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ABSTRACT

This report describes the evaluation of large, closed-die forgings of two
titanium alloys. Four forgings each of Ti-6Al1-4V and IMI 679 were used in the
evaluation. Property tests that were conducted included tension, notched
tension, compression, Tuckerman modulus, shear, bearing, fracture toughness
and smooth and notched axial fatigue. Thermal exposure and susceptibility to
delayed failure in salt water were also evaluated in each alloy. Static pro-
perties were generally slightly better in the Ti-6A1-4V alloy. However, the
IMI 679 provided significantly better smooth and notched fatigue values Both
alloys had good fracture toughness at room temperature and at ~110°F. Static
and fatigue tests were conducted on one forging each of Ti-6A1-LV and IMI 679.
The Ti-6Al1-4V part gave the better static test performance. Both titanium
alloys exhibited strength/weight efficiency superior to a 4340 steel part
tested in a previous program. The fatigue test life of the IMI 679 part was
approximately 60% better than that of the Ti-6A1-LV part; however, the Ti-
6AL-4V may not havé been a representative sample due to minor metallic in-
clusions found in the fatigue-tested part. Based on these results the IMI 679
alloy shows promise for improved performance over Ti-6A1-LV as well as over
other titanium alloys in fatigue critical applications. The material property
data and forging static and fatigue test results indicate that Ti-6A1-LV and
IMI 679 compare favorably with two other titanium alloys, Ti- 6A1-6V-25n and
Ti-13V-11Cr-3A1l, which were evaluated in a previous program.
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Section I

INTRODUCTION

Substantially increased usage of titanium alloy forgings is anticipated in
current and future weapon systems because of the structural advantages
offered by this class of materials. The purpose of this program was to pro-
vide material property data which will form a basis for the reliable use of
two heat treated titanium alloy forgings and to demonstrate the actual capa-
bilities of state-of-the-art production forgings of these alloys in high
performance aerospace structural applications.

Four forgings of the Ti-6A1-4V alloy and four forgings of the IMI 679 alloy
were produced for evaluation in this program. The titanium forging configura-
tion used is a modification of a production F-104 fuselage ring fitting
normally made from 4340 steel. Two forgings of each alloy were cut up and
subjected to comprehensive material property tests. One forging of each
alloy was tested to failure in a full-scale fatigue test and a second forging
of each alloy was tested to destruction statically.

In a previous Air Force program (Reference 1) a similar evaluation was con-
ducted on forgings of two other titanium alloys, Ti-6A1-6V-2Sn and Ti-13V-11Cr-
3A1l. Data obtained in that program are compared with data obtained in this
program to illustrate the relative merits of four of the leading candidate
titanium forging alloys.

Participation by the Wyman-Gordon Company in the program included production
of the titanium forgings, preliminary heat treatment evaluation, and a por-
tion of the metallographic and tensile property evaluation.



Section IT

SUMMARY

The purpose of this program was to conduct an evaluation of large titanium
alloy forgings in order to provide a basis for their reliable use in advanced
weapon systems. Four closed-die forgings were fabricated from each of two
alloys, Ti-6A1-4V and IMI 679. The forging configuration was a modified F-104
aft fuselage ring fitting. Results obtained in this program were to be com-
pared to results obtained on Ti-6A1=6V-2Sn and Ti-13V-11Cr-3A1 investigated

in a similar program (Reference 1).

Material properties were determined by testing specimens cut from forgings of
Ti-6A1-4V and IMI 679. Properties evaluated included tension and compression
at -110°F, room temperature (72°F), and 550°F; shear and bearing at room
temperature and 550°F; notched tension and fracture toughness at -110°F and
room temperature; and smooth and notched axial fatigue. Other test variables
included specimen location and grain direction. The effect of a 1000-hour
axposure at 550°F on smooth and notched tension and on fracture toughness
properties was also evaluated. Billet tension properties in all three grain
directions were obtained for comparison with similar properties in the
forgings.

Tension and compression moduli were determined by Tuckerman optical strain
measurements. Susceptibility to envirommental delayed failure of pre-cracked
specimens in the presence of salt water was also evaluated.

The effect of temperature on ultimate tensile strength of the four titanium
alloys is shown in Figure 1. As shown in this figure, the ultimate tensile
strength in Ti-13V-11Cr-3A1 and IMI 679 showed the least effect of 550°F
testing. The effect of temperature on yield strength is shown in Figure 2
and generally exhibits the same trend as the ultimate strengths.

Tensile properties of the Ti-6A1-4V and IMI 679 were within the expected ranges.
Generally, both alloys showed only minor variations in tensile properties with
grain direction or location. The IMI 679 alloy was exceptionally uniform

and exhibited a minimum range in tensile properties. This is clearly evident
in Figure 3 which presents the room temperature tensile strength variation

from edge to center in the forging thick section for IMI 679 and Ti-6Al-LV.
Similar data on Ti-6A1-6V-2Sn and Ti-13V-11Cr-3A1 (Ref.l) are shown for
comparison. Tensile strengths in the light sections and edge locations of

the heavy section were consistently higher than at any other location in both
Ti-6A1-L4V and IMI 679.



Values of elongation and reduction of area were very high at all locations and
test temperatures in both the Ti-6A1-4V and IMI 679 forgings. The lowest
values measured at room temperature were 8% elongation and 10% reduction of
area in the Ti-6A1-4V forging and 10.5% elongation and 30% reduction of area
in the IMI 679 forgings. The IMI 679 had the highest ductility of the four
alloys evaluated in the two programs followed, in order, by Ti-0GAl-LV,
Ti-6A1-6V-2Sn, and Ti-13V-11Cr-3Al.

Notched-to-unnotched tensile strength ratios of 1.35 and higher were obtained
in all grain directions and test locations in Ti-6A1-4V and IMI 679 materials.
Figure L4 compares notched-to-unnotched tensile strength ratios measured in the
longitudinal grain direction at various forging locations for both of these
alloys, as well as for Ti-6A1-6V-2Sn and Ti-13V-11Cr--Al which were tested
previously (Ref. 1).

Unstressed thermal exposure to 550°F for 1000 hours had no apparent effect
on the strength or ductility of the Ti-6A1-4V and IMI 679 smooth tensile
properties. The notched tensile properties also remained unaffected after
exposure.

Fracture toughness was measured at room temperature and -110°F in Ti-0Al-Lv
and IMI 679. A pre-cracked round bar specimen was used in these tests; the
results are given in Figure 5. Results obtained (Ref. 1) on Ti-6Al1-6V-2Sn
and Ti-13V-11Cr-3A1 are also shown for comparison in this figure. It is
evident that Ti-6A1-L4V showed the highest fracture toughness values, followed
by IMI 679 and Ti-6A1-6V-28n. The Ti-13V-11Cr-3A1 showed the lowest fracture
toughness of the four materials. Unstressed exposure at 550°F for 1000 hours
did not have a significant effect on the fracture toughness of any of these
alloys.

At room temperature and at -110°F, the compression properties of Ti-6Al=LV
and IMI 679 were in the same range as the ultimate tensile strengths of each
alloy. However, at 550°F the compression yield strengths of both alloys
dropped off more rapidly than the ultimate tensile strengths. The effect of
temperature on the compression yield strengths of Ti-13V-11Cr-3Al and
Ti-6A1-6V-2Sn (from Ref. 1), and Ti-6Al-U4V and IMI 679 are presented in
Figure ©O.

Room temperature ultimate shear properties of Ti-6A1-4V and IMI 679 were
similar to those obtained on Ti-6A1-6V-2Sn and Ti-13V-11Cr-3A1 (Ref. 1).
However, at 550°F both the Ti-13V-11Cr-3A1 and Ti-6A1-6V-2Sn had higher
shear strengths than the Ti-6A1-4V and IMI 679.

Ti-0A1-6V-2Sn had the highest room temperature bearing strength of the four
alloys. The Ti-13V-11Cr-3A1 had the highest bearing strength at 550°F.

Smooth and notched axial fatigue properties in Ti-6A1-4V and IMI 679 are
summarized in Figures 7 and 8. Results obtained (Ref. 1) on Ti-13V-11Cr-3Al
and Ti-6A1-6V-2Sn standard and low oxygen materials are also shown in this
figure for comparison. The highest smooth and notched fatigue strengths were



exhibited by the IMI 679 and Ti-6Al1-6V-2Sn with the IMI 679 showing a
significantly higher endurance limit than any of the other alloys. As stated
in Reference 1, there appears to be a definite improvement in notched

fatigue properties in low oxygen content Ti-6A1-6V-2Sn when compared to
standard oxygen content material.

Notched, pre-cracked bend bars were tested to determine the susceptibility of
forged Ti-6Al-4V and IMI 679 to delayed failure in salt water. The data
obtained from these tests indicate a relatively high resistance to delayed
failure for both heavy and light sections of Ti-6A1-4V and light sections of
IMI 679 material. The IMI 679 material from the heavy section center location
exhibited substantial susceptibility to delayed cracking in salt water.

Precision room temperature tension and compression modulus data are presented
below. All values shown were obtained in the longitudinal grain direction.

Tension Modulus Compression Modulus
Alloy 165 met 106 psi
Ti-13V-11Cr-3A1 15.7 16.0
Ti-6A1-6V-28n 15.8 16.2
Ti-6A1-4V 17.1 17.4
IMI 679 15.7 I6.1

No significant difference in modulus was noted between the longitudinal and
long transverse grain directions in any of the alloys.

Static tests were conducted on one forging each of Ti-6Al1-4V and IMI 679.

