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ABSTRACT

The interactions between shock waves, produced in air by
detonation of explosives, and specific targets which they can destroy by
air blast are described. A mathematical analysis is used which relates
weights of explosive (or yields of nuclear devices) to the distances at
which they can cause lethal damage over the entire range of blasts from
a few pounds of conventional high explosive to kilotons or megatons of
nuclear blast. Effects at sea level and higher altitudes are examined.
In the analysis, typical targets are defined by two parameters for which
specific numerical values can be established. Shock waves produced by
detonation of specific explosives are similarly defined in mathematical
terms which relate characteristics of the explosive to the ambient atmos-
phere. A dimensionless scaling parameter relating a shock wave
parameter to a target parameter is the key to the scaling relationships
derived.
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PROLOGUE

The General Scaling Equations presented in this report are based
on interactions between shock waves generated by explosions in air and
targets which can be fully defined by two parameters in a simple mathe-
matical model. Simplicity is achieved by ignoring many factors which
complicate rather than improve the study of blast phenomena. These
scaling eqjuations, and the analytic techniques based on their use, are
not intended to be precision tools for computing specific effects with max-
imum accuracy, even though they are often as accurate as far more com-
plicated computational techniques. Their unique value lies in their use
of a dimensionless, universal scaling parameter whose values span the
entire spectrum of blast damage phenomena, from the effects of a few
pounds of conventional high explosive to those of megatons of eguivalent
TNT. The readerkis..cautioned, howe?er, not to expect real targets to be-
have precisely like the simplified models from which the scaling equations
were derived, but he is encouraged to use the equations freely as a means
of correlating isolated p'ieces of data with the basic analytic structure of

blast damage relationships.

These General Scaling Equations are a valuable aid in simplifying
the complex effects of an air blast on a target. They will be invaluable to
the novice searching for a basic understanding of air-blast phenomena.
The equations will also serve those who are making detailed studies of
particular phases of blast damage phenomena, by showing them just how

their area of interest relates to the overall realm of air-blast theory.
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1. PURPOSE AND SCOPE

This analysis deals with targets and the interactions between them
and the shock waves generated by the detonation of explosives., It limits
its attention to that fraction of the total range of scaled distances within
which a variety of actual targets, varying widely in toughness, have been .
destroyed by air blast, Within this limited range, an abundance of excel~
lent experimental data shows that shock waves behave in an orderly fashion
allowing the parametric relationships which define their characteristics to

be expressed mathematically by two simple, tractable equations.

Since the purpose of this report is to derive scaling equations for
interactions between shock waves and targets which result in target 'kills, "
these equations will be used only to compute the effects of interactions with-
in the range of scaled distances at which such kills are realistic. For this
reason, equations which validly and accurately define the characteristics
of shock waves, over this range of scaled distances, can be used as the
basis for deriving General Scaling Equations for blast kills. These kills
will be equally valid and accurate because the kills occur within the range

to which the basic equations apply.

These facts make it possible to derive scaling equations of classic
simplicity in which specific target characteristic data (inherent in the "uni-
versal scaling parameter' used in their derivation) ensure that the equa-
tions will be valid for the range in which shock waves can and do kill such
targets. This universal scaling parameter allows the equations defining
the blast-shock wave characteristics to be converted successfully into

equations which scale the interactions between shock waves and targets.
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II. DEFINITION OF SHOCK WAVE CHARACTERISTICS

Appendix A% shows that experimental data, over the range of scaled
distances with which this report is concerned, can be represented by con-
sistent relatimships between the parameters of the shock wave and its dis-
tancc from the detonation of any given weight of explosives. Such data, for
the well known military high explosive, 50/50 Pentolite (Ref. 1), which is

frequently used as a standard for blast studies, yield the following equations:

_ 13,300 W

R3

P (Eq. A-6) (1)

0.733_0.267
p

_220W

<C>R1.20
c
o

I (Eq. A-7) (2)

W = weight of explosive charge (1b)

R = distance from explosive charge (ft)

P = '"normally reflected" peak overpressure of shock wave (psi)

I = "mormally reflected' positive impulse of shock wave (psi- msecs)
P = ambient air pressure (atmospheres), having the value of 1. 00

at sea level

— = ratio of the velocity of sound in air at any altitude to the ve-

locity at sea level

These equations are valid and accurate analytical expressions for
peak overpressure and impulse characteristics of shock waves produced

by 50/50 Pentolite over a range of scaled distances from 2 ta 10 and are

"In the interest of brevity in the ensuing text, definitions of terminology,
and the details of all derivations are given in the appendices.

-3-
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very good approximations over a still wider range. Data for other high
explosives can be analyzed to yield equations of similar form but with

different numerical coefficients defining their characteristics.

Equations (1) and (2) may be solved simultaneously for W and R,

3 3
0. 0083 (£> I
C
O

yielding:

W="7730 0.80 vy, A=8) (3)
P p
4.8 (—°—> I
CO
R = 3733 0,267 (Ea A-9) (4)
P p

A third, and very important equation, derived either by combining

Egs. (3) and (4) or directly from Eq. (1) is given by

23.1 W1 /3

(5)
P1/3

R =

The significance of this equation is discussed in a later section of this

report.
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III. CHARACTERISTICS OF A TYPICAL TARGET

A typical target for air-blast destruction is an aircraft which has a
relatively light skin covering the basic structural framework of ribs, stif-
feners, and braces. Typical blast damage, assessed as a target kill, may
consist of substantial crumpling and distortion of the surface. A character-
istic of this damage is that the surface is forced inward a considerable dis-

tance toward the basic structural elements which support it.

In order to establish a basis for the numerical assessment of target

characteristics, the following parameter is defined:

Pm = the minimum unit surface pressure which causes any perman-
ent deformation of the target; it is further assumed that Prn is

the unit pressure with which the target will resist deformation
when pressures greater than Pm initiate and continue destruc-
tive deformation,
In the course of deriving functions for the total work done in deforming a tar-
get to the point of destruction (Appendix C), several other target parameters
will be used temporarily and will ultimately be replaced by a second target
characteristic parameter, defined as:
I = the lower limit for the value of an impulse which can deform
the target enough to destroy it.
The minimum unit pressure, Pm’ is the only parameter required in the

first step of the derivation given in Appendix C.
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IV. THE UNIVERSAL SCALING PARAMETER

This analysis is concerned with scaling the interactions between

shock waves and targets. A scaling parameter for this purpose should

be a dimensionless ratio between some distinctive characteristic param-
eter of the target and a similar distinctive characteristic parameter for

the shock wave. The only characteristic common to both is a unit pressure.

A universal scaling parameter, which can uniquely correlate every
possible combination of charge weight with a corresponding lethal radius,
is the ratio ¢, defined as

i
€ ="p (Eq. B-1) (6)

where Pm is defined as before and P is the largest shock wave unit pressure
which can just destroy the target without over killing it. The ratio, then,
which exists when the shock wave can just kill the target is €. It is im-
possible for € to be zero since every real target offers some finite resis-
tance to deformation. No target deformation can take place unless P is
greater than Pm’ which implies that ¢ must be less than one. Within

these limits, € spans the entire spectrum of charge weights (and corres-
ponding lethal distances) from a few pounds of conventional high explosive

to nuclear devices whose yield is measured in kilotons or megatons of

equivalent TNT.

