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ABSTRACT

A summary of the Weibull distribution and three repre

sentative sampling procedures to determine point and con-

fidence interval estimates of the parameters that ooour

in the functional form of the Weibull distribution are

presented. Following this, a model, assuming the Weibull

distribution, is proposed which could have possible ap-

plications in analyzing Polaris Missile System Trouble

Failure Reports to determine point estimates of the

reliability of the Polaris Missile components,

I am indebted to Professor P. W. Zehna for his con-

tinued patience, encouragement, and most capable guidance

while acting as faculty advisor* I also wish to thank

Professor W. M. Woods for his valuable assistance as

second reader*

ii



TABLE OP CONTENTS

Section Title Page

1. Introduction 1

2. Summary of the Weibull Distribution 3

3* Sampling Plans 16

I4.. Application to Polaris Missile System 28

5. Bibliography 35

6. Appendix A 36

iii



LIST OP ILLUSTRATIONS

Figure Page

1* Graph of Weibull Density Function 10

2. Graph of Reliability Function 12

iv



TABLE OP SYMBOLS

(Listed in order of their use in the text)

X a random variable with the three parameter
Weibull distribution

F(x) the cumulative distribution function for X

f (x) the density function for X

^ the mean of a random variable

CT the variance of a random variable

TV> the gamma function

T operating time to failure

f(t)' the density function for T

P(t) the cumulative distribution function for T

R(t) the reliability function

the characteristic functionCJXu)

Z(t) the hazard function or Instantaneous failure
rate

0(t) the cumulative distribution function for a
complex item

g(t) the density function for a complex item

L the likelihood function



CHAPTER I

INTRODUCTION

This thesis is concerned with summarizing the Weibull

distribution and providing several possible methods of

analyzing Polaris Missile System Trouble Failure Reports

to determine the reliability of Polaris Missile com-

ponents when the Weibull distribution is assumed to

characterize the failure times of the components*

The Weibull distribution, which was first proposed

by Waloddi Weibull £lj in 1951. is a member of a class of

distributions which characterize wear out failure; the

longer an item has been used the greater the probability

of failure* Wear out failure is associated with gradual

depletion of material, fatigue, or accumulated shocks

and other factors*

The key assumption underlying many of the statistical

procedures in current use for evaluating the reliability

of components or equipment is that the failure times

follow the exponential distribution* However, in many

practical situations sufficient data is not usually

available to Justify the assumption that the exponential

failure law truly characterizes the time to failure

distribution of the equipment or components being tested.



The Weibull distribution which includes the exponential

distribution as a special case is a more general assump*

tion about the time to failure law of components or

equipment. Kao [V} has shown that the failure age

distribution of electron tubes is better chacterized

by the Weibull distribution with shape parameter ap-

proximately equal to 1.7 than by the exponential dis-

tribution. Also when the exponential distribution is

assumed to be the time to failure law, M. Zelen and

M. C. Dannemiller [3J demonstrate that four commonly

employed sampling procedures are not robust* with re-

spect to Weibull alternatives.

Chapter II summarizes the distribution theory

associated with the Weibull distribution and defines

terms to be used in the remainder of this thesis.

Chapter III outlines sampling plans which can be em-

ployed to obtain estimates of the parameters from ex-

perimental measurements. The various estimates to

follow are derived under each of these plans. Chapter

IV proposes three possible methods of using Polaris

Missile Trouble Failure Reports for determining the

reliability of Polaris system components.

« Sampling procedures which are not very sensitive to
departures from basic assumptions are called robust.



