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ABSTRACT

The basic aspects of rotor-bearing dynamics have been collated and

L are here presented in systematic fashion. The rotor-bearing system

and its ftrces are first discussed. The properties of rotor whirl,

i • critical speed and system stability are discussed in detail. Effects

r arising from running a rotor through its critical speed are reviewed.

. " Balanqing of rigid and flexible rotors is considered with regard to

balancing machines, computed calculation of unbalance, and acceptable

levels of unbalance. Axial and torsional effects on machine systems

are included. Throughout, the important literature relating to each

topic is specified, discussed and set in perspective.
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. _NOMNCLATURE

Principal nomenclature is listed below. In certain coses the same symbol has been
ie-used to denote another variable, in two separate places in the text. In these
instances, symbols are specifically detined wInin the LaCe.

F. .The nomenclature vend fn the cited literature is not uniform, and in presenting
certain parameters from the literature as curves herein, and in analysis, it has
not always been possible to present a wholly uniform set of notation.. Where ex-
ceptions occur, these are either re-defined vithin the text, or, in the case of
a curve figure, the figure source is specified for direct referral.

A Cross sectional area

AB Integration constants

a Eccentricity of mass center

a,b Shaft semi-lengths

C Bearing radial clearance

C Torsional rigidity of cross-section

CxCx ,Cy ,C y Bearing velocity damping coefficients

1.. c Viscous damping coefficient of velocity

[ c Critical velocity damping coefficient 2

d Diameter

E Modulus of elasticity

E Hysterisis energy loss per cycle

e Radial displacement of Journal

F Force /

g Gravitational acceleration

h Fluid film thickness

I Moment ofinertia of disk

I Polar moment of inertia

IT Transverse moment of inertia /

tA Unit vectors in n directions

K I K, sxy ,K Y ,K Bearing spring coefficients

k Shaft flexibility

k kij Stiffness influence coefficients

[I L Length

I ,y -
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L Length ratio (L 2 /L 1 )

I ill,2 Shaft semi-lengths

M Bending moment

M Bearing gas mass

MD Bearing restoring moment

m Mass

N Speed, rpm

N Nc Critical speed

P End force

I-" P Euler critical load ( EI/L2)

p Pressure

pa Ambient pressure

f PO Recess pressure

p,q Whirl ellipse major and minor radii

SQ Small tangential force

q Damped critical speed

"q Torsional shaft stiffness

q Generalized displacement coordinate

q Generalized velocity coordinate

qlpq 2 Coefficients

R Journal radius

IR Gas constant

r Radius whirl orbit in x, y coordinates

r,9 Polar coordinates of position
A A
r•, s Unit vectors in I directions

S Sommerfeld number

S Whirl threshold speed ratio (u/Iw)

T Temperature

T Torque

T Kinetic energy

t Time

t Thickness

.



U Tangential velocity

u Unbalance, V oc. in

f V Linear velocity

-V Journal radial velocity

[W Work per shaft revolution

W Iork

"W Bearing load

"Weight ratio (aL/v)

- Specific veight"

w Gas flow rate

Sx Journal velocity in x-direction

x,y Stationary Cartesian coordinatos of position

[. • Journal velocity in y-direction

z Bearing length coordinate

z Shaft length coordinate

Transient phase angle

a Angular acceleration

- Synchronous angular whirl velocity

a Discrete-effect eigenvalues

a7 Influence coefficients

"a Influence coefficient

3 0Steady-state phase angle.

3,7 Instantaneous mall angles of inclination

7 Dimensionless damping coefficient (Lewis)

7 Constant

r Deflection

.•Bearing eccuntricity ratio c i

E $train

_ F Eccentricity ratio

- Phase angle

C Error perturbation

- _ _-. -. -,



[ Damping ratio (c/c )

WhirA orbit radius in 4,1) coordinates

[ji DiaensiotLess shaft stiffness ratio

0 e•ering angular coordinate

a Angles

Ic Speed-dependent shaft stiffness 2

A Compressibility number [6:/pi]

A Cimplex eigenvalue

A Transient vibration frequency with coulomb damping

t- A

"[N4 atural frequency parameter (wAw /SRI)

P Viscosity

[ v Poisson's ratio

V Stiffness ratio (shaft:be~ring)

[ V Rotor whirl frequency

Maod shape .coefficient

L {Span ratio for mass location

Rotating Cartesian coordinates of position

[! 3.141592....

o Str'ess

r Dimensionless time %t

0 €Attitude angleL Angle of shaft twist per unit length

i (z) Displacement function

n Dimensionless speed ratio (aVwc)

W• Circular frequency of rotation

"U) Critical speed, radiah/sec.

/
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* INTRODUCTION

Purpose and Need

Rotor-bearing dynamics has recently merged as a apeesalttod tChnology in

machine design, due to the growing demand for Teliable rotating machinery capable

of stable operation at higher and higher speeds. As machine operating speeds

have increased, ao has the presence of dynamic-effects in the motion becose more

significant. The design and development of high-speed rotating machinery has

* thus become increasingly dependent upon a knowledge of the dynamic characteristics

of the rotor in its bearings.

* The purpose of this volume is to present the existing knowledge in the major

areas of rotor-bearing dynamics in a single volume. As such it constitutes for

I each area a comprehensive and definitive introduction to the mechanics of rotors

in bearings, and also a fully-documented reference to the subject literature, in

which the contributions are collated, evaluated and set in perspective. This in-

formation is of value to designers of rotating machinery as a sourcabook of

rotordynamic effects and of experience obtained by many investigators with many

different machine types. It may be used by analyst@ seeking data on the basic

mechanics of whirl motions, stability, run-up or run-down rotor characteristics,

or any type 6f system critical speed calculation; and on the formulation of the

equations of motion in each of these instances. Despite the ver7 extensive sub-

ject literature in both rotordynamics and bearing technology, there exists no

specific text devoted to the problems of rotors in bearings, nor is any

* critical comspilation of the subject literature available. Therefore, this

volume meets both these needs.

Dynamical Problems of Rotatina Nachiner.

I The dynamic aspects of high-speed rotating machinery design are directed towards

achieving stable motions of minimum amplitude at all operating speeds. At low

speeds, less than the first system critical speed, the overall probl~em my be

dealt with by careful balancing. But at high speeds, above the first system

critical speed, the most refined multiplane balancing cannot avert the stability

problems of hysteretic whirling, dissimilar rotor lateral stiffness, and resonant

whipping. Other methods involving rotor construction and system viscous damping

1 1I __________________________________________._
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are effective in overcoming these problems - the existence of which may be pre-

dicted at the design stage using the data contained herein.

Th# depign prk-blowmg Df rotating machinery may be classified a! follows:

1. Function capability and operational safety.

2. Static stress levels: The influence of centrifugal, thermal, and bending c
'effects; •ereep. ad fatigue,,of:'dtkku, shafts, bearings, and stator casing

under environmental condicions.

3. Dynamic stress levels: bending, torsional, and axial stresses in the

rotor. L
4. Clearance maintenance; rotor-stator-,. journal-bearing,: no touching.

5. Erosion, corrosion of working surfaces.

-'N 6. Transmitted structural vibrations and noise level. L

The 'soblems of rotor-bearing dynamics must be solved within this total framework. [3
Specific dynamical problem areas of the machine design are as follows:

1. Critical speed amplitude buildup. L
2. •ittOA&ne.;bkIAnciLig•. '-
3. Rotor dynamic stress levels. Bending, axial, torsional.

4. Shrink-fit or elastic hysteresis whirl stability.

5. Stability with differing lateral stiffnesses.

6. Bearing stability. Resonant whipping. Half-frequency whirl. Pneumatic

hanuer.



MAM
7. Subharmonic whirl amplitude buildup..

a. Transmitted bearing force. Structural vibration.

9. Noise generation.

A knowledge of the manner in which each separate effect influences the rotor bh-

I havior is needed for the design of both rotor and bearings. Analytically, the

complete interrelationship of all factors cannot be known explicitly - even for

I the most simple rotor type. However, it is usually sufficient to investigate

eachi effect separately, and in instances where contrary tendencies exist, the

3 combined effect may be considered. This is the approach used in the following

sections.

Scope of the Present Volume

BI efore analysing the motion of a rotor in bearings, it is first necessary to

specify what is intended by the terms "rotor" and "bearing". This is done in

Section 2. The constructional make-up of a rotor is reviewed together with the

manner in which the physical proportions contribute to the dynamic rotor

properties. The various types of bearing are discussed; gas, liquid; hydro-

static, hydrodynamic, hybrid; laminar, turbulent; and the features which con-

I-E tribute to the motion of the rotor are identified and classified in terms of

relative importance for each of the above cases. Forces which arise in the motion

are also reviewed in this Section. These are classified in terms of their origin

and action on the rotor-bearing system.

Section 3 is a discussion of the effects produced by a number of specific in-

I fluences on the rotor in its bearings. In particular these are: rotor un-

balance; viscous friction arising from bearings, process fluid or environment;

I internal friction due to shrink-fit slippage or elastic hysteresis; dissimilar

lateral stiffness of the shaft; flexible bearings; subharmonic whirling fluid-film

bearings; attenuation of transmitted rotor force by the beating fluid-film. In

most cases, it is only necessary to consider the performance of a simple, single-

.I disk rotor to gain sufficient understandirg of the principles associated with

each effect. These results cover the fundamental system critical speed. Vhere

3
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information is needed on higher critical speeds, the rotor profile must possess as

Each roior-bearing system possesses a number of critical speeds, but the*Imost suit-

able method for calculating a given case varies according to complexity and the

accuracy to which the required result must be attained. Seetton 4 consists of a

discussion, with exaeples, of the most coimonly-used exact and approximate mthods

for the calculation of critical speeds. The influence of system damping, shear, U
rotatory inertia and gyroscopic effects are considered. L;

The stability of rotors in bearings is considered in Section 5. Following an

introductory statement on the nature of whirl motions and their basic mechanics,

the stability properties of elastic rotor-bearing system is examined. This is

extended to the case of an elastic rotor in flexible bearings subjected to both L

viscous and hysteretic friction. The stability criterion used varies from case t

case. In simple instances, it is sufficient to check the rotor whirl amplitude

equations for instability indicated by positive, real time exponents. Others may

require the stability condition be obtained using the Routh-Rurnr-.t criterion....

Hydrodynamic instability is introduced by a discussion of the mechanics of fluid-

film whirl. From this, the method of stability analysis of rotors in bearings Is U

developed and applied in turn to liquid bearings, gas bearings, rigid rotors, and

elastic rotors. lesults for several bearing types are included, extending through

the two-mass rotor in damped, flexible supports. i•

All high-speed rotors pass through at least one system critical speed during each

cycle of operation. The dynamics of this transition are discussed in Section 6

for the cases of a simple rotor in rigid bearings, damped rigid bearing rotor, and

for flexible bearings. The rotor motion includes the influence of the transients

induced during start-up, and the interaction between the transient and the critical

speed amplitude buildup may determine the performance of the machine.

Balancing of flexible rotors is discussed in Section 7. This subject is the least

tangible aspect of rotordynamics, and at present it may not be reduced to an

identical routine even between rotors of the same size and shape - much less

eliminated by-standard design practice. The need and technique for balancing a

rigid rotor statically and dynamically are stated, and the distinction between

4 U
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I• this and flexible rotor balancing is discussed. Practical aspects of machine

i balancing and field balancing are considered, followed by a discussion of the

I principles of balancing machines, and the determination of the required correction

weights. The influence-coefficieat method is then discussed in detail as applied

to the balancing of high-speed flexible rotors. The example of a mill htih-

speed rotor is used to demonstrate and compare the effectiveness of iulti-plane

balancing by the influence-coeffiietint method with rigid-rotor two-plane static-

dynamic balancing. Finally, the levels of residual unbalance which will be

acceptable in operation is discussed.

I Section 8, the final section, deals with additional effects such as the axial

and torsional motions which occur most commonly in high-speed michinery. Sources,

,! critical speed calculations, and methods of suppression for both torsional and
axial vibrations are considered. Axial vibrations of a fluid-film thrust bearingI are discussed in detail . These effects are drawn together by considering the

influence of torsion and axial motion on the bending motions during whirling for

arotor with distributed mass-elastic properties.

I Considerable specialized knowledge in disciplines other than rotor-bearing

dynamics is drawn on in the text and, where possible, the required analytical

I procedure has been given in some detail to make the particular subject self-

contained. Hydrodynamic lubrication is a subject in itself. The basic steps

from Reynolds' equation of three-dimensional viscous lubricant flow to pressure
distribution load capacity, friction, and damping and elastic properties of the

fluid-film are outlined in Appendix A. Appendix 3 presents the derivation on

various equations of the rotating coordinates; complex plane, vectorially, •, q

coordinates, r, e coordinates. Appendix C is the bibliographical listing of

the published references cited in the main text.

Sources of Text Material

The references lidted in Appendix C are the major source from which the materiql
of this book has been drawn. As this volume is unique in its field, no other texts

were available for comparison - with the exception of Dimentberg (Ref. 1). This

work is concerned with the mathematical analysis of rotor motions for amplitude

and stability, an objective which it accomplishes with elegance and thorouiZness. 1

1. On translation from Russian to English,,inadequate proof-reading has permitted
the inclusion of a great number of algebraic and textual errors.1: 5

!
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Dimentberg deals with elastic rotor-bearing systemsa, but omits all reference to

fluid-film bearlno s and tha4i- sff frt nn rnt,- mnt4nnm- I'1h. nn1v m.4d anp. v,.rn.

vided in this direction concerns a relatively simple use of a simple, unbalanced,

elasti, rotor which operates in bearing* having identical coordinate stiffnesses, z

that ar,. damped in one direction. Tthe emphasis throughout is on obtaining analy-

tical, c>o, sed-form soluclot, r.o the problems co-isidered, often in theface of ex-

tremely c,, 'ex and tedious "'.Sebra. No use is made of the digital computer.

Bearing in -.!d that the firas satiasactory solutions to the lubrication problem

were obtained after idapting the b•.ii equations to digital computation, it is

obvious that the rotor tn fluid-film bceutirg was beyond the scope of Dimentberg's s!

book. Pinkus and Sternlicht (Ref. 2) contains basic hydrodynamic theory, pluiss a IL

chapter on hydrodynamic instability.that includes an analypis of the balanced

rotor in fluid-film bearings. This.work is the only reference which discusses

bearing stability theory in its modern analytical aspect. The numerical'result

included for many bearing types make this work a valuable design text. Most of

the techniques and applications for bearing stability cited in the present volume

have been developed since the publicatton of the-.above referen•e. ' f

* Rotor-Rearina System Analysis
Th-oughout this work, the objective of all analyses is to obtain a knowledge of i
the dynamic pirformance of the entire machine. This is implied by the term "rotor-

bearing systemlV, in" which the basic components involved in the total motion are

.coupled a ral•, ly as occurs physically in the machine. Dynamic considerations

associated wi' t hrotor, bearings, and foundation are discussed in Section 2. This

analytical representation is possible on the condition that the motions of all,[1

components are small allowing the system equations to be linearised. The dynamic

properties of the rotor and its bearing supports may then be determined individually
and linked together through the boundary conditions. This approach applied to

liquid and gas bearing systems has been very successful in determining the

threshold of stability since the stable, balanced state Iroa'.which instability is

approached consists of small motions which satisfy the analytical assumptions. I
However, the true dynamic response of a fluid-film bearing is highly non-linear, L
and so relatively little work has been done on the .atialysis of system with Large

amplitude motions. This is due to the analytical complexity involved in solving

the non-linear response equations. Apart from certain exploratory otudieas, the

6
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practical need for a total solution has not been pressing, particularly as it

means that a separate rotor-bearing rsp,,oe analysis is required for each bearing

a"irn,. P",-v*1cal enim',latideatn s. therefore. coomml the invwetisator to searate

the rotor and the bear.mng and to represent the fluid-film forces by linear

gradients, hasrmonic motions, and small ditplAcements. Th-a method is quite

general in application, and is veil-suited to the preparation of a general com-

puter program in which the rotor becomes a discrete-mess-elastic system. The

effect of any type of bearing may then be examined for which the dynamic co-

efficients are available.

The Remaining Problems of Rotor-Bearinz Dynamics

Remaining problems are concerned with: (1) obtaininS a better understanding of

the mechanics of certain system processes, such as hysteretic damping and

resonant whipping, and (2) with obtaining data on various configurations which

inherently possess a high threshold of stability, or induce mull-amplitude

whirl motions through damping. An itemized listing of the most significant of

these froblems is ast-follows:

Ie

1. Stiffness characteristics for built-up rotors.
At present, experience is used to assign practical stiffness values
where Torcesis transmitted between components across a friction inter-
face, such as a shrunk-on sleeve. A problem elists in deciding the
effective contact area and variation in constant pressure.

2. Stiffness characteristics for rotor with abrupt section change.
These changes do not allow the full stiffness of the section to be
utilized because of St. Venastredd effects. A meaningful general

evaluation is needed for guidance.

3. Refined balancing technique.
Faster, larger, more flexible rotors operate between hiiher.'critical
speeds and must have smaller unbalafce lkvels. Further information
on the influence of typical unbalance on the rotor-bearing system is
needed for more refined balancing, including dynamic pedestal effects,
the influence of thermal distortions of the rotor and techniques for
overcoming or compensating, and the effect of gravity.

3 4. Rotor representation as a simple system.
Where a simple rotor model gives adequate dynamic data, the problem
of accurate representation of mass-elastic data from a complex rotor,
with several disks and a shaft, exists. Better guidance data on rotor
model specification is required.

I 7
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5. IffectLve mass of a submerged rotor.
Pump rotor# for many fluids includinailiouid metals entrain the sur-
rounding medium in which the inertia properties contribute to the L
system mass and, hence,. ynamic characteristics.

6. Vertical rotor precession and nutation. -

Ultracentrifuge and spin-test rotors involve these effects. Data on safe
working practice and gyroscopic stability boundaries is needed.

Bearing

1. Nor-linear bearing effects on rotor motion.
The rubharmonic and superharmonic properties arising from large ampli- V
tude rotor motions are little known. A convenient method of calculation
is needed which is also suitable for stability analyses. At present,
stability calculations are based on small displaceent stability froma
the steady-state position. The stability of the whirl orbit itself isunknown. •

2. Acceleration of Sga-bearLng rotor through critical speeds.

These systems have small clearances and low damping and the possibility
of touching is greater during transitton. An examination of the simple
rotor in a damped elastic gas bearing is needdd to determine amplitudebuildup.

3. Resonant whipping.
An examination of the conditions under which a rotor may be driven
through the resonant whipping condition, is required for ultra-high U
speed rotors and to permit less stringent bearing stability designrequirements.

4. Shock, impact, and randomwibratLon response.
The performance of gas and fluid-film bearings under shock and impact
conditions is lacking, although recenr experiments indicate toubh can
be survived quite readily, and that the bearing-may not be the limiting
component. *Harmonic load component performance has been documented and
offers an introduction. Random vibration studies of gas bearings are
neerded to establish design criteria for non-steady environments.

Rotor'-be.•ring system. !

1. Shook, impact and random vibration response.
An extension of be"Aing requirement No. 4 to a system study is needed,
beainning with a simple rotor in fluid-film bearings.

2. Bending, axial, and torsional mode coupling.
Simultaneous existence of several nodes of vibration can result in
coupling. Bending-torsional system studies have been initiated for
geared systems. The influence on the mode shape and the critical [.
speed due to the coupling gears contact forces lmaybe. sigificantoand variable.

I:
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I
3. Built-in dampers.

Possible attenuation improvement Sn rotor and pedestal motious by
built-id dampers and tuners designed to suit the system may be
achieved. The dasmor attenuMtioU studies are required.

3 4. System response to external excitation.
Zhe affect on the syste of a resonating couponant would be valuable
in determining the dynamic response of the system to turbine
blade vibrations, disk axial vibrations, or to externally impressed
high- frequency forces.3 state-of-the-Ar.

The small-amplitude motiotns of the system are understood with sufficient

I accuracy for immediate practical purposes. The analytical tools have been

developed to deal vith these problems. More data is now required on many

3. practical aspects of dynamic response and on how those influence the system

and its motions.

I9
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II •

ANALYTICAL REPRESENTATION OF THE ROTOR-BKAR•1G SYSTEK

Dynamical System of the Machine

As a first step in the dynamical analysis of any machine it is necessary to

establish from the proposed machine layout those components which will act to- [
gether to constitute the dynamical system of the machine. In most instances,

the rigidity of the bearing housings and their supports reduces motioas of

these components to a minimum. The rotating components are, in general, much 1.

more able to respond to rotor dynamic forces, and so the dynamical system of

any machine is centered around the rotor itself. In a complex system the

dynamical constitution of the rotor may be different for different types of

motion; for example, in the geared system shown in Figure 2.01, bending motions

of each shaft are unlikely to be transmitted to any significant degree through Li
the gear meshes, whereas torsional motions will be both transmitted and

...•nfluenced by the gear ratio. If the shafts shown in this system are very

flexible, the total motion may contain both bending and torsional component

motions. But if the shafts are designed to transmit power and to resist bending L
deflection, the system motions are unlikely to be coupled, and the equations

describing both types of motion are thereby greatly simplified. The most com-rn-.

manly-occurring motions in any machine system are:

1. Rigid body motions [i
2. Bending motions of shafts

3. Torsibnal motions U
4.. Axial motions

"S. Plate-mode motions of impellers, disks and gear wheels

Both translatory and conical rigid-body intermodal coupling, and rigid-body-bend-[

ing coupling are common in rotordynamic systems; torsional motions with some

bending motion due to shaft and bearing displacement are encountered in high- .

speed gearboxes and other transmission systems. The influence of torsion on

bending modes has been considered by Johnson .(R1Sf. 3). Axial-torsional coupling

may occur with long transmission- and propeller-shaft systems, where the

thrust bearing flexibility allows the system to move axially, and bending-axial

motions due to axial thrust in turbomachinery are well known.: Where the shaft

10
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I I is short and light-weight, it may participate in the high-frequency plate mode

vibrations of the disks or Sears which it carries. laRh of thes,; types:of

m I motion is shown diagranmtically in Fig=re 2.02.