In the scaling equations derived in this report, the characteristics
of the explosive, the target, and the ambient atmospheric conditions (alti-
tude and ratio of sound velocities) are all defined by appropriate numeri-
cal values of the parameters. Every set of conditions represented by these
parameters corresponds to a unique weight of explosive, and the unique
lethal distance associated with it. Therefore, € is a universal scaling
parameter for the interactions between shock waves and the targets which
they are capable of killing when the shock waves are spherical and the tar-
gets are correctly defined by the parameters, Pm and Im.

ol =
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V. A GENERAL RELATIONSHIP BETWEEN LETHAL
DISTANCE AND CHARGE WEIGHT
The efficacy of the universal scaling parameter becomes readily
apparent when it is introduced into Eq. 5; the shock wave parameter, P,

is replaced by the more convenient target parameter, Pm, to give

237 Wl g 12

p e
m

R (Eq. G-9) (7)

The generality of this equation becomes obvious when €:approaches one,
as it does for large nuclear charges. In this case the basic R/WI/3 res=
lationship is modified only by a term defining the threshold of damage for
the target. However, when € is less than one, its values modify this basic
relationship and introduce the variable distance-weight relationships which

characterize moderate-sized charges of conventional high explosives,

Although Eq. 7 is an enormously useful scaling equation, further
modification is necessary before it can be used effectively. The problem
of scaling blast damage would be considerably over-simplified if it were
to be expressed in terms of a single parameter and the equation for shock
wave peak overpressure. The cube root of Pm appears in the denominator
of Eq. 7, but such factors as the amount of work per unit area which con-
stitutes a complete kill and the altitude at which the blast occurs do not
appear explicitly. A closer examination shows that these factors are im-
plicit in the value of € . It is then necessary to determine the proper value

of € to be used in Eq. 7.

This determination is not a trivial task; it is treated at length in
Appendices C and G. It requires the derivation of functions for the total
work per unit area which constitutes a kill, and the derivation of general
parametric equations for R and W which are repeating functions of the uni-

versal scaling parameter, € . R and W also contain terms dependent on

i
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the explosive, target, and altitude. The derivation of the following equa-

tions is the major accomplishment of this analysis:

C3
W ||6a)
m o

W = 0.0083 e 255 | Fyt€) Ba. G- (8)

P p
m
<
I cO
i} m :
R = 4.8 0.733| | 0.267 | Fr'€) (Ba. G-2) (9)
» p

In each of these equations the first factor, the numerical coefficient,
is a characteristic of the explosive (50/50 Pentolite) and would be different
for different explosives. The second factor consists of target parameters,
and the third consists of the parameters which define the effects of altitude.
Analytical expressions are derived in Appendix G for the functions of €
which constitute the fourth factor of each equation, but the complexity of
these functions makes it more practical to use the values in Table I (p. 10).
The two functions of € in Eqs. 8 and 9 are related in the following way:

/361/3

- 1 -
Fo(€) = [F(€)] (Eq. G-7) (10)

The third or altitude factor may be written as Fw(alt) or FR(alt). Average

values of these factors are given as a function of altitude in Table II (p. 12).

The scaling equations may thus be simplified to give:

I 3
- m
W = 0.0083 . .20 Fw(alt) Fw(e) (11)
m
I i
R=4.9 P—m FR(alt) FR(G) (12)
m
-8-
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Solving Egs. 11 and 12 for their respective functions of € :

(7 = 120.5 W
FW € : 3 (13)
m
—— F__(alt)
P 1.20 w
m
R
FR(G) = Im (14)
4.8 0. 733 FR(alt)
P
I
_9_
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Table 1

Functions of €

€ FW(G) FR(G) € FW(G) FR(e)
0.01 0. 00407 0.0344 0.36 0.976 0.706
0.02 0.00958 0.0577 03 1.063 0.733
0.03 0.01597 0.0782 0.38 1.159 0.761
0.04 0.02310 0.0974 0. 39 1.264 0.790
0.05 0.03095 0.1157 0. 40 1. 380 0.820
0.06 0.0395 0.1333 0.41 1.509 0.852
0. 07 0.0488 0.1506 0.42 1.651 0.885
0.08 0. 0587 0.1675 0.43 1. 809 0.920
0.09 0.0695 0.1842 0.44 1.985 0.956
0. 10 0.0810 0.2008 0. 45 2.181 0.994
@ 11 0.0933 0.2173 0.46 2.400 1.033
0.12 0.1065 0.2338 0.47 2,642 1,075
0.13 0. 1206 0.2503 0.48 2.915 1,118
0. 14 0.1357 0.2668 0.49 3.22 1,164
0. 15 0.1518 0.2835 0.50 3.56 1.212
0.16 0.1691 0. 300 0.51 3.95 1.263
o 0.1875 0.317 0.52 4. 39 1.316
0.18 0.2072 0.334 0.53 4, 88 1. 373
0.19 0.2283 0.351 0.54 5,44 1,432
0.20 0. 2509 0.369 0.55 6.08 1. 495
0.21 0.2751 0. 387 0.56 6. 80 1.562
0.22 0.3010 0.405 0.57 7.63 1.632
0.23 0. 329 0.423 0.58 8. 58 1.707
0.24 0. 359 0.442 0.59 9.67 1.787
0.25 0.391 0.461 0. 60 10.93 1.872
0. 26 0. 425 0. 480 0.61 12, 38 1.962
0.27 0.463 0.500 0.62 14.07 2.058
0.28 0.503 0.520 0.63 16.03 2.162
0.29 0. 546 0. 541 0.64 18. 33 2,272
0. 30 0.593 0.563 0.65 21,03 2.391
0. 31 0. 644 0.585 0.66 22 2,519
0.5 0.700 0.607 0. 67 27.99 2,657
0. 33 0.760 0.631 0.68 32.5 2.806
0. 34 0.826 0.655 0. 69 37.9 2.967
0. 35 0.898 0.680 0.70 44,3 3. 14

-10-
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Table I (cont'd)

€ FW(G) FR(e) € Fw(e) FR(€)
0.71 52,2 3.33 0. 86 1595 11.11
0.72 61.7 3. 54 0.87 2246 12.50
0.73 73.4 ST 0.88 3249 14,19
0.74 87.9 4,02 0. 89 4850 16.28
0.75 105.9 4,30 0.90 7513 18,91
0.786 128. 4 4,60 0.91 12, 180 22.29
o 157.1 4,95 0.92 20, 870 26.178
0.78 193.7 5.33 0.93 38, 400 32.9

0.79 241.1 5.75 0.94 77, 500 41,8

0.80 303 6.24 0.95 117, 500 55, 2

0.81 385 6.78 0.96 488,700 LT

0. 82 496 7.41 0.97 1, 800, 000 120. 4

0.83 648 8.13 0.98 11, 240, 000 22,5

0. 84 859 8.97 - 0.99 256, 600, 000 633.3

0. 85 1159 9.95

-11-
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Table II

Functions of Altitude

Alt, Alt,

(1000's (1000's
of F_ (alt) F _(alt) of F. (alt) F _ (alt)

W R

feet) b & feet)
1 1,015 1,005 31 1,79 1528
2 1,03 1.01 32 1.83 1,22
3 1,05 1,02 33 1.87 1,23
4 1,07 1,02 34 1,92 1.24
5 1.09 1,03 35 1,96 1525
6 1,11 1,03 36 2,03 1A
7 1,413 1,04 37 2.11 1,28
8 1,14 1./05 38 2.19 1,30
9 1.16 1,05 39 2,28 1.:32
10 1.18 1,06 40 2rsoil 1.33
11 1.20 1.06 41 2.46 1,35
12 1,22 1.07 42 2k 5iD 1,37
13 ;25 1,08 43 2.65 1.38
14 1,27 1.08 44 2.76 1,40
15 1.29 1,09 45 2.86 1.42
16 1,32 1.10 46 2.97 1,44
17 1.34 1,10 47 3.09 1,46
18 1,37 1,11 48 3.21 1.48
19 1.39 1,12 49 3.34 150
20 1,42 1.13 50 3. 47 1,58
21 1.45 7 195 51 3.61 151553
22 1.48 1.14 52 3.75 1.55
23 1,51 1., 15 53 3.90 1,58
24 1.54 1.16 54 4,07 1,60
25 1554 1.16 55 4,23 1.62
26 1.61 119, iy 56 4,40 1.64
207 1.64 1,18 57 4,57 1.66
28 1.68 1,19 58 4,74 1.68
29 1.72 1.20 59 4,93 1.70
30 1.75 1521 60 Sl 12 1,72

=ik
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V1. SCALING BLAST DAMAGE

Equation 7 was derived in Section V by inserting € in an equation
dependent solely on the characteristics of the explosive. It can also be de-

rived from Eqs. 8 and 9.

