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ABSTRACT

“The chief purpose of this revort is to provide an itroduction
to pseudo-noise modulation functions and to describe those proper-
ties that make their use in radar systems desirable. B.:.ause of
the interests of thege laboratories, characteristics applicable to
fuzes are emphasized,

The applicability and usefulness of various pseudo-noise modu-
lation functions in radar systems is discussed. The use of the m-
gequence in a complete radar system is described, and an extensive
bibliography of other applications to radar systems is also given.
A short c2ction containing classified information on jamming of
pseudo-noise modulated radars, with bibliography, is issued as a
supplement to this report.

This report is essentially a survey, and the body of the report
therefore contains little new meterial. However, the three appen-
dices, on mesh relations for sequences with two-level autocorrelation,
on the shift-and-add relations, and on filter integration of m-sequences,
present material that to the author's knowledge is original,

1. INTRODUCTION
AN

During the rpast decade, a new class of modulation functions has
been developed and applied to communication, guidance, and radar sys-
tems, Called pseudc-noise or pseudo-random, these functions are dig-~
ital in nature. 'n the application of these functions, a tiansmitted
signal having & small number of modulation states, usually two, is
aemployed. The signal is then alternated between the states as pre-
scribed by the digitel code.

Compared with conventional pulse or CW radar, radar systems using
these functions may exhibit new, and, in many ways, better performance
characteristics such as

(a) large average- to peak-power ratio

(b) unambiguous measurement of range to large ranges

(¢) unambiguous measurement of velocity (Doppier frequency) to
high velocities

(d) fine range resolution

(e) fine velocity resolution

(1) reaistance to both sophisticated and power jamming

(g) a signrnal difficult ior an enemy to detect because cf its
peak-free, noise-like spectrum.

Ordinary CW radar is completely satisfaciory with respect to
average power and measurement of velocity but neither resolves nor
measures target range satisfactorily. On the other kand, a pulse
radar using short pulses and a low duty cycle eliminates the rang-
ing problem but sacrifices average power and the unambiguous




meesurement of velocity. The velocity measurement becomes ambiguous
because many short pulses must be used, and Doppler must be deter-
mined through a pulse~to-pulse phase-shift measurement instead of
through an intrapulse frequency measurement. In the pulse-to-pulse
method, the phase-shift measurement is unambiguous only from -7 io
+7; hence, the magnitude of the largest unambig.ous Doppler frequen-
cy is one half of the pulse repetition frequency. The result is
that only low frequencien .au be measured unarmbiguously.

That digital modulation functions can mitigate the disadvaniages
of pulse radar to some extent may be illustrated as follows. Assume
that the waveform iay be transmitted in one of two modulation states,
Ml or M2, which may be phase states, frequency states, amplitude
states, or, in the limit, off-on states (M2 = MO). For a system
using phase modulation, the more usual case, the waveform in state
Ml is illustrated in figure 1l(a); in states Ml and M2, in figure 1(b).
In this case, Ml and M2 differ by 180 deg in phase.

The unambiguous range of the pulse radar may now be increased
by transmitting the successive pulses in either state Ml or M2 as
prescribed by a binary sequence, cither specified or random, 1If the
sequence is periodic with a period of L digits, the unambiguous range
has been extended hy a factor of L. Unfortunately, the integration
time has been extended similarly. If the sequence is aperiodic, a
more complicated situation arises, to be treated later.

I1f, instead of desiring to increase the unambiguous range, we
desires to increase the range resolution, and, if the change of state
can be accomplished sufficiently rapidly, then we may code each pulse
with a binary sequence (fig. 1(c)). In this case, the range resolu-
tion and bandwidth are both increased by a factor L.

Alternatsly, if the average power is to be increased, pulses
modulated as in figure 1(b) may be concatenated ac in figure 1(d).
The limit of such a concatenation is modulated CW¥. 1In addition, it
can he shown that the velocity resolution is best, in a certain sense,
if angle-modulaied CW is used (ref 16, p. 24).

If immunity to countermeasure is prime, thenan aperiodic seguence
or vine of long period and complicated structure might be employed.
wWith such a sequenc>, 1t will be difficult for a jammer to produce an
"advanced'' waveform; i.e., one designed to deceive the receiver by
falsely registering as a ~ar target, because the sequence is theoret-
ically or practically unpreu.stable. In this case, of course, the
receiver would be much more complicated,

Although i would be desirable to hide the modulated signal in
a peak-free, noise-like spectrum, it is usually not possitle to do s¢
in a radar system, because the transmitted power is so large as to be
easily recognized even with substantial spectrum spreading. The
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technique may be useful, however, in a seccet communications system
where power may be minimized. Modulation of the message by a binary
sequence i~ then a form of scrambling that spreads the spectrum
(fig. 2(a)). If the receiver can remove the binary modulation
through knowledge of the sequence, the received spectrum (message)
is collapsed (fig. 2(b)). At the same time, any CW present, which
may be CW jamming, is spread, while uncorrelated noise is not col-
lapsed. The message may then be separated by a narrow-band filter.

This illustration of the application of various modulation func-
tions to pulse radar has thus shown how certain disadvantages of con-
ventional pulse radar may be alternatively alleviated, but not with-
out obtaining certain other disadvantages. The illustration implies,
however, that by proper choice of the modulation function, it may be
possible tc obtain a number of advantages simultaneously without ob-
taining serious disadvantages. The objective of this report is to
examine the various modulation functions with this in mind, to weight
their relative advantages, and ideally, to arrive at a best modula-

tion function.

2, THE RADAR RECEIVER AND TRANSMITTED WAVEFORM

The most that can be required of a radar receiver is that it
compute a probability density for a target at each range associated
with return delays 7 and ecach velocity associated with Doppler fre-
quencies ¢.1 Assuming a single point-target and Gaussian noise, it
has been shown (ref 2,3,4) that no receiver can extract more informa-
tion from the received signal than a correlation (matched~-filter)
receiver, For a transmitted waveform w(t), the delayed, Doppler-shifted

return is

2mift

r(t) = w(t -~ 1) e + n(t) 1)

where n(t) represents additive noise. A correlation receiver is one
that computes the envelope

env C(T,Q) IF(T,¢)|

dt| (2)

I3 f (1) w(t - 1) e2midt

I

T71f the radar system becomes ambiguous in Tt and/or ¢, no attempt

is made to resolve these ambiguities. Therefore, sufficiently

strong returns from the ambiguous (T,¢) region will he falsely inter-
preted as returns from the unambiguous region and their probabilities

80 computed.
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where I is the interval of integration, i.e., the conjugated
signal is multiplied by a delayed, frequency-shifted reference,
integrated, and the envelope taken (to discard rapid fluctua-
tions in C(T,Q) that carry no information). Vvarious receivers
of this type have been designed! and are described in the refer-
ences,

Although & correlation receiver extracts all available in-
formation from a given signal, some transmitted signa's have
more suitable characteristics than others. The function that
measures the suitability of a waveform in this respect is the
gignal component of F(T,Q) which, after a change of origin, 1is
Woouward's famous ambiguiiy function

X(r,9) = j wit) w*(t - 7) e-2n1¢t dt (3)
I .

