred electron volts.

The Thomas-Fermi-Firsov (TFF) potential is the result of theoretical work by Firsov¹⁷ based on the Thomas-Fermi model of the atom. It is a screened Coulomb potential with a more complicated screening function than that used in the Bohr potential. The TFF is satisfactory for intermediate separations. This places it between the Bohr potential used for small separations and the Born-Mayer potential. Abrahamson and Hatcher¹⁸ state that the Thomas-Fermi approximation becomes unreliable when the internuclear distance exceeds \sim 1A. The form of the TFF potential and the appropriate constants used in the program are the same as those used in computer programs at the Oak Ridge National Laboratory¹⁹.

The mathematical forms of the potential and force functions as they appear in the program are derived in Appendix VI.

¹⁶See reference 15, p. 1233.

¹⁷O. B. Firsov, J. Exptl. Theoret. Phys. (U.S.S.R.) <u>32</u>, 1464 (1957). translation: Soviet Phys. -JETP <u>5</u>, 1192 (1957).

¹⁸A. A. Abrahamson and R. D. Hatcher, Phys. Rev. <u>121</u>, 159 (1961).

¹⁹R. T. Robinson (private communication). The author would like to thank Dr. Robinson for the use of his results prior to their publication.

5. Results

A. General description of events in the lattice.

The number of atoms disturbed in the lattice is a function of two variables, the number of time steps the computer performs and the impact point of the bullet. In general, the lattice is more disrupted by impact points in the area near x = 3.0, z = 4.0, and the lattice is least affected by head on collisions with the target. No more than one half of the atoms were ever disturbed before the target reached a maximum in kinetic energy.

The impact area is not symmetrically located with respect to the surrounding immovable atoms but for appropriate points in the impact area, excellent symmetry of displacement was observed for the movable atoms. This indicates that the size of the model is adequate for present purposes.

Because of the limitation placed on the number of time steps, only a few atoms have any significant kinetic energy when the interaction is stopped. These are normally the target, bullet, and the atoms directly behind the target and bullet in the lattice.

Although our primary purpose was to compare lattice interactions with the two body interaction, we altered the program so that it would run a predetermined number of time steps in order to observe "chains" and "channels". Impact points at x = 3.0, z = 4.0 and x = 3.0, z = 3.0 correspond to the beginning of (100)chains. These are not "close packed" chains but they transfer energy reasonably well, especially above 100 ev. Impact point x = 2.5, z = 3.5 is the beginning of a (100) channel. The (100) channel is not as "wide open" as a (110) channel and a 100 ev bullet does not travel more than $\sim 3A$ into the lattice.

B. Comparison of lattice interactions with the two body interaction.

A strict comparison of interactions in the lattice to the two body problem is not possible, but certain limited correlations can be made. The difficulty arises because the end of the interaction in the lattice cannot be defined explicitly. There are several criteria available that may be used in an attempt to compare the interactions. If the two body interaction was allowed to continue until the potential between atoms was zero, for comparison purposes the lattice interaction could procede until: 1) the potential between target and bullet is equal to zero 2) the total energy (kinetic plus potential) of the target reaches a maximum or 3) the kinetic energy of the target reaches a maximum. All of the criteria apply to the same physical situation in the two body problem but are not equivalent in the lattice interaction.

We chose the maximum kinetic energy of the target as the comparison stopping point because this represents the time when the target and bullet have almost ceased to interact and are just beginning to interact with other lattice atoms.

A fourth criteria was suggested after the present results had been obtained. When the kinetic energy of the target in the lattice reaches a maximum, find the distance between the target and bullet and allow the two body interaction to proceed until the distance between atoms is equal to the separation in the lattice. This criteria is possibly better than the one chosen but at the present time it has not been utilized.

The geometrical relationships of the target, bullet, and lattice introduce complications into the comparison scheme. The motion of the target in the lattice is not restricted isotropically (see Fig. 7). If the interaction with the bullet moves the target toward atom number six (shaded area),

the movement of the target is restricted more than if the target motion is initially toward the cross-hatched area. Restriction of the target motion lengthens the interaction time between bullet and target, therefore the energy transferred to the target is greater than in the two body problem. This effect is noticable only at impact parameters of 0.5 lattice units or greater. At impact distances smaller than this the interaction occurs so rapidly that the target does not move a significant amount and the effect is reduced. The kinetic energy transferred at distances smaller than 0.5 lattice units is less than that transferred in the two body case because there is absorption of energy by the remainder of the lattice. The geometry of the bombarded face is not the only factor that effects energy transfer. The atoms behind the target in the lattice also play an important role but their effect is not as immediately obvious as those just discussed.

Figure 8 illustrates some of the points just mentioned. Along the line A B (x = 3.0, z = 3.0-4.0) the target behavior in the lattice is similar to the two body interaction. These impact points cause the target to move in the negative z direction toward a "hole" in the lattice face. At point D on the line A C , the effect of restricted target motion becomes obvious, and also in the area enclosed by the dashed line. The geometrical effects of the lattice are fairly predictable and no unusual phenomena are observed.

For a static system of two equal mass atoms with a conservative repulsive force between them, the total potential energy of the system can be halved and the result assigned as <u>the</u> energy of the atom. If the two atoms are allowed to move, the total energy (potential plus kinetic) of each will be constant and equal to the original potential energy. In a system composed of three or more atoms, this is generally not true. For any system where the atoms are not static, the process of assigning an energy to any one atom is

no longer possible (there is one exception). This is the situation in the lattice.

The potential energy of an atom in the lattice is defined in the program as half the potential associated with its position. This definition is merely a convenience.

The area of the impact triangle from point A to the arc E-F (see Fig. 8) is least effected by the geometry of the lattice and closer inspection of these interactions is justified. The kinetic energy transferred to the n-body target is less than that of the two body target. In percentages, the kinetic energy transferred becomes less as the bullet energy is decreased. (see Figs 8 through 11). In each case the target also acquires some potential energy (see Figs. 12 through 15). As stated earlier, it is difficult to assign a specific potential energy to the target. We do know the limits involved, i.e. the target could eventually receive none of it, or twice the indicated value. Either limiting situation is unlikely.

If we make the assumption that one-half of the potential "belongs" to the target, then the total energy of the target is approximately equal to the energy transferred in the two body problem (within 2%) for energies greater than 50 ev.

Bullet behavior for the area under discussion is also very similar to the two body problem (see Figs. 16 through 19). For the remainder of the impact triangle, the bullet is strongly effected by other atoms in the lattice.

Three runs were made with the TFF potential at energies of 5, 10, and 30 kev (Figs. 20 through 25). Since the TFF potential is unreliable beyond 1A, the section ABC in Figs. 20 through 25 is the only part of the impact area that can be considered. This section includes all impact points that

result in a closest point of approach of 1A or less. We noted the same general agreement with the two body interaction as found for the Born-Mayer potential. The only apparent difference is a shift in the energy scale.

For a head-on collision in the lattice there is very little geometrical effect, and an "effective" mass can be described. At 25 ev, the mass of the target is apparently about 2.5 times the bullet mass, but the energy transfer is still approximately 80%. For a 500 ev bullet, the effective mass increase is negligible. We used the program, as modified to observe chains and channels, and could find no evidence of bullet recoil which could be attributed to an effectively heavy target as proposed by Henschke⁸. Although an effective mass concept for the head-on collision is possible, it does not properly describe the subsequent motion of either target or bullet. If the bullet motion results in a glancing hit with the target, no single effective mass can be assigned to the target because it is a function of the impact parameter. An average effective mass is not applicable because the geometrical effects of the lattice on the direction and energy of the recoil atom are far more significant than the mass of the target in a glancing hit.

These results apply to a collision anywhere in the lattice and are not limited to the interaction of surface atoms with incoming particles. The results indicate that Henschke's⁸ apparent mass concept and the rebound phenomena associated with it are not a good description of collision events in a lattice.

6. Conclusions

A. The Bullet.

For energies above 40 ev in the impact area AEF (see Figs 16 and 17), the n-body bullet's kinetic energy after interaction is essentually the same as the two body bullet. Between 40 and 400 ev for impact points outside the area AEF, the n-body bullet has considerably less energy after interaction than the two body bullet. Above 400 ev, the n-body and two body energy transfers agree within 3% for all points in the impact area.

The angular behavior of a bullet in the lattice is much more complicated. Even at energies above 400 ev, the scattering angle in the n-body problem is affected by the geometry of the lattice. In general, the scattering angle in the lattice is smaller than that of the two body problem. It is possible that the lattice is attempting to focus the energy into preferred directions. Our bullets in the (100) direction appear to focus in the (100) direction, especially at higher energies.

The cummulative effects of energy transfer and lattice geometry will affect the range of energetic atoms. The reduced scattering angle in the n-body model for atoms with energies above 400 ev should lead to ranges that exceed those found by two body approximation methods. Below 400 ev, the bullet loses more energy than in the two body case; so the effects may cancel, or perhaps ranges calculated by two body methods may be too large.

B. The Target.

In the area AEF (see Figs. 8, 9, 12, 13), the n-body energy transferred to the target is the same (within 2%) as that in the two body problem for energies above 50 ev. For the remainder of the impact area, the n-body target receives more energy than the two body target for all energies above

25 ev. Isolated points at various energies may not conform to this rule but the effect is always present for impact points near the apex of the impact area (x=2.5, z=3.5). Near the apex, if the bullet energy is large (300 ev or greater), the energy transferred to the target is a very small fraction of the total for both the n-body and two body problems. However, the energy transferred to the target in the two cases can differ by as much as 75% of the transferred energy.

As a consequence of this phenomena, the low energy portion of the nbody target atom energy distribution (assuming more than one collision has occurred) will be much higher than that expected with a two body collision assumption for lattice interactions. Precise measurements of energy transfer for large impact parameters do not appear to be warranted in view of the results obtained.

Unfortunately, the face centered cubic lattice structure was incorporated in the program before we learned of Veksler's²⁰ experimental work with molybdenum targets (bcc), but certain qualitative comparisons are still possible. Veksler has interpreted the lattice behavior in terms of the effective mass concept but his general conclusions are consistent with our work. Our model gives good evidence to support Veksler's position that the pair collision model using elastic spheres is not acceptable.

Two body approximations inherently imply that certain information is available from preliminary n-body calculations. This work attempts to answer certain questions about interactions and cross sections. As anticipated, the results are not definitive but they do indicate sensitive areas which require further examination.

²⁰V. I. Veksler, J. Exptl. Theoret. Phys. (U.S.S.R.) <u>42</u>, 325 (1962). translation: Soviet Physics - JETP <u>15</u>, 222 (1962).

Fig. 1. THE MODEL Large circles indicate movable atoms; small circles indicate fixed atoms.