Scaling computations start with a target which is defined by two
parameters, Pm and Im. These values must be known before the scaling
equations can be used. The methods of determining these values are dis-
cussed at some length in Appendix J when Pm and Im are known for any
target and the altitude is specified. Equation 13 gives a value of FW(G)

for any weight, W, and Table I gives the corresponding € value.

The W and the corresponding € inserted in Eq. 7 give the lethal
radius at which the charge, W, can kill the specified target at the specified
altitude. This process may be repeated indefinitely with many different
values of W, and accurate lethal distances can be computed by simply find-

ing the € value that goes with each W for the specified target and altitude.

The use of Eq. 7 is a short cut in some cases; normally the known
parameters are substituted in Eqs. 8 or 11 to find the values of FW(G) and
€ , These, in turn, give FR(G) from Eq. 10 and allow R to be determined

from Eqgs. 9 or 12 for the specific target situation.

Q=



The Johns Hopking University
APPLIED PHYSICS LABORATORY
Silver Spring, Maryland

VII. A GENERAL R-W CURVE AND A SCALING NOMOGRAM

When the values of the functions of € listed in Table I are plotted
in terms of log FR(G) vs log FW(G), they present a general parametric
equation. The value of such a graph becomes apparent when it is realized,
from the scaling equations, that for any specific explosive, target, and al-
titude, R and W are simple linear functions of FR(G) and FW(E) respec-
tively. If FR(€) Vs FW(G) is plotted on a transparent overlay, it can then
be oriented with respect to a logarithmic diagram whose ordinate is dis-
tance (in feet) and whose abscissa is charge weight (in pounds). The con-
stants which relate R to FR(G) and W to FW(G) determine the vertical and
horizontal displacements, respectively, of the overlay with respect to the

distance-weight diagram,

A nomogram based on this principle was constructed at the Applied
Physics Laboratory in 1954 (Ref. 2).. At that time it was classified con-
fidential because data on specific targets were displayed on it as a guide
for positioning the graph with respect to the scales. The principle has
subsequently been applied to a somewhat more elaborate '"Nomograph Cal-
culator' covered by U.S. Patent No. 2,991, 934, July 11, 1961 (unclassified),
assigned by the author to the United States of America as represented by

the Secretary of the Navy.

When both the graph and the scales are extended over many cycles,
any fixed orientation of the component parts permits the reading of concur-
rent distances and weights over the entire available range of the scales.
These concurrent values apply to the kind of explosive, the nature of the

target, and the altitude for which the 'setting' is made. The nomogram

is merely a quick and convenient way of graphically performing the same
analytic processes which are used in computing these relationships by
means of the equations. The vital role which the dimensionless parameter,
€, plays is clearly evident in both the analytic and graphic solutions of the

scaling relationships.

=1d=
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VIII., COMMENTS AND CONCLUSIONS

This analysis has avoided the necessity of treating the full range of
shock wave phenomena and particularly the regions in which parameter re-
lationships are far too complicated to fall into any simple pattern. By lim-
iting its scope to the region in which parameter relationships can be expressed
in simple analytic terms it fills a long-felt need for a direct and easy method

of scaling blast effects on specific targets.

Fortunately a majority of targets of interest will fall well within
the applicable range of the equations derived in this report. As soon as the
parameters which define a target are known, it is a simple matter to deter-
mine the corresponding scaled distances and ascertain that they are within

the applicable range of the equations.

The preceding text gives a brief indication of how the scaling param-
eter, €, can be used to convert a function describing the characteristics of
a shock wave produced by detonation of an explosive charge into a general
equation for scaling blast interactions with targets. This use is but one of
a multiplicity of uses to which this parameter may be put in simplifying
the analysis of blast effects. In addition to defining shock wave and target
characteristics, and giving details of derivations, the appendices which fol-
low exemplify how the scaling parameter, € , and equations derived there-
from can be used to illuminate the many obscure facets of the air-blast prob-
lem. The appendices also discuss the determination of the target parameters
and attempt to answer various questions which may arise in the minds of

readers.

As a final word, since the phenomena to be scaled are interactions

between shock waves and targets, the parameter, € , which relates a com-

mon characteristic of the two, is the most useful analytic tool that can be
found for scaling these effects. Everyone who has to deal with blast damage
will benefit by becoming acquainted with the scaling parameter, € , and by
using it freely in computations of blast effects.

ol e
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APPENDIX A ¥

Definition of Shock Wave and Target Parameters

This report deals with the interactions between shock waves pro-

duced by detonation of explosives and targets which are damaged or de-

stroyed by their action,

In order to study these interactions, it is necessary to describe
both the shock waves and the targets by parameters whose specific nu-
merical values will uniquely identify their essential characteristics in

\

terms which can be manipulated mathematically,

The definitions and symbols in this appendix-constitute the founda-

tion for all the derivations and discussions which follow.

1, The Nature of Shock Waves

A shock wave is a rapidly moving disturbance in air characterized
by an abrupt rise in air pressure (at some fixed point in its path; after this
critical point the air pressure gradually declines until it reaches the original

ambient pressure., The behavior of a typical shock wave is shown in Fig, A-1.

| p

POSITIVE
IMPULSE, |

TIME, t .msecs - - =

Fig. A-1 PRESSURE-TIME CURVE

=4
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The shock wave characteristics, at any point in its path, may be

defined by the following parameters:

P = peak overpressure (psi)
= the difference between the absolute peak pressure and the original
ambient pressure (see Fig, A-1),

T = time (msecs) during which the pressure of the shock wave is con-
tinuously greater than the ambient pressure, T is called the dura-
tion of the positive impulse.

t = time (msecs) measured from the instant at which the initial pres-
sure rise begins,

p = overpressure of the shock wave (above ambiernt pressure) at an
time, t.

I = total positive impulse (psi* msecs) up to time, T, i.e.,

iy

I =fpdt (A-1)
[

This is sometimes termed the first positive impulse, since there
often is a second positive impulse beyond T. The pressure fluctuations be-

yond T are not important enough to warrant consideration in this analysis.

Values of P are usually given in terms of the "side-on' or 'free-
air' overpressures and the impulse taken assumes that nothing obstructs
the free motion of the shock wave. Because this report deals with the inter-
actions between shock waves and targets, we are not concerned with free-
air conditions but will deal with the overpressures and impulses which act
on a solid surface normal to the shock wave motion. For this reason the
pressures and impulses and all other shock wave parameters which are de-
fined above and used in subseque'nt derivations are face-on or normally
reflected peak overpressures, impulses, etc. The reasons for using these
values will be discussed more fully in Subsec. 2 of this appendix (Charac-
teristics of a Target).

-18-
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Shock Wave Characteristics--General, --Shock wave characteristics

are functions of such factors as the distance from the detonation, the nature
and size of the charge, and the pressure and temperature of the ambient

atmosphere through which they propagate. These factors are defined as

follows:
W = weight (1b) of the explosive charge.
R = the distance (ft) from the center of detonation to the point at
which the shock wave properties are being evaluated.
Z = scaled distance, defined by the equations
7 = ?/3 (A-2)
w
p = ambient air pressure (atm), i.e., p = 1 at sea level (14.7 psi).
At higher altitudes, p < 1.
e speed of sound, sea level, 300°K.
c = speed of sound at any altitude and ambient temperature.