CHAPTER II

SUMMARY OP THE WEIBULL DISTRIBUTION

Let X be a random variable which may take on any

value in the continuous scale from m to infinity where

m is a non-negative number* The three parameter Weibull

cumulative distribution function (c.d.f,) is defined as

-(x-m)b

a
(1). P(x) - \ 1-e for x * m, where

x < m

a - scale parameter, a >

b s shape parameter, b >

m s location parameter*, m fc

The probability density function is defined as the

first derivative of F(x) with respect to x, and is given by,

. -(x-m)b

f D"l »
(2). « dPixJ. _f(x) - J b(x-m) ,X2sm

dx
j

a e

1,0 x< m

Weibull [ 1J demonstrated that yield strength of

Bofors steel, size distribution of fly ash, and fiber

* x , m, and x™, respectively were the notations used
by Weibull (TJ •



strength of Indian cotton are distributed in good agree-

ment with the cumulative distribution function, equation

(1). Kao IkJ has shown that the cumulative distribution

function, equation (1), qualifies as a failure distribu-

tion and has successfully employed the Weibull distribu-

tion with location parameter, m, equal to zero to char-

acterize the time to failure of electron tubes* For the

purposes of this thesis and the sampling plans which

follow in Chapter III, the location parameter, m, will

be assumed to be zero* This is a reasonable assumption

since if an item is placed in operation at time zero, it

is exposed to the risk of failure from the time it is

first put into use*

For completness of presentation, the moments and

characteristic function of the three parameter Weibull

distribution are listed below, but a detailed discussion

will only be presented for the two parameter sub-family

having m=0* Given f(x) as the above probability den-

sity function, the nth moment is defined by the formula

-(x-m)P
f~ b-1 a

E(Xn ) = \ xn b(x-m) e dx
Jm a

and is given by

n

E(x ] *
IcTo ( *)* m

'
(W 1]



ft

The mean and variance, denoted by X and <T respectively,

are easily determined from the above relation to be

1

X am+a | (b + 1)

and

<r*= a L"P(£+1) -T^^ + Dj
respectively. The function P(*) is the gamma

function which is defined for every v >0 by

TV> - I

CD

xv-l e-x dx

Suppose now that T is a random variable which may

take on any value in the continuous time scale from zero

to infinity, and the random variable T represents the

total time to failure of an item. Let us further assume

that the two parameter Weibull probability density func-

tion, f(t), specifies the probability law of the random

variable T where

(3). f(t) = (btb"Va) exp (-tb/a)> t £. 0; a,b, >0

— elsewhere

Accordingly, if an item is placed in operation at time

zero, the probability that the total life of the item

is less than or equal to t is expressed as



P(T5 t) a \ (btb-Va) exp (-tb/a)dt = l-exp(-tb/a)

Therefore the cumulative distribution function of the

random variable T is given by

(k). P(t) = 1 - exp (-tb/a)

The reliability function, denoted by R(t), of

an item is also of particular interest since it is

desirable to know the probability that an item or

component does not fail in the time interval (0,t).

Thus the reliability function is the probability

that the time to failure of an item is at least t

time- units and is expressed by

R(t) s p(T > t) = 3 (btb-Va)exp(-tb/a)dt, for t>0

which upon integration becomes

(5). R(t) a exp (-tb/a) ; t *

Note that the reliability function is merely the unity

complement of the cumulative distribution function,

equation ik)

•



The nth moment of the random variable T is defined

by the formula

E(T») = $ t>
n (btb-Va) exp (-t*/a) dt

and is given by

n

(6). E(Tn)= a P (§ 1)

The characteristic function of the random var-

iable T is

4>(m) * E(eiuT) r \ e^* b t*"1 e-(t
b/a) dt

J* £

which upon integration becomes

<j><u> =-£; uuiJ djA ri(itai

The mean time to failure of the random variable T,

denoted by X , is defined as the first moment about

zero and is easily determined from equation (6) to be

1

(7). X = a
J (5 +D

In a similar manner, the variance denoted by (T^of the

random variable T is determined by the formula,



E(T2 ) - E(T) 2
, to be

2

<T = a LTd+D -"pd+ij
Another function of a time to failure probability-

distribution which provides a great deal of insight

into the probability law is the hazard function or

instantaneous failure rate which will be denoted by

Z(t). The instantaneous failure rate or hazard

function is defined by

Z(t) - fit)
BTET

where f(t) and R(t) are the density and reliability

functions respectively. Substitution of f(t) and

R(t) of equations (3) and (£) in the above express-

ion,we have

(8), Z(t) - btb-Va for t^O

It is interesting to note that, for values of the shape

parameter greater than one, the instantaneous failure

rate is an increasing function of time, therefore indi-

cating that wear out occurs during the life of the item.