.080 BULLET **MULTIPLIER=** AND LATTICE STEP TIME COPPER 0 •00 POTENTIAL H ENERGY ERODED 900 ŝ BORN-MAYER =7 00 3.0 ш × LCCATION INCOMING BULLET

۰,

 $\varphi_{\rm P}$

LOCATIONS

LAFFICE

15

MONOCHTERE DO COLORADO LL I 0 u i × 0 22 7 ×× 20 6 XQ ATOM

Fig. 4. TYPICAL COMPUTER OUTPUT for an impact point

BORN-MAYER ERODED POTENTIAL GOPPER LATTICE AND BULLET Incoming Location X= 3.000 2= 3.900 Energy= 1q0.0 time step multiplier= .080	OF SIMPLE TWO BODY INTERACTION G PROJ= 98.293220 KIN ENGG TARG= N.70688 TOT ENGG= 100.00000 ENG IN= 100.00000 OF LATTICE INTERACTION VALUES TEPS POT E TARGET W/R TOBULLET KE TARGET W/R TO LAT-BULLET 2.007372 POT E TARGET W/R TOBULLET KE TARGET W/R TO LAT-BULLET VALUES	VALUES VALUES 6.87605 KIN, ENERGY TOT ENERGY PER ERROR 50N VALUES OF LATTICE REACTION AGAINST SIMPLE TWO BODY PROBLEM SON VALUES OF LATTICE REACTION AGAINST SIMPLE TWO BODY PROBLEM TERACTIONS STOPPED WHEN TARGET KINETIC ENERGY MAXIMUM NT KE TRANSFERED TWO BODY = 1.707 LATTICE 2.007 KE TRANSFER IN LATTICE / KE TRANSFER TWO BODY =1.17605 KE PROJ IN LATTICE / KE TRANSFER TWO BODY = 1.17605 KE PROJ IN LATTICE / KE PROJ TWO BODY = .00091 BULLET MAAS / TARGET MASS = 1.000 KE ABSORBED BY LATTICE = 97.06764	ERING ANGLE TWO BODY = 7.51 LATTICE = 18.29 L ANGLE TWO BODY = 82.49 LATTICE = 85.02 SCATTERING ANGLE TWO BODY / SCATTERING ANGLE LATTICE = .41035 RECOIL ANGLE TWO BODY / RECOIL ANGLE LATTICE = .97033 T PARAMETER = .9000 RATIO KE BULLET AT END OF RUN / ORIGINAL ENERGY = 8.93871E-04 Fig. 5. TYPICAL COMPUTER OUTPUT for an impact point
BULLET INCOMING	RESULTS OF SIMPL KIN ENRG PROJ= 9 RESULTS OF LATTI TARGET VALUES TIME STEPS PO BULLET VALUES KIN ENEPCY =	LATTICE VALUES POT 6.87605 6.87605 6.87605 60TH INTERACTION PERCENT KE TRANS RATIO KE TRANS RATIO KE PROJ RATIO BULLET # POT + KE ABSOR	SCATTERING ANG RECDIL ANGLE RATIO SCATTERI RATID RECOIL A IMPACT PARAMET

ON (,100) FACE		C 3.241	6.298 # 88.624				
JLLET ET TNCIDENT	: ICE	(Z=3.2) 12.326 82.443 (3.0	14.870 * 79.645	21.749 71.643			point
THEE AND BULLE	IN LATTICE et in Latti	25.710 68.855	27 • 368 * 66 • 467	29.733 * 59.924	33°C76 50°190		tes impact
CCPPER LANT	OF BULLET	41,205 53,160	41.338 51.345	38,213 46,255	32°967 39°279	36 . 110 32 . 090	r; (*) indica
ITIAL STEP MULT.EP	tergy in Every	(Z=3.5) 56,194 37,294	55.258 * 36.018	50.686 * 32.704	4 ¢ ° 253 28 ° 664	43.875 25.491), 43,295 23,701 A SR OUTPU
QOED POTEN ILIME S	K _i FNET_IC EN S «KINETIC	63,901 23,131	63.319 4 22.418	61.492 * 20.651	50.628 19.085	45.033 19.221	(X = 2.3 COMPUTH
N-MAYER ER 100.0 EV	DP ND. ISS	56.201 * 12.281	42 <u>,</u> 977 11 , 944	45.648 11.263) 23.435) 11.135	(X° 2.6)	ANGULAR
BORI	BO.	(Z= 3.8) 7,926 5.402	8.557 * 5.279	8) 4. 380 5. 104	(X= 2.7		ig. 6. TRI
I INCOMING		•089 * 2.007	•.9) •067	(X ≈ 2.			jæ.
BULLET		B (X=3.0) $\frac{124}{2710}$	(X= 2				

Fig. 7. GEOMETRICAL EFFECTS OF THE LATTICE FACE. Target movement is more restricted if initial motion is in shaded area rather than in crosshatched area.

			Λ				
FACE	4	95.244 99.999	ET ATOM				
(001) ND		91.836 • 96.769	3.0) TARGI 88.624 93.615				
ILLET I INCIDENT	ROBLEM	82.443 * 87.527	(3.0, 79_645 84_592	76.210	,		
CE AND BULLE	IN LATTICE THO BODY P	68.855 * 73.554	66.467 70.965	59 - 924 	50.190 52.568	ц / ^	
OPPER LATTI IER = .080	CF TARGET I Target in T	53.160 56.795	51.345 54.651	46°255 48°576	39.279 .39.580	32.090 29.158 D	``、
EP MULTIPL	IN EV OF	37,294 39,580	1 36.018 37.941	32.704	28.664	25,491 * 19,010	, 23.701 , 11.885 C
DED POTENT TIME ST	INETIC ENE TIC ENERGY	23.131 	22.418 23.106	20.651 19.975	19.085 15.510	19.221 10.644	(2.5, 3.5
-MAYER ERO DO.O EV	IP NO. IS K 10. IS KINE	12.281 12.548	11.944 11.885	11.263 10.065	11.135 7.549		
BORN ENERGY = 1	BOTTCM N	5. 402 5. 252	5。279 4,935	5。104 4.082			
INCOMING	-	2.007 	1.972 * 1.591				
BULLET		. 710 .424	(3.0, 4.0)				

Fig. 8. GEOMETRICAL EFFECTS on 100 ev bullet; (*) indicates impact point
) FACE	<	75.383 79.999	JET ATOM							
T ON (100		72.8C6 77.617	, 3.0) TARC	70.410 75.284						
LLET T INCIDEN	RCBLEM	65.780 70.764	(3.0	63 . 757 68.576	57 <u>.</u> 936	62.295				
TICE AND BU C BULLE	IN LATTICE Tho BODY P	55. 795 60. 294		54,086 58,338	49 <u>0</u> 096	52.737	41.790	- 0 1 1	Ľ /	
CCPPER LAT	/ CF TARGET : Target in	43.878 47.525		42°429 45°872	38.747	41.159	33.354		27°936 25°736	
TAL EP MULT (P	IN EV CF	31,687		30.673 32.791	28-198	29.107	25 . 166	100.07	22,998 17,359) 22.045
TIME SI	KINETIC ENE ETIC ENERGY	20+442 21-705		19.900 20.776	18.577	18.170	17.547	0.00	18.124 10.164	(2.5, 3.5
N-HAVER EN	OP NO. IS NO. IS KIN	11.451 • 11.834		11.188	10.725	9.652	10.860			
BOR ENERGY =	BOTTCM	5. 364 5. 277		5. 272 4. 979	5. 190	4.17C				
INCOMING		2.122 1.837		2.094 1.719						
BULLET		.810 .485	(3.0, 4.0)							

Fig. 9. OUTPUT TRIANGLE for 80 ev bullet; (*) indicates impact point

FACE		A	36.683 4.C.CCO	ET ATOM									
T DN (100)			35.703 * 39.057	0, 3.0) TARG	34.762 38.129								
ULLET ET INCIGEN	E DDCPL EW		32.936 36.314	(3.	32.074 35.427	29.579	32.849						ct point
TICE AND B C BULL	IN LATTIC		28.724 		27。546 * 31。198	25 <u></u> 962	28.823	30 Bi 4	25.128		LL_ /		lcates impa
CCPPER LAT LIER = .09	OF TARGET TAPCET IN		23.751 		23.206 25.841	21 . 496	23.741		20.454	/	16.730 * 16.465		let; (*) indi
TIAL Tep Multip	ERGY IN EV	Ц	16,329 20,494		17.526 15.E82	 16.757	18.119	15 1.22.	15.420		14.615 * 12.122	.5) 14.356 .6) 8.653	r 40 ev bul
ODEC POTEN TIME S	KINETIC EN		13.044 14.422		12.8C4 = 13.540	12.218	12.560	11 623	10.478		12.459 * 7.552	(2.5, 3	LANGLE fo
N-MAYER ER 40.0 EV	OP NC. IS		8.347 * 8.998		8.239 8.653 8.653	8.125	7.676	0 4 0	6.231 6.231				UTPUT TR
ENERGY =	T BOTTCM		4 • 563 4 • 775 4 • 775		4. 647 4. 563 4. 563	4.713	3.964						Fig. 10. 0
I INCOMING			2.260 2.046		2.277 * 1.937								
BULLET			1.124 * 666	(3.0, 4.0)									

FACE		4	22.345 25.000 ET ATOM							
VT ON (100)			21.822 * 24.491 0.3.01 TARG		21.316 23.987					
BULLET Let Incider	ш	PRCBLEM	20,327 23,000		19.852 * 22.515	18.464 * 21.097	, ,			
TTICE AND 8 90 BULI	T IN LATTIC	N THO BODY	17.998 * 20.637		17.584 20.182	16.500 18.855	14 °754 16 • 763	Ľ /		
COPPER LA	UF TARGE	- TARGET II	15,313 * 17,582		14,980	13.999 15.968	12.634 14.062	11.130 11.666		
NTIAL STEP MULTI	VERGY IN EV		12,172 * 14.082	-	11,948 13,723 1	11.306 12.678	10°447 11°652	9.830 * 5.010	.5) 9.511 * 6.772	
COED PCTE	KINETIC E	VETIC ENER(9.066 * 10.441		8. 937 * 10. 144	8.613 9.285	8°375 * 7°963	8.544 * 6.331	(2.5, 3	
N-MAYER EF	OP NO. IS	ND. IS KIN	6.224 * 6.999		6.170	6.079 *	6.270 * 5.128			
BOR S ENERGY =		80TT0M	3, 824 # 4, C95		3. 817 3. 939 3. 939	3 _° 891 * 3 _° 496				
T INCOMING			2.144 * 1.988		2. 1 54 * 1. 897					
BULLE			1.271 *749 (3.0.4.0							

Fig. 11. OUTPUT TRIANGLE for 25 ev builet; (*) indicates impact point

FACE		2.362 * .741	T ATOM				
T ON (100)		2.4444), 3.0) TARGE 2.479	• 924			t t
JLLET ET INCIDEN	ce rice	2.537 1.077	(3.(2.497	1.305 2.419 2.419	04		រំហាបនឲ៥ <u>n</u> oi
TICE AND BULLE	T IN LATTIC	2.455 1.622	2.419 *	2.083 2.156 2.156	3,100 2,020 6,857	Ľ.	ំ ពែលខ្មែរ និងស្ថិន ដំពីលំខែងស្ថិន
COPPER LAT	V OF TARGE	2.045 * 1.930	1.997	2.806 1.837	0.949 1.736 8.652	1.695	r bur liet. (*
TIAL (VERGY IN E	1.543 2.792	1.537	3.760	0.000 1.1444 0.116	1.542 4.111	5) 1.558 3.585 5 100 ev
DED POTEN	DTENTIÂL EN POTENTIAL	。9999 。 5。948	• 998	6.230 1.063	0.471 1.050 8.193	1.219 7.094	(2.5, 3. ¹
I-MAYER ERC	ND. IS PC	.681 	. 623	17.945 	10.223 .712 18.958		Diff D f fre
BORN ENERGY = 1	10F 80T1	. 410 	• 421	19. 291			Ki G
I NCOM ING		• 308 • 1.503	•317	1.026			
BULLET		• 227 • 388 • 388	(3.0, 4.0)				

. .