The absolute values of ¢ and c,are not important since only their ratio,

c/co, occurs in the equations.

Shock Wave Characteristics--50/50 Pentolite. --The relationships

between peak overpressures, positive impulses, scaled distances, and at-
mospheric environments differ from one explosive to another. Since 50/50
Pentolite is a military high explosive which gives consistently reproducible
results, it is often used as a standard explosive for evaluating the effects

of air blasts. Furthermore it is an explosive for which abundant and accur-
ate data are available. For these reasons this analysis has been built around

the characteristics of 50/50 Pentolite given by the data of Ref. 3.

Fortunately the interactions with which this report is concerned oc-
cur within a range of scaled distances in which parameter relationships be-
have consistently and the Sachs Scaling Laws appear to be valid. In accord-

ance with these scaling laws, the data for normally reflected peak

=G e
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overpressures for 50/50 Pentolite are shown as a function of the scaled

distance in Fig, A-2. The straight line fitted to these data points is given

by
P _ 13,300 )
p 1183 WA=3)
[Zp™ ]

In similar fashion the data for normally reflected positive impulses

for 50/50 Pentolite are shown as a function of the scaled distance in Fig. A-3,
The straight line fitted to these data points is given by

1 220

W1/3 p2/3 [zp1/3]1'20

These two analytically tractable equations, Eqs. A-3 and A-4, define the

A-4)

characteristics of 50/50 Pentolite over the range of scaled distances with
which this analysis is concerned. The anomalies which occur at scaled
distances less than two or greater than ten or twelve have no bearing on the

accuracy and validity of these equations since they lie outside the range of

parameters under consideration.

Equation A-4 which is fitted to empirical data obtained at sea level
(p = 1.00) indicates the qualitative effect of p on the impulse., At higher al-
titudes the temperature changes will affect the speed of sound and require a
quantitative adjustment. These changes, which are independent of p, are ac-
counted for by the independent parameter, c /co, which is included in Eq. A-4

in the following manner:

I (C )
C
0. 220 (A-5)

W1/3 p2/3 [Zp1/3]1.20
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Equation A-2 may be used to eliminate Z from Eqs., A-3 and A-5,

giving
13,300 W
P = ““*‘-3“‘—- (A-6)
R
and
0.733 0.267
I- 220 W D (A-7)

(E._.) R1.20
c
o

Further analytical treatment converts these equations into:

3
0 0083( ) °
- 0 -
W =""730 0.80 (-8
P P
amd 4.8(—0—)1
CO
R = 57733 0.267 “ (A-9)
P p

These two equations are the first step in the derivation of a set of com-
pletely general parametric equations for W and R. The second step will
be taken when more general expressions for P and I, derived in Appendix C,

are used to eliminate P and I from Eqs. A-8 and A-9 in Appendix G.

The characteristics of shock waves produced by 50/50 Pentolite are
fully defined by Eqs. A-6 and A-7; weights and distances have been related
to these characteristics by Eqs. A-8 and A-9. Similar equations for other

explosives can be derived in the same manner.

2. Characteristics of a Target

Aircraft structures, which are typical targets for air blast, consist
of superficial coverings of comparatively thin material supported by rather
complex assemblies of ribs, siiffening webs, and braces of various sorts

which are attached to the bms_t/frumcwork Target damage severe enough

»
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to constitute a kill consists of substantial crumpling and distortion of the
surface in the course of which it moves a considerable distance against the
resisting forces offered by the structural elements which yield without
breaking. The behavior of a target cannot be fully simulated, but a remark-
ably useful mathematical model can be defined in simple terms. Unit pres-
sures below a certain minimum value will have no effect whatever on the
target regardless of how long they are maintained, However, at some
critical unit pressure the supporting structure will begin to yield, and if
this pressure is maintained, the distortion will increase until the target is

totally destroyed.

Therefore, it is possible to define a fundamental parameter repre-

senting target toughness as follows:

Pm = the minimum unit pressure (psi) on the target surface which
will initiate destructive distortion and which, if continued

long enough, will cause target destruction.

The mathematical model used in this analysis assumes a constant value of
Pm throughout the period of distortion up to the point of destruction. Many
real targets approximate this behavior closely enough to consider Pm a

statistically significant measure of target toughness.
Other necessary parameters are:

m = mass per unit area (lb/g) of target material which is moved
relative to its basic supporting structure during the course of
destructive deformation.

S = total displacement (ft) of the target skin relative to the basic

structure which will constitute a target kill.

S
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Eo = total work done in producing this displacement which kills the

target.
These are not independent parameters since
E =S P (A-10)
These parameters will be eliminated from the final equations.

Although the behavior of real targets is not quite as simple as this
model indicates, it is necessary to describe target behavior in terms which

can be treated mathematically in the ensuing study of shock wave target in-

teractions.,
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APPENDIX B

The Universal Scaling Parameter

A scaling parameter used in describing or evaluating the interactions
between a shock wave and a target to which it imparts energy should be a
dimensionless ratio of some physical characteristic common to both. The
only such characteristic is a unit pressure. The significant pressure for
the target is the minimum unit pressure, Pm, i.e., the pressure which
causes target damage; for the shock wave it is the maximum unit pressure,
P, which it can exert on the target. Hence, a universal scaling parameter,

is defined by the equation
g

e=—-Pm (3-1)

No target damage can occur if € is greater than 1.00 and no real
target, in which there is any finite resistance to deformation, can have an
€ value of zero. The entire gamut of shock wave target combinations,

which produce target kills, is covered by the open interval 0 < € < 1.

It will be shown that small values of € are associated with small
charges of explosives which kill the target at relatively short distances
from the point of detonation, and that large values of € can exist only with
very large charges such as those of nuclear weapons whose yield is meas-

ured in kilotons, or even megatons, of equivalent TNT.

For a specific target in a specific atmospheric environment, each
value of € is associated with a unique combination of charge weight and
lethal distance. All possible combinations of charge weight and corres-
ponding lethal distance, which result in a kill in this environment, are as-

sociated with specific values of € between the limits of zero and one.

-2 -






The Johns Hopkins University
APPLIED PHYSICS LABORATORY
Silver Spring, Maryland

APPENDIX C

Interaction Between a Shock Wave and a Target

This appendix treats the effects of shock waves on a target model.
The target is defined by two parameters to which numerical values can be
assigned. The target model accurately simulates the behavior of many real
targets whose destruction by blast has been observed under test conditions.
This target is assumed to have a relatively light superficial covering (simi-
lar to the skin of an airplane) supported by ribs, stiffeners, etc., anchoring
the skin to the more massive components of the basic structure, Associated
with a target is a minimum pressure exerted on its surface below which
threshold there will be no damage. It is assumed that when this critical
minimum pressure is reached, the supporting elements will begin to yield
and permanent deformation will be initiated. It is further assumed that as
long as deformation (consisting of displacement of the surface relative to the
more massive elements of the basic structure) continues, it will be resisted
by a constant force per unit area of the same magnitude as the unit pressure
which initiated destructive deformation. Every target will have to be deformed
by some definite minimum displacement of the surface relative to the basic
structure before its usefulness is destroyed, i.e., a certain minimum tar-
get distortion, or a certain minimum work per unit, must be expended on

the target to destroy it.

It is necessary then to derive functions for the total work per unit
area which any given.shock wave can impart to the target, and-to-specify
the characteristics of the shock wave which can impart just enough work to

achieve target destruction.

