UNCLASSIFIED

AD NUMBER

AD480704

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; APR 1966. Other requests shall be referred to Air Force Materials Laboratory, ATTN: MAAM, Wright-Patterson AFB, OH 45433.

AUTHORITY

AFML ltr dtd 12 Jan 1972

THIS PAGE IS UNCLASSIFIED

ADO 480764

AFML-TR-66-57

EVALUATION OF LARGE TI-6AI-4V AND IMI 679 FORGINGS

R. F. Simenz W.L. Macoritto

Lockheed-California Company

TECHNICAL REPORT AFML-TR-66-57

April 1966

NOTICE

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of (MAAM) Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio. 20080815 284

Air Force Materials Laboratory Research and Technology Division Air Force Systems Command Wright-Patterson Air Force Base, Ohio

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned to the Research and Technology Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

EVALUATION OF LARGE TI-6AI-4V AND IMI 679 FORGINGS

R. F. Simenz W. L. Macoritto

NOTICE

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of (MAAM) Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio.

FOREWORD

This report was prepared by the Lockheed-California Company, a division of the Lockheed Aircraft Corporation, under Contract AF33(615)-2690. The contract was performed under Project No. **7381**, "Materials Application", Task No. **738106**, "Materials Information Development". The time period covered by this report is 1 April 1965 to 28 February 1966. The report was submitted by the authors in February 1966 for publication as an RTD Technical Report.

The work was administered under the direction of the Air Force Materials Laboratory, Research and Technology Division, by Lt. H. Lachmann, Project Engineer.

At the Lockheed-California Company, this program was conducted under the direction of Mr. H. B. Sipple, Research and Development Engineer, Materials and Processes. Mr. R. F. Simenz was Project Leader, assisted by Mr. W. L. Macoritto. Technical consultation was provided by Mr. V. E. Dress and Mr. G. G. Wald. Material property testing was under the direction of Mr. R. L. Adamson, assisted by Mr. S. L. Pendleberry. Forging testing was under the direction of Mr. R. H. Wells, assisted by Mr. C. S. Oswell. Structural analysis of the F-104 fuselage ring fitting was conducted by Mr. K. P. Durham.

Wyman-Gordon Company personnel participating in the program were Mr. J. J. Zecco, Jr. and Mr. R. E. Sparks, who supervised production of the forgings and coordinated metallurgical and material property testing.

This technical report has been reviewed and is approved.

Dashim

D. A. SHINN Chief, Materials Information Branch Materials Applications Division AF Materials Laboratory

ABSTRACT

This report describes the evaluation of large, closed-die forgings of two titanium alloys. Four forgings each of Ti-6Al-4V and IMI 679 were used in the evaluation. Property tests that were conducted included tension, notched tension, compression, Tuckerman modulus, shear, bearing, fracture toughness and smooth and notched axial fatigue. Thermal exposure and susceptibility to delayed failure in salt water were also evaluated in each alloy. Static properties were generally slightly better in the Ti-6Al-4V alloy. However, the IMI 679 provided significantly better smooth and notched fatigue values. Both alloys had good fracture toughness at room temperature and at -110°F. Static and fatigue tests were conducted on one forging each of Ti-6Al-4V and IMI 679. The Ti-6Al-4V part gave the better static test performance. Both titanium alloys exhibited strength/weight efficiency superior to a 4340 steel part tested in a previous program. The fatigue test life of the IMI 679 part was approximately 60% better than that of the Ti-6Al-4V part; however, the Ti-6Al-4V may not have been a representative sample due to minor metallic inclusions found in the fatigue-tested part. Based on these results the IMI 679 alloy shows promise for improved performance over Ti-6Al-4V as well as over other titanium alloys in fatigue critical applications. The material property data and forging static and fatigue test results indicate that Ti-6Al-4V and IMI 679 compare favorably with two other titanium alloys, Ti-6Al-6V-2Sn and Ti-13V-11Cr-3A1, which were evaluated in a previous program.

TABLE OF CONTENTS

SECTION		PAGE
I	INTRODUCTION	l
II	SUMMARY	
III	PROGRAM FORGINGS	13
	CONFIGURATION SELECTION	13
	PRODUCTION	17
	HEAT TREATMENT	23
IV	MATERIAL PROPERTY EVALUATION	27
	TENSILE PROPERTIES	36
	NOTCHED TENSILE PROPERTIES	60
	COMPRESSION PROPERTIES	64
	SHEAR AND BEARING PROPERTIES	73
	FRACTURE TOUGHNESS	76
	FATIGUE PROPERTIES	80
	THERMAL EXPOSURE	89
	MODULUS OF ELASTICITY	92
	ENVIRONMENTAL DELAYED FAILURE EVALUATION	95
	METALLURGICAL STUDY	98
V	FORGING STATIC TEST	111
VI	FORGING FATIGUE TEST	121
VII	CONCLUSIONS	131

V

TABLE OF CONTENTS (Continued)

SECTION		PAGE
VIII	RECOMMENDATIONS	
	APPENDICES	
	I BILLET TEST DATA	135
	II FORGING PROCEDURES	147
	III MATERIAL PROPERTY TEST PROCEDURES	153
	IV FORGING SPECIFICATION	163

LIST OF ILLUSTRATIONS

Figure		Page
l	Effect of Temperature on Ultimate Tensile Strength	7
2	Effect of Temperature on Tensile Yield Strength	7
3	Variation of Thick Section Ultimate Tensile Strength with Location and Grain Direction	8
24	Comparison of Room Temperature Notched Tensile Properties- Longitudinal Grain Direction	8
5	Comparison of Short Transverse Fracture Toughness Properties	9
6	Effect of Temperature on Compression Yield-Transverse Grain Direction	9
7	Comparison of Room Temperature Notch Fatigue Properties	10
8	Comparison of Room Temperature Smooth Fatigue Properties	10
9	Comparison of Forging Static Strength	11
10	Comparison of Static Strength Efficiency	11
11	Comparison of Forging Spectrum Fatigue Strength	11
12	View of Interior of Aft Fuselage on F-104 Showing Forward Fuselage Ring Fitting	14
13	Routh Forging Fuselage Ring	15
14	Finish Forged Piece	18
15	Finish Machined Fitting Assembly Ring	19
16	Ti-6Al-4V Rough Machined Part	21
17	Finish Machined Forgings	22
18	Capability Tests - Integrally Forged Coupons	24

.

Figure		Page
19	Specimen Layout First Forging IMI 679 and Ti-6Al-4V	28
20	Specimen Layout Second Forging IMI 679 and Ti-6Al-4V	29
21	Specimen Layout Third Forging IMI 679 and Ti-6A1-4V	30
22	Specimen Layout for IMI 679 and Ti-6Al-4V First Forging Center Section	31
23	Specimen Layout for IMI 679 and Ti-6Al-4V Second Forging Center Section	33
24	Fatigue Specimen Layout for IMI 679 and Ti-6Al-4V Third Forging Center Section	35
25	Ti-6Al-4V Room Temperature Tensile Ultimate Strength Forging #2 Center Section	38
26	Ti-6Al-4V Room Temperature Tensile Yield Strength Forging #2 Center Section	39
27	Ti-6Al-4V Smooth Tensile Properties Forging #1 Center Section	40
28	IMI 679 Room Temperature Tensile Ultimate Strength Forging #2 Center Section	41
29	IMI 679 Room Temperature Tensile Yield Strength Forging #2 Center Section	42
30	IMI 679 Smooth Tensile Properties Forging #1 Center Section	43
31	Ti-6Al-4V Tension Autographic Stress-Strain Curve at Room Temperature	24.24
32	IMI 679 Tension Autographic Stress-Strain Curve at Room Temperature	45
33	Comparison of Room Temperature Notched Tensile Properties	61

Figure		Page
34	Ti-6Al-4V Effect of Temperature on Compression Yield	65
35	IMI 679 Effect of Temperature on Compression Yield	
36	Ti-6Al-4V and IMI 679 Compression Autographic Stress- Strain Curve at Room Temperature	67
37	Ti-6Al-4V and IMI 679 Compression Autographic Stress-Strain c urve at 550 F	68
38	Comparison of Short Transverse Fracture Toughness Properties	77
39	Ti-6Al-4V Smooth Fatigue Properties	81
40	IMI 679 Smooth Fatigue Properties	82
41	Ti-6Al-4V Room TemperatureNotched Fatigue Properties	83
42	IMI 679 Room Temperature Notched Fatigue Properties	84
43	Ti-6Al-4V Microstructure of Specimen HAO Longitudinal Grain Direction	99
2424	Ti-6Al-4V Microstructure of Specimen HAO Transverse Grain Direction	99
45	Ti-6Al-4V Microstructure of Specimen H-67 Longitudinal Grain Direction	100
46	Ti-6Al-4V Microstructure of Specimen H-67 Transverse Grain Direction	100
) ₁ 7	Microstructure of Heat Treated Ti-6Al-4V Billet Stock	101
48	IMI 679 Microstructure of Specimen FAO, Longitudinal Grain Direction	102

Figure		Page
49	IMI 679 Microstructure of Specimen FAO, Transverse Grain Direction	102
50	IMI 679 Microstructure of Specimen F-58 Longitudinal Grain Direction	103
51	IMI 679 Microstructure of Specimen F-58 Transverse Grain Direction	103
52	Microstructure of Heat Treated IMI 679 Billet Stock	104
53	Ti-6Al-4V Macrostructure of Transverse Web and Flange Area	105
54	IMI 679 Macrostructure of Transverse Web and Flange Area	105
55	Ti-6Al-4V Longitudinal Section Through Forging Center Section	106
56	Ti-6Al-4V Transverse Section Through Forging Center Section	107
57	IMI 679 Longitudinal Section Through Forging Center Section	108
58	IMI 679 Transverse Section Through Forging Center Section	109
59	Schematic of Static Test Set-Up	113
60	Static Test Set-Up	114
61	Static Test Load-Deflection	115
62	Static Test Failure Ti-6Al-4V	116
63	Static Test Failure IMI 679	117

Figure		Page
64	Comparison of Static Strength Efficiency	118
65	Comparison of Forging Static Strength	118
66	Fatigue Test Loading Unit Spectrum	123
67	Schematic of Fatigue Test Set-Up	124
68	Fatigue Control System	125
69	Fatigue Test Set-up	126
70	Fatigue Test Failure - IMI 679	127
71	Fatigue Test Failure - Ti-6Al-4V	128
72	Ti-6Al-4V Fatigue Crack Origin	129
73	Comparison of IMI 679 and Ti-6Al-4V Billet Tensile Properties at Room Temperature	136
7 ⁴	Macrosection of Ti-6Al-4V Billet Stock - Transverse	137
75	Macrosection of 7-Inch RCS Billet Stock IMI 679 Longitudinal Top (Upper) and Transverse Bottom (Lower)	138
76	Macrosection of 7-Inch RCS Billet Stock IMI 679 Transverse - Top	139
77	Macrosection of 7-Inch RCS Billet Stock IMI 679 Transverse - Bottom	140
78	Initial Billet Crossworking Procedure	148
79	Die Sinking Model Finish Die	149
80	Die Sinking Master Finish Die	149
81	Bender Die	150

Figure		Page
82	Smooth Tensile Specimen	154
83	Compression Specimen	154
84	Shear Specimen	154
85	Bearing Specimen	155
86	Notch Tensile Specimen	155
87	Smooth Fatigue Specimen	157
88	Notch Fatigue Specimen	158
89	Plane-Strain Fracture Toughness Test Specimen	159
90	Fatigue - Cracked Bend Specimen	171

LIST OF TABLES

Table		Page
l	Product Test Results - Ti-6Al-4V	25
2	Product Test Results - IMI-679	26
3	Ti-6Al-4V Thick Section Tensile Properties - Forging #1	46
4	Ti-6Al-4V Flange Tensile Properties - Forging #1	49
5	Ti-6Al-4V Tensile Properties - Forging #2	51
6	IMI 679 Thick Section Tensile Properties - Forging #1	53
7	IMI 679 Flange Tensile Properties - Forging #1	56
8	IMI 679 Tensile Properties - Forging #2	58
9	Ti-6Al-4V Notched Tensile Properties	62
10	IMI 679 Notched Tensile Properties	63
11	Ti-6Al-4V Thick Section Compression Properties	69
12	IMI 679 Thick Section Compression Properties	71
13	Double Shear Properties of Ti-6Al-4V and IMI 679	74
14	Bearing Test Results	75
15	Fracture Toughness Properties of Ti-6Al-4V	78
16	Fracture Toughness Properties of IMI 679	79
17	Ti-6Al-4V Smooth Axial Tension Fatigue Properties	85
18	Ti-6Al-4V Notched Axial Tension Fatigue Properties	86
19	IMI 679 Smooth Axial Tension Fatigue Properties	87

LIST OF TABLES (Continued)

Table		Page
20	IMI 679 Notched Axial Tension Fatigue Properties	88
21	Room Temperature Longitudinal Tensile Properties Before and After Exposure	90
22	Thick Section Tension Modulus of Elasticity Tests	93
23	Thick Section Compression Modulus of Elasticity Tests	94
24	Delayed Failure Resistance in Salt Water	96
25	Full Scale Static Test Results	119
26	Full Scale Fatigue Test Results	123
27	TMCA Chemical Analysis	141
28	Billet Processing History	142
29	TMCA Mechanical Properties	143
30	Billet Stock - Tensile Test Results - Ti-6Al-4V	144
31	Billet Stock - Tensile Test Results - IMI 679	145
32	Ti-6Al-4V Forging Process Data	151
33	IMI 679 Forging Process Data	152

SYMBOLS

F _{bru}	Bearing ultimate strength
Fbry	Bearing yield strength at 0.2% offset
fmax	Highest value of gross area stress
f _{mean}	Mean gross area stress
f _{min}	Lowest value of gross area stress
fvary	Maximum gross area stress minus mean gross area stress
Ftu	Tensile ultimate strength
° _F	Degrees Fahrenheit
ksi	Kips (1,000 pounds) per square inch
K _{lc}	Plain strain critical stress intensity factor (Fracture Toughness)
K _{li}	Sustained load environmental stress intensity limit
K _t	Theoretical stress concentration factor
N	Number of cycles
NŢS	Notched tensile strength
Р	Load (lbs)
Py	Horizontal load (lbs)
P_Z	Vertical load (lbs)
P max	Maximum load (lbs)
R	Ratio of minimum to maximum stress
R. A.	Reduction of area
RT	Room temperature
σNet	Net fracture stress
σ YS or F $_{ty}$	Yield strength at 0.2% offset

Section I

INTRODUCTION

Substantially increased usage of titanium alloy forgings is anticipated in current and future weapon systems because of the structural advantages offered by this class of materials. The purpose of this program was to provide material property data which will form a basis for the reliable use of two heat treated titanium alloy forgings and to demonstrate the actual capabilities of state-of-the-art production forgings of these alloys in high performance aerospace structural applications.

Four forgings of the Ti-6Al-4V alloy and four forgings of the IMI 679 alloy were produced for evaluation in this program. The titanium forging configuration used is a modification of a production F-104 fuselage ring fitting normally made from 4340 steel. Two forgings of each alloy were cut up and subjected to comprehensive material property tests. One forging of each alloy was tested to failure in a full-scale fatigue test and a second forging of each alloy was tested to destruction statically.

In a previous Air Force program (Reference 1) a similar evaluation was conducted on forgings of two other titanium alloys, Ti-6A1-6V-2Sn and Ti-13V-11Cr-3A1. Data obtained in that program are compared with data obtained in this program to illustrate the relative merits of four of the leading candidate titanium forging alloys.

Participation by the Wyman-Gordon Company in the program included production of the titanium forgings, preliminary heat treatment evaluation, and a portion of the metallographic and tensile property evaluation.

Section II

SUMMARY

The purpose of this program was to conduct an evaluation of large titanium alloy forgings in order to provide a basis for their reliable use in advanced weapon systems. Four closed-die forgings were fabricated from each of two alloys, Ti-6Al-4V and IMI 679. The forging configuration was a modified F-104 aft fuselage ring fitting. Results obtained in this program were to be compared to results obtained on Ti-6Al-6V-2Sn and Ti-13V-11Cr-3Al investigated in a similar program (Reference 1).

Material properties were determined by testing specimens cut from forgings of Ti-6Al-4V and IMI 679. Properties evaluated included tension and compression at -ll0°F, room temperature (72°F), and 550°F; shear and bearing at room temperature and 550°F; notched tension and fracture toughness at -ll0°F and room temperature; and smooth and notched axial fatigue. Other test variables included specimen location and grain direction. The effect of a l000-hour exposure at 550°F on smooth and notched tension and on fracture toughness properties was also evaluated. Billet tension properties in all three grain directions were obtained for comparison with similar properties in the forgings.

Tension and compression moduli were determined by Tuckerman optical strain measurements. Susceptibility to environmental delayed failure of pre-cracked specimens in the presence of salt water was also evaluated.

The effect of temperature on ultimate tensile strength of the four titanium alloys is shown in Figure 1. As shown in this figure, the ultimate tensile strength in Ti-l3V-llCr-3Al and IMI 679 showed the least effect of 550° F testing. The effect of temperature on yield strength is shown in Figure 2 and generally exhibits the same trend as the ultimate strengths.

Tensile properties of the Ti-6Al-4V and IMI 679 were within the expected ranges. Generally, both alloys showed only minor variations in tensile properties with grain direction or location. The IMI 679 alloy was exceptionally uniform and exhibited a minimum range in tensile properties. This is clearly evident in Figure 3 which presents the room temperature tensile strength variation from edge to center in the forging thick section for IMI 679 and Ti-6Al-4V. Similar data on Ti-6Al-6V-2Sn and Ti-13V-11Cr-3Al (Ref.1) are shown for comparison. Tensile strengths in the light sections and edge locations of the heavy section were consistently higher than at any other location in both Ti-6Al-4V and IMI 679. Values of elongation and reduction of area were very high at all locations and test temperatures in both the Ti-6Al-4V and IMI 679 forgings. The lowest values measured at room temperature were 8% elongation and 10% reduction of area in the Ti-6Al-4V forging and 10.5% elongation and 30% reduction of area in the IMI 679 forgings. The IMI 679 had the highest ductility of the four alloys evaluated in the two programs followed, in order, by Ti-6Al-4V, Ti-6Al-6V-2Sn, and Ti-13V-11Cr-3Al.

Notched-to-unnotched tensile strength ratios of 1.35 and higher were obtained in all grain directions and test locations in Ti-6Al-4V and IMI 679 materials. Figure 4 compares notched-to-unnotched tensile strength ratios measured in the longitudinal grain direction at various forging locations for both of these alloys, as well as for Ti-6Al-6V-2Sn and Ti-13V-11Cr-3Al which were tested previously (Ref. 1).

Unstressed thermal exposure to 550° F for 1000 hours had no apparent effect on the strength or ductility of the Ti-6Al-4V and IMI 679 smooth tensile properties. The notched tensile properties also remained unaffected after exposure.

Fracture toughness was measured at room temperature and -ll0°F in Ti-6Al-4V and IMI 679. A pre-cracked round bar specimen was used in these tests; the results are given in Figure 5. Results obtained (Ref. 1) on Ti-6Al-6V-2Sn and Ti-l3V-llCr-3Al are also shown for comparison in this figure. It is evident that Ti-6Al-4V showed the highest fracture toughness values, followed by IMI 679 and Ti-6Al-6V-2Sn. The Ti-l3V-llCr-3Al showed the lowest fracture toughness of the four materials. Unstressed exposure at 550°F for 1000 hours did not have a significant effect on the fracture toughness of any of these alloys.

At room temperature and at -ll0°F, the compression properties of Ti-6Al-4V and IMI 679 were in the same range as the ultimate tensile strengths of each alloy. However, at 550°F the compression yield strengths of both alloys dropped off more rapidly than the ultimate tensile strengths. The effect of temperature on the compression yield strengths of Ti-13V-llCr-3Al and Ti-6Al-6V-2Sn (from Ref. 1), and Ti-6Al-4V and IMI 679 are presented in Figure 6.

Room temperature ultimate shear properties of Ti-6Al-4V and IMI 679 were similar to those obtained on Ti-6Al-6V-2Sn and Ti-13V-11Cr-3Al (Ref. 1). However, at 550°F both the Ti-13V-11Cr-3Al and Ti-6Al-6V-2Sn had higher shear strengths than the Ti-6Al-4V and IMI 679.

Ti-6Al-6V-2Sn had the highest room temperature bearing strength of the four alloys. The Ti-13V-11Cr-3Al had the highest bearing strength at 550°F.

Smooth and notched axial fatigue properties in Ti-6Al-4V and IMI 679 are summarized in Figures 7 and 8. Results obtained (Ref. 1) on Ti-13V-11Cr-3Al and Ti-6Al-6V-2Sn standard and low oxygen materials are also shown in this figure for comparison. The highest smooth and notched fatigue strengths were exhibited by the IMI 679 and Ti-6Al-6V-2Sn with the IMI 679 showing a significantly higher endurance limit than any of the other alloys. As stated in Reference 1, there appears to be a definite improvement in notched fatigue properties in low oxygen content Ti-6Al-6V-2Sn when compared to standard oxygen content material.

Notched, pre-cracked bend bars were tested to determine the susceptibility of forged Ti-6Al-4V and IMI 679 to delayed failure in salt water. The data obtained from these tests indicate a relatively high resistance to delayed failure for both heavy and light sections of Ti-6Al-4V and light sections of IMI 679 material. The IMI 679 material from the heavy section center location exhibited substantial susceptibility to delayed cracking in salt water.

Precision room temperature tension and compression modulus data are presented below. All values shown were obtained in the longitudinal grain direction.

	Tension Modulus	Compression Modulus
Alloy	10 ⁶ psi	10 ⁶ psi
Ti-13V-llCr-3Al	15.7	16.0
Ti-6Al-6V-2Sn	15.8	16.2
Ti-6Al-4V	17.1	17.4
IMI 679	15.7	16.1

No significant difference in modulus was noted between the longitudinal and long transverse grain directions in any of the alloys.

Static tests were conducted on one forging each of Ti-6Al-4V and IMI 679. The target was to have a strength equal to the 180-ksi, 4340 steel forging design. This was accomplished by increasing critical dimensions in the titanium forgings to compensate for the differences in strengths. The dimensional increases in the lower strength Ti-6Al-4V and IMI 679 forgings were proportionately greater than those in the higher strength Ti-6Al-6V-2Sn and Ti-13V-11Cr-3Al previously tested (Ref. 1).

Static test failure initiated in the upper flange in both the Ti-6Al-4V and IMI 679 parts. The Ti-6Al-4V showed almost complete shear mode fracture, while the IMI 679 part had less than 15% shear-type fracture.

The static test results on the two parts are given in Figure 9; test results (Ref. 1) on Ti-6A1-6V-2Sn, Ti-13V-11Cr-3A1 and 4340 steel are also shown for comparison. It was explained in Reference 1 that the high failure strength in the steel part was a result of its ultimate strength being 205 ksi instead of the intended 180 ksi. Figure 10 compares the static strength efficiency (expressed as failure strength divided by part weight) of all the materials.

Full-scale, spectrum-type fatigue testing was conducted on one forging each of Ti-6Al-4V and IMI 679. In Figure 11 the test results on these alloys are compared to the values previously obtained (Ref. 1) on Ti-6Al-6V-2Sn,

Ti-13V-11Cr-3Al and 4340 steel. These results indicate that Ti-6Al-4V and IMI 679 were superior to the other two titanium alloys. An increase in fatigue life was expected in the Ti-6Al-4V and IMI 679 parts since these alloys had increased local section sizes which decreased local stresses during fatigue loadings. Metallurgical studies revealed iron-rich inclusions at the fatigue crack origin in the Ti-6Al-4V part which may account for the large difference in its fatigue life compared to the IMI 679 part.

The fatigue life of the IMI 679 part very nearly approximated that of the steel part which is considered outstanding since the IMI 679 part was 31% lighter and had been machined from a heavy section, whereas the steel was forged to final dimensions.