The target was to have a strength equal to the 180-ksi, L340 steel forging de-
sign. This was accomplished by increasing critical dimensions in the titanium
forgings to compensate for the differences in strengths. The dimensional
increases in the lower strength Ti-6A1-4V and IMI 679 forgings were proportion-
ately greater than those in the higher strength Ti-6A1-6V-2Sn and Ti-13V-11Cr-
3Al previously tested (Ref. 1).

Static test failure initiated in the upper flange in both the Ti-6A1-4V and
IMI 679 parts. The Ti-6A1-4V showed almost complete shear mode fracture,
while the IMI 679 part had less than 15% shear-type fracture.

The static test results on the two parts are given in Figure 9; test results
(Ref. 1) on Ti-6A1-6V-2Sn, Ti-13V-11Cr-3A1 and 4340 steel are also shown for
comparison. It was explained in Reference 1 that the high failure strength
in the steel part was a result of its ultimate strength being 205 ksi instead
of the intended 180 ksi. Figure 10 compares the static strength efficiency
(expressed as failure strength divided by part weight) of all the materials.

Full-scale, spectrum-type fatigue testing was conducted on one forging each
of Ti-6A1-LV and IMI 679. In Figure 11 the test results on these alloys are
compared to the values previously obtained (Ref. 1) on Ti-6A1-6V-28n,



Ti-13V-11Cr-3A1 and L4340 steel. These results indicate that Ti-GAl-Lv

and IMI ©79 were superior to the other two titanium alloys. An increase in
fatigue life was expected in the Ti-6A1-4V and IMI 679 parts since these
alloys had increased local section sizes which decreased local stresses
during fatigue loadings. Metallurgical studies revealed iron-rich inclusions
at the fatigue crack origin in the Ti-6A1-4V part which may account for the
large difference in its fatigue life compared to the IMI 679 part.

The fatigue life of the IMI 679 part very nearly approximated that of the
steel part which is considered outstanding since the IMI 679 part was 31%
lighter and had been machined from a heavy section, whereas the steel was
forged to final dimerisions.



220

- ® Ti-6Al-6V-25n
0 A Ti-13V-11Cr-3Al
R X IMI 679
| o — N @ Ti-6Al-4v
< 180 a7 LONGITUDINAL GRAIN
téo G \&‘k
()
~
8 2w )&\\A \-\
% % \ e
@ 140 o -
Q
& - \\‘,\ \©
o \ X
2 I~
®

2 10

80

-100 0 100 200 300 200 500 600

Test Temperature - OF

Figure 1. Effect of Temperature on Ultimate Tensile Strength

200
[ [
© Ti-6Al-6V-25n
& Ti-13V-11Cr-3Al
-+ 180 O X IMI 679
& i ] ® Ti-6Al-4V
. x LONGITUDINAL GRAIN
o
< 160 ~\ N
? §§::::
X
()
&
£ 140 \ N \\\
()]
; 120 \\ \
\
= \@
A
(@)
100 ~
80
-100 0 100 200 300 400 500 600

Test Temperature - °F

Figure 2. Effect of Temperature on Tensile Yield Strength



Ultimate Tensile Strength - ksi

LONGITUDINAL SHORT TRANS VERSE LONG TRANSVERSE 1
200
Ti-13-11-3
Ti-13-11-3
1
80 1 : \ Ti-6-6-2
)\ -6-6-2 © ”wn
' : Ti-13-11-3
160 |
S\‘ e
140 ) ' :
IMI 679 IMT67
120 ,
100 l

EDGE  MID-RADIUS CENTER EDGE MID-RADIUS CENTER EDGE  MID-RADIUS CENTER

Specimen Location

Figure 3. Variation of Thick Section Ultimate Tensile Strength with

Strength

ile

Tens

Notch
Ultimate

sile Strength

ng
Il

Te

Location and Grain Direction

Specimen Location

| o 0 Ti-13-11-3
W Ti-6-6-2
0 ] - Z2 1M1 679
= ITi-6-4 ‘
.20 I — ams
00 B— - 4
) — . . ] J
60f— ] . - i i
) _
FLANGE “DGE MID-RADIUS CENTER

Figure L. Room Temperature Notched Tensile Properties

(X, = 3.9)



[ A Y

649 1WI
|

Av-1v9-11

LMLIMIIIMIMIMIMIMIYNY
IVE-4DTT-A€T-1L

AIITHIITHIHHHIHiHiIMNIINININg

649 1WI
|

USZ-A9-1v9-11

I VE-4DTT-AET-1L

Av-1v¥9-11

50

30
20

‘ury -l

10
0

Rl

-110

Test Temperature - OF

Comparison of Short Transverse Fracture

Toughness Properties

Figure 5.

A Ti-13V-11Cr-3Al
O Ti-dAl-4r

O Ti-6AlI-6V-25n
X IMI 679

Loo

200
160
120

TsY ‘y3dusayS PToIX uoTssaxdwo)

500

200 300

100

-100

o
Test Temperature - F

Grain Direction)

Effect of Temperature on Compression Yield Strength

(Transvers

Figure 6.

9



]H.
e

]

1

L W
}ll
HH

b

T T S

o

il 10 A

Ti-13V-11Cr-3A1 L
i i |

10

S

~

D,

Cycle

lO5

S

S FLAE

Notched Fatigue Propc

e

Comparison of Room Temperatur

e (.

Figur

SEesscaSEaEan e
== =SSSSSSSSS=cs-== ====_ == =S=555
ml == = === == .Iﬂiu!\‘ ——
if &
i s § T
1 I i =
o ¢ =
1 N V N t I +
1 — yi | 1§
i ! i Emmmmm |
| < SESENES NN [EEEE
= o
== = T A 1 = ==
.M|.V|»H4I oD e = HH T T‘V ;II = e ‘MVT\ =
== aEEE TR R e
E===52 % e RS S S e s
P == | = Bt e = MW«W e
==ttt >E iE=EE e e S
lw\H /IA_U e e = ‘Ir —— g i —3 = — ==
N EE sE= == i)
] ! x o
=] T 3
T 7 &l i y i !
" | r & &
! )
SN -
N 1 F.
e ESS==SSESSSSR = = e > WU
=== ===== = o
== myﬂ F .I_._
i
— - i = _\ = i SEES == 2
- ——F-f ¥ - 5 e

0.1

R

L

160

Lo

e

10°

Cycles

105

10

rue

€

1

1 Fat

!

Smoot

om. Temperature

n of Ro

Compariso

fe)

Figure ©O.

10



©Z 7
| El 1331S ovey
L
AV-1v9-11
USZ-A9-IV9-11
NN\ o N N
l6[9 IWI
|V£—JDIH-A£I—®
g 8 8 =8 8 = °
(000T x) sanTred 03 soT0LD
v 2z AN,
| 1331S Ovey
l
Av-1v9-11
USZ-A9-1v9-11
B
619 IWI
§§§§§§§§§§§§§§§§§§§§§§§§§§§
IVE-1DTT-AET-11
|
S S S S S S <
(FuBSTeM 3aed/yjrdusais LanTred)
AOUSTOTIIH Y3Juaals 913838
% 7
[ 1331S Ovev
-
Ap-1v9-11
USZ-A9-1v9-11
INNNNNNNNNN N
619 IWI
Y
IVE-IDTT-AET-11
|
3 K = R < =] e

(saT 000T X) PeOT =anTTed

11

ing

mparison of Forg

Co

11.

Figure

of Static

ngth Efficiency

Comparison

Figure 10.

Figure 9. Comparison of Forging

Spectrum Fatigue

e

Str

Static Strength



Section IIT

PROGRAM FORGINGS

The rough forging configuration used for this evaluation is the modified F-10k
fuselage ring fitting. This configuration is identical to the forging used

in the program described in Reference 1 which permits direct comparisons of
material properties and full-scale test results for four titanium alloys.
Since the selection of a representative forging was of major importance to

the program, the background information on which this selection was based

is presented below.

CONFIGURATION SELECTION

The prcduction, closed-die, F-104 fuselage ring fitting used in this pro-

gram was originally selected for evaluation in the program described in
Reference 1 as being representative of typical airplane forging design. The
fuselage ring fitting joins the forward beam of the vertical stabilizer to the
aft fuselage structure. Figure 12 shows an actual installation of the forging
in the aft fuselage of an F-104. The production part is made from a 4340 alloy
steel forging, heat treated to an ultimate tensile strength of 180-200 ksi.
Since this part must sustain high loads and reversals, it provides for a
critical comparison of material serviceability.

The rough forging from which the titanium part was machined (Figure 13) rep-
resents a modification of the steel counterpart to include broader overall
tolerances and a heavier center section of approximately 5 x 6 inches cross
section. This modified configuration represents the conditions that can be
expected to be of importance in most forged parts. The heavy section provided
a test of the forging procedures needed to produce the fine grain and metallurg-
ical structure required to meet specified properties and the inherent harden-
ability of the alloys. The webs and flanges in the balance of the forging
provide substantial metal flow and transitions from thick to thin sections.

In the titanium forgings, maximum loads were sustained by the structure origi-
nally forged in the heaviest section. Thus, the data obtained from evaluation
of the modified forging are considered to have wide use in the design applica-
tion of light and heavy section titanium alloy forgings.

It should be pointed out that while the selected forging design is well suited
for the program in that it provides the required large section size, it does
not represent current tolerances that can be achieved in titanium parts. It
is possible to design and produce a forging which would conform much more
closely to the final machined shape.
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Figure 12, View of Interior of Aft Fuselage on F-104 Showing
Forward Fuselage Ring Fitting
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PRODUCTTION

Production procedures used in this contract are identical to those used in
the previous program (Ref. 1) so that a comparison of properties could be
made with data from that program.