=20
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The normally reflected peak overpressures and the normally reflected
positive impulses which are used in this study were derived in Appendix A
for 50/50 Pentolite. Values for other explosives may be found in a similar
manner. The justification for the use of these pressures and impulses to

specify the required shock wave will be found in Appendix I.

It is now necessary to have an equation for the pressure-time profile
of a shock wave acting against a target surface. This equation will give

values of the overpressure as a function of time (t < T).

The linear diagram in Fig. C-1a shows

i
=P ( 1- —) -
p T (C-1)
where
t = time from the first rise in pressure
p = the overpressure at time, t (0 <t < T).
Figure C-1b gives t
p=P<1—%)e'T (C-2)

It can be shown that a completely self-consistent set of scaling equa-
tions can be derived from either of these pressure-time profiles and that the
same relationships between charge weights and corresponding lethal distances
are derivable from either equation. The linear relationship was used in
Refs., 2, 4, 5, 6,.and 7 with satisfactorily consistent results. However,
self-consistency within a mathematical model is not sufficient to assure that
values of € , as well as the values of such target parameters as Pm’ faith-
fully portray realistic interaction characteristics. The model will be com-
parable to a real target only if the pressure-time function used to derive

scaling equations accurately reflects actual shock wave characteristics.

SRg=
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The pressure-time relationships shown in Fig. C-1 differ from one
another in the relationship of I to PT. For the linear curve (Fig. C-1a),
the ratio is 1/2. For the exponential curve of Fig. C-1b, it is 1/e or 0. 368,
The data for 50/50 Pentolite (Ref. 3) show that the ratio of I to PT is not
constant but varies at a moderate rate with scaled distance. Furthermore,
it was found that the ratio 1/e of the exponential function (Eq. C-2) agrees
with the 50/50 Pentolite data in the midrange of scaled distances used in
this analysis. Since an accurate mathematical formulation of the actual
pressure-time profile of a shock wave produced by 50/50 Pentolite over the
full range of scaled distances has not yet been found, the exponential func-
tion (see Eq. C-2) is the best representation within the range of scaled dis-

tances covered by this analysis.

The mathematical parameters used in this analysis to define the

shock wave and target characteristics are as follows:

P = normally reflected peak overpressure of the shock wave, also
= the maximum unit pressure (psi) acting on the target.
t = time (msecs) measured from the instant at which the shock
wave first reaches the target.
T = total duration (msecs) of the positive impulse.
p = unit pressure {(psi) of shock wave, also
= unit pressure (psi) acting on target at time, t, where 0 <t < T.
i = total positive impulse (psi- msecs) up to time, t {(for t < T).
I = normally reflected positive impulse (psi- msecs) of the shock
wave up to time, T.
Pm = the minimum unit pressure (psi) which can cause any target
damage, also

= the unit pressure by which the target resists deformation
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The pressure-time relationships shown in Fig. C-1 differ from one
another in the relationship of I to PT. For the linear curve (Fig. C-1la),
the ratio is 1/2. For the exponential curve of Fig. C-1b, it is 1/e or 0. 368.
The data for 50/50 Pentolite (Ref. 3) show that the ratio of I to PT is not
constant but varies at a moderate rate with scaled distance. Furthermore,
it was found that the ratio 1/e of the exponential function (Eq. C-2) agrees
with the 50/50 Pentolite data in the midrange of scaled distances used in
this analysis. Since an accurate mathematical formulation of the actual
pressure-time profile of a shock wave produced by 50/50 Pentolite over the
full range of scaled distances has not yet been found, the exponential func-
tion (see Eq. C-2) is the best representation within the range of scaled dis-

tances covered by this analysis.

The mathematical parameters used in this analysis to define the

shock wave and target characteristics are as follows:

P = normally reflected peak overpressure of the shock wave, also
= the maximum unit pressure (psi) acting on the target.
t = time (msecs) measured from the instant at which the shock
wave first reaches the target.
T = total duration (msecs) of the positive impulse,
p = unit pressure (psi) of shock wave, also
= unit pressure (psi) acting on target at time, t, where 0 <t < T.
i = total positive impulse (psi- msecs) up to time, t (for t < T).
I = normally reflected positive impulse (psi. msecs) of the shock
wave up to time, T.
P = the minimum unit pressure (psi) which can cause any target
damage, also

= the unit pressure by which the target resists deformation
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m = mass per unit area (lb/g) of target material which is moved rela-
tive to the basic target structure when destructive deformation
takes place. (This includes unit area of skin plus some additional
fraction of the supporting elements which are distorted and moved.)

I' = net accelerating force (lb) per unit area at time, t, acting on
mass, m. May be positive or negative.

S = distance (ft) at time, t, that the mass, m, has moved from its
original position.

S = minimum value of S which will cause target destruction.

E = total energy per unit area espended on target in displacing the

surface a distance, So’ against a resistance, P

All of the target parameters except Pm will be replaced in the final scaling
equation by a parameter, Im, which will be defined at the conclusion of the

derivation.

On a pressure-time diagram, impulses are represented by areas.
Figures C-2 and C-3 will show that areas above the target resistance line,
Pm, (designated by 1) are positive impulses which accelerate the mass, m,
to a maximum velocity at time, tm, and areas below Pm (designated by 2)
are negative impulses which bring m to rest at some later time, to. Ob-

viously the two impulses must be equal.

In setting up equations for the acceleration of the mass, m, one notes
that between zero and T there is a constantly varying acceleration for which
the pressure-time equation (Eq. C-2) gives an analytical value, but beyond

the time, T, the negative acceleration has a constant value.

Interactions which are completed within the period (T) of the positive
impulse can be treated by a single set of equations and will be designated

Case I (see Fig. C-2). Interactions which continue beyond the end of the
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positive impulse will require two sets of equations, one with a constantly
varying acceleration (up to time, T), and one with a constant acceleration

(beyond time, T). This will be called Case II (see Fig, C-3).

Equations will be set up which will apply over the entire range from
zero to T. It will then be necessary to determine where Case I ends and

Case 1II begins,

The accelerating force is given by

F=p- Pm (C-3)
and hence
2 . p-P
dt

Using Eq. C-2 and the definition of € , Eq. C-4 becomes

s L
iy Iy
z EP:
g - Pe _ Pte _E€P. (C-5)
m Tm m
Integrating Eq. C-5 with respect to t gives:
i L b
- T oy ar
S = - PTe " Pte 5 PTe _EPt (C-6)
m m m m
which reduces to: b
. T
S - Pte _ Skt (C-17)
m m
An integration of Eq, C-7 with respect to t yields:
e o
PT te L PTze * €Pt2 PT2
S=- - - + (C-8)
m m 2m m
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By definition

t _t
i f)dt ~ Ba T (C-9)
(o]
and
I (C-10)
e

Equations C-5 through C-10 are valid within the time range from

zero to T and will be used in the subsequent analysis.

Case 1. --1It may be seen in Fig., C-2 that

t < T
O

Since areas 1 and 2 of this figure are equal and the velocity of mass, m, is

zero at to’ the rectangular area

€Pt =1i (C-11)
.0 t

Substituting Eq. C-9 in Eq. C-11 gives

t
.90
T
€EPt =Pt e (C-12)
o o
which reduces to "
.o
€-e ¥ (C-13)
or
to =-TIn€ (C-14)
When

I
O |—=

t =T, then In €=-1 and € (C-15)
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This value of € represents the dividing point between Case I and Case II.