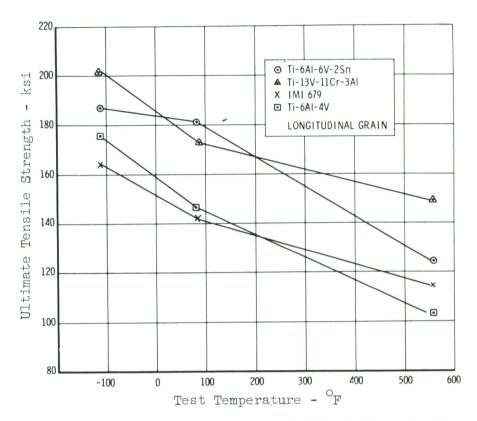


Figure 1. Effect of Temperature on Ultimate Tensile Strength

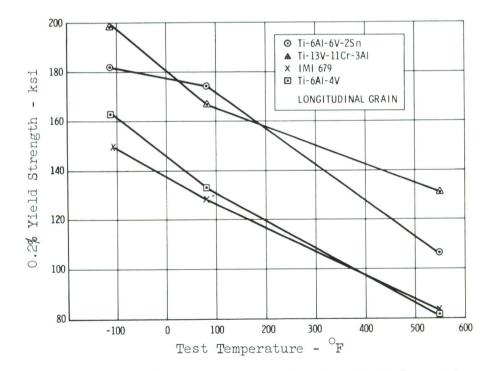


Figure 2. Effect of Temperature on Tensile Yield Strength

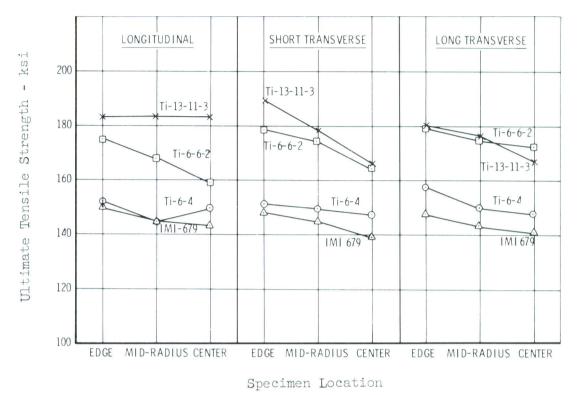
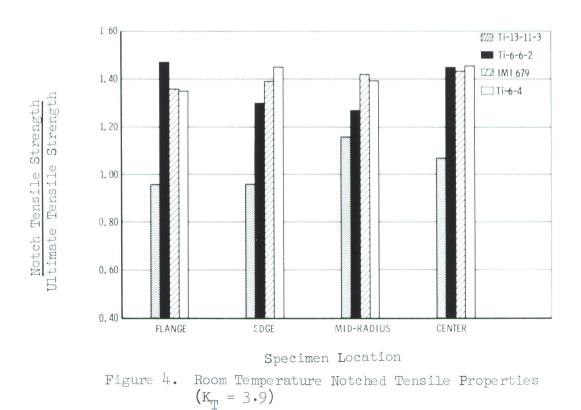



Figure 3. Variation of Thick Section Ultimate Tensile Strength with Location and Grain Direction

8

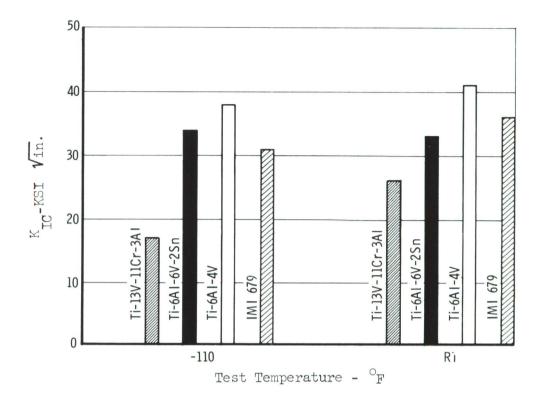


Figure 5. Comparison of Short Transverse Fracture Toughness Properties

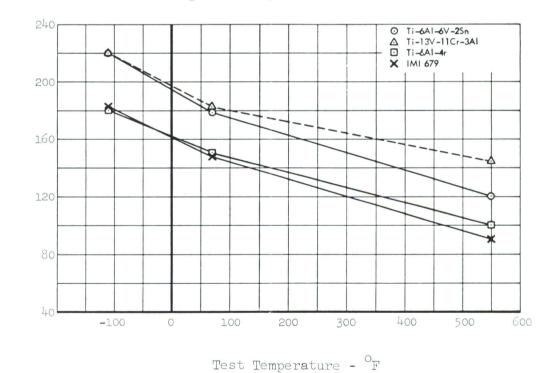
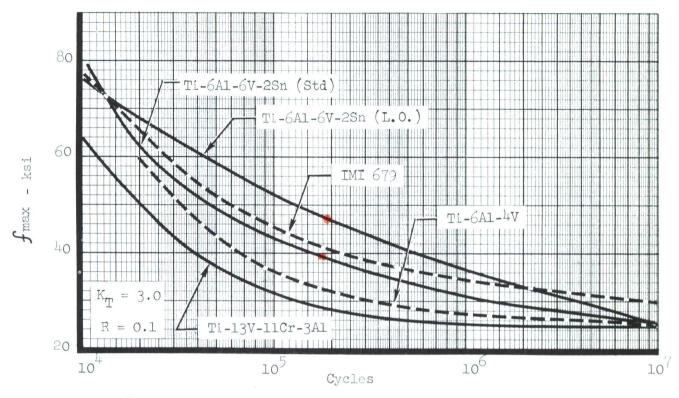



Figure 6. Effect of Temperature on Compression Yield Strength (Transverse Grain Direction)

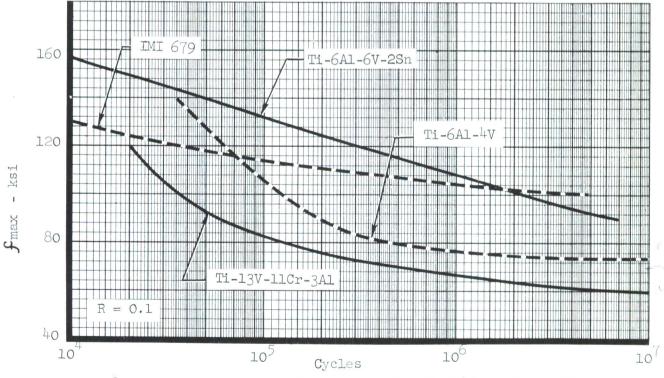
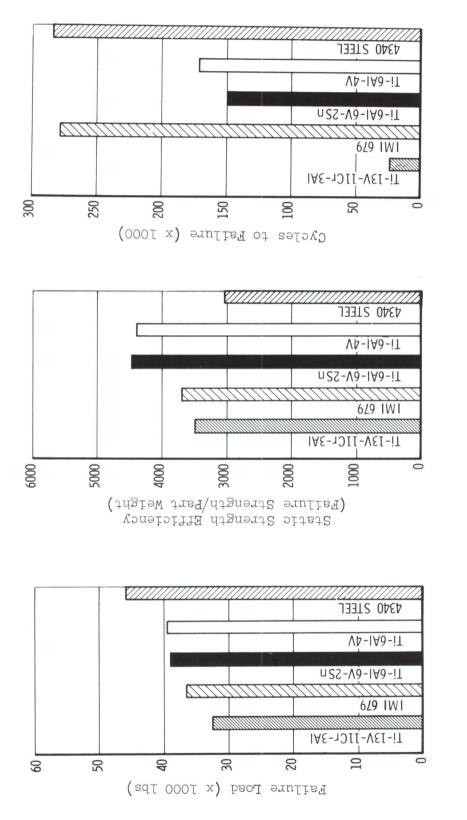



Figure 8. Comparison of Room. Temperature Smooth Fatigue Properties

Comparison of Forging Spectrum Fatigue Strength Figure 11. Figure 10. Comparison of Static. Strength Efficiency Comparison of Forging Static Strength 0 Figure

Section III

PROGRAM FORGINGS

The rough forging configuration used for this evaluation is the modified F-104 fuselage ring fitting. This configuration is identical to the forging used in the program described in Reference 1 which permits direct comparisons of material properties and full-scale test results for four titanium alloys. Since the selection of a representative forging was of major importance to the program, the background information on which this selection was based is presented below.

CONFIGURATION SELECTION

The production, closed-die, F-104 fuselage ring fitting used in this program was originally selected for evaluation in the program described in Reference 1 as being representative of typical airplane forging design. The fuselage ring fitting joins the forward beam of the vertical stabilizer to the aft fuselage structure. Figure 12 shows an actual installation of the forging in the aft fuselage of an F-104. The production part is made from a 4340 alloy steel forging, heat treated to an ultimate tensile strength of 180-200 ksi. Since this part must sustain high loads and reversals, it provides for a critical comparison of material serviceability.

The rough forging from which the titanium part was machined (Figure 13) represents a modification of the steel counterpart to include broader overall tolerances and a heavier center section of approximately 5 x 6 inches cross section. This modified configuration represents the conditions that can be expected to be of importance in most forged parts. The heavy section provided a test of the forging procedures needed to produce the fine grain and metallurgical structure required to meet specified properties and the inherent hardenability of the alloys. The webs and flanges in the balance of the forging provide substantial metal flow and transitions from thick to thin sections. In the titanium forgings, maximum loads were sustained by the structure originally forged in the heaviest section. Thus, the data obtained from evaluation of the modified forging are considered to have wide use in the design application of light and heavy section titanium alloy forgings.

It should be pointed out that while the selected forging design is well suited for the program in that it provides the required large section size, it does not represent current tolerances that can be achieved in titanium parts. It is possible to design and produce a forging which would conform much more closely to the final machined shape.

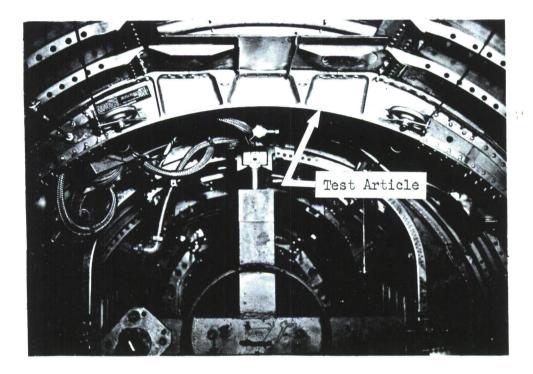
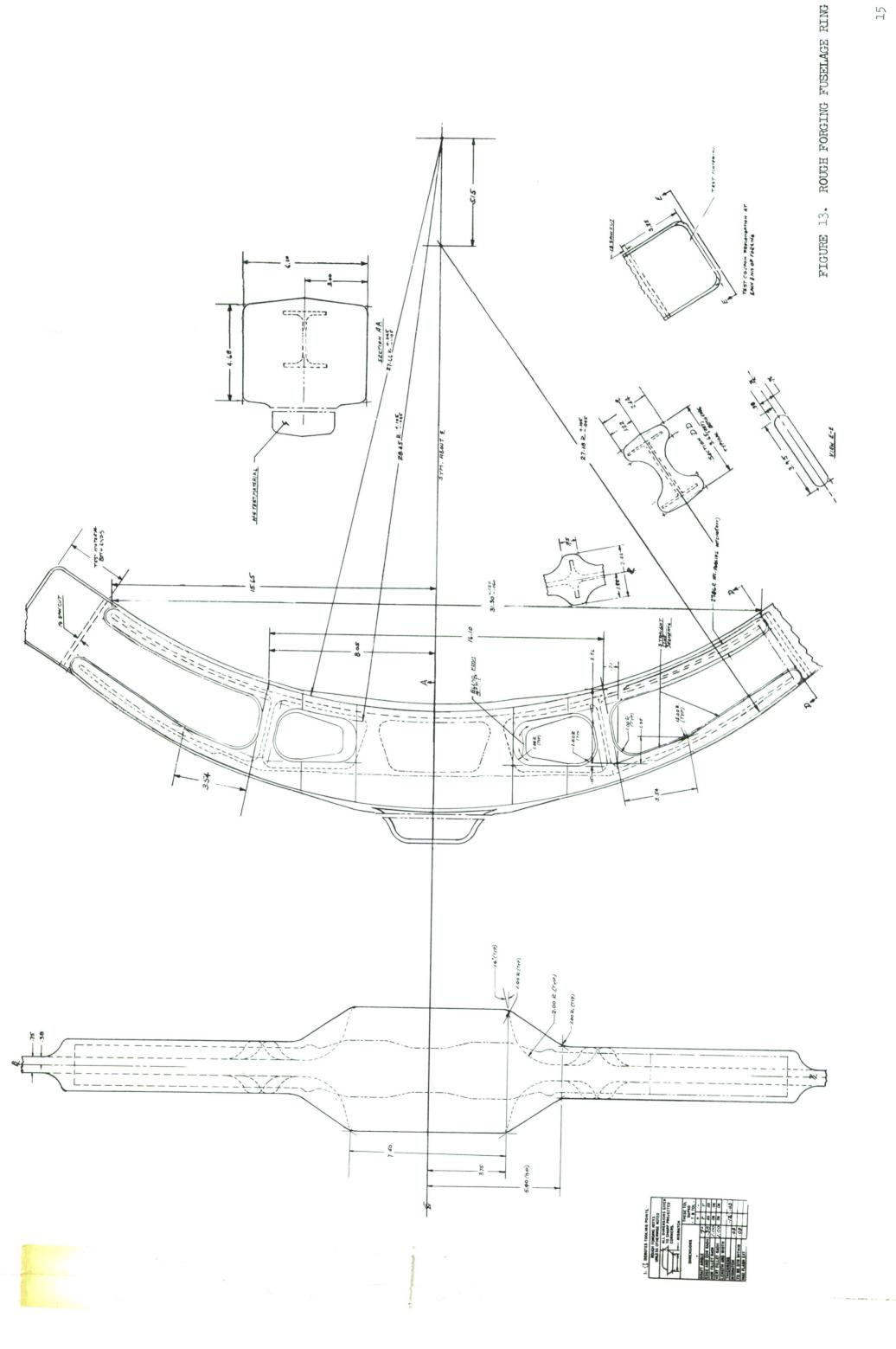



Figure 12. View of Interior of Aft Fuselage on F-104 Showing Forward Fuselage Ring Fitting

PRODUCTION

Production procedures used in this contract are identical to those used in the previous program (Ref. 1) so that a comparison of properties could be made with data from that program.

All billet stock was supplied by Titanium Metals Corporation. Test data on chemical analysis, mechanical properties of billet material, and mechanical properties of upset forged material are given in Appendix I. Additional billet property data obtained by the Wyman-Gordon Company are also given in Appendix I along with macro-etched sections showing grain structure for billet stock of Ti-6Al-4V and IMI 679.

Starting billet size in all materials was approximately 7 x 7 x 13 inches. The initial forging operation was cross working. The 13-inch billet stock was upset to a 7-inch height. The stock was then cross worked in each of the other axes and returned to the original shape. The objective of this work was to obtain additional working in the billet, since the final reduction in the forging heavy section was limited. The stock was next cogged to the prebent shape. The pieces were subsequently sandblasted, tooled, put through the bending operation, and then finish forged. A view of a finished forging is shown in Figure 14. Each forging was subjected to ultrasonic inspection, and no defects were found.

Additional details related to forging production are given in Appendix II. Longitudinal and transverse macro-sections taken through the billets are also shown in this appendix.

The machined part drawing is shown in Figure 15. As pointed out earlier, the titanium forgings were purposely modified to contain a liberal dimensional envelope on all surfaces plus a heavy center section. This modification necessitated a substantial amount of metal removal to obtain finished parts. Numerical tape control machining was selected as the most economical means of machining the four titanium parts for the full-scale tests. Prior to machining of each forging, a slab approximately $1 \times 7 \times 5$ inches was removed from each side of the heavy center section in a direction parallel to the parting plane. This material was used for tool tryout and certain material property tests.

The IMI 679 rough forgings were heat treated in full section size at Wyman-Gordon. Machining to final dimensions on these forgings proceeded directly after the slabbing operation. However, with the Ti-6Al-4V forgings it was necessary to reduce the section size at time of heat treatment in order to achieve the desired strength level. To provide the proper section size for heat treatment, the two Ti-6Al-4V parts for full-scale test were rough machined to a maximum thickness of 2-1/2 inches. A rough machined Ti-6Al-4V part after heat treat and pickling is shown in Figure 16. Completed titanium parts are shown in Figure 17.

Figure 14. Finish Forged Piece

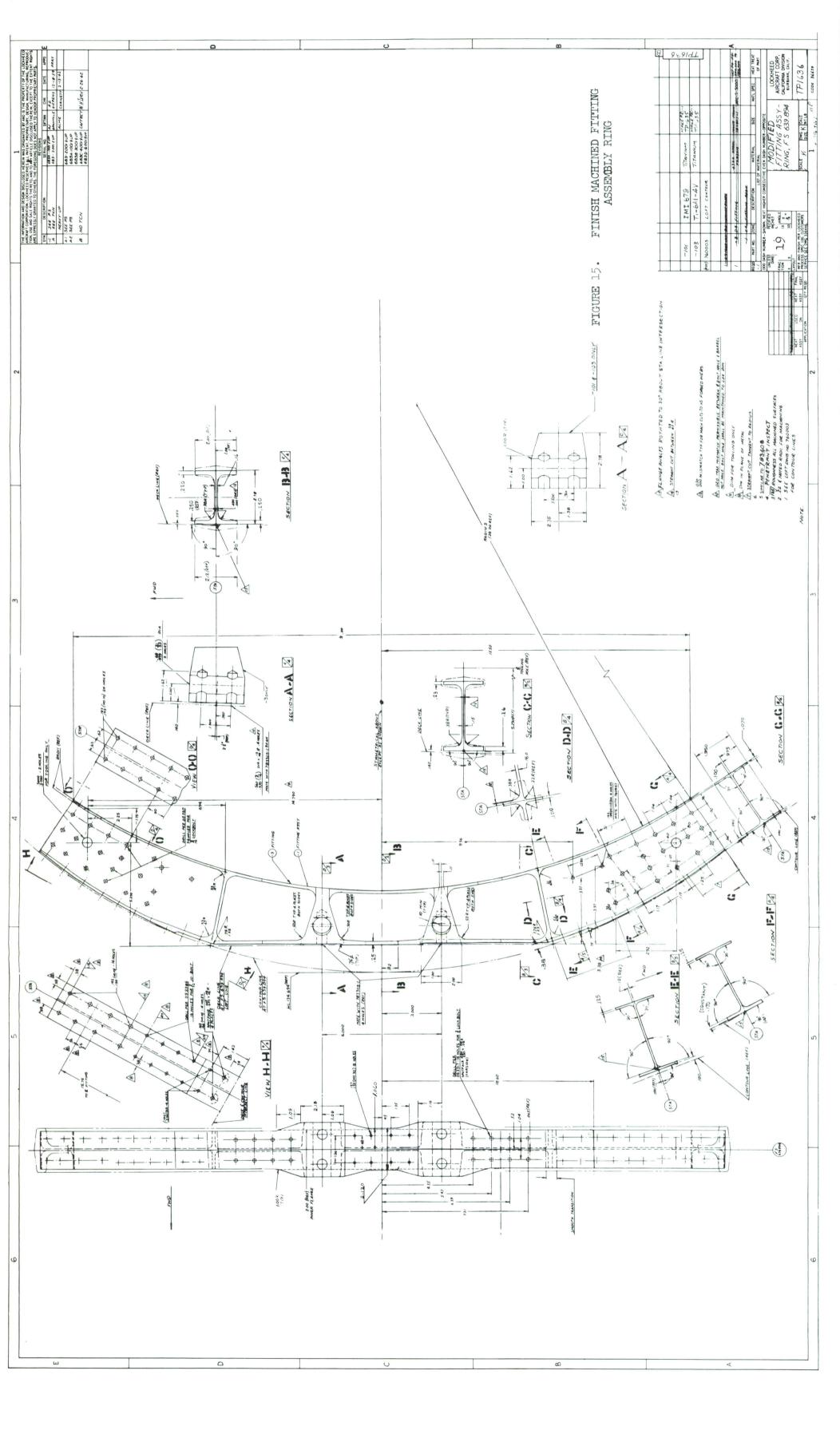


Figure 16. Ti-6Al-4V Rough Machined Part

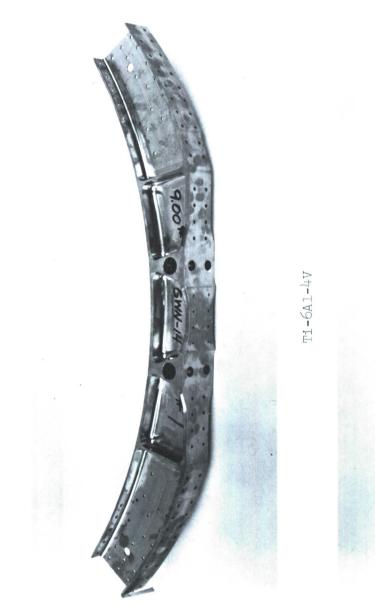


Figure 17. Finish Machined Forgings

EMI 679

HEAT TREATMENT

A minimum ultimate tensile strength goal of 145 ksi was selected for both the Ti-6Al-4V and IMI 679 alloys in this program. To achieve this strength level in the Ti-6Al-4V, the forgings were machined to a maximum section thickness of 2-1/2 inches prior to heat treatment. The Ti-6Al-4V was heat treated in accordance with the procedures specified in Specification AMS 4967. The IMI 679 forgings were heat treated in full section size at Wyman-Gordon since data indicated that the IMI 679 was less sensitive to quench rate. The heat treatment given to the IMI 679 was the standard heat treatment recommended by the supplier of this alloy. (2) (3)

The detailed heat treatments used on all four of the forgings in each alloy are shown below.

Alloy	Heat Treatment Procedure
Ti-6Al-4V	1750°F - 1 hour, within 6 seconds water quench, age at 1000°F - 4 hours, air cool
IMI 679	1650°F - 1 hour, fan cool, age at 930°F - 24 hours, air cool.

Heat treatment varification tests were performed by Wyman-Gordon on material forged integrally with the forgings and removed for test. Location and orientation of the integral forged test material is shown in Figure 18. The test data obtained from this material are presented in Tables 1 and 2.

The heat treat varification tests conducted by Wyman-Gordon on the IMI 679 showed very uniform properties from the center section to the flange. The test data obtained from the integrally forged material were representative and in good agreement with the data obtained from the forging.

The Ti-6Al-4V heat treat varification tests also showed uniform properties from the center section to the flange, but were higher than the Lockheed data. The high properties probably resulted from the smaller quench size of the integrally forged material.

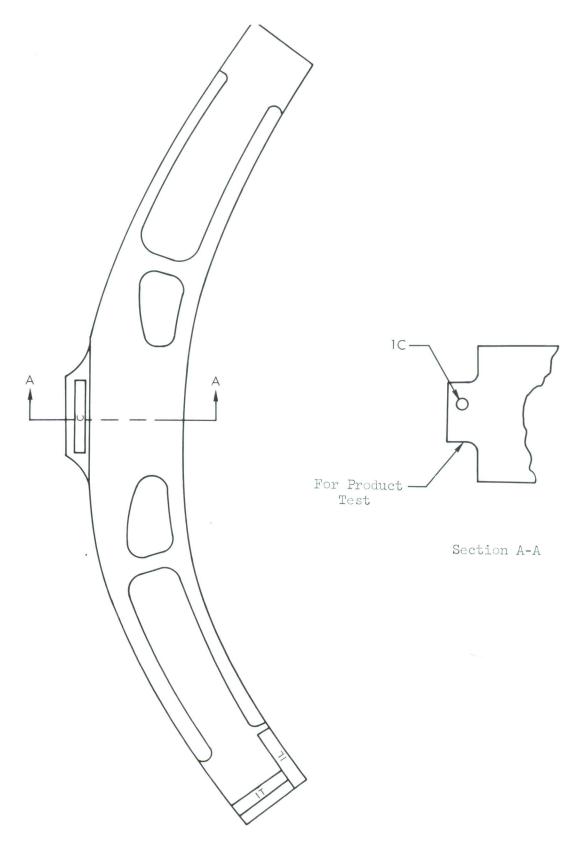


Figure 18. Capability Tests - Integrally Forged Coupons

Forging	Spec.	Location	Ultimate	Yield	Elong.	R.A.
Number	No.		Tensile	Strength	%	%
			Strength	0.2%	l in.	
			ksi	ksi		
. l	1L	End Pad Long.	178.0	164.0	10.0	29.9
	1T	End Pad Trans.	170.6	156.0	11.0	33.8
	1C	Center Pad Long.	168.0	154.0	10.5	31.8
2	lL	End Pad Long.	171.4	157.0	13.0	35•7
	lT	End Pad Trans.	173.6	158.0	11.0	35•7
	lC	Center Pad Long.	169.6	154.8	10.5	32•7
3	1L	End Pad Long.	181.6	169.2	10.5	35•7
	1T	End Pad Trans.	174.0	16 0. 8	11.5	34•4
	1C	Center Pad Long.	168.4	155.8	10.5	34•4
4	lL	End Pad Long.	176.2	163.4	12.0	38.2
	lT	End Pad Trans.	168.0	153.8	13.5	45.0
	lC	Center Pad Long.	170.0	158.0	8.5	23.1

TABLE 1. PRODUCT TEST RESULTS Ti-6AL-4V TMCA HEAT D-7976 MATERIAL CUT FROM FORGING, HEAT TREATED AS COUPONS (1)

172.4 158.7

(1) Heat Treatment: Solution Treated 1750°F (1 hour) W.Q. Aged 1000°F (4 hours) A.C.

Forging Number	Spec No.	Location	Ultimate Tensile Strength	Yield Strength 0.2%	Elong. % l in.	R.A. %
			ksi	ksi		
l	lL	End Pad Long.	152.4	134.0	15.0	46.7
	lT	End Pad Trans.	149.0	134.0	16.0	46.1
	lC	Center Pad Long.	146.4	131.2	15.0	37.6
2	lL	End Pad Long.	153.0	134.0	15.0	47.8
	lT	End Pad Trans.	146.2	131.6	16.0	43.1
	lC	Center Pad Long.	150.0	133.6	13.5	36.3
3	lL	End Pad Long.	153.8	134.6	15.0	43.7
	LT	End Pad Trans,	146.8	131.6	14.5	45.5
	LC	Center Pad Long.	150.0	131.6	14.5	42.5
24	LL	End Pad Long.	152.0	134.2	15.0	46.1
	LT	End Pad Trans.	150.0	132.0	15.0	39.5
	LC	Center Pad Long.	148.0	130.0	13.5	39.5

TABLE 2. PRODUCT TEST RESULTS - IMI-679 - TMCA HEAT 8427 (1) ALL SAMPLES WERE INTEGRAL WITH FORGINGS AT TIME OF HEAT TREATMENT

(1) Heat Treatment

149.8 132.5

Solution Treated 1650[°]F (1 hour) Fan Cool Aged 930[°]F (24 hours) Air Cool

Section IV

MATERIAL PROPERTY EVALUATION

This section presents the material property evaluation data, including thermal exposure, environmental delayed failure resistance and metallurgical results. The material property tests were located throughout the forgings in order to evaluate the effects of forging thickness, grain direction, thickness at time of heat treatment, etc. The type of test specimen and location in the various forgings are shown in Figures 19 through 24. Figures 19 through 21 also illustrate the section sizes into which each forging was cut and the specimen identification letters used. All sectioning was accomplished after heat treatment in the IMI 679 and prior to heat treatment in the Ti-6Al-4V alloys.

Details on the test procedures and specimen geometries that were used for each type of mechanical property test are presented in Appendix III. All evaluation procedures were similar to those used in the program described in Reference 1 in order to permit direct comparisons of data from the two programs.

