UNCLASSIFIED

AD NUMBER

AD476156

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors;

Adm ni strative/ Qperational Use; MAY 1965. O her
requests shall be referred to Air Force Systens
Command, Space Systens Division, Los Angel es,
CA 90009- 2960.

AUTHORITY

SAMSO USAF Itr, 28 Feb 1972

THISPAGE ISUNCLASSIFIED




rwpomm ml:svsmsnmaou

8 Ty e
. MAY 1968

' e Pn”rel by
& . H. L. ROTH

Acn‘_zunkc Dopcmmu
Wec and Camol Su“ivhtu y : 8t -
Electronics Division i AN

mmwmm
wsmwmmlct snm

Los Angeles, Colifornia ' ,

EL SEGUNDO TECHNICAL OPERATIONS s AERQ&PACE CORPORATIO

CONTRACT NO. AF 04(695)-4(

S~3



NOTICE

Qualified requesters may obtain copies of this report from the Defense
Documentation Center. Distribution of this report is limited because

secondary distribution within the DOD structure is provided by DDC.




Report No.
SSD-TR-126 TDR-4¢9(5540-10)-5

BI-ELLIPTIC TRANSFER WITH PLANE CHANGE

Prepared by H. L. Roth

Astrodynamics Department
Guidance and Control Subdivision
Electronics Division

El Segundo Technical Operations
AEROSPACE CORPORATION
El Segundo, California

Contract No. AF 04(695)-469

May 1965

Prepared for

COMMANDER SPACE SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
LOS ANGELES AIR FORCE STATION
Los Angeles, California



SSD-TR-126 TDR-469(5540-10)-5

BI-ELLIPTIC TRANSFER WITH PLANE CHANGE

Prepared by Approved by

I WarreSorn | E2 Puee

H. L. Roth N C. M. Price, Head
Astrodynamics Department Astrodynamics Department

Guidance and Control Subdivision

S Toun,

E. Levin, Director
Guidance and Control Subdivision
Electronics Division

This technical documentary report has been reviewed and is approved for
publication and dissemination. The conclusions and findings contained herein
do not necessarily represent an official Air Force position.

William E. O'Brién
It, USAF

Project Officer

-iii-



S

ABSTRACT

By the calculations presented, the minimum total velocity increment required
for bi-elliptic transfer between non-coplanar circular orbits is obtained. The
maneuver considered is the following: A vehicle in circular orb’t at altitude
hi (radius ri) applies an impulsive velocity AVl at the line of nodes. The
effect of the application of AVl causes a plane change of amount e, and a
transfer ellipse to a given transfer altitude ht (radius rt) is established.
When the vehicle reaches ht' a second impulsive velocity change AVZ
simultaneously changes the plane by amount a, and initiates a transfer
ellipse to the altitude hf (radius rf) of the target orbit. A last impulse AV3
changes the plane by amount ag and circularizes the orbit at altitude hf,

placing the vehicle in the final (target) circular orbit.

Studies were made of the choice of plane change angles a;, ay and ay which
minimizes AVT = AVl + AVZ + ..‘.\.V3 for given values of hi' ht’ hf and total
plane change angle 6 = a); ta, +a,. Several limiting relations were obtained
for ays ay and as; they are dependent on either the ratio rt/ri alone, or the

ratios rt/ri and rt/rf, and are independent of 6,
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I. INTRODUCTION

Problems dealing with orbital transfer are of considerable current irnportance.
For non-coplanar orbits, it is particularly important to miiaimize (or nearly
minimize) the velocity expenditure necessary to accomplish the specified

plane change. In this report,the minimum velccity expenditure for bi-elliptic

transfer between non-coplanar circular orbits will be obtained.

One use of bi-elliptic transfers is in the physical problem where rendezvous
is desired between vehicles in non-coplanar circular orbits. The line of intes-
section of the two orbit planes will be referred to as the line of nodes. The
altitudes above the surface of the earth of the inner and outer orbite are re-

spectively denoted as hi and hf and the plane change angle is 6.

In this study, plane change angles in the range 0 < @ = n/2 will be considered.
It should, however, be noted that the various conclusions relative to the divi-
sion of plane change angle and the equations for obtaining plane change angle
remain valid for m/2 < 6 = 7. The interest in plane change angles greater
than n/2 did not appear sufficient ‘o warrant the necessary additional length
and complexity in the various proofs. A study of bi-elliptic transfers with

© = 0 can be found in Referemnce 1.

The bi-elliptic transfer is initiated by applying, at the line of nodes, a velocity
increment AVI' which transfers the rendezvous vehicle from the circular
orbit at altitude hi into an elliptical orbit with apsidal altitudes hi and ht’

while simultaneously rotating the orbit plane through an angle a;.

A second velocity impulse AVZ, applied at altitude ht' simultaneously trans-
fers the rendezvous vehicle into a second elliptical orbit with apsidal altitudes
ht and hf, while rotating th> plane through angle a,. The rendezvous maneuve
is completed by the application of velocity increrent AV3, which transfers



the rendezvous vehicle from the second elliptical orbit into the final circular
orbit. Evidently the final plane change angle is az = 6 -aq -a,. Figure 1

is a sketch of the bi-elliptic transfer maneuver when r,<r, <rg.