For most radar purposes, a good waveform w(t) is one for which
the envelope |X(7,9)| of X(7,§) has a sharp peak at the ori,in
and is small elsewhere,

We expect to use a carrier modulated by a low-pass modula-
tion function:

2
w(t) = x(t) o2"2dct (4)
Then,
-2110t

X(t,§) = If x{:) x*(t - 1) e ¢ dt| (8)
and so the pertinent ambiguity function is that of the modulation
waveform.

Along the Tt axis, IXI is just the envelope of the autocorre-

lation function of x(t):

|x(r,0)] = |f x(t) x*(t - 1) dt| (5)

! This kind of correlation receiver 1s to be distlhquished from
another class of distance-measurineg correlation systems that dces
not delay the reference signal, and thai essentially tekes the
magnitude of env C(T,Q) at the origic as a measure of the nearness
of the peak of env C(T,Q) te thi ~rtzin. Such a system 1is described
by B.M Horwor, "Moi.e-Modulated Distance Me.3u-ing Svstems, IRE
Proceedings, Vol 47, 1959, pp 821-828.

10




For certain important modulations, the ambiguity functicn 1is

much better (i,e., smaller) along the ~ axis than elsewhere in

the plane, The modulation period (and the integration interval)
is made shorter than the shortest expected Doppler period in - rder
to guarantee that correlation of the received signal witl. a.de-
layed but not frequencv-shifted signal will give a swall off peak
value,

The ambiguity functions ot common wavefcrms such as pulsed
sine waves and ''chirp” signals have been calculated and found to
be far from optimal (ref 3, 4, 30). Except for a few modulations
as yet unexploited in systems (ref 7), the study of better mcdula-
tion functions has been restricted to time-quantized '"telegraph
signals” like those in figure 1. Henceforth we will consider only
functions of this type: the modulator chooses among a fixed,
finite numbe. oy modulation gtates at multiples of a basic time
interval. The modulation waveform will be represented by a se-
quence of complex numbers, each modulation state being symbolized
by one member of (ne sequence.

3. BINARY DIGITAL WMODU'.ATION OF PULSE RADAR

To begin with, we will investigate the simplest case of binary
modulation of pulse radar, where there are two modulation states.
It is sometimes convenlent to take these as

8, = +1 or -1 (7)
ard at cther times as
bk =0 or1l (8)

Generally, these will be associated in the order shown above; i.e.,
8:1-2bk (9)

on those occasions when a change of variable is performed. 1f
these sequences of ay Or b are associated directly with the modula-
tion waveform via

x(t) = ak or >it) = bk (10)

kKt < t L (k + 1)
o - o

then, the modulations are, respectively, 0 or lsu-deg digital phase
modulation, or on-off digital amplitude modulation. When discus-
sing the mathematical properties of binary sequences, however, the
actual form of modulation will be disregarded during the analwvsi. ,




and the above c.ange of variable made whenever it is mathematically
convenieat. Although the only operation between ak's will be or-
dinary multiplication, the b, 's will be either multiplied or sub-
jected to "addition modulo two,” whichever happuns to be convenient

to the calculation or proof at hand, The latter operation is defined
so that it corresponds to multiplication of the ay's and is symbol~
ized by () : .

X 4+ - (1 0 }
+ 4+ - 9 ¢ 1
- - % 1 1 0

Multiplicaticn of £+ 1 Addition mouulo two of 0,1

thet is,

1®0 (11)

]
(-
n

G®1
0®o

fl
(=]
1]

1®1 (12)

The first class of binarv codea waveforms that we will examine
is exemplificd by figure 1l(c). In these, a coded puise is fcllowed
by an off-time longer than the pulse., An investigation of the en-
tire ambiguity function will not be made, since it happens that
the autocorrelation fuuction itself (which is the zero~velocity
cross section of the ambiguity function; is not one particulasly
suitable with long sequences,

3.1 Coded Words and Phase-~Coded Pulggg

1{ the two modulaticn states M1l and M2 Aiffer only in
phase, and in tlat by 180 deg, the coded pulse is most naturally
represented by 3 fiiite sequence, "word” of a,'s. The antocorre-
lation function of a coded word is give . by

L-T
p =
(™ E “k k4 1 (13)
k-1
where T is a discrete variable, 7 =~ -+*y -2, -1, 0, 1, 2,..-;

L is the word length, and the autocorrelation is unnormalized; e.g.,
for the coded word (+1, +1, +1, -1, +1), the pulse waveform is

| I
|

S
L

12

) Y Y .. YT e




end B) = 8y = A3 = 85 = +1; Ry

the par-tial overlap

+ 4+ 4+ -+

+ +

i and is equal to

= «=1. Then Ca(l) is computed from

+ -4+

i C(l)=1+1-1-1=0 (14)

The autocorrelation function for this pulse is

| RPREY

12345

and furthermore, this is sepresentative of the class of coded
words with the best autocorrelation functiou:

Qort1l1l, 1

Ca(r)=
N ’

=21, +2, -+ (L ~-1) (15)

[
<

Unfortunately, the longest known such "perfect’ word is only

13 digits long. There are no longer ones of odd length (raf 33).
The ¢rxistence of longer perfect words of even length hinges on
the unsoived problem of the existence o!f long "perfect” periodic
sequences, which will be mentioned later. Their existence is
consider<d unlikely. Some of the known perfect words are (ref 1)

Perfect Word

L

2 +
3 +
4 +
5 +
7 4
11 +

-

S A

- - 4 -

R T

There han been some experimental investigation of “nearly perfect”
words: {C (T} = 2 . 3 off-peak.

13
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3.2 Coded Vowels and On-0ff Cnded Pulses

If, on the other hand, the two states Ml and M2(=MO)
are on and off, the coded pulse is best represented by a finite
sequence, or 'vowel” of by 's. Such pulses have been used in
the Venus ranging experiment (ref 1, 46, 55). On-off coding was
used because the return was noti phase-coherent.

The autocorrelation function for a coded vowel is
L-7

Cb(‘r) :Z bkbk+'r (16)
k=1

i.e., an overlap product analogous to word rcorrelation. The per-
fect autocorrelaticn in this case is defined as

y—;—l ,T:O
C(r) = (17
Oorl, 150

An example of a perfect vowel is 1100101%, few are known.