IJ •Generally speaking. the possibility of coupling v111 b.4dieo•-if* oe4o-..

culated natural frequency of any of the above simple, uncoupled, types of mo-

tion lies close to tha natural frequency of any other simple uncoupled motion.

i Where this occurs, an analysis of the coupled motions in necessary to obtain

5 the true natural frequencies and mode shapes.

The motions with which this reprt is mainly concerned are the rigid-body modes

and the bending modes of a flexible rotor in flexible supports. Analysis of

these particular motions is an important part of the dosign of all rotating

machinery. The other types of motion listed above also occur in these

systems, but their effect is generally speaking more straightforward, and ade-

quate treatments are available in the subject literature, except insofar as

coupling,-particularly bending coupling, is concerned. Section 8 deals more

specifically with the influence of axial and torsional effects on the system.

In order to establish the dynamic system it Is necessary to anticipate the

extent to which each individual mechanical component is likely to enter into

g the system motions. The rotor, the bearings, and the foundation are three

basic component groupings. The following sections review the make-up, inter-

Saction, and participation of these items.

The Rotor

Mechanically, a rotor consists of a number of components which are rigidly

attached, forming a shaft which rotates and performs useful work. Many

rotors consist of a basic shaft upon which are mounted components such as

AI bladed turbine wheels, impellers, drive couplings, electrical armature lami-

nations and coil windings, gear wheels, and so on, Figure 2.03. The shaft

"serves to locate the working components centrally along the elastic axis of

the rotor. They may also be attached elsewhere, perhaps by disk-to-disk

Ibolting, in which case the rotor is made stiffer. A drum-type rotor my

also be used tc reduce rotor deflections where the bearing span is iarge,

I Figure 2.04. This type of construction ý.s common in turbine practice, and

S''
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is also used for high-speed guide rolls on paper-maklng machines, newsprint

machines, etc. Other rotor types are short in length, as in the case-of U
helicopter rotors. One end of the shaft is connected throush a eaarbox. clutch.

flywheel and universal joints to a prim mover, which itself has either a cramh-I3haft cr a rotor. The other and of the shaft carries a Propeller eIwwisti- of

several long flexible blades, Figure 2.05. The ventilation fan unit of Figure

2.06 has a similar overall construction. In each of these cases, the designer

wishes to know: How will the stiffness of each rotor component influence the

overall motion of the rotor in its supports? How will the mass and inertia

properties of each rotor component influence this motion?

Dynamical Representation of R2otor

Dynamically, a rotor is the aggregate of the effective mass-elastic properties

of its constituent mechanical components. It responds as such in proportion

to the variety of harmonic impulses which it receives. Frequently, rotor

motions may be analyzed directly using known formulae, due to the simplicity and

symwetry of the mechanical system which they represent. Such calculations are

often possible where the information required concerns only the first few

critical speeds. As the speed range of many simple aishines contains only one

or, at the most, two critical speeds, these machines'may often be calculat6d

quickly and conveniently. The rotor elasticity is represented by a simple

equivalent shaft, atnd the rotor mass is. concentrated at as many man-stations

as there are modes to be calculated. The mm, arrangement is determined by the bl:

actual machive layout. Both bending and torsional oscillations of one-, two-,

and three-span machines may be calculated with good accuracy with such a re- LI
presentation. Very frequently, the shaft mass is relatively small compared with

the mass of the gears, impellers, and so one', carried by the shaft, and the mass- U
elastic layout is ettablished directly. Figure 2.07 shows the analytical

representation of several mezhanical rotor systems.

More complex rotor systems cannot be evaluated through any simple method, and

an adequate manss-elastic representation often requires a large number of masses,

joined by shafts of differing stiffnesses. Where the actual rotor is a

stepped shaft,the calculation of aa equivalent shaft in bending is tedious,

and the inconvenience of hand calculations may warrant the use of a computer in

12

. . I ,



this instance. The equivalent torsional shaft may be calculaited directly.

Where symltry is absent between the stiffnesses, or between the masses, cam-

puter calculation usually becomes an essential tim-saver.

I Large rotating disks tave ccusiderabih gMaycopic and rotaft-tY ir . At-

moderately-Oish speeds, c3pecially where large s. plitude oi' criticutl sowrona

occur, the inclusion of the forces arising from gyroscopic and rotttc.--

effects in. the equations of motion is usually necessary, or the accuracy

of the result will be impaired. The mass and the stiffness of both systems

shown in Figure 2.08 are equal; the critical speeds and mode shapes are

not equal, because tz. end inertias are dissimilar. Where these effects

must be Included, critical speed calcula tions become mrorecomplicatad 'th--

addition of another degree of freedom in the rotor system for each ms"-

3 station. These effects are discussed more fully in Section 4.

- Computer analysis of the dynamic performance of a rotor 'in Its beariinss al-

lowas all simplifying assumptions to be dispensed with, and the rotor geomtry

3 imay then be faithfully represented in the calculation input data. The rotor

profile becomes increasingly complex as the operational demands of the

machine in which it operates become more stringent. Smaller sice, groater

'-• speed, minimum thermal distortion, and volumemachine-and function-optimisa-

3 tion all tend toward rotors which have abrupt profile changes, mintam-

weight sections, dissimilar materials acting in composite sections, all re-

quire an optimized distribution of mass-elastic properties to achieve the
I required dynamic performance chawa'cteristics. In these cases, the only way

X
to obtain meaningful design data is by a computerized analysis. In this,
the rotor is first divided into an appropriate number of sections so that

its mass-elastic properties may be represented with reasonable accuracy by

the system shown in Figure 2.09. Within each prescribed section of the rotor,2 2/3the section mass d - IL is concentrated at its c.g., and is con-

sidered to act at this c.g. throughout the motion being analyzed. These can-

centrated masses are further assumed to be linked by massless elastic

members which represent the transverse flexural beam stiffness over the

distance between the rotor masses. This is the basic mass-elastic re-

presentation. More refined programs also take into account the rotator:,

inertia of each concentrated mass, and the gyroscopic effect arising from

* 13
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rotattoo, of the deflected rotor share. Shear effects way also be included with

bending If needed, but. this effect Is generally quite aminr

In preparing pr~graa I•±V1t, the rotor mals values ore raodily obtained from the

proposed laymit, Greeter difficulty is experienced in selecting stIffra-gc

values between shaft portions of) different sections, or in tapering sections of

shaft. One method of overcomint the first problem is to p-ce a Idumy'

station of zero mass at the junction between the shaft sections. The stiffness

of each length of uniform shaft is then calculated, overcoming the need for

determining the equivalent second moment of area for the stepped section. Where

the shaft is tapered, it may be replaced by a number of stepped sections. These

are then incorporated using the above method. These effects are shon in

Jigure 2.10.

In r-Rny instances, the shaft sections are made tubular to minimize weight or

heat transfer and rotor thermal expansion, for example, between a turbine disk

and a gas bearing. The flexural stiffness of a short thin tube may be calculated

"approximately using beam theory, but the actual deflections are governed by the

cylindrical shell equations and the particular boundary conditions of the ap-

plication. No actual design data is available for this condition which will

clarify the extent to which the beam theory is valid.

The reinforcing effect of shrunk-on disks or sleeves is also incompletely under-r

stood at present. A turbine disk shrunk-on to the center of a thin flexible

shaft will provide little additional stiffness, whereas an outer coating applied U
to a roll may stiffen the roll considerably, even though the stiffness is trans-

mitted by contact friction between the surfaces. In estimating both these

cases the experience of the analyst is at present needed to allow for the

stiffening. It is customary to assume that the effect of the shrunk-on section F

is effective over the length of the disk or sleeve, and that it may be represented

by a certain increase in diameter of the basic shaft. Similar problems occur in [
the representation of bolted joints.i Here, the true stiffness involves the

bolt tension, the effectiveness of the joint, clearance of the studs in their

holes, and the support provided by other mating or guide surfaces of the joint.

This complexi~ty is usually avoided in analysis by assuming a rigid joint which

has the stiffness of the built-up portion of the rotor, as shown in Figure 2.11.

14
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' U The above remarks on analysis of complex rotor profiles my be sumrwised by

saying that when the desired mass distribution of the rotor ha been d cided

U with reference to complexity and the number of anticipated bending critical
sveeds within the speed ranas to be investigated, the calculatioi of stiffhes.L* L properties of the rotor between the various stations is then undertaken. Cm•-

plications arts where changes of section occur, either abruptly or b7 taper.

Usually tapered sections may be adequately represented by a relattvely few
"stepped sections. The use of du=nVy mass stations then allows Mnifeuu beams

analysis to be applied, through the computer calculation itself. The

stiffening affect of shrunk-on disks and sleeves is allowed for by providing

a suitable diameter increase for the basic shaft or rotor section, based on

experience. Bolted joints are assumed rigid for small amplitude motions.

The required .rotor input data for the computer program is then:

For each mass station: mass ma

polar and transverse moments of intertia

1pi, t ti"
Between each mass station: cross section area A

second moment of area I

shaft section length Lt;
I~I modulus of elasticity E.

Speed range requirement: Speed range and increents.

L• Torsional Systems

As moment of inertia is proportional to D 4, the inertia properties of torsional
systems are usually concentrated in the large disks such as turbine disks,

F impellers, and gears. Where the shaft inertia is important, it may usually
be included as a single additional mass located at the center of each shaft

nI length. A more difficult problem is posed in determining the torsional

stiffness of the shafts and other mechanical elements between the gears. In

any torsional system experience indicates that accurate results may be ob-

tained only if che total torsional system is considered, including the

flexibility of all gear teeth, shafts of varying section, splines, keys,

couplings, bolted connections, stiffening sleeves, clutch and drive mecha-

L nisms. Data on these effects is given by Nestoride- (Ref. 4) and by

Ker Wilson (Ref. 5). The predominant effects in the analytical system emerge

[ when the total system is prepared.
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The analysts of complex torsional systems is readily performed on a digital con-

puter. This approach again allows the real problem to be investigated; complexity

is no longer a barrier often requiring unacceptable simplification. This is

particuiarLy imporcaur where urancmoe ano ioopmd coraimusl sysLmw are con-

cerned.
/

The end result of a torsional vibration analysis is the natural frequencies of

the system, and the associated mods shapes. The torsional damping which arises
from elastic hysteresis and bearing and Seer lubrication is usually extremely

small, and unless the system carries a fan or a propeller, the amplitudes of

vibration at a system natura1l frequency may be very large. In this case a LI
torsional vibration damper, such as a viscous shear damper, a pumping-chamber

damper, or a Coulomb friction damper may be required-. The mode shape then U
allows the most suitable position for this damper to be selected. In general,
the introduction of even a small mount of damping reduces vibration ampli-

tudes manyfold. Optimum damper design will usually make the torsional vibra-

tions of a machine quite negligible.

The Bearins

Bearings support and constrain the rotor. As mechanical components, they serve
s variety of functions, ranging from providing a means of low-friction static

load support, to the attenuation of rotor amplitude, transmitted force, and

structure-borne noise in high-speed rotating machinery. Because of their

flexibility, bearings influence the dynamic performance of the rotor which they

* support, by determining the position of the system critical speeds, along with

the flexibility of the rotor itself. For this reason, unless the bearing

stiffness is high compared with the rotor stiffness, calculated values of rigid-

bearing critical speeds may differ considerably from the real values. Linn and

Prohl (Ref. 6) have considered the influence of bearing flexibility on critical

speed calculations, and recent investigations have also included the influence

of bearing damping. There exists a wide variety of bearing types, and the

particular choice for a given application is based on the range of performance

requirements which must be fulfilled. For example, where high load capacity

is the predominant requirement, an externally-pressurized (hydrostatic)

bearing may be needed; and if low bearing power loss or minimal temperature

rise is also required, the hydrostatic bearing may have to be gas lubri-

cated. In cases where rotor stability is the limiting factor, cylindrical

16
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U self-acting (hydrodynamic) bearings are knoui to have a low stabilityIu threshold speed, whereas hydrodynaiic tilting,-pad Journal berItngs Pro

hishlv stable. An extensive conmsarai!,v lisltin of bearins tites withi, d

vantage@ and disadvantages could be r ,:spired.

[1 Bearings may be classified in the following ways:,

1. Directional Journal Thrust Cbloa,-tiU. -

t2. Type Rolling Blement Fluid-film.

Fluid-film bearings may be further classified:

3. Mechanism of Load Support: Hydrodynamic Hydrostatic Hybrid

4. Lubricant type: Incompressible Compressible ;..

5. Lubricant Laminer Turbulent

Most machines require both journal and thrust bearings. The choice betwee"

rolling element bearings and fluid-film bearings depends upon many factors

such as load, speed, temperature, reliability, stability,. durability, sup-.,

port equipment, radioactive environment, corrosion, and other factors. In

general, where moderate operating conditions apply throughout, the low cost

and overall convenience of rolling element bearings offer great advanlsles

in a design. But where any single factor becomes overriding in the design,

Lnsuch as extreme load, ultra-high speed, extremes of temperature, or either

a radioactive or corrosive environment, some form or type of fluid-film

bearing exists which is well-suited to the overriding factor, and this type

of beaiing is then selected in preference.

Hydrodynamic bearings operate by creating a convergent wedge of fluid be-

tween the bearing surfaces through their relative motion. The resultant

pressures generated by the motion of the fluid are sufficient to support the

bearing load. A number of hydrodynamic bearing types are shown in Figure

2.12. This type of bearing has the advantage of simplicity of operation

with*a minimum of supporting apparatus. Load capacity may be moderately high,

and bearing stiffness may be made fairly high by design. As there is little

associated apparatus,dynamically stable hydrodynamic bearings are obtained

by .selection of a geometric form which has inherent stability, or a high

threshold, if high speeds of rotation are involved, or the impressed cyclic

L loading of the machine occurs at submultiplas of the speed of rotation.

17
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As stated above, plain cylindrical bearings hea a low stability threshol•;

four-axial groove, elliptical, segmueted arc, &ad pertial-arbet is h a*- a
inherently much b*gber instability threshold speed*; and tiltiag.po " erta
are inherently stable up to pad flutter speeds, i.e., os lons," tbe a ds -to"d I
to "follo'v the shaft motions. The dynamic stiffhess and 41001 cher I.teu idt•..e

of most important hydrodynamic bearing types bhve been obteimed for a, In rotor,

dynamic calculations|. The influence of thee beoring properties 64 tbo peru

formance of a rotor are discussed in Sections 3 and 5.

Hydrostatic bearings operate by supporting the applied journal load upon a film

of lubricant which is fed into the bearing under pressure from some external

source, such as a pump. This principle is. shown in Pigure 2.13 tort a bydro-
static journal bearing. The flow of the lubricant ia restricte4 (a) by restric-

tions within the bearing, and (b) by the narrow clearance space. Better con-

trol over bearing performance is obtlined by adequate restrLctor design. Ixternul"

restr-ltors may be either inlet nozsles feeding into the clearance space, or

capillary feeders. Some bearings have been designed so that the area surround-

iog the lubricant inlet holes act as a restrictor. These bearings are said to

be inherently compensated. Some form of flow reatrictor is required for all.

hydrostatic bearings The critical design area for all types of hydrostatic

bearings is the area surrounding the inlet restrictor or noszle, the diffuser

or pressure chamber, and the sons where the lubricant flow enters the clearance

space. This area controls the pressure drop, bearing flow and dynamic per-

formance of the bearing. A particular problem associated with hydrostatic

bearings is pneumatic hazmer, in which pressure surges cause heavy vibrations

in the supply lines and of the journal within the housing. Pneumatic hammr is

closely associated with the depth of the pressure chamber. Deep chambers in-

crease the likelihood of this effect. This is less important with a uulti-inlet

bearing using diffusers to avoid inherent compensation. Pneumatic hamr may

lead to lock-up of a Journal against its bearing in certain cases. Dynamic E
stiffness and damping properties have been obtained by Lund (Ref. 7-) and'otheri for

the more common types of hydrostatic bearings. Hydrostatic bearings are in-

portent where either high load capacity, high axial or radial stiffness, or

accurate control of position or concentricity are required.
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"U Where an externally pressurised bearing is used in a high aPeed .ppl...tio . .

the pressures generated by the rotation influence the regular hydroetatic,
Swpressure distribution. This type is known as a hybrid hearing, and the beer.,,

p Lug load capqcity,, stiffness and dynamic resaponse are . t f frent from the awl

hydroseetie bearin•. Anelyee .have been made to detexine th• extent off. ..-

" effects, see Lund (Ref. 7),.

Bach of the beariuS types discussed above have been operated on both incon-

pressible and compressible lubricants. Incompressible lubricants include:

oil, water, kerosene, mercury; liquid butane, nitrogen, and other liquified
process gases; liquid metals such as sodium, potassium, flaK. Compressible

ii lubricants include: air, hydrogen, helium, nitrogen, ox"en, and the Inert, -

gases; butane and other organic vapors; amionis, freon, ?and other ref~igerant

gases; and steam, vet and. superheated. Where the lubricant is Incompressible,
Sthe major property governing the performance of the beaing, and hence the

system, isathe viscosity. This is principally determined by the operating tea.-

perature of the bearing, which depends upon the bearing friction; it is .lsog

governed to a lesser extent by the operating pressures of the fluid. Density

is not a factor in incompressible lubrication, except in deterring u.ase £flw.

Mlass flow may be important where the lubricant acts as a bearing coolant, in
which the heat transfer coefficient of the lubricant will also be important.

U Thrust bearing designs often require consideration of the heat transfer

characteristics. Heavily loaded designs may be water cooled through the

pedestals..

]For compressible lubricants the variation of density with pressure is of is-

portance in determining bearing performance, in addition to viscosity. For

U conventional circumstances, the flow of gas through the bearing is isothermal

and so the thermal characteristics of these bearings are usually unimportant.

* Both compressibility and viscoqity appear in the compressible Reynolds'
equation, as indicated in Appendix A. The load capacity conferred by a coa-

SFpressible lubricant is considerably less than that of an imcompressible lubri-
cant, and the dynamic stiffness and damping characteristics are likewise much

[3lower. An exception exists in the case of an externally pressurized gas bear-

ing, where the bearing stiffness properties may be made comparable with those
Sifor an incompressible lubricant.
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Conventional bearing operation involves lstinar flow of the lubricant, but ap-

plications exist vhere the f'lo is turbulent. S1b shpeed operation with low

viscosity, high density lubricants promotee turbulent lubrication. Closed cycle

space power plants may operate with liquid mercury or liquid metals as the

lubricant. Water lubricated bearings in a high speed pump may led to turbulent

operation. Sttu!es in t, r_ lett lubrieation were initiated by Taylor (Ref. 8),
Wilcock (3of. 9) and Smith and Filler (Wat. 10). Constantinescu (Ref. 12) de-'

veloped a theoretical analysis based on 'randtl's aixiug Aaugth-hypotbhsis.

The basic equations were computerimed by Arvas, Sternlicht and Wernick (3sf.12).

Results were compared for several geometries with the experimental results of

Smith and Fuller (Uef. 10) and others. The unsatisfactory comparison led to

the development of a new approach based on the Bouasinesq-Ueichard-Ilrod 'eddy-

viscosity' concept by Ms (Ref. 13), extended to finite length bearings by

ft and Pan (Ref. 14). The predictions of the eddy-viscosity theory have since

been verified for a variety of bearing types by Orcutt (Rfs.' 15 and 16) for

both static and dynamic bearing properties.

Wnamic Representation of the .earinss

With fluid-film bearings, rotor response is influenced by the bearing stiffness,

and by the fluid-film damping properties. These properties are determined by

the bearing geometry and by the conditions of operation, and their derivation is

briefly summarised in Appendix A. For a journal operating with eccentricity

ratios within the clearance, any additional load 7' applied as shown gives rise

to a displacement x in the direction of the load, plus an additional displace-

ment y at right angles to this displacement. In addition, 'if the displacenmnts n
are applied dynamically, additional resistances arise due to the velocity of

load application, in both x and y directions. The bearing forces resulting

from a general x.y displacement of the journal in the x- and y- directions are

therefore

F " KMx + KXYy +C 3M + Cx, (2.01)

Fy K X + K yy +C y x + Cy

The coefficients K KX1yXY K Ky are referred to as the bearing stiffness co-

efficients, and the coefficients CXX Cxy Cyx Cyy are the bearing damping co-

efficients. These coefficients depend on bearing operating eccentricity a vhich

for any given bearing type is a function of Somerfeld number S - 2

Values of the bearing stiffness and damping coefficients are listed in Table 2.01
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for the plain cylindrical bearing, the four axial-groove beating, sr for th

U tilting-pad bearing, for incompressible lubricants.

Squations 2.01 are the analytical representation of the bearing Ln terms of

its dynamic properties. The motions of a rigid rotnw aperatief isý fluid-

film bearings may be investigated using these expressions. The f lu:.-fils

damping is the major source of damping in such systems, and its iiiwootation
into the system equations allows the rotor amplitude and trasmaittid force

to be calculated at the critical speed.. When the rotor is displaced, from

its equilibrium operating position, gh yai:fre eneratead bythe fud
film act upon its mass. and tend to restore it. If the motions are in-

duced by rotating unbalance, the resulting whirl motions involve the us-

balance force, the rotor mass, and. tho dynamic'bearing forces. This pro-
blem may thus be foimalated for analysis using these expressioun. Unbalance

response of a rotor in fluid-film bearings 1s discussed in Section .3, and
the stability of rotor motion is considered in Section 5.

The Machine Structure

some form of supporting structure is required to carry the rotor-bearing

system. In ,small machines such as motors this usually takes the form of a

casing, whereas insa larger machine such as a steam turbine, the rotor-bearing

[ system may be supported on pedestals which are attached directly to the

foundations of the building. In most cases these support~s ate elastic to

some discernible degree, and thereby participate: in the overall motion of the

system.