For a rendezvouc misaion, the choice of ht depends upon the relative phasing
of the two orbital vehicles. References 2 and 3 discuss the selection of ht
for a given rendezvous mission anl, in addition, present an alternative three-
dimensional transfer scheme. Since ht is determined by methods described
in the references, the present analysis can be considered a treatment of a

pure transfer problem in which ht is given along with hi' hf, and 6.

*
Three separate cases must be considered, which can be classified as follows:

hi <h,= ht (cuter bi-elliptic transfer)

f

hi < ht < hf (intermediate bi-elliptic transfer)
ht < hi < hf (inner bi-elliptic transfer). (1)

The velocity required to transfer from hf to ht to hi is equal to the velocity
necessary to make the transfer in the reverse order. Therefore, the three
cases in Eq. (1) cover all logically possible cases, with the possible relabel-

ing of h, and hf.

It is desired iv determine what portion of the total plane change 6 should be
accomplished at each of the altitudes concerned (hi' ht' and hf) in order to
minimize the total velocity expenditure. The plane change angles at hi’ ht’

and hf are respectively denoted bv a), a,, and as. The corresponding

*
The degenerate case hi = hf is not treated here.
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The General Bi-elliptic Transfer Maneuver




geocentric radii are defined as

rt=r0+ht . re=T +hf (2)

1

r.=r_ +h, N
o i

where r, is the radius of the attracting sphere.

Section II describes the mathematical technique to be utilized in the subsequent
analysis. Pertinent resulis are presented and briefly discussed; additional

graphical results are presented in Section VII.

*
For present purposes, the attracting sphere will be assumed to be the earth.
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II. SUMMARY OF RESULTS

Bi-elliptic transfers with plane changes whose total velocity requirements
are minimized all possess two (of the three) angles that are bounded. For
the outer bi-elliptic transfer, they are the first and third plane change angles
(al and a3). For the inner bi-elliptic transfer, they are the first and second
angles (ul and az). Either a and a,, or a, and ay, are bour ded for the

intermediate bi-elliptic transfer.

A numerical upper bound can, in fact, be placed on some of the above angles

as follows:

a. The angle a) is less than an angle K, which is approxi-
mately 5. 30 deg for either the outer or the intermediate
bi-elliptic transfer.

b. For an outer bi-elliptic transfer a3 < K = 5.3 deg.

c. For an inner bi-elliptic transfer ap < K = 5,3 deg.

The other angles cited are bounded by functions of the orbital radii and the

transfer radius.

The Hohmann transfer is in* - .igated as a limiting case of a bi-elliptic

transfer.

i a,, oy, and a, are respectively the plane change angles at T, Ty, and Ter
then the velocity increment AVT, necessary for the bi-elliptic transfer, can

be expressed as

AVT
) = f(x,y,01,02,63)
Ci

where vci is the circular orbit velocity at radius T and

r r
_ t _ t
S s (rg > 7
i f

-5




The total plane change 6 is simply the sum e, + a, + G,

The values of a;, a,, and a,, which minimize AVT/vci' are respectively
%
denoted as Q)1 Gy and Qg If T, 2 Tes the angles 9. and a3, are ob-

tained as the unique solutions of the equation

AV AV AV
T 7] T 0 T
d(v—.) =5a—( ‘.‘) daj + sa—('v—) dagr=0t . (3)
ci ¢ 1 ci 3 ci

It is furthermore found that for all 8, a; = .El and a, = '33 where

- (x - 1) ,x +2
= arc co + ’
e B[J Xl +x) = x ]
sk
- e c“[ Ty +/(1 +x)°y> +2(L+y) - (1 + x)(1+ 3y)y]
3 Vv + x)2 v (1 + x)°

(4)

The following properties of . and az, can be deduced from Eq. (4), when

T = T
g

1A

Q. al<K=5.30

7
el

< K

%3g 3

E3<'El for ally < x

oy =0 fory=x (r, = 1))

tS}::x:: ajgta,taz = 6, any two of the above three angles determine the

**an angles are between0®and 180° or 0 aad .,

-6-




when x = 1

[=]
ot

u

el
Y

0]

()

a38-'63=0, wheny =1
when
x=1 , xz2y=1
and, therefore,
(138:0, when x =1

The properties when x =y =1 can evidently be deduced on purely physical
grounds. The case x >1, y =1 is seen to be the Hohmann transfer with plane
change. The above result (o.3s = 0 when y = 1) implies that no AVT savings
can be achieved by making part of the total plane change after circularizing

at the final orbit altitude.

The subsequent study of the case x =1, y <1 indicates that no plane change
should be initiated prior to the entrance into the transfer ellipse. Therefore,
for a Hohmann transfer the total plane change maneuver should be divided
between the initial impulse removing the vehicle from the inner orbit and the
final impulse placing the vehicle in the outer orbit. Furthermore, the initial
plane change angle, resulting in the minimum value of AVT for a Hohmann

transfer, is less than h_l.

When r, < T it is found advantageous to solve Eq. (3) for 9. and gt

t
rather than . and Ay, It r, < r., then ), < o.i and a, . < a'z where
4 3 2 2
aj = arc cos[j%l X x)Y7 + Ix (1 -y)(1 +ﬂ¥ “Xy - L)] (5)
x (1 +y) J y (cont.)