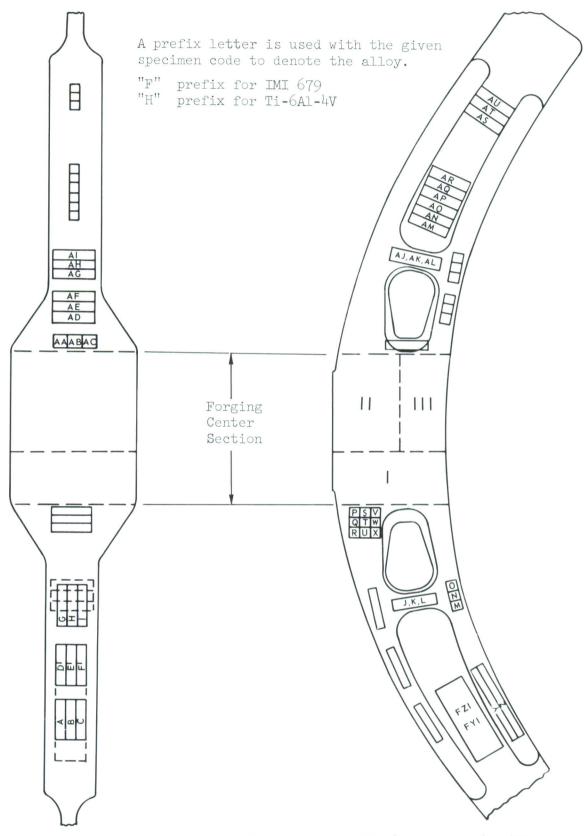


Figure 19. Specimen Layout First Forging IMI 679 and Ti-FA1-4V

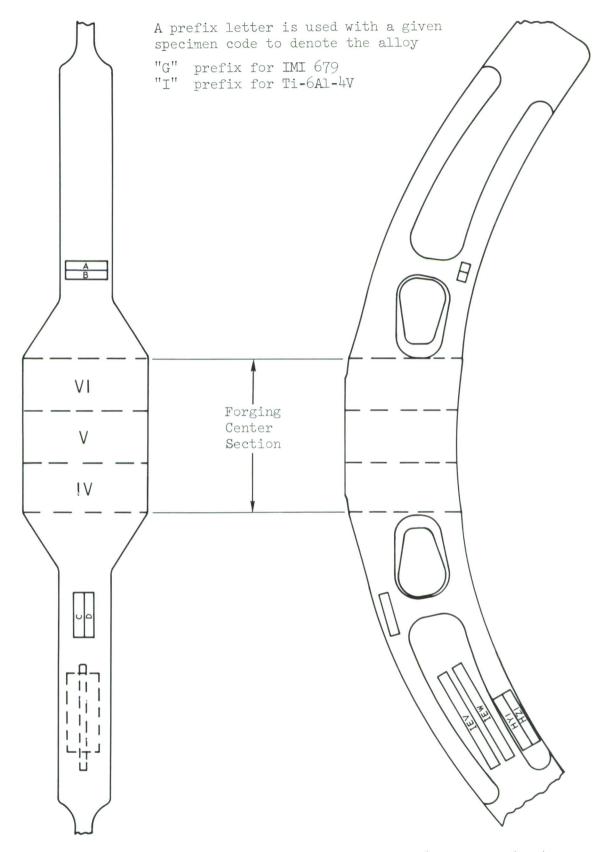
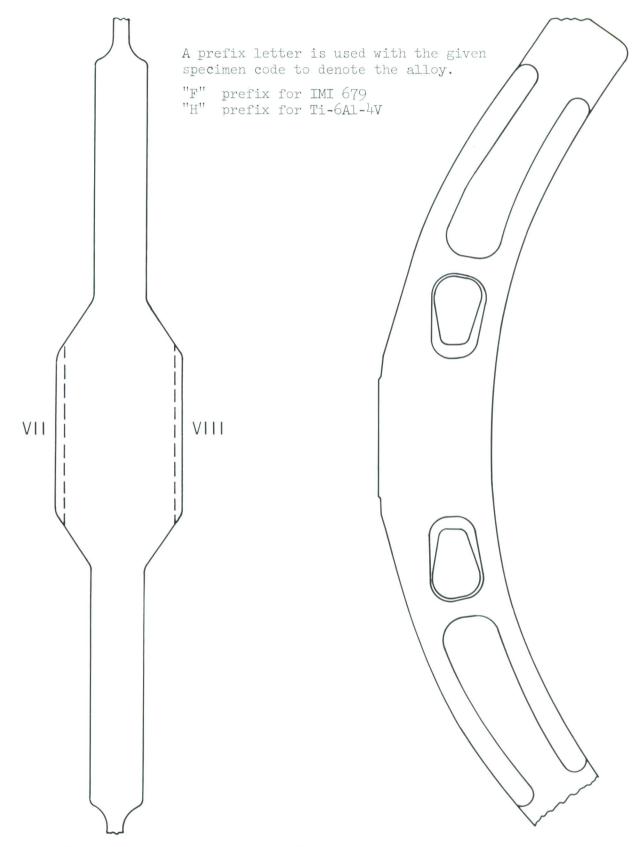
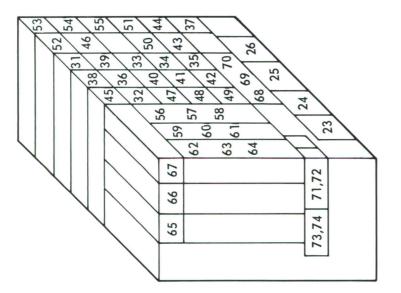
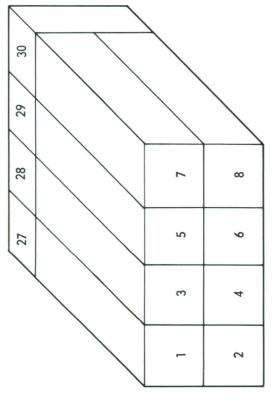
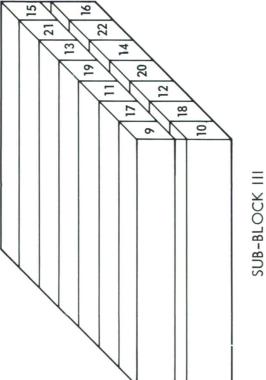
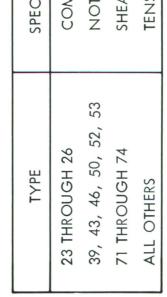
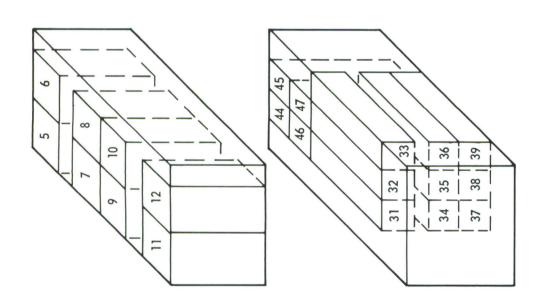


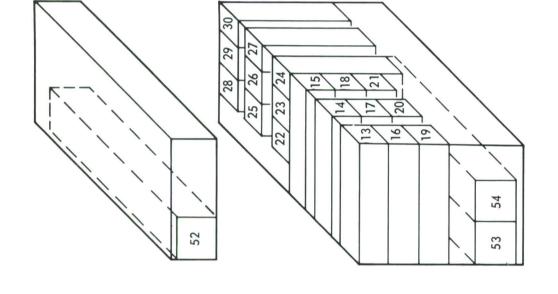
Figure 20. Specimen Layout Second Forging IMI 679 and Ti-6Al-4V

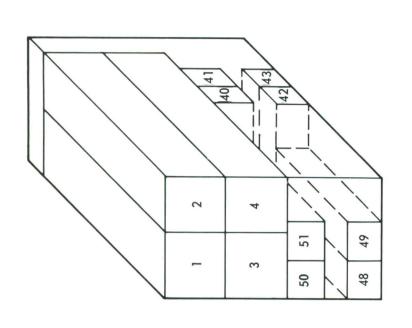

Figure 21. Specimen Layout Third Forging IMI 679 and Ti-6Al-4V


CIMEN NUMBER
MPRESSION
TCHED TENSILE
AR
ISILE


C)
C)
_	1
9	١
1	
£	١
)
S)

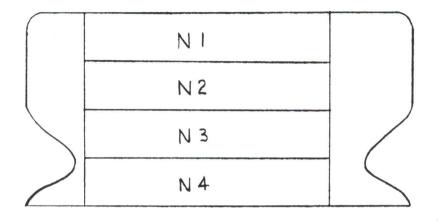

ТҮРЕ	FATIGUE	
SPECIMEN NUMBER	9 THROUGH 22	

Specimen Layout for IMI 679 and Ti-6Al-4V First Forging Center Section Figure 22.

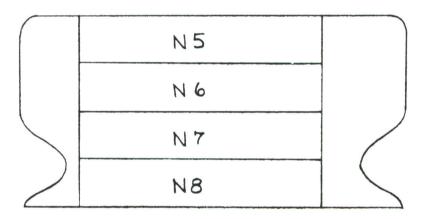

SUB-BLOCK I

SUB-BLOCK V

ТҮРЕ	FATIGUE	TENSILE	
SPECIMEN NUMBER	52, 53, 54	ALL OTHERS	


SUB-BLOCK VI

ТҮРЕ	FRACTURE TOUGHNESS	NOTCH TENSILE
SPECIMEN NUMBER	1, 2, 3, 4	ALL OTHERS


Specimen Leyout for IMI 679 and Ti-6Al-4V Second Forging Center Section Figure 23.

33

SUB-BLOCK IV

SUB BLOCK VIII

Figure 24. Fatigue Specimen Layout for IMI679 and Ti-6Al-4V Third Forging Center Section

TENSILE PROPERTIES

Extensive tensile testing was conducted to evaluate variation in tensile properties within the forgings. It was of particular interest to determine tensile property variation in each alloy in locations from edge to center in the forging thick section for all three grain directions and to compare these values with properties obtained in web and flange areas. Variation in properties in each alloy with test temperature and from one forging to another was also investigated to provide data for design.

Tensile data on the Ti-6Al-4V forgings are reported in Tables 3 through 5. In the number two forging of Ti-6Al-4V, the variation of ultimate tensile strength and ductility from edge to center in the forging heavy section is compared for all three grain directions in Figure 25.

This figure shows that tensile strength in the transverse grain direction decreases slightly going from edge locations to center. In the longitudinal grain direction the mid-radius position had the lowest properties. However, total strength range varied less than 10 ksi at any given location, a difference which is not considered significant.

As indicated in Figure 26, tensile yield strength values followed the same pattern as those for ultimate strength.

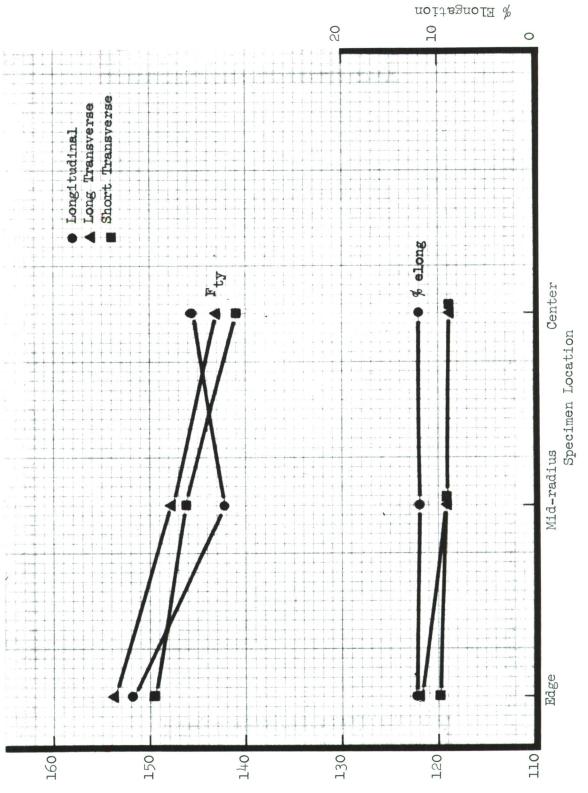
Tensile strength versus test temperature for all three grain directions in the Ti-6Al-4V alloy is given in Figure 27. Center and edge properties were averaged for each grain direction in this plot. As indicated in Figure 27 very little variation was found in the average tensile ultimate and yield strengths which were obtained at each test temperature.

Tensile property results on the IMI 679 alloy are reported in Tables 6 through 8. The variation in properties with location in the thick section of the IMI 679 forging are shown in Figures 28 and 29. These figures show a trend toward lower values of properties going from edge to center locations for all three grain directions, as might be expected. However, the total property variation in any grain direction was slight, indicating a highly uniform product. Figure 30 presents a plot of tensile strength versus test temperature for IMI 679. Very good agreement in strength values were obtained for all grain directions.

Ductility values as measured by percent elongation and percent reduction in area were excellent at all locations and grain directions in both materials. The lowest values measured at room temperature were 8% elongation and 19% reduction of area in the Ti-6Al-4V forgings and 10.5% elongation and 30% reduction of area in the IMI 679 forgings. Typical values of elongation and reduction in area were substantially higher than these minimums. Testing at -110°F did not significantly affect ductility in either alloy.

Properties in light sections of the forgings can be compared to those obtained in the heavy sections by reviewing the data in Tables 3 through 8. The data indicate that strength and ductility were higher in thin section locations than in heavy center locations in the Ti-6Al-4V forgings. Improved ductility in thinner sections of the Ti-6Al-4V forgings is attributed to the greater amount of work received by the lighter sections. The higher strength of the thinner sections of the forgings is attributed primarily to the faster quench rate at time of heat treatment.

In the IMI 679 forgings, negligible differences were noted between properties in the thin section locations and those in the heavy center section. The range in ultimate tensile strength of Ti-6Al-4V and IMI 679 forged stock was not significantly different from billet stock in either alloy. Elongation, reduction of area, and yield strength in the IMI 679 forgings were improved over those obtained in the billet stock.


Yield strength was lower in Ti-6Al-4V billet than in the forging. This difference is attributed to the larger section size of the billet material at time of heat treatment (e.g., 4-inch-thick billet versus 2 l/2-inch-thick forging). Nevertheless, elongation and reduction in area values appear to be equivalent in the billet and forging.

Typical autographic tensile stress-strain curves for Ti-6Al-4V and IMI 679 are given in Figures 31 and 32, respectively.

10 40 30 20 0 20 Short Transverse Long Transverse Longi tudinal % R.A. Ftu Center Specimen Location Mid-radius ļ Edge 160 150 140 130 110 120 ULTIMATE TENSILE STRENGTH - ksi

Ti-6Al-4V Room Temperature Tensile Ultimate Strength Forging #2 Center Section Figure 25.

& REDUCTION OF AREA

'Vi-6Al-4V Room Temperature Tensile Yield Strength Forging #2 Center Section

Figure 26.

0.2% YIELD STRENGTH - ksi

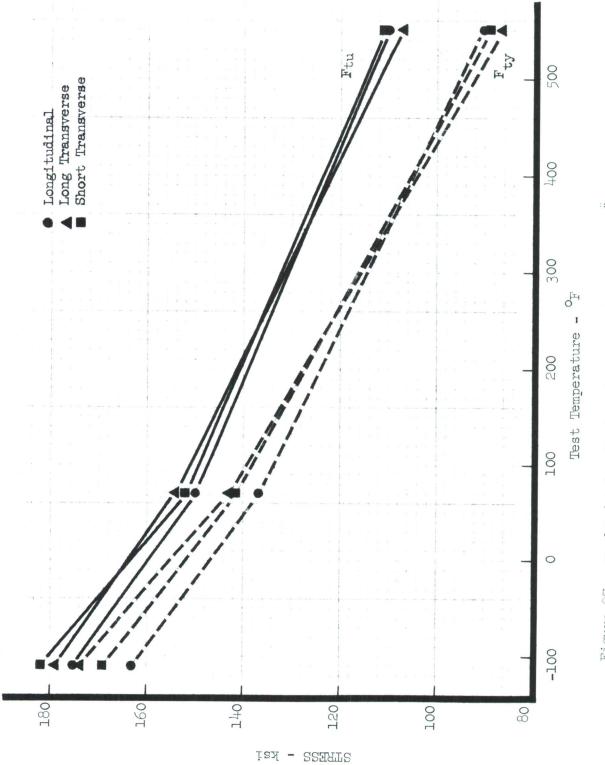
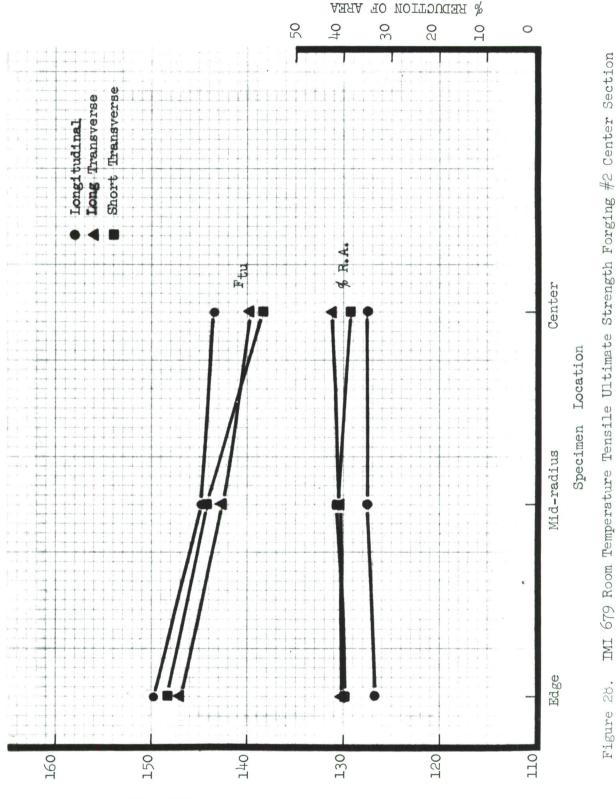
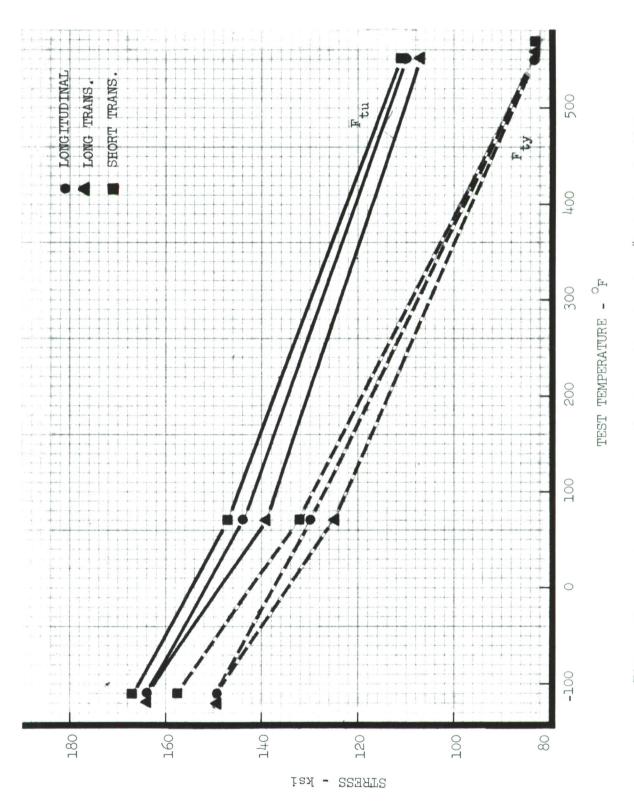
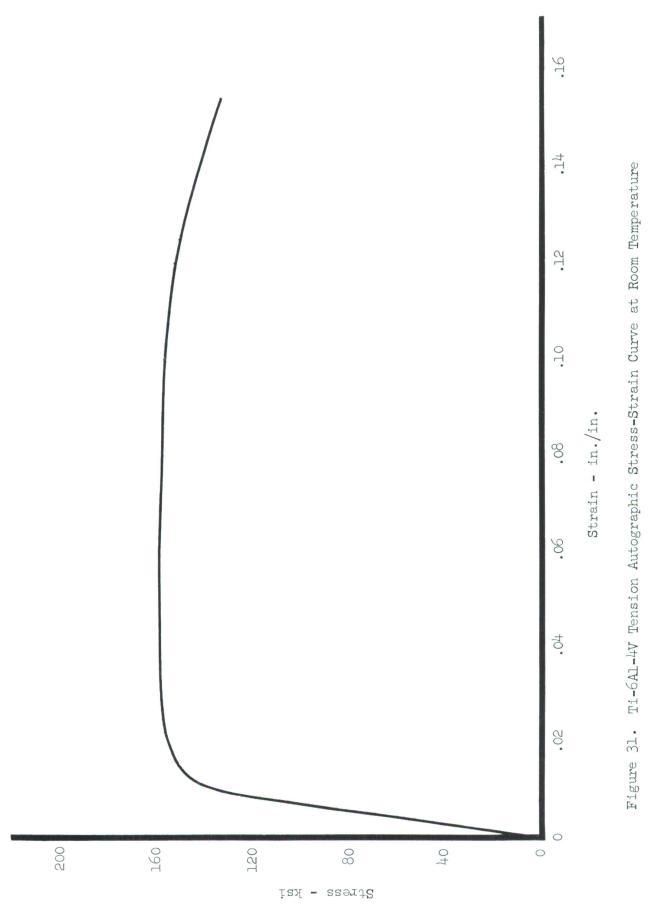



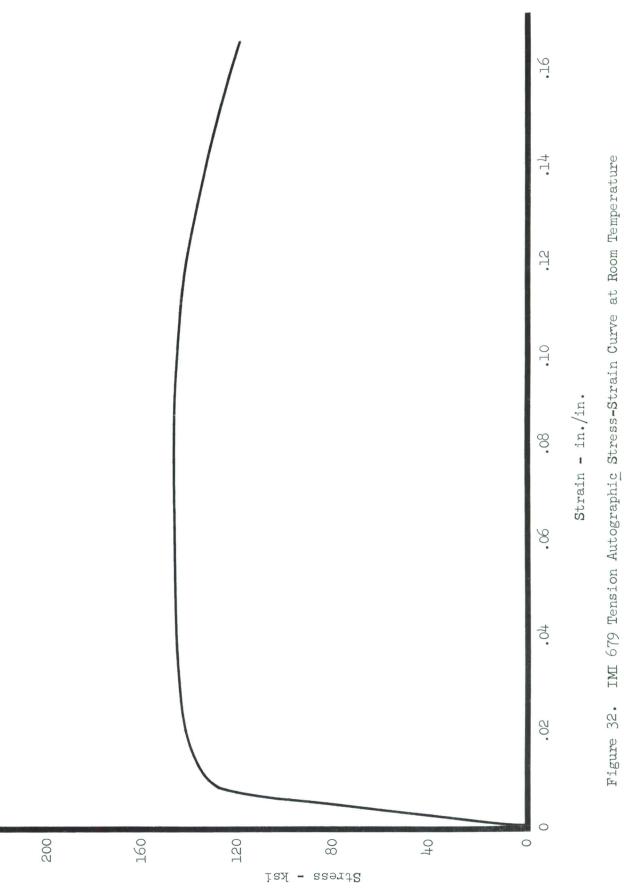
Figure 27. Ti-6Al-4V Smooth Tensile Properties Forging #1 Center Section

40



ULTIMATE TENSILE STRENGTH - kai




IMI 679 Room Temperature Tensile Yield Strength Forging #2 Center Section Figure 29.

0.2% XIELD STRENGTH, ksi

Ti-6AL-4V THICK SECTION TENSILE PROPERTIES - FORGING #1 TABLE 3

R.A. %	25.0 28.0 25.0 26.0	35.0 29.0 30.7	37.0 35.0 35.7	39.0 31.0 38.0 36.0	27.0 29.0 288.0	27.0 27.0 24.3 24.3
Elong. % l Inch	10.0 10.0 10.0	10.0 9.0 9.3	11.0 10.0 11.0 10.7	14.0 13.0 15.0	12.0 13.0 12.3	10.0 10.0 10.0
Yield Strength 0.2% ksi	161.0 165.0 - 163.0	179.0 169.0 - 174.0	178.0 165.0 163.0 168.7	147.0 139.1 137.5 141.2	133.5 131.7 <u>133.9</u> 133.0	157.4 136.2 143.0 143.0
Ultimate Tensile Strength ksi	174.0 177.0 175.0 175.7	187.0 176.0 179.3	188.0 180.0 179.0 182.3	158.5 151.5 149.1 153.0	147.0 146.2 146.9 146.9	165.0 149.5 154.0 154.0
Test Temp. .F.	-110	-110	-110	RT	RT	ЧТ
Grain Dir.	П	LT	ES	Г	Ц	EL I
Specimen Location	Center	Center	E dge	ਸ਼ ਕੋਲੋe	Center	Center
Specimen Number	H40 H41 H42 Average	H59 H60 Average	НР НQ Average	H31 H38 H45 Average	Н33 Н34 Аverage	н56 н57 Аverage

Ti-6AL-4V THICK SECTION TENSILE PROPERTIES - FORGING #1 (cont'd) \sim TABLE

R.A. %	40.0 36.0 34.3	33.0 27.0 23.0 27.7	62.0 61.0 62.3	44.0 32.0 42.0 39.3	52 • 0 52 • 0 46 • 0 50 • 0	58 • 0 56 • 0 57 • 7
Elong. 1 Inch	12.0 13.0 11.0 12.0	10.0 10.0 9.0	19.0 17.0 20.0 18.7	16.0 15.0 18.0 16.3	17.0 19.0 17.0 17.7	16.0 17.0 19.0 17.3
Yield Strength 0.2% ksi	146.1 143.6 152.5 147.4	142.2 133.1 133.6 136.3	105.0 97.4 98.6 100.3	85.3 76.6 80.2	90.9 87.6 80.9 86.5	95.3 89.7 90.6
Ultimate Tensile Strength ksi	156.4 154.6 165.4 158.8	144.8 143.3 148.3 145.5	120.0 116.0 118.0 118.0	105.0 101.0 102.0 102.7	112.0 108.0 101.0 107.0	116.3 110.3 111.5 112.7
Test Temp. F.	RT	RT	550	550	550	550
Grain Dir.	ы Ш	с П	Г	Г	LT	а Т
Specimen Location	년 고 양 e	Center	E dge	Center	Center	Center
Specimen Number	H65 H66 H67 Average	Н68 Н69 Н70 Average	H37 H44 H51 Average	H47 H48 H49 Average	H62 H63 Average	HS HT Average

Ti-6AL-4V THICK SECTION TENSILE PROPERTIES - FORGING #1 (cont'd) TABLE 3

54 •0 54 •0 R.A. % 54.0 Elong. %1 Inch 18•0 16•0 17•0 Yield Strength 87.5 88.2 87.8 0.2% ksi *Failed at Threads 110.5 109.8 110.1 Ultimate Tensile. Strength ksi Test Temp. °F. 550 Grain Dir. ES Specimen Location Edge Specimen Number HV HW HX Average

48

TABLE ⁴ T1-6AL-4V FLANGE TENSILE PROPERTIES - FORGING #1

R.A. %	36.0 37.0	196-7 198-7 198-7 199-7	255-1-0 27-9 28-1-0 28-10-0 2	58-7 42-5 37-0 37-0	40.0 35.0 35.0	38.0 56.7 56.7	255.6 39.55 41.14 41.14	40.0
Elong. % 1 Inch	0.11.0 0.11.0	11.0 12.0	17.0 17.0 19.0	18.0 13.0 13.0	0.11 0.11 0.11	10.7 16.5 15.5	17.2 15.0 11.0 5.01	Z•21
Yield Strength 0.2⋪ ksi	179.0 168.0 181.0	177.0 146.6 138.0	145.1 145.1 94.4	97.0 97.9 138.2 138.2	148.1 177.0 166.0	172.7 95.0 95.6	92.5 140.0 138.2 138.2	L30.7
Ultimate Tensile Strength ksi	186.0 176.0 193.0	159.0 159.8 150.2	124.4 124.4 115.6	119.5 152.8 152.8	162.6 188.0 178.0	184.0 116.8 107.6 117.0	113.8 153.0 154.0 154.0	C.5C1
Test Temp. °F.	-110	RT	550	RT	-110	550	RT	
Grain Dir.	Г	Ц	Ц	LT	ΓŢ	ΓIJ	E	
Specimen Location	Flange	Flange	Flange	Complex Grain Flow	Complex Grain Flow	Complex Grain Flow	Flange	
Specimen Number	HA HB HC	Average HG HH	Average(1) HD HE	HF Average(1) HK HT	Average(1) HAA HAB HAC	Average HAJ HAK HAL	Average(1) HM HN HO Average(1)	HVCIABC/1/

FORGING #1	
1	
PROPERTIES	
TENSILE	
FLANGE	
Ti-6AL-4V	
TABLE 4	

(cont'd)

R.A. %	62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0
Elong. % 1 Inch	17.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15
Yield Strength 0.2% ksi	93.3 93.7 92.5 90.6 92.7 90.6 144.5 144.5 146.4 146.4 94.7 94.7
Ultimate Tensile Strength ksi	114.5 113.0 110.3 112.6 111.4 111.6 111.6 179.0 184.0 184.0 184.0 184.0 184.0 184.0 184.0 186.1 Lost in Test 112.2 112.2
Test Temp. °F.	550 -110 55 0
Grain Dir.	E E E E
Specimen Location	Flange Flange Web Web
Specimen Number	HAD HAF HAF Average HAG HAI Average HAT HAN HAN HAN HAN HAP HAR HAR HAR HAR Average HAR HAR Average