FACE		2.244 .485	ET ATOM							
[GN (100)		2.331 *529	, 3.0) TARGI	2.362 * 629						
JLLET TINCIDENT	CE FICE	2.415 *745	(3.0	2 • 358 • 944	2.214 * 1.695					t point
LICE AND BY	F IN LATTIC	2.251 * 1.187		2.179 * 1.608	2.063 * 3.076	1.850 * 6.137	L	L /		ates impac
COPPER LATA	/ OF: TARGEI EV: OF BULL	2.020 * 1.927		2.015 * 2.587	1.758 + 4.914	1.684 7.458	7 2 2 1	5.916		et; (*) indic
TAL C	AER-GY IN EV ENERGY IN	2.558		1.568 3.354	 1.425	1 • 458 • 5 • 352	1 613	2 · 756	1。665 。 2。569	80 ev bulle
IND POTENT	POTENTIAL EN	1*:023 + 129		1.022 * 4.759	1.086 * 5.129	1.165 # 4.804	1 200	4 . 843	(2.5, 3.5)	NGLE for
-MAYER ERD BC.C EV	NO. IS PE	.691 * 9.854		•713 • 9•550	•699 * 11•690	•786 11.995				TPUT TRI/
BORN Energy =:	TDP BCTT			. 455 18.027	• 471 * 15• 665					ig. 13. OU
I NCOM ING		•.309 * 2.706		.317 * 2.825						بيا
BULLET		•_246	(3.0, 4.0)							

.

	ACE			1.738 .619	ATOM								
	ON (100) F.			1.753 .650	3.0) TARGET	1.762 							
ורנד	I INCIDENT	ų	.ICE	1.773 * . 607	(3. 0,	1.769 * .916	1.762	797 • 1					point
ICE AND BL	BULLE	IN LATTIC	ET IN LATI	1.773 		1.770 * 1.322	1.624	1.6732	1.528	3 • C 8 5			es impact
OPPER LATT	.IER = .090	OF TARGET	EV OF BULL	1.558 		1.530 * 1.535	1.458	2.640	114-1	+.281	3.877		; (*) indicat
IAL C	EP MULTIPL	ERGY IN EV	ENERGY IN	1.315 * 1.622		1.293 * 2.159	1.286	C = + • ?	11.211	3.573	1.441 	5) 1.545 5) * 1.612	0 ev bullet;
DED POTENT	TIME ST	TENTIAL EN	POTENTIAL	1.011 * 2.414		1.014 * 2.720	1.074	ددا .د	1.151	2 • 443	1. 325 1. 655	(2.5, 3.	AGLE for 4
-MAYER ERO	40.0 EV	NO. IS PO	SI •ON WO.	。747 。 3。644		.771 	.782	4° + -	.879	* 2.859			PUT TRIAN
BORN	ENER GY =	TCP	8011	• 504 * 7• 615		• 520 * 7.186	• 542 •	7. 170					(. 14. OUT)
	INCOMING			• 362 * 7•958		•373 # 8.065							F 1 U
	BULLET			• 309 • 795	(3.0, 4.0)								

.

FACE		1.460 .541 ET ATOM					
ON (100)		1.464 .566 , 3.0) TARG	1.467 .609				
JLLET ET INCIDENI	CE FICE	1.470 .674 (3.(1.469 * •754	1.469 * 998			ooint
FICE AND BU	ET IN LATTIC	1.476 * .916	1°449 * *	1.364 	1.290 * 2.014		es impact r
COPPER LAT	V OF TARGE EV OF BLLI	1.315 * .872	1.295 1.116	1.268 * 1.860	1.213 * 2.760	1.228 * 2.517	: (*) indicat
TIAL ⁻ (TEP MULTIPI	VERGY IN EV Energy In	1.159 1.187	1.138 1.535	1.115 * 2.337	1.144 * 2.367	1.228 1.560	.5) 1.288 .962 5 ev bullets
JUED POTEN	JT FNT IAL. EI Potential	• 996 • 1.821	• 938 • 938	•959 * 2.233	1. C25 * 1. 604	1.139 589	(2.5, 3. VGLE for 2
4-MAYER ERC 25.0 EV	PIC NC. IS PIC	• 719 * 2•554	• 732 • 442 2 • 442	.795 * 2.100	。855 ** 1.469		PUT TRIAN
BORA ENERGY =	1,09 E011	• 559 * 603 3• 603	. 543 * 3.878	• 585 • 291			(, 15. OUT
I NCOM ING		。	。4 C8 5 • 34 7				bio Pro- L
BULLET		.353 1.954 (3.0, 4.0)					

ACE		4	• • • • • • • • • • • • • • • • • • •	ATOM								
IN (100) F			3.241 * 3.230	0) TARGET	6。298 * 6。384							
JLLET ET INCIDENT O	: Roblem		12,326 12,472	(3.0,3.	14.870 15.4C7	21.749 23.789						st point
FICE AND BULLE	IN LATTICE N TWOBODY P		25.710 * 26.445		27.368 * 29.034	29.733 		33°076 47°432		Ľ /		cates impac
COPPER LATI LIER = .08(OF BULLET F BULLET IN		41.205 43.205		41.338 45.348	38.213 * 51.423	/	32.967 60.420	/	36.110 70.842		let; (*) îndîc
TIAL (TEP MULTIPI	ERGY IN EV GY IN EV DI	Щ	56 <mark>1</mark> 94 60.420		55.258 62.058	 50.686 66.669 \	•	46.253 73.393		43.875 80.990	4.3.295 88.115	100 ev buil
DDED POTEN	KINETIC EN		63.901 75.769		63.319 * 76.894	61 <u>,</u> 492 80.024		50.628 * 84.490		45,033 89,356	(2.5, 3.5	ANGLE for
N-MAYER ER	I SI .ON AC		56.201 87.452		42.977 * 88.115	45.648 89.935		23。435 * 92_452				TPUT TRL
BORI ENERGY = .	T(BOTTOM		7.926 		8.557 * 95.065	4. 380 * 95. 918						ig. 16. OU
INCOMING			•089 • 98•293		•067 • 98•409							ĬŦ
BULLET			.124 99.576	(3.0, 4.0)								

FACE		A ****	T ATOM							
001 (100)		2.460 2.382	3.0) TARGE	4.653 4.715						
ILLET ET INCIDENT	ROBLEM	9.139 * 9.235	(3. 0,	10.975 11.423	15.882 * 17.7C4					vînt
ICE AND BULLE	IN LATTICE TWOBODY P	19.123 19.706		20.211 21.662	22.636 * 27.263	800	35.739	LL/		s impact pc
.0PPER LATT .1ER = .090	OF BULLET BULLET IN	30.87C 		31.048 	28.5C4 * 38.840	7117 66	45.909	23.136 54.263		*) indicate
TAL C	ERGY IN EV	μ2.μ78 μ5.909		41.563 47.209	 36.931 50.893	31 830	56.343	29,491 462,641	27.8C4 5) 68.745	ev bullet; (
DED POTENT TIME ST	INETIC ENE	49.685 \$6.295		48.792 * 59.224	46,236 * 61,830	089 01	40. cc0 65. 610	31.481 * 69.836	(2.5,3.5	LE for 80
-MAYER ERO 8C.C EV	IP NC. IS K NO. IS KIN	46.347 * 68.166		46.459 * 68.745	36 . 986 * 7C . 348	48 4 80	72.667			UT TRIANC
BORN Energy =	TC BOTTCM	15。C76 15、C76 7 μ。723		15.877 * 75.021	8.65C # 75.83C					17. OUTP
INCOMING		•260 *76.163		.271 						Fig.
BULLET		.115 79.515	(3.0, 4.0)							

.

=ACE		Þ	.011	T ATOM							
DN (100)			• 953 * • 942), 3.0) TARGE	1.855 * 1.871						
JLLET ET INCIDENT	e Problem		3.648 * 3.686	(3.(4 • 395 4 • 573	6.454 * 7.151					t point
TICE AND BUCLE	IN LATTICE N TWOBODY F		7.702 7.583		8.180 * 8.EC1	8.666 * 11.177	9.119 * 14.872	,	<u>ц</u> /		ates impac
CCPPER LAT LIER = .C9	CF BULLET F BULLET I		12.517 # 13.433		12.365 * 14.159	11.529 * 16.259	 7.842 19.5C6	/	5.566 * 23.535		et; (*) indic
TIAL TEP MULTIP	ERGY IN EV GY IN EV D	Щ	17,3c8 19,5c6		16.436 20.118	 13.661 21.881	9.6C2 24.5E0		6.579 27.878	.5,526 .5,31.247	40 ev bull
ODED POTEN TIME S	KINETIC EN NETIC ENER		21.358 * 25.578		20.372 * 26.C6C	17.785 * 27.44C	14.C96 29.522		10, 196 32, CCB	(2.5, 3	ANGLE for
N-MAYER ER	OP ND. IS NC. IS KI		23.567 31.CC2		23.014 * 31.347	19.893 * 32.324	16.159 33.77C				TPUT TRI
BOR S ENERGY =	T BOTTOM		16. 151 * 35. 222		16.473 4.37 35.437	12.378 * 36.036					fig. 18. OU
INCOMING			3.689 37.954		4.254 * 38.063						
BULLET			•062 * 39•334	(3.0, 4.0)							

00) FACE		4	9 011	ARGET ATOM	5 5						
r on (1			•51 *50	0, 3.0) T	1.01						
I NCIDEN	SCBLEM		1.989 * 2.000	(3.	2.394 2.485	3.517 * 3.903					
BULLET	TTICE DDY PF		12 53		18	۲ م ۲ م	38 37				
	IN LA		ц.2. ц.3(M 80 •*• -==================================	4.7(4.11	8. 23		<u>н</u> /		
• 060	LET I		8 8		1. 0	5	8]	/	t Q		
ER =	BULLE		6.84 * 7.41		6.73 4.83 7.83	6.17 9.03	3.81 3.81		2.01 # 13.31		
TEP MULTIPLI	ERGY IN EV C	щ	5.442 10.918		8.837 11.277	 7.096	 4.198 *. 13.948		2,382 * 15,990	5) 1.679 18.229	
TIMESI	KINETIC ENI NETIC ENERG		12.014 * 14.559		10,811 * 14,856	8.960 * 15.715	6.478 * 17.038		4.108 * 18.669	(2.5,3.	
25.0 EV	OP NO. IS		12.848 * 18.001		12.407 * 18.229	11.146. 18.882	8.816 * 19.872				
ENERGY =	T BOTTOM		12.597 * 20.905		10.524 21.061	10.439 * 21.504					
INCOMING			3.755 * 23.012		4.2C4 * 23.103						
BULLET			.195 	3.0, 4.0)							

i.