4. BINARY CODES FOR CW

The case of continuous transmission remains; we now treat
digital coded CW (the conventional but somewhat anomalous ierm)
and in the next section restrict the codes to binary sequencez.
Most of the systems built so far empliay O~ to 180- deg phase
modulation (PM), although a few use AM or FM. PM will be assumed
in most cases, and accordingly. the sequences will correspend
directly to the modulation when written in terms of the 4. Host
sequences considered will be periodic, buiv first, an speriodic
sequence with certain advantages will be treated,

4.1 The Fair Coin Sequence

If the sequence &, is chosen by flinping a fair coin, it
has the advantage of being unpredictable to the jammer, There is
no possible way to jam it intelligently, and recourse must be made
to brute-fcrce techniques, Siice the sequence is apzariodic, no
range ambiguitics ave built in,

A typical section of a telegrapbhic modulation function

obtaired by actual coin-flipping appears ac

T It is to be noied that the association previously given ‘n eq (9)
(+#1 = 0; and (-1 -» +1) does aot carry perfect vowels into perfect
words .

14
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The normalized autocorrelation function of the modulation is

-

lim T

C(1) =T = o 51-,1—‘ fx(t) x(t+7) dt (18)

-T

The autocorrelation function is zero except for r = 0 because
there are equal numbers of agreements and disagreements between
a, and a o The former contribute +1 to C(r); and the latter,
=1. 1In %act, an aiternate definition of the normalized autocor-
relation function of any a, sequence is

x>
(=}

= —— 9
Ca(T) A+D (19)
where A is the number of agreements during the period of corre-
lation, and D, the number of disagreements. In the limit of
equation (18), then, it is clear that
4
11 N T =0
Ca(T) = (20)
Y ’ |T| 21

for the random sequence

2T

-y Of o+l

Now, this is the same as the autocorrelation of a single rectan-
gular pulse.! And according to the Wiener-Khintchine Theorex, the
Fourjer transform of the autocorrelation function is just ths
power spectrum. Hence, the power spectrum of the modulation wave-
form x(t) is exacvly the same as that of ithe pulse, which is the

2
familiar (§1n x~).
x2

The above sutocorrelstion function is not practical for

redar applicatiens in that by its definition, it requisres an
"Alihiough ve have considered Ca(7) only for integral 4, the defin-
ttion (1R) may e emploved to develnp the vontinuous curve shown,
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inrinite correlation time (ref 51). If the correlator integrates 4
for only L digits, the autocorrelation is represented as in figure
3; for a given 1, the value of the finite sum could lie any-
where between the dotted lines with probability 1/2 it wiil lie
within the shaded region if i, is large (ref €); its expectation is

the heavy solid line, i.e., the autocorrelation function previously
computed for the limit L ., .

clr)

. B

+|

—— - — S——— ————— ——h  — ———— —— — —— ot ori— w—— —— —— o

/ \ r 1.339/VC

S/ | N
NN N 1

| — —— — c————

T=-| Ta+i

Figure 3. Finite integraniion-time autocorrelation for the
fair-coin sequence.

Lytle (ref 32) has analyzed the more restricted case of
randomly chosen periodic sequences.

o

4.2 Pseudo-Random Sequences

There exist preassigned (and in fact periodic) sequences
having autocorrelat'on properties nearly as good a3 those of random
segquences without the disadvantage of random fluctuations in their

16




correlation. They exhibit properties close to thuse that randor
sequences iave ounly on the averare. For this reason, they are
called "super~random” or, more commonly, "pseudo-random.'

The following postulates obtaining pseudo-randomnes:
have teen often used in various combinations:

Pl) 1In each period, the number of +l's is nearly equal
to the number of -1's.

P2) 1In each period, helf of the runs (gvoups of consec-
utive digits of the same kind) are of lennth one,
one quarter are of length two, one eighth of
length three,""2—m of length m; etc. For a
finite period, this must en< somewhere, viz., at
least at the time 270 = 1/..

P3 For a period of length 2T, every n-tun.e appears
once per period.

P4) The ambiguity function of *the corresponding modula-
tion should have a sharp peak at the origin, sad be
small and uniform to some specified degree else-~
where. In particular, the autocorrelation shall be

two level:
’
L {IL, 7=20
C‘(T) =2 ﬂk 8k+_r =§M * o (21)
k=1 PH T
\

This autocorrelation is cyclic, unlike the pulse case previously con~
sidered; e.g., for the sequence (- -~ - + + - +), C (2) is computed

from the comparison of the segquence with its cyclically shifted
self:

—‘“++'+!°""‘++—+
‘-‘v+"+i

where | represents an arbitrary division into periods. Here,

+1 -1 -1 -1 41 +1 -1

1]

c (2
= -1

T Generally speaking, a sequence is called "random” if the method
of generation has no known properties (e.g., natural laws or pre-
furred initial conditions) that would cause departures from —an-

domness. » sequence is called 'pseudo-random” if, regardiess - !
its «wethoa of generation, it satisfies some particular set of cri-
teria derived from the cxpectation values of a random sequence.

As a result, a pseudo-random seyucnce usuilly appears more random

thar almost all random seguences ©f the same length.

17




and it can be verified that this particular sequence satisfies P4
but not P3:

7, T =0 (mod 7)

21, 40 (mod 7) (23)

Ca(T) =

Sequences satisfying P3 are called de Bruijn sequences
(ref 9, 10, 13, 23). They satisfy Pl and P2 but do not satisfy P4
if n > 1, as will be shown later. Adding one + to the above exam-
ple forms a de Bruijn sequence of degree n = 3:

- - -4+ + -+

P3 is now satisfied but P4 is not: Ca(3) = -4,

A de Bruijn sequence of arbitrary degree n can be formed
by the following rule: let (a, to a ) be (-) and continue the se-
quence writing a (+) whenever }t doeg not complete an n-tuple appear-
ing earlier ' the sequence (ref 9). Thus for n = 4, this algorithm
yields

R A I T T R S

It is not possible in general to form a sequence satisfying P4 from
a de Bruijin sequence by omitting the last ~lement.

4.3 Sequences with Two-level Autocorrelation

Only ?4 8 of direct interest for modulation sequences.
The requirement that C4(r) be twn-level has certain consequences, a
number of which will be stated 1. this section in order to give the
reader a familiarity with this class c” sequence.

Consequence I—First of all, it is obvious that for any
binary sequence, the unnormalized autocorrelation
L
) = a = - 24
¢, (m ZRk kar S A D (24)

k=1
(or in tact any form ¢f complete pairing, cyclic or not) consists
of L terms each of which is (41} or (-1;. and hence,

Ca(T) = L (mod 2) for al}l -, (25)

But the stronger statement is true for autocorrelation or anv com-
plete pairing of binary sequeonces that

18




Ca(T) = L (mod 4) for all 71 (26)

This can be seen from a simple example:

I1f any group of Republicans and Democrats is paired
off in any fashion against another group of the same size and
political constitution, an even number of political arguments
will ensue, equally divided between Republicans versus Democrats
and Democrats versus Republicans.