All billet stock was supplied by Titanium Metals Corporation. Test data on
chemical analysis, mechanical properties of billet material, and mechanical
properties of upset forged material are given in Appendix I. Additional
billet property data obtained by the Wyman-Gordon Company are also given in
Appendix I along with macro-etched sections showing grain structure for
billet stock of Ti-6Al1-4V and IMI 679.

Starting billet size in all materials was approximately 7 x 7 x 13 inches.

The initial forging operation was cross working. The 13-inch billet stock

was upset to a T7-inch height. The stock was then cross worked in each of

the other axes and returned to the original shape. The objective of this work
was to obtain additional working in the billet, since the final reduction in
the forging heavy section was limited. The stock was next cogged to the pre=-
bent shape. The pieces were subsequently sandblasted, tooled, put through

the bending operation, and then finish forged. A view of a finished forging
is shown in Figure 1l4. Each forging was subjected to ultrasonic inspection,
and no defects were found.

Additional details related to forging production are given in Appendix II.
Longitudinal and transverse macro-sections taken through the billets are also
shown in this appendix.

The machined part drawing is shown in Figure 15. As pointed out earlier, the
titanium forgings were purposely modified to contain a liberal dimensional
envelope on all surfaces plus a heavy center section. This modification
necessitated a substantial amount of metal removal to obtain finished parts.
Numerical tape control machining was selected as the most economical means

of machining the four titanium parts for the full-scale tests. Prior to
machining of each forging, a slab approximately 1 x 7 x 5 inches was removed
from each side of the heavy center section in a direction parallel to the
parting plane. This material was used for tool tryout and certain material
property tests.

The IMI 679 rough forgings were heat treated in full section size at Wyman-
Gordon. Machining to final dimensions on these forgings proceeded directly
after the slabbing operation. However, with the Ti-6A1-4V forgings it was
necessary to reduce the section size at time of heat treatment in order to
achieve the desired strength level. To provide the proper section size for
heat treatment, the two Ti-6A1-4V parts for full-scale test were rough
machined to a maximum thickness of 2-1/2 inches. A rough machined Ti-6A1-LV
part after heat treat and pickling is shown in Figure 16. Completed titanium
parts are shown in Figure 17.
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HEAT TREATMENT

A minimum ultimate tensile strength goal of 145 ksi was selected for both the
Ti-6A1-4V and IMI 679 alloys in this program. To achieve this strength level
in the Ti-6A1-4V, the forgings were machined to a maximum section thickness
of 2-1/2 inches prior to heat treatment. The Ti-6A1-4V was heat treated in
accordance with the procedures specified in Specification AMS 4967. The IMI
679 forgings were heat treated in full section size at Wyman-Gordon since
data indicated that the IMI 679 was less sensitive to quench rate. The heat
treatment given to the IMI 679 was the standard heat treatment recommended by
the supplier of this alloy. (2) (3)

The detailed heat treatments used on all four of the forgings in each alloy
are shown below.

Alloy Heat Treatment Procedure

Ti-6A1-4V 1750°F - 1 hour, within 6 seconds water
quench, age at 1000°F - 4 hours, air cool

IMI 679 1650°F - 1 hour, fan cool, age at 930°F -
24 hours, air cool.

Heat treatment varification tests were performed by Wyman-Gordon on material
forged integrally with the forgings and removed for test. Location and
orientation of the integral forged test material is shown in Figure 18. The
test data obtained from this material are presented in Tables 1 and 2.

The heat treat varification tests conducted by Wyman-Gordon on the IMI 679
showed very uniform properties from the center section to the flange. The
test data obtained from the integrally forged material were representative
and in good agreement with the data obtained from the forging.

The Ti-6Al1-4V heat treat varification tests also showed uniform properties
from the center section to the flange, but were higher than the Lockheed data.
The high properties probably resulted from the smaller quench size of the
integrally forged material.
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TABLE 1.

PRODUCT TEST RESULTS Ti-6Al-4LV TMCA HEAT D-7976

MATERIAL CUT FROM FORGING, HEAT TREATED AS COUPONS (1)
Forging Spec. Location Ultimate Yield Elong. R.A.
Number No. Tensile Strength % %
Strength 0.2% 1 in.
ksi ksi
1 1L Eng Pad Long. 178.0 16L4.0 10.0 29.9
1T End Pad Trans. 170.6 156.0 1.0 33.8
1C Center Pad Long. 168.0 154,0 10.5 31.8
2 1L End Pad Long. 171.4 157.0 13.0 35.7
1T End Pad Trans. 173.6 158.0 11.0 35.7
ig Center Pad Long. 169.6 154.8 10.5 32.7
3 1L End Pad Long. 181.6 169.2 10.5 35.7
1T End Pad Trans. 174.0 160.8 11.5 bk
1C Center Pad Long. 168.4 155.8 10.5 4.k
L 1L End Pad Long. 176.2 163.4 19,0 38.2
g End Pad Trans. 168.0 153.8 13.5 4s5.0
1e Center Pad Long. 170.0 158.0 8.5 23w
17 2.4 152. 7

(1) Heat Treatment:

Solution Treated 1750°F (1 hour) W.Q.

Aged 1000°F (4 hours) A.C.
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TABLE 2.  PRODUCT TEST RESULTS - IMI-679 - TMCA HEAT 8427 (1)
ALL SAMPLES WERE INTEGRAL WITH FORGINGS AT TIME OF HEAT TREATMENT
Forging Spec Location Ultimate Yield Elong. R.A.
Number No. Tensile Strength % %
Strength 0.2% 1 in.
ksi ksi
1 1L End Pad Long. 152.4 134.0 15.0 6.7
1T End Pad Trans. 149.0 134.0 16.0 4.1
1C Center Pad Long. 1Lh6.4 131.2 15.0 37.6
B 1L End Pad Long. 153.0 1340 15.0 47.8
1T End Pad Trans. 1h6.2 131.6 16.0 43,1
1g Center Pad Long. 150.0 133.6 13.5 36.3
3 1L End Pad Long. 153.8 134.6 15.0 L3.7
jili End Pad Trans. 146.8 131.6 1k4.5 4s5.5
1c Center Pad Long. 150.0 131.6 1k.5 ko,s5
L 1L End Pad Long. 152.0 13k.2 15.0 b1
1 End Pad Trans. 150.0 132.0 15.0 39.5
1€ Center Pad Long: 148.0 130.0 13.5 39.5
14,3 t32.5

(1) THeat Treatment
Solution Treated 1650°F (1 hour ) Fan Cool
Aged 930°F (24 hours) Air Cool
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Section IV

MATERIAL PROPERTY EVALUATION

This section presents the material property evaluation data, including thermal
exposure, environmental delayed failure resistance and metallurgical results.
The material property tests were located throughout the forgings in order to
evaluate the effects of forging thickness, grain direction, thickness at time
of heat treatment, etc. The type of test specimen and location in the var-
ious forgings are shown in Figures 19 through 24. Figures 19 through 21 also
illustrate the section sizes into which each forging was cut and the specimen
identification letters used. All sectioning was accomplished after heat treat-
ment in the IMI 679 and prior to heat treatment in the Ti-6A1-LV alloys.

Details on the test procedures and specimen geometries that were used for each
type of mechanical property test are presented in Appendix III. All evalu-
ation procedures were similar to those used in the program described in Refer-
ence 1 in order to permit direct comparisons of data from the two programs.
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A prefix letter is used with a given
specimen code to denote the alloy

"G" prefix for IMI 679
"I" prefix for Ti-6A1-LV

[ A ]
? (::::;7 £7
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— — — — — Forging = = =
V Center
Section
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Figure 20. Specimen Layout Second Forging IMI 679 and Ti-6Al-LV
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A prefix letter is used with the given
specimen code to denote the alloy.

"F" prefix for IMI 679
"H" prefix for Ti-6Al1-LV
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Figure 21. Specimen Layout Third Forging IMI 679 and Ti-6Al-LV
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Figure 2U. Fatigue Specimen Layout for IMI6T9 and Ti-6A1-LV
Third Forging Center Section

35



TENSILE PROPERTIES

Extensive tensile testing was conducted to evaluate variation in tensile pro-
perties within the forgings. It was of particular interest to determine ten-
sile property variation in each alloy in locations from edge to center in the
forging thick section for all three grain directions and to compare these
values with properties obtained in web and flange areas. Variation in prop-
erties in each alloy with test temperature and from one forging to another
was also investigated to provide data for design.

Tensile data on the Ti-6A1-4V forgings are reported in Tables 3 through 5.
In the number two forging of Ti-6A1-4V, the variation of ultimate tensile
strength and ductility from edge to center in the forging heavy section is
compared for all three grain directions in Figure 25.

This figure shows that tensile strength in the transverse grain direction de-
creases slightly going from edge locations to center. In the longitudinal
grain direction the mid-radius position had the lowest properties. However,
total strength range varied less than 10 ksi at any given location, a differ-
ence which is not considered significant.

As indicated in Figure 26, tensile yield strength values followed the same
pattern as those for ultimate strength.

Tensile strength versus test temperature for all three grain directions in the
Ti-0A1-4V alloy is given in Figure 27. Center and edge properties were aver-
aged for each grain direction in this plot. As indicated in Figure 27 very
little variation was found in the average tensile ultimate and yield strengths
which were obtained at each test temperature.

Tensile property results on the IMI 679 alloy are reported in Tables 6
through 8. The variation in properties with location in the thick section of'
the IMI 679 forging are shown in Figures 28 and 29. These figures show a
trend toward lower values of properties going from edge to center locations
for all three grain directions, as might be expected. However, the total
property variation in any grain direction was slight, indicating a highly uni-
form product. Figure 30 presents a plot of tensile strength versus test tem-
perature for IMI 679. Very good agreement in strength values were obtained
for all grain directions.

