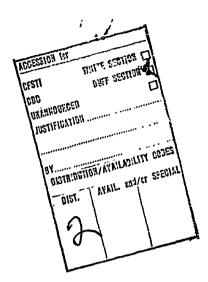

EVALUATION OF LARGE
TITANIUM ALLOY FORGINGS
SECOND QUARTERLY REPORT

PC


EPORTING PERIOD 1 'ULY 1965 THROUGH 30 SEPTEMBER 1965

CONTRACT NUMBER AF33(615)-2690

Air Force Materials Laboratory Research and Technology Division Air Force Systems Command United States Air Force

LOCKHEED-CALIFORNIA COMPANY - BURBANK

"This document may not be reproduced or published in any form in whole or in part without prior approval of the Government. Since this is a progress report, the information herein is tentative and subject to changes, corrections and modifications."

SECOND QUARTERLY PROGRESS REPORT. no.2, 1 Jul - 30 Sep 65,

EVALUATION OF LARGE TITANIUM

ALLOY FORGINGS.

(5) AF 33(615)-2690

BPSN Number 65-(687381-738106-62405514)

1) 30 Sep 65, 13) 31 p. 14) LR-19190 Rod F. Simenz.

Approved by

H. B. Sipple () ()
R&D Engineer, Materials
and Processes

Ohiei Administrative Engineer

LOCKHEED-CALIFORNIA COMPANY, BURBANK, CALIFORNIA

FOREWORD

This report was prepared by the Lockheed-California Company, Burbank, California, under Contract No. AF 33(615)-2690. The program is administered under the direction of the Air Force Materials Laboratory, Research and Technology Division by Lt. D. C. LaGrone.

This work is conducted under the direction of Mr. H. B. Sipple, R & D Engineer, Materials and Processes, Mr. R. F. Simenz is Project Leader, assisted by Mr. W. L. Macoritto. Technical consultation is being profided by Mr. V. E. Dress and Mr. G. G. Wald, Research Specialist and Design Specialist, respectively.

Static testing is under the direction of Mr. R. L. Adamson, Materials Evaluation, assisted by Mr. S. L. Pendleberry. Fatigue testing is under the direction of Mr. R. H. Wells, Structures Test, assisted by Mr. C. S. Oswell.

Wyman-Gordon Company personnel who are actively participating in the program include:

Mr. J. J. Zecco, Jr., Research Project Engineer Mr. R. E. Sparks, Senior Research Metallurgist

The period covered by this report is 1 July 1965 through 30 September 1965.

ABSTRACT

The purpose of this program is to evaluate large titanium forgings for reliable use in advanced weapon systems. Four forgings of Ti-6Al-4V and four forgings of IMI679 will be used in the evaluation. Two forgings of each alloy will be machined into test coupons for material property tests, one forging will be full scale fatigue tested and the other forging will be full scale static tested.

This report summarizes the work accomplished during the second quarterly period. All forgings have been produced and heat treated.

Machining of two forgings each of Ti-6Al-4V and IMI679 to a modified F-10% aft fuselage ring fitting is nearly completed.

Preparation of material property test coupons removed from forgings of IMI679 was started and some testing cor sted. Preliminary smooth tension, notched tension, compression and tatigue data on IMI679 are presented.

TABLE OF CONTENTS

	PAGE
INTRODUCTION	1
PROCEDURE AND RESULTS	2
RAW MATERIAL DATA	2
FORGINGS	2
HEAT TREATMENT	2
MATERIAL PROPERTY TESTS	2
FULL SCALE TESTS	3
FUTURE WORK	4
APPENDIX	20

LIST OF TABLES AND FIGURES

STATE OF THE PROPERTY OF THE P

TABLE		PAGE
1	Tensile Results - IMI 679 Forging Number JHU-1	12
2	IMI 679 Thick Section Tensile Properties Forging JHU-1	13
3	IMI 679 Thick Section Tensile Properties Forging JHU-2	14
4	IMI 679 Notched Tensile Properties	15
5	IMI 679 Thick Section Compression Properties	16
6	IMI 679 Notched Axial Tension Fatigue Properties	17
7	Product Test Results - IMI 679	18
8	Product Test Results - Ti-6Al-4V	19
9	TMCA Chemical Analysis	26
10	TMCA Mechanical Properties	27
11	Billet Stock Tensile Test Results - IMI 679	28
12	Billet Stock Tensile Test Results - Ti-6Al-4V	29
13	Ti-6Al-4V Forging Process Data	30
14	IMI 679 Forging Process Data	31
FIGURE	3	
1	Specimen Layout First Forging IMI 679 and Ti-6Al-4V	5
2	Specimen Layout Second Forging IMI 679 and Ti-6Al-4V	6
3	Specimen Layout Third Forging IMI 679 and Ti-6Al-4V	7
4	Specimen Layout for IMI 679 and Ti-6Al-4V, First Forging Center Section	8
5	Specimen Layout for IMI 679 and Ti-6Al-4V, Second Forging Center Section	9

FIGURES		PAGE
6	Fatigue and Compression Specimen Layout Detail	10
7	Capability Tests - Integrally Forged Coupons	11
8	Macrosection of 7-Inch RCS Billet Stock IMI 679, Longitudinal Top and Transverse Bottom	21
9	Macrosection of 7-Inch RCS Billet Stock IMI 679, Transverse Bottom	22
10	Macrosection of 7-Inch RCS Billet Stock IMI 679, Transverse - Top	23
11	Microstructure of Heat Treated IMI 679 Billet Stock	24
12	Microstructure of Heat Treated Ti-6Al-4V Billet Stock	25

Sec.