Proof: lLet the rumber of ordered pairs of each of the
four kinds be symbolized in &n obvious way: N is the number of
Democrat-versus-Republican pairings, etc. The number of Demo-
crats in each group is

h\ = N N 27
%o * "r = Mop * Yrp (27)

Hence, the number of disagreements 1is

= N =2 28
D =N+ N Nor Q.E.D (28)

and so the correlation of pnliticel views is congruent (mod 4) to
the size of either group:

C =A-D
a
=L -4 29
L NoR (29)
Thus, ¢ (7} = L (mod 4) (30)
as stated.
Consequence iI—Denote by N, the number of (+1)'s in
each period, and similarly, for N_. Then,
L
Y C () = L+ M(L-D (31)
T=1 E L
=) 2
e "k ke
T=1 k=1
L2
k=1

Lo+ ML-1) = (N - N7 (ref 23) (32)




Combining this with

N +N =1L (33)
+ -
we obtain
N, = (L £VL + M(L-1)/2 (34)
where the signs may be taken in either order. M is invariant
under By (-ak). Also, since (L + M(L-1)) must be a square,
~-L
i 35
M2>13 (35)
and hence, for L > 2
M>-1 (36)
For M = - 1, i
N =N £1 (37)
+ -
These are the binary sequences most widely used for modulation. N
The fact that this disparity cfone between N and N_ is the smallest
attainable for a two-level sequence with L 3 2 follows from equa-
tion (34). As 2 result, no balanced sequence (N, = N_) with period
greater than two can be two-level; in particular, no de Bruijn se-
quence except (4+-) is two level.
Consequence III—If a two-level sequence is sampledevery L
q digits, where q is prime to L, the sequence so producecd is also }
two-level with the same levels L and M (ref 15). This can be seen -
by sampling the autocorrelation summation of the original sequence s \
at the same rate, for each value of T, " 1
Consequence 1V--The corresponding sequence of (bk = T or 1)
also has two-level autocorrelaticn:
L
C (1) = z;(l -2b ) (1 - 2b ) (18)
a k k+71
k=1
= 4Cb(1’) + N+ - 3N_ o
N.— 5 T = 0
Cb(T):4 (39)
(M +3N_ -N)4, 130
[ + :

Each run of r "ones' contributes r to C _(0); it contributes (r-1) to
Cb(l). Hence the number of runs of (l)bs in each period is

20




il

Cb(O) - Cb(l) N - (M + 3n_ - N+)/4 (10)

n

(L - M)/4

and this must also be the number of runs of (0)'s, since the two
kinds alternate.’ Each run of (r > 1) "ones" contributes (r - 2)
to C, (2), and each run of a single "one" contributes zero, with

the exception that at ecach run of a single zero, there is an extra
contribution of one., If the number ?f runs of a single zero is de-
noted by OBl and of a single one by ‘Bl,

1 1 )
Cb(O) - Cb(2) = 2((L ~ M)/4 - Bl) + 1 Bl - Bl (41)

OB1 + 181 = (L - M)/4 (42)

i.e., half of the total number of runs of symbols of either kind are

of length one. Hence P4 guarantees the first clause of P2. No such
simple statement is possible about the other clauses of P2,

Consequence V—It 1s sometimes necessary to know the number
of ordered pairs of each kind of (a ak+ ) appearing in the C (7) sum-
mation., Denote these by N++, N+_, §_+, dnd N__, and let

m= (M+ 3N_ - N)/ (43)

Applying the reasoning of the political example to Cb’

N__ =m
N - = -
- = N_+ = N_ m (44)
N = N - (N - m) -
+ -

Consequence V]—The autocorrelation function of a two-
level sequence is the same as that of a pericdic reectangular pulse
train except for a possible change in d-c level. By the Wiener-
Khintchine Theorem, the power spectrum must therefore be the same
also. It is a line spectrum with envelope (sin“x/x’), and therec
is a d-c value appropriate to the particular value of M.

If a sequence 18 used to phase-modulate a carrier, the
spectrum will be the convolution of the sequence spectrum and the

1" The average run length 2L/(L - M) is equal to two (the value for
a irandom sequence) only if M is zero.
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carrier spectrum. This will be free of peaks (and . hereby facil-
itate hidiag) provided the sequence has a small d-c¢ level. Hence
for the purpcse of hiding, the choice of M = -1 is optimum, since
it yields the mcst nearly balanced sequence.

In most systems built to date, the sequence period is
kept less than the ieast expected Doppler period, in order that
only the region cof the (T,¢) plane near the r axis is accessible
to signals. In such a case, the optimum choice of M to keep |[x|
amall off-peak wc:id be M = O, Tlare is exactly one such sequence
known (4+4+-) (its inversions &nd/or rotations are not considered to
be independent). There is no known proof that longer sequences with
M = 0 do not exist, but some restrictions can be put on the possible
periods. From equa“ions (32, 23), it follows that the period L must
be an even square:

L = an? n=1,2, 3. (45)

Turyn has shown further that n may not be a power of a single prime:
n 4 p", p prime. The smallest values of L remaining are 144 and 400
(n = 6 and 10, respectively:.

An additional relation for two-level sequences is derived
in Appendix A.

4.4 Shift-Register Genarators

4.4.1 Generasl logic (ref 23)

A shift-register generator (SRG), of degree n con-~
sists of n flip-flops, a clock pulse-generator, and a logic circuit,
as shown in figure 4. For each flip-flop, "off" is symbolized by

CLOCK
PULSE
GENERATOR

Y
Y v v

Y v o vov .

LOGIC UNIT

Figure 4. The general SKG.
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(0) and "on” by (1). When the clock pulses arri+ -, the contents
of each flip-flop are transferred to the next s .age, as shown,
The new state of the first stage is an .« rbitrary Boolean function
of the previous contents of the register. The function specifies
a (0) or (1) as desired ior each ot the 2" states of the SRG;
hence, there are

2!‘!

2

e
different such functions.

If the logic is correctly chosen,; the SRG may
produce a long sequeince. The longest possible SRG sequences, for
a given n, are the de Bruijn sequences {l, = 2"). it has been shown
that there are

n-1
22 -1
different de Bruiin sequences of degree n. As previcusly noted,
none of them are two-level 1f n > 1.
/

The logic uniguely specities the successor to
every state of zn SRG. But although each stale has a unique suc-
cessor, it is possible for a s.ate to have either zero, one, or two
predecessors., For example, consider a 3-stage SRG for which the
new state o!f the first stage is the ordinary arithmetic producti of
the previocus states of the last two stages:

-—*

The sequences 0i states ftor this repgister arve

tram i Mhmstimeat st

i
]

e ("3

daie g




Herc, (119) and (100) have no predecessors; (010) and (000) each
have two predecessors. We will returr to the geners! SRG later.

