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OSCILLATIONS IN THE PLASMA SHEATH f

by

Simon H. Schwartz 5

Polytechnic Institute of Brooklyn

SUMMARY

The behavior of the ion plasma sheath next to a wall is investigated under a
sinusoidal-in-time perturbation of the potential of the wall, A collisionless sheath is
assumed, and the ion density distribution is considered to remain at the steady state
value, with only the electron distribution being perturbed. The collisionlesg macro-
scopic plasma equations are solved by a perturbation procedure, using an exact equa-
tion for the steady state potential distribution, A second order differential equation
which is linear, but which has variable coefficients is obtained for the perturbation.
This equation is transformed into the formm of a wave equation with variable propaga-
tion constant so that the analytical behavior can be deduced. One observes that above
a certain range of frequencies, but below the plasma frequency of the uniform plasma,
the perturbation may propagate over a finite region which may begin away from the
wall,

A numerical integration of the equation is performed, using an asymptotic

approximation in order to obtain the boundary conditions. The predicted oscillations

JrThis research has been conducted in part under Contract No. Nonr 839(38) for
PROJECT DEFENDER, and was made possible by the support of the Advanced

Research Projects Agency under Order No, 529 through the Office of Naval Research.
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are seen to occur, and two resonances in the sheath are found at frequencies below

the plasma frequency.
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SECTION I

INTRODUCTION

The physics of plasma adjacent to a boundary, the so-called ''plasma sheath!'
is not completely understood. Yet boundary phenomena play an essential role in
numerous well-Fnown situations, for example, those associated with Langmuir Probes,
resonance probes and communication antennae,

A few of the numerous papers' dealing with the steady-state behavior of the
sheath are listed in the bibliography. With respect to ti.m.e-dependent behavior, experi-
mental studies of natural oscillations in the sheath have been performed by Gat. - Ash,
and Dracottl, by Ott, Gierke and SchwirzkeZ , and by Harp and Kino3 with coiiicting
results. The resnonance probe employing appliedoscillationshas been studied by
Wimme14 , and the theory of the RF plasma sheath has been studied by Pavkovich and
Kino5 and Pavkovich6 . The latter epproach the problem theoretically by integrating
the collisionless Boltzmann equation numerically, assuming a parabolic steady-state
potential distribution, a harmonic time-wise perturbation in the plasma and in the
consistent bouncary conditions,and a time-independent perturbation amplitude. They
reach the conclusion that no spatial oscillations about zero eclectric field are possible
in the sheath when the electron density distribution is Maxwellian. The behavior of
temporally amplified or damped perturbations is not included in their studies,
Pavkovich6 also investigates a theory similar to the one to be set forth in this paper,
i.e., a fluid dynamical approach, but with a parabolic potential distribution. However,

he discounts it because of the possibility of waves (spatial) near the walls, Moreover,
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on the basis on an examination of the so-called ""'sheath impedance', he decidcs that
no oscillations are possible, at least in the numerical cases considered,

In the present paper, an ion plasma sheath next to a solid boundary is con-
sidered. This boundary can be considerad to be insulated with respect to ground;
such a boundary is termed "floating'. It is well- known that the plasma region ad-
jacent to a floating wall is characterized by a large potential drop, In particular,

a large negative potential and negative surface charge is created, since the electrons
of the plasma are more mobile than the ions and diffuse to the wall more readily, The'
resulting preponderax:ace of jons and the associated positive space charge in this neigh-
borhood suggest th . designation '"ion sheath',

The plasma sheath is assumed to be subjected to a temporally oscillatory
perturbation of the surface potential, The amplitude of this oscillation is assumed to
be time-wise invariant both at the boundary and in the plasma. In another view we may
consider the oscillation to have appeared in ‘he plasma, whereas the surface oscilla-
tion follows as a result. Finally, this type of problem may be interpreted as an inves-
tigation of the existence and spatial properties of a neutral disturbance (undamped and
unamplified) consistent with the boundary conditions.