==



aé = arc co:[,ilzi—’su—-l- J(l -yl +y- xyz - yz;] . (5)
x (1+y)

The foilowing properties of Q. and a,, can be deduced from Eq. (5), when
r, = T

[=]
—
A

X
’ -
859 5 Oy T 2TCCO8 T x
s

= X-_==

Q). =0 = 0, wheny T 0

ayp = a1, when y = x(ri = rf)
LI =ai =0, whenx:l(rt=ri)
Q. SQé <K =5,30

Tt

u2‘=az=0, whenx:r—i=0
Q. = aé =0, when y = x(ri = rf)

aé is maximized, when x = l(rt = ri)

It is interesting to note that the angles E, 5 33, and u’z are all bounded by the

same angle K = 5,30°.

For r,<r <r, a; = El (see Eq. (4). Furthermore, when r, < r, <t

+
az. < sz = arc cos -1—‘-'.—%

-8-




if

Similarly,

= arc cos —Z-L

3¢ < l1+y

3s %m

if

xsuz-x-l

i

The present analysis places bounds on the independent variables regardless
of the values of T., Ty, and T The two variables chosen (from the three

variables Qg0 Gpg0 and a3s) are in turn determined by the values of x and vy.



III. TRANSFER ALTITUDE ht GREATER
THAN FINAL ALTITUDE hf

Consideration will begin with the first classification in Eq. (1), with which,
in summary, the following mane'ver is associated. A transfer is initially
made from a circular orbit of altitude hi to an elliptic orbit with apogee

altitude ht‘ The angle between the two orbit planes is a,.

It can be shown that the velocity increment AVl, necessary to accomplish

this initial maneuver, is given by

v .
ci

v, 3
= ‘/1 - Zchos al +Hl (6)

The functions H, and Vci are defined as

1

- e - 2x
Vci fr_ . I-Il l +x (7

1

where x = rt/ri, p is the force constant for the earth, and the function vci

is the circular orbit velocity at altitude hi'

The second transfer maneuver is initiated at altitude ht’ It consists of trans-
ferring from an orbit with apogee at ht and perigee at hi to one with apogee

at ht and pe:.gee at hf, accompanied by a plane change a, at ht'

2

The velocity A VZ corresponding to the second maneuver is given by

AVZ v
T = Hz Jl i ZH3C08 02 + H3 (8)

C1

-11-




The functions H, and H3 are defined as

2
HZ = m » H3 = ﬁ—% (9)

where x = rt/ri and y = rt/rf.

The final maneuver consists of transferring from an elliptical orbit with
apogee at ht and perigee at hf to a circular orbit at altitude hf, accompanied

by a plane change a,. The velocity expenditure AV3 can be given as

AV3

2
—vc—i = H4 Jl = ZHSCOO 03 + Hs (10)

where

H

47 ﬁ . HS = ,«r—y—iy and ag =0 - a, - a, (11)

It follows from the above analysis that the velocity increment AVT for the

bi-elliptic maneuver is given by

3 (12)

wher: the three components are given in Eqs. (6) through (11). It is desired
to obtain the minimum AV, for given values of x, y, and 6. Equations (6)
through (12) can be shown to apply for arbitrary values of hi' hf, and

ht(hi < hf).

It will be shown that the minimum value of AVT can be obtained from an
examination of the partial derivatives of AVT with respect to a, and a,. A

method will be developed to obtain this muinimum.

-12-
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From Eqs. (6), (8), (10), and (12), the partial derivatives of AVT, with

respect to a, and aj, are given by

1 3AV_T_ 3 Avl . 5 AVZ
V.. 9da,  da, vci aal \"S

ci 1 1 ci
} Hlsin a, ) HZH3sin az
2 2
jl - 2H cos a, +H} fl - 2H,cos a, + Hj
1 8AVT ) H4Hssin a3 HZH3sin o.z "
V. o, © 3¢ > (13)
ci
ﬁ - ZHscos ag + HS Jl - ZH3cos az + H3
where 02 =0 - al - a3.

Examination of Eq. (13) shows that (wheny = x and y= 1):

oAV

Bul

<Qataq, =0

17

oAV
—aq->0atal=0-a3 2

AV

T

=13~




The first pair of values in Eq. (14) implies that, for any a3(0 < a, < @), there
exists an a, which minimizes AVT for the chosen value of a,. It further

follows that

AV
1. (15)

f(al,a3) =—rl— 0

at the above minimum; i. e., the solution of Eq. (15) yields the value of a)
which minimizes AVT for any chosen value of aj. Similarly, the second
pair of values in Eq. (14) implies that there exists an as, which minimizes
AVT for any given al(o Sa, s 0). The locus of these a, values is obtained
by finding the roots of g(al,a3) = BAVT/8a3, i.e., by solving the equation

oAV

g(al,a3) =—5£ =0 (16)

for any given value of a 1° The minimum value of AVT is obtained by solving

the following system of equations for a, and a, (see Eqs. (15) and (16)):
f(al,u3) =0
gla,,a5) =0 (17)

if a solution exists.

Physical reasoning indicates that, for ht > hf, the values of e, and a, which
minimize AVT, should be small. This fact alone is usually sufficient fo. ob-
taining iterative solutions to Eq. (17) (see Reference 4). The investigation
that follows provides further insight into the problem of minimizing AVT for
all values of hi’ hu' and hf(hi * hf).