٦

ORGING #2
F4
1
PROPERTIES
TENSILE
-6AL-4V
Ŀ.
5
TABLE

R.A. %	38.0 31.0 38.0 35.7	33.0 28.0 32.0	0.0.0 30.0 28.0 29.0	29.0 28.0 29.0 29.0	32.0 19.0 28.0 26.3	21.0 22.0 15.0 19.3
Elong. % 1 Inch	13.0 12.0 12.0 12.3	12.0 12.0 12.0 12.0	12.0 11.0 13.0 12.0	12.0 12.0 12.0	10.0 0.0 0.0 0.0	8.0 8.0 8.7
Yield Strength 0.2% ksi	144.8 142.8 138.1 141.9	132.9 131.4 132.4 132.2	138.1 135.6 135.6 135.6	143.8 140.2 147.5 143.8	134.6 1.36.7 141.6 137.6	131.5 132.1 133.0
Ultimate Tensile Strength ksi	154.2 152.4 148.3 151.6	144.2 144.8 144.4 144.5	151.3 148.5 148.3 149.4	157.0 153.9 160.2 157.0	146.4 148.3 153.8 149.5	145.2 144.8 152.3 147.4
Test Temp. °F.	RT	RT	RT	RT	RT	RT
Grain Dir.	Ч	н	Ъ	LT	LT	LT
Specimen Location	Edge	Mid-Radius	Center	Edge	Mid-Radius	Center
Specimen Numbe <i>r</i>	I13 I16 I19 Average	Il4 Il7 I20 Average	I15 I18 I21 Average	I28 I29 I30 Average	I25 I26 I27 Average	I22 I23 I24 Average

TABLE 5 Ti-6AL-4V TENSILE PROPERTIES - FORGING #2 (cont'd)

R.A. %	40.0 32.0 32.0 23.0 23.0 23.0 23.0 23.0 2
Elong. 1 Inch	9.0 10.0 11.0 11.0 9.0 8.7 8.0 14.0 14.5
Yield Strength 0.2% ksi	137.2 146.6 146.6 133.5 144.4 133.5 131.0 131.6 131.0 131.0 131.0 133.5 144.4 133.5 131.0 133.5 140.9
Ultimate Tensile Strength ksi	147.8 145.4 158.9 146.7 142.9 142.1 142.9 142.1 142.1 142.3 142.0 151.3 151.3
Temp. °F	RT RT RT
Grain Dir.	S I S S S
Specimen Location	Edge Mid-Radius Center Flange
Specimen Number	137 138 138 Average 134 Average 132 Average 132 Average Average Average

IMI 679 THICK SECTION TENSILE PROPERTIES - FORGING #1 TABLE 6

R.A.	39.0 35.0 37.3 37.3	43.0 43.0 43.0 42.3	43•0 42•0 42•0	44.0 42.0 33.0 39.7	0.04 0.04 0.04	43.0 45.0 444.0 444.0
Elong. % 1 Inch	13.0 13.0 12.0 12.7	12.0 14.0 13.0 13.0	13.0 11.0 12.0	16.0 15.0 13.0 14.7	16.0 15.0 16.0 15.7	20.0 16.0 17.0
Yield Strength 0.2% ksi	148.4 150.7 149.6	157.2 146.8 144.4 149.5	160.7 150.1 162.1 157.6	134.0 132.0 133.5 133.2	128.0 126.7 129.2 128.0	129.0 125.0 124.8
Ultimate Tensile Strength ksi	167.0 163.0 163.0 164.3	169.8 162.9 160.2 164.3	169.4 162.9 169.8 167.4	146.0 145.6 147.8 146.5	142.0 140.8 143.1 142.0	143.0 139.0 <u>135.5</u> 139.2
Test Temp. °F.	-110	-110	-110	RT	RT	RП
Grain Dir.	Г	ΓŢ	сл Е	Г	Ц	LT
Specimen Location	Center	Center	Edge	Edge	Center	Center
Specimen Numbe <i>r</i>	F40 F41 F42 Average	F59 F60 Average	FP FQ Average	F31 F38 F45 Average	F33 F34 F35 Average	F56 F57 F58 Average

53

FORGING #1	
i.	
PROPERTIES	
TENSILE	
THICK SECTION	
THICK	
679	
IMI	
9	
TABLE	

HOH		
ī.		
PROPERTIES		
TENSILE		
SECTION	(cont'd)	
THICK		
61.9		
_		

			and the second second second process			
R.A. %	41.0 40.0 43.0 41.3	35.0 37.0 41.0 37.7	47.0 42.0 42.0	54.0 53.0 52.3	51.0 47.0 50.0 49.3	49.0 50.0 51.0
Elong. % 1 Inch	14.0 16.0 15.0 15.0	14.0 15.0 13.0 14.0	17.0 17.0 16.0 16.7	19.0 19.0 18.0 18.7	18.0 17.0 20.0 18.3	17.0 19.0 17.0 17.7
Yield Strength 0.2% ksi	135.9 136.2 133.9 135.3	129.0 130.0 129.0 129.3	83.3 92.0 89.8 4.	78.7	87.2 80.8 81.4 83.1	84.6 86.0 81.1 83.9
Ultimate Tensile Strength ksi	149.8 151.1 148.5 149.8	144.0 145.0 143.7 144.2	108.6 116.9 118.1 114.5	103.5 105.3 106.8 105.2	111.2 106.5 105.2 107.6	112.9 113.3 108.4 11.5
Test Temp. °F.	RT	RT	550	550	550	550
Grain Dir.	ST	ST	Г	Г	LT	сл ЕН
Specimen Location	Edge	Center	Edge	Center	Center	Center
Specimen Number	F65 F66 F67 Average	F68 F69 F70 Average	F37 F44 F51 Average	F47 F48 F49 Average	F62 F63 F64 Average	FS FT Average

PROPERTIES
TENSILE
SECTION
THICK
679
IMI
TABLE 6

- FORGING #1

(cont'd)

R.A.	49.0 50.0 149.7
Elong. % 1 Inch	18.0 19.0 18.3
Yield Strength 0.2% ksi	84.3 81.9 82.8 83.0
Ultimate Tensile Strength ksi	112.4 113.3 110.6 112.1
Test Temp. F.	220
Grain Dir.	Ω
Specimen Location	ම ත ත
Specimen Number	HV FW Average

ц. А. <i>В</i> .	0.0 730 0.0	10.01 40.01 51 51 51 51 51 51 51 51 51 51 51 51 51		10.00 11.7 11.7 14.7 14.7 14.7 14.7 14.7 14.7	0°24 0°24	4.02 19.04 1.02 10.04	40.0 41 41 42 42 42	31.9 40.4
Elong. A I Tnch	12.0 13.0	12.0 12.0 15.0 15.0	12.0	18.0 16.0 16.0	13.0	13.0 17.0 19.0	17.2 12.0 13.0	10.5
Yi∈Ld Strength ≎.2% ksi	164.0 153.0	163.0 133.0 127.6 130.0	1300 9300 8870 8870 8870 8700 8700 8700 8700 8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	130.4 150.9 154.6	151.4 89.2 85.8 85.8	87.7 131.8 130.0	<u>130.4</u> 130.7
Titimate Tensile Strength ksi	1.75.0 1.75.0	169.0 150.8 111.0 141.0	111 - 5 111 - 5 111 - 5	116.8 150.0 141.6	167.0 167.1 167.0	164.5 115.2 110.6	113.3 147.6 146.0	146.0 146.5
∃est ∃emp. st.	<u>い</u> 一丁一 -	ι. Ω.	13 14 14 14 14 14	RT	-110	550	ET	
Grain Dir.	1-i	ъĤ	р]	TT	는 는	ET FT	EH M	
Specimen Location	<u>"</u> lange	Tange	F. Tange	Complex Grain Flow	Complex Grain Tlow	Complex Grain Flow	Flange	
Specimen Numbe <i>r</i>	T ^r A	FC Average FG FT	Average(1) 五 元 元	Average(1.) FJ FK	Average(1) FAA FAB FAC	Average FAJ FAL	Average(1) FM FN	FO Average(1)

TABLE 7 IMI 679 FLANGE TENSILE PROPERTIES - FORGING #1

TABLE 7

R.A. %	48.0 49.0 50.0 49.0 49.0 49.0 50.0
Elong. % 1 Inch	16.0 16.0 15.5 15.0 14.0 17.0 17.0 17.0 18.0 18.0 18.0 18.0
Yield Strength 0.2% ksi	86.4 89.4 87.9 88.0 156.0 133.0 133.0 133.0 133.0 133.0 134.3 87.2 87.2 87.2 87.2 87.2 87.2 87.2 87.2
Ultimate Tensile Strength ksi	113.0 Lost in Test 114.0 114.0 114.0 114.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 114.0 11
Test Temp. °H.	550 -110 550
Grain Dir.	LA L
Specimen Location	Flange Web Web
Specimen Number	FAD FAE FAE Average FAG FAI Average FAU FAN FAN FAN FAN FAN FAN FAN FAN FAN FAN

(1) Tests conducted by the Wyman-Gordon Company

R.A. K	34.0 35.0 32.0 33.7	33.0 36.0 35.0 35.0	31.0 36.0 35.0 35.0	40.0 39.0 40.3	43.0 41.0 41.0 41.0	43.0 41.0 42.3
Elong. % 1 Inch	13.0 14.0 13.0 13.3	16.0 14.0 14.0 14.0	14.0 14.0 14.0 14.0	13.0 14.0 14.0 13.7	14.0 15.0 12.0 13.3	14.0 14.0 14.0 14.0
Yield Strength 0.2% ksi	134.8 133.6 135.0 134.5	129.1 130.4 131.5 130.3	133.6 125.9 128.9 128.8	134.9 133.5 133.8 133.8	127.6 127.1 128.5 127.7	124.2 124.6 125.2 124.7
Ultimate Tensile Strength ksi	149.9 148.9 149.7 149.7	143.0 145.3 146.1 144.8	148.6 140.2 141.0 143.3	147.8 146.6 146.5 147.0	142.2 142.6 <u>142.8</u> 142.5	139.5 139.4 14c.0 139.6
Test Temp.	RT	RT	RT	RT	RT	ET
Grain Dir.	Ц	Ы	Ч	LT	Ш	ΓT
Specimen Location	El dge	Mid-Radius	Center	त वह e	Mid-Radius	Center
Specimen Number	Gl3 Gl6 Gl9 Average	G14 G17 G20 Average	G15 G18 G21 Average	G28 G29 G30 Average	G25 G26 G27 Average	G22 G24 Average

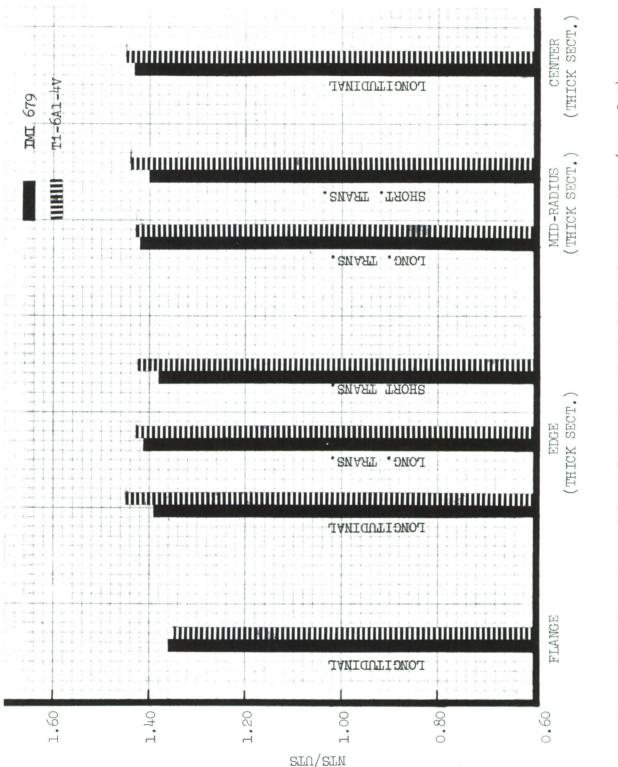

TABLE 8 IMI 679 TENSILE PROPERTIES - FORGING #2

TABLE ⁸ INI 679 TENSILE PROPERTIES - FORGING #2 (cont'd)

41.0 38.0 41.0 40.0 39.0 42.0 41.0 30.0 42.0 43.0 38.3 R.A. 41.0 41.0 41.0 Elong. % 1 Inch 11.0 14.0 14.0 13.0 14.0 13.0 15.0 14.0 14.0 15.0 15.0 14.7 16.0 16.0 16.0 Strength 133.6 134.6 133.3 133.8 129.0 129.7 130.7 129.8 121.2 123.2 126.7 123.7 134.6 136.1 135.3 0.2% ksi Yield Ultimate Tensile 143.6 144.0 145.2 144.3 147.9 149.9 146.8 148.2 137.3 138.0 140.0 138.4 149.7 149.5 149.6 Strength ksi Test Temp. °F. RT RT RT RT Grain Dir. ES HS HS EH Mid-Radius Specimen Location Flange Center Edge Specimen Average Average Average Average Number G37 G38 G39 G34 G35 G35 G31 G32 G33 GO GD

NOTCHED TENSILE PROPERTIES

Notched tension tests were conducted on specimens taken from the light section flange areas as well as at edge, mid-radius and center locations of the forging heavy center section in the Ti-6Al-4V and IMI 679. The notch tensile data are presented in Tables 9 and 10. Figure 33 presents a plot of notched to un-notched tensile strength ratios for various specimen locations in the Ti-6Al-4V and IMI 679 forgings. Room temperature NTS/UTS ratios of 1.35 and higher were obtained in Ti-6Al-4V and IMI 679 in all grain directions and at all locations. Whereas, NTS/UTS ratios over 1.2 for Ti-6Al-6V-2Sn and under 1.0 for Ti-13V-11Cr-3Al were obtained in tests previously conducted (Ref. 1). All test specimens were taken from identical locations in each of the four alloys.

NTS/UTS (K _t = 3.9)	1.38 1.38	/ <u>()</u> .+	1.45	L.45	1.43	1.43	1.46	1.144	1.35
Notched Tensile Strength ksi	239.0 243.0 241.0 211.4 216.5 216.5	218.1	220.5 214.0 218.9	225 • 5 225 • 5 225 • 5	225.5 216.5 211. 4	220.6 220.6 7_125	221.2 220.3 200.8	215.2 213.2 213.2	13.1
Test Temp. °F.	-LIO RT	RT	RT	RT	RT	RT	RT	RT	
Grain Dir.	ы п	Г	Ц	ΓIJ	ΓŢ	ET M	C II	Г	
Specimen Location	Mid-radius Mid-radius	Edge	Center	Edge	Mid-radius	Edge	Mid-radius	Flange	
Specimen Number	H43 H50 Average H46 Average	143 142	Average I40 I41	Average I44 I45	Average I46 I47	Average I48 I49	Average I50 I51	Average IA IB	Average
Forging Number	τ#	#2							

Ti-6AL-4V NOTCHED TENSILE PROPERTIES

TABLE 9

NTS/UTS (K _t = 3.9)		1.41	1.42		1.39		1.43		1.4L	1.42	1.38	1.40	1.36
Notched Tensile Strength ksi	230.0	231.0 207.4	207.0	210.0 206.0	208.0	204.0	205.0 208.0	206.0	207.0 205.0 201.0	203.0 204.0	204.0 202.0	201.0	201.5
Test Temp. F	-110	RT		RT	Ę	TY	RT		RT	EA	L L	E C	
Grain Dir.	L	Ц		L	F	7	ΤΊ		E I	ΞS	Ц М	Ĺ	
Specimen Location	Mid-radius	Mid-radius		Edge	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Tenter	Edge		Mid-radius	Edge	Mid-radius	Flange	
Specimen Numbe <i>r</i>	포나3 포50	Average F39 F1.6	Average	G42 G43	Average	C47 C47	Average Gµ4	G45	Average G46 G47	Average G48 Cho	A+7 Average G50	Average GA	GB Average
Forging Number	#J			#2									

TABLE 10 IMI 679 NOTCHED TENSILE PROPERTIES

COMPRESSION PROPERTIES

Compression properties for Ti-6Al-4V and IMI 679 are given in Tables 11 and 12. The effect of temperature on compression yield strength in Ti-6Al-4V is shown in Figure 34. Similar data on IMI 679 are presented in Figure 35. Typical autographic compression stress-strain curves for both alloys at room temperature and 550°F are shown in Figures 36 and 37 respectively. Compression properties were found to be quite uniform; the variation in values due to location and grain direction was small.

At room temperature and -110° F, the compression properties of Ti-6Al-4V and IMI 679 were in the same range as the ultimate tensile strengths of each alloy. However, the compression properties dropped off more rapidly than the ultimate tensile strength at 550°F.

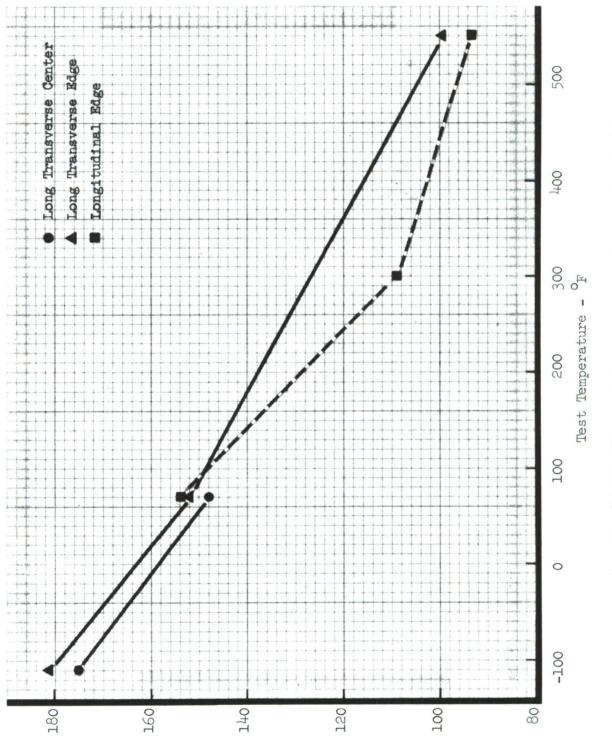
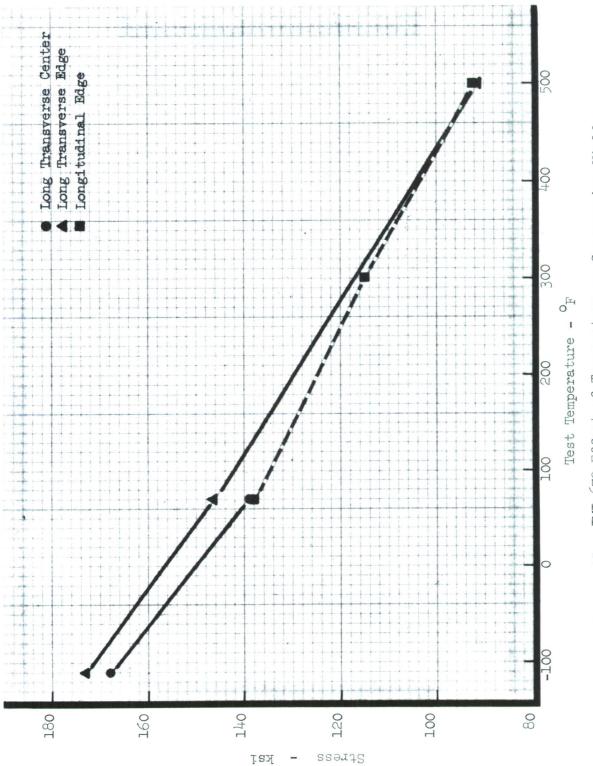
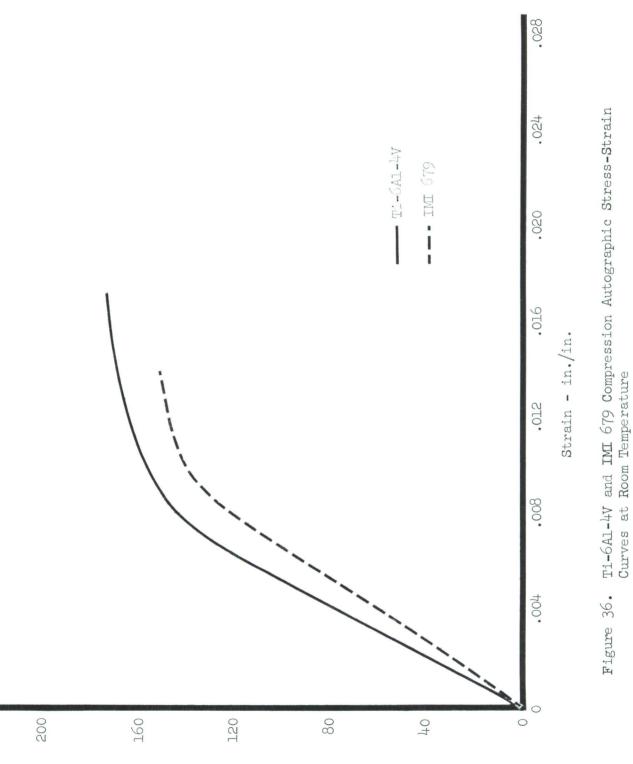




Figure 34. Ti-6A1-4V Effect of Temperature on Compression Yield

iax - aserta

iax - aasart2

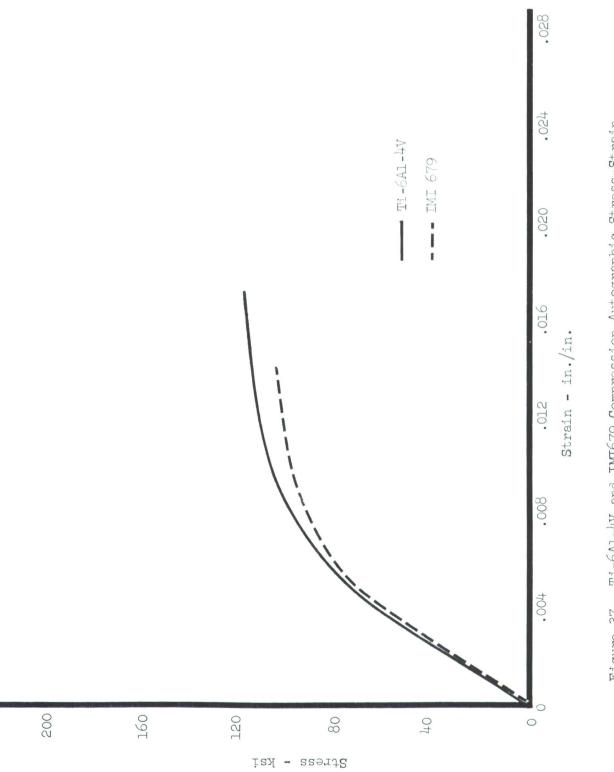


Figure 37. Ti-6Al-4V and IMI679 Compression Autographic Stress-Strain Curves at 550°F

PROPERTIES
COMPRESSION
SECTION
THICK
Ti-6AL-4V
11

TABLE 11

Compression Yield Strength ksi	182.9 179.8 181.4	173.4 175.8 174.6	147.5 150.3 148.9	149.2 146.9 148.1	154.1 153.1 153.6	158.4 152.1 155.3	111.0 107.0 109.5
Test Temp. .T.	-110	-110	ШN	RT	EL el	RT	300
Grain Dir.	ΓŢ	LT	LT	LT	Э	ΤŢ	Ъ
Specimen Location	년 여명 문	Center	E dge	Center	E dge	E dge	तह dge
Specimen Numbe <i>r</i>	I11 I12 Average	I9 Il0 Average	I5 I6 Average	I7 I8 Average	H23 H24 Average	H27 H28 Average	HC1 HC2 Average
Forging Number	Z#				#1		#3

TABLE 11 Ti-6AL-4V THICK SECTION COMPRESSION PROPERTIES (cont'd)

Compression Yield Strength ksi	93.8 93.0 93.4	100.7 98.9 99.8
Test Temp.	550	550
Grain Dir .	Ē	터
Specimen Location	e B B B B B B B B B B B B B B B B B B B	El dige
Specimen Number	H25 H26 Average	H29 H30 Average
Forging Number	Τ#	

PROPERTIES
COMPRESSION
THICK SECTION
HI 679 IMI
TABLE 12

Compression Yield Strength ksi	175.5 170.7 173.1	169.2 166.8 168.0	148.7 148.0 148.4	138.1 141.5 139.8	135.8 140.8 138.3	144.1 144.9 144.5	112.0 117.0 115.0
Test Temp. °F	-110	-110	RT	RT	RT	RT	300
Grain Dir.	LT	L/T	ΓŢ	LT	L	LT	ц
Specimen Location	Edge	Center	Edge	Center	Edge	Edge	년 년 년
Specimen Numbe <i>r</i>	G11 G12 Average	G9 G10 Average	G5 G6 Average	G7 G8 Average	F23 F24 Average	F27 F28 Average	FC1 FC2 Average
Forging Number	#2				<i>#</i> л		#3

TABLE 12 IMI 679 THICK SECTION COMPRESSION PROPERTIES (cont'd)

Compression Yield Strength ksi	90.6 93.9 92.4 91.6
Test Temp. °F.	550
Grain Dir.	Ц Ц Ц
Specimen Location	E dge E dge
Specimen Numbe <i>r</i>	F25 F26 Average F30 Average
Forging Number	τ#

SHEAR AND BEARING PROPERTIES

Results of room temperature and $550^{\circ}F$ double shear testing Ti-6Al-4V and IMI 679 material are given in Table 13. The specimens were taken in the longitudinal grain direction from the thick section of the forgings. The values obtained on the Ti-6Al-4V forgings were in good agreement with published values. Shear values on IMI 679 from other sources were not available for comparison.

Bearing ultimate and yield strength values at room temperature and 550° F for Ti-6Al-4V and IMI 679 are given in Table 14.

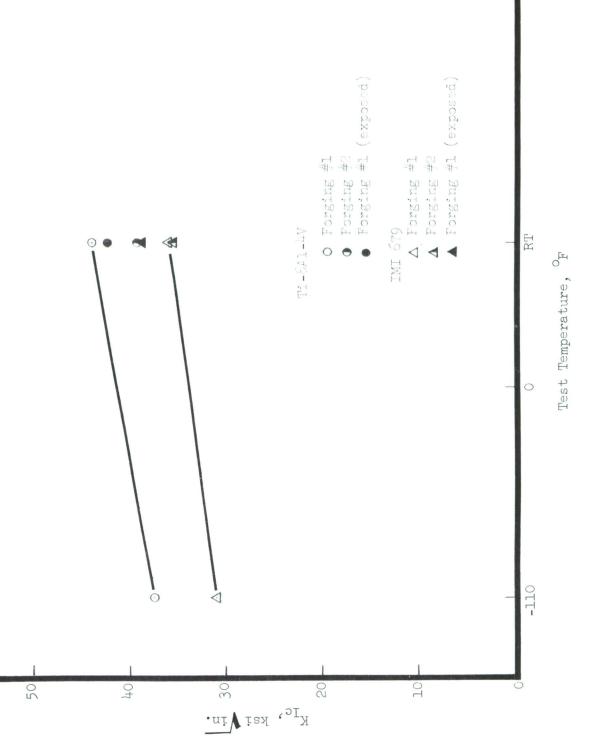
Ultimate Shear Ksi	107.3 97.2 102.3 79.6 73.8 76.7	101.8 99.9 70.6 71.8 71.2
Test Temperature OF	RT RT 550 550	RT RT 550 550
Grain Direction	нн нн	нн нн
Specimen Numbe <i>r</i>	H71 H72 Average H73 Average Average	F72 Average F73 F74 Average
Forging Number	#1	#J
Material	Ti-6Al-4V	IMI 679

TABLE 13 DOUBLE SHEAR PROPERTIES OF Ti-6Al-4V and IMI 679

TABLE 14 BEARING TEST RESULTS

Material	Forging Number	Specimen Numbe <i>r</i>	Grain Dir.	Test Temp. °F	F bru ksi	F bry ksi
Ti-6Al-4V	#1	HY HZ Average	Г	RT	313.8 320.0 316.9	242.1 245.0 243.6
	#2	HYl HZl Average	Ц	550	258.3 262.6 260.5	178.2 197.5 187.9
	#1	FY FZ Average	Г	RT	305.6 305.9 305.8	233.9 228.8 231.4
	#2	FYl FZl Average	П	550	222.9 239.1 231.0	176.1 177.2 176.7

*Thickness = 1/16", Bearing hole diameter = 0.250";(e/d = 2.0)


FRACTURE TOUGHNESS

Pre-cracked round bar specimens were tested to determine the fracture toughness characteristics (K_{lc}) in the Ti-GAL-4V and IMI 679 forgings. All specimens were taken in the short transverse grain direction so they could be readily compared to the data on Ti-13V-11Cr-3Al and Ti-GAL-6V-7Sn (Ref. 1). Fracture toughness results on Ti-GAL-4V and IMI 679 are presented in Tables 15 and 16 and shown graphically in Figure 38.