Vibrations of motor casings as rings are discussed by Den flartog (Ref. 17).. At

[1, certain frequencies within the machine operating speed range, residual un-

balance in the rotor has been known to excite ring modes of the casing.

These vibrations give rise to noticeable noise (casing hum) which must be

eliminated by design changes, or by the inclusion of additional damping in

the casing. Oscillations of turbine platforms are discussed by Stodala(Ref.lS)

and by Geiger(Ref. 19) .both of whom indicated thlit tbefoaandstion sway flexi-

[ bility lowers the fundamental bending critical speed of the turbine set.

In small compressors, the bearing housings are often attached to the casing,

J and nay possess considerable flexibility. Figure 2.14 shows a design where
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each bearing support is a thin diaphragm to provide maximum apglar flexibility

for the bearings to follow the free-free banding mode of the rotor vitbout *acri-

"fics of radial support stiffness.

In mos• instances it is quite adequate to incorporate, the stiffness ad d amptsg

properties of a bearing housing or pedestal by the addition of a further Opring

and dashpot connected to the housing mass as shown in Figure 2.09. These of- I
facts may be readily incorporated into a general computer progm which cal-

culated dynamic response, or critical speed, for the mUlti-mass rotor discussed

previously. Pedestel flexibility may significantly affect the dynamic per-

formance of a machine by lowering the fundamental bending critical speed, if

the pedestal spring and damping properties are comparable in value o bearin# or

rotor properties, particularly if the pedestal mass is large and capable of Join-•

ing the system oscillations, possibly as a separate pedestal mode in which the

rotor stands still. Certain bearing supports have been proposed based on this

principle to minimize rotor vibrations. The arrangemn t, consists of a spring

and a dashpot of scm type which is connected to the rotor, backed up with a

second spring, as shown in Figure 2.15,. The back-up spring is considerably .

stiffer than the other spring. When the rotor speeds are low, dynamic transmitted

forces are small, and the back-up spring is effectively rigid. The soft spring

restrains the amplitudes somewhat, but the motions are sufficient to cause the

dashpot to operate and dissipate vibrational energy. At high speeds, trans-

mitted forces are much higher, and the stiff spring then provides attenuation

not available with a rigid foundation. The dashpot is considerably stiffer, in

the same order as the back-up spring, As its resistance forces ck depend upon

the velocity of motion. The soft spring here has negligible effect, and the

system stiffness is thus shared between the dashpot and the back-up spring.

Betwean low and high speeds there is a gradual transition between these two con-

ditions. The overall effect is a support with effectively constant increase in

stiffness and damping. Any type of linear dashpot will give this effect, such

as an orifice- or piston-doshpot.

Forces Acting in a Rotor-Bearing System

In order to determine the motion of tbe rotor mass it is necessary first to do- (j
termine the nature and magnitude of the forces to which it is subjected. Knowing

the forces involved allows the equation of motion to be formulated and integrated L
* to give the required rotor dynamic properties.

•:; 2 !



Forces arise frem the ,%vironment in which cbthe rotor-be.vIng system operates,

and from the nature of the system itself. A useful clss•ification of forces

[ in mechanical systems h" been given by Ziegler (laf.'0), Table 2.01. ftoE

the classification given it is possible to infer the 4yunaic characteristics

'IL of particular system types.

'[] Table 2.03 classifies the forces acting on a rotor-bearing system in terms

of the nature of their application, together with eiamples of wystems vhere-

these forces occur.

in Table 2.03 the forces are classified as:

1. Externally-applied forces which act on the machine as a whole, from

without. They are transmitted to the rotor-bearing system via the

foundations or machine casing. Such forces are experienced in aero-

r. space maneuvers, in explosion-proof, blast-proof, and shock-proof,

and earthquake-proof designs, notably power plants and delicate

measuring apparatus. The impulsive nature of the loading il

attenuated to some extent by the rotor-supporting structure, in-

cluding the bearings, before it reaches the rotor. The effects may

range from transient-initiated instabilities in the motion which

"either are sustained or decay, to bearing touching accompanied by

shaft deformation followed by severe unbalance whirling. A knowledge of

the forces involved in shock motions is impoitant in the design

of all delicate, high-reliability, and accurate position-control

L. equipment.

2. Forces gene-eted by the rotor motion. These forces are absent from

the environment when the machine is not operating. In each instance,

the specific nature of the equipment determines the forces involved.

Usually, a number of these forces act together. The overail motion

is then determined by their relative magnitudes. Specifie. effects

1. are discussed in derail in the tollowing chapters, and methods for

overcouing related problems are indicated.

S3. Forces applied to rotor. These forces occur during operation, and

are applied by the system in which the rotor operates. These in-

clude drive torques; steady, accelerating, oscillating, or transient;

radial or tangential rotor forces existing from drive applicat.ion

or transmission, and field forces either gravity or electromagnetta ;

and axial or normal applied forces resulting from the balance of

23
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pressurea required for the macbine operational functioosia, or for can-
pooent function such as high load accurate position hydroetatic bearjim. 3

In calculating the dynamic perforumnce of a rotor in beartn•, the only force.

usually required are the rotor unbalance value, its location, sad tka beartag

forces corresponding to the operating eccentricity. These fore"s allow .the.

amplitLde rasponse and transmitted bearing force, and the rotor-bearwin stability

properties to be calculated for the system. from this information the roao per- ["
formance characteristics may be optimized at the design stape. If the rotor

encounters opermtional problems such as half-frequency whirl, synchronous whirl,

Coulomb friction whirl, or resonant whipping, the above dynamic performance

data allows these problems to be diagnosed, providing the action of the forces
which promote these motions is clearly understood. A detailed knowledge of

all the forces which act on a rotor is not required for design, but recognition

of the significant forces occurring in an operational environment is essential

for the diagnosis of rotor-bearinS system problems. Finally, the analytical

formulation of any rotor-bearing problem also requires an appreciation of all

the forces involved in the motion. The influence of the forces listed in U
Table 2.03 on rotor motions is discussed in the following chapters.

[I
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Classification of loads
.active forces

.l~rntmt~i.•7. l.oads, lo~t a dsr le1i

F(q, q, t) q )

I ""I IL
velocity--dep. loads vYlocity-indep. loads

F (q, .),(q -

_ _ _ _ I U;
I I I I U

Sm.rocopic dissipative noncirculatour circulatory

dW 0 dW.4O dV--dV dW pedV

Classification of Reactions
reactive forces [j

- C)
vorkless reactions dissipatii reactions -

jW- 0 dweO 0

Table 2.02 Classification of Forces and of Reaction
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i (a) Gear on Shaft (b) Fundamental (Umbmlla) Yode

(c) Two-Diameter Mode (d) Three-Diamter Mode

Fig. 2.02 Plate Mode Vibrations. Umbrella and Diameter Modes
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Rotor Blade Rotor Blded0

Universal Joint

-Gear lox and Power Plant

ViS. 2.05 Helicopter Rotor. Flexible Blades and a Flexible Shaft LI

Blade

_ _ _miU

Blade

Fig. 2.06 Ventilation Far. Rotor
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Fig. 2.07 Representation of Actual Rotor by Analytical Model
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Fig. 2.09 Mass Elastic-Bearing Rotor Representation
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Mass Stain 2- 34 4

AculRotor Mode

(a) Representation of Abrupt Section Change Using Uniform Shaft Sections
by Introducing 3 Duimmy Mass Station At 3v

(b) Representation of Conical Section b) Two, Equivalent Cylindrical Sections

Fig. 2.10 Methods for Representing Rotor Section Changes
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:I Fig. 2.11 Representation of Bolted Joint

/

/

(a) Full Cylindrical (b) Partial Are

I

(c) Four-Axial Groove (d) Elliptical

I

1 (e) Three-Lobe (f) Tilting-PadI
i Fig. 2.12 Hydrodynamic Bearing Types
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Casing

Diaphragm

Rotor

Bearing Shell

Fig. 2.14 Diaphragm-Supported Rotor
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Soft Spring

Dashpot 
.EU

(a) Constant Stiffness Support 1

cx Li

(b) Effective System at Low Speed U

_UU/•cx k~x

(c) Effective System at High Speed

Fig. 2.15 Damped Support System for Attenuating Vibrations
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tL DYNAMIC RESPONSE OF UNBALANCED FIMIBLE ROTORS

f introductory Remarks on the Influence of Unbalance

All rotors retain some degree of residual unbalance. The purpose of this section

[ is to discuss the effects produced by unbalance on a rotor-bearing system. Each

system has, through its shape or construction, a number of specific features such

as shaft cross-section, fricr.ion, bearing properties, pedestal properties, and so

on, which influence the rotor motion. The effect of some features is known in

advance, at least qualitatively. Here, rotordynamic analysis seeks to make these

effects predictable, and so to optimize their overall contribution to system per-

Sformance. Other effects such as high-speed balancing involve several system

parameters simultaneously, and so may not be predicted readily by experience or

intuition. In these cases, systematic investigation of parameter interaction is

provided. This is accomplished through the analysis of a rotor-bearing system I.
which contains the mechanical features required to simulate the effects observed

in practice.

Rotor amplitude and transmitted bearing force are both governed by rotor un-

balance - where the motion is stable. When the variation of amplitude with

operating speed is known at critical stations along the rotor throughout the speed

range, it is then possible to decide on other aspects of the mechanical design,

such as: degree of balance necessary for machine operation, suitability of bearing

design, possibility of rotor fatigue and creep-i.nduced permanent bowing at high

operating temperatures, and others. The level of bearing-transmitted force may

be significantly modified by 'he type of bearing used. This, in turn, influences

the rotor motions, and, therefore, may determine the degree of balance required

for operation at high speeds. Also, by attenuating the transmitted force through

bearing desiga, the structural noise level is reduced.

Very few rotors operate in "rigid" bearings. Heavily loaded hydrodynamic bearings

come the closest to this condition, but even these bearings possess a degree of

flexibility and damping which influences the motion, particularly the critical

speeds. The simple vertical rotor, consisting of a single unbalanced central

disk mounted on a flexible undamped circular shaft, And which operates in short

rigid bearings, has been considered initially in order to simplify the analysis
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Sof certain more basic effects of unbalance on rotor whirl. Later, this simple U
concept is modified to include horizontal operation, the bearing properties, and

rotor asymmetry. The gyroscopic effect is considered in Section 4- Critical

Speeds, since its main effect is to dynamically stiffen the rotor and raise the a

rotor natural frequency in banding. Likewise, certain effects of friction ind

of rotor shape, which concern the stability of rotor-bearing motions, are dis-

cussed in Section 5.

The distribution of the unbalance in an actual machine can:ot be predicted in

advance. It is known through its effects on rotor amplitude and bearing-

transmitted force. These effects are~commonly discussed in terms of "static"

unbalance, where the disturbing faces lie in a single plane; and "dynamic"

unbalance, where there may be several disturbing forces - each acting in its own

plane. Both static and dynamic unbalance are usually present in a given machine.

Unbalance is customarily thought of as being the whole or portion of the rotor Li

weight, W, acting at a small eccentricity, a, from the elastic axis. The un-

balance is thus referred to as W.a oz.in. in each plane. This is shown in

Figure 3.01. Balaacing of rotors is more fully dealt with in Section 7. U
Nature of Whirl Motions

During its rotation, a rotor is said to whirl when the mass center of any por-

tion of it travels around a circle or any other closed curve - instead of re-

maining at a fixed point. If identical whirl orbits are traced out with

successive rotations, the whirl is said to be stable. When the whirl orbit is I
growing or decaying, the whirl is transient and may be unstable. Stable whirls

alone are dtscussed in this section.

Any rotating force which acts on the rotor will induce a whirl. If the rotor

e.g. is eccentric with respect to the axis about which it rotates, a radial force

will exist which rotates in synchronism with the rotor during operation. This L
will cause the rotor to assume a deflected shape in the direccion of the rotating

force, and this shape then whirls about the axis of rotation at all speeds. All

forces which act on the rotor, including applied forces find those induced by the

whirl motion, contribute to the overall resultant motion.

4
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At the critical speed, the viscous friction which is present in practical rotor-

bearing systems acts in the tangential direction and is in equilibrium with the

rotor unbalance force. The system is then stable. This is shown in Figure 3.07.

The initial phase of the. motion causes a transient whirl consiating of two com- L
U ponents which rotate in opposite directions with a frequency oqual to the system

f natural frequency. In systems which have viscous damping, these transients

decay, irrespective of whether the rotor operating speed is above or below the

system critical, leaving only the unbalance whirl motion. For systems which

have hysteretic damping, the whirl motion is again made up of two counter-

rotating transients with system critical frequency together with a steady

synchronous component. Below the critical speed this system is stable, and the

V• transients decay with time. However, above the critical speed, the forward

transient component becomes a sustained whirl of increasing amp~itude, and the

[ system is unstable. This is caused by the friction force which changes direction

as the rotation speed exceeds the natural frequency of the system, and drives the

unbalance motion instead of opposing it.

A rotor which has different lateral stiffnesses gives rise to a growing transient

within the speed range between the natural frequencies corresponding to the

stiffnesses. These unstable motions become stabilized by the inclusion of

viscous friction damping, but may be worsened by the presence of hysteretic

damping, for operation above the first critical speed.

Flexibility of the rotor supports and foundations does not itself cause whirling,

but it may greatly modify the whirling characteristics of the system. In cases

where the support stiffnesses are dissimilar, two system critical speeds exist

and the rotor exhibits backward precession in the speed range between them.

These motions are stable.

A rotor which is supported in fluid-film bearings may whirl at a-frequency

around half the operating speed of the machine when operating in the order of

twice the swstem critical speed. This whirl becomes resonant with the corre-

sponding system critical speed. The large whirl amplitude which develops is

known as resonant whipping and is a self-sustained motion of the journal within

the bearing. For further increases in speed, the whirl frequency continues at
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the dysrem critical frequency and the large amplitude motions usually persist.

Only in rare cases has the resonant whipping condition been passed through:.

* Whirling of a Simple Undamped Rotor l ~

The simple rotor shown in Figure 3.01 consists of a single massive disk mounted

on a flexible circular shaft. The disk mass, i, is concentrated at its center of

gravity, G, which is distance a from the point of attachment, E, between disk and

shaft. The shaft has stiffness, k, and elastic shaft force is applied to the U
disk at E, which is referred to as the elastic center. Any outwardly-directed

radial displacement of the shaft from its position of equilibrium causes an

opposing radial force, FE, in proportion to the displacement. In the case of a

vertical shaft, the static equilibrium position is the bearing axis, OZ. A U
horizontal shaft has a static deflection line about which it rotates. In both

"-es, the bearing axis is a convenient datum from which displacements will be U
measured. Gyroscopic and gravitational influences are excluded from the rotor

motion. These effects are considered later.

In establishing the basic features of the rotor motion, a rotor without friction

will be considered first. Figure 3.02 shows a simple, undamped rotor whirling

about its static equilibrium position under the effects of centrifugal unbalance. t
The whirl motion acts in synchronism with the externally-applied rotation, w•,

which drives the rotor. Referring this motion to the stationary coordinates x,

y, and writing the displacement coordinates of G gives:

XG = x•+ a cos

YG = y + a sin 0

(3.01)

The equations of motion of the disk are: 1
mi + kx - ma cos 0

my + ky - mawo2 sin 0

i1 +ka [x sin 0 - ycos 01 T (3.02)

I4
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F, For constant speed of rotation * - OX, and " - To 0 since there is no angular

acceleration and no energy dissipation. From this, it follows that for harmonic

motions where the solution to the above equartons has the form:

- x - A cam £a±

y - B sin ax (3.03)

The moment equation shows that:

S• Y" tan at: - tan 0

x

which indicates that OE and EG fall on the same straight radial line for an

undamped rotor which is whirling about its static equilibrium position. This

indicates that the rotor whirl frequency, v, is the same as the rotor speed, a,

(i.e., the whirl is in synchronism with the rotation). Equations 3.02 are

linearly independent, and may be solved individually or combined by recalling

that x + iy - r, i m'-•-,to give the general solution for the whirl radius,

P r, of the elastic center. Writing:

1. C m (3.04)

where w is the frequency of the natural transverse vibrations of the system. This

V "allows the solution to be written as:

iW t -iW t 2
Sx - Ae c + A e c + -- a cos w.t

1 21-n 2

2I Y BliUct +~-iw•t2

S+Be c + -- a sin ( 5
1e12 (3.25)

where a = is the dimensionless speed ratio.

The general solution shows that the total motion of E is made up of three

component motions. The first and second terms represent counter-rotating

transient vibrations in the radial direction which rotate along with

f
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with the synchronous whirl(Fig,31M.Te frequency of vibration is shown by the

exponent to be the natural frequency of the rotor, (Dc, and is independent of speed

of rotation. The transient amplitude is determined by the conditions under which

the motion was initiated. Although the above transient* are sustained by the ab- I

sence of frictiont, this condition only occur; under =attain conditions in practice! u
rotors. The influence of friction on rotor motion including transient@ is discussed

in the following sections. The third term describes the synchronous whirling of the

elastic center, E, in a circular orbit about 0 due to unbalance. The orbit radius,

OE, is given by:

thus

2U

a l~a2(3.06)

2m

The dimensionless transmitted force, F, depends on the elastic displacement of the

rotor, r, and is therefore: |

/E 1 .2-

E 1 n (3.07)

Similarly, the orbit radius of G is niven by: o

r G r + a• a

or

r• G _/1 (3.08)

Synchronous whirl radius thus depends on speed and eccentricity. If unbalance can

be minimized by design and construction, and eliminated by accurate balancing, the
whirl must disappear for all speedt , except when a - 1, i.e., when u -i . At b

c Ii

this speed,thee forcins frequency, w, of the whirl becomes sesonant with the

46i e
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transverse natural frequency, w , of the rotor. Sustained resonant operation mest

lead to the buildup of large whirl amolitudes, and also to heavy transmittstd foreas

at the oearings as can De seen trom iquation S.07. !his conoition is knowu as

"1"critical" whirling, and the op-ed at which it takes place is known as the critical

whirling speed. As the motion is characterized by bending of the rotor shaft, this

type of critical whirl is commonly referred to as the flexural or bending critical

whirl mode of the rotor. Sustained operation at any critical speed may lead to:

largc whirl amplitude and the danger of rotor-stator contact; heavy dynamic bear-

ing loads, touching and wear; increased seal wear; and undesirable levels of

structure-borne vibration and noise.

Below the critical speed, the static equilibrium position, 0, the elastic center,

E, and the center of gravity, G, form a single, straight line ORG, as shown in

Figure 3.04 (a). As the rotor passes through the critical speed, the radius

changes from positive to negative, as 0 changes from <1 to >1. This can be

concluded from Equation 3.06 and corresponds to a phase change of 180 degrees.

Physically, as the rotor passes steadily through the critical speed, it may be

seen to "shudder" as the whirl radius changes from positive, Figure 3.04 (a),

through the critical position with the eccentricity leading the radius by 90

degrees, Figure 3.04 (b), to negative where the elastic center, 9, whirls at a

greater radius than the elastic center. For undamped motions the super-critical

whirl is a straight-line OGE, Figure 3.04 (c).

The dimensionless whirl radius, , as a function of speed ratio, ---- is showu
a'

in Fig-re 3.05. Negative values for a)> w are plotted 2ositive for
a c

convenience.

Critical Whirling of a Simple, Undamped Rotor

Although Equations (3.02) apply at all speeds, the solutions ý3.05) are invalid

at WO W c . Rewriting the equations of motion for this case as:

2 2•+ W x-a W cosg tc C c

(3.02)
y~ 2 x~U 2 5i1

47_________________________________ ____________



In this instance, the quasi steady-state solutions are: I
a tJ

Xl a -5- sin WJ. t•

2

St (3.09)
V. M O 4 C C o s O) t

2

These expressions indicate that the whirl radius does not become infinite at the

instant the critical speed is reached, but rather it grove linearly with time as

the shaft cnntinues to rotate at the critical speed. Note that this result is

true even where there is no viscous damping in the system. The time-path is a

growing logarithmic cycle as shown in Figure 3.06. In this condition, there is

a phase difference of 90 degrees as the centrifugal unbalance leads the whirl [I
radius, 0.

The complete solution to Equations (3.02) also includes sustained transient

motions to which the previous remarks again apply. In the above analysis, ths

rate of growth of the whirl radius is assumed to be sma•l so that the motion is

not significantly influenced by Coriolis forces. A rigorous analysis should

include these effects to allow all growth rates to be investigated.

Influence of Viscous Friction on Rotor Motion

Viscous friction effects in a rotor-bearing system may arise from fluid-film I
action in the bearings and fron. the drag of thet gam or liquid in which the

machine rotates. For the present it is convenient to represent the viscous

friction forces as being linearly dependent on velocity with a coefficient, c,

and in the case of the single-disk rotor to consider their effect as being con-

centrated at the shaft center, 0. The forces which act on the disk are then as

shown in Figure 3.07. Gytoscopic and gravitational effects are again negligible

in the motion considered. Again, employing the coordinate equations (3.01) for

the disk c.g. gives the equations of motion for a damped, elastic rotor operated

at constant speed, a), as:

ux + cc + kx - maw 2 cos Wt
(3.10) [

myý+ cy+ ky -maw sin wt 
(.0
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f The damping force opposes the coordinate notiou. Where motion is outward, the

damping force is inwardly directed and vice versa. Assuming a solution of the

form:

�. A coo (,nt-a)

(3.11)
I~ - B sin (wt-C)

leads to the coordinate solutions:

2m [iqt~yl A ~ [..("t--7)
xy exp exp [i(qt+y) + Aexp [ ] exp [i(qt+Y')

[

+ 2

Thn first two terms in Equations 3.12 represent damped transient vibrations of
. the rotor in the radial direction, occurring with a frequency, q, rad/sec , i.e.,

Lhe damped natural frequency of the rotor in the transverse direction. As in
[• the previous case, these transients rotate in opposite directions, along with

the main unbalance whirl, until damped out. The actual value of the damping[coefficient, , need not be large enough to effect a rapid decrease in vibration

amplitbde~and also a sizable change in the amplitude build-up near the critical
I speed. For small to moderate values of the damping coefficient, c, the damped

imlt 2. 2m 2
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natural frequency, q, is sliphtly less than wco The size and significance of

these transients depends on the initial conditions of the motion. This feature

I a ,•o itr fISOh a Pn @t.,-4 .