But in the special case where the shape parameter equals

one and the Weibull distribution simplifies to the ex-

ponential distribution, it is observed that the instan-

8



taneous failure rate is a oonstant equal to l/a, inde-

pendent of age.

The effect of varying the shape and scale para-

meters can most readily be illustrated by graphs of

the probability density function because the prob-

ability that the random variable T will lie in the

interval (t, t-f-h) can be interpreted geometrically

as the area under the probability density function in

the interval from t to t + h. Figure one illustrates

the probability density function for several values of

the shape parameter, b, and with the scale parameter,

a, equal to one. The effect of changing the value of

the scale parameter is to merely squeeze or broaden

the graph of the probability density function, i.e.,

an increase in the value of the scale parameter

would broaden while a decrease in the value of the

scale parameter would squeeze the graph of the prob-

ability density function together. The first deriva-

tive of f (t) with respect to t is

fi(t) - b tb"2 e
a

f-b tb + cd-d"!

which shows that f(t) has a maximum at

t fru»]
1
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if b is greater than one. But if the shape parameter

has a value greater than zero but less than or equal

to one, the probability density function is a mono-

tonically decreasing function of t. Thus increas-

ing values of the shape parameter squeezes the pro-

bability density function together. This can be

interpreted intuitively to mean that the faster an

item wears out, the greater the value of the shape

parameter, b. Figure 2 illustrates the reliability

function, R(t), for several values of the shape

parameter and with the scale parameter, a, equal

to one. Notice for fixed values of the scale para-

meter, all the curves intersect at t equal to one,

regardless of the value of the shape parameter.

Thus far, consideration has only been given to a

single item. It would be desirable to be able to con-

sider a component or complex item consisting of M

individuals or single items. Instead of assuming that

the items are independent, it will be assumed that the

M items of the complex item are quasi-independent in

the following sense. If the life of the ith item is

a random variable T^ with corresponding density func-

tion P
i
(t) then let T be a random variable whose

cumulative distribution function, O(t), is determined

11
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by the equation

l-G(t) P(TX > t)P(T2 y t) . . . P(TM > t)

for t greater than or equal to zero £5>J • Solving

the above equation for G(t) yields

- <p t°i

(9). G(t) s 1-e , t^O

The first derivative of G(t) with respect to t de-

noted by g(t) gives

- Sp tDi

= Xs
b ±t

bi-; e fer *
(10). dG(t) ^g(t)

dt

Equations (9) and (10) above will define the pro-

bability density and cumulative distribution func-

tion respectively of a complex item [$] , i.e., a

component consisting of more than one item which are

quasi-independent. The reliability function of a

complex item is determined by the probability state-

ment, P(T>t), to be

(11). R(t)= \ g(t) dtse *' *
, t*0

and the hazard function is determined from the re-

lation Z(t)- g(t) to be
fSwr

13



(12). 2<t)e Vb^i-"1
/*!

**/

The formula for computing the nth moment of a com-

plex item is then given by

E(T») » \tn V^t^i-Va.) exp <- 5V1
/*, ><»

which can be integrated by parts to yield

nt11"1 exp (- £ tti/a.Mt

Again the mean and variance will be denoted by A and (T

respectively and are determined by equation (13) to be

oo

(Hi.). * - ) exp (- X t
bVa± )dt

. (T * ) 2t exp <- 5Z t
bl/a.)dt - Va(15)

Equations (lij.) and (15) can be evaluated by numerical

methods.