= .090 BULLET INCIDENT DN (100) FACE	rarget in lattice Set in two body problem	1 A A A A A A A A A A A A A A A A A A A	(3.0, 3.0) TARGET ATOM	.155 450.282 1167.271 2490.265 .703 463.959 1216.422 2611.233	.383 284.742 638.473 .731 290.845 659.620	.074 148.635 .927 150.071	553 842 C		14) indiantas immast noint
=5000.0 EV TIME STEP MULTIPL	TOP NO. IS KINETIC ENERGY IN EV M NO. IS KINETIC ENERGY IN EV OF	B 10.416 26.254 68.699 10.422 26.547 69.927		9.783 24.364 62.520 * 9.759 24.545 63.409	8.158 19.629 47.756 8.046 19.545 47.913	6.129 14.013 31.631 5.903 13.660 31.181	9.098 18.865 * 8.575 18.157	(2.5, 3.5) 10,465 , 9,759	and anothe for the minute for the first has
BULLET INCOMING ENERGY =	MD T T C8	.624 1.763 4.218 .588 1.610 4.137	(3.0, 4.0)	1.590 3.978 * 1.526 3.905	3. 373 * 290 3. 290				- 00 - 11

THOMAS-FERMI-FIRSOV POTENTIAL, ERODED, CCPPER-COPPER

2 D A TTT S Fig. 20, UUTPUT TRIANGLES for 5 kev bullet; (*) indica

) FACE		9677.278 9999.651	RGET ATOM		ſ				
NT ON (100		5200,504 5461,868	3.0, 3.0) TAI	3217.238 3366.168					
PEK LET INCIDE	CE Problem	1 A 1519.076 1519.076 1573.507)	1115.405 * 1150.287	518.352 529.308				point
ULPPER-CUP 90 BUL	T IN LATTI N TWO BODY	416.356 424.959		340.043 346.206	198.319 200.666	94.732 95.166	(/	ر	ites împact
, EKUDEU, PLIER = .0	V OF TARGE F Target I	124.216 125.785		107.947 109.100	73.114 73.508	41.473 41.376	21.148 20.909		t; (*) indica
PULENITAL STEP MULTI	VERGY IN E	L 41.053		37.030 37.250	27.613 27.620 27.620	17.697	10.180 9.964	.5) 5.241) kev bullet
TIME	KINETIC EN HETIC ENERC	14.759 14.813		13.621 * 13.646	10.803 10.758	7.529 7.416	4.738 4.588 4.588	(2.5, 3	GLE for 10
10000 EV	OP NO. IS ND. IS KIN	5 • 608 5 • 608		5.263 * 5.241	4. 338 * 297 4. 297	3.195 			UT TRIAN
ENERGY =	T BOTTOM	2.206 * 2.175		2.078 * 2.050	1.749 * 1.722				. 21. OUTH
T INCOMING		.875 .833	6	•810 •789					Fig
BULLE		• 314 • 301	(3.0, 4.(

EC, CCPPER-COPPER = .050 BULLET INCIGENT ON (100) FACE	CBLEM	C9.294 6755.119 28085.043 32.236 7195.731 29996.853	(3.0, 3.0) TARGET ATOM	71.433 2987.568 63.289 3115.842	59 • 55 4	62 ° 126				st point
CPPER-COPPER SC BULLE	IN LATTICE The bedy pr	200.418 10 202.353 10		158.224 6 155.522 6	65 °524 2	e5 . 972 2	37°812 4905)	dicates impa
EROCEC, C	/ CF TARGET : TARGET IN	51.039 51.331		43.743 43.957 43.957	28.626	28.7C5	15.582 15.583	7.650		ullet; (*) inc
PCTENTIAL.	ERGY IN EV Y IN EV CF	15.523 15.583		13.907 113.950	/ / 10.183	1C.194	¢. 368	3.568 3.568 3.545	1.857 * 1.835	r 30 kev b
I-FIRSOV TIME	INETIC ENI TIC ENERG	5. 323 5. 323 5. 333		4 - 893 4 - 901	3.838	3. E36	2.629 * 2.618	1.619 1.602	(2.5, 3.5)	ANGLE fo
HCMAS-FERM 000.0 EV	P NO. IS K O. IS KINE	1。967 1。967		1.83¢ 1.835	1.502	* 1.499	1. C52 1.085			JTPUT TRI
T VERGY = 30	TC BOTTCM N	• 752 • 75C		• 707 •	- 59 e	* • 552				'ig. 22. Ol
NCOMING EN		• 288 • 284		•271 •269						íz,
BULLET I		• 1C3 • 1C2	(3.0, 4.0)							

= ACE			87.942 16.816	et atom										
T DN (100) F			88.183 61.524	.0, 3.0) TARGI	71.623 * 72.628									
ET INCIDEN	I CE F T I CE		57.219 101.306	(3	50.931 * 98.523	36.083 106.783								ct point
90 BULL	ET IN LATTI LLET IN LAT	A L	35°307 174°172		32,861 * 149,486	28.098 122.615		19.616	123.239			ပ ⁄		cates impa
PLIER = .0	EV OF T≜RGI N EV OF BUI		22.086 245.326		20,903 * 212,304	18.549 * 161.821		13.103	138.942	/	10.461 132.002			et; (*) indi
STEP MULTI	ENERGY IN	a	13.663 308.722		13.001 274.679	 11.690	/	10.069	166.086		8.348 * 141.727		5) 4.973 132.262	5 kev bull
TIME	POTENTIAL S POTENTIA		10.062 387.654		9.615 	8. 694 * 270 218	0	5.833	200.742		4.742 * 161.698		(2.5, 3.	ANGLE for
5000.0 EV	OP NO. IS TTOM NO. I		6.306 429.335	ł	5.821 399.883	ц.905 330,791		3.998	258.128					JTPUT TRI
G ENERGY =	80		4.010 237.690		3, 720 * 344, 386	3, 363 * 121,009								rig. 23. OU
T INCOMIN			4.598 47.083		2,548 = 242,520									μ ζ η
BULLE			1.694 * 64.308	(3.0, 4.0)										

THOMAS-FERMI-FIRSOV POTENTIAL, ERODEC, COPPER-COPPER

	FACE				91.330 16.241	ET ATOM								
	T DN (100)				82,964 ,76,652	0, 3.0) TARG	64.650 90.251							
PER	ET INCIDEN	ICE	TICE	1 4	43.257 139.018	(3.	38.477 * 118.869	25•208 116•339						ict point
COPPER-COPF	90 BULI	ET IN LATTI	LET IN LAI		24,067 177,092		22.558 153.936	15.585 131.708	12.291	124.262		0		icates impa
, ERODED, (PLIER = .0	EV OF TARG	V EV OF BUI		13.797 211.591		13,165 190,152	11.729	7.292	134.435	5. 635	130.861		llet; (*) ind
POTENTIAL	STEP MULTI	ENERGY IN	L ENERGY II	B	7.622 254.640		17.285 234.960	 6.509 194.289	5.434	159-998	4 <u>-</u> 288	140.639	5) 3.191 134.433	r 10 kev bu
RMI-FIRSOV P TIME ST	TIME	POTENTIAL	S POTENTIA		3.732 286.480		5+204 322+927	4 • 628 263•000	3. 85 1	205° 423	3.021	164.645	(2.5, 3.	IANGLE fo
THOMAS-FE	10000 EV	OP NO. IS	TTOM NO. I		2.571 383.994		2.281 358.307	1.706 298.127	2.467	277,269				U'TPUT TR
	G ENERGY =	T	08		1.276 * 323.282		1.598 473.631	1. 883 536. 979						Fig. 24. 0
	T INCOMIN				1.385 87.281		1.162 # 587.643							
	BULLE				•730 •	(3.0, 4.0)								

) FACE		A 1	90, 901 19. 456 JET ATOM						
ENT CN (1CC			51.824 115.244 .0, 3.0) TAR	36.652 * 105.244					oint
LET INCIC	I C E F T I C E		27•934 127•371 (3	20.317 * 118.931	16.003 112.168				s impact p
CPPEK-CUP	LET IN LATTI	1 H	11.764 128.585	11.038 130.279	9.417 	5.158 * 118.217	О /		*) îndicate
ERUCEL, C PLIER = .C	V CF TARGE Ev of bll		8 • 253 • 163 • 469	5.501 * 148.555	4.788 * 136.354	3.781 	2.731		V bullet; (
PCIENTIAL, STEP MULTI	NERGY IN E Energy in		3.813 * 195.640	3. 632 90.634	3.205 3.205 165.732	2.542 146.147	1,771 154,259	.972 * 125.557	for 30 KE
MI-FIRSOV TIME	OTENTIAL E Potential		2.355 287.550 287.550	2,256 269,586	1。524 * 229。613	1.425 4.186.682		(2.5, 3.5)	TRIANGLE
THCMAS-FER	P NC. IS P TOM NC. IS		1.302 448.385	1.158 * 411.677	• 833 * 833 329 • 724	.409 247.385			OUTPUT
ENERGY = 3	TO		• 572 715• 850	• 312 • 339• 112	.285 .477.176				Fig. 25.
INCOMING			•205 • 576.384	•169 924.552					
BULLET			*223 *1669*749 (3.0, 4.0)						

APPENDIX I

GENERAL DISCUSSION OF THE PROGRAM

The masses of the lattice atoms are equal to that of copper and are an integral part of the program. The bullet mass however, can be varied by changing the input data. The potentials and forces are calculated by function subroutines at the end of the program. The main program is not disrupted when a different potential function is substituted.

A coordinate system was established with an atom located at the origin. For a face centered cubic lattice in this coordinate system, the sum of the coordinates of an atom is always an even number. Fixed point numbers were used for lattice units, and the volume which contains all the atoms (movable and fixed) was scanned in the x, y, and z directions. If the sum of the coordinates of a point was even, an atom was placed there, otherwise a space was left. Truncation of quotients in fixed point arithmetic allows a simple test for odd or even numbers. The fixed point coordinates of the atoms were stored in memory as floating point numbers for later calculations. The "core" atoms were assigned numbers from 2-64 and the fixed atoms were numbered from 65 to 172.

In the calculation of the forces or potentials associated with an atom, the atoms closer than nearest neighbors in an undisturbed lattice must be considered. A "nested" Do loop was used for these calculations. The outside Do loop was indexed from 1 to 64 and the inner Do loops initial index was always one greater than the outer Do and ended at 172. This arrangement avoids the calculation of forces or potentials twice for the same pair of atoms. The x, y and z coordinate separations, in that order, between the atom under consideration (index of outer loop) and any other atom were tested. If any of these separations were found to be greater than ROE,

45

¢

the inner Do index was advanced by one. If the coordinates passed these three tests, the square of the distance between atoms was compared to the square of ROE (ROE2). The true distance of any atom that passed this test was used in the force or potential function and the result applied to both atoms. (In potential calculations, half the potential was given to each atom). If the square of the distance between atoms was equal to or greater than ROE2, the inner Do index was advanced by one. Most of the atoms will be eliminated in the first three tests. The procedure avoids time consuming square root calculations by the computer.

The double iteration method used to move atoms requires two calculations of resultant forces for each "time step". The same section of the program was used for both force calculations, but the equations required to move the atoms twice in the time step are not identical. The fixed point variable INDEX was used as a switching device to jump over the motion equations that locate the atoms at temporary positions. The jump is executed after the second calculation of forces.

The movement of atoms is continued until the kinetic energy of the target is a maximum. It is necessary to advance one time step beyond the maximum to establish the maximum. The particle locations and velocities at the time of the maximum are still in memory, and these are used in kinetic and potential energy calculations or as output.

Although the two body problem is in two dimensions, the impact parameter is the same as that in the lattice. The two body problem is solved in the same manner as the lattice except that the interaction is stopped when the atoms are separated by a distance equal to ROE which means the potential and force between atoms is zero. The interaction is initially started with the separation of atoms slightly less than ROE. The ΔT for

the two body problem is much smaller than the one used for lattice calculations. The small T consistantly produces very much more accurate results in the two body problem than in the lattice.

The input consists of the bullet energy and mass, its x coordinate, and the time step multiplier. In order to calculate data for all 36 impact points, six input cards are required; each is identical except for the x coordinate of the bullet. The x coordinates assigned are 3.0, 2.9, 2.8, 2.7, 2.6, and 2.5 in that order. After receiving the input from one card, the corresponding z coordinate on the line AB is calculated (see Fig. 6). The computer proceeds through the program for this point, then subtracts 0.1 lattice units from the z coordinate and repeats. It procedes down a column until all calculations for impact points on the line BC have been made. The computer pauses at this point to await instructions. Here it may receive a new data card and start another column. After the calculations for the point on the apex of the triangle (x*2.5, z=3.5) are complete, the computer can be directed to print the output in the triangular form shown by Fig. 6.