Table State State

Ĩ

I

Constant of the Constant of th

I recent

Carried M

INTROLUCTION

Substantially increased usage of titanium alloy forgings is anticipated in future weapon systems because of the structural advantages offered by these materials. The purpose of this program is to provide data which will form a basis for the reliable use of titanium alloy forgings. Two titanium alloys will be evaluated in this program, Ti-6Al-4V and IMI679.

A total of four forgings will be produced in each alloy. Two forgings of each alloy will be machined into test coupons for material property tests, one forging will be full scale static tested and the other will be full scale fatigue tested. Mechanical property data to be obtained will include tensile, compression, bearing, shear, fracture toughness, and axial fatigue at temperatures of -110° to 550°F.

In a previous Air Force program AF 33(615)-1635, a similar evaluation was conducted on two other titanium alloy forgings Ti-6Al-6V-2Sn and Ti-13V-11Cr-3Al. Data obtained in the AF 33(615)-1635 program will be compared with data obtained in this program to illustrate the relative merits of four of the leading candidate titanium forging alloys.

PROCEDURE AND RESULTS

RAW MATERIAL DATA

Billet stock chemical analysis and test properties reported by TMCA are given in the Appendix.

FORGINGS

Four forgings of Ti-6Al-4V and four forgings of IMI679 have been received from Wyman-Gordon. Details on the forging operations used to produce these parts are presented in the Appendix.

HEAT TREATMENT

The IMI679 forgings were heat treated in full section size at Wyman-Gordon. The heat treatment recommended by the supplier for this alloy was used. This treatment consisted of heating at 1650°F for one hour, followed by fan cooling and then aging at 930°F for twenty-four hours.

The Ti-6Al-4V forgings were rough machined to a maximum thickness of 2-1/2 inches prior to heat treatment. The standard solution treatment and age was used for this alloy (i.e., 1750°F - 1 hour, water quench; age 4 hours at 1000°F.)

MATERIAL PROPERTY TESTS

Tensile tests on Ti-6Al-4V and IMI679 were conducted in all three grain directions on the billet stock from which the forgings were produced. The heat treatment procedures used on the billet stock were the same as those used on the forgings. The data obtained are given in the Appendix.

Two forgings of each allow are being machined into test coupons for material property tests. The tests to be conducted include smooth and notched tension, compression, fatigue, shear, bearing and fracture

toughness. The location and orientation of test coupons in each forging are presented in Figures 1 through 6.

Preliminary data have been obtained on IMI679. Smooth tension, notched tension, compression and fatigue data are presented in Tables 1 through 6. Additional tensile data were obtained by Wyman-Gordon on forgings of Ti-6Al-4V and IMI-679. These tests were conducted on test material forged integral with the parts. Specimen location for these tests are shown in Figure 7. Test data are given in Tables 7 and 8.

FULL SCALE TESTING

では、10mm

Full scale static and fatigue testing will be conducted in the same test set-up as that used in Contract AF33(615)-1635. Final machining of two forgings of each alloy for full scale testing is nearing completion.

FUTURE WORK

During the next quarterly period, 1 October through 31 December, it is anticipated that the following work will be accomplished:

- 1. Machining of all parts and test coupons will be completed.
- 2. Material property testing will continue and additional metallographic work will be accomplished.
- 3. Test fixtures will be set up and full scale static testing will be initiated.