Ductility values as measured by percent elongation and percent reduction in
area were excellent at all locations and grain directions in both materials.
The lowest values measured at room temperature were 8% elongation and 19%
reduction of area in the Ti-6A1-U4V forgings and 10.5% elongation and 30% re-
duction of area in the IMI 679 forgings. Typical values of elongation and
reduction in area were substantially higher than these minimums. Testing at
-110°F did not significantly affect ductility in either alloy.

Properties in light sections of the forgings can be compared to those obtained
in the heavy sections by reviewing the data in Tables 3 through 8, The data
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indicate that strength and ductility were higher in thin section locations
than in heavy center locations in the Ti-6A1-LV forgings. Improved ductility
in thinner sections of the Ti-6A1-4V forgings is attributed to the greater
amount of work received by the lighter sections. The higher strength of the
thinner sections of the forgings is attributed primarily to the faster quench
rate at time of heat treatment.

In the IMI 679 forgings, negligible differences were noted between properties
in the thin section locations and those in the heavy center section. The
range in ultimate tensile strength of Ti-6Al-LV and IMI 679 forged stock was
not significantly different from billet stock in either alloy. Elongation,
reduction of area, and yield strength in the IMI 679 forgings were improved
over those obtained in the billet stock.

Yield strength was lower in Ti-6A1-L4V billet than in the forging. This dif-
ference is attributed to the larger section size of the billet material at
time of heat treatment (e.g., L-inch-thick billet versus 2 1/2-inch-thick
forging). Nevertheless, elongation and reduction in area values appear to be
equivalent in the billet and forging.

Typical autographic tensile stress-strain curves for Ti-6A1-L4V and IMI 679
are given in Figures 31 and 32, respectively.
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NOTCHED TENSILE PROPERTIES

Notched tension tests were conducted on specimens taken from the light sec-
tion flange areas as well as at edge, mid-radius and center locations of the
forging heavy center section in the Ti-6A1-4V and IMI 679. The notch tensile
data are presented in Tables 9 and 10. Figure 33 presents a plot of notched
to un-notched tensile strength ratios for various specimen locations in the
Ti-6A1-4V and IMI 679 forgings. Room temperature NTS/UTS ratios of 1.35 and
higher were obtained in Ti-6A1-4V and IMI 679 in all grain directions and at
all locations. Whereas, NTS/UTS ratios over 1.2 for Ti-6A1-6V-2Sn and under
1.0 for Ti-13V-11Cr-3Al were obtained in tests previously conducted (Ref. 1).
All test specimens were taken from identical locations in each of the four
alloys.
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COMPRESSION PROPERTIES

Compression properties for Ti-6A1-LV and IMI 679 are given in Tables 11 and
12. The effect of temperature on compression yield strength in Ti-OA1-4V is
shown in Figure 34. Similar data on IMI 679 are presented in Figure 39.
Typical autographic compression stress-strain curves for both alloys at room
temperature and 550°F are shown in Figures 36 and 37 respectively. Compres-
sion properties were found to be quite uniform; the variation in valucs due
to location and grain direction was small.

At room temperature and —llOOF, the compression properties of Ti-6Al-4V and
IMI 679 were in the same range as the ultimate tensile strengths of each
alloy. However, the compression properties dropped off more rapidly than the
ultimate tensile strength at 5500F,
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SHEAR AND BEARING PROPERTIES

Results of room temperature and 550°F double shear testing Ti-6A1-4V and

IMI 679 material are given in Table 13. The specimens were taken in the
longitudinal grain direction from the thick section of the forgings. The
values obtained on the Ti-6A1-L4V forgings were in good agreement with pub-
lished values. Shear values on IMI 679 from other sources were not available
for comparison.

Bearing u.timate and yield strength values at room temperature and 550°F for
Ti-6A1-4V and IMI 679 are given in Table 1k4.
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FRACTURE TQUGHINISS

Pre-cracked round bar specimens were tested to determine the tracture tough-
ness characteristics <K1C) in the Ti-0AL-4V and IMI 079 torgings. ALl speci-
mens were taken in the short transversce grain direction so they could be
readily compared to the data on Ti-13V-11Cr-3A1 and Ti-OAl-oV-Su (Ref. 1).
Fracture toughness results on Ti-OAl-L4V and IMI 679 are presented in Tables |
and lu and shown graphically in Figure 38.

\J3

Foroine No. 1 of Ti-0A1-4V had the highest room temperature fracture toughness
values of the two alloys tested in this program. Values of Ko from similar
locations in forging No. 1 and forging No. 2 of each alloy were compared. The
values obtained showed very good agreement for both the Ti-GAl-4V and IMI 679.
A slight decrease in Kj. values was noted in both the Ti-0A1-4V and IMI 679
at a test temperature ot -110°F.

Two machined specimens of each alloy were exposed to 550°F for 1000 hours in
an unstressed condition. After exposure the specimens were fatigue cracked
and tested at room temperature. The thermal exposure treatment had no sig-
nificant effect on the fracture toughness properties in either the Ti-6A1-4V
or IMI 679. See Tables 15 and 16.

Data obtained in Reference (1) indicated that the room temperature K|, values
for Ti-OAl-6V-2S8n are comparable to those obtained for Ti-6A1-4V. Tt should
be noted, however, that the Ti-OA1-6V-25n was at an ultimate tensile strength
level of approximately 160 ksi.
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FATTIGUE PROPERTIES

Smooth and notched axial tension fatigue testswere conducted on Ti-OAl-LV

and IMI 679. A stress of R=C.1 was used in all testing. The test re-
sults are presented in Tablies 17 through 2C and shown graphically in Fig-
ures 39 through 42. In general, the longitundinal room temperature smooth

and notched properties of IMI 679 are superior to those exhibited by Ti-6Al1-LV.
However, smooth fatigue properties at 55C°F were comparable in the Ti-GAl-Lv
and IMI ©79.

Short transverse smooth fatigue tests were conducted at room temperature on
Ti-6A1-4V and IMI 679 and compared to the longitudinal tests. MNo difference
in fatigue properties was noted in either alloy due toc grain direction.
Longitudinal smooth fatigue tests were conducted on the alloy billets.
Fatigue properties in both the Ti-6A1-4V and IMI 679 billets were found to be
lower than those in the forging.
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THERMAL EXPOSURE

In addition to the evaluation of thermal exposure effects on fracture tough-
ness discussed above, smooth and notched tensile specimens of each material
were also exposed for one thousand hours at 550°F and tested at room tem-
perature. The data obtained are presented in Table 21 along with the unex-
posed control values. All exposure testing was conducted on unstressed
specimens.

After exposure to 550°F for 1,000 hours, no apparent effect of exposure was
noted in either the smooth or notched IMI 679 or Ti-6A1-LV tensile specimens.
Two of the four Ti-6A1-L4V smooth tensile specimens which were subjected to
thermal exposure showed no change in properties while the two other specimens
showed a slight increase in strength. This difference, however, is con-
sidered to be within the scatter for this alloy.
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MODULUS OF ELASTICITY

A Tuckerman optical strain measuring system was used to develop precision
room temperature tension and compression elastic modulus data on Ti-OAl-LV
and IMI 679. Since modulus data were not obtained in the previous program,
the Ti-13V-11Cr-3A1 and Ti-6A1-6V-2Sn alloys were also tested as part of this
program, Specimens were taken in the longitudinal and long transverse grain
directions from a slab similar to block VII of forging No. 3.

Tension and compression modulus of elasticity data for all four alloys are
presented in Tables 22 and 23. No significant difference in modulus was
noted between the longitudinal and long transverse grain directions in any
of the alloys tested. Of the four alloys tested the Ti-6A1-UV exhibited the
highest tension modulus and compression modulus values.

A second set of tests was run on each specimen of the Ti-OAl1-LV and IMI (9.

Data from the second test were in excellent agreement with the values reported
in Tables 22 and 23.
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L
TABLE 22 THICK SECTION TENSION MODULUS OF ELASTICITY TESTS( )

Specimen Grain
Alloy Location Direction Modulus (106 psi)

IMI 679 Edge L 15.6
15.8
15y
Average 155
LT 15.6
16.3
16.4
Average 16.1
Ti-6A1-4V Ty 17.0
17.1
17.2

Average m
LT 17:2
17.2
17.4

Average
Ti-13V-11Cr-3A1 L 16.1
15.6
15.3
Average Bie T
LT 15.4
15.7
14.9
Average 15.3
Ti-6A1-6V-2Sn L 15.8
15.9
15.8
Average 15.8
il 16.4
16.4
16.2
Average 16.3

(1) Tuckerman gages were used to establish modulus values
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TABLE 23 THICK SECTION COMPRESSION MODULUS OF KLASTICITY THSTS(\)

Alloy

Specimen
Location

Grain
Direction

IMI 679

Ti-6A1-4V

Ti-13V-11Cr-3Al

T1-6A1-6V-2Sn

Edge

L

Aver: e

LT

Average

L

Average

LT

Average

L

Average

LT

Average

Average

LT

Average

(1) Tuckerman gages were used to

4-

establish modulus values
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ENVIRONMENTAL DELAYED FATLURE EVALUATION

Certain titanium alloys and heat treat conditions are known to be susceptible
to delayed failure in the presence of a crack, stress and salt water. There-
fore, a limited evaluation was conducted to determine the susceptibility to
delayed failure in salt water of forged Ti-6A1-UV and IMI 679. Section size
has previously been shown to have an important influence on material sus-
ceptibility, therefore, in this study samples were taken from the relatively
thin web areas as well as from the forging center section in each alloy.