-14-



The existence, uniqueness, and singularities of solutions of Eq. (17) will be

In order to accom
attention is first directed to the function

discussed in Section IV, plish this investigation effectively,

g (18)

-15-




IV. PROPERTIES OF THE FUNCTION Ff(a)

The following properties of F(a) are deduced from inspection:
F(a) 20for H2)
F(0) =9 for H=1

F(%):——}—I——— 19)
1+H

Setting the first derivative of Ffa) equal to zero shows that the maximum

value of F(a) occurs when a = a where

ora_ <At 110y
%% %m =" 2H ZH

2 z
_1+H tJ(l-H)z (20)

2H ZH

Since (1 + HZ)/ZH 21 for all H, it follows that the maximum value of F(a)

occurs at a = um where

ar B 21

1 =

cos a =
m

cosa = H.,rH<1 (21)

Substitution of Eq. (21) into Eq. (18) yields the maximum va.'ue Fma.x of F(n) as

F =1forH =1
max
F_, =HforH<1 (22)
17~




V. SOLUTION OF THE EWQUATIONS FOR THE
MINIMUM TOTAL VELOCITY

This section will reformulate the system of equations in Eq. (17) (Eqgs. (15)
and(16})in a form more suitable for iterative solution. The task of iteratively
solving Eq. (17)will be further facilitated by obtaining the upper bounds on the

angles a, = L and a, = Qg0 which minimize AVT.

Substitution of the first equation of (13) into Eq. (15), when BAVT/BQI = 0, yields

a Hlsin ay H2H3sin a,
G(al) = =

2
\/l - Zchos ul + H1

2

jl - 2H3cos az + H3

H2H3sin(9 -a, - u3)

EH(QZ) = EF(ul,a3) (23)
2
Jl - 2H3cos(9 -a) - a3) + H3
From Eqs. (7) and (9)
1< H1 <2
0< H3 <1
0<H, <1 (24)

It follows from Eqs. (22) and (24) that the maximum value of

Hlsin a,

G(al)s

2
‘/1 - Zchos ay + Hl

-19-



is unity. Similarly, the maximum value of

HZH3uin a,

H(az) =

3
jl - 2H,con a, + Hj

is

H2H3 = ,m <l (see qu 9)

From Eqs. (18) through (21) (and the above discussion), the function G(al)

increases monotonically from zero, when a, = 0, to unity, when a, =a

lm
It then decreases monotoniczlly with a, for a, >a, . The function

H(az) = d(e - a, - 0.3) increases monotonically with a, from H(6 - n3) 20,
when a, = 0, to its maximum value mx_(i_-i-_x) <1, when

a, = °2m(°1 =0 - ag - sz). The function I A) then decreases monotonically
with a, from the maximum value, when a = 0 - Az -a, to zero, when

a, = 0 - a3(a2 = 0). The variation with ay of G(al) and H(az) is shown in
Figure 2. It follows from the above that Eq. (23) (the first in equation (17))

must have a solution for ay<a, (see Eq. (21)), where

> 1 _ l1+x
@)y = arc cos R—-l— = arc cos 3% , (25)

as is illustrated in Figure 2. The possibility of additional solutions when

a, >a

1 ' is investigated below,

As no':4 above, G(al) decreases monotonically with a, for a, > % m’ reach-

ing its minimum when a, =6 -a5 It therefore follows that Eq. (23) can have

«-20-
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Solution

——

F=--—-.-,;—l..—.....-a—.

|
'1'-‘!l sin a,

F= L‘G{ﬂl}
J'I - zHl cos a; + H, |

sin a

Jl ?..H’3 cos a, + ![-!:,I‘Z \
|

Figure 2.

Solution of Equation (23)




no solution for a,>a if, (see Figure 2)

lm

Hllin(e - a3)
min Gla,) = >
ey > 9 ' Jl 2H,cos(8 - a,) + He
m - ICO' - 3 l

HZH3sin a,

maxH(az) = max

jl - ZH3cos a, + HE

s HZH3 = R (26)

where Hl is a function of x given by Eq. (7). Equation (26) will be shown to

be true over all but a narrow band of possible x,0-values.

Equation (26) is true if, and orly if

2
6 -a <arccoa[ jz+x+x-x-3XJ
x(l+x) x(l+x)

= arc cos x'3/z[ h+_x -(x - DN+ Z] Eem . (27)

In summary, it is impossible for Eq. (23) to have a solution for ap >a; if
Eq. (27) is satisfied. Since the present analysis is restricted to plane change

angles in the range 6 < 90°, there can be no solutions of Eq. (23) for a
if

> a

1 1lm

cos em <0 (28)

Since Eq. (27) must be true if Eq. (28) applies.

-22-




From Eqs. (27) and (28), it follows that for any 6 < 90°, Eq. (23) cannot have
a solution for a, > a if
1 lm

f(x)5x3+xz-3x-l>0 ; (29)
Equation (29) is true if, and only if
x>x =1,48 (30)

where x is the single positive root of the cubic equation f(x) = 0 (see _q. 29).

Furthermore, x = rt/ri 2 rf/ri.