APPENDIX II

APPENDIX III

DETAILED FLOW CHART

BLOCK B

BLOCK C first numbers to be assigned to lattice atoms 2 for movable core, 65 for fixed atoms

> IT, JT, KT are X, Y, Z coordinates in the system used for reference

> each point with integer values for coordinates is tested; if the sum of the coordinates is an even number, an atom is assigned to that position

these decision processes determine if an atom is in the "core"; this is necessary in order to have core atoms with consecutive numbers 2-64

<0 JT ≧0 30 RX(N) = IT>0 JT-4 RY(N) = JTRZ(N) = KT 50 N=N+1RX(M) = ITRY(M) = JTfor a given Y and Z, X RZ(M) = KTcoordinates are checked first; then Z is changed and X coordinates checked again; 57 after tests on X and Z, M = M + ITT = TT + 1Y coordinate is changed 58 end of Do loop over X coordinates CONTINUE KT = KT + I59 end of Do loop over Z coordinates CONTINUE JT=JT+1 TO 60 CONTINUE end of Do loop over BLOCK D Y coordinates

≤o

BLOCK D

sets temporary and permanent coordinates of immovable atoms equal to eachother

sets initial potential and kinetic energy of core atoms equal to zero

stores original positions of bullet and core atoms

BLOCK Fl (con't)

BLOCK F2

BLOCK G

BLOCK H (con⁹t)

BLOCK J

BLOCK K

CONV = 0.01/DTI change constants for two body problem; DTOC = DTOC * CONV DTI always equal to 0.01 in two body DTORM = DTORM + CONV problem DTO2RM = DTO2RM & CONV DTORM1 = DTORM1 + CONV DTO2RM1=DTO2RM1+CONV $R_{X2} = 0.0$ target located at origin RY2=0.0 $DSQ = (BZ - 3, 0)^2 + (BX - 3, 0)$ square of impact parameter in the lattice RY1 = NDSQ assign bullet Y coordinate to give proper impact parameter (IP=RY calculate X coordinate of target to insure - 10-6 RX1= VROE2 - DSQ separation of bullet and target is slightly less than nearest neighbors separation VX2= 0.0 FX2= 0.0 VY2= 0.0 FY1 = 0.0 Y1 = 0.0FY2 = 0.0FX1= 0.0 TO x 5.51 × 104 NDEX=C OCK L1

assign velocity to bullet

BLOCK R

BLOCK W

APPENDIX IV

DEFINITION OF VARIABLES

- RX(I) X coordinate of atom number I at any time (lattice units)
- RIX(I) x coordinate of atom number I at former position (same as position 1 in procedure section), stored while average forces are computed (lattice units)
- RY(I), RZ(I), RlY(I), RlZ(I) y and z coordinates defined in the same manner as RX(I) and RlX(I)
- FX(I) x component of force on atom number I at any time (newtons)
- F1X(I) x component of force at former position of atom number I (newtons)
- FY(I), FZ(I), F1Y(I), F1Z(I) y and z components of force defined in the same manner as FX(I) and F1X(I)
- VX(I) x component of velocity at any time of atom number I (m/sec)
- VIX(I) x component of velocity of atom number I at former position (m/sec)
- C(I,L) matrix for storing data I from impact point L
- PPE(I) potential energy of atom number I (ev)
- PKE(I) kinetic energy of atom number I (ev)
- RXR(I), RYR(I), RZR(I) x, y, and z coordinates of all atoms in initial positions (lattice units)

ETFP, AFAC, ETFF constants used in Thomas-Fermi-Firsov potential

- L impact point number
- ROE nearest neighbors separation (lattice units)
- ROE2 ROE squared
- EPST value subtracted from calculated force to erode the force (newtons)
- EPSTP value subtracted from calculated potential to erode the potential (ev)

73

FORC function subroutine that calculates force; argument is the separation of atoms (newtons) POTF function subroutine that calculates potential; argument is the separation of atoms (ev) EV original kinetic energy of bullet (ev) BX original x coordinate of bullet (lattice units) DTI time step multiplier PMASS mass of the bullet (amu) BZ original z coordinate of bullet (lattice units) BZS z coordinate of bullet at end of column in impact triangle, used as stopping point (lattice units) PKE8R kinetic energy of target at the end of previous time step (ev) CYCLE number of time steps INDEX switching device DT length of basic time step (seconds) RM mass of copper atom (kg) RM1 mass of bullet atom (kg) DTOC a constant used in movement equations; when multiplied by the sum of two velocities, it computes the average, multiplies it by DT and gives the result in lattice units (sec x lattice units/m) DTORM a constant used in velocity equations; it combines the quotient DT/RM into one constant to avoid repeated divisions (sec/kg) same as DTORM except it averages the force DTO2RM same as DTORM but used in bullet calculations only, since DTORM1 the bullet mass may be different from that of the lattice atoms DTO2RM1 same as DTO2RM but used in bullet calculations only since bullet mass may be different from that of the lattice atoms M,N atom numbers y coordinate of an x-z plane JT

- KT
- z coordinate of an x-y plane

IT x coordinate of a y-z plane

NTC sum of x, y, and z coordinates of a point in the lattice

DRX,DRY,DRZ difference between x,y, and z coordinates respectively of any two atoms (lattice units)

ADRX, ADRY, ADRZ absolute value of DRX, DRY, and DRZ

DIST . distance between two atoms or the square of the distance (lattice units)

FORCE eroded force between two atoms (newtons)

- FOD FORCE divided by the distance between two atoms (newtons/ lattice unit)
- FA, FB, FC x, y, and z components respectively of the force between two atoms (newtons)

PKE8 kinetic energy of target atom in the lattice (ev)

- DIX,DIY,DIZ x,y, and z coordinate separation between target and bullet (lattice units)
- D81 distance between target and bullet in lattice or the square of the distance (lattice units)
- POT18 potential between target and bullet (ev)
- PKE1 kinetic energy of bullet at end of time step (ev)
- TPOT total potential energy of lattice (ev)
- TPKE total kinetic energy of lattice (ev)

POT potential between any two atoms (ev)

- COL3 potential of the bullet with respect to the lattice minus the target (ev)
- PE8A potential energy of the target with respect to the lattice minus the bullet (ev)

TE total energy of the lattice (ev)

PERE percent error in total energy (percent)

CONV time step multiplier conversion factor for two body problem; makes two body time step multiplier equal to 0.01 regardless of the value used for the lattice problem

- DSQ square of the impact parameter in the two body problem (lattice units squared)
- XIP impact parameter in the two body problem (lattice units)
- RX2, RY2 x and y coordinates of target at any time in two body problem (lattice units)
- RX2T, RY2T x and y coordinates of target at former position, stored while average force is computed (lattice units)
- RX1, RY1, RX1T, RY1T x and y coordinates of the bullet in the two body problem defined in the same manner as RX2, RY2, RX2T, and RY2T
- VX2,VY2 x and y components of target velocity in two body problem (m/sec)
- VX2T,VY2T x and y components of target velocity in two body problem at former position (m/sec)
- VX1,VY1,VX1T,VY1T x and y components of velocity of the bullet in the two body problem defined in the same manner as VX2,VY2,VX2T, and VY2T
- FX1,FY1 x and y components of force on the bullet in the two body problem (newtons)
- FX1T,FY1T x and y components of force on the bullet in the two body problem at its former position (newtons)
- FX2,FY2,FX2T,FY2T x and y components of force on the target in the two body problem defined in the same manner as FX1, FY1,FX1T, and FY1T
- DX x coordinate separation between atoms in the two body problem (lattice units)
- DY y coordinate separation between atoms in the two body problem (lattice units)
- P2KE1 kinetic energy of the bullet in the two body problem after interaction is complete (ev)
- P2KE2 kinetic energy of the target in the two body problem after interaction is complete (ev)
- TKE total kinetic energy in the two body problem (ev)
- T2RA recoil angle in the two body problem (degrees)
- B2SA scattering angle in the two body problem (degrees)

76

- SRE8resultant velocity of target in lattice (m/sec)SRE1resultant velocity of bullet in lattice (m/sec)ATLRAquotient of two velocities; used to find TLRATLRArecoil angle in the lattice (degrees)ABLSAquotient of two velocities; used to find BLSA
- BLSA scattering angle in the lattice (degrees)

RBMT bullet to target mass ratio

EABL energy absorbed by the lattice; does not include potential or kinetic energy of target and bullet (ev)

ET2, ETL, RET, RKEP, RSA2L, RRA2L, RBFI ratios used to compare lattice interaction with two body problem; the ratios are in terms of variables already defined. APPENDIX V

PREGRAM LISTING

BLOCK A

PROGRAM TFF DIMENSION RX(200), RY(20C), RZ(20C) DIMENSION FX(200), FY(20C), Z(20C) DIMENSION VX(200), VY(20C), VZ(200) ODIMENSION R1X(200), R1Y(20C), R1Z(200), F1X(200), F1Y(20C), 1 F1Z(200), V1X(200), V1Y(200), V1Z(20C) DIMENSION C(22,36), PPE(200), PKE(200), RXR(200), RYR(200), RZR(200) COMMCN ETFP, AFAC, ETFF AFAC=3.5906 ETFF=5.9360E-6 ETFF=6.6980E+3 L=1 L = 1ROE = SORTF (2.0) ROE2 = 2.0 EPST = FORC (ROE) EPSTP = POTF(ROE) FORMAT(34X54H THOMAS-FERMI-FIRSOV POTENTIAL, ERCDED, CCPPER-COPPER 10 1 READ INPUT TAPE 2,4, EV, BX, DTI, PMASS FORMAT(4E10.3) 3 4 BZ = BX + 1.0BZS = 6.0-BXRX(1) = BXRZ(1) = BZDY EAC = 1005 PKER = -100.0 CYCLE = 0.0 INDEX = 0 RY(1) = -SQRTFRY(1) = -SQRTF(2.0)OFORMAT(/,29H BULLET 110H ENERGY = F8.1, INCOMING LOCATION X= F6.3, 5H 24H TIME STEP MULTIPLIER= F 12 Z= F6.3, F5.3, / 15 FORMAT(1H1) BLOCK B

VX(1) = C.C VY(1) = SQRTF(EV * 63.54/(1.CE3 * PMASS)) * 5.511811 E04 VZ(1) = 0.0 DT = DTI/ VY(1) * 1.807E-10 RM= 105.463911 E-27 DTOC = DT/3.614 E-10 DTORM = DT / RM DTO2RM = DTORM/2.0 RM1 = PMASS *1.6598 E-27 DTORM1 = DT/RM1 DTO2RM1 = DT/RM1 DTO2RM1 = DTORM1/ 2.0 DO 250 I = 2, 64 VX(I) = 0.0 VY(I) = 0.0

ř

20123450 40 55 59 60	M = 2 $N = 65$ $JT = -1$ $D0 60 J = 1,7$ $KT = C$ $D0 59 K = 1,7$ $IT = C$ $D0 53 I = 1,7$ $NTC = IT + J1 + KT$ $IF (NTC + NTC / 2 * 2) 57, 20, 57$ $IF (KT - 1) 3C, 21, 21$ $IF (KT - 5) 22, 22, 3C$ $IF (IT - 1) 3C, 23, 23$ $IF (IT - 1) 3C, 23, 23$ $IF (IT - 5) 24, 24, 30$ $IF (JT - C) 30, 25, 25$ $IF (JT - 4) 40, 40, 3C$ $RX(N) = IT$ $RY(N) = JT$ $RZ(N) = KT$ $N = N + 1$ $GO TO 57$ $RX(M) = IT$ $RY(M) = JT$ $RZ(M) = KT$ $M = M + 1$ $IT = IT + 1$ $CONTINUE$ $JT = JT + 1$ $CONTINUE$ $T = JT + 1$ $CONTINUE$
	DO 65 I = 65, 172 PPE(I)=0.0

BLOCK C

.