4.4.2 Linear lLogic and M-Sequences(ref 12, 14, 15, 17, 18)

Mn important subclass of SRG's consists of those

linear logic. A linear logic unit is one which computes the
sum mod 2 of the countents of whichever stages feed the unit. It can
easily be shown that every state of a linear SRG has a unique prede-
cessor, and, as a vesult, the SRG decomposes the space of 2 states
into a number of closed cycles, Since the sum mod 2 of any number
of zeroes is zero, the "all-zerces" stste always forms a separate
cycle. If the stages that are to be tappeu are chosen correctly,
there is only one oti‘er cycle, of period 2"-1).

Consider a (3,5) linear SRG, which is one such
"linear-maximal" (or "linmax") SRG:

O

{f the initial contents are 00001, the contents after successive
clock pulses will be

(iritial contents) 1) 00001

2) 10000

3) 01000

4) 00100

5) 10010

6) 01001

7) 10100

8) 1i010

9) 01101

10) 00110
etc.

28) 10101

29) 01010

30) 00101

31) 09010

1 = 32) 00001

The sequence appearing at the output 1s

...100001001011¢N11111000110111010. ..

If one (0) were added to the run of four (0)'s the sequence would
be a de Bruijn sequence. Hence, this SRG sequence almost satisfies
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Pl, P2, and P3 exactly, as it stands. But most important, i .-s
a two-level autocorrelation:

31=L , |1=0
Ca(T) = (46)

~1 , [T;}o

It is not difficult to prove that every linear-
maximal seguence (called m-sequence) has a similar autocorrelation.
In the first place, 4 linear logic satisfies superposition: if
two identical lirear SRG's A and B have arbitrary contents, and a
third identical SRG C contains ~ne sum (mod 2) of the contents of
A and B, then the output digit from C will be the sum (mod 2) of
the outputy c¢cf A and BE. From this there follows an important

Shift-and-add propertv—If an m-sequence is shifted
by r digite (r neither zerc nor a multiple of L)
sand added to the unshifted sequence mod 2, the sum
gequence 1s Lhe same sequence shifted by some other

rumber of digits r', e.g., for the (3,5) sequence
apd 1 = 2,

...10000100106116021111100011011161010. ..
...1C00010010110C11111000110111010. ..
...170101100111110CG02101110101000GC

T' = 28

The dopendence of ¢' on ¢ 18 erratic as may be seen from the sam-
ple soquence:

T : 1 2 3 4 5 6 7 g8 % 10 11 12 13 14 15
T : 14 28 5 25 3 10 16 19 24 6 23 20 30 1 22

16 17 18 1% 20 21 22 23 24 25 26 27 28 29 30
7 18 17 8 12 27 15 11

@
P~

29 21 2 26 13

This dependence 13 not given compietely by anv krown function; its
knuwn propecties are stated in Appendix B,

Since & 70} occurs ip the sum ssguence sabove if and
only il the digits in the addend sequences dgree, and since there is one

more (1) than (0) 4in a period of an m-3equence, the autosorrelation
function must be

€ () =) (47)

8s we set out to prove.,

B
[#]]
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Nothing 2 .ove guarantees the existence of m-sequences,
hut it has been shown (ref 15, 18) that there are in fact (@(2“—1))/n,
m-sequences of degree n, (¢ is Euler's function: ¢(k) is the number
of integers less than k which are prime *to k, including 1.) To find
the logic (i.e,, which stages are tapped) cf these linmax SRG's is to
find the primitive irreducible polynomials over the Galois tield of
two elements. This computational problem has been solved with a dig-
ital computer for all linmax SRG's with n not greater than 16, and
for some SRG's of each n up to 34, and the results are listed in
Appendix C of reference 2C. Among these permissible tap combinations
are (1,2), (2,3), (3,4), (3,5), (5,6), (4,7), (4,5,6,8}, (5,9),
(7,10), (9,11), (6,8,11,12), ..., (20,33), (7,32,33,34). A few
longer linmax SRG's are known, e.g.,

2
(126,127), 1,7,15,8091),...(2 %72, 2¥¥7_}).

Given one linmax SRG of degree n, all others or
degree n may be found from the Prime Sampling Theorem previously
stated, which in this <ase at least, turns out to be exhaustive. The
output is sampled every qth digit, where g is odd and prime to L. As
soon as (2n-1) digits have been so produced, the SRG that will pro-
duce this new sequence can be constructed by solving n linear equa-
tions for the tap positions. Repeating the process produces all
linmax SRG's of degree n (ref 17).

Another property of m-sequences that has been put
to use in FM systems (ref 25, fig. 5) is that

_ \ A ) . . _
%ébk = bi+s (or (1 + bi+s) depending on the choice of origin i};ﬁ
K=l

where the summation is mod 2, and where s is fixed for a giver sequence.
It can easily be shown that this property is true, and that s is equal
to the number of digits separating the beginning of the run of n ones
irom the beginning of the run of (n-1) zeroes.

The seguence of a linmax SRG can ke obtained with any
desired delay by adding (mod 2) the contents of some combination of
the n stages (ref 35). This could cbviously be very useful in a2 radar
system, in order to produce reference signals with different delays.

4.5 Other Sequences with M = -1

There are two other known classes of sequences with M - -1,
N " 1 " 1 a : t
known as  Perron (or Legendre or guadratic-residue ) sequences
(ref 15, 26, 36) and "twin-prime"” sequences (ref 26, 39), r:-pectively.

Perrcon seqiiences are of period (4m-1) when this guantity is
a prime. Their construction is {llustrated by the case form = 3.
The residues of the squares of successive integers modulo (4(3)-1 = 11)
are
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9,1, 4, 9, 16(mod 11) = 5, 25(mod 11) = 3, 3, 5, 9, 4, 1, 0, 1, 4,..

and the sequence is cdefired by

+ 1 if k is among O, 1, 3, 4, 5 9
a = (49)
-1 otherwise,
i.e.,
R N R T T

Except for m = 1 or 2, these sequences are not m-sequences and don
not have the shift-and~add property. This is an advantage in cer-
tain respects, as will be seen later.

Any periodic sequence can be genevated by some SRG, and
in a physical system this is often the method most economical of
components. The sbove sequence could be generated by any one of a
number of non-linear SRG's of n = 5 stages. (Four would be too
few because + ~ + + occurs twice.) However, the sequence does
not contain 21 of the 32 possible gquintuplets of (+)'s and (~)'s.
If an SRG were used which decomposed the set of all qguintuplets
into several closed cycles (as any linear SRG must, for example),
it would have to be started with one of the eleven legitimate
Guintuplets, and if an error occurred might jump into an incorrect
cycle composed of some of the 21 ''bad" quintuplets. As previously
noted, non-linear SRG's need not generate closed cycles. This
Fact can be uscd to generate; e.g., Perron sequences with a non-
linear SRG which avoids the above two difficulties, with each
illegitimate state (here, one of the 21 bad quintuplets) leading
back into the cycle of legitimate states.