It may be seen from Figs. C-2 and C-3 that the applicable ranges of values
of € for these two cases are:

Case I: és € <1 (C-16)
and

Case 1II: 0 < € sé (C-17)

In Case I at time,té,, Eq. C-8 becomes
to t
POk o .
2 €
P to e PT? e T P to PT2

St - m ) m " 2m - m (€-18)

When the value of to’ given by Eq. C-14, is substituted in Eq. C-18

2
S =21l-[2€1n €-2€- €1n2€+2] (C-19)
to 2m

Equation C-19 gives a general relationship between the distance the
target surface has moved, Sto, and the parameters characteristic of a shock
wave, PT and T. This relationship can be made specific by replacing S;
with the minimum distance, So’ which the surface must move to ensure
target destruction, The term PT2 in Eq. C-19 then will describe the shock
wave which can just destroy the target characterized by St =5,

_ o
Since

E =P S = €PS (C-20)
o m o o

then
P2T2€

2
E == [2€1ln€ -2€- €ln € + 2] (C-21)
o 2m
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Using Eq. C-10, Eq. C-21 becomes

I2e2€ 2

o=-?m—-[2€1n€—2€—€1n€+2] (C-22)

which may be rewritten as
2 2 2

2Eom,.=1e€[2—€—€(1—1n€)] (C-23)

Thus for Case I (€ = é):
2E m
T = L (C-24)

8 U e = @i =T el
This expression for the impulse which can destroy a target will be left in

this form until a similar expression has been derived for Case II.

Case 1I. --Up to time, T, the distance which the mass, m, has
moved is found by calculating ST rather than S from Eq. C-8 by putting

t = T. This equation reduces to:

2
oLE |y 2 .
S e [2 eae] C-25)

At time, T, the mass, m, has a velocity found by substituting T for

t in Eq. C-17, i.e.,

ST me Tm i
or
& =BT [ﬂ] -
T m e
..38_
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After time. T, the mass, m, is subjected to a constant negative ac-
celeration which reduces its velocity from ST at time, T, to zero at time,

to. The distance moved is then:

ol - g
S(to-T) =5 ST (t0 .T) (C-28)
which, with Eq. C-27, becomes
_PT|{1-¢c€ _ )
S(to-T) B Zm[ e ](to T} (C-22)
In Fig. C-3, it may be seen that
rect. € P t0 =1+ area 2 - area 1 (C-30)

But since the velocity of mass, m, is zero at to’ areas 1 and 2 must be

equal. Equation C-30 then becomes

Pt =% (C-31)

Combining Eqs. C-31 and C-10 gives

ept =EL (C-32)
o e
or
T
t0 = Ze (C-33)
and, hence
t -T=T I:.l_l_e_e_:l (C-34)
() e €

Substituting this value for (t0 - T) in Eq. C-29 gives:

2 2
_PT” | (1 - e€) _
¢t -T) 7 2m 2 (S
o e €
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The total distance moved is found from Eqs. C-25 and C-35 to be:

2 2

S el 2_11__€+(1—e€)
t 2m e 2
(0] e €

(C=36)

This general relationship between a distance (St ) moved by the target sur-
o
face and the characteristics (P and T2) of the shock wave which produces the

displacement may be made specific by substituting SO for St . This equation
o

will then relate S0 to the PT2 of the specific shock wave causing this dis-
placement and consequent destruction of the target. The energy equation

for Case II which is equivalent to Eq. C-22 in Case I is given by

2 2 2
g -E-LE€], 2,0 -e9 (C-37)
o 2m e 2
e €
which with Eq. C-10 gives
12 26 4 (1 - 86)2
E - € 2 - — - 6 + (C"'38)
o 2m e 2
e €
which reduces to
12 2
= — + =) =
EO . [1+ (2e 6e) €] (C-39)
or
I2
EO = —2—&1— [1-1.5315¢€ ] (C-40)
Thus for Case II ( € < é‘):
2E m
o
I-= (C-41)
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For finite values of € the denominator of Eq. C-41 is less than one

and I is greater than VZEOm, but as € -0, 1 -»VZEOm.

V E h he di i f i 1 i
It may be noted that \j 2 C)m as the dimension of impulse per unit
area., Since I approaches VZEOm as a lower limit, we may now define a

more general target parameter:

Im = the minimum impulse (i.e., the lower limit of the impulse)
which can destroy a target of unit mass, m, requiring Eo

to complete its destruction, i.e.,

Im = '\,2Eom (C-42)

Equation C-42 may be substituted in Eqs. C-24 and C-41 to give:

For Casel (€ = ;13-):

I
m
I: (C-43)
eet’? 2 - c-e(1-1m e)?P?

For Case Il ( € < ;1;):

I

I-= = (C-44)

‘\/ 1 - 1,5315€

The use of these equations will be discussed in succeeding appendices.
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APPENDIX D

Parametric Equations for a General P-I Curve

Equations C-43 and C-44 each cover a different part of the complete
spectrum of values of € between zero and one. These equations may be
used to compute completely general pressure-impulse curves along which
every point relates a peak overpressure to a positive impulse. These are
the overpressures and impulses related to a shock wave which is capable of
destroying a given target. The scaling parameter, € , represents the peak
overpressure, P. In order to make the curve completely general the co-

ordinates are expressed as dimensionless ratios, i.e.,

P _1
5 B (Eq. B-1)
m
For Casel ( € 2'3;):
I 1
— (Eq. C'43)
2
Len e€1/2 2-€-€(l-1ln€) ]1/2

For Case Il ( € < '(1;):

I—I— - : (Eq. C-44)

m -\j1 - 1.5315€

Values of these functions in terms of € are given in the table on the fol-

lowing page.
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Table II1

Coordinates of a General Pressure-Impulse Curve
P I P I
. P_ i e P T
m m - m m
0 011 100. 00 1.008 0.31 3.23 1. 380
0.02 50. 00 1.016 0 32 3.13 1. 400
0.03 33.33 1. 024 0.33 3.03 1.422
0.04 25.00 1.032 0. 34 2.94 1. 444
0.05 20,00 1. 041 0.35 2. 86 1. 468
0. 06 16. 67 1. 049 0.36 2.78 1.493
0.07 14,29 1.058 0. 37 2.70 1. 519
0.08 12,50 1. 067 0. 38 2.63 1. 547
0.09 i R 5 1.077 0. 39 2. 56 1. 576
0.10 10,00 1,087 0. 40 2.50 1. 606
0.11 9.09 1. 097 0.41 2.44 1.638
0,12 8.33 1.107 0.42 2.38 1.672
0.13 7.69 1.117 0.43 2.33 1,708
0.14 T 14 1.128 0. 44 2,27 1.745
0. 15 6.67 1.139 0. 45 2,22 1.785
0.16 6.25 1.151 0. 46 2. 17 1.826
0.17 5,88 1,163 0. 47 2,13 1.870
0.18 5.56 1,175 0. 48 2.08 1.816
0.19 9,26 1.188 0. 49 2.04 1.964
0.20 5.00 1.201 0. 50 2.00 2.016
0.21 4,76 1.214 0.51 1.961 2.070
0.22 4,55 1,228 0. 52 1,923 2,127
0.23 4,35 1.242 0.53 1.887 2,187
0. 24 4,17 1,257 0. 54 1.852 2.250
0.25 4,00 1,273 0. 55 1.818 2.318
0.26 3.85 1,289 0. 56 1,786 2,389
27 3.70 1. 306 0. 57 1.754 2.465
0.28 3.57 1.323 ‘0. 58 1.724 2. 545
0.29 3.45 1. 341 0.59 1.695 2.631
0.30 3.33 1. 360 0. 60 1. 667 20 122
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Table II (cont'd)