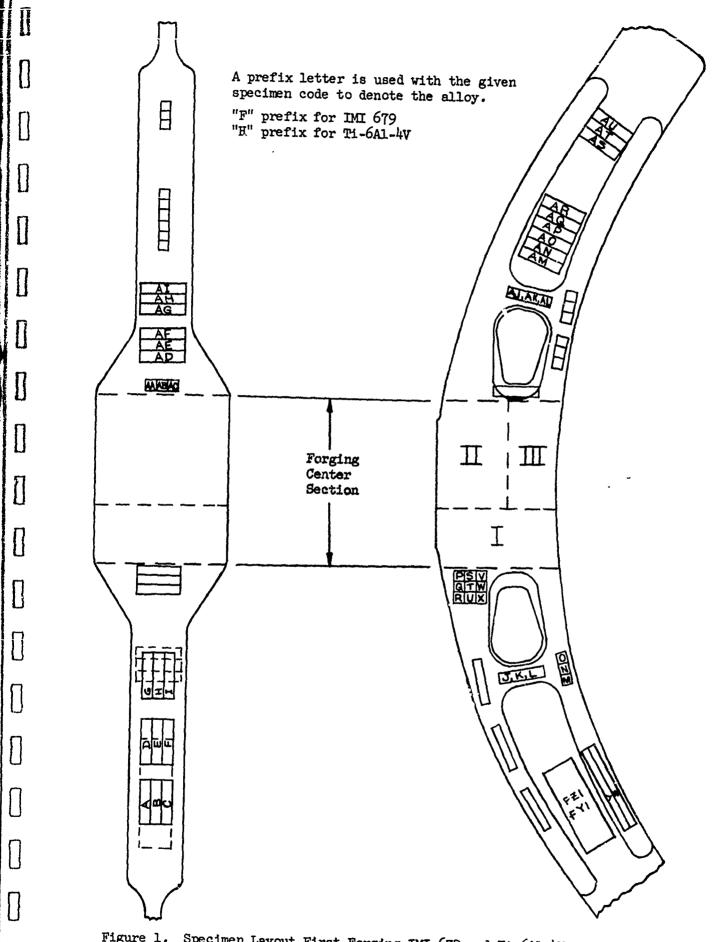


Figure 1. Specimen Layout First Forging IMI 679 and Ti-6Al-4V

)

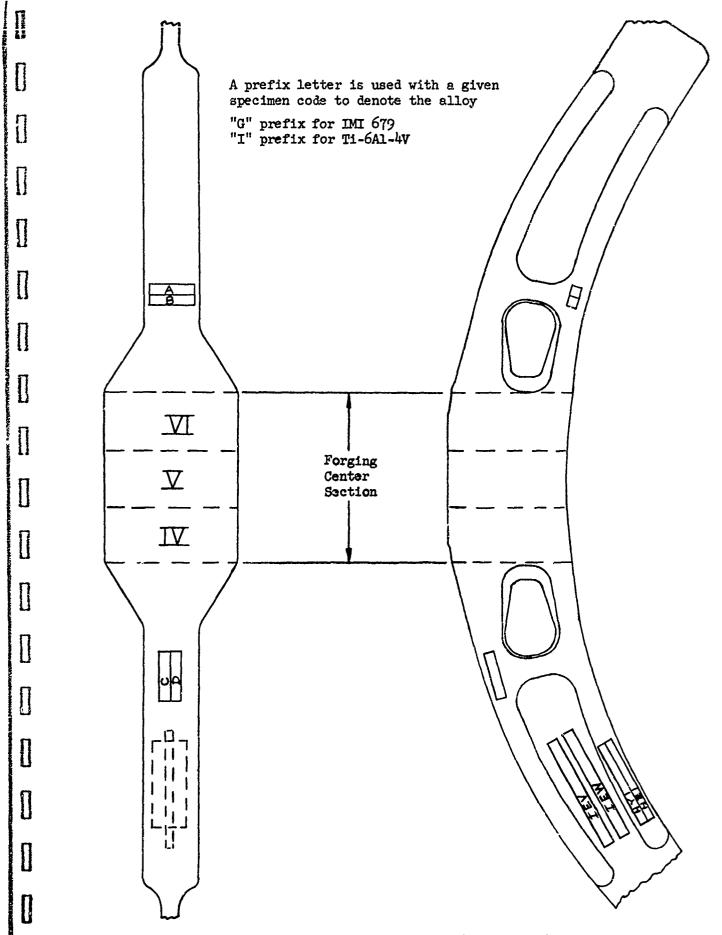
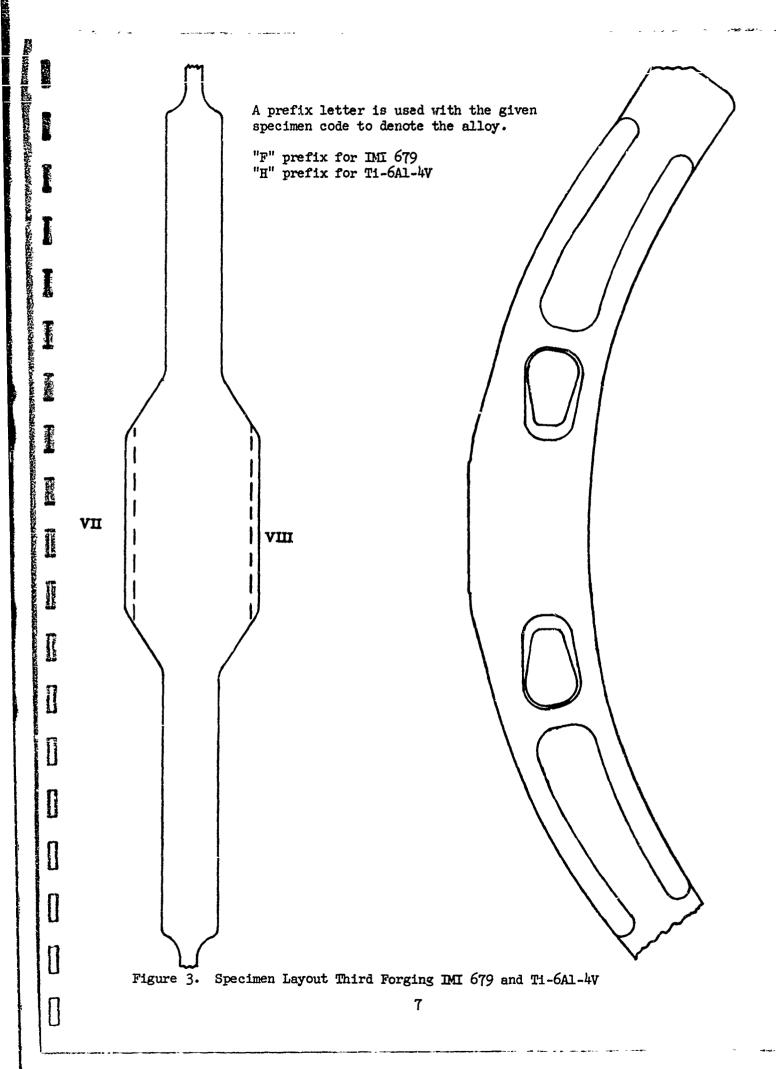
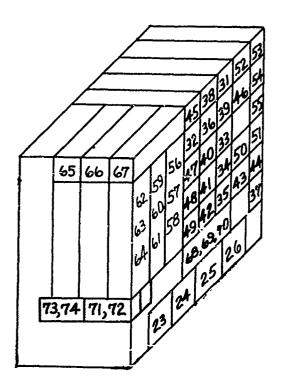
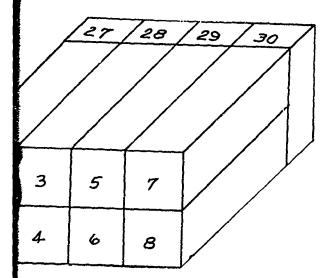