The twin-prime sequences have period L = p(p+2) where p
and (p+2) are both prime, and are formed by a method similar to
that for Perron sequences. The twin-prime sequence for p = 3 is the
same as the (1,4) m-sequence. The p=5 sequence in bk notation is

101110001111101110010000101011C0100

The remarks on the generation of Perron sequerces apply also to
twin-prime sequences, cf course.

4.6 Acquirable Codes

To locate a given target in range by testing every inte-
gral value of 7 wouad require L tests. However, only logy L tests
would be needed if the target could be localized to within 1/2 L,
then to within 1/4 L, etc. The best practical solution to date is
to use certain sequences obtained by combining shorter sequences
with relatively prime periods, so that

[
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where p, is tne period of the tth

subsequence. For these codes,
at most |

N = Py + Py + " "+ P

tests are needed, and on the average, cnly N/2. These codes have
been used in the Goldstone deep-space ranging system (ref 1, 49).

4.7 The Ambiguity Function for Sequences

If the period of the modulation waveform is not kept
small in comparison with a poppler cycle, the output of a corre-
lator is given not by the autocorrelation function but by the
Tull ambiguity function.

The squared magnitude of the ambiguity function for se-
quences is defined analogously to that for continuous functions:

whe re
u = exp (2mi/L)

This is obviously equal to L2 at the origin and is zero elsewhere

along the Doppler frequency (s) axis. Lerner (ref 21) has computed

CTS for m-sequences and found

2
C—rs =L s 7,8 =0,06 {mod L)
=0 , T =0 (mod L), s % 0 (mod L)
=1 sy T % 0 (rmod L), s = 0 (mod L)

L+1 , elsewhere

i.e., a peak at the origin and a plateau elsewhere cut by valleys
along the axes. This calculation uses the shift-and-add property

of m-sequences; other (e.g., Perron) sequences with two-level auto-
correlation functions, but not having the shifi-and-add property dc

not in fact exhibit the same peak-fiee piateaus.

It can ke shown that

5 3
C = L
™ TS

T,S

(50;

(52)

(53)

(54)

(535)




and hence, this ambiguity function is very nearly che smoothest
obtainahle, i.e., has the smallest maximum value o..-peak; the only
further smoothing possible would be the lowering of the plateau
height from (L + 1) to L by sacrificing the valliey along the ¢-axis

2
=L , 7,8 0,0

(]
4

9 , elsewhere on the s-axls (necessary) (56)

i}

[}

L , at the other (L? - L) poiuts

This requires that

M=V L (57)
and from equation (A-26).
2
(N -N) =L+ ML-1)
2
= n2 + n(n - 1) (58)

i.e,, (nd + n? - n) must be a perfect square. This is never the case
for 1 < n <200, at least; and herce, there are no such "gmoothest-
possible” sequences for L < 40,000,

Since moving off the ; &xis implies a degradation of the
normalized ambiguity runction magnitude from 1/L to~JL +1/L=~s~1/
JIT for an m-sequence, 1t i8 clearly ad,antageous to keep the inte-
gration time (Lt,) much less ihan one Doppler cycle. If the integra-
tor is a filter instead of some type of block integrator (one which

computes E:ak ak+7 exactly) however, the output off-peak may be de~

1
graded in two ways. First, the infinite tail of the filter impulse
response will 'remember” some input contributions extending back
over past Duppler cycles. By using & short time constant, this may
be made as small as desired. But then the second effect appears:
the off-peak sutocorrelation is only constant if the integration is
8 block integration extending over an integral number of sequence
periods. Thus, the output of a filter will fluctuate appreciably
unless the time ccnstant is much longer than the sequence period.
(This effect 18 investigated in Appendix C.) Since the normalized
vif-peak autocorrelation (-1/L for an m-sequence) becomes bstter
with increasing sequence period L, 1t is all the more important
that the bit iiwe (t,) be short.

5. BLOCK DIAGRAM OF A SYSTEM

Craig, Fishbein, and Rittenbach have described several dystems
that use m-sequencs modulation (ref 24, 25, 73). vwithout specify-

ing tho particular kind of modulation, consider the following
System:
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ANTENNA

i

aF ¥ e /F COOE cooE DOPPLER
[~2m{ CIRCULATOR =3 > B : L—-)- FILTER
MODUL ATOR DEMODULATOR AMPLIFIER DEMODULATOA uAu:

| -

RF GENERAYOR

CODE cLOCK [.],13
SRG #1 — PULSE - PHASE - PULSE Fn SRG w2
GEHERATOR T SKIFTER GENERATOR
cLocx
FREQUENCY
GENERATOR

Figure 5. Block diagram of a system,

Each rotation of the continuously variable phase-shifter
causes SRG 2 to drop one digit further behind SRG 1 in the m-
sequence. The output of the RF demodulator is a Doppler signal
chopped by the m-sequence, and hence, consists of components
too high in frequency to pass any of the filters, which serve
as the integrators. When the reference code from SRG 2 has the
correct delay, the code demodulator reessembles the chopped Doppler
into an unchopped wave, which pnsses some filter. Range is meas-
ured by the number of digits SRG 2 has to drop behind SRG 1 to pro-
duce a peak in the out_ut of some filter,

The system can be altered in certain ways to utilize trans-
mitter leakage as the local oscillator. Unlike the above system,
this alteration requires a sequonce with the shift-and-add property.
This version has been implemenied by Craig et al using FM and 3-
stage linmax SRG's (L = 31). They report "an over-all receiver
sensitivity of -140 dbm on slowly moving targets.” Since the sys-
tem must search serially in range, the acquisition time will be com-

paratively large,

6, NON-BINARY CODES FOR (W

I1f the number of modulation states is greater than two, the
multiplication operation and the autocorrelfition function must be
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redefined, If O, 120, and 240 deg PM 1is uc the natural representa-
tion of the a, consists of the cube roots or unity, and

Ca(T) = E aﬁ ak+T (59)

k

In general, q states of equiangular PV are represented by the qth roots
of unity and this autocorrelation is the natural one.