Figure 3 is a graph of em versus x. It will be assumed, without proof, that
any solution a) =a; of Eq. (23) which minimizes AVT for a given value of
a, satisfies the inequality @ e <%m in the narrow x, 0 - region excluded
from the above procf (that area above the em versus x curve in Figure 3).
Therefore, the values of Q) =8, which minimize AVT for given values of
x, 6, and ay, are obtained by solving Eq. (23). The above ., values that

satisfy Eq. (23) also satisfy the inequality Q. = e

Equation (23) can be restated as

1 3 Y3
cos a, _I—{-l-[s + Js* - s(1 + H)+ Hl] (31)

where S = [F(al, a3)]2 = [H(o.z)]z. The two choices of sign in Eq. (31) corre-

spond to values of a, greater or less than a Since the present investiga-

Im
tion is restricted to values of a, less than or equal to ay e only the positive

sign need be considered. It, therefore, follows that

CO8 a

- HL[S + Js% - S(l + Hi‘) + Hi‘] (32)

. 1 (cont.)

-23-



soddy b

s ®l, jey], Jooxd 9I9YMm @ Pue X Jo senjep ‘¢ dandi 3

L £ 21 " o1

e =y O
T
f w
b ; al °-
Y T ¥
T Y 1 q
I se
24 g 898
- b - -
T bk e LA
045 4 1 I vy o2
-
- AP =uEy ""_
e b M "'
1 - 5 '
L o + I i
= i nan T = g o
e s T ot
-+ b : BB 8 H
i I w o
1 4 vt F
10 R B 1 " »
P i fEE v .
e i 4 -
_ P o o
TR b
N +
T
mayn n
e S TR yosas i P
: H os
= mErEY JENE
: u.-l...m_..l..: 1RI3T
; mab 1 11
19 8 o)
e - +H+1
4 = see T
: H 420304 28
134 " a o.
1 T 1T
- b ¢ 3 r e
4 | ol 1T i1
b B 1K
1 -3 ' g )0 g8
14 . 128 ¢ 111
+ y G BUBe
I 3 1 +H +114++ od
" . Y.
.-l- o | 1 . RO i 84
I 1] 5 N 11T
H T T ™ 1 snge
" s 1 »o as 3
THUTE r u# el Frr it HH- HH- 1
X S Il ’
o 2 .r1 " HHH Y .
1 8
e
o n proes
] —H L e B0
1+ T
. =33 Q30NTIXI VINY H
SEEEEES e b
H LHLL H R !
o -

-24.




sin q) = HIT Fla;,a,) Jl 5 zHléo.' ;,, +Hf : (32)

From Eqs. (18) through (22), a is a monotonically increasing functiqn._of
F(o.l, a3) = H(az) = G(al) in the interval 0 = a, = % me Furthermore, all solu-
tions a, = a, of Eq. (23) lie in the above interval. If El is that value of ay

at which

F(o.l,a3) = ma.xH(uZ) = HZH3 = ,m ’

it follows from the above monoticity arguments that Q. s El for all x, y, and 0.

Since a; =El when F(ul,u3) =H(a2) = HZH3’ it follows from Eqs. (7), (9),
and (32) that

[ 2 +(x-l) x + 2

1 Jx3(1 + %) X x

sinT, =+ /1 . cos"‘El . (33)

Figure 4 is a graph of El versus x. It is interesting to note that

cos a

94 Sal<K =5,.30 (34)

rerardless of the choice of x, y, and 6. It can be shown that El is maximized

when x = (1 + N7)/2 = 1. 82.

The second equation of (14) (Eq. (1)) is treated below. A bound is similarly

obtained on the angle a; =az which minimizes AVT for a given value of a,.

Substitution of the second equation of (10) into Eq. (13) yields the algebraic equatio:

H H,.sin a H_H_.sin a

2 J 2
jl - ZHscos ag + HS 1 - ZH3cos a, + H3
-25-
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Using the same line of reasoning as in the inveoti;ation of Eq (la, it il

“_;r

readily shown that, for any e, there exists an a3 <ay o -“which laﬁlﬁu
Eq. (35) where - ot ..1,5

3 = ATC cos ’ﬂl; = arc cos fl;;:i 5 . (36)

It can also be shown that Eq. (35) cannot have a solution for ay > %3 if

a

or

1
5 >T+x (37)

The inequality in Eq. (34) is true if, and only if

y>y (38)

where y is the single positive root of the cubic equation

(B +7 -5 -1=0 (39)

Figure 5 is a graph of y versus x/ly =r /r..

1t follows from Eq. (39) that y <1 for rf/r >3, Since y=r /r 1, Eq. (37)
is always true when x/y = rf/r. > 3. Furthermore, it is shown above that

Eq. (35) cannot have a solution for a3 >a, when Eq. (37) is true. The remain-
irg investigation is therefore concerned with values of r /ri in the range

5r/r1<3

«-27-
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For ysy (see.: Eq. (38)), Eq. (35) cannot have a solution for ag>ag if

H,H_sin(0 - a,) H.H,sin '
475 v 23" % 2% 4 (49)

max
2 2
Jl - ZHscos(e - °‘l) + I-I5 Jl - ZH3cos a, + H3

The inequality in Eq. (40) is true if and only if (see Eqs. (26) and (27))

0 -a

< e;nEarc cos[ [20+y) I(l+uy) y + Zgl-l-y) - (l+uy)(l‘+3y)1]

Y3(l + u.)')2 J y (1 + uy)2 4
(41)

where u = x/y = rf/ri. Figure 6 is a graph of 8/ versus x'!./ri for various

values of y.