Forging No. 1 of Ti-6Al-4V had the highest room temperature fracture toughness values of the two alloys tested in this program. Values of K_{IC} from similar locations in forging No. 1 and forging No. 2 of each alloy were compared. The values obtained showed very good agreement for both the Ti-6Al-4V and IMI 679. A slight decrease in K_{lc} values was noted in both the Ti-6Al-4V and IMI 679 at a test temperature of -110°F.

Two machined specimens of each alloy were exposed to 550° F for 1000 hours in an unstressed condition. After exposure the specimens were fatigue cracked and tested at room temperature. The thermal exposure treatment had no significant effect on the fracture toughness properties in either the Ti-6Al-4V or IMI 679. See Tables 15 and 16.

Data obtained in Reference (1) indicated that the room temperature K_{lc} values for Ti-6Al-6V-2Sn are comparable to those obtained for Ti-6Al-4V. It should be noted, however, that the Ti-6Al-6V-2Sn was at an ultimate tensile strength level of approximately 160 ksi.

Klc ksi Vin.	36	44	ד ו ן	38 40 140
$\sigma_{\rm Net}$ $\sigma_{\rm ys}$	0.65	0.85	0.85 0.83	0.87 0.82 0.89
Yield Strength 0.2% ksi	169 169	147	147 136	131 140 131
σ _{Net} ksi	110 104	125	125 113	411 211 2116
Maximum Load (P) 10 ³ lbs	15.3 11.8	29.8	31.8 19.6	11.6 13.7 13.5
Net Diameter (d) Inches	0.420 0.380	0.550	0.570 0.470	0.360 0.390 0.385
Major Diameter (D) Inches	0.751 0.753	0.750	0.750 0.750	0.750 0.751 0.753
Test Temp. OF	- 110 011 - 110	L L L L L L L L L L L L L L L L L L L	RT RT	RT RT RT RT
Specimen Number	Н5 Н6	v h a		I 1 (1) I 2 I 3 I 4 I 4
Forging Number	#1			#2

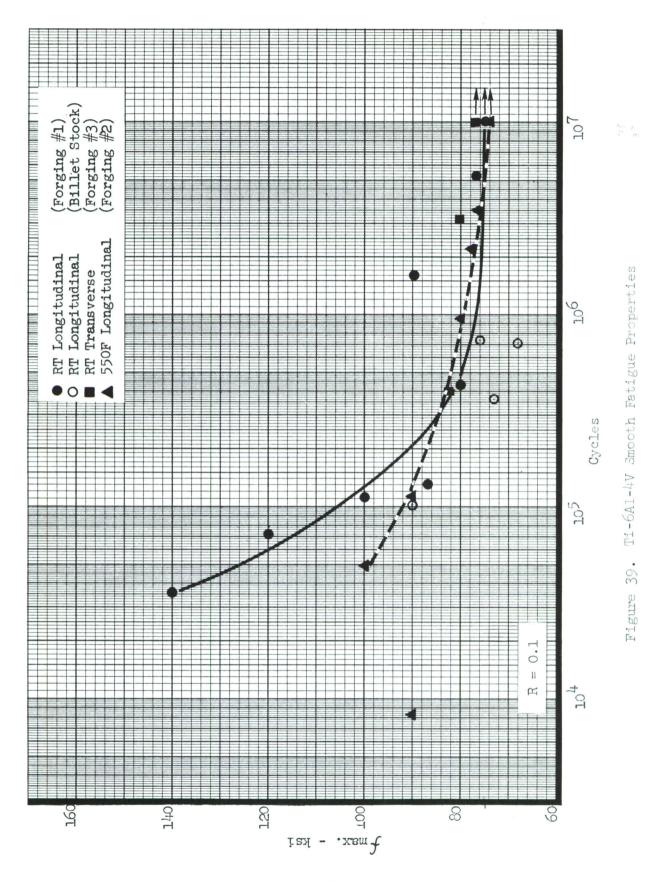
TABLE 15 FRACTURE TOUGHNESS PROPERTIES IN Ti-6A1-4V

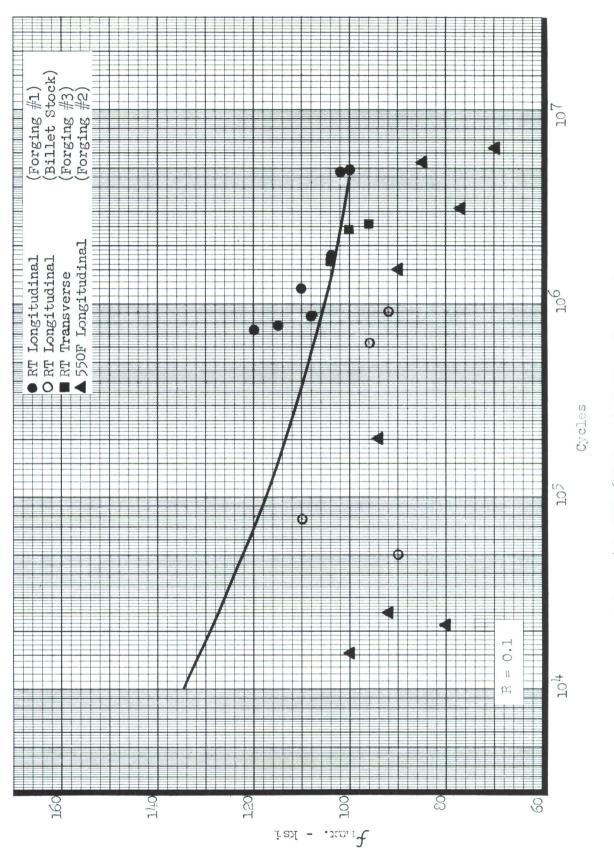
ちょう

Fatigue crack too deep and eccentric to yield valid data
 Exposed 1000 hours at 550^oF prior to test

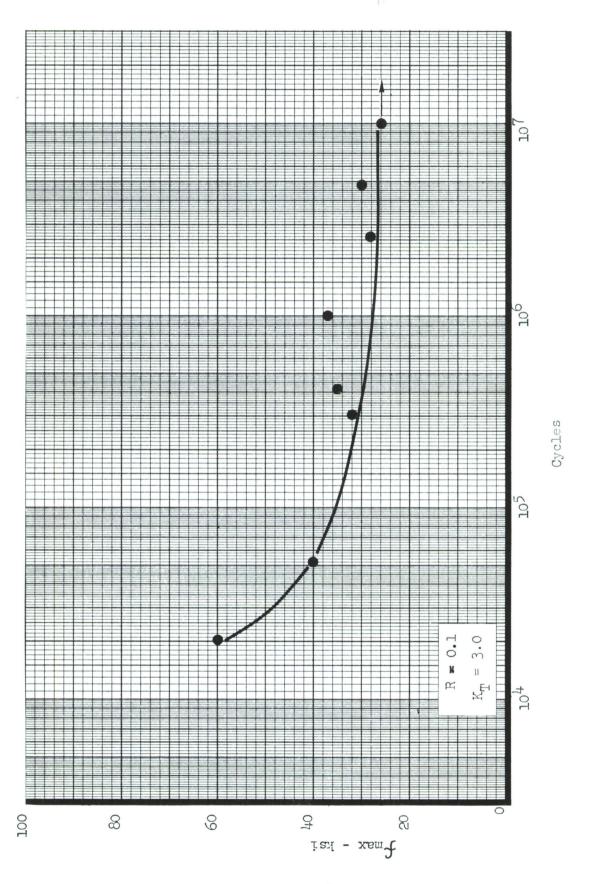
Forging Number	Specimen Number	Test OFP.	Major Diameter (D) Inches	Net Diameter (d) Inches	Maximum Load (P) 10 ³ lbs	σ _{Net} ksi	Yield Strength 0.2% Ksi	$\sigma_{ m Wet}$	$\overset{K_{lc}}{\operatorname{ksi}}\overset{K_{lc}}{\operatorname{\operatorname{Vin}}}.$
#1	с Fi	-110	0.751	0.370	9.5	88	158	0.56	30
	9 4	-110	0.750	0.390	11.1	93	158	0.59	32
	N Fi	RT	0.750	0.370	11.1	103	129	0.80	34
	۲ ب	RT	0.750	0.420	14.2	103	135	0.76	36
	80 F4	RT	0.751	0.420	14.7	106	129	0.82	38
	F 3 (1)	RT	0.750	0.490	20.2	107	135	0.79	39
	F 4 (1)	RT	0.751	0.500	21.4	109	129	0.85	39
#2	G J	RT	0.750	0.410	12.8	97	134	0.72	34
	CJ CJ	RT	0.749	0.410	1.4. l4	109	124	0.88	38
	с С	RT	0.749	0.415	14.0	104	134	0.78	36
	G 4	RT	0.750	0.395	12.3	100	124	0.81	35

TABLE 16 FRACTURE TOUGHNESS PROPERTIES IN IMI 679

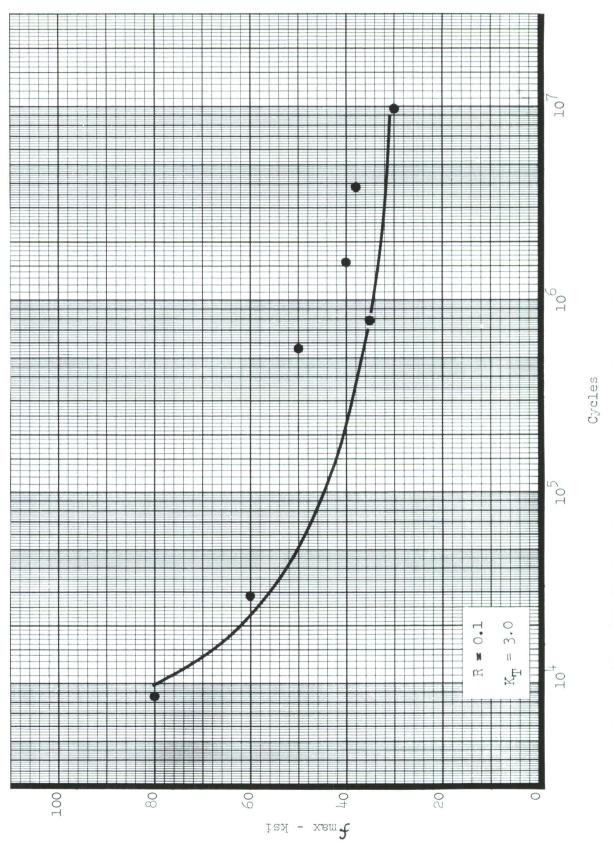

(1) Exposed 1000 hours at 550°F prior to test


5.35

FATIGUE PROPERTIES


Smooth and notched axial tension fatigue tests were conducted on Ti-6A1-4Vand IMI 679. A stress of R=0.1 was used in all testing. The test results are presented in Tables 17 through 20 and shown graphically in Figures 39 through 42. In general, the longitundinal room temperature smooth and notched properties of IMI 679 are superior to those exhibited by Ti-6A1-4V. However, smooth fatigue properties at 550°F were comparable in the Ti-6A1-4Vand IMI 679.

Short transverse smooth fatigue tests were conducted at room temperature on Ti-6Al-4V and IMI 679 and compared to the longitudinal tests. No difference in fatigue properties was noted in either alloy due to grain direction. Longitudinal smooth fatigue tests were conducted on the alloy billets. Fatigue properties in both the Ti-6Al-4V and IMI 679 billets were found to be lower than those in the forging.



PROPERTIES
FATIGUE
TENSION
AXIAL
HTOOMS
Ti-6AL-4V
TABLE 17.

es lure	35,640 71,820 111,780 590,120 130,120 130,120 120,120 271,840 271,840 200,000 (2)	922 600 360 F	780 100 860	1,260 +9,500 8,280 -4,840 56,160 2,920 26,220 06,020 (2)	
Cycles To Failure	35,640 71,820 1,590,120 130,140 4,28,940 5,271,840 10,000,000	394,922 3,153,600 10,314,360	102,780 737,100 320,760 706,860	1,260 49,500 8,280 114,840 956,160 2,212,920 3,506,220 10,000,000	
Stress(l) max ksi	140.0 120.0 90.0 87.0 87.0 77.0	82.3 80.0 77.0	90.0 76.0 68.0	120.0 120.0 99.0 77.0 74.0	
Test Temp. P	цТ	RT	RT	550F	
Grain Dir.	н	ST	Ч	Ц	
Specimen Number	н10 н11 н12 н12 н16 н16 н15	152 152 152	и 22 V4	IEV Н18 Н19 Н21 Н21 Н22 1.EW	Ratio R = 0.1 ure
Forging Number	τ#	75	Billet Forging Stock	#3	 Stress Rat No Failure Failed

PROPERTIES
FATIGUE PRC
TENSI ON
AXIAL
NOTCHED
Ti-6AL-4V
TABLE 18.

Cycles To Failure	20,520 52,560 1,022,040 412,380 308,520 4,866,300 2,614,860 10 ⁷ N.F.
Stress (1) max ksi	40 74 88 88 88 86 86 86 86 86 86 86 86 86 86
Test Temp.	Ψ
Grain Dir.	Ч
Specimen Number	HN 1. EN 2 HN 4 HN 4 HN 4 HN 7 HN 7 HN 7 HN 7 HN 7 HN 7 HN 7 HN 7
Forging Number	#3

(1) Stress Ratio R = 0.1, $K_{t} = 3.0$

Cycles To Failure	2,160 736,920 764,460 1,189,980 858,240 1,756,440 4,773,600 4,896,720	1,656,540 2,402,100 2,565,000	77,040 621,720 905,580 50,040	15,480 200,880 25,380 5,423,900 5,423,580 21,780 3,259,800 6,407,460
Stress ⁽¹⁾ max ksi	140 120 110 108 104 102 102	104 100 96	110 96 92	100 94 90 80 77 77
Test Temp. °F.	RT	RT	RT	550 F
Grain Dir.	Ч	전고	L	Ч
Specimen Number	F11 F9 F12 F12 F13 F15 F15	G52 G52 G54	LM SM LM EM	F17 GEV F19 F22 F21 F21 F20
Forging Number	#⊐	#2	Billet Forging Stock	#3

TABLE 19. IMI 679 SMOOTH AXIAL TENSION FATIGUE PROPERTIES

(1) Stress Ratio R = 0.1

Cycles to failure	8,640 28,440 562,500 1,583,460 3,845,160 781,200 9,721,260
Stress(1) max ksi	80 39 39 39 50 50 50 50 50 50 50 50 50 50 50 50 50
Test Temp. °F.	Test RT
Grain Dir.	L Lost in Te
Specimen Number	FN1 FN2 FN3 FN3 FN3 FN3 FN3 FN3
Forging Number	##3

TABLE 20. IMI 679 NOTCHED AXIAL TENSION FATIGUE PROPERTIES

(1) Stress Ratio R = 0.1, K_{t} = 3.0

THERMAL EXPOSURE

In addition to the evaluation of thermal exposure effects on fracture toughness discussed above, smooth and notched tensile specimens of each material were also exposed for one thousand hours at 550° F and tested at room temperature. The data obtained are presented in Table 21 along with the unexposed control values. All exposure testing was conducted on unstressed specimens.

After exposure to 550°F for 1,000 hours, no apparent effect of exposure was noted in either the smooth or notched IMI 679 or Ti-6Al-4V tensile specimens. Two of the four Ti-6Al-4V smooth tensile specimens which were subjected to thermal exposure showed no change in properties while the two other specimens showed a slight increase in strength. This difference, however, is considered to be within the scatter for this alloy.

R.A. %	35 31 33.0 28.0 40.0 40.0 40.0 37 37 37 37 37 37 37 37 37 37 37 37 37	0
Elong. $_{\mathscr{H}}^{Elong.}$ l inch	12 12 12.0 13.5 14 14 15.7 15.7 15.7 15.7 15.7 15.7	14.7
Yield Strength 0.2% ksi	135 137 136.0 149.0 149.0 129 129 129 127.9 136 138	133.1
Ultimate Tensile Strength ksi	148.5 149.5 146.5 146.5 160.0 160.0 160.0 160.0 153.0 212 212 212 212 212 212 212 212 212 21	146.0
Type of Specimen	Smooth Smooth Smooth Smooth Notched Notched Smooth Smooth Smooth Smooth	Smooth
Specimen Number	H 32 H 36 Average Average H 54 H 55 Average Average Average Average Average Average Average Average Average	Average
Exposure Condition	1000 hrs at 550°F None 1000 hrs at 550°F None 1000 hrs at 550°F None at 550°F None at 550°F at 550°F at 550°F	None
Material and Forging	Ti-6Al-4V Forging No. 1 No. 1 IMI 679 Forging No. 1	

ROOM TEMPERATURE LONGITUDINAL TENSILE PROPERTIES BEFORE AND AFTER EXPOSURE TABLE 21

R.A. %	
Elong. % L inch	
Yield Strength 0.2% ksi	
Ultimate Tensile Strength ksi	200 206 203.0 207.0
Type of Specimen	Notched Notched
Specimen Number	F 52 F 53 Average Average
Exposure Condition	1000 hrs at 550°F None
Material and Forging	IMI 679 Forging No. 1 (cont)

TABLE 21 (Cont)

MODULUS OF ELASTICITY

A Tuckerman optical strain measuring system was used to develop precision room temperature tension and compression elastic modulus data on Ti-6Al-4V and IMI 679. Since modulus data were not obtained in the previous program, the Ti-13V-11Cr-3Al and Ti-6Al-6V-2Sn alloys were also tested as part of this program. Specimens were taken in the longitudinal and long transverse grain directions from a slab similar to block VII of forging No. 3.

Tension and compression modulus of elasticity data for all four alloys are presented in Tables 22 and 23. No significant difference in modulus was noted between the longitudinal and long transverse grain directions in any of the alloys tested. Of the four alloys tested the Ti-6Al-4V exhibited the highest tension modulus and compression modulus values.

A second set of tests was run on each specimen of the Ti-6Al-4V and IMI 679. Data from the second test were in excellent agreement with the values reported in Tables 22 and 23.

Alloy	Specimen Location	Grain Direction	Modulus (10 ⁶ psi)
IMI 679	Edge	L	15.6
			15.8 15.7
		Average	15.7
		LT	15.6 16.3 16.4
		Average	16.1
Ti-6Al-4V		L	17.0 17.1
			17.2
		Average	17.1
		LT	17.2 17.2
			17.4
Ti-13V-11Cr-3Al		Average L	17.3
		11	16.1 15.6
		Average	15.3
		LT	15.7
			15.7
		Average	14.9
Ti-6Al-6V-2Sn		L	15.8
			15.9 15.8
		Average	15.8
		LT	16.4
			16.4 16.2
		Average	16.3

TABLE 22 THICK SECTION TENSION MODULUS OF ELASTICITY TESTS (1)

(1) Tuckerman gages were used to establish modulus values

Alloy	Specimen Location	Grain Direction	Modulus (10 ⁶ psi)
IMI 679	Edge	L	16.0
			16.0 16.2
		Average	16.1
		LT	16.5
		Average	16.5
Ti-6Al-4V		L	17.4
		ند	17.4
		A	17.3
		Average	17.4
		LT	17.2 17.2
			17.6
		Average	17.3
Ti-13V-11Cr-3AL		L	16.0 16.2
			15.9
		Average	16.0
		LT	15.4
			15.5 15.6
		Average	15.5
Ti-6Al-6V-2Sn		L	16.2
			16.2 16.2
		Average	16.2
		LT	17.0
			16.6
		Average	17.0

TABLE 23 THICK SECTION COMPRESSION MODULUS OF ELASTICITY TESTS (\bot)

(1) Tuckerman gages were used to establish modulus values

ENVIRONMENTAL DELAYED FAILURE EVALUATION

Certain titanium alloys and heat treat conditions are known to be susceptible to delayed failure in the presence of a crack, stress and salt water. Therefore, a limited evaluation was conducted to determine the susceptibility to delayed failure in salt water of forged Ti-6Al-4V and IMI 679. Section size has previously been shown to have an important influence on material susceptibility, therefore, in this study samples were taken from the relatively thin web areas as well as from the forging center section in each alloy.

All specimens were oriented in the long transverse grain direction. Precracked, notched bend bars were tested using the procedure described in Appendix III. The conventional plane strain, fracture toughness, $K_{\rm lc}$, was determined for each set of samples in air. Then a sustained load limit in salt water was established and used to calculate the sustained load, environmenta, stress intensity limit $K_{\rm li}$. The ratio of $K_{\rm lc}$ to $K_{\rm li}$ can then be used to indicate the relative material susceptibility to delayed failure in salt water.

The test results are reported in Table 24. These data indicate a relatively high resistance to delayed failure for both heavy and light section Ti-6Al-4V and light section IMI 679 material. The IMI 679 from the heavy center loca-

tion exhibited substantial susceptibility. The ratio of $\frac{K_{li}}{K_{lc}}$ for this material

was 57% whereas all other materials exceeded 75%. In previous work the rate of cooling from the solution temperature has been found to affect delayed failure susceptibility of titanium alloys. This may explain the difference in the behavior between the Ti-6Al-4V and IMI 679 taken from the forging heavy sections. The IMI 679 was solution treated in full section size and forced air cooled. In contrast with this relatively slow cooling rate in the IMI 679, the Ti-6Al-4V material was only 3/4 inches thick at time of heat treatment and was water quenched.

The K_{lc} values obtained with the notched bend specimens and reported in Table 24 are noted to be significantly higher than the K_{lc} values obtained with pre-cracked, notched round bar specimens reported in Tables 15 and 16. The differences are inherent in the two different types of fracture toughness testing techniques.

TABLE 24 DELAYED FAILURE RESISTANCE IN SALT WATER (1)

	$\frac{K_{li}}{K_{lc}}$.85	.84	.56
		210	23	37
	K _{lc} ⁽²⁾ (ksi Vin)	64 54	64 62	68 65
	Time to Failure	Broke on loading Broke on loading Broke on loading No Failure No Failure	l min No Failure No Failure No Failure No Failure	Broke on loading 6 min 6 min 3 min No Failure
Nominal Breaking Stress	Salt Water (ksi)	147 146 136 130 95	151 132 104 83	159 1188 1188 94
Nomina S	Air Pop-in (ksi)	159 137	161 157	167 160
	Specimen Number	И2 И2 И5 И2 И2 И2 И2	V8 V10 V11 V12 V12 V13 V13	НМ КАМ ММ ММ ММ ММ ММ ММ ММ ММ
	Specimen Location	Center	Web	Center
	Alloy	Ti-6Al-4V		1MI 679

TABLE 24 (Cont)

	$ \begin{array}{c c} K_{li}^{(3)} & K_{li} \\ (ksi \sqrt{in}) & K_{lc} \\ \end{array} $	51.78
	K _{lc} ⁽²⁾ K (ksi √in) (ks	66 64
	Time to Failure (ks	l min No Failure No Failure No Failure No Failure
Nominal Breaking Stress	Air Pop-in Salt Water (ksi) (ksi)	163 162 136 125 121 107 96
	Specimen Number	M8 M9 LLM SLM LLM LLM LLM
Specimen Location		We b
Alloy		IMI 679 (cont)

(1) All values obtained with bend specimen shown in Figure 90.

97

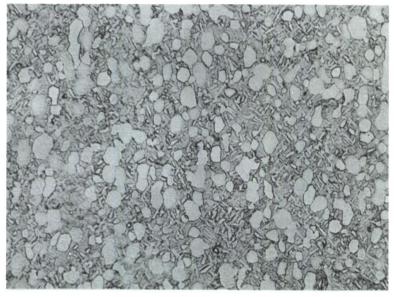
- (2) Control value obtained in air.
- Sustained load environmental stress intensity limit. Calculated from bend specimen fracture toughness equation. (8)

METALLURGICAL EVALUATION

Metallographic studies were conducted on the Ti-6Al-4V and IMI 679 forgings. Representative sections were taken from web and center locations in each alloy to show transverse and longitudinal grain structure.

Microstructures of Ti-6Al-4V forgings are presented in Figures 43 through 46. Longitudinal and transverse views in the web area are given in Figures 43 and 44. respectively. The Ti-6Al-4V shows little evidence of directionality in either the web or center section. Microstructure in the Ti-6Al-4V consisted of primary alpha in a transformed beta matrix. The specimen from the center section shows a greater amount of martensitic alpha than the web specimen. Normally, martensitic alpha indicates a faster cooling rate. This is possible since the specimens in Figures 45 and 46 were taken near the quenched surface of the thick section.

The Ti-6Al-4V starting billet microstructure is shown in Figure 47. The coarse, accicular alpha present in the billet has been altered significantly in the forgings as a result of the working and heat treatment received by the forgings.


Figures 48 and 49 show the microstructure for two grain directions in the relatively thin web section of IMI 679 forgings. The web area in the forging received considerably more work than the heavy center section; however, the microstructures are quite similar in both locations. See Figures 50 and 51. None of the microstructures exhibit significant directionality. In each case, the metallurgical structure consists of primary alpha (light areas), transformed beta, and silicides (dark particles). All of these microstructures are noted to be finer than corresponding microstructures in the Ti-6Al-4V forging.

The IMI 679 billet microstructure is shown in Figure 52. As was the case with Ti-6Al-4V, the coarse elongated alpha particles present in the billet have been altered significantly in the forgings as a result of the working and heat treatment received by the forgings.

Figures 53 and 54 show the macrostructure obtained in a transverse web and flange area in Ti-6Al-4V and IMI 679 respectively. Considerable refinement of structure is noted compared to the center sections. The forging flow lines are typical of the section shown.

Longitudinal and transverse macrosections of the forging heavy sections of each alloy are shown in Figures 55 through 58. These figures can be compared to the billet macrostructures (see Figures 74 through 77, Appendix I) to determine metallurgical changes related to crossworking, forging and heat treatment operations. Similar to the findings in Reference 1, the macrosections indicate considerable grain refinement near the forging surfaces in each alloy with only small changes noted in the forging center sections.

The unusual ring pattern in the IMI 679 macrographs is apparently typical of this alloy. TMCA has reported the same type of pattern in IMI 679 and stated that it is a carry over from the ingot macrostructure. Electron microprobe analysis of these patterns have been made by TMCA. The results showed no chemical segregation and it is believed that the pattern is strictly an orientation effect (5).