In this paper, it is assumed that collisior- between charged particles within
this sheath arc negligible. The collisionless nonlinear macroscopic plasma equations
are take: to be applicable here. The eq'.lations- are linearized by a perturbation method
and an equation for the perturbation derived. It is assumed that since the electrons
are so much more mobile than the ions, only the electron density distribution will -be

perturbed., Under the conditions of this problem the electron energy equation can be
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integrated to give an adiabatic equation of state for the electron gas. However, the
value of the adiabatic exponent y is not specified at the outset, although it is clear that

if the frequency is high enough, there will be insufficient time for equipartition of

w

energy between the uagrees of freedorn so that y= 3, while for low frequencies v =
is the correct value.
In this particular analysis a plane wall is treated and spatial variations in only

one direction are considered, so that the problem is one-dimensional,

SECTION 11

BASIC EQUATIONS

The basic equations of the problems are:

]

e  Tm e E TmTR o
£

. * - 3 -

v+E = " (ne ni) (2)
o

pn Y= const (3)

e e ’

— aE e '
VxH =€ 3 P, du (4)

o
- §

_ 8H

VXE = -U, —bT (5)

* »
where u is the electron velocity, E is the total electric field, P, is the total election

pressure, n_ and n, are the total electron and ion number densities respectively, E

and E are the perturbation electric and magnetic fields, yis the adiabatic exponent,




and n, is the steady state electron number density, Equation (3) is used since one
o

is concerned with high frequency oscillations and because in this case the energy equa-
tion can be solved to obtain the adiahatic equation of state. In Eq. (1) the nonlinear
acceleration term g_* . VE* is left out since it is assumed to be small compared with
the time derivative. In this set of equations _g* is a perturbation already. since the
steady state velocity is zero for an inn sheath (the electrons are reflected back in the
negative potential so that their average'velocity ir zero).

Now, let E* and n, be perturbed so that E* = Eo + E and n =n, +1n where
o - . o
|§—| <<l and lnil << 1 where Eo and n_are the steady state solutions and -E— and

e o
n are the perturba?ions. If this perturbation is substituted in Poisson's equation, Eq.

(2), it becomes

v-(E +E)=—3(n +n-n,). | (6)
-0 - < e 1
(o] (o]

The steady state Poisson's equation is

v-E = G-:—(l(ne -n,) (7)

-0 i
o o
In the one-dimensional case this equation becomes (see Appendix)

24d1-26+ 2e9-4 ' (8)

dp?
(d—E,')

where 6= 9®_ p B8 = , where Eo -i@ and Ad is the Debye length referred to un-

kTo Ad dx
eok To
disturbed plasma, 7\3 = . Here, To is the electron temperature of the un-
n q°

disturbed plasma and k is‘the Boltzmann constant. Thus, Eq. (6) becomes

n (9)

[oTY =7
3z
"
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Let the adiabatic equation of state Eq. (3) be examined more closely.

kT nl-Y

e e e e o e
o o (]

where P, =1, kT_’ is the isothermal equation of state and holds for steady state,

(] (]

1-
p =kT n YnY
e o e e

Now, let one substitute the perturbation into (10a). Then (10a) becomes

] Loy Y4 Ry A, =
Pe= kTyn "' m (14 =) = kT n  (1+=2%) = kT n +wI i (1)
o o e o e o
o o
Vpe = kTOVne +YkT0Vn
o
1 1 ‘ YkTo - kTo n
;—Vpez m(kTOVne +Y1<'I.‘0Vn)=n In +n (1 - - )Vn
e e o e e e
. o o o o
With Eq. (13), Eq. (1) becomes
Bu _  YKT, KT -
mo— = -q(go-:_g)-n Vn-n (1 - n—-)Vn
e c e o
o o o
A_q": -qne ql'le E YkT kT kT Vne _
n —— = OL‘- 2 . ov-ﬁ- 29n + 2 2 A
e ot m ~0 m m m e m n
o ‘ o e
: o
The steady state momentum equation is
'q"eOEo kT
- Svn =0
m m e
o

s |

T ————_ o

(10)

(10a)

(12)

(13) ;

{14)

(15)

(16)




which has a solution

where Eo= -V@and n is the value of the electron density at ¢ = 0 ,

Thus, 1q. (15) becomes

w vn

o/

[
<
=
3
-~
3
¢

n
e

=-S'n E - vn + n
m e —
o o e

v
o+

which with the ert time dependence becomes

jwn u==<n E-
ST &2

SECTION III

DERIVATION OF PERTURBATION EQUATION FOR E ‘

Let one substitute Eq. (l14a) into Maxwell Eq. (4).