The third term in Equations 3.12 is the synchronous whirl amplitude, the radius

of which is given by (x 2 + , or: H
2 2 2

2. an Icos 2  + sin2 (a-p)]

2 1.:
77 + 2 2

o,[3,
or=K

a (3.13)

where
SOý. cc 02Va

For a shaft la rigid bearings with identical lateral stiffneeses, the whirl is,

therefore, circular about the static equilibrium position with radius r. The U
dimensionless whirl radius (V) depends on the speed ratio, Q, and the damping

ratio, C, and its variation with both these factors is shown in Figure 3.08.

Negative (j) values occurring when 1 > 1 are plotted positive for convenience.

The whirl radius reaches a maximum, but finite value when:

CUc i

Damping, therefore, increases the critical speed in a system which has frequency-

dependent excitation.

The term,."critical damping", cc, refers to the degree of viscous damping required

to Just permit a mass to return to its initial position without oscillation following

a displacement. The dimensionless damping ratio, •, expresses the ratio (actual-

to-critical) damping, (c/cc). 50
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II The-phase relationship between the rotor eccentricity, a. and the whirl

radius is given by:[/
r cwftan k 2~~ (3.14)

As the rotor passes through the critical speed, the phase angle again changes

as shown in Figure 3.04, but with damping the change is continuous throughout

the speed range. With low damping values, the abruptness of the inversion is

similar to that indicated by the undamped rotor results. Figure 3.09 shows

the relationship between speed, damping and phase angle.

The above resu'ts verify that practical rotors also whirl with the cg. situated

beyond the point of attachment between disk and shaft where u) < we, also U €, the C.'

occupies a position between the point of attachment and the whirl center. As

th& speed becomes higher and higher, the c.g. moves still closer towards 0.

Hence, it in said that beyond the critical speed a rotor is "self-balancing"

and that it tends to "whirl about its c.g.". Practical rotors possess a num-

ber of critical speeds each of which has the above tendencies to o•me degree.

The true situation in a given case is a matter for dynamic analysis of the I -
particular rotor-bearing system. ,:

SForce Transmitted from an Unbalanced Rotor with Viscous Damping
[ Although a damped rotor whirls rather than vibrates, the force transmitted to

the bearings varies cyclically in both x-y directions. This is a source of

both structural vibration and noise generation, as well as bearing fatigue.

The magnitude of the transmitted force in any direction for a system with a

V rotating unbalance and viscous damping is given by:

2? kx + cc

Sas x - r cos (at - a) r constant

[ ~~Hence -rv 7 T2 -+2 cos2F - r~k• c• cog (Wt-0)

51
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where 0

a.

k
2M'3

aran 1. n 2) + 4Crý

The amplitude of the transmitted force in the x-direction is therefore:

""222 2 cos (w-6)' (3.15)

The dimensionless maximum transmitted force[3 )

2x 2F1 2n2

;Z2 all2  (1..On) + q 202

is plotted as a function of speed ratio fl in Figure 3.10. The phase &ngl*, IS,

is shown as a function of speed and damping in Figure 3.11. L.i

I5

I )

_ _ [i



I. Influence of Internal Friction on Rotor Whirl Notion

t The laws of clastic hysteresis on the basis of existing experimental data do not

cermit a simole formiulation suitable for analysis of rotor motions. However, by

Sthe use of certain approximations it is possible to develop a rational theory

whiuh cani be used to explaiti the rotor behavior where internal friction forces

are present. Internal friction effects arise from elastic hysteresis of the rotorL

material, and from any interface Coulomb slippage between the components of a

built-up rotor. In both instances, the resulting energy loss gives rise' to a

tangential force acting on the rotor. When the rotor speed, *, is below the whirl

speed, V, the tangential force opposes the rotation, and the rotor is stable; but,

where the rotor speed exceeds the whirl speed, the tangential force reverses

direction ane tends to drive the rotor. In this condition, the whirl radius -

increases with time unless arrested by some additional system force. The stability .

of this system is discussed at greater length in Section S.

Investigators from Rowett (Ref.21) to Lazan (Ref.22) and in particular Kimball

(Ref.23) in the case of rotors have found that:

- 2. EnetSy loss is approximately proportional to the square of the maximum

.cyclic amplitude, for a steadily vibrating system with a stabilized

hysteresis loop.

Built-up rotors, where there is relative slip between the assembled components,

show a similar cyclic hysteresis loss of energy, resulting from interface Coulomb

kfriction. A typical hysteresis loop is shown in Figure 3.12.

The loss of energy arises from some form of vibration , and not from the steady

f whirl motion itself. It may be generated through the transient rotor motions

which, as stated previously, are radial vibrations that rotate along with the

Ssynchronous whtrl motion; another source is the deflected rotor shapef of hori-

zontal rotors. When at rest, the rotor is stressed se a beam by gravity. Unbalance

whirling about this static equilibrium position results in a cyclicistressing of

the rotor material and leads to a lone of energy by hysteresis. Any action which

disturbs the dynamic equilibrium of the rotor, such as a speed change, cyclic

torque variation, or an external impulse or a blow, may init'ite hybteretic

whirling under suitable circumstances.
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The following analysis concerns the dynamic behavior of a simple rotor in rigid Li
bearings acted on by internal friction. The loaw of hysteretic damping stated

above are used to describe the energy dissipation, expressed as L -
) " dtdr[

Consider the rotor whirl configuration shown in Figure 3.13 in which the x, y

axes ore stationary, and the 4, q axes rotate with the shaft. The whiri radius,

r, in rotating coordinates is given by: [j

r = Co it where r- x + iy

Differentiation gives

+ 2 (Ujfl)1t [f

Substituting these expressions into Equations3.02 gives the equations of motion

for a simple undamped rotor in-rotating coordinates:

C+ 21u4 + k a(3.16a) f
In these coordinates, the shaft is stationary and any small radial motion of the

shaft due to the rotating unbalance (similar to a spring with an eccentric load

rotating at velocity ;To gives rise to the hysteretic damping force c'. in-

cluding this damping force in the above system equation gives:

21wot +( 'MI)~ (31b

The x, y coordinate equations are now obtained as follows:

- iot 2 -lotre ; u - (i•-i) t ; • - (i- 2tu - r)* [11
J

Thus:
k c ka ne• + i + ( ;- i )r - e

S + LO k,
c k cmka

x + + ;x + ~y = -coso~t

y + y + - - x sin
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II From the above, it can be seen that the Lnterital friction in the complex equation

for r in stationary coordinates is characterised by the term:

Cm r( --- r

The total integral of this equation is

tr aA exp (iAt],t + B exp [it] + -- I- ex Q (mi7

The third term of this solution describes the synchronous whirling of the shaft

to unbalance. The critical speed of the rotor is aeain c - as may be seen

from the form of the denominator. Internal friction does not influence the un-

{. balance whirl motion for there is no radial oscillation to invoke the hysteretic

damping force. For this reason, internal damping cannot limit the critical speed

resonant whirl amplitude, and so a system which has hysteretic damping alone

experiences heavy vibrations if the passage through the critical speed is slow

Sand if operation at the critical speed or in its vicinity is sustained, the

danger of rotor damage is considerable. Fortunately, practical rotors usually

possess a certain amount-of viscous damping due to their environment. The via-

cous drag of the surrounding medium, and of the bearings acts along with the

unbalance whirl motions to inhibit amplitude build-up and transmitted bearing

force.

The first two terms of Equation 3.17 describe the transient radial vibrationsK

which arise from the initial conditions of the motion, or from a radial dis.

turbance as discussed above. The frequencies of vibration A1 , a are deter-

mined from the roots of the characteristic equation:

2 S ] ci

From which:

A1,2 ± .+ 1 2

1 Where

0) ( 4C2 + F( 1-742 2+ 4C2 fl 2 ]L 2J
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The above expressions for the transient vibration frequencies A1 , were ob-

tained by Dimentberg (Ref. 1), and are explained as follows: The complex I

nature of the expressions indicates vibrations in which the amplitude varies,

according to the amount of damping present. X is the natural frequency which,

for small values of ý is equal to c . This is then the hysteretic whirl fre-

quency of the rotor. a and a2 are the variations in the transient amplitude. K
The coefficient 1 may be positive or negative, and so the transient vibrations

are accompanied by damping and amplitude variation depending on whether the sign

is plus or minus. Examining the formula indicates that the difference, i.e., the

sign of a will be positive when a) < a)c and negative when 0 > m€' The physical

meaning of this result is that the motion is stable where the speed of rotation,

u, is less than the critical speed, w . i.e., where the index is negative, and I.
that the motion is unstable where w is greater than w . In this latter condition,

the friction forces will increase due to the increasing transient vibration, and

their direction will be to drive the rotor and thereby increase the whirl radius

until limited by some other external constraint. t -

Rotor Dynamic Characteristics with Viscoul and Hysteretic Damping

The results of the two previous sections are that: (1) viscous friction tends I
to promote stable operation at all times, with finite amplitudes at the

critical speed; also, that the whirl is synchronous with the speed of rota-

tion, and (2) that hysteretic damping causes the rotor to whirl at its cri-

tical speed. The whirl is stable below the critical speed, but unstable

above it, causing the whirl amplitude to grow. Several questions immediately

arise: How does a practical rotor behave, possessing as it does both viscous I
and hysteretic dampings What are the conditions under which the viscous

damping will maintain stable whirling at speeds above the critical? And, at H
which speed will the rotor whirl, the critical speed or at synchronous speed;

or betweenl
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L The equations of motion for this case are obtained by introduciog a viscous

damping term cI with the hysteretic damptng term C2 into the coordinate equa-

tions for the elastic-center, S. Doing this for stationary coordinates gives:

MiE + (cI + c 2 ),• + kx + c2my - mz cog Ot (3,19)

my + (c + c2 ) + ky- c ~c - aM A nmsct

Considering the homogeneous portion of these equations, @nd reformulating gives:

x+a1 + a 2Y+ a - 0

Y'+ I a 22 x + a 3y >0 F

This may be written as

+ 2L R, + (24 + a 2 +* 2 a it + (a + a x 0 (3.20)
1~ 123 l 21 3* a2  3e')-

[ The primitive Is a quax tic polynomial as found on substituting MM Az t) with

complex e.g.,A+AA+ %# 2•, 1,0 - 0
4 31

L where
A ac I+ c2

3 A1 2a
2 2 !1+ 0 + c 2

SA2 - 2a + aI 2m6 41

c1+ __. _

2 3 c 2 2

2 2 4 2
AO a 2 + a3 (- +2. 13 c

The stability of the system may be examined by louth's criterion which

L for a quartic polynomial requires

A 1 A2 A3 > A,2 + A0 A32

[ for a negative real part in + X4 ix. This condition reduces to the

stability condition:

i i[
1

[ i] (i i'
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F U'
influence of Unsymsmtricsl searing Stiffness on Rotor Notions L
A large propnrtion of practical bearings have stiffness properties which vary

according to the radial direction from which the bearina load is applied. This

can be due to: (1) shape of the bearing, for example, a partial-arc journal

bearing (2) wahether the rotor-bearing system operates horizontally or vartically,

or (3) differing transverse stiffness properties of the bearing pedestal. Rolling-

element bearings, vertical cylindrical journal bearings, and vertical multi-pad Ii -

journal bearings have stiffness symmetry.

The iiLfluence of unsymmetrical bearing stiffness on the motion of the rotor which

they carry is as follows. Consider again a simple vertical rotor which consists l
of an unbalanced circular disk which is centrally mounted on a light, flexible,

circular ohaft. The rotor is mounted in undamped flexible bearings which have

different stiffneasses in the x, y directions. The principal features of the rotor-

bearing system are shown in Figure 3.14 and Figure 3.15 shows the displacement of

the rotor c.g from the bearing centerline OZ..

The equations which govern the translatory motions are:

mi + k (i - x - a Cos ) - 0 0

my + k (y-y - ao in wt) - 0

k (xo -x) + kx o 0 o

k (yo - y) + k 2 Yo 0 (3.22) L
Simplifying "hese expressions and introducin2g the expressions

2kk1  2k-

S2k 1 k 2 2k 2 +k

leado to the equations

mY+ qlx q, & coscjat

"my + q2y q 2 a sin ct (3.23)
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This shows that the coordinate motion* are independent,, each having its own

critical speed atr L

Solving Equations 3.23 and combining their steady-Mtste unbalance whirL -*

components by writing r -x +iy leads to the following .pression for the

motion of G about Oz:

2 22 2+ 2 2 1 2 2

r l 2 2 - aes *4 ae+ 2.
(M ( .2-CO2 )( ( 2 .W2- 2(u 2 _U2 () ( 2 _W 2),

221 22 22

. The motion of the elastic center I is found from:

Lot
r,, r " as

2 2 2 2
"2 +"M1 2 M2 "(1

2 2 ~ imt + 222 2 32~I 2) (02 22 22)(M2•2 2

. Zquatieu 3.24 shows that the whirl motion relative to a stationary coordinate

system is made up of two separate whirls which rotate in opposite directions

with angular velocity w. The rotation of the first vector consists of forward

translatory precession of .the disk in the direction of shaft rotation; whereas,

the second vector represents backward precession in the reverse direction to

shaft rotation. The length of each whirl vector is fixed for any given speed.

L2
However, when the length of the forward whirl vector becomes zero, the length

• Iof the backward whirl vector becomes:

[ ( a4 _ 4)a

22 2)022
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At this speed, therefore, the motion will be pure reverse precession of the shaft

center, despite the presence of excitation by the unbalance in the forward diree-

tion. This motion is sustained up to the second critical speed. For speeds below

the first critical, the firat term in, the nhnvo ovnrona4nv, 4. 1*,.., rho",~

second, and so the forward precession whirl dominates the motion; also, for U
spa&sd beyond the second critical, this term again becoes predominant.

The presence of the two critical speeds, and the variation in whirl direction

between forward and backward precession has been examined using models by

Downham (Ref.24 ) and by Hull (Ref.25 ). Hull'm results ire shown in Figure 3.16

and this author discusses the physical origin of the backward whirl. This motion

becomes necessary when the machine is operating above the critical speed in one

direction, and below the critical speed in the other, due to the 180 degree

phase shift which occurs in the position of the disk e.g. in one plane, but not

in the other.

Whirlinz of a lotor Having Unsvnmstrical Stiffnesses

The most important dynamic feature of a rotor which has dissimilar transvwr.e

moment& of inertia is the inherent instability which exists at speeds which lie

Sbetween the two bending critical speeds - corresponding to the two stiffneaome,

For this reason, this section is limited to a brief discussion of the rotor

motion, including the derivation of the required equations of motion. The

stability of this motion is discussed in Section5.

r The rotor consists of a single, massive disk in which the 0.g. is eccentric from

the elastic axis of the shaft by an emount, a, and is located at an angle 0 to

the stiffer transverse axis of the shaft. The shaft operates in rigid bearings

and his dissimilar stiffnessas in the traneverse direction. Aligning the

principal inertia axes with the rotating coordinates 4, i as shown in Figure

3. 17, the deflection O - r. of the whirling elastic axis at the disk lace-

tion.gives rise to the deflecting force components k 1 rI cos x and k2 r2 sIn x.

Both force components may be resolved radially and tangentially to give res-

pectively the total radial force:
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r 2

R r [ o - +2 s n

[h tz.. z .. iQ.tal:W

LF - r. (k2 - k1 ) sin ocon a

L writing

. ql " ( " k1)/2 and q2 " "k.)/2.

and substituting in the above give.

F r - 9 -q con 20).. i:. .
R I r(ql q2 c s

FT - r sq2 in 20

A viscous damping force is considered to act epposing the whirl at the elastic

center. To obtain the total vector deflecting force on the shaft expressed

in terms of the stationary coordinate system, note that the reflection of

rabout the rotating axis 4 is T." which leads Y, by angle 2*., Thus, T

is parallel to, but opposite in direction to, the vector q2 r. showing in

Figure 3.18.. The vector deflecting force in rotating coordinates is,

therefore, (q 171 - q2FR1  ). Use is now made of the property that the re-

flection of I in the stationary axis x is z 'I which is the sas as TV except

for a phase lead of 2= . This leads to the relationship:

S•~~E" " •' ei :

SFrom this, the force exerted on the disk by the shaft is

U F -qlS + q2•r e'a (3.26

The vector damping force equation is

"61
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The equation of motion for the shaft center may now be written, firstly

neglecting the influence of gravity for simplicity. This step reveals

uniquely the influence of dissimilar etiffness on the rotor action, which

is:

G

Thus,

+ - i+2a m= 2 4 1 i[Mt + is] (3.27) []

which is the equation of motion of a damped unbalanced rotor with dissimilar

stiffnesses in saetionary coordinates.

As a trial solution, select

- Re

x +

Li I - i Y

Here, X and Y are constants to be evaluated by substitution. introducing the L
following ratios for speed, damping and dissymmetry:

2 Vq7
-- 2

The scalar value of the deflection (or half amplitude) r 1 is then obtained from

K . [x2 + 2] 1/2 U

U62
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Thus, A

r+ 4C~f +2~ + 2 *(1-1 )co 2p + 4C a sin 2 ~
a 22 22 2(3.28)

(l_2)2 + 4C fl -a 2
C-1 c

LThe phase angle *is obtained from

Masin 8- 2!goaDcooB
tan a - tan (00 - (1.29)

Theme expressions for amplitude and phase angle assums simpler forms where.

the unbalance angle ý hms some simpl~e numerical values, such as 0, 30, 45,
60, 90, etc., degrees. Further simplifications result from zero damping,

and mero dissytmmetry leads to previously obtained solutions.

LIThe critical speeds of the system occur where (r/a is a saximum; this
-condition may be found from

LId d2  e

j 1

Taylor (Reof 8 )has obtained an approximate result for the critical speed

LIcondition by equaling the denominator of Equation 3. 28 to zero, via.,
aI 1,2 - (1 - 2C'2 ± ' 4C 2(1 +ý') (329

[ but is in error when he suggests that a damped critical apeed may have

infinite amplitude &nd also when he attempts to obtain it by the above

LIoperation, except where C 0. In this case.

wihleads to:

k k
2 .1 2

4-
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For moderate damping, • is small and the system critical speeds Vtll fall

close to these values. The question of stability of the motion between these

critical speeds is discussed in OfStion5.

Theoretical results for average whirl amplitude ra obtained by Taylor are shown

in Figure 3. 19, for the case of a shaft with moderate dissymmatry i = 0.05 and

moderate damping C - 0.035. Note that the amplitude is finica at all speeds.

The influence of the phase angle, 13, leading the rotor motion is to cause the

Scritical speed to occur at a lower speed ratio. A considerable increase in

amplitude is associated with p 450, and where -45 the rotor atplituoe is

lowest. The amplitude build-up for a circular shaft is in keeping with the L
moderate damping present, r /

Figure ~ ~ ~ 1/ 3.2 show th1 l4.

Figure 3.20 shows the results for large diusymmetry H - 0.09, damping again

- 0.035. The greater dissymmetry has pronottd larSer whirl amplitudes and

also widened the unstable speed range between the two critical speeds. The

rotor amplitude in this zone,however lorge is, in fact, finite where the syst=m

possesses viscous damping. Figure 3.21 presents more of the speed range for

several values of dissymetry 1R - 0, 0.5 and 0.09 and with the saw damping

The half frequency critical speed is discussed in the following section.

A series of experiments were made to confirm the above.findings using a 5300 lb.

rotor, 66 in. lone and 7.75 in. in diameter, carrying several masses. This is

shown in Figure 3.22 together with results obtained for a circular shaft, Results

for an unsymetrical shaft are shown in Figure 3.23 for a range of unbalance E-
weights and uvbalance angles. The critical speed ampliLude build-up in both the

horizontal direction and the vertical direction were detected with the horizontal E
properties occurring as usual in practice at a somewhat lover speed. Results

indicated that horisontal amplitude build-up is always larger; the 45 degree 0

unbalance angle gives the greatest amplitude build-up; and bath horizontal and

vertical amplitudes are finite, though large, in all cases. The damping ratio 0

Swas 0.07, determined experimentally, and due mainly to the fluid-film bearings

used. The motion of a rotor which has its mass-elastic properties uniformly U
distributed along ita length and dissimilar lateral stiffnesses has been studied

by Kellenberger (Ref.26) )
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[. ~ Subharmonic Whirlint

During run-up and run-down, it is noticed with certain mathines that a sinor

• ,•YPt4nof the machine occurs at crocuse sub-multiples of the critical

speed s.cha mc/2, m c/4, and so on. The wc/2 subharmonic a.plitude is noticed

quite frequen~ly, and the other cmallar amplitude subharmonics are seen less

often. These motions may be caused by: (1) dissimilar lateral stiffnesa

properties of the rotor, (2) gravity causing a twice-per-cycle fluctuating

[. torque to act on the rotor unbalance, and (3) any other source of cyclic

torque fluctuation in the rotor drive with a frequency h ti*es the rotor

speed. The relative signifi'-ance of these three sources was evaluated by

Soderberg (Ref.27), who, with a linearized solution to a very complex

Sanalysis, established that the predominant effect was stiffness disoymet.,y.

.. The influence of stiffness dissymetry and gravity may be considered using

the equations developed in the previous seotion, as folltows: Consider the

rotor to be perfectly balanced and operating in the horizontal position.

Here G coincides with 9, and the gravitational force ve#tor W i -tag is

included into the equation of motion to gi•e t

[ Thus,

mr + + qlr - q2 r 1E a +ug mr1  0(3.30)

SFor a trail solution, assume that the vector amplitude FI consists of a

stationary vect'u? C, plus a double-frequency vector R, or:

E-C +

[ 'where

[ C + 1 * iY
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By substituting in Equation 3.30 the values of Iip Yl' 1 120 and .Y2 are obtained. .