If the Weibull family of probability distributions

is assumed to characterize the time to failure of an

item or component consisting of more than one item

where the various members of the family differ only

by the values of the parameters occuring in the func-

tional form of the distribution, it is dear that the

reliability, hazard, density, and cumulative distri-

U*



but ion functions, along with the various moments are

functions of the parameters, a and b. Consequently,

useful probability statements about these items can

only be made to the extent that estimates of these

parameters may be given. At the present time, point

and confidence interval estimation of parameters are

most frequently employed.

The maximum likelihood estimates of the para-

meters, a and b, will be derived for each of the

sampling procedures presented in chapters III and

IV, although confidence interval estimates will only

be enumerated for the scale parameter, a, when the

shape parameter, b, is assumed to be known in one of

the sampling plans. A thorough search of recent tech-

nical publications Indicates that confidence interval

estimates, when both parameters are unknown, have not

been derived and the derivation of these confidence

interval estimates is beyond the scope of this thesis.

15



CHAPTER III

SAMPLING PLANS

In thip chapter, several methods of obtaining

experimental data to determine the maximum likelihood

estimates (M.L.E,) of the parameters that appear in the

functional form of the two parameter Weibull probability-

distribution will be discussed. Experimental data can

be obtained in a variety of ways, and each particular

method of obtaining experimental measurements will be

defined as a sampling plan. For each of the sampling

plans presented, it is assumed that the random var-

iable T characterizes the time to failure of an item

and the density function, f(t), defined by equation

(3), specifies the probability law of T # It is fur-

ther assumed that it is possible to make repeated

measurements, denoted by T^, Tg» • • • $ Tn , of the

random variable T, and the measurements, T^, • • • »Tn ,

are independent identically distributed random var-

iables, each with the same distribution as the ran-

dom variable T # Accordingly, after selecting a ran-

dom sample and performing an experiment, the observed

values of the random variable T are designated by

tx , t
2 , • . . ,tn .

16



In the case of a complex item composed of M

individual items, a random sample of size n* will

be taken from the item of the ith type, for

1 all 2, • • . ,M. Again the random variables

Tj,, for fixed i and j = 1, 2, . . . , n1# are

independent identically distributed random var-

iables. Also after performing an experiment, the

observed values of the random variable T
±
will be

denoted by tj^, t^2» • • • » ^ini« Each of the

sampling plans presented are based upon random

samples as defined in the above paragraph and are

restatements of the sampling plans contained in

reference [ 5>J •

The method of maximum likelihood is utilized

to obtain estimates of the parameters, because this

procedure generally tends to have desirable proper-

ties not always shared by other methods. In brief,

the method of maximum likelihood estimation consists

of determining the values of the parameters that max-

imize the likelihood function, denoted by L. The

likelihood function, L, is a function of the para-

meters in the joint density with fixed observations.

17



This maximizing process is generally accompolished by

determining the values of the parameters that maximize

the natural logarithm of L, since In L is an increas-

ing function of L. The functional form of L will vary

in general with each sampling plan. Lloyd and Lipow

LoJ and Mood L 7j provide a detailed discussion of

the maximum likelihood method.

The maximum likelihood estimates of the para-

A A
meters, a and b, will be denoted by a and b res-

pectively in each of the sampling plans discussed

in this paragraph* These sampling plans are out-

lined as follows:

SAMPLING PLAN I - Fixed sample size.

Single item case - A random sample of size n is selec-

ted and each member of the sample is tested until it

fails. The total time to failure of each member of

the sample is observed and recorded* If the obser-

ved failure times of the random variable T are

tn* tp# • • • 9 tn , then the likelihood function

is given by

L= 7Tf(ti)
AS/

Upon substituting equation (3) for f (t^) in the

above relation and taking the natural logarithm

18



of L, we have

n n

In L = n In b - n In a + ^ In t,
"1

- 2lt, b/a
Jul

1 *., l

Therefore , if both the parameters, a and b, are un-

known, the M.L.E. of these parameters are given by

(16). £ * 2>ib/n

(17). b - na/( £. t< b lnti-a 2lntJ

respectively. Lloyd and Lipow [6 J outline a pro-

cess of iteration which will solve equations (16)

A A
and (17) for a and b. In the event that the para-

meter, b, is assumed to be known, the M.L.E. of the

parameter, a, under this sampling plan is given by

(18). a =: 2tib/n
n

I

In this situation, it is also observed that a con-

fidence interval estimate for the scale parameter

can easily be determined using the statistio,

(2 21 t^J/a

which has a Chi-square distribution with 2n degrees

of freedom. Complete details of confidence inter-

val estimates can be found in Mood [7] .