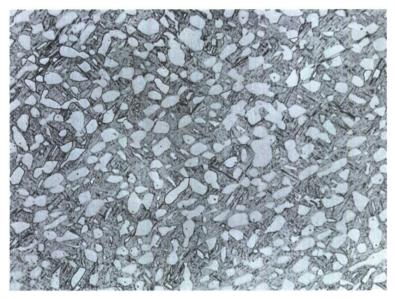

Forging Web Area

Figure 43. Ti-6Al-4V Microstructure of Specimen HAO, Longitudinal Grain Direction (250X)

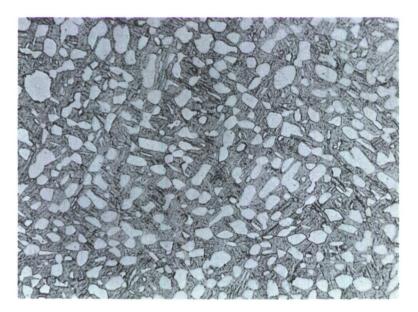

Forging Web Area

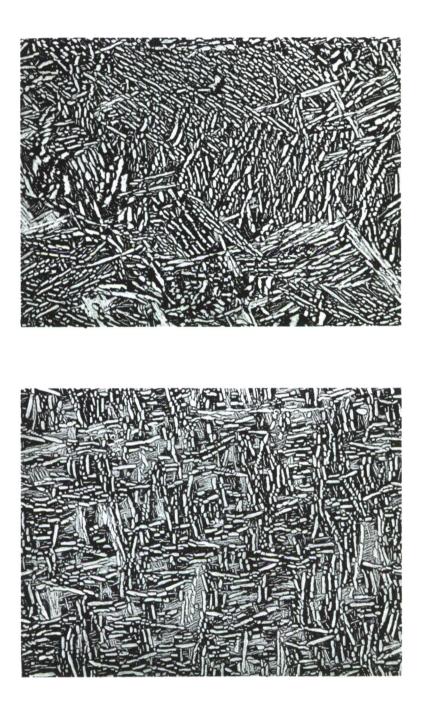
Figure 44. Ti-6Al-4V Microstructure of Specimen HAO, Transverse Grain Direction (250X)

Forging Heavy Section

Figure 45. Ti-6Al-4V Microstructure of Specimen H-67 Longitudinal Grain Direction (250X)

Forging Heavy Section

Figure 46. Ti-6Al-4V Microstructure of Specimen H-67 Transverse Grain Direction (250X)



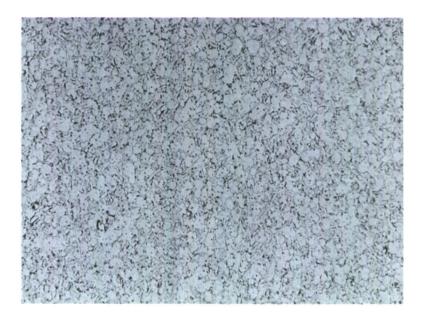


Figure 47. Microstructure of Heat Treated Ti-6Al-4V Billet Stock (Longitudinal - Upper, Transverse - Lower) (100X) Etchant: NAOH

Forging Web Area

Figure 48. IMI 679 Microstructure of Specimen FAO Longitudinal Grain Direction (250X)

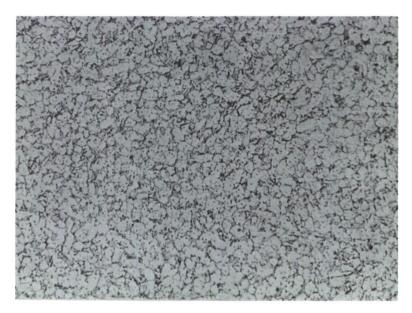

Forging Web Area

Figure 49. IMI 679 Microstructure of Specimen FAO Transverse Grain Direction (250X)

Forging Heavy Section

Figure 50. IMI 679 Microstructure of Specimen F-58 Longitudinal Grain Direction (250X)

Forging Heavy Section

Figure 51. IMI 679 Microstructure of Specimen F-58 Transverse Grain Direction (250X)

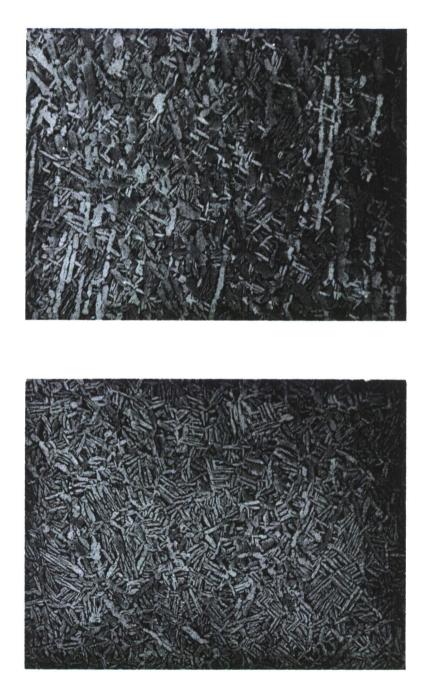


Figure 52 Microstructure of Heat Treated IMI 679 Billet Stock (Longitudinal - Upper, Transverse - Lower) Etchant: Benzal Stain (250 X)



Figure 53 Ti-6Al-4V Macrostructure of Transverse Web and Flange Area

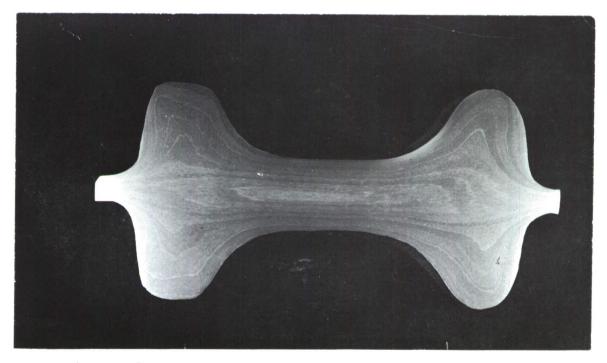
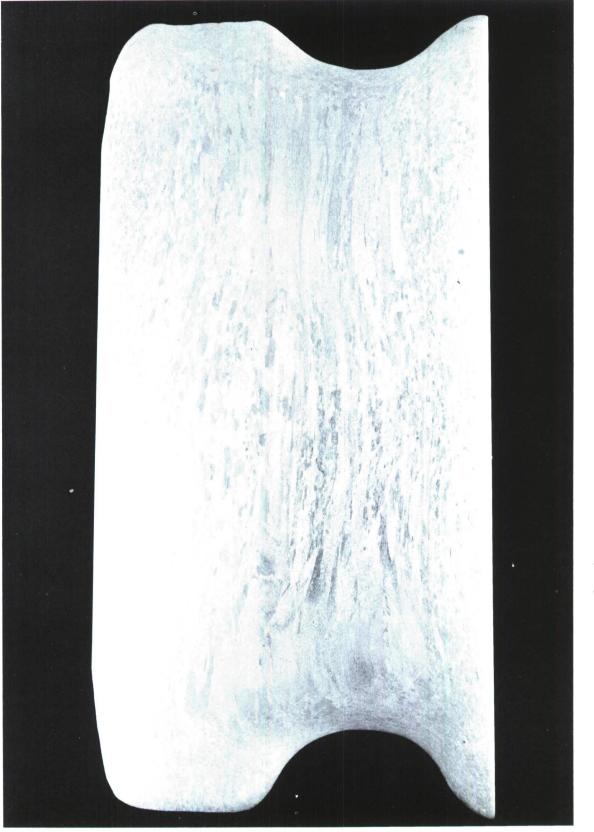



Figure 54. IMI 679 Macrostructure of Transverse Web and Flange Area

Ti-6Al-4V Longitudinal Section Through Forging Center Section (Approx. 1X) Figure 55

Figure 56 Ti-6Al-4V Transverse Section Through Forging Center Section (Approx. 1X)

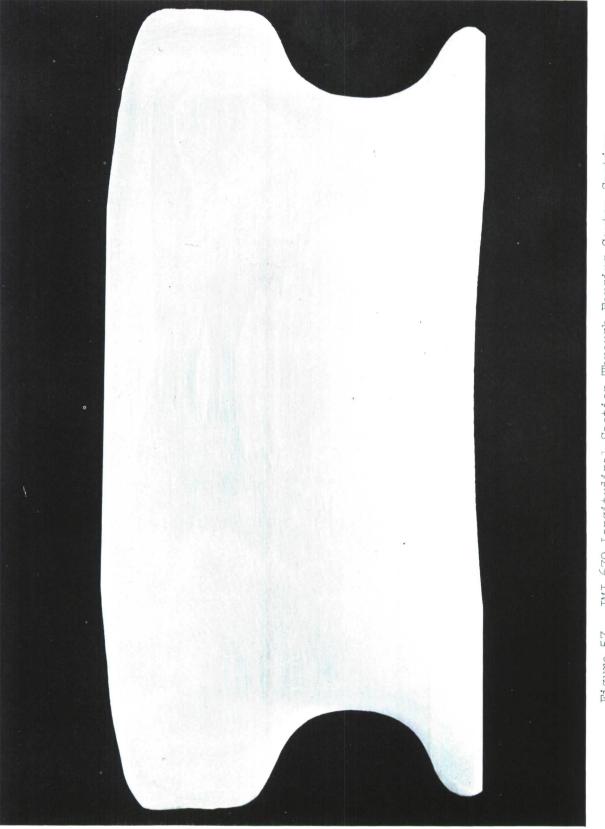


Figure 58 IMI 679 Transverse Section Through Forging Center Section (Approx. 1X)

Section V

FORGING STATIC TEST

The forging static test program consisted of testing one machined fuselage ring fitting of Ti-6Al-4V and one of IMI 679. This part was originally selected in the previous program to represent a typical airplane forging design which includes local effects of skin attachment holes, fin to spar attachment lugs, and curved flanges following fuselage contour. The static test procedure consisted of an up-load in combination with a side load which produced complex loading in the parts. The direction of these loads are related to those experienced in an actual part in an airplane.

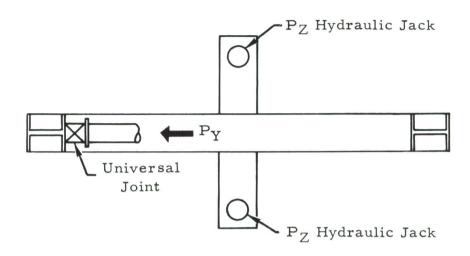
In the test set-up, the forging was supported at each end by flexure pivots attached to the end fittings. The vertical load was applied equally by two jacks and the side load by one jack. The vertical components were reacted through the flexures and the side load was reacted by a tension strap attached to the top deck of the forging. Test loads were applied in increments until failure. The test set-up is shown schematically in Figure 59. A view of the actual test set-up with a forging installed for test is shown in Figure 60.

Dial gages were located 3 inches on either side of the forging centerline. The test loads were applied in increments and deflections measured for various loadings up to 25,000 pounds. The load was returned to zero and the dial gages were re-checked for evidence of permanent set in the parts. Neither alloy showed evidence of permanent set after application of the 25,000 pound load which is approximately 70 percent of the predicted failure strength. Test loads were then re-applied in increments to failure. Load-deflection data are presented in Table 25.

The load deflection curves for each part are shown in Figure 61. These curves can be compared to those obtained on Ti-6Al-6V-2Sn, Ti-13V-llCr-3Al, and 4340 steel parts (Ref. 1). Such a comparison shows that the Ti-6Al-4V and IMI 679 parts were stiffer than parts made from the other two titanium alloys. This difference was due primarily to the increased thickness dimensions of the Ti-6Al-4V and IMI 679 parts rather than significant differences in elastic modulus.

	Failure Load (lbs)		oad (lbs)
Alloy	Part Weight	$P_{Z}^{}$ (Vertical)	P_{Y} (Horizontal)
IMI 679	9.85 lbs	36,500	4,380
Ti-6Al-4V	9.00 lbs	39,500	4,740

The static test results were as follows:


Failure initiated in bending in the upper flange in the same location in both materials. The Ti-6Al-4V part showed almost complete shear mode fracture. The IMI 679 part had less than 15% shear type fracture. The Ti-6Al-4V and IMI 679 fractured parts are shown in Figures 62 and 63, respectively.

These results (Table 25) can be compared directly with the results obtained in the previous program since all testing procedures were identical. Static test results from Reference 1 were as follows:

		Failure L	oad (lbs)
Alloy	Part Weight	$P_{Z}^{}$ (Vertical)	P_{Y} (Horizontal)
Ti-6Al-6V-2Sn	8.54	39,000	4,680
Ti-13V-11Cr-3Al	9.28	32,500	3,900
4340 Steel (180 ksi H.T.)	14.62	45,000	5,400

In all cases, the titanium alloy forging target was to have strength equal to the 180 ksi, 4340 steel forging design. This was accomplished by increasing critical dimensions in the titanium forgings to compensate for the differences in strengths. Because of differences in the basic strength of the titanium alloys, the dimensional increases in the lower strength Ti-6A1-4V and IMI 679 were proportionately greater than those in the higher strength Ti-6A1-6V-2Sn and Ti-13V-11Cr-3A1. The Ti-6A1-4V and Ti-6A1-6V-2Sn had almost identical breaking strengths and were the highest of the four titanium alloys. Failure strength of the 4340 steel part was substantially greater than any of the titanium parts. As pointed out in Reference 1, a strength check on the steel part indicated an actual ultimate tensile strength of 205 ksi, whereas predicted strength was based on the intended F_{tu} of 180 ksi, which explains the high breaking strength in the steel part.

Figure 64 compares the static strength efficiency (expressed as failure strength divided by part weight) of these parts. Failure strengths for Ti-6Al-4V and IMI 679 are compared in Figure 65. Figures 9 and 10, in the Summary Section, compare the static strength and static strength efficiency of all five alloys.

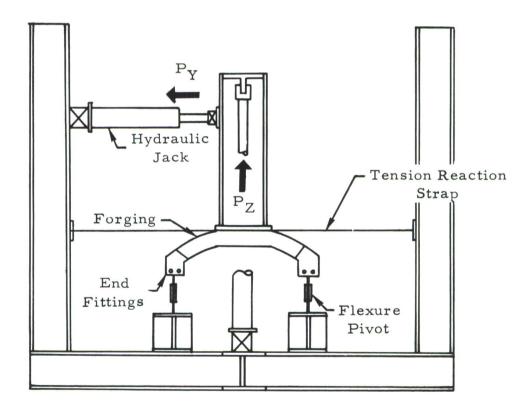
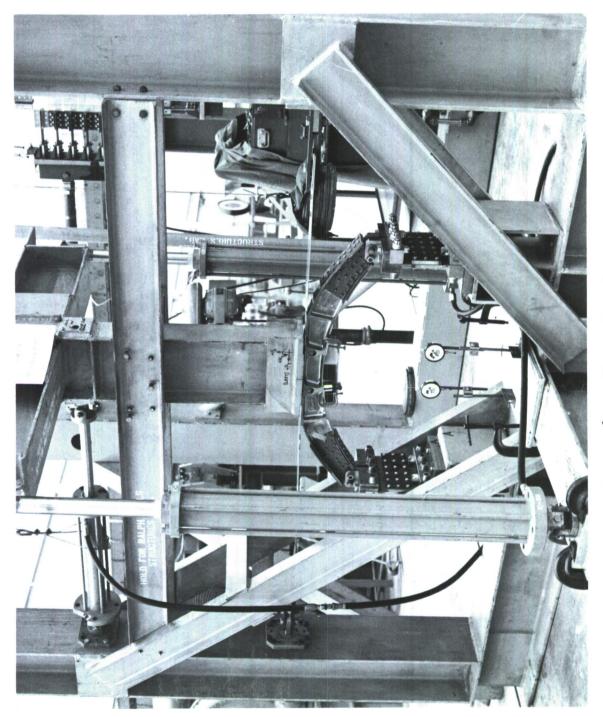
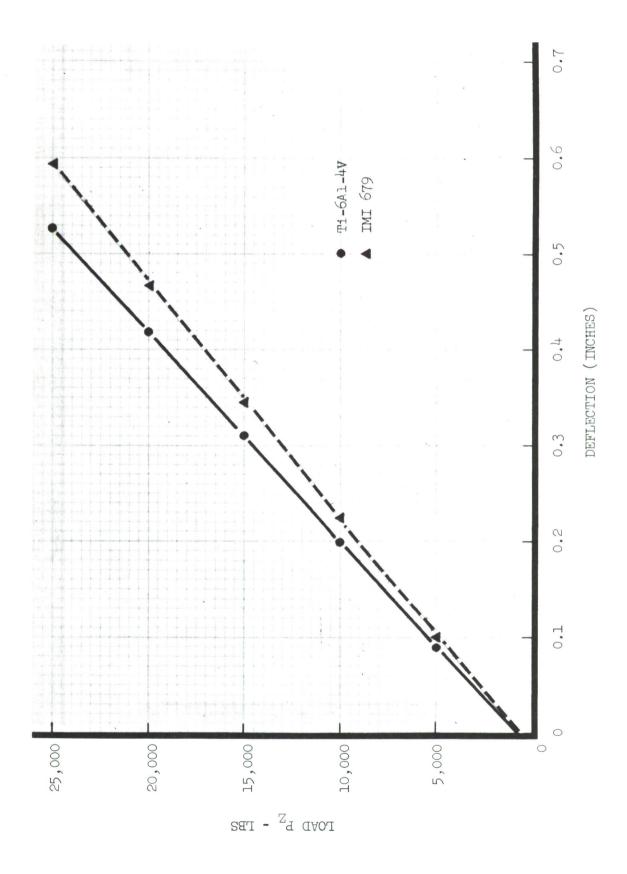





Figure 59. Schematic of Static Test Set-Up

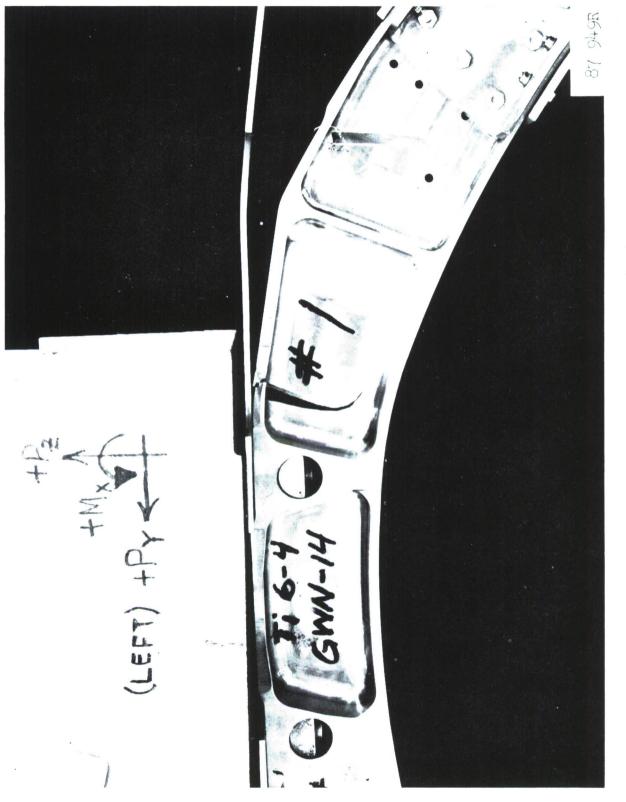


Figure 62. Static Test Failure Ti-6Al-4V

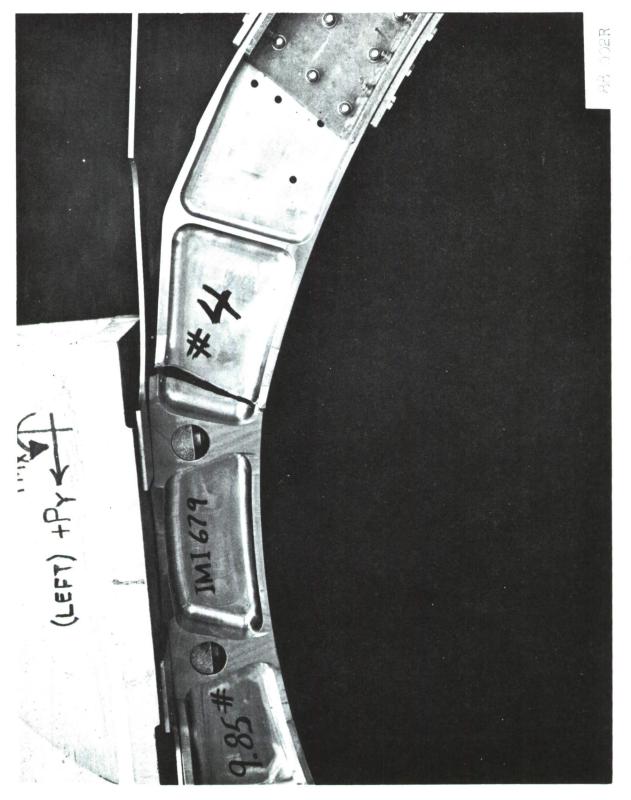
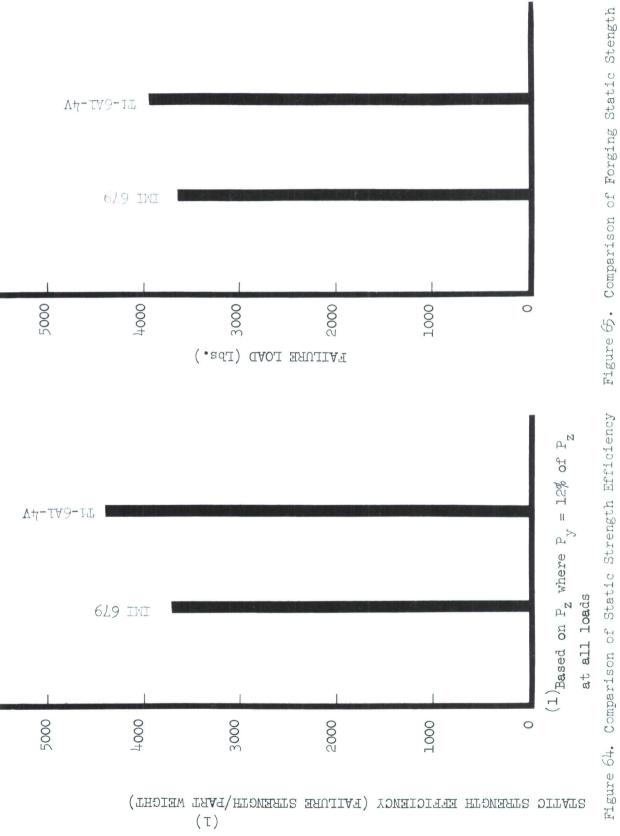



Figure 63. Static Test Failure IMI 679

	Weight	Applied Load (lbs)	ad (lbs)	Net
Forging Alloy	of Part (lbs)	P P	P	Deflection (Inches)
Ti-6Al-4V	00.9	0	0	0
		5,000	600	0.089
		10,000	1,200	0.199
		15,000	1,800	0.310
		20,000	2,400	0.419
		25,000	3,000	0.527
		39,500	14 , 740	Failed
EMI 679	9.85	0	0	0
		5,000	600	0.100
		10,000	1,200	0.224
		15,000	1,800	0.345
		20,000	2,400	0.466
		25,000	3,000	0.592
		36,500	4,380	Failed

TABLE 25 FULL SCALE STATIC TEST RESULTS

Section VI

FORGING FATIGUE TEST

A full scale fatigue test was conducted on one forging each of IMI 679 and Ti-6Al-4V. The test loading spectrum and test procedure were the same as that used in the Reference 1 program, which permits direct comparisons of test results. (See Summary Section.) The test loading spectrum used was based on the lateral gust spectrum originally specified for application to the vertical fin of an F-104G aircraft, except that the severity of the spectrum was increased to insure failure in a reasonable test time. The fatigue loadings consisted of a varying side load ($P_{\rm Y}$) and a mean vertical load ($P_{\rm Z}$). The fatigue unit spectrum is shown in Figure 66. Repetitive applications of the unit spectrum were applied until failure occurred.

The forging fatigue test set-up utilized the same basic test fixture that was used for static testing. The mean load and counterbalance of the loading fixture was applied with dead weight. The varying side load was applied by a hydraulic jack and controlled by a Schmitt Trigger. Operation of the Schmitt Trigger consisted of setting trigger points to a particular load level. When the desired load was reached, the voltage feedback from a load cell mounted in series with the hydraulic jack triggered a relay and transferred the hydraulic pressure from one jack port to the other. This cycling continued until a pre-set cycle counter shut off the Schmitt Trigger. The trigger points were reset for each new load level.

The vertical mean load and the vertical components of the M_X moment were reacted through flexure pivots and the P_Y shear loads were reacted alternately by one of two tension straps. The fatigue test set-up and the control system are shown schematically in Figures 67 and 68, respectively. A view of the actual test set-up with a forging installed for test is shown in Figure 69.

Table 26 presents the fatigue loading history of each part. In each case, testing was discontinued shortly after the appearance of visible cracks in the parts. The Ti-6Al-4V part failed in 172,100 cycles, during application of the 4,300 pound $P_{\rm Y}$ loads, in the seventh application of the unit specimen. The IMI 679 part failed after 278,700 cycles during application of the 3000 pound load in the twelfth application of unit spectrum.

In the IMI 679 part, the fatigue failure initiated at a barrel nut hole as shown in Figure 70. Two different crack locations were found in the Ti-6Al-4V part. The major crack occurred in the web adjacent to the barrel nut holes as shown in Figure 71. A second smaller crack was found in the web immediately inboard of the end attachment fitting. After finding the second crack in the Ti-6Al-4V part, a thorough zyglo inspection was conducted on both parts to determine possible secondary cracks. No other cracks were found in either part. The lower fatigue life and presence of two cracks in the Ti-6Al-4V part prompted an investigation to determine possible causes for the somewhat poor results. Metallurgical studies revealed microscopic foreign substances at both fatigue crack locations. Oxygen rich alpha segregation was suspected; however, the inclusions were examined by electron probe microanalyzer and were found to be in excess of 80% iron. The largest inclusion found was approximately 0.008 inch thick and .070 inch long. Numerous smaller iron rich inclusions were noted. The inclusion pattern indicated evidence of having been broken up and scattered in the forging process. Since fatigue cracks were found propagating away from the iron-rich inclusions it was assumed that their presence contributed to the lower fatigue life in the Ti-6Al-4V part (see Figure 72). Longitudinal tensile specimens were cut from the upper flange and web areas of the failed Ti-6Al-4V part. The following properties were obtained and correspond very closely to the tensile properties obtained in the material tests.

Specimen	Ultimate Tensile	0.2% Yield	% Elongation
Location	Strength - ksi	Strength - ksi	
Flange	149	138	10
	151	139	1 ¹ 4
	152	140	13
Web	146	135	12
	148	137	12
	146	134	12

The IMI 679 and Ti-6Al-4V test results can be compared to the values previously obtained (Ref. 1) on Ti-6Al-6V-2Sn, Ti-13V-11Cr-3Al and 4340 steel parts which were as follows:

Alloy	Part Weight	Fatigue Life Cycles
Ti-6Al-6V-2Sn Ti-13V-11Cr-3Al	8. 72 9.22	149,960 24,870
4340 Steel (180-200 ksi H.T.)	14.58	288,750

These results indicate that IMI 679 and Ti-6Al-4V were superior to the other two titanium alloys in fatigue performance. An increase in fatigue life was expected in Ti-6Al-4V and IMI 679 since parts made from these lower strength alloys had slightly increased local section sizes which decreased local stresses during fatigue loadings.