€ ¥ 1 € 2 1
P 1 P 1
m m m m
0.61 =%, 1,639 2.819 0.81 1. 235 7.918
0. 62 1.613 2,923 0.82 1. 220 8.571
0.63 1. 587 3.033 0.83 1. 205 9,322
0. 64 1.563 3,152 0.84 1. 190 10, 19
0.65 1.538 3,279 0. 8% 1.176 11.91
0.66 1.515 3.416 0. 86 1,163 12, 41
0. 67 1.493 3.564 0.87 1. 149 13,85
0. 68 1.471 3.723 0.88 1,136 15, 59
0.69 1. 449 3.895 0. 89 1,124 19, %8
0.70 1.429 4,082 0.90 1,111 20. 43
0.71 1. 408 4,285 0/91 1. 099 23,89
0.72 . 1,389 4,507 0.92 1,087 28, 47
0.73 1. 370 4,749 0.93 1.075 34,173
0.74 1. 351 5.015 0. 94 1.064 43,70
0.175 1,333 5. 307 0.95 1. 053 5% o 3
0.76 1. 316 5.631 0.96 1. 042 80. 06
0.77 1. 299 5. 990 0.97 1.031 123,10
0.78 1,282 6. 391 0.98 1. 020 225, 85
0.79 1,266 6.839 0. 99 1.010 637.99
0. 80 1. 250 7.345

Figure D-1 is a plot of the data given in Table III, It relates the
shock wave pressures and impulses to the minimum pressures and impulses
which can damage a given target. Thus, a single curve is the locus of all
possible P-I combinations which can just destroy (without overkilling) any

given target characterized by P_ and I__.
m m
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APPENDIX E

Efficiency of Energy Transfer

Whenever the surface of a target on which a shock wave acts is per-
manently displaéedj some energy is imparted to the target. The amount of
energy per unit area transferred from the shock wave to the target depends
on two parameters: the mass per unit area of target which is moved, and

the scaling parameter, € .

Target with € = 0, --The maximum energy per unit area is imparted

to a target when it offers no resistance to the shock wave (i.e,, when € = 0),
This does not represent any real target but is introduced solely for the pur-
pose of deriving an expression for the maximum energy transfer per unit
area. The target, for the purposes of this first derivation, consists of a
plate of mass, m, per unit area, originally stationary with respect to the
ambient atmosphere but free to accelerate under the action of the shock wave

which is not opposed by any other external force.

All of the energy imparted to the mass, m, becomes kinetic energy
and imparts a velocity which is assumed to be constant. One further assump-
tion is necessary for the following derivation: the mass, m, is large enough,
and its final velocity small enough to make a relatively unimportant reduction
in the shock wave pressure on the target. This criterion substantiates one
of the basic assumptions of this study: the shock wave exerts its pressure

on a non-moving target.

Figure E-1 shows the pressure-time relationship for a shock wave of

unspecified shape whose equation is:

p = F(t) (E-1)
and hence
T
I=fF(t) dt (E-2)
(0]
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3

r

OVERPRESSURE

P, PEAK

AMBIENT l
PRESSURE (IJ TIME, t+ msecs

Fig. E-.1 PRESSURE-TIME RELATIONSHIP FOR €= 0

Since there is no resistance to the target motion other than the inertia of

its mass, m, it follows that

i o)
m

The acceleration continues for the duration of the positive impulse and hence

. _i _
ST = m/F(t) dt (E-4)
o

which may by Eq. E-2 be reduced to

the velocity at time T, is

. _L 5
ST_m (E-5)

1f Em is defined as the kinetic energy imparted to mass, m, then

1. = 2 _
Em—zmST (E-6)
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Two conclusions can be drawn from this derivation:
/ :

1. The effectiveness of the shock wave is dependent only on the value
of its positive impulse which is not affected by the shape of the pres-
sure-time curve, ‘

2. The effective energy of the shock wave vafies im.rersely as the mass

per unit area, m, of the target.

These conclusions are valid for any target which is free to move without op-
position from any external force. All energy imparted to the target is
kinetic energy. It will be shown that 12/2m is the maximum energy which
the shock wave can impart to a unit area of any ta‘rget, and that when €

has a finite value (between zero and one) the actual energy transferred is

always less than 12/2m.

Target with € > 1/e (Case I), --In the case illustrated by Fig. E-2

where 1
€ > —
e
it was shown in Appendix C that
t =-TIln€ (Eq. C-14) r
o w
[«4
=2
and hence %9
w i
o
€EPt =- €EPTIlne (E-T) ,;g
° 5
but since
-1 7 l TIME, t msecs
I =PTe (E-8) 0 Y & T
Eq. E-7 may be written as Fig. E-2° PRESSURE-TIME RELATIONSHIP FORE 2 1/e
€EPt
e €EPT 1n1€ (E-9)
. PTe
or _
€EPt
I°=—e€ln€ : (E-10)
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This ratio of the impulse acti.ng on the target to the positive im-
pulse of the shock wave has a value of one when € = 1/e and b= T, but
'is less than one for all higher values of €, indicating that only a fraction

" of the positive impulse of the shock wave is able to act on the target in

this range of € values,

Target with € < 1/e (Case II). --In the course of the derivation in

Appendix C, it was shown that for Case II (see Fig., E-3) where

then ;

€P to = Af (Eq. C-31)

URE |

OVERPRESS

ag— P, PEAK

I TIME, t msecs

Fig. E-3 PRESSURE-TIME RELATIONSHIP FOR €< 1/e
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Here, € P to is the impulse acting on the target (a unit pressure, € P, acting

during a time, to) and is exactly equal to the positive impulse of the shock

wave.

Figure E-4 shows the fraction of the positive impulse which acts on
the target as a function of €. It shows that the impulse is 100 percent ef-

fective for € < 1/e, but the percentage drops rapidly for higher values of €.

The efficiency of energy transfer, as a function of € , will be de-
fined as the ratio of the energy imparted to a target having a finite value of

€ to the energy which would be imparted if € were zero.

In Appendix C, expressions were derived for energy per unit area in

terms of I, m, and €, as follows:

2

1 _ I ~ . 3
For € <3 E-2m [1-1.5315€ ] (Eq. C-40)

1 2 [ o 2
Feor € 2 — E=——{e €[e-€-€(1-1n€)]} (Eg: €~23)

e 2m

Let p= Egm = efficiency of energy transfer
I

The above equations simplify to:

Bok & sé g [l = 1,5816& ] (E-11)

For 62& ;b=e2€[e-€-€(1-1n €)2] (E-12)

Figure E-5 shows the efficiency of the energy transfer as a function
of €. The efficiency is 100 percent at € = 0 and drops to 50 percent by the
time € reaches 0.32; at € = 0. 64, it is reduced to 10 percent of its initial
value,

Figure E-6 shows the efficiency of energy transfer in terms of Fw(é),
i.e., of the charge weight. It may be seen that where the latter is of the

order of kilotons, the efficiency is very low.
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APPENDIX F

Determination of the Equivalent Bare Charge

The remainder of this report deals with the effects of bare charges

of explosive, i.e., those unencumbered by casings or enclosing structures
which could modify their effectiveness. However, the report would not be
complete if it failed to consider what happens when a substantial mass of
non-explosive material surrounds the charge. In most anti-aircraft war-
heads the primary lethal agent is not the explosive blast but rather an addi-
tional effect incidental to the use of high explosives whose prime function is
to impart kinetic energy to fragments, rods, or other inert solid materials
surrounding the charge. Nevertheless the blast effects from such warheads
are far from negligible; in fact they substantially augment the overall ef-
fectiveness of the warheads. An explosive charge encased in metal or other
inert solid material must, of necessity, impart some energy and momentum
to these materials, leaving less energy to be transferred by the shock wave
to the target at some distance from the source. The study of the nature and
magnitude of the effects of such inert casings can employ the same general

relationships that have been derived in preceding appendices.

The usual way of expressing the effects of encasement is to determine

the weight of an equivalent bare charge, i.e., that weight which can just

destroy a given target at the same distance from the detonation as the weight
of a standard encased explosive. In other words, the equivalent bare charge
must do exactly the same amount of work per unit target area as does the

standard encased charge.