19



Complex item case - Assuming that the complex item is

composed of M individual items, the procedure is to

select a random sample of size n* from the item of

the ith type, for is 1, 2, • • • , M» Each member

of the ith random sample is tested until it fails,

and the total time to failure is observed and re-

corded for each member of the ith sample. If the

observed failure times of the random variable T^

are t^, *i2* • • • » *ini» ^nen ^ne likelihood

function for the item of the ith type is given by

lx = 7Tf(tij)
y\

for i - 1, 2, • . . , M. Therefore, upon subs-

tituting equation (3) for ffajj) in the above re-

lation, we obtain

LL as iftbi t lj
bi"1

)/ai exp (-t^i/ai)
r

Accordingly, the M.L.E. of the scale and shape para-

meters for the item of the ith type are determined,

in the same manner as for a single item, to be

A *sn A b^
(19). S^^t^/n,

(20). b^n^j/C Jt^ilnt^

"*1 ^ lnV

20



respectively, for i = 1, 2, . . , M, Again, a

process of iteration can be employed to solve for

the mamimum likelihood estimates. In the situation

where all of the shape parameters are assumed to be

known, the M.L.E. of a^ under this sampling plan is

given by

a
\ - % *ij

bl*i

for 1 s 19 2, . • • , M.

SAMPLING PLAN II - Fixed sample size with item

truncation.

Single item case - A random sample of size n is

placed on te^t simultaneously, and the life test

is terminated when r members of the sample fail.

The number of failures r is fixed in advance of

the experiment, and r is an integer greater than

zero but less than or equal to n. Using this

sampling plan, the first r failures times of the

random variable T are observed and recorded as

the failures occur. Then, if O^t^itgi, • • ,

<± tr < oo are the first r failures, Halperin [QJ

indicates that the likelihood function is given by

(21). Ir=nl/(n-r)l ~fr f (t
±

) ^1-F(tp )

j

&T-r

21



where L is merely the density function of the first

r order statistics. After substituting P(t) and f(t)

of equation (3) and (lj.) in the above equation, the

M.L.E. of the parameters, a and b, are determined in

the usual manner to be given by

(22). a s (2*i* + (*-r>^J fr

(23). b = r a/ Vt^ In t
±
+ (n-r)t

r
b

In tp

A A
Again, the values of a and b which solve equations

(22) and (23) can be determined by an iteration

process. In the event that the shape parameter

is assumed to be known, the M.L.E. of the para-

meter, a, under this sampling plan is given by

(21*). < • * ( 2?*i
b + (n-r)tr

b )/r

Complex item case - Assuming that the complex item

is composed of M individual items, the procedure

is to select a random sample of size n. from the

item of the ith type, for i * 1, 2, • • . , M. The

n^ members of the ith random sample are placed on test

22



simultaneously and the ith life test is terminated

when i»i members of the ith sample fail. As before,

the number of failures ri is fixed in advance of

eaoh experiment, and r^ is an integer greater than

zero but less than or equal to n^. The first r^

failures times of the random variable T^ are

observed and recorded as the failures occur. If

the first r^ failure times of the random variable

Ti are given by < t^ - *i2
-•"•"'• &:&%**'** **? »

then the likelihood function for the item of the

ith type is

[«v]
ni" ri

for i~l, 2, ••• ,M. Proceeding in exactly the

same manner as with a single item, the M.L.E. of the

parameters, a^ and b^, of the item of the ith type are

and

• ft - I % •«** + <vn>*i»£ ] /'i

A *•

(26). bi = ,&/ [ £ t
13
bl in tij +

<nl-"l> fix^
1 ^irj-ft * ln *iJ

23



As before, equations (2f>) and (26) can be solved by an

iteration process for ^ and b1# for i » 1, 2, . . . M,

If all of the shape parameters are assumed to be known,

the M.L.E. of the parameter a< is

(27). rt = [jt*u
bi + c«i-»i) *lp .

bt J /^

for i s 1, 2, . • . ,M.