One class of perfect codes is known, of period q2, for any q
(ref 50). One period of one of these codes counsists of the following
powers of s (8 = exp (2mi/q)):

3

1,2,3, ... q, 2,4,6,..., 2q, 3,6 9.... 3¢q,....... »4,29,39,...,9
For q = 3 this is the sequence
2 ;
s,s ,1,s ,s,1,1,1,1

The autocorrelation function is

C (1) = (60)
a

The limitation on length, given q, is a serious disadvantage of
these sequences. Sequences of any desired length but with a poorer auto-
correlation can be obtained from multi-state SRG's. Here q may be any
power of a prime,

qQ =p, (61)

and linear SRG's are thosz2 which have a logic consisting of multiplication
by 0,1,2...., or (q-1) at each tap, followed by addition mod q. As before
there exist linmax SRG's of every length n with autocorrelation

n
{L:q-—l,‘r:O

(62)
‘—1 , T30

Under addition mod q, these sequences have the shift-and-add property.
Connections for some linmax SRG's are given by the coefficients of the
primitive irreducible polyromials in references 19 and 41; e.g., for

g -~ 3, reference 19 gives (x3 - X - 2) as a primitive irreducible poly-
nomial. The coefficients are 1,0,~1,-2, and the last three specify a
linmax SRG:

Ca(T) =

31




X 2) <€~ MULTIPLICATION (MOD 3) BY 2

ADDt(TION (MOD 3)

The m-sequence produced is ...00101211201110020212210222, ..

1f, on the other hand, the modulation states are "off," "on,"
0 deg , ani "on" 180 deg, the natural representation is a, = 0
+1, -1, Tompkins (ref 45) has found all of the perfect codes
of this kind for L < 19 by trial, Fur L > 13, these have few
non-zero terms, a distinct drawback, since the average power
suffers accordingly.

’

Non-binary sequences have not yet been used in radar sys-
tems to the author's knowledge.
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APPEND1IX A. MESH RELATIONS FOR SEQUENCES WITH TWO-LEVEL AUTOCORRELATION

1ot (a, = + 1) be a sequence of period L with a two level periodic
autocorrela}éion. If q ic a factor of L, then the sequence can be di-
vided into q "meshes" by sampling every qth digit beginning with any
of the first q digits. We will derive relations between the sums Sqi
of the digits in the various such meshes:

5.1 :Z 8, , k=1 (mod q) (A-1)
K

One tool with which such a separation into meshes can be accom--
plished is exp (2mir/q):

L L-1
ZC(T) exp (2mit/q) =L -1 + M z exp (2mit/q) (A-2)
=1 T:l

L+ML- 1), q=1

L-M , q >1
But also,
_ - A/ A-
EC(T) exp (2riT/q) z iak ak+1- exp (2miT/q) (A-3)
T=1 =1 k=1
L
= ax exp (-2mik/q) ztk” exp {Zm:(k+7)/q)
k=1 T=1

= z . ak exp (-2nik/q) ZaT exp (+2mir/qQ)
k T

N a cos {27k S‘ 5 } r 27 Y K/ “
= /q)-1 a_ sin(27K)/q) | | a, cos{2rk/q)+i a, sin(2nk/q)!
k L K i L0k k ‘
X : L k k _d
- 12 12
L + ML * 8§ -1) = }_a cos(21k/q)i + Z:a sin(21k/q) (A-4)
q,1 .k k
x J

where & is the Kronecker delta.

We now specialize this temporarily to the case M = 0. These se-
guences, which were described in section 4.3 have periods of the forau
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2
L = 4n , n=1, 2, 3,. , n + pm, p prime

2
Hence L is always divisible at least by 2, 4, n, and n
For q = 2, the mesh relation above yields
)2

2
4n = (522 - 821

We know alsc that

[ -

S9y1 0
and

522 = 2n

i.e., the first mesh of alternate digits 1s balanced and thLe second

contains the entire imbalance between N+ and N_.1

For q = 4,
2 2 2
dn = (5,, - S49) *+ (841 = S44)
From the case q = 2, we have
541 + 543 =0
and
542 + S44 = 2n.

Again chorsing arbitrary signs and indices wherever possible,

1/2
-S =5 = + (8 /

43 41 42 844)

and 3 3 - on
Paz t Pgq T

with the auxiliary c¢.ndit. ns that

with M = O that are not included here.

‘ This was first di.covered and proved by N. Karavianis and C.
Morrison «lcng with a number of other results concerning scjguences

(A-5)

(A-6)

(A-T)

(A %)

(A-9)

(A-10)

(A-11)

(A 12)

(A-13)

(A-14)




Syl <0 (A-15)
842 >0 (A-16)
S41 >0 (A-17)
and
= \ -
S4i =z n(mod 2) (A-18)
For any n, one solution is given by
~S43 = 341 = 842 = 544 =n (1) (A-19)
for even n, there is also the solution
S =S = S =0; 8 = 2n (11) (A-20)

41 42 43 44

These are all of the solutions except for a small number of others
that may be found straightforwardly by listing the squares of suc-
cessive composite values of S4 , factoring these into S4 and S4 s
and calculating n = (S42 + S4 }/2. This is required to %e an in%e-
ger and to have the same par-%y as S4., as noted above. The only
such irregular solutions for n < 20 are

n=10: S, = (8, 4, -8, 16) or (6, 2, ~6, 18)
n=15: S, = (9,3, -9, 27)
n = 20: S4i = (12, 4, '12, 36)

The others for n < 40 are for n = 26(2), 30(2), 34(2), 35, and 40(2).

Relations similar to the above can be written for each of the
factors of any sequence with two-level autocorrelation. The ones
apove cre suited to a computer search for sequences with M = O,
Such a search might begin by writing the admissible combinations
of lengths of runs of (+1)'s and (-1)'s from the two rules govern-
ing them; e.g., for n = 2 these are

S LN
' 5,2,2,1

3,1,1,1 ﬂ $,3,2,1
I 3,3,3,1
[ 5,311

2

22,11 \ 4,i,1.1
{
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T

where the choice has bteen made that

N >N
+ -

These would then be interleaved in all possible independent ways
and each of the resulting sequences tested cyclically to see if it
obeys the mesh relations for all q dividing L. Any sequences sur-
viving this test would then be tested for two-level autocorrelation,
a considerahly longer process.