A1l specimens were oriented in the long transverse grain direction. Pre-

cracked, notched bend bars were tested using the procedure described in Ap-
pendix III. The conventional plane strain, fracture toughness, Kjn, was
determined for each set of samples in air. Then a sustained load limit in

salt water was established and used to calculate the sustained load, environ-
menta, stress intensity limit Ky;. The ratio of K, to Kyi can then be used

to indicate the relative material susceptibility to delayed failure in salt water.

The test results are reported in Table 24. These data indicate a relatively
high resistance to delayed failure for both heavy and light section Ti-6Al1-4V
and light section IMI 679 material. The IMI 679 from the heavy center loca-

Kss
tion exhibited substantial susceptibility. The ratio of Kii for this material
lc
was 57% whereas all other materials exceeded 75%. In previous work the rate

of cooling from the solution temperature has been found to affect delayed
failure susceptibility of titanium alloys. This may explain the difference
in the behavior between the Ti-6A1-4V and IMI 679 taken from the forging
heavy sections. The IMI 679 was solution treated in full section size and
forced air cooled. In contrast with this relatively slow cooling rate in the
IMI 679, the Ti-6GAl-4V material was only 3/4 inches thick at time of heat
treatment and was water quenched.

The Ky, values obtained with the notched bend specimens and reported in

Table 24 are noted to be significantly higher than the Kic values obtained
with pre-cracked, notched round bar specimens reported in Tables 15 and 16.
The differences are inherent in the two different types of fracture toughness
testing techniques.
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METALLURGICAL EVALUATION

Metallographic studies were conducted on the Ti-6A1-LV and IMI 679 forgings.

Representative sections were taken from web and center locations in each alloy
to show transverse and longitudinal grain structure.

Microstructures of Ti-6Al-LV forgings are presented in Figures 43 through Lo.
Longitudinal and transverse views in the web area are given in Figures 43 and
L. respectively. The Ti-6A1-4V shows little evidence of directionality in
either the web or center section. Microstructure in the Ti-0Al-LV consisted of
primary alpha in a transformed beta matrix. The specimen from the center
section shows a greater amount of martensitic alpha than the web specimen.
Normally, martensitic alpha indicates a faster cooling rate. This is possible
since the specimens in Figures 45 and 46 were taken near the quenched surface
of the thick section.

The Ti-6A1-4V starting billet microstructure is shown in Figure 47. The
coarse, accicular alpha present in the billet has been altered significantly
in the forgings as a result of the working and heat treatment received by the
forgings.

Figures 48 and 49 show the microstructure for two grain directions in the
relatively thin web section of IMI 679 forgings. The web area in the forging
received considerably more work than- the heavy center section; however, the
microstructures are quite similar in both locations. See Figures 50 and 51.
None of the microstructures exhibit significant directionality. In each case,
the metallurgical structure consists of primary alpha (light areas), trans-
formed beta, and silicides (dark particles). All of these microstructures

are noted to be finer than corresponding microstructures in the Ti-O6A1-Lv
forging.

The IMI 679 billet microstructure is shown in Figure 52. As was the case with
Ti-6A1-4V, the coarse elongated alpha particles present in the billet have
been altered significantly in the forgings as a result ol the working and heat
treatment received by the Torgings.

Figures 53 and 54 show the macrostructure obtained in a transverse web and
flange area in Ti-6A1-4V and IMI 679 respectively. Considerable refinement
of structure is noted compared to the center sections. The forging flow
lines are typical of the section shown.

Longitudinal and transverse macrosections of the forging heavy sections of
each alloy are shown in Figures 55 through 58. These figures can be compared
to the billet macrostructures (see Figures T4 through 77, Appendix I) to deter-
mine metallurgical changes related to crossworking, forging and heat treat-
ment operations. Similar to the findings in Reference 1, the macrosections
indicate considerable grain refinement near the forging surfaces in each

alloy with only small changes noted in the forging center sections.

The unusual ring pattern in the IMI 679 macrographs is apparently typical of
this alloy. TMCA has reported the same type of pattern in IMI 679 and stated
that it is a carry over from the ingot macrostructure. Electron microprobe
analysis of these patterns have been made by TMCA. The results showed no
chemical segregation and it is believed that the pattern is strictly an
orientation effect (5).
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Forging Web Area

Figure 43, Ti-6A1-4V Microstructure of Specimen HAO, Longitudinal
Grain Direction (250X)

Forging Web Area

Figure 44, Ti-6A1-4V Microstructure of Specimen HAO, Transverse Grain
Direction (250X)
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Forging Heavy Section

Figure 45, Ti-6A1-4V Microstructure of Specimen H-67 Longitudinal
Grain Direction (250%)

Forging Heavy Section

Figure 46, Ti-6A1-4V Microstructure of Specimen H-67 Trensverse
Grain Direction (250%)
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Forging Web Area

Figure 48. IMI 679 Microstructure of Specimen FAO Longitudinal
Grain Direction (250X)

Forging Web Area

Figure 49. IMI 679 Microstructure of Specimen FAO Transverse
Grain Direction (250X)
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Forging Heavy Section

tigure 50. IMI 679 Microstructure of Specimen F-58 Longitudinal
Grain Direction (250X)

Forging Heavy Section

Figure 51. 1IMI 679 Microstructure of Specimen F-58 Transverse
Grain Direction (250X)
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Figure 52 Microstructure of Heat Treated IMI 679 Billet Stock
(Longitudinal - Upper, Transverse - Lower)
Etchant: Benzal Stain (250X)
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Figure 53 Ti-6A1-4V Macrostructure of Transverse Web and Flange Area

Figure S54. IMI 679 Macrostructure of Transverse Web and Flange Area
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Figure 56 Ti-6A1-4V Transverse Section Through Forging Center Section
(Approx. 1,)()






Figure 58 IMI 679 Transverse Section Through Forging Center Section
(;\pprox. 1X)
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Section V

FORGING STATIC TEST

The forging static test program consisted of testing one machined fuselage ring
fitting of Ti-6Al1-4V and one of IMI 679. This part was originally selected in
the previous program to represent a typical airplane forging design which
includes local effects of skin attachment holes, fin to spar attachment lugs,
and curved flanges following fuselage contour. The static test procedure
consisted of an up-load in combination with a side load which produced complex
loading in the parts. The direction of these loads are related to those
experienced in an actual part in an airplane.

In the test set-up, the forging was supported at each end by flexure pivots
attached to the end fittings. The vertical load was applied equally by two
jacks and the side load by one jack. The vertical components were reacted
through the flexures and the side load was reacted by a tension strap attached
to the top deck of the forging. Test loads were applied in increments until
failure. The test set-up is shown schematically in Figure 59. A view of the
actual test set-up with a forging installed for test is shown in Figure 60.

Dial gages were located 3 inches on either side of the forging centerline.

The test loads were applied in increments and deflections measured for various
loadings up to 25,000 pounds. The load was returned to zero and the dial gages
were re-checked for evidence of permanent set in the parts. Neither alloy
showed evidence of permanent set after application of the 25,000 pound load
which is approximately 70 percent of the predicted failure strength. Test
loads were then re-applied in increments to failure. Load-deflection data are
presented in Table 25.

The load deflection curves for each part are shown in Figure 61. These curves
can be compared to those obtained on Ti-6A1-6V-2Sn, Ti-13V-11Cr-3Al, and 4340
steel parts (Ref. 1). Such a comparison shows that the Ti-6A1-4V and IMI 679
parts were stiffer than parts made from the other two titanium alloys. This
difference was due primarily to the increased thickness dimensions of the
Ti-6A1-4V and IMI 679 parts rather than significant differences in elastic
modulus.

The static test results were as follows:
Failure Load (1bs)
P_ (Vertical) B, (Horizontal)

Alloy Part Weight Z
IMI 679 9.85 1lbs 36,500 4,380
Ti-6A1-4Vv 9.00 1bs 39,500 4,740

111



Pailure initiated in bending in the upper flange in the same location in both
materials. The Ti-6A1-4V part showed almost complete shear mode fracture.
The IMI 679 part had less than 15% shear type fracture. The Ti-6GA1-4V and
IMI 679 fractured parts are shown in Figures 62 and 63, respectively.

These results (Table 25) can be compared directly with the results obtained
in the previous program since all testing procedures were identical. Static
test results from Reference 1 were as follows:

Failure Load (1bs)
Alloy Port Welght E. (Vertical) By (Horizontal)
Ti-6A1-0V-28n 8.54 39,000 4,680
Ti-13V-11Cr-3A1 9.28 32,500 3,900
4340 steel
(180 ksi H.T.) 1l .62 45,000 5,400

In all cases, the titanium alloy forging target was to have strength equal to
the 180 ksi, 4340 steel forging design. This was accomplished by increasing
critical dimensions in the titanium forgings to compensate for the differences
in strengths. Because of differences in the basic strength of the titanium
alloys, the dimensional increases in the lower strength Ti-6A1-4V and IMI 679
were proportionately greater than those in the higher strength Ti-06A1-6V-2Sn
and Ti-13V-11Cr-3A1. The Ti-6Al1-4V and Ti-6A1-6V-2Sn had almost identical
breaking strengths and were the highest of the four titanium alloys. Failure
strength of the 4340 steel part was substantially greater than any of the
titanium parts. As pointed out in Reference 1, a strength check on the steel
part indicated an actual ultimate tensile strength of 205 ksi, whereas pre-
dicted strength was based on the intended Fyy of 180 ksi, which explains the
high breaking strength in the steel part.