SAMPLING PLAN III - Fixed sample size with time truncation.

Single item case - A random sample of size n is selected

and each member of the sample is tested for a specified

time, say tQ# The time t , where tQ is greater than

zero but less than infinity, is defined as the truncation

time. The number of failures denoted by R that occur in

the time interval, (0,to ) J
are observed and the R failure

times of the random variable T recorded. Using this

sampling procedure, R is of course a random variable

which may take the value r, where r = 0,1,2, • • . n.

If the observed failure times are t^,t2» • • • »t r ,

then the likelihood function is

The likelihood function for this sampling plan is

formally derived in Appendix A. Again, substituting

2k



P(t) and f(t) of equations (3) and (lj.) in the above

relation, the M.L.E. of a and b are derived in the

usual manner and determined to be given by

(2^>. a = [ £ t* + (n-r)tc*J /r

.(29). b - r a/[ Z t, b In t, +.

* A.2(n-r)t rt

b Int. -a
J^

t A j

respectively. As before, an Iteration process can be
A. A.

employed to solve equations (28) and (£9) for a and b.

Also, under this sampling plan the M.L.E. of the scale

parameter is given by

(30). £ - £ £ *i
b
* (n"r) to

b
J /»

when the shape parameter is assumed to be known.

Complex item case - If the complex item is assumed to

be composed of M individual items, the experimental

procedure is to select a random sample of size n^ from

the item of the ith type, for i = 1, 2, . . . ,M. The

sample of the ith type is tested for a specified

truncation time t* yand the number of failures denoted
' o

by R, that occur in the time interval^ (0,t^ )s
are ob-

25



served and the R^ failure times of the random variable

T^ recorded. As before, the number of failures, R.,

is a random variable which may take the value r,,

where r^al, 2, , , , , n^. If t^ t 12 , . • .»t lr

are the observed values of the r, failure times; then

using the likelihood function,

the M.L.E. of a^ and b
±

are determined to be given by

t3D • *i * I jf HS * tf*!)**,*1 1 /pl

(32). *i- 'A/L ?, t ii
bl

l** *ij

+ (n^r^t^i In t lo
- ^ ? In t±j J

i

for the item of the ith type, where i=l, 2, ...M.

If all the shape parameters are assumed to be known,

the M.L.E. of the parameter a
i

is

• (33) - h;- r 2[ *ij
bl

+ (ni-'i)*i
bi
J At

for i - 1, 2, . . . , M.

26



Thus, it is readily seen that considerable cal-

culations are required to solve for a and b in each

of the above sampling plans. But by utilizing a high

speed electronic computer, the iteration process re-

quired to solve for a and b is readily accompolished.

Kao l9j outlines a graphical method of obtaining a

A A
first approximation for a and b. If these first ap-

/\ a
proximations of a and b are provided to the computer

as the initial trial, the iteration method should

A A
quickly converge to a solution for a and b. In the

next chapter, the above sampling plans, assuming the

parameters, a and b, are unknown, will be utilized in

the proposed models for analyzing Polaris Missile

System Trouble Failure Reports, It will be further

assumed that high speed electronic computers are

available to aooompolish the calculations required

A A
to solve for a and b.

27



CHAPTER IV

APPLICATION TO POLARIS MISSILE SYSTEM

In this chapter, three models are proposed which

utilize Polaris Missile System (PMS) Trouble Failure

Report (TPR) as experimental data for determining

M.L.E. of parameters. By following the procedures

proposed in the models below, it may be possible

to obtain a useful point estimate of quality indices,

such as mean time to failure and reliability, of

certain items composing the missile system. The

models are applicable primarily to missile items

for which a life history is maintained. An item

will be considered to have a life history if:

(1). It is possible to distinguish each item

by some identification system from all other items

of the same type.