We now return to tne case of general M. For some higher values
of q, the right side of the basic mesh relatioi has some coefficients

which are irrational and mutually independent; e.g., for q = 5, after
manipulation

L-M=§-2>__+3(s S +8.8..)
o Loy 51 J52 * 53 Ssq

-2¢ <§52 = 3(S.) Sg, + Sg4 554)> (A-21)
2/ ¢
+dc kll-a(sm Sgp + Sgs S,)

¢ = cos (21/10) = cos 36 deg

and 3
2 =ZS - T (A-22)
q1 g,1+4)
J i=1

Since the lowest order polvnomial equation with rational coefficients
satisfied by cos 36 deg is

2
8¢S - 8c° 4+ 1 =0 (A-23)

where

2 .
¢ and ¢ are irrational and incommensurable, and each of the last
two terms in the mesh relation must be zero. Hence

and

y o= ) = 5es., S, S A-25
2431 25 S(8g) Sep + S Sgy) (A-25)

Using the notuiion given by (A-22), the mesh relations for smallvalucs
of q are




q:l
q=2
q=3
q=4
q=5
q=6
q=8
q=12

Since no choice
these relations
quence origin,
lation

42

L+ ML-1)-= E. [Eq. (32)]
10 §

L - M=Z -zz e.g. [Eq. (A-6)]
0 =21

L_M=Z—Z“

0o &1

L-M:Z‘ —Z e.g. [Eq. (A-10)]
0o “42

L.—

RN
0 51
= =3 (S S + S S_.)
Zl Zsz 51 “s52 ¥ 53 “s4
o~ <
el b bl
0 1 2 63
Lo L
L " s
L-M:Z +Z Z -)
2,0 2,2 2,4 ~12.8
b ™ Lo s

of signs or indices has been made here, all of
must be obeyed cyclically in the choice of se-
The same is true of the universal auxiliarv re-

i

L-M

q L
, 1/2
qux = Z a =N - N_ = (L+ML-1)
i=l k=1

(A-26)




APPENDIX B. THE SHIFT-AND-ADD RELATIONS

If an m-sequence is shifted t digits and added to the un-
shifted sequence mod 2, the result is the same sequence shifted
to v’ digits. It is necessary to know the dependence of 7’ on
t when designing a linmax-coded radar using the transmitter leak
age for the local oscillator (ref 25), and for certain other pur-
poses, Here we state and illustrate £oime relations between 7T and
v’ without proof; the proofs all proceed straightforwardly using
the matrix theory found; e.g., in reference 17.

If a shift of 7 digits in the addend sequence leads to a
shift of 7’ in the sum sequence, we write + — 71’

If ,
T T (B 1)

then

Hence the relation ( —» ) is reflexive and should be written («+).
/
As a result we will symbolize T and T more symmetrically by T, and

1
To.
If
T g (B-2)
then . n
271*h>2T2, both sides modulo L = 2 -1,
If
™ 4(4.7'2 (B-3)
then
(-Tl) <»(7, - T,), both mod L.
If (Tl, Té) describes a two-tap linmax SRG, then
Tl -¢~PT2 (B-41)

for the m-sequence generated bv that SRG.

There is one other relatior which permits writing the (T,r')
dependence compactly:

If

Tl<rh»q

and
T - T, T
2 1 3

and
T, —(1, - 1,) €7
3 2 1 i

13




then

74 ~(T

3 1

-(72 -T.)= L (med L) (B-5)

As a result the entire dependence given in section 4.4.2 for the (3,5)
m-sequence can be written as a 5 x 3 matrix (generally a

n
=
than.")
-1
2
4
7
Ls
where, for example,

and similarly for each row,

13 17|
26 3
21 6
9 15
11 12

l«>» 1+13=14

13 =% 13 4+ 17

17 «» 17 4+ 1

30
18

2
] x 3 matrix, where [ ] symbolizes "smallest integer not less

Every integer from 1 to 30 appears ex-

actly once either as an element or the sum of two elements in some Tow,
the rows double as in relation (8- and the suu of each row is 31.

reads

The entire matrix can be written using (3-4), which in this case

3 =w=» 5

b

followed by alternate applications of relations (B-2) and (B-3). This

is not true for larger n:

be obtained this way.
with more than two taps, it is necessary tc calculate the results of
sorme shifts by actual addition of sequences.
still greatly reduce the labor involved, but bv a factor som .nat less
than (6nj), due to short cycles.

44

Here this gives ail 30,

the results of not more than (6n) shifts can

For larger n or for SRG's

Relations (B-2) and (E-3)




APPENDIX C: FILTER INTEGRATION OF M-SEQUENCES

We will treat a simple case: the RC integration of a mixer
output when the mixer inputs are both m-sequence telegraph signals.

s =T
M-SEQUENCE EIN
TELEGRAPH SIGNAL -—-:—*Eour

SAME SIGNAL ‘ l
OELAYED T BITS L _J

Figure C-1. Filter integration of an m-sequence.

el

As & function of the history of the input voltage to the
integrator Ein’ the output voltage Eou is

t
t
K(u-~-t)
E(Jt (t) = K f e Ein(u) du (C-1)
-00
wliere
. K = 1/RC
When 1 = O, Ei is dc and E asymptotically approaches E When

u .
T is a non-zero integer, E 2 is the same m-sequence accordigg to the
) shift-and~add property. I% the sequence is (---+~++) and the recent

history of Ein is (-'--——+-++l--) then the integrand is as shown in
figure C-2.

INTEGRAND

-
A -7
'
- |

===~ 7| I fu=+

‘_..___‘._;,___N\\L‘O\J 1 —2=

S

Figure C-2. Integrand of equation Cl. J

b g
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At the end of any bit, the integral is

-0 1
E = (1 - e—xt°)> a enKtO
out n
n=0
- - -2
=(1-eKt°) ao<l+eLKt°+e tho+...>
ra <e-xto . o (LADKt, N >
-(L-1)Kt, . .
* R (e + (c-2)
-L+1
-Kto
l-e nkt
- =€ o -
Eout = ~-LKt, Z %h € (c-3)
l-e n=0

Unlike the output of an L-bit block integrator (one which com-
L

putes z ak ak+T exactly) with the same input, this Eout is not con-
1
stant in time. If the "'recent’” part of the sum is a section of the

sequence containing predominantly (+)'s, the sum will be positive,
etc. Expanding the exponential,

-I+l -1+l
Z=Z a (l+nl(to+--c ) (C-4)
0 0
#nd the first term does not fluctuate; it is just
-L+1
Z a = -1 (C-5)
n

n=0

A crude limit on the fluctuating second term can be made by
assuming that the 'recent’” hal® of the sum has all a_ equal tc (-1)
and the distant half (+1).

-L+1

-1+1 -L/2 P

> a n < - Z n o+ Z n (C-6)
l n

0 0 -L/2

< 19/4.




Doubling this quantity gives a pessimistic estimate of the peak-to-
peak fluctuations of the sum in E_ . as the "recent' part of the se-
quence changes back and forth between ''predominantly (+)'s and 'pre-
dominantly (-)'s'as time goes by.

A much better estimate can be made by using a conjectured approx-
imate limit on the truncated autocorrelation function of an m-sequence

J
1/2)
< i < L -
Z;ak ak+o A{(JL/2) , J (c-7)
t=1
Then d
Z n < n - ZZn (C-c?
an ~
- 1
where 1-d
1/2
d - 32yt
2
Hence Z na <L (3L/2)> (c-9)

For Perron sequences the limit on the truncated autocorreiaticn
seems to be much smaller.