Figure 64 compares the static strength efficiency (expressed as failure strength
divided by part weight) of these parts. Failure strengths for Ti-OGAl-4V and

IMI 679 are compared in Figure 65. Figures 9 and 10, in the Summary Section,
compare the static strength and static strength efficiency of all five alloys.
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Py Hydraulic Jack
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Figure 59. Schematic of Static Test Set-Up
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Section VI

FORGING FATIGUE TEST

A full scale fatigue test was conducted on one forging each of IMI 679 and
Ti-6A1-L4V. The test loading spectrum and test procedure were the same as that
used in the Reference 1 program, which permits direct comparisons of test
results. (See Summary Section.) The test loading spectrum used was based on
the lateral gust spectrum originally specified for application to the vertical
fin ofan F-104G aircraft, except that the severity of the spectrum was increased
to insure failure in a reasonable test time. The fatigue loadings consisted of
a varying side load (Py) and a mean vertical load (Py). The fatigue unit
spectrum is shown in Figure 66. Repetitive applications of the unit spectrum
were applied until failure occurred.

The forging fatigue test set-up utilized the same basic test fixture that was
used for static testing. The mean load and counterbalance of the loading
fixture was applied with dead weight. The varying side load was applied by a
hydraulic jack and controlled by a Schmitt Trigger. Operation of the Schmitt
Trigger consisted of setting trigger points to a particular load level. When
the desired load was reached, the voltage feedback from a load cell mounted
in series with the hydraulic jack triggered a relay and transferred the
hydraulic pressure from one Jjack port to the other. This cycling continued
until a pre-set cycle counter shut off the Schmitt Trigger. The trigger
points were reset for each new load level.

The vertical mean load and the vertical components of the My moment were
reacted through flexure pivots and the Py shear loads were reacted alternately
by one of two tension straps. The fatigue test set-up and the control system
are shown schematically in Figures 67 and 68, respectively. A view of the
actual test set-up with a forging installed for test is shown in Figure 69.

Table 26 presents the fatigue loading history of each part. In each case,
testing was discontinued shortly after the appearance of visible cracks in the
parts. The Ti-6Al-4V part failed in 172,100 cycles, during application of

the 4,300 pound Py loads, in the seventh application of the unit specimen. The
IMI 679 part failed after 278,700 cycles during application of the 3000 pound
load in the twelfth application of unit spectrum.

In the IMI 679 part, the fatigue failure initiated at a barrel nut hole as
shown in Figure 70. Two different crack locations were found in the Ti-6A1-LV
part. The major crack occurred in the web adjacent to the barrel nut holes as
shown in Figure 71l. A second smaller crack was found in the web immediately
inboard of the end attachment fitting. After finding the second crack in the
Ti-O6A1-L4V part, a thorough zyglo inspection was conducted on both parts to
determine possible secondary cracks. No other cracks were found in either part.

121



The lower fatigue life and presence of two cracks in the Ti-0A1-4V part prompted
an investigation to determine possible causes for the somewhat poor results.

Metallurgical studles revealed microscopic foreign substances at both Tatigue
crack locations. Oxygen rich alpha segregation was suspected; however, the
inclusions were examined by electron probe microanalyzer and were Tound to be

in excess of 80% iron. The largest inclusion found was approximately 0.008 inch
thick and .070 inch long. Numerous smaller iron rich inclusions were noted.

The inclusion pattern indicated evidence of having been broken up and scattered
in the forging process. Since fatigue cracks were fTound propagating away [rom
the iron-rich inclusions it was assumed that their presence contributed to the
lower fatigue life in the Ti-6Al-LV part (see Figure 72). Longitudinal tensile
specimens were cut from the upper flange and web areas of the failed Ti-OA1-LV
part. The following properties were obtained and correspond very closely to
the tensile properties obtained in the material tests.

Specimen Ultimate Tensile 0.2% Yield
Location Strength - ksi Strength - ksi % Elongation
Flange 149 138 10
151 139 1l
152 140 13
Web 146 135 12
148 137 12
146 134 12

The IMI 679 and Ti-GA1-4V test results can be compared to the values previously
obtained (Ref. 1) on Ti-6A1-6V-2Sn, Ti-13V-11Cr-3A1 and 4340 steel parts which
were as follows:

Alloy Part Weight Fatigue Life Cycles
Ti-6A1-6V-2Sn 8.72 149,960
Pi=13y-11Cr=341 9.22 2L, 870
L3L0 Steel

(180-200 ksi H.T.) 14.58 288,750

These results indicate that IMI 679 and Ti-OGAl-4V were superior to the other
two titanium alloys in fatigue performance. An increase in fatigue life was
expected in Ti-6A1-4V and IMI 679 since parts made from these lower strength
alloys had slightly increased local section sizes which decreased local
stresses during fatigue loadings.

The IMI 679 fatigue life very nearly approximated that of the steel part and

is considered outstanding for several reasons. First the IMI 679 part was 31%
lighter than the steel. Second, the IMI 679 part, like the other titanium alloy
parts, was machined from very heavy sections to be representative of much

larger parts, whereas the 4340 steel part was forged to final dimension of the
parts. Considering these factors, the IMI 679 part is considered to show
particular promise for high performance in forgings used in fatigue critical
applications.
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Section VII

CONCLUSIONS

Following are the conclusions reached upon evaluation of the complete test
data.

1. The range in ultimate tensile strength of Ti-6A1-4V and IMI 679
forged stock was not significantly different from billet stock in
either alloy. Elongation, reduction of area and yield strength in
the IMI 679 forging were improved over those obtained in the billet
stock.

2. In the Ti-6Al-4V parts the greater forging reduction received by
light sections improved the ductility in these areas compared to the
ductility in the forging heavy section. The IMI 679 parts did not
show this effect.

3. Tensile properties in IMI 679 were highly uniform at all test loca-
tions and grain directions. The Ti-6A1-U4V also showed relatively
uniform properties, but all property ranges were greater than thosec
in the IMI 679.

4. Unstressed exposure at 5BOOF for 1000 hours had no apparent affect
on notch tensile strength, smooth tensile strength or tensile
ductility in either Ti-6A1-4V or IMI 679.

5. Both Ti-6A1-4V and IMI 679 exhibited good fracture toughness at
room temperature and at -110°F. Unstressed exposure at 5500F for
1000 hours did not significantly affect fracture toughness in either
alloy.

6. Smooth and notched room temperature fatigue properties in IMI 679
appear to be significantly higher than. those in Ti-6Al-4V. Smooth
fatigue properties at 550°F were comparable in both alloys.

‘(. TForging of the billet stock produced an improvement in smooth fa-
tigue properties of both alloys.

8. Full scale static and fatigue test results of Ti-6A1-4V and IMI 679
compared favorably with the previous test results on Ti-6Al-6V-QSn,
Ti-13V-11Cr-3A1 and 4340 steel from Reference 1. The Ti-6A1-4V and
IMI 679 static test parts both failed in a location and manner
similar to that of the 43L0 steel part.
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10.

The actual capability of Ti-6A1-4V in the full scale Tatiguc test
was not definitely established, because the presence of iron rich
inclusions probably shortened the life of the Ti-GAl1-LV part.

The IMI 679 fatigue results on the full scale part and test coupous
indicate this alloy has potential for improved periormance over
other titanium alloys for fatigue critical applications.

Both light and heavy section forged Ti-6A1-4V showed good resis-
tance to delayed failure in salt water. IMI G679 forged in Lirht
sections was also resistant to delayed failure in salt water. bul
IMI 679 forged and heat treated in heavy sections showed suscoepti-
bility to delayed failure phenomenon.
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Section VIII

RECOMMENDATTIONS

This program and the program described in Reference 1 evaluated and character-
ized a total of four different titanium alloy forgings for application in
future weapons systems. Crack growth rate data was not obtained in either of
these programs; however, the rate and manner of crack propagation from initial
flaw size are considered essential in the evaluation of material suitability.
Therefore, it is recommended that studies be conducted on these alloys to
determine crack growth rates in fatigue testing in both air and salt water
environments.

The British alloy IMI 679 has had only limited evaluation in the United States;
in view of the outstanding fatigue properties found in this program, increased
evaluation seems warranted. Recent information indicates the alloy can be
quenched and tempered to higher strength levels than evaluated in this pro-
gram. It is recommended that further evaluation studies be conducted to es-
tablish a greater body of basic property data and to determine possible
advantages of higher strength heat treatments.
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Appendix I

BILLET TEST DATA

This appendix contains data supplied by TMCA and Wyman-Gordon which are per-
tinent to the forging evaluation. Chemical analysis data for the two titanium
alloys studied are given in Table 27. Billet processing history is shown in
Table 28. Mechanical properties on full section size billet stock and upset
billet stock are given in Table 29.

Data on tensile properties for all three grain directions on Ti-6A1-4V and
IMI 679 billet stock are given in Tables 30 and 31. The billet material was
L inches thick at time of heat treatment. 1In the case of the Ti-6A1-L4V alloy,
the actual forging material was machined to a maximum of 2-1/2 inches at time,
of heat treatment. Therefore, the Ti-6A1-4V billet properties would be ex-
pected to be somewhat lower than those obtained in the forgings. Neverthe-
less, good properties were obtained in the L-inch thick slab of Ti-6A1-LV.
Tensile properties of both the Ti-6A1-4V and IMI 679 are equivalent. For a
similar location, properties in the longitudinal grain direction were com-
parable to those in one transverse grain direction in both alloys. Test
specimens in the other transverse grain direction were located near the
surface and had higher strengths than specimens in either of the other two
directions. The Ti-6A1-4V and IMI 679 billet properties are compared graphi-
cally in Figure 73.