The amplitude of the double-frequency vector R is found from:

fX12 + 21 1/2

Empliying the same dimenionless ratio. s, a snd G given previously, th'n

amplitude K is found to be:

)2

R (yl -Y2) 1 EEE.EEEE4EEE~..R..E (3.31) 1

For Qm 0, R a (y1 - y2 )/Z, I..e. tha 'static' whirl mentioned by Robertson(3.ef 28).

The amplitudi of R becomes infinite by large where:

"0.5 o 2]

For small damping 9L O.-0.- 1/-T

f 0.5

for small), the usual case. This explains the half-critical subharmonic

observed in almost-symetrical systems. The experiments conducted by Taylor

also showed the half-critical peaks at 600 rpm quite prominently (not included).

Laffoon and Rose (Ref. 29) also 'show results for the half-critical speed.

The lover subharuonics do not appear in the above theoretical result. They

were excluded by the type of solution chosen, R i2a. They are revealed in a

more detailed analysis which included non-linear effects. De& Hartog (Ref. 17)

gives an introduction to this problem, which involves Mathieu's equation.

The solution of Mathieu equations is discussed by Stoker (Wef. 30 and McLoughlin

(Ref. 3V
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Operation of Rotors in Fluid-Film leiELns

The motions of a flexible rotor which operates in flud-film bearings arr deter-

mined by the interaction between the rotor mass-elagW properties and bearing

elastic-damping properties. The bearing characteristics depend on geometry and

L proportions and on bibricant viscosity, rotor operating speed. and bearing load.

For small vibratory movements of the system, these characteristics say be

V• linearized to represent the bearing as an sarangement of springs and dashpots

as shown in Figure 3.24. The derivation of these bearing coefficients is given

in Appendix A, together with tables of values for several bearing types. The*

same general bearing representation applies for hydrodynamic and hydrostatic,

bearings, liquid or ga6 bearings, and laminar or turbulent bearing operation.

Aa in the case of the elastically supported rotor considered previ.ously, the.

"elasticity of the fluid film contributes to the overall system flexibility,

and the critical speeds of the sys'.em occur at lower speeds of rotation.

Critical whirl amplitudes of the rotor are reduced as a result of the damping

L,. properties of the fluid-film, but for higher speeds the' damping causes larger

whirl amplitudes. As the bearing satiffneas and damping coefficients vary with,

" speed, due to changes in bearing operating eccentricity, one of the problems

K in designing high-speed machinery is to select the bearing properties so that

the critical speed occurs within the most suitable range, and the maximum
•. attenuation of transmitted force occurs at the critical speed. lortes

attenuation depends on bearirg flexibility, but so does whirl maplitude. o

c ompromise solution must, therefore, be found in which the transmitted force

is minimized in keeping with journal whirl amplitudes of practical magnitude

for a given level of unbalance. Attempts to optimize rotor-bearing attenuation

usually involve a lower system critical speed, and the machine operating range

is often such that two or more critical speeds may be involved. Minimm force

transmission at the operating speed may then result in large amplitudes and

forces at the crJicals which lie within the range. In the following analyses,

the design problems of the flexible, high-speed rotozoLn damped, flexible

[ bearings are discussed in detail. A vertical unbalanced rotor with uniform

elastic properties is assumed in all cases in order to coniider the problema

[ associated with unbaleace synchronous whirl in fluid-film machinery. The

stability of rotors in fluid-film bearings is discussed in Section 5.

[
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Single-Disk Elastic Rotor in fluid-Film Bearings .

Lund and Sternlicht (lef.32) have examined the rotor dynamic performance

nf tho simple a11atlr rntnr invrArt•In In fl,,4d-fIlm h&arl"a9 XhnM, in

Figure 3.25. The effect of rotor mass is taken to be concentrated at

aid-span and located at G, which is eccentric from the shaft center, 1,

by a. The shaft is massless and has symmetrical elastic properties but no

damping. The bearings possess both elastic and damping properties which

are linear for small displacements. Both supporting pedestals are rigid.

Thus, the rotor whirls as shown about 0 in synchronism with the shaft

rotation, m. The equations of motion for G are

mut + k(x- ) - a cog (at

k(x-x) 2K x1  + 2C - Zy 1  - 2Cy 1

2m• + k(y- yl) ama, sin Ct

k(y-y 1 ) y 2 . Y + 2Cyy - yx'1 -x 2Cyit (3.32)

writing

2 k

k 

2

-o .

2

or in dimensionless for•

1
-1 k WO0M

SiI68
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where S is the bearing number. Taking the solution to the above equatilns

r in the formL2

[ x - A cos m + B sain

2 2 +
A co + a CD Bm w

x 2 2 co:o + (3.33)•..s.,

y - E coo t + F sin wt

f2 M 2 +

Yl 2 2 CosKa + 2 2 sinot (3.3a)
. % -0 % -0

U 0

Substituting Equations (3. 33) and (3. 34 ) into (3. 32 ) yields a matrix in

terms of the eight. bearing coefficionts which may be reduced to a matr•x of

the same form as the one for a rotor without cross-coupling terms. Such a

rotor haa only four spring and doaping coefficients denoted by Kx1 Cx, Ky and

[ C. The reduced matrix is:

,ii 8 ,) a
A B C D "CI

(. -r.)' COB 0 0 1
-o (K(-K) 0 0 0

XX (3.35:

L 0 0 -OR (X -)) 1

The relationship between the above four bearing coefficients and the original

eight coefficients is:

SC ( L + K aYCxy

69
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I

Ycy , - j I ,Y - Is C4 (3.36)

where I

x xy + O ]~ 2 + (K " Cy2xy CY)

ty- ,=' - )o +(•r,+eC )

- . - - ~~c- + + CO- +C

Solving Equations 3.35 for the coefficients A, 3, 1 and F gives

A - -
a )2 + (CDC)2

a (Kx - )2 + CW X) 2

K(U-) (336
2 2S, F~ (3,.38)

(K K)2+ (o0)

These expressions allow Ahe rotor vhirl coordinates to be obtained from Equation

3.33 and 3.34. The whirl path of G in an ellipse (Figure 3.26) and the

motion may be comprehended more concisely by determining the geometric

proportions of this orbit. These are found to be

70
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[1Major axis

0 / r/,~%2 /_\2 /_\7 r_\'21  ,.•2 ,_\2 /_\2. L%212 r,. /-.02

Minor axis

It1

+-&2+0)/\1 .1 .6 If

Angle of inclination

Tan 2A+- (340)

2.,~ 2 + 2(3) -1)2]

&I

The force transittted to the bearing pedestal is given by

FX a KXo + Cx io
-y -Kxyo + cy YO

Introducing Equations 3.38 and 3.39 and simplifying gives

_ __=N_ _ _ 2

2A+(wCOC) Cosm + 7(3.41)K1+( c) 2  . x C

where

tan # = tan 7 4-1;

[ 71
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and 5

Pe 2 y

where CDC

tan y tan- IY .

The force transmitted to the bearing pedestals also varies in an elliptical

nr with the maxima and minima values carrespooding to the ior and udvw:

axes of the force ellipse. These values my be found in a similar nuer to

that described for calculating the whirl ellipse proportions.

The above analysis has been applied in the case of several important bearing

profiles to determine the effect of the fluid film on rotor wshirl amplitude

and bearing transmitted fcrce. Results are given in Pigures 3.27 and 3.28 for

the cylindrical Journal bearing and the four-axial-groovs bearing, for a rae

of bearing eccentricity ratios. The single rotor-bearing system critical speed,

follows directly from the simple rutor-bearing model considered.

I72
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Two-Muss IgMo in BMW Ileiblo Imearinas

[I ~The resu~lts of the previouas analysis are limited in Ph"i eppitoatlee tes the
vicinity of the fundamental critical speed of the rotor-bearing system. 111

operating spiked range of mnay high-speod wischines lnaclwda &~*ee nIte I

speeds, and in order to obtaim adequhate design liuformaktion for the". 661wersIn it is necessary to consider a rotor which has several degrees- of free"M I&

translatory motion.

A two-mass rotor nas been analysed by Warner and Thokman (Raf.33) using bearing[7data obtained by Warner (Ref.34) for 150-degree partial-arc bearings. This rotor
is shown in Figure 3. 29 *and certain results for -tr noeltte6J$rc toe.

amplitude are &Iven in Figure. 3.30 (&)'(b>ý(c) knd (d). Th.. resultasgive, 'in OA, ,,

paper cover maximum transmitted bearing force, M la*m. JOUTAXaa

displacement, ,and maximum mass displacement ,over. a speed tang.1 ,

'U(-,0.05 to .5.00, and for a range of bearing operating eccentricityP q, hum

0.05 through 0.95. ly means of a d-evice, ~,the charts apply to either the

fundameintal mode or to th~e second mode - according to the value of US, use il,

the dimensionless system parameters. For mode 1, -1.00. and the ~roE or Is ift

a state of "static" unbalance in which the e ccentric masses act in phase. For

mode 2,

[7 - distance from center of discrete mass to canter of suan
half span length

and the rot~or is In a state of "dynamic" unbalance in which the two eccentric

masses ac nanti-phase, 180 degrees aipart, as indicated In Figure 3.29.

The results given in this paper cover a very vide range of machine proportions

and operating conditions, and are directly applicable to high-speed rotor

design. In discussing this paper, Lund (Ref. 35 ) has shown how the results

L may be condensed into a single diagram by a different choi'ce of parameters.
The basic equations given by Warner and Thoman are

a[~ K.2 Kx 2  + Bx 1E2 - x 2 xy 2

a1~~~2 * x 2  + By2 y2 y + K Y +3 B (3.43)
al[Y[Y2 D 2 x 73 2 y2 y



where X K D and D are the direct and crome-coupled batft. -Stif t"46 tyx y
B 3 3 and 3 are the direct and cross-coupled dmqSiag cO"H~ffi.l kwbs-e -
Xx y xy Y2

a 11 is an influence coeffIcient. AA x I K2 y1 ea"Y are copa simpGiss=61e

writing
~~j~ 2 I

12

a y S-ý*L- 2t

where
2 *...

allows the above equations to be written in terus of the basic paraincters as
follows:-

CDC

dimesioles tasi te force beco -aMes

_ _ _ _ _ + IsI+I



E Plotting the tranmitted fores as a function of k reduce@ the finwe to a

single curve, elf.ainatint the paramter The;. is true for the

L) journal amplitude but not figure 3.31 is based on theas paran-

sters and unifies the Warner-Thoeas data into one curve - including the vsris-

tioe of eccentricity ratio n with speed. The physical signf~iance oft to

[ 1given by

cqrEe

such that a is the dimensionleas transmitted force when the bearings ate risid. -

This may be seen fror ligure 3.•1, . The ratio between the disamsionloos tana- -

mitted force and K is, therefore, a measure of the faorce attenuation due to *4 .

bearings.

It is of interest to note that when ' 1, '= , and .1 is thus i4dependent

of the rotor parameter. Tor this case, i and - -1, so that the
a a

journal whirl path is circular and th, maximum displacement in 180 degrees

out-of-phase with the unbalance, infoependent of the bearing eccentricity ratio.

u •Uniform elastic rotor in damyed flexible bearins•S

The results of Lund and Sternlicht allow an op7rating eccentricity to be chosMen

so that attenuation of the bearing transmitted-force is a nmaximm, in the

vicinity of the first critical speed. General rotor operating characteristics

jU including attenuation were investigated by Riager (Wet. 36) for speed ratios,

IH- up to 25. The result@ obtained cover the operating speed rage for all

but the most eXotic maLhines. A uniform elastic rotor with distributed mass

operating in cylindrical fluid-film bearings and having a rotating unbalance

'U located at some point along its length was considered. The .. fluence of:

stiffness ratio, v, (shaft/bearing), bearing eccentricity iatio, 1, and unbalance

position ;on transmitted force, rotor displacement, and journal displacement

II 75
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was investigated throughout the speed range. Typical results for q - 0.7 with I
a central unbalance -P -0.5 are shown in Figure; 3. 32 WOL)(b)!adt (9). 7his

gstatic unbalance condtion gives rise to symmetrical condition jives rise to

sym~etrisl modes alone, due to symmtry. Superposition of two ubalanee siolu-

tions with a 180 degree phase difference between the unbalance loads situated -

at 0 0,45 ard 4- 0.535 corresponds to a dynamic unbalance condition. Results

are given in i.Sure 3. 33 Ca) and (b.) . Node shape. for static unbalance are

st.own in ]Figure 3. 34 and for dynamic unbalance-in Figure 3. 35 ,

Since th. mass and elastflzlt of the rotor are uniformly distributed along its [
length, the molutions obtained include the influence of all rotor sMdas on each

particular motion directly. The rotor-b*arLng system does not apply to any

specific machine configuration. The results obtained brip.S out the relative*.

influence of each parameter on the motion for a wide ranges of the variables

chosen.

In general, the results show that rotor motions are principally determined by

the interaction between rotor stiffness and bearien stiffness and by the type

of unbalance (static or dynamic) which is present in .he system. A flexible

rotor tends to adopt a whirl confiSuration which is determined by the rigidity

of the bearings. A rigid rotor whirls an a rigid body within its bearings at

low speeds; but, at higher speeds where bending effects predominate its aotiona

are similar to those of a free-free beam. The operating eccentricity corres-

ponding to maximum transmitted force attenuation depends on the system stiff-

ness ratio, v,I the nature of the unbalance (static or dynamic), and on the

speed of operation.. In the low speed range, n - 0.5 gives the greatest

attenuation; however, at higher speeds, the condition for optimum operation

must be selected to suit each case individually and. depends on the machine

operating requirements. A different eccentricity vill be required for best

overall performance throughout the speed range as opposed to minimum trans-

mitted force at a specific operating speed,

1. The notation of this reference.
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rI Developmnt of Lotor-ftering a &i

Present understanding of the operation of rotors in bearings is based on a lef
soc arcuous aeve.Lolment. The copious subject literature reflects both the wide

range of applications requiring consideratiomn and tha difhKotttie$ vhk."'ý ' -•

have been surmounted in obtaining the present level of tech no logical de eaib mt.

The present section in intended as a guide to tbe more important of the$e
lit.rature contributions. A completc discuseion would require a spetial voluS.

The mst necessary purpose will be served by indicating those worksa Obib tia"e

pioneered further developents, and also by mantioning a number of other workli

[which contain either erroneous or misguiding information. The basic mechanics

of several aspects of the subject have given uliav to controverstal. dob4"i, sw

the fret:n reader until now has bean left to find the resolution of each speut•

without guidance.

Rotor dynamic analysi yeas initiated by Rankine (R1f.37), who studi4d the me-n

Ell damped radial motion of a flexible shaft. From this work it was 'cocludted

erroneously that no rotor could survive the sustained infinitely-large• mpli.- , , 4--

tude build-up caused by the fundamental transverse natural frequency of the

shaft, the 'critical'speed. This result limited the design of rotating

[ machinery until DeLeval in 1889 demonstrated experimentally that stable

operation beyond the critical speed was possible, and that the supposed in-

[ stability threshold was manifest only as a sone of large amplitude. Rankine's

analysis was extended by Foppl (Ref.38) Vho demonstrated that dynamic equilibri~m

[ wea restored beyond the critical speed by the inversion of the rotor, e.g.

batween the elastic and the wheel axis. Greenhill (Ref.39) investigated the

[7 elastic stability of a rotating shaft subjected toea combination of axial thrust

and applied torque, and obtained critical speed formulse for several kinds of

[ end support. The extensive investigation of systems and methods of calculation

for critical speeds made by Dunkerley (Ref.4) emphasised the analytical com-

plexity involved with all but uniform rotors with the simplest layouts. The

question of applicability and accuracy of the simple method suggested by Dunkerley

[ was soon taken up by eminent analysts. such as Chree (Ref.4 4, Jeffcott CRef.44,

and Morley (Ref. 43). At that time, analysis of rotor critical speed phenomena

[ as stated by Chree was based on the fallacious elastic stability concept wherein

the action of the rotor centrifugal forcea is to reduce thd elastic restoring

forces to zero, so that at the critical speed the natural frequency of the

77C~~ _____o__
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shaft diminishes to zaro.

6UL ;wuu.upL "N"LIuU &Y V gave rX* L a Viaurous COUTnK"veray VMS VWu-r %ff &B I"

published theoretical and experisintal critical speed results for two maehides

vhich could not be reconeiled. Although the disgareement now seem. to hte" U
been due to neglecting the dynamic bearing properties, It re-opened the

question of the mechanics of rotor behavior, and received attention from"
Chres (Ief.44), Stodola (Ref.44), and Jeffcott (lef.4), amongst several

others. Jeffcott (Ref.42) finally resolved the controversy by considering an U
eccentric unbalanc3 am the exciting force, and i-cluded the effect of viscous(volo-ciydamping in his analyis.-Thus the radial sAd tangential of faitg were top- 'Hr

sidered simultaneously. This analysie forum the baste of the rotor dymeqia

theory given in the present chapter. Jeffeotte' basic concept of a rotor
which whirled about its static equilibrium position was restated and exte•Wdd

by Rogers (Ref. 45) in discussing the existence of the oritical speeds of in 2

(Stodola) and at co/"i2 (K•rr). This latter critical is the riegult of an In-

correct physial c oncept in which the elastically unstable rotor toe asawe" to
whirl about the Ifearing axis. Howland (Wr. 46) also discuased these critical

speeds, but in attempting to derive the basic equations in rotativt coordinates,
he omitted Coriolis effects, thus invalidating the subsequent analytical con-
ctlusion, as indicated by Robertson (lef. 47). In a series of classical papers,

Robertson discussed the nature and occurrence of shaft whirling phenomena(Ref. 48), unalyzed the static and dyn•amc aspects of shafts with dissimLiar•

lateral st.ffnesses (Ref. 28), collated t'he existing data on shaft hysteretic

whirling (Ref. 49), analyzed the rature of transient whirl motions arising from

a disturbance of dynamic equilibrium with supporting experiments and developed
a graphical method of analysis (Ref. 50), discussed the influence of speed J
osc~llations on inducing shaft whirling (Ref. 51), and established, without

solving, the basic equations of an infinitely long rigid rotor in a full

cylindrical journal bearing, using Sommerield's lubrication theory (Wef. 52). 0
In the course of development of a high-speed turbo-blower, Newkirk and Kimball

encountered large amplitude whirling motions which could not be eliminated by U
more refined rotor balancing. The rotors operated in rolling-elament above

their bending critical speed, and it was noted that although the whirl motion
was synchronous with the rotation, at speeds beyond the critical, the rotor

whirl was constant at the critical rotor speed, end the rotor amplitude grew

7 8.,
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(1to dangerously large proportions. 11iball (Ref. 23) (Mft 53 Yb-fm Oft~
shrink- fittead aobiswith inadequte contact pren~we &aft riast -yU
energy loss, and showed that this loss generated a tueela~ia *Uwhich

speeds above the critical, r verood in direction to proofte an unstable SW
moio o icr asig litwtde Imeitly folloing thsia deovewf * f

outbreak of rotor instability occurred in the san meablas:e WIk ito, 10m44W.

refined balance nor improved shrink-fit design made any iUVo'v n.Nrb
experiments conducted by Nevkirk (Ref. 54 ) establish"d that this sesoosi tM -OU[Iwhirling comeinced at speeds in the order of twice the beanding oritisailspeed.,

r'r and that at still higher speeds the whirling persisted accompanidd by vft7 -lamg
Lamplitudes of the rotor within the fluid-film bearings. Moreover, the whirl

frequency was again the otrbdigctcafeueywhisk mead W!It

earlier (incorrect) suppositio~n that this was a further case of bysteriet

whirling. N~ewkirk and Taylor (Ref. 553) subsequent ly noted t'IAt thIs socond Iw
Uof whirl warn predominantly hydrodyna mic in mature and could be suppresses by

(1diminishing the bearing clearance1 and by increasing the viscosity of 2;IvWs. - -ui'
cating oil. Rotor motions of this type came to be known asoresonant whippSt
Newkirk and Grobel (Ref. 56) experimented with the geomtry of the beertve~to

to develop a complex "non-whirling" bearing. Although valuable experizenatl voft
was done on hydrodynamic whirl during this period, the ornly significant anaaly I~KU
achievement was the rigid-rotor f ull-bearing work of Robertson (Ref, 32 ) who

[ll inferred (correctly) for the case consi 'dered that the full journal bearing was

inherently unstable, without solving the equations which had boen derivaiC. These
developments were reviewed by Newkirk (Ref. 57 ) and later by Nwkirk (3.atf. 58)
At the same time Swift (Ref. 59,qand latet Raf.'6O).had~ahalyaed the in-,'

fluence of higher harmonic components on the infinitely-long full journal beor~ipg
using the Sommerfeold theory, in connection with crankshaft wrist-pin lubrication,

F This work led to the important observation that the load-carryirng capaci-ty of the
U oil-film vanishes when the frequency of the applied force is exactly twice the,

rotational frequency. This finding corroborated the results of Newekirk for the

onset of resonant whipping at twice the critical speed. The level of knowledge
was greatly extended by Burwell (Ref. 61)(Raf. 62)(Ref. 63) and Shawki (Ref. 64)
(Ref. 65 )(Ref. 66 ), both of whom conducted more detailed experimental and
theoretical analyses of this problem, including the application of the digital.
computer to the solution of the hydrodynamic equation with time-dependent "

forces.V 79
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For a 16mg tiUe the principal rotor dynamic characteristic of any system me the

fusdamlntal flexural rxitical speed and calculations were based on methods1

ment*d in detail in Stodola (Ref. 18). Critical speed caloalatioms for comp,,

piex rotors were done in rare cesm by hand calculation until Prohl (Reff. 68) E
developed the discrete mess rigid bearing analysis and prepared it first for

punch card machine calculation.. Hykiestad (Ref. 69) gave a similar method
at approximately the sams time . These methods are adaptati.ons of the zolser

method of vibration analysis, for massive flexible beam, and include the

effects of bending gyroscopic moments and where necessary, shear. Further

work using this discrete mass approach was carried out by Lund (Sef. 70) bo

developed an unbalance amplitude and transmitted force response ptogram for a

generalized rotor In daped flexible bearings. The effects of pedestal stiff-

smes and dampng are also included. A sub-programs of this analysis gives
critical speeds. Thus, at present it in possible to calclate awmrately

the dynaLmc response to any specified unbalance for my rotor which can be

represented by an equivalent discrete amss system, operating in beamongs of

known dynamic characteristics. (1

Where rotor performance is significantly affected by the bearing characta'ti-

tics, these properties must be known in advance. The first data vas obtained U._
by Stodola (Ref. 18) and more refined values were given by Hagg (lef. 71) Hagg

and Warner (Ref. 72), Hagg and Sankey (Ref. 73), and vhen the digital computer

was applied to the bearing problem during the 1950's, Sternlicht (1sf. 74) Li
obtained couplets elastic and damping coefficients fot the cylindrical bearing.