_ q? vykT kT
VxH = jue E + E+ L © on. L_0©
jum e = jw m jw m
- vn
w a” a2 e
=jwe E+e L gp+2dg,_ 24
o= o jw = jw Yjw n
o
2
vkT neoq
where a” = and ¢ =
P e m

(17)

(18)

(18a)

(19)

(19a)
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Yn
q 2 e
juvxH=-¢€ (W -u2)E +a%qun - 29 %) n
o p = ¥ 'n
e
o
Making use of Eq. (18), this becomes
€ a? vne
3 = = 2- 2 - 2 [ O [
jwvx H eo(w wp)_I_E:_ €2 v(V-E) + (n )v+. E
e
o
Now, we can make use of the vector identity
WV +E) = x (VX E) + v+ (VE)
e°a2 vneo
i \vJ - . a-. 2 o o - 2 et e wem— .
jwvx H eo(w wp)g eoa v x(V xE) eoa v. (VE) + y (n )V E
. o
which by Eq. (5) becomes
. e°a2 vneo
i = - 22 23 - 20. ———— .
jwvx H e (W wp) Etea juy YxH - € a® v (VE) + » (/) vE
o
If one assumes that H = 0, this becomes
e a® vn .
- 2. 12 - 2 9. + . =
eo(w wp)E € a v (VE) (n JV.-E
e
o
which can be written in the form
1 Vneo wa.w?
v-.(VE) - = V.E+(—R)E=0
-— Y n - a? -
e
o
In the one-dimensional case this becomes
Vn
w?_we
2
dE_ln o df+(_p_)E=
dx? Y eo a®

(19b)

(19¢)

(19d)

(19e)

(19f)

(20)

(2%a)

(21)
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In terms of the nondimensional variable £ this becomes

‘ iy w3-w?3
d2E o dE -
yY— - 2t (—E- (22)
gg? P g 5
e
o o
A2 € m 1
where — = ———/—= — and w_is the plasma frequency of the uniform plasma.
a2 Yn,g yu?R ®

o
Equations (21) and (22) are the perturbation equations for E. Eqs. (21) and (22) imply

that the electrons move in a field of force which is due to the steady state electric

field caused by the non-uniform density distribution,

SECTION IV

TRANSFORMATION OF THE PERTURBATION EQUATION

Equation {21) can be written in the form

2
d E-zf(x)jx—E+g(x)E=o (23)
dx? :
where f(x) and g(x) are given by
Vn
1 e, o wP-w?
flx) = 5= , glx) = —=F .
Y n 2
e, a

Assume a so'ution to (23).of the form
E(x) = y(x) h(x) (24)
where h(x) is given by

X
J'x £(x) dx

h(x) = e 0 . (24a)

If (24) is substituted into (23),the following differential equation is obtained




2
Q-—Y-+‘y(x)y=0

R (25)
dx?
where Y(x) is given by
df
= == -f2
¥(x) = -+ g-f (26)
When the definitions of f and g are substituted intec Eq. (26), Y(x) becomes
u?
dl,n-B
w2-w?2 a2 w3 w°2 3
tx) = —2 5= an £ = () (27)
a® dx? w: 4y?
where
w2
2
Vn v
e, Vw2 w?
. = =! 2 = 94n
n
e w2
© P
TE
0]
Now let one nondimensionalize Y(x)and Eq. (25) . Equation (25) becomes
d2
——¥+x3 ¥(x) y =0 (28)
de~
and if one defines Y(£) = )\:1 ¥ (x), then this becomes
2
LY Ly y=0 (282)
dg” '
w 2
din 2
w2y w2 w?
1 d° 1 =
t(e) s —R + =— 40 P - = (—5) (29)