It will be assumed that a3, feg for all values of x, y, and 6, as it was

previously assumed that a, < a;__ for all x and 6.
1s Im

By analogy to the transformation of Eq. (23) into Eq. (32), Eq. {35) can be writte:

as
'

2

1 [ {—z ( ¥ 1 i]
cos a, = S+ |S"-SH,/{l+H_J]+H_H
3 H4Z;i5 i~ 4 5) 45

. Fla ), a5) )
sin a4 =—HZH-5—— Jl - ZHscos a + HS (42)

_ 2
where S = [F(nl,n3)] .
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Frorn Eqs. (18) through (22), a, is a monotonically increasing function of

H4H5|in n3

F(al, u3) = H(az) =

Jl - ZHscm a, + ;g

(see Eq. (35)) in the interval 0 < ag = Q30 Furthermore, all solutions
az = @ of Eq. (35)(or, equivalently, Eq. (42)) lie in the above interval, IfE3 ie

that vaiue of aq at which

_ _ 2
F(al,a3) = maxF(o.l,o,J) = ;(T+_x)' »

then it follows from the above monoticity property that a3q = 33 for all x, y,

and 6.

Since ag = 33 when

2
F(al,u3) = maxF(al,a3) = ;a-_—x)- ’

it follows from Eqs. (9), (11), and (42) that

cos (1

T, ju + uy)y” + 201 4+ y) - (1 +uy)(1 + 3y)y

I3t uy) yo(1 + uy)®

sin -63 = ’l - coslz'ﬁ3 ; (43)

where u = x/y = rf/ri. Figure 7 is a graph of 33 versus y for various values

of rf/ri.
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It is interesting to note (see Eq. (34)) that

a385a3<K = 5,30 (44

for any choice of x, y, and 9. Comparison of Eqs. (33) and (43) shows that

El = 33, when y = x, Furthermore, the maximum value of 33 occurs when

x/y =r./r = 1.

From Eqgs. (33) and (43)

(133-—0 asy—~1

als-'O as x—~ 1 (45)

Also, since x2vy, 78 x—=1, y—=1 and thus

a3s-'0 as x—~1 . (46)
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VI. TRANSFER ALTITUDE ht BETWEEN INITIAL
ALTITUDE hi AND FINAL ALTITUDE l'xf

The analysis of the bi-elliptic transfer, with T, 2T, treated in the previous

sections, was restricted to the case where r;® T, (except for the degenerate

case r, =r.=r_, where a, =a,_ =0). Consideration will now be given to
i f t ls 3s

the case where r. <r, <r,.
i t f

The velocity AVT required to transfer from altitude hi to ht to hf with
plane change 6 is given by Eqs. (6) through (12), where AV1 is the velocity

increment at h = hi' AV, is the increment at h = ht' and AV3 is the incre-

2
ment at h = hf. It thus appears that there is no difference between the cases
r, ST s T, and r. < r, <T. It can, in fact, be shown that when r, ST, <Tg
the minimum value of AVT can be obtained by solving Eq. (17).

However, when r, < r, <rgy <1 and, therecfore, the variour bounding
theorems such as Eqs. (33) and (43) no longer apply. It is also convenient,
when employing iterative methods, to utilize independent variables that can

be bounded in the manner ay and ajwere bounded inthe first problem(0 = a; S a,
0= ag =< °3m)’ Bounds will therefore be sought for two of the three variables
a), a5, and Az, and the existence of a minimum will be established. Due to
the length of the necessary exposition, uniqueness will not be demonstrated.
The uniqueness proofis of essentially the same nature as the one for the case

r, < re < r, in Reference 5,

Suppose that the two independent variables are chosen as 2, and aj. It then
follows that the two partial derivatives of AVT are given by Eq. (13). If
x »= 1 then the conclusions in Eq. (14) also apply.

From Eqs. (7), (18), (21), and (22), the function

H,sin a
1 1 (47)

G(al) =

2
Jl - Zchos a + Hl
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increases from zero when a, = 0, to unity when

l1+x
2x

a, =a

= arc cos
1 lm

(see Eq. (25)).

Furthermore, G(al) decreases as ay increases for a, > % m From Egs.
(9), (18), (21), and (22), the function

H_H_sin a
H(a,) =H(0 - a, - a5) = e & (48)
2
Jl - 2H3cos a, + H3
increases from
H2H3sin(9 - u3)
fl - 2H,cos(6 -(1)+H2
3 3 3
when a = 0, to
maxH(a,) = ¢ <l (49)
2 Jx(l + x

when
= = = _.!+ =
COS(e 0.1 0.3) = C08 a

The function H(o.z) decreases monotonically with a) from its maximum value

to zero whena) = 0 - asz.
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From Eqs. (13), (47). (48), and (49), there exists an e =a, <a at

which 8AVT/8al =0.

lm

It is readily shown that Q. S El (see Eq. (33) and, therefor~, all solutions

a, =, of Eq. (23) lie below the curve a =El in Figure 4.