Lund and Sternlicht (Ref. 32) obtained similar properties for other bearing

types. These properties also allowed rotor bearing analyses to be made for ,

simple rotors on damped elastic bearings and the results of such analyses were

then presented as non-dimensional charts for amplitude responts, transmitted L1
force and rotor stability. Recently, Warner and Thoman (I-sf. 33) have investi-

gated the dynamic response of a two-mass rotor in partial-are bearings and

given design charts. For a similar rotor, Lund (Ref. 75) has extended the, (
analysis to include pedestal mass, stiffness and damping, again in charts from

which the dynamic characteristics of the rotor may be determined directly. Li
80



W Vhirling and instability arising from dissimilar lateral stiffneises of a rotor

have been troublesome, and investigation to deterwire the dynamic performa•oe

17-zv;uy'u&a .7 &m I i 7V) 7VULM, 7rZ_.JL Y LU P UUM W IZ.7)

IKellenburger (1l. 26) and )ima.,tberg (Ref. 1 ).' Although the rotor models

uted vere simple to facilitate analysis, the results aee general and provtde .

a guide for design, and also for diagnosis of troublesom rotor wbirlLng oor

which the cause is to be determined.

[ Rotors which operate beyond their bending critical speeds are susceptible to

large amplitude build-up on pasding through the critical spedd. Although it

was recognized towards the end of last cenLury that operation in tne poat-

critical range vas possible, the first detailed study of transition of a rotor

through its critical speed was made by Lavia (Ref. 78). After solvin" the

equations of motion by a graphical matbcd, results wero obtained fr various

rates of transition, and for various ammnats of damping pre;ent Ln the syetem.

More recently, Dimntberg (Ref. 1 ) has inv*stisated this problem more completely

using an analytical method based on Fresnel integrals, including dempi•g ad

flexible bearings. This method is discussed in detail in Chapter 6 and the

U analytical results are compared with experimentally obtained data, indicacing

U' good correlation.
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Fig. 3.04(c) Simple Rotor Whirl Geometry Above Critical Speed L
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Fig. 3.06 Orbit Growth at Rotor Critical Speed, � - L
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Fig. 3.08 Amplitude Ratio Versus Speed for Rotating Unbalance

Reprinted from FUNDAME~NTALS Of VIBRATION ANALYSIS,
Fig. 9-15, by N. 0. Myik1eetsd, McGraw-Hill Co. E
New York, N.Y. 1936.
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3Fig. 3.09 Amplitude Phase Angle Versus Speed

Reprinted from FLINDAmNENALS OF VIBR.ATION ANALYS-IS,I Fig. 9-4, by N. 0. Mykiestad. McGraw-Hill Co.
Nev York, N.Y. 1956
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Fig. 3.10 Force Transmissuibility Ratio Versus Speed[
for Rotating Unbalance Load

Reprinted fromi FUNDAMENTALS OF VIBRATION ANALYSIS,[I
Fig. 11-5, by N. 0. Mykiestad. McGrawi-Hill Co.
New~ York, N.Y. 1956[
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LFig. 3.11 Force Phase Angle V onus Speed

Reprinted from FUNDAIEN~TALS OF VIBRATIONI ANALYSIS,
Fig. 11-3, by N. 0. Mykimatad. McGrau-Hil.1 Co.
New York, N.1. 1956
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Fig. 3.12 ]lastic Hysteresia Loop U
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Fig, 3.13 Rotor Whirl Geometry. Internal Friction DampingL
Fixed and Rotating Coordinates
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SFig,- 3.14 Whirling of a Flexible Rotor in Beatings Vith Dissimilar Stiffnessl
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Fig. 3,15 Whirl Geomet. y of Flexible Rotor in Bearings With Dissimilar Stiffneense
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Fig. 3.16 Vertical and Horizontal Displacement versus Shaft Speed Symmetrical
Shaft in Unsymtrical Stiffness Bearings L
Reprinted from SHAFT WHIRLING AS INFLUENC&D BY STIMSS ASY*MThY,
Fig. 3, by S. H. Hull. Journal of Engineering for Industry. May 1961
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L Fig. 3,17 Deflection and Force Geometry for Shaft with Dissimilar Stiffnessa
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CRITICAL SPEED

Calculation of Critical Speed

Clltical ipauds are of great importance since in any mode they correspond to

zones in which the rotor amplitude buildup and transmitted bearing forces are

at a local maximum. Once the critical speeds of a particular machine layout

are known, other design aspects influenced by amplitude and transmitted force

may be considered. Good dynamic design requires the critical speeds to be

removed from speeds at which sustained operation takes place. To achieve this

may require substantial modifications in the layout of rotor-bearing stffness

anc mass - leading to component redesign. Synchronous whirl amplitude, rotor

balance, bearing dynamic forces, structure-borne noise, and the threshold of

resonant whipping are all determined by the critical speed of the machine.

Where the rotating unbalance has been minimized and adequate damping has been

[ provided, the machine critical speeds may often be passed through unnoticed, and

non-critical operation is very smooth,

Whirling Modes ot Elastic Systems

A rotor which is whirling at a critical speed adopts the characteristic deflected

mode shape associated with that particular whirl mode. The operating speed

i a range of a given machine may contain a number of critical speeds - each corresponding

to a different mode shape. All whirling modes are potentially dangerous to

Smachine operation because of the large transverse displacements involved. The

occurrence of any mode is determined by the prevailing speed and the dynamical

constants of the system (such as inertia, sti.ffness and damping), which are

usually speed dependent. Several commonly-occurring modes are shown in Figure

4.01. The most importanL transverse rotor modes are: the so-called rigid-body

modes, translatory and conical; and the bending modes, of which -.u _..;-, be

several. Axial and torsional rotor motions also occur. These are dealt with

in Section 8.
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The extent to which the modes shown in Figure 4.01 occur in the actual rotor LI
motion depends on the relationship between rotor flexural stiffness and bearing

radial stiffness, at a particular speed. For example, pure rigid-body modes L
occur where the rotor is relatively stiff compared with the bearings. This is

the case with gas-film bearings. Altarnativcly, where the baarings are stiff

compared with the rotor, pure bending modes with nodes at the bearings may occur,

This is the case with radially-preloaded rolling element bearings or with extremely L.
stiff externally-pressurized, fluid-film bearings. At very high speeds, the

rotor may have a bending critical speed corresponding to its free-free mode if the

bearing radial forces are relatively small at these speeds.

In general, there is considerable overlap, or coupling, between the various modes,

where the rotor and bearing stiffnesses are of comparable magnitude, Any differences

between the bearing stiffneases, or axial mass-elastic variation, tends to

reinforce the tendency toward modal coupling. The influence of coupling is included

in the solution of any system in which the number of degrees of freedom prescribed

for the analytical rotor-bearing model are adequate to describe all modes

anticipated within the operating speed range.

Influence of Rotor-Bearing Properties on Critical Speed

The important dynamic properties of the rotor and its bearings have been discussed

in Section 2. This section discusses the manner in which these properties

affect the various critical speed modes.

1. Rotor

In most instances, accurate values for critical speeds can be obtained using analy-

tical representations of the rotor which are simpler than the actual component.

Suitable rotor formulation depends on anticipation of the number of critical

speeds which the speed range will contain. For a discrete-mass rotor representation,

the number of masses into which the rotor is subdivided may not be less than the

number of critical speeds to be calculated, and preferably should be somewhat

greater to preserve accuracy. Where the critical speed occurs in the low-speed

range, gyroscopic effects may be neglected except where these have an obviously

strong influence on the motion. Shear deformations of the rotor may be ignored
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except for the most refined calculations on short, stubby rotors at very

( high speeds.

Both hysteretic and viscous damping are present in actual rotors; but, invariably
the magnitude is small enough to have little effect on the value of the calculated

ctitical speed.

2. Bearing

Both radial and tangentiAl stiffness and velocity-damping properties influence

the critical speed. Rolling-element bearings and gas-lubricated bearings possess

little damping, and so it is customary to calculate the critical speed of such

systems considering the radial stiffness alone. A procedure for calculating rolling

element bearing radial stiffness has been given by Palmgren (Ref.79), (and is..•lso

part of the present program) which includes speed, preload, and applied load
effects. For rolling-element bearings, the stiffness will vary little doet changes

in the maebineýApes.andtaopliad load conditions, and so the critical speed may

be calculated directly from a frequency equation. But, with gas- and liquid-

lubricated bearings, the radial stiffness is a function of speed,and so the critical

speed is also speed-dependent. In chis case a preliminary estimate may be used

to locate the critical speeds. Specific stiff sees corresponding to each approximate

critical speed may then be used to refine the calculations. The need for refine-

ment depends on the stiffness change,linitial to'refined', and on the extent to

which the beari.%g stiffness determines the system motion. This extent is greater

for rigid-body criticals than for bending criticals, Frequently, a plot is made

of critical speed versus bearing stiffness, and of bearing stiffness versus speed,

Using bearing stiffness as a common abcissa, the point where the two curves inter-

sect determines the critical speed, This procedure is shown in Figure 4.02,

The influence of bearing flexibility on mode shape is shown diagrammatically in

Figure 4,03 . This diagram shows how the fundamental critical speed of a rigid-

rotor flexible-bearing combination may be raised by stiffening the bearings,

Zero stiffness bearings induce a r:gid-rctor critical at zero rpm. With stiffer

bearings, the rotor bends and the critical speed is raised. Further stiffening

eventually leads to rigid-bearings, for whirch the fuwdamental critical apea&&

is N = 9 5  V. gEl
c 5 A
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In the second whirl mode, the influence oi b.-ffening from zero to rigid changes L

the conical whirl at zero speed to the second rigid bearing critical mode, The

rotor whirls with a mid-span node, as shown. The zero stiffness third critical

is the fundamental free-free hending mode of the rotor. Stiffening the bearings

eventually constrains tho rotor to whirl In its rhird rigid bearing mode. These

properties are presented quantitatively in Figure 4.04 in terms of the critical

speed ratio (N/Nc) for the uniform elastic rotor in elastic undamped bearings.

The abcissa (Nc/1000)(100OW/K) 1/2 represents increased bearing flexibility.

Where the bearing pedestals are n.t massless, their effect is to replace the

original critical speed with two critical speeds, one above and one below the

former value. Motions of the system shown are similar to those of a tuned vibration

absorber. The rotor is considered to be uniform and rigid, with flexibility

included iti KR which also includes the bearing stiffness. The pedestal (or

foundation) flexibility is K., and W is the pedestal weight. The pedestal

K S
natural frequency is N 187.7 -- . For convenience the overall flexibility

K ir expressed by:

1 1 1(4.01)
K KS 1 N2

where

N NNs

For N < 1, K is positive; for N > 1 the second term is negative and for a flexible

support may make K negative. Figure 4.05 again expresses the critical speed

ratio N for positive K; for negative K Figure 4,04 should be used. The effect of

a negative K value is the same as adding a mass 1/2 m to each end of the rotor,
2

where K.

In calculating the free-Iree mode of a rotor in its bearings, account should be

taken of the bearing angular stiffness, in addition to radial stiffness. An

estimate of angular stiffness has been made by Lund (Ref. 7 ).
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3. Foundation

Types of foundation range from steam turbine pedestals, supported oM a structural

a---...................................................--' -- -

sulated pump. Foundation flexibility may influence the motions of the rotor if

its magnitude is comparable to that of the pedestal, lubricant film (if any), or

the rotor. The method discussed above may also be used to determine the influence

of foundation flexibility on the lowest system critical speed. Frequently, the

foundation coordinate stiffnesses are dissimilar. This induces an elliptical

whirl orbit, and may promote two critical speeds if the difference is great.

The stiffness of a lightweight foundation acts ia series with the pedestal,

lubricant film, and rotor. If the inertia effects are large, the system equations

must include this effect. Stodola (Ref.18) discussed the problem of-foundation

flexibility and its effect on the critical speed of a flexible rotor. He concluded

that the system acted as a double pendulum with critical speeds away from the

. rigid foundation resonance. Geiger (Ref. 19) also cbnsider this problem for s-

rigid rotor. Tond (Ref.80) has'obtained experimental and theoretical results

-L. for a flexible rotor in oil bearings, and Lund (Ref. 75) has considered the

F dynamic response and atability'of a flexible rotor in gas bearings, seeking the

conditions of optimum attenuation, with the foundation mass as a variable. In

instances where a high fundamental bending critical speed is desired, the rotor

may be designed to assume its free-free mode. From Figure 4.03 this requires

, * very low bearing angular stiffness. Whera stiff bearings are needed for stability,

a very flexible foundation in the form of a diaphragm may be used to give the

same eftect, with low inertia bearing shells. Aside from metal fatigue considers-

ions, the ability of the bearing shell to follow the rotor whirl is an important

design feature in which low diaphragm angular stiffness is most important. Anti-

phase resonance across a gas film is a highly dangerous condition wtd, must be avoided.

4. Damping

Rotor damping may be viscous, hysteretic, or Coulomb. In general, although the

basic rubbing or slipping mechanism may be sufficient for fretting corrosion to

occur, and the damping may be sufficient to limit rotor resonant amplitudes to

safe values, it is still too small to influence the actual speed at which tha

critical whirl takes place. Common damping ratio values for rotor materials
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range from • 0.005 to 0.010. For a single disk rotor, -o i.e.,

a maximum increase of 0.5 percent. Laminated rotors occur in electrical machinery, I
and where the operating speed differs from the whirl speed there can be considerable

internal hysteretic damping present. This effect is discussed in BectionS. I
Other rotors such as those of turbomachineary, and certain ship propeller shafts,

operate immersed in a process fluid, and due to entraitment of the fluid during (]
rotation, considerable viscous damping is introduced into the system. Stodola

(Raf.18) noted that the critical speed of a long shaft remained unchanged despite L
total immersion in uater, but that the water reduced the whirl amplitude to

negligible proportions. Bearing damping depends on speed, lubricant, operating

geometry, and bearing type. Rolling-element bearings operating efficiently have

extremely low damping values, even when very heavily loaded. However, lubricant Li
flooding greatly increases the power loss and damping present. Rydrodynamic

gas bearings have a small inherent damping capacity. Rydrostatic gas bearings

have somewhat higher properties. Moderate unbalance and low eccentricity

correspond to maximum fluid-film damping capacity which is due to both squeeze- LI
film and rotational effect. The damping in liquid-lubricated bearings may reoch

critical-damping proportions when the Somnerfeld number (sec/min) exceeds 100, 1
as shown by Hagg and Sankey (Ref.73) and Lund (Ref. 81) for a variety of common

bearing types. Critical damping conditions are to be anticipated in lightly-

loaded (particularly vertical) high-speed rotors. Under these circumstances,

the usual critical speed amplitude buildup is suppressed, and the 'critical' speed

Sdisappears, as shown in Figure 4.06..

Pedestal and foundation damping for small motions is usually taken as being

proportional to veloelty. The magnitude depends on foundation type, ranging from

S - 0.005 to 0.010 for A structural gridworkwith a minimum of bolted Qonstruction

to induce Coulomb damping, through • a 0.010 to 0.100 for monolithic concrete, I
to • - 0.100 to 0.5 or more for clay-soil foundations. For accurate values

under the latter condition, site test values are needed. I

In summary, damping may be neglected in the case of solid rotors in rolling- I
element or gas bearings operating in a gas or a vacuum, and the calculated

critical speeds will still be accurate. However, care ig required in the case I

I-
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i of liquid-film bearings, particularly in the case of lightly-loaded high-speed

rotors which may generate critical damping under certain circumstances. If the

damping is shown to be high, it should be allowed for by either a supplementary

sprint force in parallel or by the actual effect expressed as viscous damoine

in the calculation.. A lower limit only will be obtained for the critical speed

of a rotor when significant syatem damping is ignored.

Exact Methods

Simple rotors are characterized by uniform prismatic shape, few disks, and simple

support conditions. These features are readily handled mathematically, and so

there are available a large number of formulae for the calculation of critical

speeds of simple rotor-bearing systems. Insofar as the mathm&6ical conditions

- represent the rotor, these solutions are both exact and free from method

V inaccuracies.

Exact methods discussed in the following sections are of two types: (1) da:.ete

mass systems which operate by breaking down the rotor into a suitable number of

constituent masses which are linked by meassless flexible shafts; and (2) con-

tinous systems in which the distr ibution of mass-elastic proper ties may be .

either constant or uniformly varying along the rotor length. Theme methods

formulate the critical speed problem from the basic equations,- and result in-a - - I'-.
[ critical speed or frequency equation which may be polynomial or transcendantal._'

The discussion which follows is more concerned with the techniques and their

[capabilities, application and limitations, than in the solution of the frequency

equation.

The exact method has the asvantage that it also allows the higher critical speeds

f -of the system to be calculated from the basic frequency equation. Ritz's method

is the only approximate method which determines harmonic critical speeds with good

accuracy. With the aid of a computer, the labor of solving a complicated system
determinant is removed; instead, a computer program must be written end checked

out. High-speed machines which pass through several critical speeds must be

analyzed according to this procedure, whereas low-speed machines may often be

analyzed by some less-involved technique.
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Discrete-Mass Bystems L

A rotor which carries a number of massive disks on a flexible shaft may often be

repr-senLeO by a discrece-msms system, iigure 4.07 . Ipe r alculaiu an Qa ku' rtiLLtica

speeds of such a system is performed as follows. The maas, aj of each disk is I
assumed to be concentrated at its c.g., and rotor flexural atiffnass is wholly

due to the aggregate stiffness of the shaft sections, kij, between the, disks.

Where the motions are free of gyroscopic and torsional influences, the equations

of motion for an n-ma•s system vithout damping are:
kl' ÷ lX1 + kix2 + .... + knXn - mawl2 cos'wt +c()

2

m2 . + k 2 l 1x + k 2 2 x2  +. ...... + k 2 x I - m2 a 2  cos(Ot + 41)

... +k. + •x ÷.........k ......

n2 + kll + kl22. ...... + knx mnan M c ns(wt + C 1)

"M + kl1 yl + k 2 2 + ...... + k _ M sin(Ot + . .

2
m2" + k + k + + knnn k mna 2  sin((,t + ).

mnyn +knlyl + kn2Y2  ........ + ky M ma 2in(JOt+ 2) (4.02)

writing

ri 0 x 1 + iYj

and noting that

e i(cut + E 1) e- m e • it•aa i w•

leads to the system of equations
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t]
a i + k1 1 rI + k1 2 r2  + ... + knrn ae a a s 2e4ot

S2V2 + k21r1 + k22r2 . ...... + k2nrn w '2 2 e2 2 l2 i t

.... . .. ...........

m n knlr + k n2r2 + . + k r n anm a2s it (4.03)

V Selecting solutions of the form

r. . Ai e1~

• tleads to

L( 1  w 2 k12  k. kin A1 C91a1

- 2
.o .. f:;, u..-pa:12 2

2

2 ik n2 A

nl 'Xna[ or in matrix notation

[] 2III CM)] (4ý a)2 (4.04)

where I is the unit diagonal matrix. The complex amplitudes A are obtained

from the above expression, exceptwhere the denominator

[ - (~][ - 0(4.05)

[For a given system IKI and liM are fixed and so the ahove condition is satisfied2

by particular values of w , corresponding to the critical speeds of the system.

[I For an n-mass system there are n critical speeds. Equation 4.05 is independent
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of the right-hand colum matrix, indicating that the critical speeds occur

independently of the unbalance properties of any disk.

Methods or Solution

If the system involves relatively few masses, Equation 4.05 may be expanded

and solved: (1) exactly by a standard algebraic method, (2) graphically, by

substitution using Newton's method, or (3) numerically, by Graffe's method,

or by the technique given in Duncan and Collar (1ef. 82). Where many masses

ate involved, a digital computer is usually required to faciliate the matrix

algebra, at least for comnputing values of the matrix over a range of 2 for [
graphical solution, and preferably with a program which seeks out the eigenvalues

automatically. ' 1

Example 1: Single disk, flexible shaft, rigid bearings

The simple rotor shown consists of a single thin disk mounted centrally on a

masslesr, flexible shaft, Figure 4.08. The equation of motion derives from

Equat1ton 4.05 and 9s:

2 iwtmi + kr cms•w•a (4.06)

As above, the critical speed is obtained from the homogeneous equation, and is

Co - 1/2

for inelastic bearings the system flexibility is the flexibility of the shaft.
In the present case,

k=48 1 (1
L 3

The critical speed is therefore: i

4 I1/2
1[3 z1 (4.07)

Furthermore, note that the static defbction s of the rotor c.g. under the action
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of gravity is

•3
mWL

3

a 48EI

Substituting in Equation 4.07 and writing W - mg, gives

1/21.
Substituting the appropriate units leads to the expression:

N 187.3
N - -

Cr

where N€ is the rotor critical speed in rpm, and 6 is the static deflection

of the disk c.g. in inches. This formula may be used to find the criticalI-

r speed of any single mass system, in rigid or flexible bearings, once 5 is
I... known. 1

.... .... Example 2: Unsynmetrical rotor, single disk, flexible bearings '-

Fisur 4.09 shows the deflect:ion geometry of this system. The shaft deflection

S3 EILi
2W 2 b2

:The effective bearing displacement at the rotor is

[ The total displacement of the rotor c.g. due to system flexibility is

1. In the case of a uniform shaft with a uniformly distributed load, it may[ be shown from fundamentals that the lowest critical speed is given by

221.8

I For simple supported ends,

- 5 wL4
384 El

For a cantilever shaft,
1 wL4
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1/2

N 1

In this particular case, if the transverse inertia IT of the disk were signi-

ficant, this would introduce a second critical speed with a conical or rocking I
mode. An exact solution would, therefore, involve simultaneous solution of the

translatory and rocking equations of motion, including the influence of gyro-

scopic forces.