Since —2= e e, ¥(E) can be written as
w2
o
W 2= 2
1 4a°%8 1 ,d6 ’
¥(E) = —F + oo = () (292)
Yo? dF®  4y°

The integration of Eq. (17) giving 6vs €, is shown in Fig. 1. The plot of Yvs § for

values of Yof-g- and 3 is shown in Fig. 2

If the value of f(x) is substituted into

T f(x) dx
e”o = h(x) ,
it becomes 9-60
_ If(x) dx —2Y . (39)
8 hix) = e o = e
- -—o .
e 2y is jugt an arbitrary multiplicative constant, so that the solution for E can be
given by
2y
E = yh = ye : (31)
SECTION V
RESULTS

Since h(x) is a monotonically increasing function from the wall (negative 6)

to the sheath edge (6 = 0), one sees that the behavior of E is determined by the be-

havior of y. The equation for y is given by (28a), which is recognizzd as a type of

wave equation. If ¥() were constant and positive, wave solutions and hence propaga-

tion of the perturbation would be possible. If Y were constant and negative, the solu-

tion would be a damped or growing exponential. The same type of behavior is expected,

10
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although modified slightly, by the solutions if ¥ is a variable. Fig. 2 makes it clear

that Y indeed does become positive for a finite range of F.

One particularly interesting effect due to this behavior of Y is that the pro-
pagation is cut off near the wall where the local plasma frequency is very small. If Eq.
(29a) is considered under the assumption that 8is a large negative value, then

2
) ol
~0 and — =~ 0, so that Y(£) becomes

w? dg2
o]
we 1 df. a2
Y(E) nm - — (32) (32)
onz 4.Y2 >

- a
and Y(€) can then become negative for an appropriately large %;; and a cutoff can take

place. Since g—g— is related to the clectric field, this result is not surprising in view
of the fact that the electron gas is in equilibrium with the electric field Eo’ and this
effect is analogous to what is found in an atmosphere which is in equilibrium with a
gravitational field.

In view of the complexity of Eq. (28a), this equation had to be solved numerical-

ly. ©In order to do this, Y(F) was approximated for large values of £(A-0) by a constant

and the damped exponential solution for y was chosen, so that the perturbation would

go to zero at infinity as it should, Then the cquation was integrated backwards from
this starting point at a large value of £(F= 36 to be exact) to the wall. This was done
for the range of frequencies of ;’g_ from 0 to 1 and for both values of y. The results
for vy=3 are shown in Fig. 3, It is seen that an oscillation does indeed occur, and also

that two recsonances occur,
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ey o




SECTION VI

CONCLUSIONS

The results of this analysis show that the resonances in the sheath occur at
frequencies below the asymptotic plasma frequency. It is of interest to observe that
they occur in a relatively narrow range below w, . Only two resonances are found,
one at about “+ ~ 0. 75 and another at — 0.95. In the limit of — 1, the unperturbed

Y% Yo Y
plasma appears, and for larger values of -:— only a continuous spectrum of frequencies
o
may occur. These results appear to be in agreement with the experimental behavior
of the Resonance Probe.

A further examination, including the effect of collisions, is in the process of

being carried out.
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APPENDIX

Poisson's equation for the steady state distribution is given as

dE

_o = —S- - -
dx € (ne ni) (A-1)
o v
or in terms of o this is
2
£2. 4 . (A-2)
dx? € e i
X o o
99 j
kT i .o
We know thatn =n e and we can say that n, === ., u, is given by
e o©. i qu, i
u, = fu? -
1 1 m
o

where we assume that © = 0 at the sheath edge and u, is the ion velocity at the sheath

o
edge, By the Bohm criterion for a stable sheath, u, can be replaced by
o
u kTo
i =a]—=— . Then Eq. (A-2) becomes
o m
2 1
Lo. 2, 0. ) (a-3)
axz2 % ° 1-2
or in terms of the nondimensional distance £
2
e _ ee ) 1. (A-4)
dg? 1-2¢
. ' - dé
If we integrate(A -4)and apply the boundary condition that 8= 0 at a—E = 0, then
this becomes
dod '
‘&—g)2= 2e4 241720 -4 . (A-5)
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