The IMI 679 fatigue life very nearly approximated that of the steel part and is considered outstanding for several reasons. First the IMI 679 part was 31% lighter than the steel. Second, the IMI 679 part, like the other titanium alloy parts, was machined from very heavy sections to be representative of much larger parts, whereas the 4340 steel part was forged to final dimension of the parts. Considering these factors, the IMI 679 part is considered to show particular promise for high performance in forgings used in fatigue critical applications.

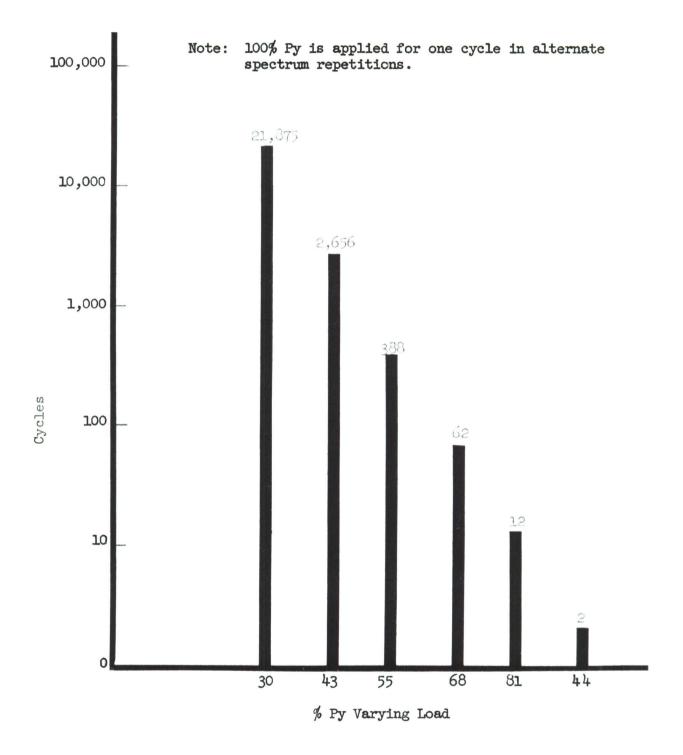
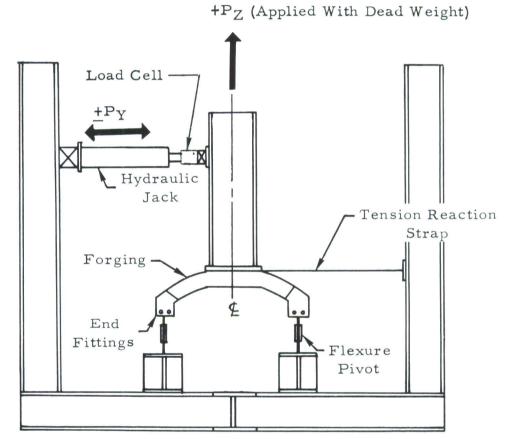



Figure 66. Fatigue Test Loading Unit Spectrum

Note: ${\tt P}_Y \text{ load applied 30 inches from top deck of forging}$

Figure 67. Schematic of Fatigue Test Set-up

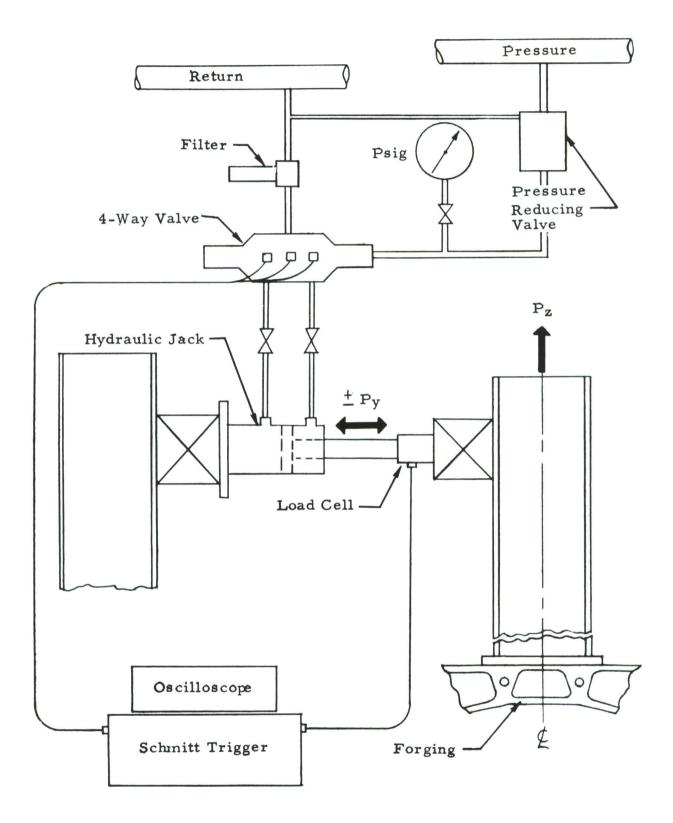
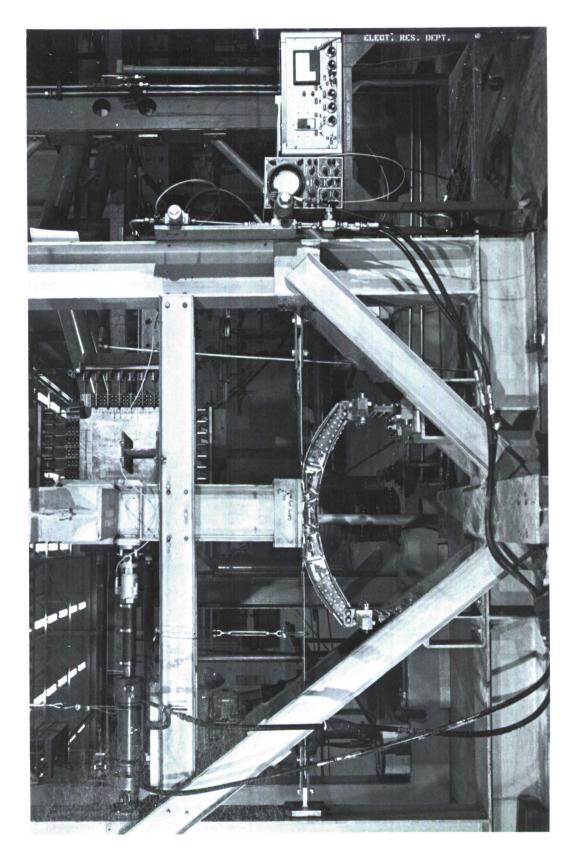
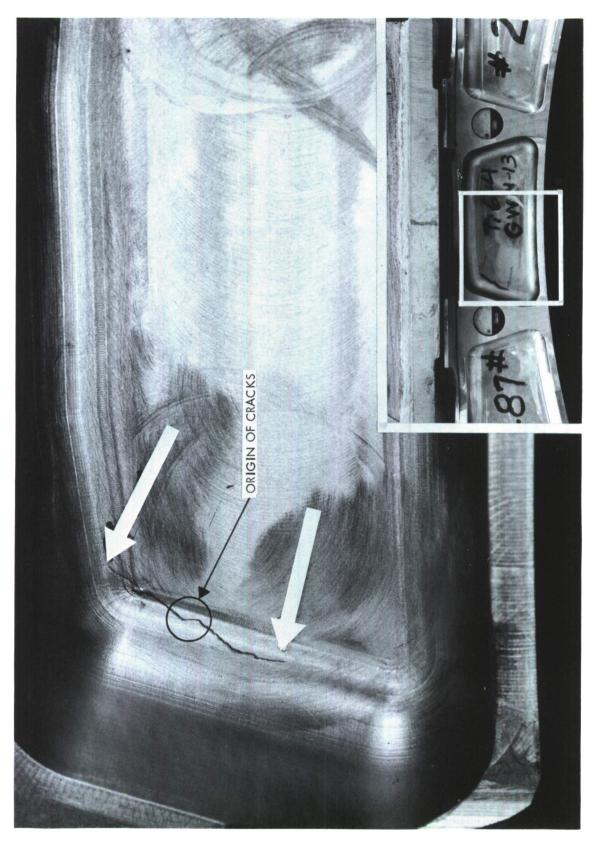




Figure 68. Fatigue Control System

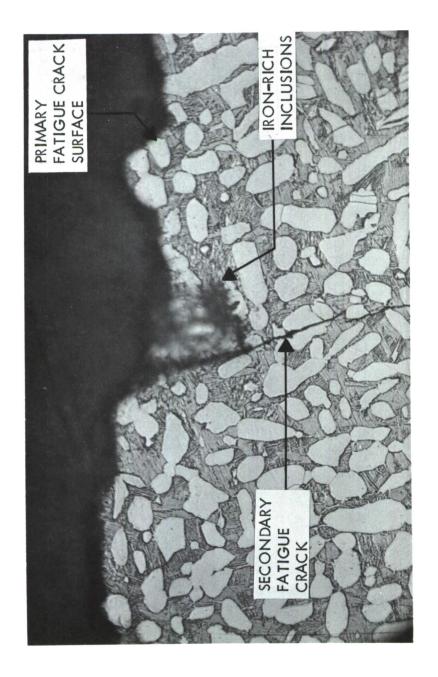


Figure 72. Ti-6A1-4V Fatigue Crack Origin (450X)

Ω U	Total Number of Cycles Applied to Failure	172,100	278,700
Cycles	Cycles Applied per Load Level	153,094 16,219 2,328 372 12 12	244,375 29,216 4,268 132 132 222 5
	Cycles per Unit Spectrum	21,875 2,656 388 62 12 22	21,875 2,656 388 62 12 22
	Varying Load (Pounds)	3,000 4,300 5,500 6,800 8,100 9,400(1) 10,000(1)	3, cuo 4, 300 5,500 6,800 8,100 9,400(1) 10,000(1)
	Mean Load (Pounds)	1,500	1,500
	Forging	Ti-GAl-4V (Part Weight = 8.87 lbs)	IMI 679 (Part Weight = 10.00 lbs)

TABLE 26 FULL SCALE FATIGUE TEST RESULTS

(1) Load applied once each alternate unit spectrum

Section VII

CONCLUSIONS

Following are the conclusions reached upon evaluation of the complete test data.

- 1. The range in ultimate tensile strength of Ti-6Al-4V and IMI 679 forged stock was not significantly different from billet stock in either alloy. Elongation, reduction of area and yield strength in the IMI 679 forging were improved over those obtained in the billet stock.
- 2. In the Ti-6Al-4V parts the greater forging reduction received by light sections improved the ductility in these areas compared to the ductility in the forging heavy section. The IMI 679 parts did not show this effect.
- 3. Tensile properties in IMI 679 were highly uniform at all test locations and grain directions. The Ti-6Al-4V also showed relatively uniform properties, but all property ranges were greater than those in the IMI 679.
- 4. Unstressed exposure at 550° F for 1000 hours had no apparent affect on notch tensile strength, smooth tensile strength or tensile ductility in either Ti-6Al-4V or IMI 679.
- 5. Both Ti-6Al-4V and IMI 679 exhibited good fracture toughness at room temperature and at -110°F. Unstressed exposure at 550°F for 1000 hours did not significantly affect fracture toughness in either alloy.
- 6. Smooth and notched room temperature fatigue properties in IMI 679 appear to be significantly higher than, those in Ti-6Al-4V. Smooth fatigue properties at 550°F were comparable in both alloys.
- 7. Forging of the billet stock produced an improvement in smooth fatigue properties of both alloys.
- 8. Full scale static and fatigue test results of Ti-6Al-4V and IMI 679 compared favorably with the previous test results on Ti-6Al-6V-2Sn, Ti-13V-11Cr-3Al and 4340 steel from Reference 1. The Ti-6Al-4V and IMI 679 static test parts both failed in a location and manner similar to that of the 4340 steel part.

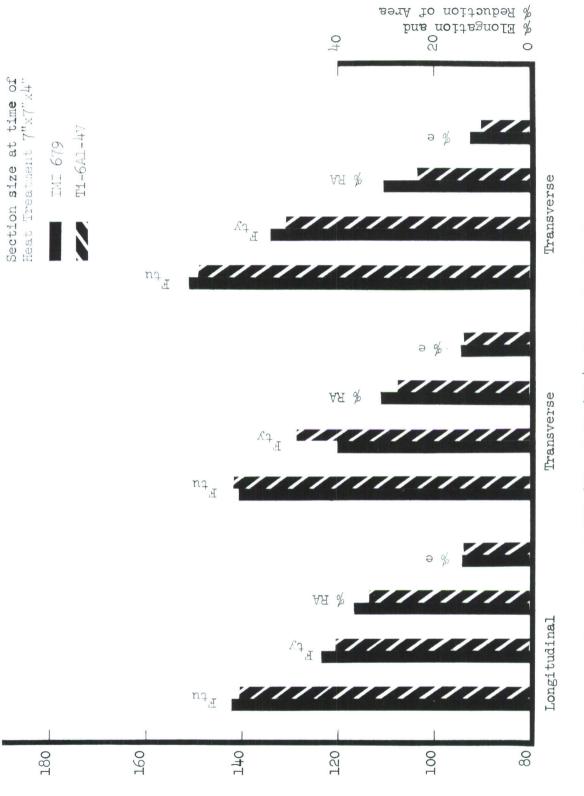
- 9. The actual capability of Ti-6Al-4V in the full scale fatigue test was not definitely established, because the presence of iron rich inclusions probably shortened the life of the Ti-6Al-4V part. The IMI 679 fatigue results on the full scale part and test coupons indicate this alloy has potential for improved performance over other titanium alloys for fatigue critical applications.
- 10. Both light and heavy section forged Ti-6Al-4V showed good resistance to delayed failure in salt water. IMI 679 forged in light sections was also resistant to delayed failure in salt water, but IMI 679 forged and heat treated in heavy sections showed susceptibility to delayed failure phenomenon.

Section VIII

RECOMMENDATIONS

This program and the program described in Reference l evaluated and characterized a total of four different titanium alloy forgings for application in future weapons systems. Crack growth rate data was not obtained in either of these programs; however, the rate and manner of crack propagation from initial flaw size are considered essential in the evaluation of material suitability. Therefore, it is recommended that studies be conducted on these alloys to determine crack growth rates in fatigue testing in both air and salt water environments.

The British alloy IMI 679 has had only limited evaluation in the United States; in view of the outstanding fatigue properties found in this program, increased evaluation seems warranted. Recent information indicates the alloy can be quenched and tempered to higher strength levels than evaluated in this program. It is recommended that further evaluation studies be conducted to establish a greater body of basic property data and to determine possible advantages of higher strength heat treatments.


Appendix I

BILLET TEST DATA

This appendix contains data supplied by TMCA and Wyman-Gordon which are pertinent to the forging evaluation. Chemical analysis data for the two titanium alloys studied are given in Table 27. Billet processing history is shown in Table 28. Mechanical properties on full section size billet stock and upset billet stock are given in Table 29.

Data on tensile properties for all three grain directions on Ti-6Al-4V and IMI 679 billet stock are given in Tables 30 and 31. The billet material was 4 inches thick at time of heat treatment. In the case of the Ti-6Al-4V alloy, the actual forging material was machined to a maximum of 2-1/2 inches at time. of heat treatment. Therefore, the Ti-6Al-4V billet properties would be expected to be somewhat lower than those obtained in the forgings. Nevertheless, good properties were obtained in the 4-inch thick slab of Ti-6Al-4V. Tensile properties of both the Ti-6Al-4V and IMI 679 are equivalent. For a similar location, properties in the longitudinal grain direction were comparable to those in one transverse grain direction in both alloys. Test specimens in the other transverse grain direction were located near the surface and had higher strengths than specimens in either of the other two directions. The Ti-6Al-4V and IMI 679 billet properties are compared graphically in Figure 73.

A transverse macrosection of Ti-6Al-4V billet stock is shown in Figure 74. Longitudinal and transverse macrosections of IMI 679 billet stock are shown in Figures 75 through 77. The IMI 679 billet macrograph shows a ring pattern which is apparently typical of this alloy. See Section IV for discussion of ring pattern.

Stress - ksi

Figure 74. Macrosection of Ti-6Al-4V Billet Stock - Transverse

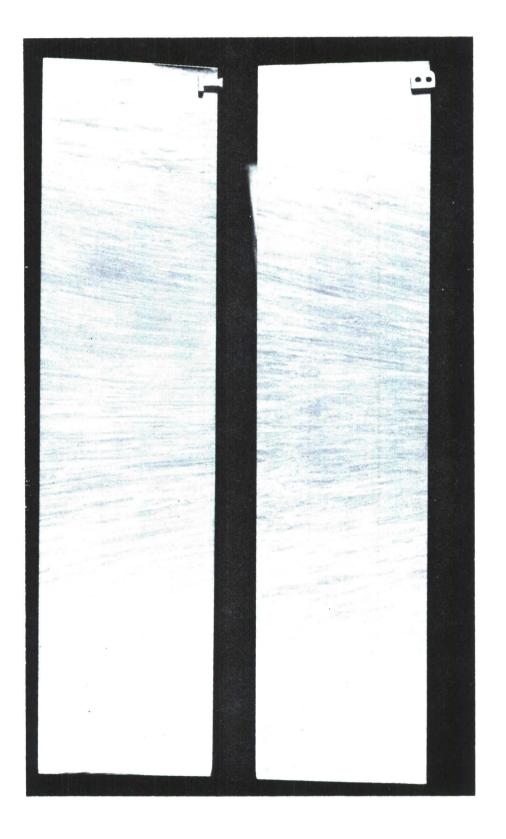
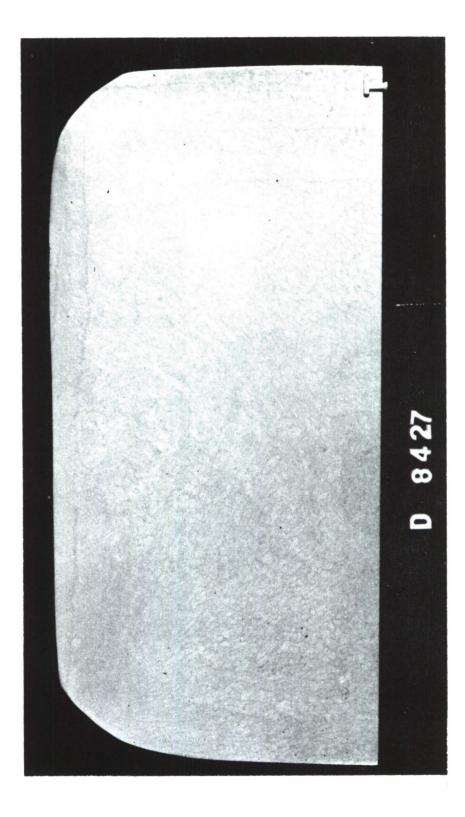




Figure 75. Macrosection of 7-Inch RCS Billet Stock IMI 679, Longitudinal Top (Upper) and Transverse Bottom (Lower)

Si.		.23
05	.17 	1.
Sn		11.1 11.3
Zr		4.4
н	600 ·	
Mo		9. 1.0
Λ	1. 2. 4. 1. 4. 1.	
TA	6.3 6.3 6	0 0 5 0
Ν	.018 .018 .022	600 ·
ы Ч	.12 .08 .08	.08
U	• 026 • 022 • 022	. 022
Heat No.	D-7976 Т М В	D-8427 Т М
VollA	Ті-бА1-4V	IMI-679

TABLE 27. TMCA CHEMICAL ANALYSIS

TABLE 28 BILLET PROCESSING HISTORY⁽¹⁾

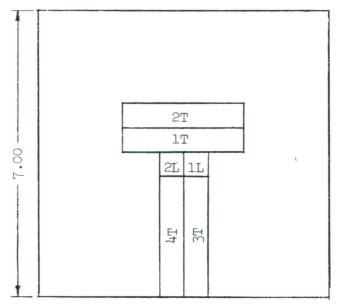
Mill History	Ті-бАІ-14V	IMI 679
Heat Number	D-7976	D-8427
Ingot	28" Round	28" Round
Final Forging Operation 1200 Ton Press	12" Square to 7 3/4" Square - 1800 ⁰ F	12" Square to 7 3/8" Square - 1675 ^o F
Anneal	1300 ⁰ F - 2 hrs, A.C.	1400 ⁰ F - 2 hrs, A.C.
Hard Wheel Grind	30 Grit Aluminum Oxide	30 Grit Aluminum Oxide
Hand Spot Grind	46 Grit Aluminum Oxide	46 Grit Aluminum Oxide
Stress Relieve	1000 ⁰ F - 2 hrs, A.C.	1000 ⁰ F - 2 hrs, A.C.

(1) Data supplied by TMCA

142

TABLE 29. TMCA MECHANICAL PROPERTIES

	Heat	Heat	Test	Tensile	Yield	Elong.	R.A.	Hardness
Alloy	No.	Treatment	No.	Strength ksi	Strength ksi	% inch	R	Rc
ті-бА1-џV	D-7976	Upset 2" to 3/4" (top) at 1750 ^o F Annealed 2 hrs. Tan at 1300 ^{°F}	(top) Rad. Tang.	144.8 149.2	133.9 138.9	18.0 18.0	38.2 34.9	31.5 3 0. 5
			(bottom) Rad. Tang.	147.6 145.9	1 37.0 138.4	16.0 18.0	32•5 40 . 1	34•5 31•5
	D-7976	Solution Treat- ed (1 hr. 1725 ⁰ F W.Q.	(top) Rad. Tang.	171.1 168.3	156.2 158.1	13.0 14.0	4 0. 6 39.3	
.*		Lab. Aged (3 hrs) 900 ⁰ F	(bottom) Rad. Tang.	167.5 168.7	157.0 157.0	13.0 15.0	31.7 38.7	
679-IMI	D-8427	Upset 2" to 3/4" at 1650°F Solution Treat- ed 1 hr.at 1650°F Aged 24 hours at 930°F	Rad. Tang.	152.6 151.2	133.9 134.3	19•0 14.5	و.44. 9.44	

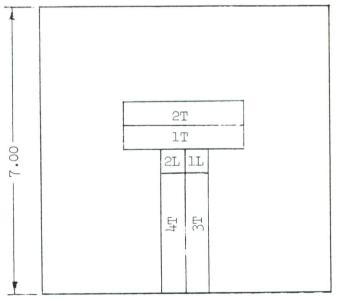

143

Specimen Number	Ultimate Tensile Strength	Yield Strength 0.2%	Elong. % l in.	R.A. %
	ksi	ksi		
lL	143.0	127.0	13.0	32.7
2L	137.6	114.0	14.5	33.8
lT	143.4	128.4	12.5	26.6
2T	140.0	128.8	15.0	28.3
3T	150.0	132.0	10.0	21.7
4T	148.0	129.2	10.0	25.1

TABLE 30. BILLET STOCK TENSILE TEST RESULTS Ti-6AL-4V TMCA HEAT D-7976 (1) (7 x 7 x 4 Billet)

(1) Heat Treatment:

Solution Treated 1750°F (1 hour) W.Q. Aged 1000 F (4 hours) A.C.


Test Locations

		(X X + DIIICO,		
Specimen	Ultimate	Yield	Elong.	R.A.
Number	Tensile	Strength	%	%
	Strength	0.2%	l in.	
	ksi	ksi		
lL	144.0	125.6	13.5	35.7
lT	139.0	118.0	14.0	33.8
2L	140.0	121.8	15.0	38.2
2 T	142.0	122.0	11.5	29.9
3T	152.0	134.0	15.0	31.1
4 T	150.0	133.8	10.0	29.9

TABLE 31. BILLET STOCK TENSILE TEST RESULTS Ti-IMI 679 - TMCA HEAT D-8427(1) $(7 \times 7 \times 4 \text{ Billet})$

(1) Heat Treatment:

Solution Treated 1650°F (1 hour) Fan Cool Aged 930°F (24 hours) Air Cool

Test Locations

Appendix II

FORGING PROCEDURES

Section III presented some of the basic details related to production of the closed die titanium alloy forgings. Additional information pertaining to the forging procedures is presented in this Appendix.

The initial billet crossworking procedure is depicted in Figure 78. The die sinking model and master for the finish die are shown in Figures 79 and 80. The bender die with a wood template in place is shown in Figure 81. Significant details related to heat up times, forging equipment, sequence of operation, etc., are given in Tables 32 and 33. As indicated in these tables all forging operations were done on press equipment. In each forging stage the dies were pre-heated to approximately 800°F. Conventional graphite lubricants were applied to the forging blanks and the dies. All procedures were identical to those used in the previous program (Ref. 1) with the exception of forging temperatures.