Example 3: Symmetrical two-mass rotor in rigid bearin s

Equations of motion 4.04 apply directly to the rotor shown in Figure (4.10), i.e.,

I~~~kll~ 42k2 jcma

The critical speed condition is that the determinant of coefficients of the A

is zero. lbltiplying out gives:

4 t 2 [kllk! 22 2k2 12k2 1] -

C -U+ m + " e 2-,0 (4.08)

This may be solved directly ms a quadratic In cu A total of .four roots are
obtained of which the two positive roots alone are of physical significance.
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Contious whchhaetheir mass-elastic properties distributed uniformly along

[exactly. in these cases, the basic equation governing the whirling motion in:

a2 1+ w F~t) (4.09)

F ~where ~

For a uniform shaft free from external forces, F(t) -0, and the x,y, coordinate

L equations have solutions of the form:

X *x(Z) a~u

. y(Z)e a (4.10) 7 f
where x(z), y(z) are functions of length and frequency of vibration only.

V ~Substituting leads to the solutions: --

L.k(z) A cos z + B sin Xz + Ccosh %z D Dainh Xz

F'y(z) E Ecos Xz + P sin X.s + Gcosh ... + H sinh Xx (4.11)

Fwhere A, B, C, D, E, F, G, H, are integration constants to be determined fromi

the boundary conditions of particular cases, and:

X 42

Continuous systems have an itifinite number of degrees of freedom, and so there

exists an infinite number of X.L solutions (eigenvalues) to the characteristic

equations listed in Table 4.01 .Each sigenvalue corresponds to a particular

critical whirling mode.
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I
zxample 1: Uniform rotor in rigid supports

The characteristic equation may be determined through either x(s) or y(s). i

At z -O: (y) =Sd. )- 0
2
di

At z L: (Y) " 2 0 (4.12)
dz

Substituting and reducing leads to the frequency equation for this case:

sin.XL - 0 (4.13) f
The corresponding eigenvalues in this case are 0, x, 2n, ni, n integer.

Rgxmple 2: Uniform rotor. riLsd supDorts, withl overhanxa(Fiaure 4.11)-

Again considering motions in the x-a plane, the rotor equation must be integrated

separately in the two domains 0< 1 <- 1 0 < -- "2,leading to
- 1-1 -2 2

eight integration constants. The boundary cond tions for these two domains are:

At z -0: (y0) - 0 ET (.

(yI) - 0 - - -

2 U2

:2 - L2 E ---- , - 0 E - - 0 (4.14)

VM

Substituting into the solutions: -I"
S x(z 1 ) = A1 cos ,g + B1 sin •.I+ C1 cosh •,z + D1 sinh ).:1
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I_.

rx( 2 ) - A2 cos Z + B2 sin Xz2  + C2 cosh X& + D sinh a2

Mi i-. I- 5L1 U-'.U A'.& um% LAIW symh.WW LwjA&&WUIýy j ~ 0

2 - 2inhXL1 sin X 1  11 +. coshhL 2 cooXL 2 1 0 (4.15)

Solutions to this transcendental may be obtained by writing:

XL L a L (4.16)

[: where

L- (L2 /L1)

Plotting values of Equation 4.15 against XL1 leads to the required,

[Ielgenvalueis. Alternatively, or. analytic solution may be achieved by perturbin~g
on an approxiante known solution (),L)'. Writing:

L - ( +.L)'+ ;2 C L [(%L)' +€1
L2

where a is; small end unknown. Subatituting, expanding, and rajecting powers

higher than the first leads to an expression for e, and hence, allows the required

XL values to be calculated. Table 4.02 contains results given by Dunkeley

(laf.40) for the fundamental mode of this case.

SIt is apparent that the exact solution of continuous systems rapidly become

complicated in both derivation and solution for all but the simplest systems.

A number of methods exist for overcoming thisof which the JReceptance method is

presently the most highly developed in its application to beam and rotor problems.

A set of 'receptance' functions has been prepared. corresponding to certain

basic beam vibration cases. The desired properties of more complex systesms

-.- 127

V"



TABLE 4,01

Freouency Equations. Uniform IRotor. Va-ijous End ConditionM

Ind Condition Freouency Scuation

Sliding-Sliding @in XL 0

Pinned-Pinnod min L - 0

Clamped-Clamped cos XL cash kL - 1 * 0

Clamped-Free coo XL cosh UL + I - 0

Clamped-Pinned con XL sinh XL - sin XL cosh UL - 0

Clamped-Sliding coo XL siah XL + sin XL cosh UL - 0 U
Free-Free coo XL noah XL - I 0 -

TABIE 4.02

Value of UL1 as Function of L. Fundamental Mode

1L
Rait, o L XL 1

1.00 1.506
0.75 1.902
0.50 2.507
0.33 2.905
0.25 3.009 V
0.20 3.044
0.163 3.060
0.143 3.069
0.125 3.071
0.111 3.073
0.100 3.0378

0 3.143

12
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including frequency equations may be obtained by combining these functions

according to certain laws. This procedure is described by Sishop (Kef.83)

and has been appl~ied Lo ilLxi.D±6 rotoz. by G.lerUwwll oui Zllmiwp ( .C"

[ Approximate Methods

Many practical systems cannot be adequately represented by a simple mathe-

matical rotor model for which an exact solution is available. In these

instances, such a representation gives only an estimate of the critical

Sspeed. Where an exact solutIon would require an inordinate amount of

effort, an approximate calculation using one of the methods outlined in

the present section will usually yield a result of acceptable or good

accuracy in a fraction of the calculation time.

The most useful approximate methods employed in rotor-bearing dynamics

are:

1. Rayleigh's Method A general calculation method based.
on the energy principle. The results
are always high.

2. Ritz's Method A refin-mnt of Rayleigh's method
giving more exact results, based on
the minimum principle.

S3. Stodola'a Method An iterative technique based a•

recalculations of the deflection
curve, and hence the critical speed.

4. Morley's Method Another iterative technique with more
rapid conveagence than Stodola involving F
comparison of the mean deflection curve.

5. Southwell's Method Gives a lower frequency limit for
specific systems subjected to A number
of separate external influences.

6. Dunkarley's Method The critical speed is obtained by
subdividing the system .nto a number
of simple standard cases, and suming
those effects in accordance with a

U special formula.

In all cases, the fundamental bending critical speed alone is calculated.

Certain methods exist for the calculation of harmonic., and several of

0 Lhe given methods may be adapted to harmonics. In general, however, the

accuracy is considerably less for the calculation of harmonicc than for the

fundamental mode, and it becomes worse as the modes become higher I
S~129



The following sections discuss each of the above methods in detail, indicating

the principle on which the method is based, the theoretical background U

necessary for its application, and giving examples of importance using the

method for further clarification. The references cited apply to the original

sources or to conveniently-available explanations of it. Important instances

of special application a'e also mentioned. U

Raylelgh's Hethod

The fundamental critical speed of an elastic rotor-bearing system may be

obtained from the energy properties of the system. A method for doing this

was developed by Layleigh and is based on the fact that the distribution .

of the kinetic and potential energies in the fundamental mode of vibration is

such as to make the frequency a minimum. The griat practical utility of

this matlod is due to the relatively small errors which are introduced

by assuming any similar deflection profile for the modal form in order to

simplify the analysis. As the method applies to the fundamental mode alone,

the true modal form may be readily visualized. An approximate analytic

reprenentation may then be prescribed.

For a multi-mass system, such as a shaft carrying several massive disks,

the configuration of Lhe system at any instant is completely specified by

the values of a finite set of coordinates ql, q 2 , measured fxom sow

equilibrium datum such as the undeflected shaft centerline. The elastic

restoring force is proportional to these coordinates, and so the potential

ene*gy,V , of the deflected shaft is a quadratic function of displacemnt, i.e,

V (kq 2+ kq 2 + .... + kn 2 ) (4.17)

where k, ... k re the system atiffnesass corresponding to each dis- L
placement. The kinetic energy T is a function of the coordinate velocities

and takes the form

T I(nl 2 + m 2 2 + ...... + mn• 2) (4.18)
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For harmonic motions, the coordinate displaceser to and velocities may be

vritten as

LU - xk cog (%t +GO k 1,2, .

4k - oa2 x.k in (9kt + GO

[.As the system is conservative, the potential and kinetic energies over a

cycle are equal in steady motion. Considering any mode of frequency, M,

the mean values of the kinetic and potential energies are

- 12 2 2 +32
4m 1 (x1  2 2+ ft-

I ~ he fequecy i thu obtinedfro

2 2 2 2
-~ ~ m~h +k2 + + +k (419

andise freuenctiono thes obaineitde fofm h oin ftegiydfeto

[ ~2~ 2....32)

Liz 2.2 an

and is3 ae functions of xthe apoituestiof tenoine .due to e bnigraisy dienletio

andrte kintchen t eprgyen is oa om kkk ms n ec

C~~~ 1 22 A ()2 da (4n1

21(z) d (4.20



In addition, both end thrust P and torqu.Tmayact on the shaft. The thrust

causes a reduction in the potential energy of ll

A~ IL! 2 s (4.22)U

whereas the torque increases the potential energy by amomut
1 J 2

SCoi dz (4.23)

hn ihich C is the torsional rigidity of the cross section and is the anble 1-
of twist per unit length. The presence of torque in the syst c constriints

gives rise to the additional bending moments

Td T dxdz yd 
'.. .v •

on the elemental length, as shown in Fig=*r 4.12 The corresponding &train.

energy is

V 1  4 - x

' . /2 d

I jT (Af) ý4y drx(.4

In this case, the system must be solved in both coordinate directions simul-

taneously.

The effect of 'imposing' an approximate deflection curve on the rotor causes

it to conform to an additional constrsint, end the implied stiffening causes

the critical speed as calculated by the Rayleigh Method to ilways be a few

percent in excess of the true value. The assumption of the gravity d'flection

line, although quite close, never exactly simulates the dynamic deflection U

line in the fundamental mode. This may be seen from the following: 1

132 -" [I
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[
[ The static deflection is governed by the equation

d~41

r 21 w (A. 2Si v

[ For a simply supported shaft under uaiform lod, this leads to

[X x - [4 2( ~ +(] (4.26)

where x1 is the center deflection. The dynamic deflections are obtained from

the equation

L1 - 2Y

For the same simply-supported uniform shaft the deflection equation is

comp.•lria between the two profiles will reveal their similarity and their

I difference. Both theory and engineering application of tsyleigh's sithod

are discussed in tha book by Temple and Bickley (Ref. 85 ). Several ezamples

Sv ill now be given to present the application and scope of Rayleigh's Nethod.

Izample; 1: Cantilever rotor with and Egos

The cantilever rotor and its fundamental mode shape are dhown in Figure 4.13

El The modal formmay be represented by the deflection equation:

x = x0  [- cos2L] (4417)

This expression satisfies the boundary conditions of x - 0 at z - 0 and x - zo
at L.

Potential energy:

1o2 E cos di d.
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Kinetic energy: M21 222 F x2all 2I - coo1 de I • U
T*2g 0 1 2L 2S

2Z 0.226 vL + W

Rayleigh formula: 11 2 [1
2 ~L 1 1 ) 2di 0 iA

S2 1 +0.226 3' 3
w ,x d[ W[

If v(z) - 0, the critical speed formula reduces to

2 g
C - 3.04 L 3  (4.28)WL3

From discrete mass methods the e.wct formula is .,

12 -3.00 . (4.29)
•3

WL~
representing a difference of 1.3 percent betWeen the two methods. U
IUmple 2: Simply supported rotor with and thrust

The simple uniform rotor in rigid bearings has a central disk, W, distributed

jhaft.woeight, v, per unit length and an end thrust, P. Its mode shape is

sinusoidal, similar to the deflection line under gravity load, i.e.,

x 0 x sin-" (4.30)U

vhere x1 is the deflection at the central disk. [UI
Potential energy. Pending

V1  . i 31 ( 2 J 4 sin22  do
11 2 1

x 4--- E x1

L3  x1 I
End thrust

- 1 2 ýP 2 cs

2 a - c- xo L do

AP 2
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h7-

1 .

Kinetic energy

22

-- • W + 0. 5 wL

L Rayleigh's formula 2

2 t dz P 2(x dc

17 L 2

v ~which simplifies tr

42W1. 105 L
In cases where the end thrust Ls a significant portion of the Zuler buckling

Sload of the shaft, the critical speed may be lowered con~ i4orably, This ay

become an important design feature of single disk, their flexLble shaft machines

,in which the critical speed is naturally fairly low. Where - 0the critical

speed formula for a massive disk on a uniform heavy shaft is obtained:

_[_7_ _ (4.32)

If the shaft weight is small compared vith the disk weight, the critical speed
[3 formula becomes

2 48.7 Sin (433)

.3 The critical speed-deflection formula m2 * g/l derived previously gives

VL 3
"for this case, a difference of 1.4 p r*.'.uL-get-4,.4f and approximate

methods.
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Exaumle 3: Uniform rotor with section change

The stepped-section rotor shown in Figure 4.14 is a coinon type, but the section I
change makes exact critical speed analysis cumborrs. An approximate critical

speed may be obtained by assuming a deflected profile of the form: U
x l 0 i - 4.34) U

which has the effect of ignoring the additional rotow deflection which results [
from the greater flexibility of the end sections. This flexibility may be

included by adding a second term to the above expression, e.g., 1
c Us
x X in + xsin(4,35)x 1  Lin 135i

-~~ Superposition of these curves, togetner with suitable coefficients xV, '3 -

leads to a good representation of the deflection lines of actual cases. Where
the deflection line is known, the critical speed may be found directly from the,

Rayleigh formula obtained from the second expression

2 2 (4.36)
X1 X 3

Where the deflection line mu.st be calculated, the graphical area-mmnt method

is weil-suited to rotors with changes of section. A numerical example will

illustrate this. t
A rotor of Figure 4.14 has the dimensions shown, legion 1 refers to the small

diameter end section. Region 2 refers to the central tube. Both bearings

are rigid and the span betwoen them is 168 inches. The tube Ci.D. is 10.295'finches, and the well thickness is 0.5 inches. The material Is steel throughout.

Calculations based on these dimensions give:

w 2.348 lb/in, v - 4.334 lb/in

1 5.47 in 4; 2 182 .47 in4  i
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Divdig heboo itoth sctin ho ad alcltn the dir due

tiidn the graviy Figue41toladalw the defection chrve tvnd calculatineh Lder.du

based on the momant of tha areasa about the 1eft-haO4f4. 4UI Laylaish Teble based

[j on the deflection at the controid of each section is shown below.

Section W y 1 ixlO y~X1O WY 1 1O Vyi X10S

3 2.0 3.8 1148.03 881.12 29,855.00

4 26.00 42.54 1810.18 1106.42 47,074.30

El5 26.00 50.78 2578.88 1320.61 67,064.54

6 26.00 58.48 3420.66 1520.99 88,960.43

7 26.00 63.57 4299.43 1703.16 111,807.89

8 26.00 71.94 5176.28 1870.98 134,610.58

K9 26.00 77.54 60L3.27 2016.58 156,376.70

Ir10 26.00 82.30 6774.14 2140.36 176,163.45

11 26.00 86.17 7426.10 2240.99 198,117.89

12 26.00 89.11 7941.15 2317.41 206,511.93

13 26.00 91.08 8297.24 2368.79 215,771.96

14 26.00 9k.06 8475.44 .2394.10 220..407.55

2
22. 343. 04x!.0 105.61,-

_9 _____ 0 (8.)224

[ *2179 rpm

[ Curves for the calculation of critical speeds of stepped shafts are given by Rieger in

[ ~Ref. 86 . These curves give Nc a 2166 rpm when applied to the above example.
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/

-I/
Substitution of x11X3 deflection values obtained from the above calculation

in Equation 4.36 gives N€ m 2167 rpm by that method.

nitz's Method [
An excension of Iayleigh's method made by Ritz diminishes the inaccuracy intro-

duced by the assumed deflection curve not exactly matching the true whirling

* form of the rotor at a critical speed, as follows: Lot 0l(2), *2()..

n (z) be a set of n linearly independent functions each of which satisfies

the boundary conditions of a given case, Combine these functions in the form

X(z) - al l(Z) + a2 2 (z) + ..... + a 0 (z) (4.37)

to represent the deflection curve of the rotor, in which the *1e , S ,2.. afn

are coefficients. The essential feature of Ritz's method is that thse coeoft -

cients are to be selects+ in such a manner as to make the calculated frequency

a minimum.

in the case of a whirling shaft subjected to bending end centrifupal forces alone, e
the frequency equetion, based on energy considerations and incorporating

the above expression, is:

2 . . szs)(Xu dz 2u.. (.)•
J 2 ds2

w~)A (K)2 dz a

The Ritz minimum condition will be satisfied if

I I(z)(Xll) ds;

-0 i i, 2,...
A A(i)(x) da gvsL

f �Reforming the differentiation gives) d

•'•')x2'" A- , 11 .
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I :

3 But from ha t layleigh frequency equation

A 1 .2 2 A
eh Wu p . 2.

This leads to the minimum expressiom

[A {I(.)(xll)2 d -0 (

SIn ap'licazioi, equating the above expressions to zero esadM to n linear

homogeneous equations in al, a2' a a n. When the determinant of these

coefficients is equated to zero, the frequency equatioe for the sy•t.m 13

obtained. Actual values of the coefficients a are not required in slest -- -

up the frequency equation. The basic requirement is that each t ,am in t.

original series satijfies the boundary conditiocs of t:b problem ba.

considered, In the cose of a simple-supporti~d rotor, a tnlisnMitrie erits

X a sin-U- + a3 sin T + a siin L ' + " - .

fulfills this requirement. Likewise, a cantilever rotor my be investirpt4

using a cosine trigonometric series, or with a polynomial e*%pression

x * al 1 - + a2 [ - + a3(•} I - +

The complete Fourier series may be applied to more complicated cases. This

"[ method of cr'tical speed analysis has been discussed by Inglis (lef. 87).

"[ The Ritz method requires that the boundary conditions should be satisfied by

"all terms individually in the series. It has been applied with excellent

accuracy to rotors of both constant and smoothly varying cross soctioaI.

Hoe.ever, with a rotor in which the section chagesa abruptly, rke method fails

"[ w'ien a series satisfying the and conditions alone is chosen, because the

"smoothly varying deflection line fails to fees e moment and shear require-

i ments at the abrupt section variations.
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Icerative 3Mtrhods

Stodola (laf. 18 ) describes a method which allows accurate results to be

obtained for the fundamental mode using a simple iterative prroes•we, *a foll~e

I. ksst - initial dzflectcd for= for the shaft. Ih s tsraqiwualy

the gravity deflection curve, determined tamlytically ot grotpMuly, i
but it may be any form which satisfies the end coaditioce.

2. From this deflection curve, obtain deflection values 3L1, '2' ... i
corresponding to the distribution of waight carried by the rotor v

V ..2 .' . Rotors with uniformly distributed weight may be brro~kan

down into an #pproprista number of discrete weight&. -.

3. Assume an angular velocity, c. This may be any value whatwwem T. - . --

It is simply required for calculation... .

4. Calculate the centrifugal force acting on each weight wi dAme to the

whirl radius xi, at assumed speed, cu.

5. Calculate a sec•nd deflection curve, due to the centrifugal tort1

acting as static loads on the shaft. The deflectione at , '2 .. ...... "2
w will then be denoted xl for this curve.

6. Calculate the critical speed ( from the ratio of the assumed ddeflttmX to the calculated deflection x i.e., V

- -

The validity of the above formula is due to the fact that if the centrLfugal

forý.,i were now recalculated using o instead of wn, these forces would be

increased in the ratio x l/X' and the static-centrifugal deflection curve

would also be increased in amplitude by this swount. If this defluction curve,

thus enlarged, is exact it wtll precisely match the initially assumed deflection

curve. This may only occur where the calculated speed m is the true critical
c

whirling speed at which the centrifugal forcer are in fact sufficient to

retain the whirling form of the shaft Against elastic restoring forces. -/
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[If the curves do not catch, the calculated critic-al speed is ot t& tta

value, and the procedure iust be cantLn.ed, as follows:

7. Using the ,tatic-centrifupal deflectiort curv, cealaulee a oeeal

Sat of canetrifual foTeas corresponding to Vit, -L a"d M

S. A#plying thesee enond centrifugl farce* to the shaft, re a)eltie - - .-.-

the deflection cuLrN-a. The deflections will then be Zj'', CoreopmdiaS

to Wi.

9., Calculate the critical speed wc from

XC

This procedure may be continuied until the differeoce bemn mamesive vale. -

of mc Li as sall as desired. ,,uerience has shown this method to be rapid• y

convergent, consistent with Layleitg's principle that a aes:Ldereble etrw-

in the deflected form introduces but a mall error in the alue of 2W

method is widely used and is quite ogenaral; it may be applied to a rotor for

which a reasonable, approximate representation of the deflected profile

in the fundamental mode may be obtained. Borowics (RUef.88) has investigated

the application oi this method to the critical speeds of multi-span rotors.