BLOCK D •

+

.

PPE(I)=0.C R1X(I) = RX(I) R1Y(I) = RY(I) R1Z(I) = RZ(I) 55 CONTINUE CO 66 I= 1,64 PPE(I)=0.C PKE(I)=C.C RXR(I) = RX(I) RYR(I)=RY(I) 66 RZR(I) = RZ(I)

-

.

.

65

79 .

PLECK E DC 75 1 = 1, 64 FX(I) = 0.0 CRNTINUL DD 200 I = 1, t^{b} IP1 = I + 1 DO 20C J = IP1 , 172 IF (I-1) 130, 13C, 12C DRX = RX(J) - RX(I) ADRX = ABSF (IRX) IF (ADRX - RCC) 1%C, 200, 2CC DRX = RZ(J) - RY(I) ADRY = APSF(DRY) IF (ADRY - RCC) 1%C, 200, 2CC DRZ = RZ(J) - RZ(I) ADRZ = ABSF (IRX * URX + URY*DRY + URZ * DRZ IF (ADRZ - ROE) 15C, 2C0, 200 DIST = (IRX * URX + URY*DRY + URZ * DRZ IF (DIS1 - POE2) 155, 2C0, 200 DIST = SCRTF(DISI) FORCE = FCRC(DISI) - LPST FOUS = FCRCC / DISI FA = DRX * FOD FB = DRY * FOD FC = DRZ * FCD IF (J - 65) 16C, 165, 165 FX(J) = FX(J) + FC FX(I) = FX(I) - FC CUMTINUE DD 235 I = 1, 64 IF (AESF(FX(I)) - 1.CE-14) 21C, 210, 215 FX(I) = C.O IF (AESF(FZ(I)) - 1.CE-14) 230, 230, 235 FZ(I) = C.O CONTINUE IF (INDEX) 240, 24C, 420 DC 135 120 DRZ * DRZ) 215 220 225 235 235

PLOCK E

- 10-2

240	$\begin{array}{l} 00 & 30C & I = 2, \ 64 \\ 81X(1) &= RX(I) \\ R1Y(1) &= RY(I) \\ R1Z(1) &= RZ(I) \end{array}$
300	F1X(I) = FX(I) F1Z(I) = FY(I) F1Z(I) = VX(I) V1X(I) = VX(I) V1Y(I) = VY(I) V1Z(I) = FY(I) * DTCRM + VX(I) VY(I) = FY(I) * DTCRM + VZ(I) VX(I) = FZ(I) * DTCRM + VZ(I) RX(I) = (VX(I) + V1X(I)) * CTCC + R1X(I) RX(I) = (VX(I) + V1X(I)) * DTCC + R1Y(I) RZ(I) = (VZ(I) + V1Z(I)) * DTCC + R1Z(I) CONTINUE R1X(I) = RX(I) R1Y(I) = RZ(I) F1X(I) = FX(I)
	Fiz(1) = FZ(1) V1X(1) = VX(1) V1Y(1) = VY(1) V1Z(1) = VZ(1) VX(1) = FX(1) * DTCRM1 + VX(1) VY(1) = FY(1) * DTCRM1 + VZ(1) RX(1) = (VX(1) + V1X(1)) * DTCC + R1X(1) RX(1) = (VX(1) + V1Y(1)) * DTCC + R1Y(1) RZ(1) = (VZ(1) + V1Z(1)) * CTCC + R1Z(1) INDEX = 1 GO TD 70 BLOCK F2
420	DO 425 I = 2,64 VX(I) = (FX(I) + F1X(I)) *DTC2RM + V1X(I)
	VZ(I) = (FZ(I) + FIZ(I)) *DT02RM + VIZ(I)RX(I) = (VX(I) + VIX(I)) *DT0C + RIX(I)RY(I) = (VY(I) + VIX(I)) * DT0C + RIX(I)
425	RZ(I) = (VZ(I) + V1Z(I)) * 0TOC + R1Z(I) CONTINUE VX(1) = (FX(1) + F1X(1)) *0T02RM1 + V1X(1)
	$\begin{array}{l} \forall Y(1) = (FY(1) + F1Y(1)) * DTO2RM1 + V1Y(1) \\ \forall Z(1) = (FZ(1) + F1Z(1)) * DTO2RM1 + V1Z(1) \\ Rx(1) = (VX(1) + V1X(1)) * DTOC + R1X(1) \\ RY(1) = (VY(1) + V1Y(1)) * DTOC + R1Y(1) \\ RZ(1) = (VZ(1) + V1Z(1)) * DTOC + R1Z(1) \\ INDEX = G \end{array}$
	CYCLE = CYCLL + 1.C PLOCK G
455 460 465	PKE8 =32.9163268E-C8*(VX(8)*VX(8) + VY(8)*VY(8) + VZ(8)*VZ(8)) IF(PKE8) 460,460,455 IF(PKE8R-PKE8) 460,465,465 PKE8R = PKE8 GD TC 7C CONTINUE

PLOCK F1

.

- re.

DIX RIX(8) = RIX(1) RIY(8) = BIY(1) RIZ(8) = RIZ(1) (DIX*DIX + DIY*DIY = RDE?) 428,435,43 SCRIF(D81) # POTF(D81) = EPSTP 44C = C 0 R1X(8) + + + R1X(1) Ξ DIY = = D81 = DIZ*UIZ) 428,435,435 IF(D8 D81 = 1 081 = POT18 GO TO POT13 PKE1 1V12(1 428 T() = 4113 = 3 = C.0 = C.51804102E+C8*(V1X(1)*V1X(1) + V1Y(1)*V1Y(1) + V1Z(1) 1))*PMASS 435 440 PKE(1) PKE(1) TPCT = = PKE1 = 0.0 0.0 Ξ 1 - E 00 I IP 1 ŧ CD 60C J = IP1, 172 IF(I -1) 525, 525, 540 IF(J -65) 540, 53C, 550 IF(J - 82) 60C, 6CC, 540 CRX = R1X(J) + R1X(I) ADRX = ABSF(DRX) IF(ADRX - ROE) 545,600,600 URY = R1Y(J) - R1Y(I) ADRY = AESF(DRY) IF(ADRY - ROE) 550,6CC,600 DRZ = R1Z(J) - R1Z(I) ADRZ = ABSF(DR7) IF(ADRZ - ROE) 555,60C,6C0 DIST = (URX*DRX + CRY*DRY -IF(DIST - ROE2) 556,000,6C0 DIST = SURTF(DIST) = IP 1, 17 2 525, 525, 5 540, 53C, 530 66C, 6CC, 540 (J) - R1X(I) 600 00 525 530 540 545 550 555,600,600 + CRY*URY + IF(ADRZ - ROE) 555,600,600 DIST = (LRX*DRX + CRY*DRY + IF(DIST - ROF2) 556,600,600 DIST = SURTF(DIST) POT = PCIF(CIST) - EPSTP PPE(I) = PPE(I) + 0.5* POT PPE(J) = PPE(J) + C.5* POT IPOT = TPOT + POT CONTINUE555 DRZ*DRZ) 556 560 CONTINUE 600 CONTINUE COL3 = PPE(1) + 0.5 * POT18 PE8A=PPE(8) + C.5 * POT18 DO 65C 1=2,64 PKE(I)=32.0165268E+C8*(V1X(I)*V1X(I)+V1Y(I)*V1Y(I)+V1Z(I)*V1Z(I)) TPKE = TPKE + PKE(I) CONTINUE 650 = TPKE + PKE1 TPKE TPKL + TPOT = ABSF((TE-EV)/EV) TE = PERE *1.0E2 BLOCK J WRITE OULPUT WRITL OUTPUT WRITE OUTPUT FORMAT(/, 3,10 12. 850 ě 8X, BZ, EV, DTI 19H LATTICE TAPE 3, 85 FORMAT(/, WRITE OUTPUT FORMAT(9CH 185C LOCATIONS ,/) 860 ATOM DX DY υZ VX VY 1 PE 1) νZ KE V2 SHIFT = 1.CE-C5 D0 90C I= 1,64 ENI2(C). DX=R1X(I)-RXR(I) +SSK(DX),SLJ(L+2 DY= R1Y(1) - RYR +SSK(DY).SL 1(L+2 , SLJ(L+2), +SCM(777778), +ESB(SHIFT), AJP3(865), INI2(1). 1) - RYR(I) , SLJ(L+2), +SCM(777778), +ESB(SHIFT), AJP3(875), INI2(1). 865 > DY= R1Y(1) - RYR(1) +SSK(CY),SLJ(L+2),+SCM(777776),+ESB(SHIFT),AJP3(875),INI2(1). DZ= R1Z(1)- RZR(I) +SSK(CZ),SLJ(L+2),+SCM(777778),+ESB(SHIFT),AJP3(885),INI2(1). SENA2(C),AJP(900). > WRITE OUTPUT TAPE 3,895,I,DX,DY,DZ,V1X(I),V1Y(I),V1Z(I),PKE(I PPE(I) > CONTINUE > CONTINUE > FORMAT(I10,3F10.5,3E10.2,2F10.2) 875 885 890 3,895,I,DX,DY,DZ,V1X(I),V1Y(I),V1Z(I),PKE(I),900 895

BLCCK H

HLCCK K

.

CGNV = C.C1/DT1 DTPC = D10C * CDNV UTORM = DTCRM * CCNV DTCRM1=DTCRM * CONV UTO2RM1=DTC2RM1 * CONV UTO2RM1 = DTC2RM1 * CONV RX2 = C.C RY2 = C.C CSQ=(PZ-3.0)*(PZ-3.0)+(BX-3.C)*(PX-3.0) RY1= SCR1F(DSO) XIP=RY1 RX1= SCRTF(ROF2-DSC) = 1.0E=06 RX1= SCRTF(ROE2-DSC) - 1.0E-06 VX2 = 0.C VY2 = 0.C VY1 = 0.C VY1 = 0.0 FX1 = 0.0 FX2= 0.0 FY1= 0.0 FY1= C.0 FY2= C.0 VX1 = -SURTF(EV * 0.06354 / PMASS) * 5.511811E04 INDEX = 0 BLOCK L1 DX = RX1- RX2 DY = RY1- RY2 DIST = DX*DX + DY*CY IF(DIST-ROE2) 1010, 1010, 1005 1070 BLOCK L2 DIST = SCRTF(DISF) FORCE= FORC(DIST) + EPST FX1 = DX/ DIST * FORCE FX2 = -FX1 FY1= DY/DIST * FORCE FY2 = + FY1 LS(LNEEX) 1015 1015 1030 1010 FY2 = - FY1 IF(INCEX) 1015,1015,1030 BLOCK M1 RX1T RY1T RX2T FX2T FX2T FX2T FX2T VX1T VX1T = RA1 1015 = RY1= RX2 = RY2 = FX1 = FY1= FX2= FY2= VX1Ξ VY1 VY1T = VY1 VX2T = VX2 VY2T= VY2 VX1 = FX1 * DICRM1 VY1 = FY1 * DICRM1 VX2 = FX2 * DICRM VX2 = FY2 * DICRM RX1 = (VX1 + VX1T) RY1 = (VY1 + VY1T) RY1 = (VY1 + VY1T) = FY1 * DICRM1 + VX1 = FX_ * DICRM1 + VY1 = FX_ * DICRM + VX2 = FY2 * DICRM + VY2 = (VX1 + VX1T) * DICC = (VY1 + VY1T) * DICC = (VY2 + VY2T) * DICC = (VY2 + VY2T) * DICC = (VY2 + VY2T) * DICC + RX1T + RY1T + RX2T + RY2T + RX2 = (VX2)RY2 = (VY2)INDEX GO TO 1005