(2). i A permanent record is maintained of the

total operating time to failure.

(3). Assuming that the item does not fail, it

is possible to estimate accurately the total operating

time accumulated by the item at some future date.

In each of the models, the total operating time

to failure of an item is assumed to be a random variable
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T that is specified by the two parameter Weibull prob-

ability distribution with both parameters considered

to be unknown. Accordingly, if n items of the same

type are selected at random, this sample is assumed

to consist of n independent identically distributed

random variables which are characterized by the same

probability law as T. It is further assumed that

none of the items have accumulated operating time

prior to their purchase by the United States Navy.

Also, an item, which has failed and been repaired,

is considered to be the same as a newly purchased

item with no accumulated operating time. In each

of the models, the operating time of the items is

accumulated by check outs or other reasons for op-

erating the item, and the TPR which provides the

total operating time to failure is used as the ob-

served value of the random variable. Naturally, it

is assumed that the time to failure reported in a

TPR is accurate.

The first model proposed is Sampling Plan I

which is discussed in Chapter III. Consequently,

for a sample of size n, the M.L.E. of a and b are

given by equations (16) and (17), respectively,

and a point estimate for the reliability and mean
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time to failure can be obtained by substituting the
A A*

calculated values of a and b into equations (£) and

(7)# respectively. In the case of a complex item,

the procedure is the same, except that the values

are obtained for the M.L.E. of &± and b
i for

i»li 2, • • . * M, with equations (19) and (20),

Again, a point estimate of the reliability and mean

time to failure can be obtained by substituting the

value 8 of a^ and bj. into equations (11) and (llj.),

respectively. Notice that equation (Xi|.) must be

evaluated by numerical methods to obtain a point

estimate of X • The limitation of this model is

the waiting time required to observe the nth failure.

Prior to outlining the next two models which

are applications of Sampling Plan3 II and III, it is

neoessary to present additional background concerning

the PMS. Consider an item of a given type, say X,

which continues to accumulate operating time by

check outs until it fails. Because the PMS is an

expanding program, items of type X are constantly

being added to the system and also accumulating

operating time. Consequently, if n items of type

X are selected as a sample, each of the items could
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have accumulated varying amounts of operating time

depending upon when the item was purchased by the

Navy, The effect of the above situation is to com-

plicate item and time truncation sampling plans as

discussed in Chapter III. But Sampling Plans II and

III can still be used to obtain M.L.E. of the para-

meters ,if a life history is kept for items of type

X* as follows.

The second method for obtaining point estimates

of quality indices employs Sampling Plan II. The

procedure is to select P samples of size n*, where

j:l f 2, . . • ,P, from items of type X. The items

in the jth sample are selected so that each of the

members of this sample are expected to have accumu-

lated approximately the same amount of operating

time at a future date. For each of the P samples,

fix in advance the number of observed failures, de-

noted by Tj, which will terminate the jth experiment.

If equation (21) is used as the likelihood function

for the jth sample of size n* and if the P samples

are assumed to be independent, the likelihood

function, denoted by «£ , of the P samples is given by

X - Trnjl/Uj-rj) tf t(t± ) [l-F(trj )T
nj•*1
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Upon substituting P(t) and f(t) of equations (3) and

(I4.) in the above relation, the M.L.E. of the para-

meters, a and b, are determined in the usual manner

to be given by

(3W. » = M ly^r^r/]/*;,

(35). b = ^"j £ rj/ [j? %* la t±

b In tr - a 2- *i

Therefore, a point estimate of a quality index can be

obtained by substituting equations (3I4.) and (35) into

the equation which defines the quality index desired.

In the case of a complex item, the method is completely

analogous except there are M items of different types.