Figure 2. Specimen Layout Second Forging IMI 679 and Ti-6Al-4V

SUB-BLOCK I


Туре	Specimen Number		
23 through 26	Compression		
39, 43, 46, 50, 52, 53	Notched Tensile		
71 through 74	Shear		
All Others	Tensile		

SUB-BLOCK II

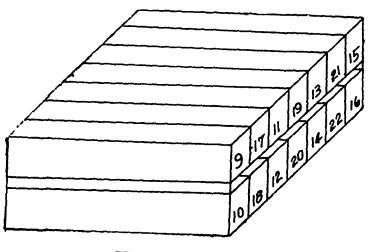
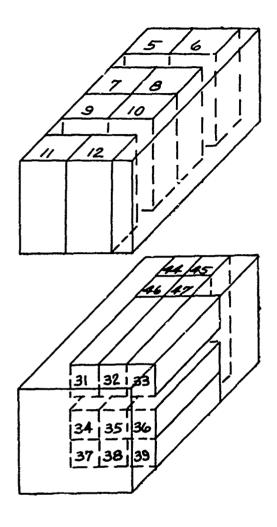
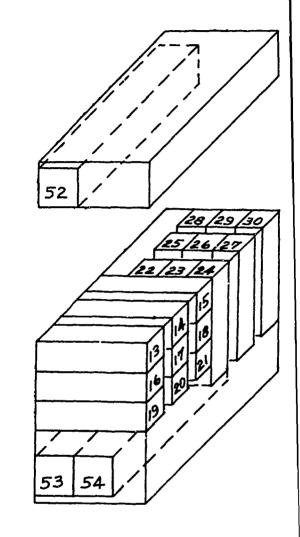