From Eqs. (11), (18), and (22) (also see Eq. (10))

H4H5lin ay

maxK(u3) = max —

2
Jl - 2H5cos ag + HS

=Y /;‘(ﬁ . (50)

It can be shown, employing Eqgs. (47) through (50), that the equation SAVT/8a3 c

must have a solution

= arc cos —EL

<ea l1+y ’

03 = 034 3m

(see Eqs. (13), (23), (49), and (50)) if

2, [ 2
YIXITFy) S Vx(T+ %)

or

xsl%—x-l . (51)

y

If Eq. (51) is true, then the methods of proving the existence of, and obtaining
solutions ay =a), and ag = az to Eqs. (15) and (16) (yielding the minimum
value of AVT for given x, y, and 0) are identical to the methods utilized for

the case hi <h,s ht previously analyzed.
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Regardless of whether Eq. (51) applies, a, < El -0 as x—= 1, Itcanbe
inferred from continuity arguments or demonstrated directly that a, assumes
its limiting value a, = 0, when x = 1. It was previously shown that a,; = 0
when y = 1 (see Eq. (45)). From the two limiting cases (u1 =0 whenx =1,

az = 0 wheny =1), it is concluded that, for a Hohmann transfer with plane
changec, no plane change should be made prior to entering or after leaving the
transfer ellipse. Furthermore, since the Hohmann transfer, x= 1 ory = 1,
was previously treated, the present investigation can be limited to the region
h, <h <h
Because convenient bounds cannot always be placed on the variable a,, con-
sideration will be given to the independent variable pair a, and a,. The
partials of AVT with respect to a, and a, are given by the expressions (see
Eqgs. (6) through (12)):

1 BAVT ) Hlsin al H4H55in a3
Vci aal ) 2 ) 2
jl - 2H cos a, +H’ jz - 2H_cos o, + H}
1 BAVT ) H2H3sin az ] H4H53in u3 _
a %2 —JI-ZH cos a. + H% jl 2H_cos a, + H®
3con a, T 5, - &ligCO% Q4 T g

From Eqs. (47) through (52), it follows that (see Eq. (51)), when

x >3y ) (53)
y
there exist an @y =a; <a; and a, =a,. < ay which respectively satisfy
8AVT
—5a— =V for any o, (54)
1 (cont. )

-38-
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oAV

8az

= 0 for any a, (54)

In summary, it is seen that two angles are bounded regardless of the values

of x and y. If Eq. (51) applies, then @ <o and az <@, . If Eq. (53)

is true (and, therefore, Eq. (51) is false), then ay4< qlmand a,,<a In

2m’
either case, a; = 31, whe re El is defined in Eq. (33) and depicted in

Figure 4.

It can be shown that the two equations in (54) have a single solution Q, =85

= a,_when the inequality in (53) is true. Since az, = 6 - Q)4 - 95, and sinc

a
tlfe twczasequations in (54) are equivalent to the two equations in(15) and(16), it
follows from the above discussion and the discussion subsequent to Eq. (51) tha
Eq. (54) has a single solution a) =a; a5 = u3sfor all x and y when hi < ht < hf
It was previously demonstrated that the solution obtained yields the minimum
value of AVT. when Eq. (53) is false (see Egs. (14) and(51). It is demonstrated

below that the solution also yields the minimum value of AVTwhen Eq. (53) is t2

From Eq. (52)

oAV

T
T <0 when O.l = 0
oAV
-—W>0when (11 =0 -(12
BAVT
<0 when a, =0
aaz 2
aAv
30.2 >0 when a, = 6 - a (55)
-39-




It follows from Eq. (55) that the single solution of Eq. (54) corresponds to the

minimum value of AVT for hi < ht < hf.

When Eq. (53) is true (ul fa, »a, s aZm)’ then Eqs. (52) and {54) can be

combined to yield the following equations:

_ 1 2 2 2
cos ul—_ITI[S+JS -S(1+Hl)+Hl]

sin a, =HI—F(01,02)‘/1 - Zchos a, + HZ

) 1 HH)
cos a. =-sl_|s+ jsz ] SHZ(I + HZ) + Hiut
2572 2 3) + HyH;
H H,
Fla,,a.)
. _Fley,a, 3
sin 0.2 = —ﬁ-ﬁ_ Jl = 2H3C08 02 + H3 (56)

where S = [1"‘(0.1,(12)]2 = [K(a3)]2.

-40-



VII. TRANSFER ALTITUDE ht LESS THAN
INITIAL ALTITUDE hi

In the previous sections, the bi-elliptic transfer has been analyzed in the regio:
he<h and h,£h <h. It therefore follows from Eq. (1) that the only region
to be investigated is ht < hi' As pr?viously noted, the velocity increments
for any values of hi’ ht' Eh (12); the two

partial derivatives of interest are given by (52). The conclusions in Eq. (55)

and h, are given by Eqgs. {6) throu

also apply in the present region.