Again, life histories must be maintained for each type

of item, «

The third model uses Sampling Plan III. As in

the second model, P samples of size n., where

j-1, 2, • • • ,P, are selected from items of type

X so that each member of the jth sample is expected

to have accumulated the same amount of operating

time at a future date, A truncation time, denoted
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by t< , is selected for each of the j samples and the
jo

experiment is considered to be terminated after the

truncation time has elasped for each of the j samples

of size n,, where j -1, 2, • • • ,P. As in Sampling

Plan III, the number of failures, denoted by R., which

occur during the truncation time, t < , in the jth
Jo

sample is a random variable. Assuming that each of the

P samples are independent, the likelihood function, de-

noted by ^C , is

where L. is the likelihood function of Sampling

Plan III. Proceeding as in Sampling Plan III,

the M.L.E. of a and b are given by

(36). a i\[^^-r^^y^
and

l!7K *
-

1b£/ [s
Aj| A

t ±
b In t

±

+ (n.-r )t, b In ti -a>til
J J Jo Jo fe 1 J
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In the case of a complex item the procedure is com-

pletely analogous. Therefore, point estimates of

quality indices can be determined in both the single

and complex item case by substituting the equations

for the M.L.E. of a and b into the equation for the

desired quality index.

In the last two models, the selection of the

members of the jth sample should occur naturally

since a group of items of a given type is usually

issued to a submarine at the same time. These

items should accumulate operating time at the same

rate through check outs until failure. The time

when each of the items is issued can be determined

by examining the life history of the items; con-

sequently, the members of the jth sample can be

determined for either model two or three.
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APPENDIX A

In Sampling Plan III, n items are tested until a

specified time, t , has elasped. The number of failures

denoted by R that occur in the time interval (0,to ) are

observed and the R failure times recorded. Using this

sampling procedure, R is a random variable which may

take the value, r, where r = 0, 1, * • . , n. As

before, equations (3) and (I4.) define the probability

density and cumulative distribution functions res-

pectively of the random variable T. The discussion

which follows is a formal derivative of the likelihood

function for Sampling Plan III.

Maximum likelihood estimators are functions of

the data obtained from an experiment. In this case,

the experiment is to specify a truncation time tQ

and observe the number of failures, R, and the

failure times, T^, which occur in the time in-

terval (0,t o ); consequently, the joint density

function of the number of failures, R, and the

times to failure, T^, given that the failures

occur in the time interval (0,to ) would be ap-

propriate for determining the likelihood function.
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Let A be defined as the event,

^1**1* T
2
< t 2» • • • > TR < tR ) where the T±

are not ordered and t ± < tQ for 1H, 2, . . ,,R.

Let B be defined as the event, (R*r), where

r-0, 1, . . . , n .

Let C be defined as the event that the failures

which occur do so before time tQ .

Let the event, AB, be expressed as (Tx< tQ , . . ,,Tr < t )

Then the problem is to obtain the distribution function

which represents the probability statement P(ABlc).

Using conditional probability relations, it is ob-

served that

P(ABlc) - P(ABC) . P(BC) P(a\BC >P(B|0)
P(BC) P(c)

"

where

P(AlBC)=. PCT^^, • . . ,TR<tR jB/1c)

, (>t)
?
[J

Tl< **' * * *'^^^gfl>tp, * - - ,Tn>t )HBns]

p(Bno

_ (£)#
p<v £-»<vj

*-'

(£)[p(t°>]
r p<t n

»

for t, <t
l o

— 4.*/ for t ±<t
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and

P(B|C) = (j£tf? (t
)~J

r [T-FUjJ *-*

therefore

F(t1 ,t2 ,...,tr,R S r)s (SlYft*lH) p-P (toH n"r

for t^tQ

Accordingly, the joint density function is obtained

by taking the partial derivatives of the above dis-

tribution function with respect to t^ for i=l,...,r

and is given formally by

f(tlM ..,triR S r) = f/t^f(tl> f}'
nt<^}

n"P

for ti<tQ
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