Specimen Number	Туре
1 through 8	Fracture Toughness
27 through 30	Compressio

Figure 4. Specimen Layout for IMI 679 and Ti-6Al-4V First Forging Center Section

SUB-BLOCK II

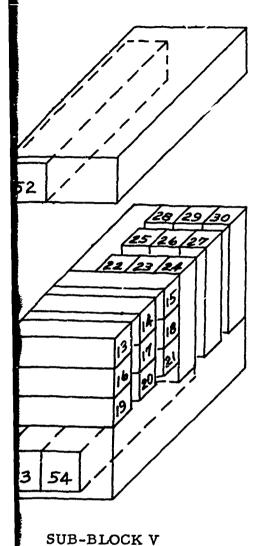

nen Number	Туре			
ough 8	Fracture Toughness			
rough 30	Compression			

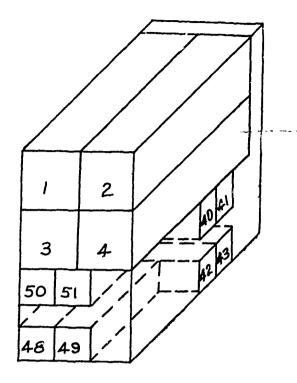
SUB-BLOCK III


Specimen Number	Туре
9 through 22	Fatigue

Center Section

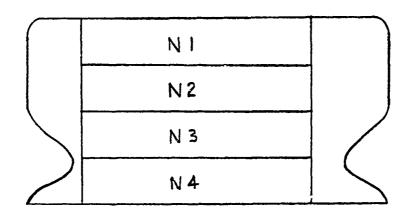
SUB-BLOCK IV

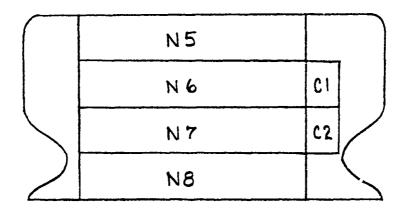

Specimen Number	Туре		
5 through 12	Compression		
44, 45, 46, 47	Notch Tensile		
All Others	Tensile		


SUB-BLOCK V

Specimen Number	Туре	
52, 53, 54	Fatigue	
All Others	Tensile	

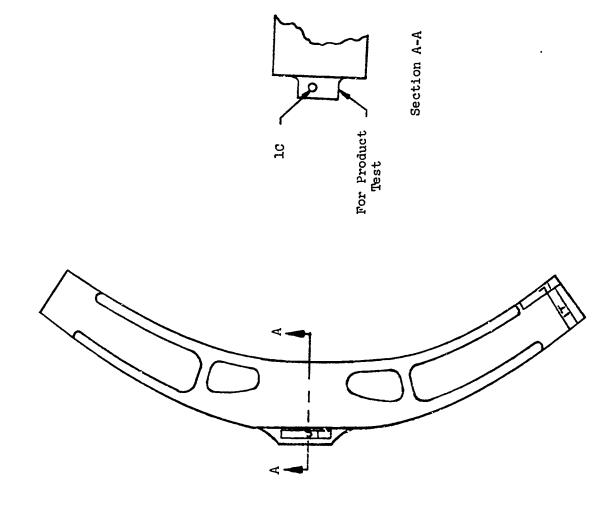
Figure 5. Specimen Layout For IMI 679 and Ti-6A1-4V Second Forging Center Section


n Number	Туре
3, 54	Fatigue
thers	Tensile



SUB-BLOCK VI

Specimen Number	Туре		
1, 2, 3, 4	Fracture Toughness		
All Others	No tc h Ten sil e		


Forging Center Section

NOTE: N1 through N8 Fatigue
C1 and C2 Compression

Figure 6. Fatigue and Compression Specimen Layout Detail

Server

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW

Total Control

Figure 7. Capability Tests - Integrally Forged Coupons

TABLE 1 TENSILE RESULTS IMI 679 FORGING NUMBER HJU-1

R.A.	43.7 45.5 45.0	41.7 47.8 42.5	44.0	101 101 101 101 101 101 101 101 101 101	25.55 25.55 26.54 26.54	70.0 70.0 149.0
Elong. % 1 in.	15.0	15.5	12.0	17.0	17.0	17.2 16.5 16.5 16.5
Yield Strength 0.2% ksi	133.0 127.6 130.2	133.0 133.0 138.2	130.4 130.0 130.0	130.7 93.0 87.2 89.8	889 85.8 86.0	88.0 88.0 88.0 88.0
Ultimate Tensile Strength ksi	150.8 144.0 147.0	150.0	147.1	146.5 120.6 111.4	115.2	114.0
Test Temp.	RT	RT	RT	550	550	550
Grain Direction	ы	T.	ВŢ	н	II.	ET
Specimen Location	Flange	Complex Grain Flow	Flange	Flange	Complex Grain Flow	Flange
Specimen	FG FH FI	Average FJ FK FL	Average FM FN	FO Average FD FE		Average FAG FAH FAI Average

Somer

IMI679 THICK SECTION TENSILE PROPERTIES FURGING HJU-1 TABLE 2.

										
R.A.	04	9	75	33	44	1 7	3	143	147	
Elong.	15	16	15	13	15	14	16	1.5	13	
Yield Strength 0.2% ksi	127	129	132	134	121	136	136	134	129	
Ultimate fensile Strength ksi	141	143	941	148	136	150	151	149	144	
Test Temp. °F	RT		RT		RT	RT			RT	
Grain Dir.	'n		ㅂ		LT	ST			ST	
Specimen Location	Center		Edge		Center	Edge			Center	
Specimen Number	F34	F35	F38	F45	F58	F65	P66	F67	F70	

TABLE 3. IMI679 THICK SECTION TENSILE PROPERTIES FORGING HJU-2

Tana di

I

Towns.