3 **4** -

BLOCK M2 VX1= (FX1 + FX1T) * DTC2RM1 VY1 = (FY1 + FY1T) * CTC2RM1 VX2= (FX2 + FX2T) * CTC2RM VY2= (FY2 + FY2T) * CTC2RM RX1 = (VX1 + VX1T) * DTCC + RY1 = (VY1 + VY1T) * DTCC + RY1 = (VY2 + VX2T) * CTCC RY2 = (VY2 + VY2T) * CTCC INDEX = C VX1T + VY1T VX2T VY2T 1030 + + RX1T RY1T RX2T RY2T + + T INDEX = 0 GU TO 1005 BLOCK N 1070 P2KE1=C.518041C2E-C8*(VX1*VX1 + VY1*VY1)*PMASS P2KE2= 32.9163268E-O8 *(VX2* VX2 + VY2* VY2) TKE = P2KE1 + P2KE2 wRITE CUTPUT TAPE 3, 15 wRITE CUTPUT TAPE 3, 10 wRITE CUTPUT TAPE 3, 1075 1075 FORMAT(///, LCH RESULTS OF SIMPLE TWO BODY INTERACTION wRITE CUIPUT TAPE 3, 1075 10800FORMAT(15H KIN ENRG PROJ=, F12.5, 18H KIN ENRG 1 F12.5, 14H TOT ENRG=, F12.5, 12H ENRG IN=, F1C. wRITE CUTPUT TAPE 3, 654 654 FCRMAT(31H RESULTS OF LATTICE INTERACTION ,/,) wRITE CUTPUT TAPE 3, 654 655 FORMAT(14H TARGET VALUES ,//,90H TIME STEPS PCT E TAR 1RULLET KE TARSET PCT E TARGET W/R TC LAI-DULLET wPITE CUTPUT TAPE 3, 665, 6, 618.6, 625.6] wRITE CUTPUT TAPE 3, 665, 7/, 10H TIME STEPS PCT E TAR 1RULLET KE TARSET PCT E TARGET W/R TC LAI-DULLET wPITE CUTPUT TAPE 3, 665, 6, 618.6, 625.6] wRITE CUTPUT TAPE 3, 665, PKE1, COL3, V1X(1), V1Y(1), V17(1) 6650FCRMAT(/, 14H FULLET VALUES,//,15H KIN ENERGY = F7.1, 1 E W/R TO LAT-TARGET = F7.1,25H VELOCITY IN M/SEC X= 2 4H Y= C0.2, 4H Z= E9.2] wRITE OUTPUT TAPE 3, 675 675 FORMAT (/, 16H LATTICE VALUES) wRITE OUTPUT TAPE 3, 600 3000FORMAT (/, 60H PCT ENERGY KIN ENERGY ICT 1 PER ERROR) PETE CUTPUT TAPE 3, 800 P2KE1=C. 18041C2E-C8*(VX1*VX1 + VY1*VY1)*PMASS P2KE2= 32.9163268E-08 *(VX2* VX2 + VY2* VY2) TKE = P2KE1 + P2KE2 1070 1075 ,/) WRITE OU 10800FORMAT(1 E12.5, KIN ENRG TARG= IN= , F1C.1, /////) 655 PCT E TARGET W/R TO) V1X(1),V1Y(1),V1Z(1) KIN ENERGY = F7.1, 29H VELOCITY IN M/SEC X= 1P PCT 1PE9.2. 8000FORMAI (/, PER ERROR WRITE OUTPUT TCT ENERCY WRITE OUTPUT TAPE 3, 810, TPOT, TPKE, TE, PERE FORMAT(3E15.5, E10.5) WRITE OUTPUT TAPE 3, 1100 FORMAT(//, 71H COMPARISON VALUES OF LATTICE REACTION AGAINST SIMPL E TWO PODY PROBLEM,/, 65H BOTH INFERACTIONS STOPPED WHEN TARGET K SINETIC ENERGY MAXIMUM) 310 1100 1E 2 ÎNETIC

84

```
T2RA = ALANF(ABSF(VY2/VX2)) *57.296
B2SA = ATANF(ABSF(VY1/VX1)) *57.296
SRE8 = S.RTF(PKE8R/32.9163268E-08)
SRE1 = SCRTF(PKE1 / (PMASS*0.51804102E-08))
ATLRA = ABSF(V1Y(8))/SRE8
IF(ATLRA-1.0) 1105,1110,1110
TLRA = ACOSF(ATLRA) *57.296
CO TO 1115
LLRA = C O
1105 1E &A = ACOSF( ATLRA) * 57.296

GO TO 1115

1110 TERA = C.0

1115 AELSA = ABSF(VIY(1))/SRE1

IF(ABLSA - 1.0) 1116,1118,1118

1116 DESA = ACOSF( AELSA) * 57.296

GO TO 1119

1118 PESA = C.0

1119 REMT = PMASS/ 63.54

ET2 = (P2KE2/EV)*1.0E02

ETL = (PEKE2/EV)*1.0E02

ETL = (PEKE2/EV)*1.0E02

RET = ETL/T2

RKEP=PKC1/P2KE1

EABL = TL-PKE1-PKEFR-PPE(8)-PPE(1)

RSA2L = 825A/BLSA

RRA2L = 12RA/TERA

RBFI = PKE1/EV

WRITE CUTPUT TAPE 3,1120,ET2,ETL,REI,RKEP,RBMT

112C0FORMAT(/, 43H PERCENT KE TRANSFERED TWO ECCY= F9.3,

118H LATTICE= F9.3,//, 56H RATIC KE TRANSFER IN LATTICE

2/ KE TPANSFER TWO BCCY = F7.5,//,48H RATIO KE PROJ IN LATTICE //

3 KE PRCJ TWO ECCY = F11.5,//, 36H RATIO BULLET MASS / TARGET MAS

4S = F6.3 J

WRITE CUTPUT TAPE 3,1130,EABL, P2SA, BLSA, T2RA, TERA, RSA51, D2A21
    1105
 3 KE PRCJ TWO BCDY = F11.5,//, 36H RATIO BULLET MASS / TARGET

4S = F6.3

WRITE CUIPUT TAPE 3,1130,EABL,P2SA,BLSA,T2RA,TLRA,RSA2L,RRA2L

11300FORMAT(/,33H POT + KE ABSORBED BY LATTICE = F12.3,//,

1 39H SCATTERING ANGLE

2TICE = F7.2,//,35F RECOIL ANGLE

TWO BODY = F7.2, 19H

LATTICE = F7.2,//,35F RECOIL ANGLE

3 19H LATTICE = F7.2,//,63H RATIO SCATTERING ANCLE

4BODY / SCATTERING ANGLE LATTICE = F9.5,//,55H RATIO RECOIL

5LE TWC BCDY / RECCIL ANGLE LATTICE = F9.5 )

WRITE OUTPUT TAPE 3,1140, XIP, RBFI

WI400FORMAT( /, 21H IMPACT PARAMETER = F7.4, 54H RATIO KE BU

1T AT END OF RUN / CRIGINAL ENERGY = 1PE13.5 )

WRITE OUTPUT TAPE 3,15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                LAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  TWC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ANG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     RATIO KE BULLE
```

85

BLOCK R C(1,L) = BX C(2,L) = BZ C(3,L) = XIP IF(BZ-3.0) 1160,116C,117C C(4,L) = C.C GC TU 118C C(4,L) = ACCSF((BZ-3.0)/XIP) * 57.296 C(5,L) = ET2*1.0E-02 C(6,L) = B2SA C(7,L) = ETL*1.0E-C2 C(6,L) = BLSA C(7,L) = ETL*1.0E-C2 C(2,L) = BLSA C(10,L) = PPE(8) + PKE8R C(11,L) = TLRA C(12,L) = PKE1 C(14,L) = PKE8R C(15,L) = P2KE2 C(16,L) = P2KE2 C(16,L) = PERE C(17,L) = CYCLE C(17,L) = CYCLE C(17,L) = PPE(8) C(20,L) = I2RA C(21,L) = RIY(1) L=L+1 BLOCK = T1160 117C 118C BLOCK T BZ= BZ-0.1 IF(BZS-BZ)5,5,1300 1300 CONTINUE IF(SENSE SWITCH 1) 4000 CONTINUE SWITCH 1) 3, 4000

Ť .