In Section V bounds were obtained for the two independent variables a, and
as. Similar bounds will be obtained in this section for the variables a, and a,

In the region ht < hi < hf (see Egs. (7), (9), and (11))

H1<l 5 H3<l , H5<l (57
From Egs. (7) through (11), (18) through (22), (47) through (50), and (57), it
follows that:

a. The function G(o.l) increases monotonically from zero
when oy = 0, to G(o.l) = H1 when @) =a;  =arccos Hl'

For a) >ay G(al) decreases monotonically as a,

lm
increases,

b. For a given value of a,, the function K(a3) increases monc
tonically from a value K’ > 0 when a, = 0, to K(n3) =H4H
when ag = a3 = 6 - a, - a, =arc cos H3. The function
K(u3) decreases monotonically from its maximum, when
a, =0 - a, - a3, to zero when a, =0 - a,.

c. For a given value of a;, the function K(a3) increases from
K(a3) =K” >0 when a, = 0, to K(°‘3) = H4H5 when
a, =0 -a, - a, . It then decreases to zero when

2 1 3m

a2=9-a1.
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d. The function H(az) increases monotonically from zero
when a, = 0, to H(uz) z HZHS when a, =a, =arccos H3.
For a, >a, H(uz) decreases monotonically as a,

increases,

From (a) through (d) and Eqs. (7), (9), and (11), it follows that for
ht < hi < hf(x >y)

ma.xK(o,3) =H4H5 =y ,m=JgJI:Z<J’l_fI<
M Yy

ma.xG(ul) =/ 2 T = JITixx <maxH(uz) = ’x Z+ = (58)

1+=
X

From Eqs. (52) and (58), it follows that, for any ay, there exists an

=0, <a at which (see (a) through (d) above)

| ls

G(ul) = K(a3)

or

T
Similarly, for any a, there exists an a, =a, <a, at which
H(uz) = K(a3)

or

-42-




From Eq. (55), there exists an 0 s <O miss, <o) which satisfies Eq. (59]
(Eq. (60)) and yields a relative minimum of AVT(ul.qz‘). It can further be sh
that only one value of a 17 %, satisfies Eq. (59) for each value of a e, and, si
.that satisfies Eq. (60).

larly, for each value of ap there is only one a, =a,

It can be shown (see Reference 5) that the simultaneous solution of Eqs. (59)
and (60) yields the values of a

where al

g %y 3nd @
< - - -
s % m and e fa, Equations (59) and (60) can be written in

the more explicit form shown in (56).

=a 2 =% which minimize AVT

From Eq. (58) and the properties (a) through (d) preceding it, the function
H(o.z) (Eq. (48)) increases from zero when a, = 0, to maxH(az) when a, =a, .
Furthermore, a, =< a, isthe solution of Eq. (60). Ifu'2 <a, . is the value of

a, for which (see Eq. (60)),

3)ER- =H4H5 (61)

and it follows from Eq. (58) that ay, S o.'2 for all x, y, and 6. From Eqs. (9),
(11), and the third and fourth equations of (56), aé is given by

, 1 +x u-x)(uzi-xu-x -x)
cos8 a, = +
2 3 3
u (x + u) o
sin ué = ’l - coszué . (62)

where u = x/y = rf/ri. Figure 8 is a graph of a, versus :‘f/ri for various

values of x.
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From Eq. (62)

a. J a,~+0asx—+0

1A

28 2
b. azssa’z-'Oasy-'x(u-’l)
'f
€, For any u = — >1 o.é is maximized for x = 1.

1

It can be shown that a assumes its limiting values a, =0 wheny =x

2s 28

or x = 0.

From Eq. (62) it follows that, when x = 1,

cos a’ = 2 _r(u-l) fu+2
2 a N u

w1+ ) u

sin aé = ,,1 - coszu’2 (63)

’

Comparison of Eqs. (33) and {63) shows that a’/ is the same function of u at

2 .
x =1, as El is of x. It thus follows from Eq. (34) (also see Eq. (44)) that
a, = oé <K=5,30° (64)

A bound can be placed on the angle a, , which is similar to the above bound

1s

From Eqgs. (56) and (58), Qg < a’! < Q) where ai is defined by

on a <
1

2s’
the following equation (see Eq. (61)):

G(ui) = ma.xK(o.3) = H4H5
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or

cos a 5 + (u-x)(u2+xu-x1-xz;

P

, . ij(l )

u (u+ x)

gin a) = J1 - coazui . (65)

Figure 9 is a graph of o.'1 versus x for various values of u = rf/ri.
From Eq. (65) and the previous analysis, it is clear that:

a. Q-

. _ 2x a
b. ap =a, = 7% when u =1

c. ai"Oasu-’oo
d. ai:Owhenx:l
r.
;o ) I | h =0
e. al-arcsma—-a*-mn;— when x = 0,
f

Figures 10 through 16 were prepared by Mr. Jerome Baker using the results of
a computer program based on the technique developed in this report. Figures
10 through 12 show the minimum bi-elliptic velocity increment for various

values of r,2r., i.e., for intermediate and outer bi-elliptic transfers (see
Eq. (1)).

The plane change angles 6, corresponding to Figures 10 through 12, are 0°, 10°,
20’, and 30°, respectively. There is evideni.y no minimization involved for

the 8 = 0° case which is treated in Reference 1.

An alternative three-dimensional transfer procedure is the modified Hchmann

transfer described in Refereace 2. The velocity requirement for this transfer
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mode is included in the figures for comparison purposes. When 6 = 0°, the

modified Hohmann transfer is equivalent to the simple Hohmann transfer

(rt/ri = 1).

Figures 14 through 16 show the values of a, =a; an- a, =a, which yield
the minimum values of AV, when @ is respectively equal to 10°, 20°, and 30°.
As in the previous graphs, only the outer a.d intermediate bi-elliptic trans-

fers are considered.
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