A transverse macrosection of Ti-6A1-L4V billet stock is shown in Figure Th&.
Longitudinal and transverse macrosections of IMI 679 billet stock are shown in
Figures 75 through 77. The IMI 679 billet macrograph shows a ring pattern
which 1is apparently typical of this alloy. See Section IV for discussion of
ring pattern.
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Figure T4. Macrosection of Ti-6A1-4V Billet Stock - Transverse
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TABLE 30.

BILLET STOCK TENSILE TEST RE
Ti-6A1-4V TMCA HEAT D-7976

(7 x 7 x 4k Billet)

w

Specimen Ultimate Yield Elong. R.A.
Number Tensile Strength % %
Strength 0.2% 1l in.
ksi ksi

1L 143.0 127.0 13.0 32.7
2L 137.6 114.0 1k.5 33.8
1T 143.4 128.4 12.5 26.6
2T 140.0 128.8 15.0 28.3
3T 150.0 132.0 10.0 21T
LT 148.0 129,2 10.0 2%.1

(1) Heat Treatment:
Solution Treated 1750°F (1 hour) W.Q.

Aged 1000 F (4 hours) A.C.

T
2T
i
3
= 2L 1L
Et| B
]| ™M
.

Test Locations
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TABLE 31. BILLET STOCK TENSILE TEST RES?Lgs
Ti-IMI 679 - TMCA HEAT D-8k27(l

(7T x 7 x 4 Billet)

Specimen Ultimate Yield Elong. R.A.
Number Tensile Strength % %
Strength 0.2% 1 in.
ksi ksi
17, 14k.0 125.6 13.5 35.7
17 139.0 118.0 14,0 33.8
2L 140.0 121.8 15.0 38.2
2T 142.0 122.0 11.5 29.9
il 152.0 134.0 15.0 31.1
LT 150.0 133.8 10.0 29.9

(1) Heat Treatment:

Solution Treated
Aged 930°F (24 hours) Air Cool

1650°F (1 hour ) Fan Cool

1
or
1T
o
e 2L 1L
M~
H | H
= ™M
y
i —

Test Locations
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Appendix II

FORGING PROCEDURES

Section III presented some of the basic details related to production of the
closed die titanium alloy forgings. Additional information pertaining to the
forging procedures is presented in this Appendix.

The initial billet crossworking procedure is depicted in Figure 78. The die
sinking model and master for the finish die are shown in Figures 79 and 80.
The bender die with a wood template in place is shown in Figure 81. Signifi-
cant details related to heat up times, forging equipment, sequence of oper-
ation, etc., are given in Tables 32 and 33. As indicated in these tables all
forging operations were done on press equipment. In each forging stage the
dies were pre-heated to approximately 800°F. Conventional graphite lubri-
cants were applied to the forging blanks and the dies. All procedures were
identical to those used in the previous program (Ref. 1) with the exception
of forging temperatures.
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Figure 79. Die Sinking Model - Finish Di

Figure 80. Die Sinking Master -~ Finish Die
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Appendix ITL1

MATERIAL PROPERTY TEST PROCEDURES

The test procedures, temperatures, type of tests, and specimen locations used
in this program were identical to those of Reference (1) with the exception

of the bearing specimen which was reduced from 1/8 inch thickness to 1/16 inch
thickness. This permitted comparison between the alloys in the current con-
tract and those in the previous study.

A discription of the test procedures and specimen configurations used in this
program is presented below.

SMOOTH TENSILE TESTS

The specimen used in the smooth tensile test is shown in Figure 82. Tests
were conducted in accordance with the requirements of FED-STD-151 using a
strain rate of 0.005 in./in./min. Full length autographic stress-strain
curves were obtained by the use of a microformer type extensometer.

COMPRESSION TESTS

The specimen used in the compression test is shown in Figure 83. Tests were
conducted using a strain-rate of 0.005 in./in./min. Autographic stress-strain
curves were obtained by the use of an extensometer.

SHEAR TESTS

The specimen used in the shear test is shown in Figure 84. Double shear type
tests were conducted using standard shear fixtures. The load was applied at
a constant head travel rate of 0.1 inch/minute.

BEARING TESTS

The specimen used in the bearing test is shown in Figure 85. The bearing hole
was drilled and reamed to within one-thousandth of the diameter of the hardened
steel loading pin. The test apparatus incorporated a deflection measuring sys-
tem to obtain bearing yield values. Loads were applied at a constant defor-
mation rate of 0.006 inch per minute through the yield point (e/D = 2,087,

NOTCH TENSILE TESTS
The specimen used in the notched tensile test is shown in Figure 86. This
specimen incorporates a stress concentration factor (Kt) of 3.9. The loading

equipment and strain rate are identical to those employed in the smooth tensile
tests.
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FATIGUE TESTS

The specimens used in the fatigue tests are shown in Figures 87 and 88. Both
notched and smooth fatigue specimens were axially loaded in tension-tension

at several stress levels using a stress ratio of R = 0.1. The notched fatigue
specimen incorporates a stress concentration factor (Kt) of 3.0.

FATTGUE-CRACKED ROUND BAR FRACTURE TOUGHNESS

The fracture toughness test specimen configuration used in this program is
shown in Figure 89.

The specimen was pressed into a ball bearing block assembly and then was
chucked into the head of the lathe and centered. A split sleeve was inserted
in the lathe chuck for accepting the specimen and to prevent galling by the
chuck Jaws.

The loading assembly consisted of a clevis, load transducer and universal
Joint. The loading clevis was pin connected to the bearing block assembly,
and the base of the universal joint was rigidly attached to the bed of the
lathe. Specimen cantilever bending was accomplished by applying torque to
the bolt attaching the loading clevis to the transducer. Transducer loads
were monitored by means of an SR-4 strain indicator.

A typical cantilever bending load of 450 1b was applied to the specimen after
maximum rotational speed of the lathe was achieved. A direct drive, 20-inch
LeBlond lathe was used at its maximum setting of 800 rpm. Lathe rotational
speed was checked by the use of a strobotac and automatic frequency counter.

After crack initiation, the specimens were tensile tested by applying the load
at a constant rate of 5000 1b/min. until failure.

Plane strain fracture toughness (ch) was calculated from the following
formula:

5 EG . P
Kl c B lg . 1-635 D 0.17: _ 0.8 (%_ 0.61))‘—]
o (1-v7) d
where:
ch = Critical stress intensity factor, psiJin
E = Elastic modulus, psi
GlC = Critical crack-extension force, £24:l%'
in.”
v = Poisson's ratio
P = Load at fracture, 1lb

156



Omv X oﬁ\a Isjweyn
Z-dAN 81 - 8/¢
SPUX yiog pealyg,

usutoadg an3TyBd Yr00ug

00 °g

R ——

. — g

g 00 g

°Lg 2aIn3Tq

08 "¢

(“ewq)

002" (dhy)

eld §29°

(dA1)
"’1d 006G

LoTF



S7 X 9T/T Iejwey)
Z-dN 81 - 8/¢
Spud yjod peaJyj

usuwIoadg =ndTa1Bd UDO1ON

‘09 aan3TJg

g
o€
A
i
g
oto*

7/t

<— 8/L —>




uswioadg 3591 ssauydnol, aan1oeId UTBIQS-sUBTd ‘68 °2InITJ

peeay} JAN Y11

‘X8 €00°*
snypes 3004

‘BT T

/.s
_
—5—
*93q 009°
¥

< w1 HIL

*BTq 0SL°-
/ ¥ 8/T T\H T —>f

/T2 -

HE€ X 8/T
Teaeqg

L39



do = Minimum diameter of fatigue crack at the root of the notch, in.

D = Major diameter of specimen, in.
2
(K, )
a = do _.__ELE,T_
3m O
Oys = Yield strength of the material at 0.2 percent offset, psi

TENSION AND COMPRESSION MODULUS OF ELASTICITY

The tension and compression specimens used for the modulus determination are
shown in Figures 82 and 83. All tests were conducted at room temperaturc in

a 120,000 1bs Baldwin Universal test machine incorporating a Tuckerman optical
strain measuring system. Two gages were attached to opposite sides of ecach
specimen and strain readings were taken for six constant load increments to a
maximum stress of‘approximatoly 4O ksi. The strain readings for cach gago
were plotted as load-strain curves and the slope of a straight line through
the points was calculated. The average of the slope values for the two gaccs
was used to calculate the modulus for that test cycle.

BEND BAR FRACTURE TOUGHNESS AND DELAYED FATILURE TESTS

The specimen used for the fracture toughness and delayed failure resistance

tests is shown in Figure 90. This specimen is a four-point loaded constant
moment bend specimen containing a fatigue crack approximately 0.1 inch deeyp.
A fracture toughness value was established in air by loading the specimen to

failure at a loading rate corresponding to a nominal elastic strain rate of
0.005 in./in./min. in universal test machines. An autographic load-deflection
curve was obtained for each specimen utilizing a Model PD-IM deflectometer.
The plane strain fracture toughness (ch) values were calculated using the
following formula: -

2 .2 ;
K- = PQL = [T ) - 5.2 7+ 100 6)°
(1-v°) B™ W
where
V = Poisson's Ratio
P = Load at point of initial crack instability, lbs.
B = Specimen thickness, inch
W = Specimen width, inch
L = Moment arm length, inch
a = Crack depth, inch
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The delayed {zilure tests were conducted by immersing the fatigue precracked
area of the specimen in a j-l/ﬁ percent NaCl salt water sclution and then
Lloanding the specimen to an arbltrary percent of the load obtained in the air
environment fracture toughness tests. This load was sustained on the speci-

men until failure occurred or a time period of 60 minutes elapsed with no
indication of failure. If the specimen failed, the time period to failure

was recorded and a second specimen was tested at a lower sustained load. If the
specimen did not exhibit evidence of failure during the 6C minute period, the
load was increased until failure occurred and a second specimen was tested at

a higher sustained load. This testing procedure was continued until the
threshold sustained load below which delayed failure did not occur and above
which delayed failure did occur was defined. The threshold sustained loads
were converted to a parameter, designated as the . parameter in the cquation
discussed above, except that the sustained load was used in the equation in-
stead of the load at which initial crack instability occurred.