BLOCK R

BLCCK W

LMAX = L-1 WRITE CUTPUT TAPE 3,10 WRITE PUIPUT TAPE 3,1350 FORMAI(//,110H X Z B ANGLE TM(2) ISANGLE TM(L) SANGLE TM(L)/TM(2) TE TAR RANGLE DO 1360 J=1,LMAX WRITE CUTPUT TAPE 3,1400,(C(I,J), I=1,11) FORMAT(3F9.3,F10.2,F10.4,F10.2,F10.4,F10.2,F10.4,F13.4,F1C.2) DC 15C0 M= 1,5 WRITE CUTPUT TAPE 3,15 J = 12 I = 14 WRITE CUTPUT TAPE 3,1425 1350 ./) 1360 WRITE OUTPUT TAPE 3,1 FORMAT(//,33x53H TOP 1ICE,//,32X57H BOTTOM 2ICE) 3,1425 3,10 3,1430,EV,DTI 3,1450 TCP NO: IS KIN NO. I S I S KINETIC ENERGY KINETIC ENERGY IN EV IN EV OF OF PULLET 1450 LAIT IN IN NO. LATT 1500 WRITE OUTPUT TAPE 3,1850,(C(J,L), L=1,11), (C(I,L), L=1,11), 1(C(J,L), L=12,20), (C(I,L), L=12,20), (C(J,L), L=21,27), 2(C(I,L), L=21,27), (C(J,L), L=28,32), (C(I,L), L=28,32), 3(C(J,L), L=33,35), (C(I,L), L=33,35), C(J,36),C(I,36) DD 153C M = 1.5 DD 153C M = 1.5 = 1,5 TAPE WRITE OUIPUT J=12 I=13 3,15 3,1425 3,10 3,1430,EV,DTI 3,1510 TOP NG. IS KI WRITE TAPE CUTPUT TAPE WRITE OUTPUT TAPE 3,10 WRITE OUTPUT TAPE 3,1430,EV,CTI WRITE OUTPUT TAPE 3,1510 FORMAT(//, 33X53H TOP NG. IS KINETIC ENERGY IN EV OF BULLET ITICE,//,28X64H BOTTCM NO. IS KINETIC ENERGY IN EV OF BULLET 2BODY PROPLEM) WRITE CUTPUT TAPE 3,1850,(C(J,L), L=1,11), (C(I,L), L=1,11), 1(C(J,L), L=12,20), (C(I,L), L=12,20), (C(J,L), L=21,27), 2(C(I,L), L=21,27), (C(J,L), L=28,32), (C(I,L), L=28,32), 3(C(J,L), L=33,35), (C(I,L), L=33,35), C(J,36),C(I,36) DO 1550 N = 1,5 WRITE CUTPUT TAPE 3,15 WRITE CUTPUT 1510 IN LAT ĪhO IN 1530 WRITE CUTPUT J = 14 I = 15 3,15 TAPE I = 15 WRITE OUTPUT TAPE 3,1425 WRITE OUTPUT TAPE 3,10 WRITE OUTPUT TAPE 3,1430,EV,CTI WRITE OUTPUT TAPE 3,1540 FORMAT(//, 33X53H TOP NO. IS KINETIC ENERGY IN EV OF TARGET ITICE,//, 27X66H BOTTOM NO. IS KINETIC ENERGY IN EV OF TARGET 2C BODY PROBLEM) WRITE OUTPUT TAPE 3,1850,(C(J,L), L=1,11), '(C(I,L), L=1,11), 1(C(J,L), L=12,20), (C(I,L), L=12,20), (C(J,L), L=21,27), 2(C(I,L), L=21,27), (C(J,L), L=28,32), (C(I,L), L=28,52), 3(C(J,L), L=33,35), (C(I,L), L=33,35), C(J,36),C(I,36) WRITE OUTPUT TAPE 3,15 1540 IN LAT ENERGY IN EV OF TARGET IN TW (11), '(C(I,L), L=1,11), (C(J,L), L=21,27), (C(I,L), L=28,52), C(J,36),C(I,36) 1550 J = 17I=16 WRITE WRITE WRITE WRITE CUIPUT TAPE CUTPUT TAPE CUIPUT TAPE 3,1425 3,10 3,1430,EV,DTI OUIPUT TAPE I(//, 44X32H 3,1560 TOP NO WRITE DUTE 44X32H TUE FORMAI(//, 44X32H TUE 1 NO. IS PERCENT ERRCR WRITE OUTPUT TAPE 3,1 1(C(J,L), L=12,20), (C 2(C(I,L), L=21,27), (C 3(C(J,L), L=33,35), (C NO. IS NUMBER OF TIME STEPS, //, 46X28F BOTTOM 1560 3,1850,(C(J,L), L=1,11), (C(I,L), L=1,11), (C(I,L), L=12,20), (C(J,L), L=21,27), (C(J,L), L=28,32), (C(I,L), L=28,32), (C(I,L), L=33,35), C(J,36),C(I,36)

```
DO 1580 M=1,2
WRITE OUTPUT TAPE
                                CUTPUT TAPE 3,1425

CUTPUT TAPE 3,1C

CUTPUT TAPE 3,1430,EV,DTI

OUTPUT TAPE 3,1570

((//, 40x39H TOP NO. 1S SCATTERING ANGLE IN LATIICE,//,

CM 30. IS SCATTERING ANGLE OF TWO BODY PROBLEM )

OUTPUT TAPE 3,1850,(C(J,L), L=1,11),(C(I,L), L=1,11),

L), L=12,20), (C(I,L), L=12,20), (C(J,L), L=21,27),

L), L=21,27), (C(J,L), L=28,32), (C(I,L), L=28,32),

L), L=33,35), (C(I,L), L=33,35), C(J,36),C(I,36)

CO M=1,2

CUIPUT TAPE 3,15
                                                                        3,15
                  J=8
                  I = 6
                 WRITE OUTPUT
WRITE OUTPUT
WRITE OUTPUT
WRITE OUTPUT
FORMAI(//, 4
HOTTCOM NO.
  1570
                                                                                                                                                                  IN LATIICE, //, 34×52H
              1
                 WRITE
  1580
              1(C(J,L),
2(C(I,L),
              3(C(J,L),
DO 16C0
                 WRITE
                 J=11
I=20
WRIT
                                                                         3,1425

3,1430,EV,DTI

3,1430,EV,DTI

3,1590

TOP NO. IS RECOIL ANGLE IN LATTICE,//,36x47H BCT

ANGLE OF TWO BODY PROBLEM

3,1850,(C(J,L), L=1,11), (C(I,L), L=1,11),

(C(I,L), L=12,2C), (C(J,L), L=21,27),

(C(J,L), L=28,32), (C(I,L), L=28,32),

(C(I,L), L=33,35), C(J,36),C(I,36)
                 WRITE
WRITE
WRITE
                                                           TAPE
                                    OUTPUT
                                                           TAPE
                                    CUIPUT
                                    CUTPUT
             WRITE CUTPUT TAPE

WRITE CUTPUT TAPE

FORMAT(//, 42X35H

ITOM NC. IS RECOIL

WRITE CUTPUT TAPE

1(C(J,L), L=12,20),

2(C(I,L), L=21,27),

3(C(J,L), L=33,35),

DO 1620 M=1,5

WRITE CUTPUT TAPE

J=19
  1590
  1600
                                                                           3,15
                  J=19
I=18
                WRITE OUTPUT TAPE 3,1425
WRITE OUTPUT TAPE 3,10
WRITE OUTPUT TAPE 3,1430,EV,DTI
WRITE OUTPUT TAPE 3,1610
FORMAT(//,32X55H TCP NO. IS POTENTIAL ENERGY IN EV OF
TIICE,//, 31X58H BOTIOM NO. IS POTENTIAL ENERGY IN EV
LATTICE )
WRITE OUTPUT TAPE 3,1050
                                                                                                                                                                                             TARGET IN LA
  1610
              1
                                                                                                                                                                                    EV OF
                                                                                                                                                                                                     BULLET
                                                                                                                                                                                                                               IN
              Ż
 2 LATTICE

1620 WRITE OUTPUT TAPE 3,1850,(C(J,L), L=1,11), (C(I,L), L=1,11),

1(C(J,L), L=12,20), (C(I,L), L=12,20), (C(J,L), L=21,27),

2(C(I,L), L=21,27), (C(J,L), L=28,32), (C(I,L), L=28,32),

3(C(J,L), L=33,35), (C(I,L), L=33,35), C(J,36),C(I,36)

D0 1640 M=1,2

WRITE CUTPUT TAPE 3,15

J=21

I=12

WRITE CUTPUT TAPE 3,15

WRITE CUTPUT TAPE 3,1425

WRITE CUTPUT TAPE 3,1440,EV,DTI

WRITE CUTPUT TAPE 3,1440,EV,DTI

WRITE CUTPUT TAPE 3,1440,EV,DTI
 71630
.1640
               1
                   -25
                                        ,/,3X11F10.3,/////,13X9F10.3,/,
                                                                                                                                                18X82F
                                  쁥
              73X3F1C.3,/,48X22H *
83,/,5EX2H *,/,53XF1C.3)
                  END
```

BLOCK Y

FUNCTION POTF(DIST) CCMMON EIFP,AFAC,ETFF POTF=ETFP*(1.0+(DIST*AFAC)**0.8034)**(-3.734)/DIST RETURN END

BLOCK Z

FUNCTION FORC(DIST) COMMON EIFP,AFAC,ETFF Y=(DIST*AFAC)**C.8C34 YP=1.C+Y Z=YP**(-3.734) FORC=ETFF*Z*(1.0+2.9999*Y/YP)/(DIST*DIST) RETURN END END

.

.

3. 4.

.

APPENDIX VI

POTENTIALS

- 1. Born-Mayer
- A. Potential

$$\phi(r) = A e^{-\rho(r-r_o)/r_o}$$

 r_{o} = nearest neighbor separation at zero pressure and absolute zero r_{o} for copper = 2.51A

The three different sets of constants used in the potential form are identical to those used by Gibson et. al.¹⁶

Potential	A(ev)	P
1	0.0392	16.97
2	0.051	13.00
3	0.1004	10.34

Potential No. 2 was used extensively in the program. It can be reduced to a simplified form in the following manner:

$$\phi(r) = 0.051 \times C$$

if distances are expressed in lattice units

$$(13.0 - 9.208 r)$$

 $\phi(r) = 0.051 \times C$

in the potential function subroutine this becomes

$$POTF = 0.051 * EXPF(13.0-DIST * 9.208)$$

Potentials one and three become;

- 1) POTF = 0.0392 * EXPF(16.97-DIST * 8.9996)
- 3) POTF = $0.1004 \times EXPF(10.34-DIST \times 7.3115)$

B. Force

$$\frac{\partial [\phi(r)]}{\partial r} = -Ae^{-\rho(r-r_0)/r_0} \times \frac{\rho}{r_0}$$

substitution of constants for Potential No. 2

$$\frac{\partial [\phi(r)]}{\partial r} = -\frac{(13.0)(0.051)}{2.551} e^{-13.0(r-2.551)/2.551}$$

if distances are expressed in lattice units and electron volts changed to joules;

$$\frac{\partial [\phi(r)]}{\partial r} = -0.41614 \times 10^{-9} \times e^{(13.0 - 9.208r)}$$

in the force function subroutine this becomes;

$$FORC = 0.41614E-09 * EXPF(13.0-9.208*DIST)$$

forces for potentials one and three become;

1) FORC = $0.3127E - 09 \times EXPF(16.97 - 8.9996 \times DIST)$

2) FORC = $0.6507E - 09 \times EXPF(10.34 - 7.3115 \times DIST)$

2. Thomas-Fermi-Firsov

A. Potential

$$V(r) = \frac{1}{2} E_{TF} \left[\left(\frac{Q_{TF}}{r} \right) \phi \left(\frac{r}{Q_{TF}} \right) \right]$$

 $\phi\left(\frac{r}{q_{TF}}\right) = \phi(X)$ Thomas-Fermi screening function

$$\phi(x) = \left[1 + \left(\frac{x}{\alpha_1}\right)^{\alpha_2}\right]^{-\alpha_3}$$

$$K=1$$
 $E_{TF} = 219233 \text{ ev } Q_{TF} = .96062 \times 10^{-11} \text{ m}$

-an

let $x = r/a_{TF}$ and $ATFR = 1/a_{TF}$ (in lattice units) then x = ATFR * DIST (DIST in lattice units)

$$\varphi(\mathbf{x}) = \left[1 + \left(\frac{\mathbf{x}}{\alpha_1}\right)^{\alpha_2}\right]^{-\alpha_3} = \left[1 + \left(\frac{ATFR \times DJST}{\alpha_1}\right)^{\alpha_2}\right]^{\alpha_3}$$

let ATFR/cc = AFAC

$$\phi(x) = \left[1 + (AFAC \times DIST)^{0,8034}\right]^{-3,734}$$

$$\bigvee(r) = \left[\frac{E_{TF}}{2}\right] \frac{1}{\chi} \Phi(\chi) = \frac{E_{TF} \times \Phi(\chi)}{2 \times ATFR \times DIST}$$

let ETFP = E_{TF} / 2 * ATFR then

$$POTF = ETFP \left[1.0 + (AFAC * DIST)^{-3.734} \right]$$

B. Force

set
$$x = r/a_{TF}$$

$$\frac{\partial (V(r))}{\partial r} = \frac{\partial (V(r))}{\partial x} \times \frac{\partial x}{\partial r}$$

$$\frac{\partial (V(r))}{\partial r} = \frac{E_{TF}}{2} \left[-\frac{\phi(x)}{\chi^2} + \frac{1}{x} \frac{d(\phi(x))}{dx} \right] \times \frac{1}{q_{TF}}$$
set $Y = (X_{T})^{\alpha/2}$

then

$$\frac{d(\phi(x))}{dx} = -\alpha_2 \alpha_3 \frac{\phi(x)}{x} \frac{Y}{1+Y}$$

$$\frac{\partial(V(r))}{\partial r} = \frac{E_{TF} \times q_{TF}}{2r^2} \left[1 + q_2 q_3 \frac{Y}{Y+1} \right] \times \phi(X)$$

if the following substitutions and appropriate changes in units are made

$$FORC = \frac{ETFF * Z}{PIST * PIST} \begin{bmatrix} 1.0 + 2.9999 * Y \\ YP \end{bmatrix}$$

where $ETFF = E_{TF} * a_{TF} / 2$

$$Y = (X)^{0.8034}$$
 YP = 1.0 + Y
$$Z = (YP)^{-3.734}$$

ETFF and AFAC are defined at the beginning of the program - Y, YP and Z are calculated in the subroutine each time it is used.

.