Lancado

0

	
R.A.	30 43 43 41.0 41.0 40.0
Elong.	11 14 14 15 15 14.6 14.0
Yield Strength 0.2% ksi	121 123 127 129 130 134 135 134.0
Ultimate Tensile Strength ksi	137 138.3 144 145 148 150 147 148.5
Test Temp.	RT RT
Grain Dir.	TS ES
Specimen Location	Center Mid-radius Edge
Specimen Number	G32 G32 Average G34 G35 G35 G37 G38 G39 Average

	NTS/UTS (K _t = 3.9)								
	Notched Tensile Strength ksi	196 207	201.5 206 204 204	200 200 200 200 200 200 200 200 200 200	208 208 208 206	207.0 205 201	203.0 204 204	202 202 200 200	201.0
PERTIES	Test Temp.	RT	RT	RT	RT	RT	RT	RT	
TENSILE PRC	Grain Dir.	ST	H	ы	TT.	ŢŢ.	ST	ST	
IMI679 NOTCHED TENSILE PROPERTIES	Specimen Location	Flange	Center	Edge	Edge	Mid-radius	Edge	Mid-radius	
TAELE 4.	Specimen Number	GA GB	Average G40 G41	Average G42 G43	Average Ghù G45	Average G46 G47	Average G48	Average G50 G51	Average
	Forging Number	HJU-2							

I

I

Take 1

A STATE OF THE PARTY OF THE PAR

T

I

TABLE 5. IMI679 THICK SECTION COMPRESSION PROPERTIES

THE PARTY OF THE PROPERTY OF T

	·	
Compression Yield Strength ksi	136 141 144 145 144.5	149 148 138 142 142
Test Temp.	RT KT	RT RT
Grain Dir.	J. LT.	II.
Specimen Location	Edge Bdge	Edge Center
Specimen Number	F23 F24 Average F27 F28 Average	G5 G6 Average G7 G8 Average
Forging Number	HJU-1	HJU-2

•			
- Care			
- Charles			
- Charles			
Charles Property Prop			
P. Valley M.			
]			
]			
ر - ۲			

	Cycles to Failure	8,640 28,440 562,500 1,583,460 3,845,160 781,200 7,380,000 (2)
SUE PROPERTIES	Stress (1) max ksi	80 60 50 40 38 35 30 LOST IN TEST
IMI679 NOTCHED AXIAL TENSION FATIGUE PROPERTIES	Test Temp.	RT
NOTCHED AXIA	Grain Dir.	ь
TABLE 6. IMI679	Specimen Number	FN FN FN S S FN FN FN S FN
TAI	Forging Number	GWN-13

(1) Stress Ratio R = 0.1; $K_t = 3.0$

(2) Test still in progress.

TABLE 7 PRODUCT TEST RESULTS - IMI-679 - TMCA HEAT 8427 (1)
ALL SAMPLES WERE INTEGRAL WITH FORGINGS AT TIME OF HEAT TREATMENT

Forging Number	Spec No.	Location	Ultimate Tensile Strength ksi	Yield Strength 0•2% ksi	Elong. % l in.	R.A. %
HJU-1	1L	End Pad Long.	152.4	134.0	15.0	46.7
	1T	End Pad Trans.	149.0	134.0	16.0	46.1
	1L	Center Pad Long.	146.4	131.2	15.0	37.6
HJU-2	1L	End Pad Long.	153.0	134.0	15.0	47.8
	1T	End Pad Trans.	146.2	131.6	16.0	43.1
	1L	Center Pad Long.	150.0	133.6	13.5	36.3
HJU-3	1L	End Pad Long.	153.8	134.6	15.0	43•7
	1T	End Pad Trans.	146.8	131.6	14.5	45•5
	1L	Center Pad Long.	150.0	131.6	14.5	42 _• 5
HJU-4	1L	End Pad Long.	152.0	134.2	15.0	46.1
	1T	End Pad Trans.	150.0	132.0	15.0	39.5
	1L	Center Pad Long.	148.0	130.0	13.5	39.5

(1) Heat Treatment
Solution Treated 1650°F (1 hour) Fan Cool
Aged 930°F (24 hours) Air Cool

TABLE 8 PRODUCT TEST RESULTS T1-6Al-4V TMCA HEAT D-7976 MATERIAL CUT FROM FORGING, HEAT TREATED AS COUPONS (1)

Forging	Spec.	Location	Ultimate	Yield	Elong.	R.A.
Number	No.		Tensile	Strength	%	%
			Strength	0.2%	1 in.	
			ks1	ksi		
GWN-11	1L	End Pad Long.	178.0	164.0	10.0	29.9
	1T	End Pad Trans.	170.6	156.0	11.0	33.8
	1C	Center Pad Long.	168.0	154.0	10.5	31.8
GWN-12	1L	End Pad Long.	171.4	157.0	13.0	35•7
	1T	End Pad Trans.	173.6	158.0	11.0	35•7
	1C	Center Pad Long.	169.6	154.8	10.5	32•7
GWN-13	1L	End Pad Long.	181.6	169 . 2	10.5	35•7
	1T	End Pad Trans.	174.0	160.8	11.5	34•4
	1C	Center Pad Long.	168.4	155 . 8	10.5	34•4
GWN-14	1L	End Pad Long.	176.2	163.4	12.0	38.2
	1T	End Pad Trans.	168.0	153.8	13.5	45.0
	1C	Center Pad Long.	170.0	158.0	8.5	23.1

(1) Heat Treatment:
Solution Treated 1750°F (1 hour) W.Q.
Aged 1000°F (4 hours) A.C.