JOY

TEST TEMPERATURES

The elevated temperature and reduced temperature tests were monitored vy
thermocouples and controlled to within iSOF. The elevated temperature tests
were performed in a circulating air furnace. The reduced temperature tests
were performed in a cold box employing CO2 as a coolant.



Appendix IV

FORGING SPECIFICATION

A forging specification was prepared in conformance with the Work Statement
of Contract AF33(615)-2690. The specification is presented in this Appendix
and is intended for use in procurement of high strength titanium alloy
forgings. This specification contains the applicable requirements of the
proposed MIL-T-90L47D which covers annealed bars, forgings and forging stock
of titanium and titanium alloys. The essential difference in the specifica-
tions is that this specification covers heat treated material. The minimum
mechanical property values given conform to those established by the titanium
producers.
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SPECIFICATION FOR

TITANIUM-ALLOY FORGINGS, AND FORGING STOCK

A SCOPE

1.1 Scope. This specification covers titanium alloy forgings, and forging
stock, in the heat treated and aged condition.

1.2 Classification. Material shall be of the following types as specified
(see 6.):

Type I Ti-6A1-4V

Type IT  IMI 679
2. APPLICABLE DOCUMENTS
2.1 The following standards, of the issue in effect on date of invitation
for bids or request for proposal, form a part of this specification to the
extent specified herein:

STANDARDS

Federal

Fed. Test Method

Std. No. 151 Metals; Test Methods
Fed. Std. No. 184 Identification Marking of Aluminum,
Magnesium and Titanium
Military
MIL-STD-129 Marking for Shipment and Storage
MIL-STD-163 Preparation of Steel Products for

Domestic Shipment (Storage) and
Overseas Shipment

3 REQUIREMENTS

3.1 Materials

3.1.1 Condition. The forgings and forging stock shall be produced by the
double melt consumable electrode method and shall be hot worked, heat treated

and descaled. Sufficient working shall be applied to insure that a thoroughly
wrought metallurgical structure is obtained.
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3ol 2 Quality. Forgings and forging stock materials shall be of a satis-
factory quality when inspected by a method acceptable to the Government that
will disclose defects as specified under 3.7. Forgings shall be free of em-
brittled surfaces.

3.2 Chemical Composition. The chemical composition as determined by heat
analysis shall be as specified in table I.

TABLE I
CHEMICAL COMPOSITION, PERCENT BY WEIGHT

Element Type I Type II
Aluminum 5.50 - 6.75 2.00 - 2.50
Vanadium 3.50 - 4.50
Lt e) 10.50 - 11.50
Zirconium 4.00 - 6.00
Molybdenum 0.80 - 1.20
Silicon 0.15 - 0.27
Iron 0.30 max 0.120 max
Carbon 0.10 max 0.040 max
Nitrogen 0.05 max 0.040 max
Oxygen 0.20 max 0,150 max
Hydrogen 0.125 max 0.008 max
Other Elements (total) 0.040 max
Titanium Remainder Remainder

3.3 Heat Treatment. Forgings supplied to this specification shall be heat
treated as shown in Table II.

3.3.1 Specific aging times for Type I and Type II forgings shall be
determined for each heat and forging lot. Forged material representative
of the forgings shall be used to establish the aging time required to
obtain the properties specified in Table III. Forgings shall be aged for
the time selected and the corresponding test data shall be reported.

3.4 Mechanical Properties. After heat treatment as specified in item 3.3,
mechanical properties shall be as specified in Table III.

3.5 Dimensions. The dimensions and shape shall be as specified by the pro-
curing activity. -

3.5.1 Tolerances. Dimensional tolerances for forgings and forging stock
shall be as specified by the procuring activity.

166



TABLE IT
HEAT TREATMENT

Material Heat Treatment
Type I Solution Treatment<l) 1725°F - 17500F for 1 hr.,
within 6 seconds water
quench
pge (V) 975°F - 1025°F for k4 hrs.,
Air Cool
Type IT Solution Treatment(l) 16250F - 1675°F for 1 hif's ;5
Fan Cool
Age<l) 900°F - 950°F for 2L nhrs.,
Air Cool

(1) Any temperature within the range shown may be selected, however, the
temperature selected must be held to i25OF for the solution treatment and
+10°F for the aging treatment.

3.6 Identification of Product. Forgings and forging stock shall be marked
in accordance with Fed. Std. No. 184. 1In addition, each forging and forging
stock shall be marked with the heat, type and composition.

3.7 Workmanship. Material shall be uniform in quality and condition, clean,
sound, and free from defects detrimental to fabrication or to performance of
parts.

3.7.1 Rejectible Defects. Material containing voids, bursts, unmelted sponge,
or deleterious inclusions, alloy segregation, or excessive brittle oxide skin,
as determined by visual, penetrant, radiographic, or ultrasonic inspection
methods, shall be rejectible. Small and scattered inclusions may be accepted
depending on their size, geometry, and location in low-stressed areas of manu-
factured parts. Standards must be mutually agreed upon between producer and
customer.

L. QUALITY ASSURANCE PROVISIONS

4.1 Responsibility for Inspection. Unless otherwise specified in the con-
tract or purchase order, the supplier is responsible for the performance of

all inspection requirements as specified herein. Except as otherwise specified,
the supplier may utilize his own facilities or any commercial laboratory ac-
ceptable to the Govermment. The Government reserves the right to perform any
of the inspections set forth in the specification where such inspections are
deemed necessary to assure supplies and services conform to prescribed
requirements.
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L.2 Classification of Tests. All the tests specified herein for the examin-
ation and testing of alloyed titanium are classified as quality con-
formance tests.

4.3 TLot. A lot shall consist of forgings and forging stock of the same heat
and the same thickness produced at the same time and submitted for inspection
at one time.

L.L4 Examinations

4.4.,1 Examination of Product. Sufficient spot checks shall be made to insure
compliance with this specification with respect to identification, tolerance,
and workmanship requirements.

4.4.2 Examination for Preparation for Delivery. Preparation for delivery
shall be examined for conformance to section 5.

4.5 Chemical Analysis

h.5.1 Sampling. At least one sample for chemical analysis shall be taken

from materials of each heat. FEach sample shall consist of sufficient material
to provide not less than 2 ounces of chips. Each sample taken shall be analyzed
separately, and if any sample fails to meet the chemical requirements, the heat
represented shall be rejected.

4.5.2 Method. Analysis shall be by wet chemical, spectrochemical, vacuum-
fusion methods, or other methods acceptable to the Government, as appropriate.

4.6 Tensile Test

4.6.1 Sampling. Two or more samples shall be selected to represent each lot
of material. Not more than one test sample shall be taken from any one piece
in the lot.

4.6.2 Preparation of Specimens. Tensile test specimens shall conform to
types R1, R2, R3 and R5 of method 211 of Fed. Test Method Std. No. 151. Where
dimensions permit specimens shall be machined from such position that the
direction of loading shall be transverse to the direction of major working
(grain flow). Tensile test specimens shall be located at the center of the
section on items up to and including thickness or diameter of 1-1/2 inches
and at the half radius position on larger sections.

4.6.3 Method. Tensile tests shall be conducted in accordance with method 211
of Fed. Test Method Std. No. 151.

.7 Rejection. Where failure of a sample or specimen is ascribed to faulty
material, the entire lot shall be rejected.
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5.

PREPARATION FOR DELIVERY

5.1 Packaging and Packing. Materials shall be prepared for shipment in ac-
cordance with the requirements of MIL-STD-103 applicable to the packaging and
packing of cold-finished alloy steel bars, cxcept that proscrvative coating is
not required, and identification marking shall be as gpecitied herein.

=
).rz

shall be marked in accordance with MIL-STD-129. The identi

Marking of Shipments. Interior packages and oxterior shipping c« ntainers
(&) > 5 (&
fication shall in-

clude the following information listed in the order shown.

Stock No. or other identification number as specif'icd in the purchasc

document*
TITANIUM-ALLOY FORGINGS, AND KFORGING STOCK (as applicable)
Shape*¥, Ileat No. *¥, Length*¥%, Width*¥, Thickness¥¥, Type¥¥,

Composition¥*
Specification
Manufacturer's name or trade-mark¥*¥

¥Note: The contractor shall enter the Federal Stock No. specified
in the purchase document or as furnished by the procuring activity. When
the Federal Stock No. is nol provided or available from the procuring
activity, leave space therefor and enter Stock No. or other Identification
when provided by the procuring activity.
*¥¥Applicable data to be entered by the manufacturer.

NOTES

Ordering Data. Procurement documents should specify the following:

Title, number, and datc ot this specification.

Commercial designation.

Type and composition regulred (sce 1.2).

Dimensions, shape, and tolerances (sce 3.4 and 3.4.1).

Exact lengths and length tolerances it mill lengths are not
acceptable.

Mechanical properties of sections larger than covered by this
specification.

Level of packaging and packing desired (scc D.L).
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