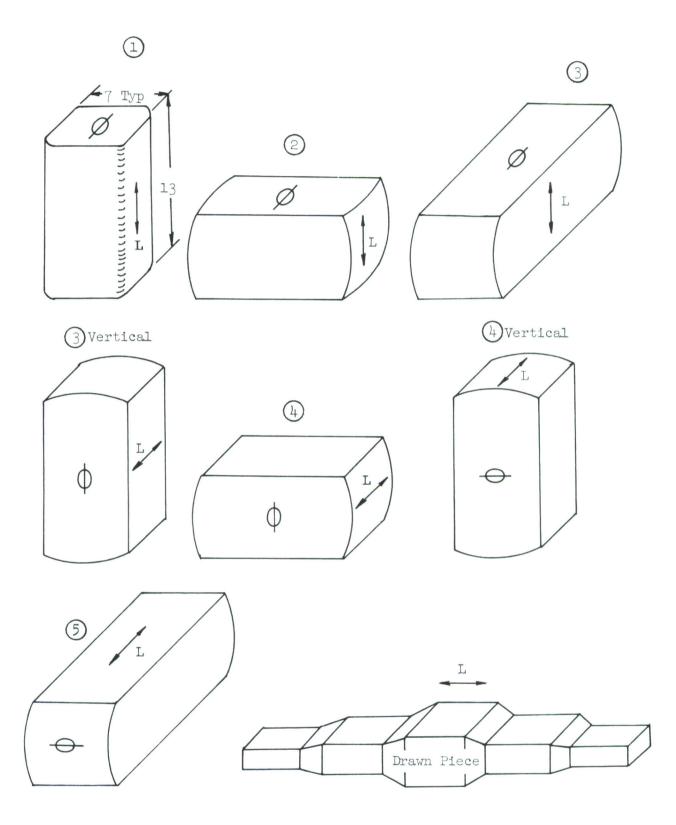


Figure 78. Initial Billet Crossworking Procedure

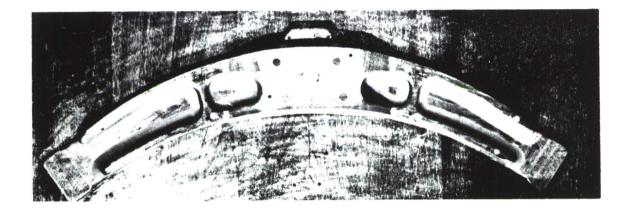


Figure 79. Die Sinking Model - Finish Die

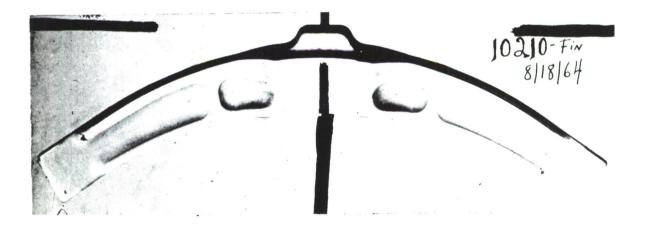


Figure 80. Die Sinking Master - Finish Die

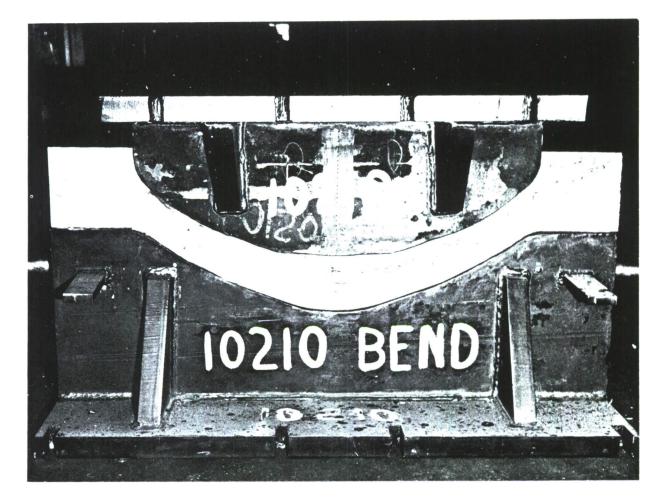


Figure 81. Bender Die with Wood Template in Place

Forging, ^o F	Off Dies	1450 1450 1450 1450	1500 1540 1500		
of	On Dies	1665 1650 1665 1660	1670 1670 1680	1665 1660 1670	1660 1670 1670
Temperature	Out Furnace	1725 1720 1725 1725	1730 1725 1730 1740	1725 1725 1726	1725 1720 1725 1720
Furnace	Temp. oF	1800	1800	1775	1775
Heat	Cycle hrs.	9	2-1/2	2-1/2	л/2
Press	Equipment tons	1,500	600	18,000	18,000
Forge	Operations	Draw	Bend	lst Finish	2nd Finish
Cut	Weight lbs.	106 106-1/2 107 108			
Forging	Number	t n nt	H U M H	t n n t	ト こ ち ち

DATA
PROCESS
FORGING
Ti-6Al-4V
32.
TABLE

All cooling was in air

151

[t				
ing, ^o F	Off Dies	1450	년 년 년 년 년 2000년 년 년 2000년 년 년		
cure of Forging,	On Dies	1550 1550 1530	4444 2042 2042 2042 2042 2042 2042 2042		4444 45565 95004 95004
Temperature	Out Furnace	1600 1610 1620 1620	1630 1620 1625 1630	1560 1580 1580	1610 1620 1615 1615
Furnace	Temp. of	1675	т675	1675	т675
Heat	Cycle hrs.	5 5 7-1/2 7-1/2	3	2-1/2	2-1/2
Press	Equipment tons	1,500	00	18,000	35,000
Forge	Operation	Draw	Bend	lst Finish	2nd Finish
Cut	Weight lbs.	108 109 111			
Forging	Number	H Q M H	t n n t	t n n t	ы 00 m.±

TABLE 33. Ti IMI 679 FORGING PROCESS DATA

All cooling was in air

Appendix III

MATERIAL PROPERTY TEST PROCEDURES

The test procedures, temperatures, type of tests, and specimen locations used in this program were identical to those of Reference (1) with the exception of the bearing specimen which was reduced from 1/8 inch thickness to 1/16 inch thickness. This permitted comparison between the alloys in the current contract and those in the previous study.

A discription of the test procedures and specimen configurations used in this program is presented below.

SMOOTH TENSILE TESTS

The specimen used in the smooth tensile test is shown in Figure 82. Tests were conducted in accordance with the requirements of FED-STD-151 using a strain rate of 0.005 in./in./min. Full length autographic stress-strain curves were obtained by the use of a microformer type extensometer.

COMPRESSION TESTS

The specimen used in the compression test is shown in Figure 83. Tests were conducted using a strain-rate of 0.005 in./in./min. Autographic stress-strain curves were obtained by the use of an extensometer.

SHEAR TESTS

The specimen used in the shear test is shown in Figure 84. Double shear type tests were conducted using standard shear fixtures. The load was applied at a constant head travel rate of 0.1 inch/minute.

BEARING TESTS

The specimen used in the bearing test is shown in Figure 85. The bearing hole was drilled and reamed to within one-thousandth of the diameter of the hardened steel loading pin. The test apparatus incorporated a deflection measuring system to obtain bearing yield values. Loads were applied at a constant deformation rate of 0.006 inch per minute through the yield point (e/D = 2.0).

NOTCH TENSILE TESTS

The specimen used in the notched tensile test is shown in Figure 86. This specimen incorporates a stress concentration factor (K_t) of 3.9. The loading equipment and strain rate are identical to those employed in the smooth tensile tests.

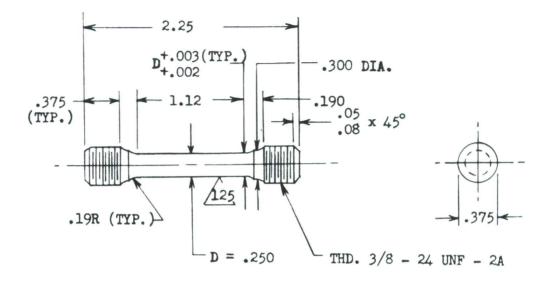


Figure 82. Smooth Tensile Specimen

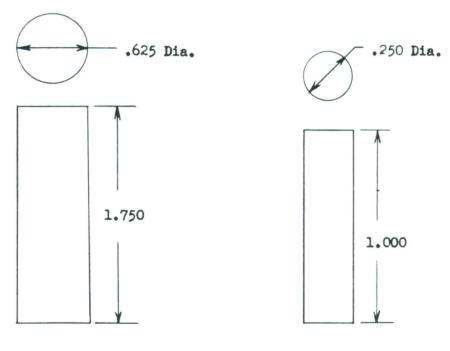


Figure 85. Compression Specimen

Figure 84. Shear Specimen

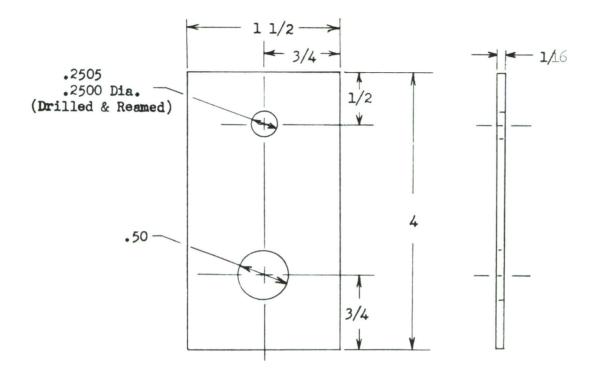


Figure 85 Bearing Specimen

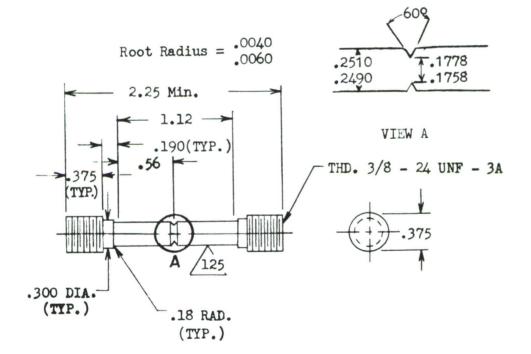


Figure 86. Notch Tensile Specimen ($K_t = 3.9$)

FATIGUE TESTS

The specimens used in the fatigue tests are shown in Figures 87 and 88. Both notched and smooth fatigue specimens were axially loaded in tension-tension at several stress levels using a stress ratio of R = 0.1. The notched fatigue specimen incorporates a stress concentration factor (K_t) of 3.0.

FATIGUE-CRACKED ROUND BAR FRACTURE TOUGHNESS

The fracture toughness test specimen configuration used in this program is shown in Figure 89.

The specimen was pressed into a ball bearing block assembly and then was chucked into the head of the lathe and centered. A split sleeve was inserted in the lathe chuck for accepting the specimen and to prevent galling by the chuck jaws.

The loading assembly consisted of a clevis, load transducer and universal joint. The loading clevis was pin connected to the bearing block assembly, and the base of the universal joint was rigidly attached to the bed of the lathe. Specimen cantilever bending was accomplished by applying torque to the bolt attaching the loading clevis to the transducer. Transducer loads were monitored by means of an SR-4 strain indicator.

A typical cantilever bending load of 450 lb was applied to the specimen after maximum rotational speed of the lathe was achieved. A direct drive, 20-inch LeBlond lathe was used at its maximum setting of 800 rpm. Lathe rotational speed was checked by the use of a strobotac and automatic frequency counter.

After crack initiation, the specimens were tensile tested by applying the load at a constant rate of 5000 lb/min. until failure.

Plane strain fracture toughness ($\rm K_{lc}$) was calculated from the following formula:

$$K_{lc}^{2} = \frac{EG_{lc}}{(1-\nu^{2})} = \frac{1.63P^{2}D}{d^{4}} \left[0.172 - 0.8 \left(\frac{d}{D} - 0.65 \right)^{2} \right]$$

where:

 K_{lc} = Critical stress intensity factor, psi \sqrt{in}

E = Elastic modulus, psi

$$G_{lc} = Critical crack-extension force, \frac{in.-lb}{in.^2}$$

 ν = Poisson's ratio

P = Load at fracture, 1b

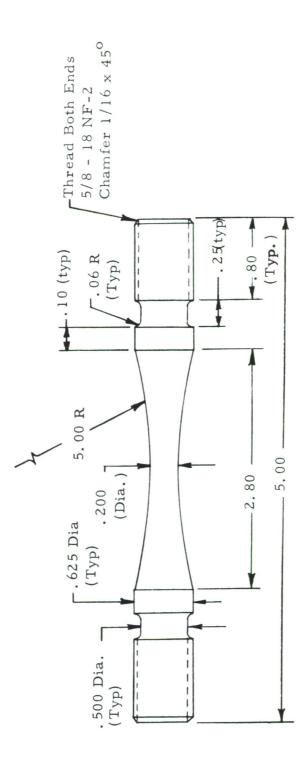


Figure 87. Smooth Fatigue Specimen

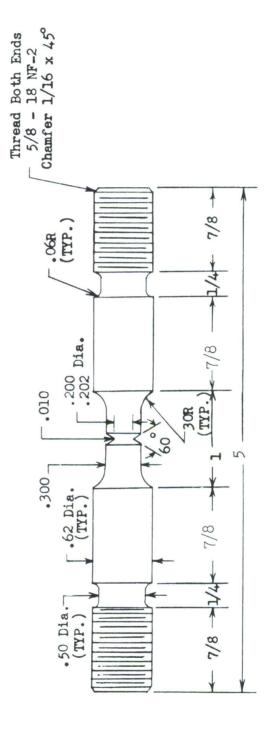
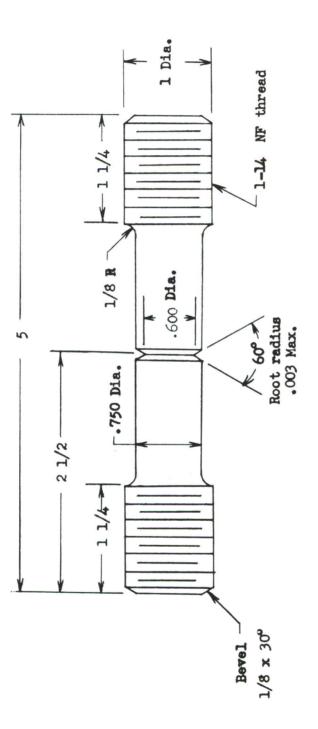



Figure 88. Notch Fatigue Specimen (K_t = 3.0)

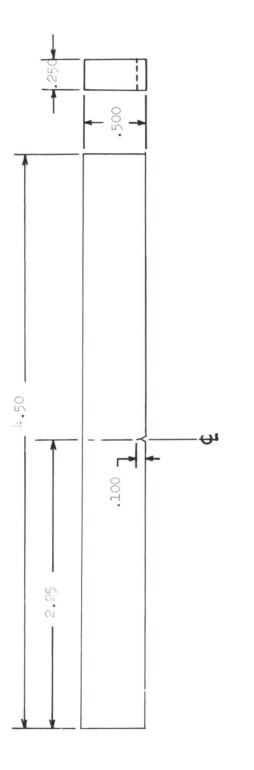
do = Minimum diameter of fatigue crack at the root of the notch, in.

D = Major diameter of specimen, in.

$$d = do - \frac{(K_{lc})^2}{3\pi \sigma_{ys}^2}$$

 σ_{ys} = Yield strength of the material at 0.2 percent offset, psi TENSION AND COMPRESSION MODULUS OF ELASTICITY

The tension and compression specimens used for the modulus determination are shown in Figures 82 and 83. All tests were conducted at room temperature in a 120,000 lbs Baldwin Universal test machine incorporating a Tuckerman optical strain measuring system. Two gages were attached to opposite sides of each specimen and strain readings were taken for six constant load increments to a maximum stress of approximately 40 ksi. The strain readings for each gage were plotted as load-strain curves and the slope of a straight line through the points was calculated. The average of the slope values for the two gages was used to calculate the modulus for that test cycle.


BEND BAR FRACTURE TOUGHNESS AND DELAYED FAILURE TESTS

The specimen used for the fracture toughness and delayed failure resistance tests is shown in Figure 90. This specimen is a four-point loaded constant moment bend specimen containing a fatigue crack approximately 0.1 inch deep. A fracture toughness value was established in air by loading the specimen to failure at a loading rate corresponding to a nominal elastic strain rate of 0.005 in./in./min. in universal test machines. An autographic load-deflection curve was obtained for each specimen utilizing a Model PD-IM deflectometer. The plane strain fracture toughness (K_{lc}) values were calculated using the following formula:

$$K_{1c}^{2} = \frac{P^{2}L^{2}}{(1-v^{2})B^{2}W^{3}} \left[34.7 \left(\frac{a}{W}\right) - 55.2 \left(\frac{a}{W}\right)^{2} + 196 \left(\frac{a}{W}\right)^{3} \right]$$

where

- ν = Poisson's Ratio
- P = Load at point of initial crack instability, lbs.
- B = Specimen thickness, inch
- W = Specimen width, inch
- L = Moment arm length, inch
- a = Crack depth, inch

)

The delayed failure tests were conducted by immersing the fatigue precracked area of the specimen in a 3-1/2 percent NaCl salt water solution and then loading the specimen to an arbitrary percent of the load obtained in the air environment fracture toughness tests. This load was sustained on the specimen until failure occurred or a time period of 60 minutes elapsed with no indication of failure. If the specimen failed, the time period to failure was recorded and a second specimen was tested at a lower sustained load. If the specimen did not exhibit evidence of failure during the 60 minute period, the load was increased until failure occurred and a second specimen was tested at a higher sustained load. This testing procedure was continued until the threshold sustained load below which delayed failure did not occur and above which delayed failure did occur was defined. The threshold sustained loads were converted to a parameter, designated as the K₁ parameter in the equation discussed above, except that the sustained load was used in the equation instead of the load at which initial crack instability occurred.

TEST TEMPERATURES

The elevated temperature and reduced temperature tests were monitored by thermocouples and controlled to within $\pm 5^{\circ}$ F. The elevated temperature tests were performed in a circulating air furnace. The reduced temperature tests were performed in a cold box employing CO₂ as a coolant.

Appendix IV

FORGING SPECIFICATION

A forging specification was prepared in conformance with the Work Statement of Contract AF33(615)-2690. The specification is presented in this Appendix and is intended for use in procurement of high strength titanium alloy forgings. This specification contains the applicable requirements of the proposed MIL-T-9047D which covers annealed bars, forgings and forging stock of titanium and titanium alloys. The essential difference in the specifications is that this specification covers heat treated material. The minimum mechanical property values given conform to those established by the titanium producers.

SPECIFICATION FOR

TITANIUM-ALLOY FORGINGS, AND FORGING STOCK

1. SCOPE

1.1 <u>Scope</u>. This specification covers titanium alloy forgings, and forging stock, in the heat treated and aged condition.

1.2 Classification. Material shall be of the following types as specified (see 6.):

Type I Ti-6Al-4V

Type II IMI 679

2. APPLICABLE DOCUMENTS

2.1 The following standards, of the issue in effect on date of invitation for bids or request for proposal, form a part of this specification to the extent specified herein:

STANDARDS

Federal

Fed. Test Method Std. No. 151	Metals; Test Methods
Fed. Std. No. 184	Identification Marking of Aluminum, Magnesium and Titanium
Military	
MIL-STD-129	Marking for Shipment and Storage
MIL-STD-163	Preparation of Steel Products for Domestic Shipment (Storage) and Overseas Shipment

3. REQUIREMENTS

3.1 Materials

3.1.1 <u>Condition</u>. The forgings and forging stock shall be produced by the double melt consumable electrode method and shall be hot worked, heat treated and descaled. Sufficient working shall be applied to insure that a thoroughly wrought metallurgical structure is obtained.

3.1.2 <u>Quality</u>. Forgings and forging stock materials shall be of a satisfactory quality when inspected by a method acceptable to the Government that will disclose defects as specified under 3.7. Forgings shall be free of embrittled surfaces.

3.2 <u>Chemical Composition</u>. The chemical composition as determined by heat analysis shall be as specified in table I.

TABLE I

Element	Type I	Type II
Aluminum Vanadium Tin Zirconium Molybdenum Silicon Iron Carbon Nitrogen Oxygen Hydrogen Other Elements (total)	5.50 - 6.75 3.50 - 4.50 0.30 max 0.10 max 0.05 max 0.20 max 0.125 max	2.00 - 2.50 10.50 - 11.50 4.00 - 6.00 0.80 - 1.20 0.15 - 0.27 0.120 max 0.040 max 0.040 max 0.150 max 0.008 max 0.040 max
Titanium	Remainder	Remainder

CHEMICAL COMPOSITION, PERCENT BY WEIGHT

3.3 <u>Heat Treatment</u>. Forgings supplied to this specification shall be heat treated as shown in Table II.

3.3.1 Specific aging times for Type I and Type II forgings shall be determined for each heat and forging lot. Forged material representative of the forgings shall be used to establish the aging time required to obtain the properties specified in Table III. Forgings shall be aged for the time selected and the corresponding test data shall be reported.

3.4 <u>Mechanical Properties</u>. After heat treatment as specified in item 3.3, mechanical properties shall be as specified in Table III.

3.5 <u>Dimensions</u>. The dimensions and shape shall be as specified by the procuring activity.

3.5.1 <u>Tolerances</u>. Dimensional tolerances for forgings and forging stock shall be as specified by the procuring activity.

Material	Heat T	reatment
Type I	Solution Treatment(1)	1725 ⁰ F - 1750 ⁰ F for l hr. within 6 seconds water quench
	Age(1)	975 ⁰ F - 1025 ⁰ F for 4 hrs. Air Cool
Type II	Solution Treatment(1)	1625 ⁰ F - 1675 ⁰ F for 1 hr. Fan Cool
	Age(1)	900 ⁰ F - 950 ⁰ F for 24 hrs. Air Cool

TABLE II HEAT TREATMENT

(1) Any temperature within the range shown may be selected, however, the temperature selected must be held to $\pm 25^{\circ}F$ for the solution treatment and $\pm 10^{\circ}F$ for the aging treatment.

3.6 <u>Identification of Product</u>. Forgings and forging stock shall be marked in accordance with Fed. Std. No. 184. In addition, each forging and forging stock shall be marked with the heat, type and composition.

3.7 <u>Workmanship</u>. Material shall be uniform in quality and condition, clean, sound, and free from defects detrimental to fabrication or to performance of parts.

3.7.1 <u>Rejectible Defects</u>. Material containing voids, bursts, unmelted sponge, or deleterious inclusions, alloy segregation, or excessive brittle oxide skin, as determined by visual, penetrant, radiographic, or ultrasonic inspection methods, shall be rejectible. Small and scattered inclusions may be accepted depending on their size, geometry, and location in low-stressed areas of manufactured parts. Standards must be mutually agreed upon between producer and customer.

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Responsibility for Inspection</u>. Unless otherwise specified in the contract or purchase order, the supplier is responsible for the performance of all inspection requirements as specified herein. Except as otherwise specified, the supplier may utilize his own facilities or any commercial laboratory acceptable to the Government. The Government reserves the right to perform any of the inspections set forth in the specification where such inspections are deemed necessary to assure supplies and services conform to prescribed requirements.

- 01	
5" and less	

TABLE III MECHANICAL PROPERTIES

4.2 <u>Classification of Tests</u>. All the tests specified herein for the examination and testing of alloyed titanium are classified as quality conformance tests.

4.3 Lot. A lot shall consist of forgings and forging stock of the same heat and the same thickness produced at the same time and submitted for inspection at one time.

4.4 Examinations

4.4.1 <u>Examination of Product</u>. Sufficient spot checks shall be made to insure compliance with this specification with respect to identification, tolerance, and workmanship requirements.

4.4.2 Examination for Preparation for Delivery. Preparation for delivery shall be examined for conformance to section 5.

4.5 Chemical Analysis

4.5.1 <u>Sampling</u>. At least one sample for chemical analysis shall be taken from materials of each heat. Each sample shall consist of sufficient material to provide not less than 2 ounces of chips. Each sample taken shall be analyzed separately, and if any sample fails to meet the chemical requirements, the heat represented shall be rejected.

4.5.2 <u>Method</u>. Analysis shall be by wet chemical, spectrochemical, vacuumfusion methods, or other methods acceptable to the Government, as appropriate.

4.6 Tensile Test

4.6.1 <u>Sampling</u>. Two or more samples shall be selected to represent each lot of material. Not more than one test sample shall be taken from any one piece in the lot.

4.6.2 <u>Preparation of Specimens</u>. Tensile test specimens shall conform to types R1, R2, R3 and R5 of method 211 of Fed. Test Method Std. No. 151. Where dimensions permit specimens shall be machined from such position that the direction of loading shall be transverse to the direction of major working (grain flow). Tensile test specimens shall be located at the center of the section on items up to and including thickness or diameter of 1-1/2 inches and at the half radius position on larger sections.

4.6.3 <u>Method</u>. Tensile tests shall be conducted in accordance with method 211 of Fed. Test Method Std. No. 151.

4.7 <u>Rejection</u>. Where failure of a sample or specimen is ascribed to faulty material, the entire lot shall be rejected.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging and Packing</u>. Materials shall be prepared for shipment in accordance with the requirements of MIL-STD-163 applicable to the packaging and packing of cold-finished alloy steel bars, except that preservative coating is not required, and identification marking shall be as specified herein.

5.2 <u>Marking of Shipments</u>. Interior packages and exterior shipping containers shall be marked in accordance with MIL-STD-129. The identification shall include the following information listed in the order shown.

Stock No. or other identification number as specified in the purchase document* TITANIUM-ALLOY FORGINGS, AND FORGING STOCK (as applicable) Shape**, Heat No. **, Length**, Width**, Thickness**, Type**, Composition** Specification Manufacturer's name or trade-mark**

*Note: The contractor shall enter the Federal Stock No. specified in the purchase document or as furnished by the procuring activity. When the Federal Stock No. is not provided or available from the procuring activity, leave space therefor and enter Stock No. or other Identification when provided by the procuring activity.

**Applicable data to be entered by the manufacturer.

- 6. NOTES
- 6.1 Ordering Data. Procurement documents should specify the following:
 - (a) Title, number, and date of this specification.
 - (b) Commercial designation.
 - (c) Type and composition required (see 1.2).
 - (d) Dimensions, shape, and tolerances (see 3.4 and 3.4.1).
 - (e) Exact lengths and length tolerances if mill lengths are not acceptable.
 - (f) Mechanical properties of sections larger than covered by this specification.
 - (g) Level of packaging and packing desired (see 5.1).

REFERENCES

- 1. R.F. Simenz, W.L. Macoritto, "Evaluation of Large Titanium Alloy Forgings", AFML-TR-65-206, Lockheed-California Company, July 1965.
- James E. Coyne, "The Evaluation of IMI 679 Titanium Alloy As A Compressor Disc Material" RD 64-137, MD&E #19, Wyman-Gordon Company, August 31, 1964.
- 3. "Ti-679 High Temperature Titanium Alloy for Short-Time Strength, Creep and Stability", Titanium Metals Corporation of America, November, 1964.
- 4. "Current Methods of Fracture-Toughness Testing of High Strength Alloys with Emphasis on Plane Strain", DMIC Report No. 207, August 31, 1965.
- 5. "Metallurgical and Mechanical Properties of Titanium Alloy Ti-679", Titanium Metals Corporation of America, August, 1965.
- "A New Stress Corrosion Cracking Test Procedure for High Strength Alloys", B. F. Brown, Head of Physical Metallurgy Branch Metallurgy Division, U.S. Naval Research Laboratory, ASTM Preprint, May, 1965.

UNCLASSIFIED Security Classification DOCUMENT CONTROL DATA - R&D (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified) 1. ORIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION Lockheed-California Company Unclassified Burbank, California 2 b. GROUP 3. REPORT TITLE Evaluation of Large Ti-6Al-4V and IMI 679 Forgings 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report - 1 April 1965 to 28 February 1966 5. AUTHOR(S) (Last name, first name, initial) Simenz, R. F. Macoritto, W. L. 6. REPORT DATE 78. TOTAL NO. OF PAGES 75. NO. OF REES April 1966 171 6 8 a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S) AF 33 (615)-2690 AFML-TR-66-57 b. PROJECT NO. 7381 . Task No. 738106 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report) IR 19459 d 10. AVAILABILITY/LIMITATION NOTICES This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with rior approval of (MAAM) Air Force Materials Laboratory, Wright-Patterson Air Force p Base, Ohio 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Air Force Materials Laboratory Research and Technology Division Wright-Patterson AFB, Ohio 13. ABSTRACT This report describes the evaluation of large, closed-die forgings of two titanium alloys. Four forgings each of Ti-6Al-4V and IMI 679 were used in the evaluation. Property tests that were conducted included tension, notched tension, compression. Tuckerman modulus, shear, bearing, fracture toughness and smooth and notched axial fatigue. Thermal exposure and susceptibility to delayed failure in salt water were also evaluated in each alloy. Static properties were generally slightly better in the Ti-6Al-4V alloy. However, the IMI 679 provided significantly better smooth and notched fatigue values. Both alloys had good fracture toughness at room temperature and at -110°F. Static and fatigue tests were conducted on one forging each of Ti-6Al-4V and IMI 679. The Ti-6Al-4V part gave the better static test performance. Both titanium alloys exhibited strength/weight efficiency superior to a 4340 steel part tested in a previous program. The fatigue test life of the IMI 679 part was approximately 60% better than that of the Ti-6Al-4V part; however the Ti-6Al-4V may not have been a representative sample due to minor metallic inclusions found in the fatigue tested parts. Based on these results the IMI 679 alloy appears to show promise for improved performance over Ti-6Al-4V as well as over other titanium alloys in fatigue critical applications. The material property data and forging static and fatigue test results indicate that Ti-6Al-4V and IMI 679 compare favorably with two other titanium alloys, Ti-6Al-6V-2Sn and Ti-13V-11Cr-3Al, which were evaluated in a previous program.

UNCLASSIFIED

Security Classification KEY WORDS	LIN	KA	LINK B		LINK C	
	ROLE	WΤ	ROLE	ΨT	ROLE	w
Large Titanium Forgings Ti-6Al-4V IMI 679 Ti-6Al-6V-2Sn Ti-13V-11Cr-3Al Mechanical Properties						

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (*corporate author*) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (*paying for*) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), cr (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.