APPENDIX

TMCA chemical analysis for the Ti-6Al-4V and IMI679 billet stock are given in Table 9. Mechanical properties for both alloys reported by TMCA are presented in Table 10.

Wyman-Gordon data on tensile properties for all three grain directions on Ti-6Al-4V and IMI679 billet stock are given in Tables 11 and 12. The billet material was four inches thick at time of heat treatment.

Longitudinal and transverse macrosections of IMI679 billet are shown in Figures 8, 9, and 10. Microstructures of IMI679 and Ti-6Al-4V billet material are presented in Figures 11 and 12.

Basic details related to production of the Ti-6Al-4V and IMI679 closed die forgings are presented in Tables 13 and 14.

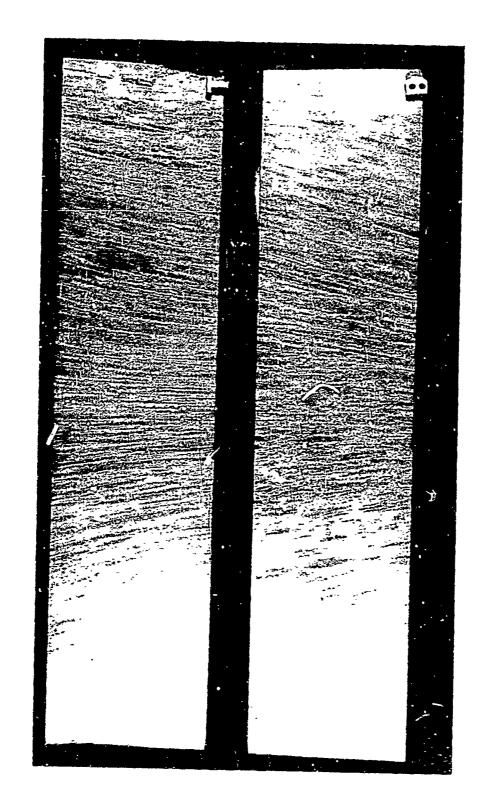


Figure 8. Macrosection of 7-Inch RCS Billet Stock IMI 679, Longitudinal Top (Upper) and Transverse Bottom (Lower)

THE PARTY OF THE PROPERTY OF T

Figure 9. Macrosection of 7-Inch RCS Billet Stock IMI 679, Transverse - Bottom

Figure 10. Macrosection of 7-Inch RCS Billet Stock IMI 679, Transverse - Top

Figure 11. Microstructure of Heat Treated IMI-679 Billet Stock (Longitudinal - Upper, Transverse - Lower)
Etchant: Benzal Stain 250X

The state of the s

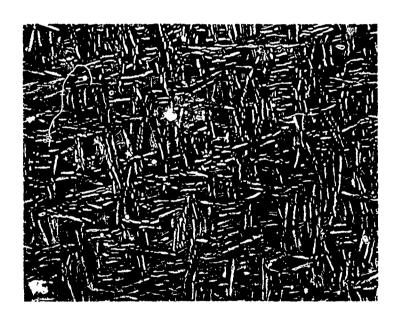


Figure 12. Microstructure of Heat Treated Ti-6Al-4V Billet Stock (Longitudinal - Upper, Transverse - Lower)
Etchant: NAOH 100X

TABLE 9. IMCA CHEMICAL ANALYSIS

Si		. 23 . 24
02	.20	11.
Sn		11.11 11.3
Zr		ф°† 6°†
H	.000 600.	÷00.
Мо		e. 1.
Λ	7. 4. 4. 4. 0. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	
A1	6.3	0 0 0 0
N	.018 .018	.009
H e	.12 .08 .08	.05
υ	. 022	. 022
Heat No.	D-7976 T M B	D-8427 T M
Alloy	T1-6A1-4V	619-IMI

TABLE 10 TMCA MECHANICAL PROPERTIES

U

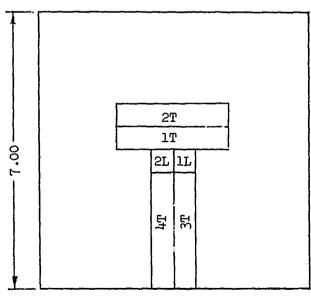
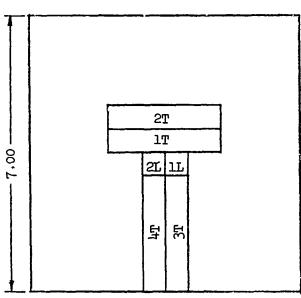