Let C
KC

actual weight (1b) of encased charge

weight (1b) of equivalent bare charge
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i.e., K = the proportionality factor relating equivalent bare charge to
actual encased charge.

R

distance from detonation to target (same for both cases).

p = weight (Ib) inert casing material.

It is assumed that when completely inert casing materials (as opposed
to those which may react either with the explosive or the atmosphere) are
used, both the peak overpressure and the positive impulse produced by the

charge, C, will be lower than those associated with a bare charge.

Let PO peak overpressure (psi) produced by bare charge at distance, R,

>‘Po peak overpressure (psi) produced at distance, R, by an encased

charge.

The following equation, for work done on & unit area of target by a

shock wave, was derived in Appendix C:

2
1 I .
= = =[] - 1:531 [ -
for € < = e 28] (Eq. C-40)

Charge weights up to the order of about a half ton of explosive usually lie
in this range of € values, and thus include charge weights pertinent to this

study.

The above equation shows that the target parameter, m, affects the
total energy, E; this is a fixed quantity for both the encased charge and the
equivalent bare charge. Total energy is affected by two other factors: the
impulse, I, which is exclusively a shock wave parameter, and € , which
is the ratio of a target parameter, Pm’ to the peak overpressure of the shock
wave. In this analysis of the interactions between shock waves and targets,
the equations which have been derived afford the basis for a new approach to

the problem of determining equivalent bare charges. It is only necessary

<5k~
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to find appropriate analytical expressions of I and € for the encased charge
and the equivalent bare charge. These expressions are used in Eq. C-40,

and the resulting energies equated.

This analytical approach is based on the postulation that the momentum

imparted to the inert casing material is subtracted from the total positive

impulse which the shock wave from a bare charge could exert against the
entire inner surface of a hollow sphere of radius, R. This postulation is
made merely to simplify the analytical study; however, it leads to some

very interesting interpretations.

Equation A-7, which gives the positive impulse (psi- msecs) per unit

area, may be rewritten as:

290 WO' 38 ]
1==""71T20 S
AR
where

I = normally reflected positive impulse (psi- secs/in®)

W = weight (1b) of explosive

R = distance (ft) from detonation to target

A = value of a function of altitude above sea level (F _(alt), Table II,

R
p. 12).

The total normally reflected positive impulse over the entire inner surface
of a hollow sphere of radius R is given by:
0.733 _0.80

- 398W R
total A

(F-2)
Using the following definitions of M and V

M

the momentum imparted to the weight, y, of the inert casing

material, and

<
n

the mean velocity imparted to the casing material
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it may be seen that

- By _
L 32.2 (F-3)
Then Eq. F-2 may be written:
. 398C0.733 R0.80 W )
C A 32.2
: ) 398K0.733 C0.733 R0.80 -
CK A
where
1C = the total impulse produced by the encased charge, C
ICK = the total impulse produced by the equivalent bare charge, KC

Care must be taken to use the

correct value of € for both the encased charge,

C, and the equivalent bare charge, KC. Both of these will be expressed in

terms of a third value of € which would exist at distance, R, for a bare

charge of weight, C.

These three values of

and

€ are given by

Pm
€= P— (F-6)
o
Pm
€ e (F-17)
o
Pm
€C = ﬁ; (F-8)

where subscripts C and CK refer to an entased charge and its equivalent

bare charge and APO = peak overpressure produced by the encased charge.

-58-
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Both € C and € CK may be expressed as functions of € as follows:
&
€ck K L
and
&
== -1
GC N (F'-10)

Equation C-40 may now be used to give two expressions for energy

per unit area: one in terms of I and € K’ and the other in terms of I

CK (@: ©
and € c’ These two can be equated to one another, i.e.,
2 2
_QI_{.. - = L = T
— [1 1.5315€CK:| = [1 1. 53156(:] (F-11)

Using Eqs. F-4, ¥F-5, F-9, and F-10, Eq. F-11 may be re-written:

[ 30841k C
2m

2
0.733,0.733 _0.80] [1 _ 1. 5315 e]

K

2
[398A'1c°'733R0' 80 uV

i 32, _1.5315¢€ i
- _ [ dsuse] g

or

.\[ _1.5315€
0.733 _ ) B VA :| (Eeda)

K > 1-
Af1 1.5;3(15'6 [ 12, 80oc ¥ 7335080

The scaled distance relationship:

__R___R
W1/3 C1/3

Z (Eq. A-2)
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can be used to eliminate R from Eq. F-13 to yield:

1.5315¢ /2 n
= dB8lbE VA
0.733 N C
S 2 1.5315€ 1= 0.80 (F-14)
g e L 12, 800z°"
K
1. €.,
| s315¢ T0- 682 y 1.364
R c)va
K = 1= (F-15)
- 1.5}3{156 12, 80020 80

This expression for K, the ratio of the equivalent bare charge weight to the
actual weight of the encased charge, is complicated by the presence of a K
in the denominator of the first term, which precludes derivation of a simple
explicit function for K. The entire first term, however, may be considered
as a correction factor which equals one when ) and K are equal and which
varies from unity by only a small quantity even when ) and K are quite dif-

ferent. Therefore, its effect on K is relatively small, and Eq. F-15 may

<I~4_) 1. 364
C VA

be further simplified to:

K~ | 1- (F-16)

12, 800Z0° sl

Implications--Equation F-16, which is based on the postulation that

the total impulse of the shock wave at a scaled distance, Z, is reduced by
the amount of momentum imparted to the inert casing material, presents
some challenging implications. The negative term is the fraction by which

the weight of the encased charge, C, is reduced to give the weight of the

equivalent bare charge, CK. Unlike some other expressions for the equiva-

lent bare charge, this derivation implies that not only the ratio u/C but both
the altitude and the scaled distance have an effect on the degradation in ef-

fective weight caused by the casing.

-60-
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The parameters #/C and V, are directly related to one another. For

a spherical charge of pentolite the Gurney equation for V is:

_ Clu )
V= 8400\/1 T0.6(CTE (F-117)

which in conjunction with Eq., F-16 gives:

A 1. 364

0.81/ C C
1,582 = 4 0. —)2
\/u 06(“

The altitude function, A, is identical with FR(alt. ). Values are

Ke | L = (F-18)

listed as a function of altitude in Table II (pm 12).°,

The postulation upon which Eqs. F-16 and F-18 are based is still
only a postulation and not an established fact. However, it has focused at-

tention on the effect of altitude on the equivalent bare charge computations

and suggests that the scaled distance also has some effect.
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APPENDIX G

General Parametric Scaling Equations for Weight and Distance

The equations for W and R derived in Appendix A are:

900
0.0083 (*C‘L) 1
0]

w 1.20 0.80 (Ea. A-8)
E p
and
4.8(9—)1
CO
R=—5733 0.267 (Ea- A-9)
P p

These are combined with Eqs. B-1, C-43, and C-44 to give

c3
]| (5)
m o

W = 0.0083 120 0. 80 FW(G) (G-1)
154 p
m
and
: i€
e G)
R =4.8 0.733 0.267 FR(G) (G-2)
Pm p

In this pair of equations, only the final terms, Fw(e) and FR(e) are restricted

to € values above or below 1/e.

' el 20
For € <~ FW(€)= - 372 (G-3)
€ (1 -1.5315€)
and
£0- 733
FR(e) = T2 (G-4)

(1 - 1,5315 6)1
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1 1
For € =2 — F_(€) = (G-5)
3 :
€ e e O e
and
60.233
F_(€)-= (G-6)
2
& e[2-€-€(1-1n€)]1/2
These two pairs of functions of € are related as follows:
1/3 1/3
F =| F =<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>