Hardness	Rc	31.5 30.5	34.5 31.5			
R.A.	76 2	38.2 34.9	32.5 40.1	40.6 39.3	31.7 38.7	6°111
Elong.	% inch	18.0	16.0	13.0	13.c 15.0	19.0
Yield	Strength ksi	133.9 138.9	137.0 138.4	156.2 158.1	157.0	133.9 134.3
Tensile	Strength ks1	144.8 149.2	147.6 145.9	171.1 168.3	167.5 168.7	152.6 151.2
Test	No.	(top) Rad. Tang.	(bottom) Rad. Tang.	(top) Rad. Tang.	(bottom) Rad. Tang.	Rad. Tang.
Heat	Treatment	Upset 2" to 3/4" (top) at 1750°F Rad Annealed 2 hrs. Tar at 1300°F		Solution Treat- ed (1 hr. 1725 F W.Q.	Lab. Aged (3 hrs) 900 ⁰ F	Upset 2" to 3/4" at 1650°F Solution Treated 1 hr.at 1650°F Aged 24 hours at 930°F
Heat	No.	D-7976		D-7976		D-8427
	Alloy	T1-6A1-4V				1MI-679

TABLE 11. BILLET STOCK TENSILE TEST RESULTS Ti-IMI 679 - TMCA HEAT D-8427(1) (7 x 7 x 4 Billet)

Specimen Number	Ultimate Tensile Strength ksi	Yield Strength 0.2% ksi	Elong. % l in.	R.A. %
1L	144.0	125.6	13.5	35•7
1 T	139.0	118.0	14.0	33.8
2L	140.0	121.8	15.0	38.2
2T	142.0	122.0	11.5	29.9
3 T	152.0	134.0	15.0	31.1
4 T	150.0	133.8	10.0	29.9

(1) Heat Treatment:

Solution Treated 1650°F (1 hour) Fan Cool Aged 930°F (24 hours) Air Cool



Test Locations

TABLE 12. BILLET STOCK TENSILE TEST RESULTS Ti-6Al-4V TMCA HEAT D-7976 (1) (7 x 7 x 4 Billet)

Specimen Number	Ultimate Tensile Strength ksi	Yield Strength 0.2% ksi	Elong. % l in.	R.A.
1L	143.0	127.0	13.0	32.7
2L	137.6	114.0	14.5	33.8
1 T	143.4	128.4	12.5	26.6
ST	140.0	128.8	15.0	28.3
3 T	150.0	132.0	10.0	21.7
4 T	148.0	129.2	10.0	25.1

(1) Heat Treatment:
Solution Treated 1750°F (1 hour) W.Q.
Aged 1000 F (4 hours) A.C.

Test Locations

TABLE 13. T1-6A1-4V FORGING PROCESS DATA

The same of

Towns .

The same of

ŀ

				 		
Forging, ^O F	Off Dies	1450 1450 1450 1450	1500 1540 1500 1500			
Temperature of Fo	On Dies	1665 1665 1665 1660	1670 1665 1680	1665 1660 1600 1670	1660 1660 1670 1670	
Tempe	Out Furnace	1725 1720 1725 1725	1730 1725 1730 1740	1735 1725 1720 1725	1725 1730 1725 1720	
Furnace	Temp. OF	1800	1800	1775	1775	
Heat	Cycle hrs.	9	2/1-2	2-1/2	1/2	
Press	Equipment tons	1,500	009	18,000	13,000	
Forge	Operations	Огам	Bend	lst Finish	2nd Finish	
Cut	Weight lbs.	106 106-1/2 107 108				
Forging	Number	GWN-11 GWN-12 GWN-13 GWN-14	GWN-11 GWN-12 GWN-13 GWN-14	GWN-11 GWN-12 GWN-13 GWN-14	GWN-12 GWN-12 GWN-13 GWN-14	

All cooling was in air

TABLE 14. T1 IMI 679 FORGING PROCESS DATA

Û

至

	1															
Forging, ^O F	Off	Dies	1450			1500 1485 1495 1500			1400			! ! !	!!!	: : :		
of G	on	Dies	1550	1540	1550	1555	1535		1470	1500)	1545	1550	1545		
Temperature	Out	Furnace	1600	1600	TOZO	1630	1625	, , ,	1580	1580		1620	1610	1615	-	
Furnace	Temp.	O _F	1675			5 <i>).</i> 9T		3671			11	C) 0T				
Heat	Cycle	hrs.	رد. در در	7-1/2		ν,		0/1-0	7/1		0/10	5/4-7				
Press	Equipment	tons	1,500		9	8		18.000			35,000					
Forge	Operation		Draw		Bend			1st Finish			2nd Finish					
Cut	Weight	lbs.	108	109	1 !	1	! !	!	: :	!	1	!!!	!			
Forging	Number		HJU-1 HJU-2	HJU-3 HJU-4	ਜਹਾ-1	HJU-2	HJU-4	HJU-1	HJU-2 HJU-3	HJU-14	HJU-J.	HJU-2	HJU-3	h20-4		

All cooling was in air