Morley (Laf.B9) has givat a similsr iterative method for which t.:y rapid

convergence is claimed. From the exact formula for the critical speed of the

fundamental mode,

2 a SE Wi 4.2
c z W 2 xM

where x is the mean deflection value. But, for an aroitrarily assumed

deflection profile, x', che above formula is an approrimation justified in

[ application by Rayleigh's principle. If it is asmumed that x has values X,

proportional to those produced by gravity, the formula becks

)2 SE Wx'i
(Mc ,) (4.43)
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Alw

ZIe~e - ) (636

A mean value of the deflectiona,"ix, and is a first f-am 2W 29 t &iU&

x in Iquati,,n(4.42), end so wc' is a first &"ototo -t th au

DistrifbteJ lo*s- my be included using th cwr.sponding fa•wml _

V d a d ,O,ý!321d

The method is am follow.:

1. Assume a deflected profile for the rotor with a mdlz dhfl ntian .I

Calculate m fro& rZation (4.42).. -

7. Calculate the centrifugal forc for oatiuth ra tm egtt W VCL Sooree X4i
s~~~~~o the assumed deflection zip at the calculated-sp me" . . .. -

: ~ ~~3. Calculat:e the ohaft: deflecti:on profirle torraspondial to t.]atl cantzri- -

fujP1 forces acting staically an the roto. Call th Vt i~• "- lef

x i in this case. -'..

4. Becalculate the critical speed corresponding to new deflectLam .

Here,

Z V1(x± ) 1

5. If the difference bttwten w c and m i too great, the sabmoe 4e

in repeated, recalculating the centrifugal force, the deflection curve,

and mc the centrifugal force w 11.

The convergence of the above procedure is claimed to be very rapid, and very

few cycles are necessary. This is due to using the rman deflection, xm',

(Equation4.44)rather than cooparing the deflection at a single point

- as in 3todfla's method, Mre computation is required at

each step, bull te con'rergfnce is more rapid.
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Southw•ll's method

Where two or more external.. effects contribute to the overall motion of the

fundamental mode, a method due to Southwell may be used to determine appro-

ximately the net effect on the critical speed of the system. This method

states that if %I, a2 , ... are the eigenvalues for each of the effects acting

separately, the eigenvalue for all effects acting together satisfies the

inequality

a49 + a2 + (4.46)

/

The inequality sign indicates that the critical speed obtained by this method

may be lower than the true value; in practice this is usually the case.

The proof of this inequality is given in Southwell (Ref.90).

It has been demonstrated that this method gives accurate results in cases

where the vibrating structure itself remains unaltered, but where this structure is

subjected to several types of loading, e.g. centrifugal force, torque, shear

end load, gyroscopic loading. Substantial inaccuracies may result where the

system itself changes, such as adding a discrete mass to a distributed mass

to form a system. This is due to the nature of the method whichis based

on synthesis of potential energy.

Example 1: Influence of end loading on critical speed, simple-supported uniform shaft

The fundamental critical speed of the shaft without end load is:

D 2 . 2 EI

wL4

The natural frequency of the bar due to a tensile force p neglecting.flexural

stiffness, is:

2 2
'2 = 2
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By Southwell's theorem:

- a1 2ý

or
0D2._> M 2 + 0'22 (4.47)

The critical speed with both effects acting together is therefore:

C2 > + 2R (4.48)

wL4 w 2

In the case of end thrust, where p is negative,

2 > .Eg 2 2

wL4 w 2

which may be written

22 > I- -- (4.50)

2 -- c

where wn is the critical speed of the shaft without end load and P is the
C c

Eulerian critical thrust.

Temple and Bickley (Ref.85) have drawn attention to the generality of the form

of the above inequality, indicating that where a system has several critical f
numbers, such as end thrust -- , applied torque -I-, flexural critical speed

PT

O_2 and so on, the general result may always be presented in the form of
c

an equality of the above type. Thus,

< + + (4.51)•c c mc[

applies to the above system, agreeing with the results of Southwell and

Gough (Ref.91) for this case. The following formulas have been obtained by

Greenhill (Ref.39) for the critical torque:

Shaft of length 2, running in two short end .=srings; T = 2nEI/L

Shaft of length ,2, running in two long end bearings; Tc = 2C EI/L
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where
S ... ••Y••%.493

Using, Sott a method together with Rayleigh's method allows the critical

speed to he established within specific bounds.

Dunkerley's Method

A convenient method for the fundamental critical speed calculation of systems
which consist of a number of components such as gears, compressor or turbine
disks, flywheels, etc., mounted on a basic shaft has been presented by Dunkerley

(Ref.40). The method consists of reducing the actual system into a number of
simple sub-systems, each of which may be calculated directly by standard
formulae. The critical speeds w', co......, o theycombine according to the
law

2 1 -- + .+ ...... + (4.52)
22 2

0' C 2  h

to give the actual critical speed a) of the system.' In the above, WI may be the

critical speed of an; unloaded shaft in its bearings,whilew, r2 ' " .'' represent

the critical speeds of the various loads, ignoring the mass of the shaft.

The approximation is usually very close, for shafts which are mounted in two
bearings, especially where there is no overhang.

Example 1: Uniform cantilever shaft with end mass

For the unloaded shafts:

2a) 12.36 EL4
1 4

wL

Massless shaft, with end mass

2
2  = 3.00WL3

By Dunkerley's rule

+ wL 1 1 I W2- I- -+
2 2 2  EIg 12.36 3 wt
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Thus,

1 12.36. K K" (4.53)

This may be compared with the result obtained previously by Rayleigh's method,
i.e.,

WL4'

In general, results of good accuracy may be obtained by following the above

procedure. Any number of masses may be considered, and the shaft section may

vary although this introduces the analytical complications associated with

stepped shafts discussed earlier. Where rotating inertia and gyroscopic forces
appear likely to influence the motion, these factors should be included in the

sub-system calculations. The formulae for simple cases have been corrected for
rotatory inertia (but omitting the gyroscopic effect) by Morley (Ref. 43).

Dunkerley used two exact methods and the above approximate method to calculate

a wide variety of systems. Various end conditions were examined for one-,

two-, and three-span shafts. One- and two-pulley shaft systems were examined.
An extensive series of experiments was conducted to verify the analytical

findings. The apparatus consisted of long thin shafts carrying heavy pulleys,

mounted in short oil-lubricated bearings. Maximum error found using the empiri-

cal method was 4.6 percent, for an extreme case. The general order of accuracy

was around 2.0 percent high. Several analyses by other authors, notably Chree

(Ref. 41), Morley (Ref. 43), and Jeffcott (Refs. 92 and 93), have discussed both
the accuracy and the applicability of Dunkerley's method. Morley's findings are [7

disct ýsed in the following section.

Effect of Disk Gyroscopic Action on Critical Speed

When the diameter of a disk is large in relation to its thickness, it is neces- [
sary to include the influence of gyroscopic action in calculating the critical

speeds of the system. Where this inertia is sufficiently large, it may give t
rise to a number of critical speeds. Stodola (Ref. 18) discussed both positive and
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and negative synchronous recessiof, of a simple cantilever rotor. His results

were confirmed by Foppl (Ref.94). A discussion of the gyroscopic effects in

a number of rigid-bearing rotors has been given by Green (Ref.95).

Consider a thin balanced disk mounted on a flexible massless shaft which rotates

at speed co about the OZ axis an shown in Figure 4.16 . As the shaft whirls,

the inclination of the disk changes cyclicclly. This causes a gyroscopic

moment to act in opposition to the radial whirl forces, tending to reduce rotor

d eflectiona. The instantaneous small angles of inclination 0, 7 in the

x-y and y-z planes each brings about an angular momentum component, the rate of

change of which causes the gyroscopic moments M and M . One principal inertisy x
axis of the disk coincides with the direction of the elastic axis of the shaft

at the disk. Since the disk is circular, the other two axes may be selected

parallel to the x and y axis respectively. Denoting the principal moments of

inertia as I along the shaft axis and I in both the x and y axis , for
pT

small values of 1 and 7, the gyroscopic moments in the x-z and y-z planes

are given by:

Mx Ftd- pO T y d [IT M +I 1CJ (4.54)

These moments also cause the shaft to deflect, modifying the whirling form of

"the rotor. The equations Of motion of the system must, therefore, include

the gyroscopic effect. Under the action of the force P and the moment M,

Figure 4.17, the deflection and rotation at E are

1. a2b2  ab( a-b)M
y -3EIL * P + 3EIL

" ab(a-b) (a 2 -b-b, 2 ) M (4.55)M=3EL " 3EIL. 4.5

Thus

P 3EIL (a33 }Y + (. -ZI y + a12,
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N -391L y* a -a 2  (4.56)a2b2 Y b '"="c21Y ' 2P

From Figure 4.17 the equations of motion are:

mi - p-P a 1 x -a 1  im• "x = 11x 1" 1

my - -y 11 - 1 2 7 (4.57)

and from Equations 4. 56

Ip - TTY " c2 1x + '22 7

Ip'07 + Y - 21Y '220 (4.58) Li
These four equations may be solved for the critical speed by choosing a solution

of the form e pt which gives four linear homogenous equations for the above

balanced shaft. [

Substituting

x - r cos cot y - r sin ct C *cos cot 7 sin ct (4.59)

and considering r and 0 constant for any particular speed to obtain the

boundary conditions for the instant when the whirl plane of the shaft

coincides with the y-z plane:

0 - 2

- 2  (4.60)x r =o =- rw

y=o y=rcD '-o [f
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reduces the equations of motion to

1 + .lix + Z12P - 0

(Ip- 2I) -a21y + '22" 0 (4.61)

22
The above equations indicate the effect of centrifugal force (amn x), and of

gyroscopic moment (I p - I T)2 on the shaft deflection. To solve these

equations substitute

y - r cos ot - *cos Wt (4.62)

The critical speed of the above system under the influence of gravity is then

obtained from the determinant of the coefficients of y, •. This is

4 2 2 2 22D -(p2 (q) -p q (1 -c) 0 (4.63)

where

I TI

p T
!r

2 b2
CMa - 2ab +2 b 2  (4.64)

a - ab +b

]or a, b real, c < 1, Equation 4.63 has only one real root, w, corres'ponding

to forwardprecession. This is the condition which occurs most frequently in

practice. The gyroscopic effect stiffens.the shaft and raises the critical

speed, due to the forward precession of the disk.

In the above discussion, it has been assumed that the whirl velocity of the

shaft is cn, the speed of shaft rotation. If it is not, and the rotor whirl

velocity is V, substituting
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x - r cos Vt y - r sin Vt - cos Vt 7- sin Vt (4.65)

gives

mx + a 1x + [X12" - 0I

( VIwv T V2J ' 2 1 x +, '(2f 0 (4.66)L

when V = o the previous result is obtained. If V - -o, the second equation

becomes

Ip+IT 20-'1+'20- 0 (4.67)

and the gyroscopic effect becomes positive and tends to increase the shaft [
deflection. This negative precussion does not occur naturally but may be

initiated by an external cyclic disturbance. The increased deflection lowers L
the system critical speed.,

Green (Ref.95) has given solutions in chart form for the cantilevered disk, the

simply supported disk (considered above),atwo-disk system, and multidisk systems. [

Dimentberg(Ref. 1) has considered the two-bearing overhung disk with both balanced i
and unbalanced operation. This treatment is then extended to include the effect

of internal friction and external friction - individually and then simultaneously..

It is shown in this work that the number of critical speeds for a given case

depends on the disk proportions. For a circular disk, in general, there are f
three critical speeds as Ip M 2 1 T, one with forward preoession, and two

with backward precession. Where I< I there are four critical speeds, two F
forward and two backward prece'ssion, corresponding to the roots of the

quartic characteristic equation. F

[
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Yamada (Ref.96) has investigated the case of an unsymnetrical cantilevered

plate, I > I > I both analytically and experimettolly. The results1 2 3
indicated that where the circular disk undergoes a circular whirl, the

asymmetrical plate gave elliptical whirl orbits. Two forward synchronous

precsional motions occurred in contast with single forward precession with a

circular disk and the speed range between these motions was unstable.
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(a) Rigid Body Translatory Mode

(b) Rigid Body Conical Mode

FI7

I (c) Bending Mode or Flexible Rotor

Figure 4.01
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Speed Bearing Stiffness vs. Speed

Critical Speed vs.
Machine Bearing Stiffness
Critical
Speed

Bearing Stiffness

Fig. 4.02 Determination of Critical Speed
for Variable Stiffness Bearings
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Fig. 4.03. Influence of Bearing Flexibility on Critical Speed for Flexible Rotor

Reprinted from THE EFFECT OF FLEXIBILITY OF SUPPORT UPON THE CRITICAL
SPEEDS OF HIGH SPEED ROTORS, Figure 10, by Frank C. Linn and M. A.
Prohl for The Society of Naval Architects and Marine Engineers.
November 1951
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Fig. 4.04 Influence of Bearing Mass and Flexibility on Critical Speed

Reprinted from THE EFFECT OF FLEXIBILITY OF qUPPORT UPON THE CRITICAL
SPEEDS OF HIGH SPEED ROTORS, Figure 9, by Frank C. LUnn and Y. A.
Prohl for The Society of Naval Architects and Marine Engineers.
November 1951
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N.B. Use above curves only when KI ;s ne.tive.
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Fig. 4.05 Influence of Bearing Mass and Flexibility on Critical Speed

Reprinted from THE EFFECT OF FLEXIBILITY OF SUPPORT UPON THE CRITICAL
SPEEDS OF HI'TH SPEED ROTORS, Figure 11, by Frank C. Linn and M. A.
Prohl for The Society of Naval Architects and Marine Engineers. U
November 1951
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Undamped Rotor

Amplitude • -"

Critical Damping
/In Bearings

Speed a)
c

Fig. 4.06 Influence of Bearing Damping on Critical Speed

r
Fig. 4.07 Discrete Mass Representation of Massive Flexible Rotor

Fig. 4.08 Single Disk Rotor on Massive Flexible Shaft
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Fig. 4.09 Flexible Single Disk Rotor in Flexible Bearings

Fig. 4.10 Symmetrical Two Mass Rotor in Rigid Bearings [

t
I

Fig. 4.11 Uniform Rotor With Overhang in Rigid Supports

Y[
YX

y 
'I

T

Xxz

Fig. 4.12 Additional Bending Moments Due to End f
Torque in Flexible Shaft
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Cantilever Rotor

SEnd Mass

Mode Shape

Fig. 4.13 Cantilever Rotor with End Mass Showing
Fundamental Mode Shape
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Fig. 4.14 Uniform Rotor With Stiffened Central Section

E.i
UU;

Fig. 4.15 M/EI Diagram for Stiffened Shaft Based on Gravity Deflection
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Fig. 4.16 Moments Acting on a Balanced Disk Mounted on a
Flexible Shaft
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Fig. 4.17 Moment and Force, Acting on Shaft due to Disk
Gyroscopic Action
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V
STABILITY

The Nature of Whirl Notions

When the radius of the whirl orbit traced out by the c.g. of a rotor tends to

increase with time following a small displacement from the equilibrium position,

the rotor motion is said to be unstable. A stable rotor will tend to return to

its original whirl orbit with a damped oscillatory motion following the removal

of the disturbance. If the disturbance persists, such as an additional unbalance
or cyclic force, a stable rotor will adopt a new whirl orbit in keeping with the

new operating conditions; whereas, the whirl radius of a rotor in unstable

equilibrium will continue to grow with time until restrained by some other con-

straint. These conditions are illustrated in Figure 5.01. The form of the

whirl orbit is determined by the collective action of all forces acting on the

rotor. The simplest orbit is circular about the undisturbed rotor axis. This U
arises from the action of an inwardly-directed radial force of constant magnitude

such as the rotor elastic force. The simultaneous presence of a constant negative J

tangential force which rotates along with the radial force does not disturb the

form of the orbit and confers stability on the motion at the rotor critical speed. [I
Where the tangential force is positive, such as in the case of hysteretic friction

above the rotor critical speed and with hydrodynamic bearings above twice the

system critical speed, tangential equilibrium does not exist. The motion is

unstable and the rotor whirl path is a spiral whose radius increases with time. [9
This spiral whirl growth also occurs in the case of a simple rotor in rigid

bearings, when running at its critical speed.

Rotors which have dissimilar lateral moments of inertia have two critical speeds [i

corresponding to the two stiffnesses. Below the lower critical and above the

higher critical, the rotor unbalance whirl is stable, and the whirl orbit is U
elliptical with the major and minor axes corresponding to the principal rotor

stiffness directions. At speeds between these criticals the rotor motion is V
unstable and the whirl radius is again a growing spiral. This instability is

independent of rotor unbalance and cannot be eliminated by more refined

balancing. The unsymmetrical rotor stiffness also appears as a twice-per- v
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revolution variation as shown in Figure 5.02 Alich gives rise to a whirl at

twice shaft speed, even when the rotor bal½: . is perfect. This whirl becomes

resonant when the rotor runs at half each critical speed. For a rotor with

small stiffness dissymmetry, the proximity of these two whirls may cause a

noticable sub-harmonic resonant amplitude peak.

Simple elasticity of the rotor supports does not itself induce whirling, but it

may exert a strong iniluencu upon the shape of the whirl orbit. If the

stiffness is not symmetrical, the orbit will be elliptical rather the- ular.

In addition, fluid-film bearings -5ossess complex direct and cross-coy , dtiff-

ness and damping properties whiet Oepend on the operating eccentricity of the

journal within the bearing. During operation, therefore, the bearing stiffness

and damping properties are not symmetrical about the journal axis. The fluid-

film damping diminishes the rotor whirl motions up to a certain threshold speed

which occurs at approximately twice the system critical speed. Beyond this

threshold, the journal whirls within the clearance with a frequency equal to

half the whirl threshold snead. The resonant nature of this motion may lead to

dangerously large whirl amplitude; This is known as resonant whipping, and it

is sustained by the fluid-rilm forces themselves. Only in isolated instances

has it been possible to run through the resonant whipping condition because

once established, the large-amplitude whirl motions sustain themselves for all

higher speeds and machine operation is hazardous. The accompanying changes

which take place in the bearing coefficients, and, hence, in the motion, due to

the large amplitudes, are not fully understood at present.

A number of minor whirl conditions associated with torque and speed fluctuations

exist. Gravity acting on an unbalanced rotor may be sufficient by initiating a

small whirl at twice rotational speed which may become resonant when the rotor

operates at half the system critical speed. A similar condition results from

externally imposed torque fluctuations - such as those from a reciprocating

engine or pump. When applied at integer multiples of the system critical speed,

these torques may develop further sub-harmonic resonant whirl motions.

In each of the above whirl instances, the presence of viscous friction in the

system acts to stabilize and limit any whirl motions which occur. It is the
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absence of effective frictional forces in the bearing which leads to resonant

whipping. Both hysteretic and viscous friction are frequently present simul-

taneously in large built-up rotors with dissimilar lateral stiffnesses. The

hysteretic damping accentuates the inherent whirl instability of these rotors

between the critical speeds, whereas., the viscous damping tends to suppress the

whirl at all speeds. A considerable amot".- viscous damping in the bearings

of such a rotor may be required to as-ur ..... whirl amplitudes of moderate

proportions throughout the speed ran- e.

Stability of a Simple Rotor in Rigid Bearings

Below the critical speed, c < c it is well known that all practical rotor

motions are stable below the first critical speed. No major source of instability

becomes troublesome below this speed, and the inherent sources of rotor-bearing

damping are usually adequate to deal with any sub-harmonic whirls which occur.

At all speeds away from the critical, the synchronous unbalance whirl is

inherently stable, irrespective of friction damping. This may be as ia the

following demonstration.

Consider the undamped, flexible, single-disk rotor shown in Figure 3.01. It

has been shown in Chapter 3. that the points OEG lie in the same radius for this

case. For w < ac a radial force balance gives:

MW2 r + a kr ()

Now let a small disturbance be impressed on the equilibrium condition such that

the variables r and w become r + Ar and w + 6w. All other system properties

remain constant. This gives

m [ (z+6w ] 2  [(r + sr) +a] = k r+ ,r]

or r I - 2 ] [r (w 2 - 2) _ 21 != , [22(r + a)] (5.2)

The terms in square parentheses are constant. This means that if PW = o, Sr must

also be zero for equilibrium, and so there can be no radius increase without

a corresponding increase in speed. Each speed has a definite equilibrium whirl
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radius which the system will seek if displaced and, hence, the system is

stable. The above demonstration ignores Coriolis forces, but is a reasonable

illustration if the radius increase is 'do $,red x vkimý,pkr.

Above the Critical Speed w > c1

A similar demonstration indicates that the system is also stable above the

critical speed f:r small displacempts. The points OGE lie along the same

radius as shown in Fi.gure 3.04c. A force balance gives:

Mw [r -a ckr

or

[2 2 + 2w(r a) r[ - c] - 2 (53)

The terms in the square parentheses are constant and positive - except quite

close to a . Therefore, when AL - o, 6-r must also equal zero. For tAr to be a

positive increase in radius, tA, must be negative, i.e., the speed must decrease.

Again, each speed has a definite equilibrium whirl radius, and the system con-

sidered is stable.

A rigorous investigation of stability above the critical speed for this system

has been made by Foppl (Ref. 97 ) and is quoted by Stodola (Ref. 18).

Stability at the Critical Speed a- -)

The equations of motion for a simple undamped rotor given in Chapter 3.are:

2m; + kx maw cos wt
2my + ky = maw, sin aut (3O02)

If wn = ou , the steady-state solutions are:

C c

y = - ½ aw t cos w t (3.09)
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These expressions apply to a logarithmic spiral with radius increasing with

time. The undamped rotor is, therefore, inherently unstable at its critical

speed. The instability manifests itself as a steady growth in the whirl

radius, proportional to the degree of residual unbalance in the rotor. A

finite time is, therefore, required for the dangerous effects of this instability

to become manifest.

Stability of a Damped Rotor in Rigid Bearings

A rotor in which the damping is predominantly viscous iu nature may experience

large amplitude whirling, but the motions themselves will always be stable.

This is explained by the nature of viscous friction, in which the force is

generated by the relative motion, and always acts in opposition to it. Thus,

the viscous friction force opposes the shaft rotation at all times; it never

tends to drive the rotor, radially or tangentially. The viscous friction force

depends on velocity, and hence, it increases linearly with the whirl radius to

oppose any amplitude growth.

The rotor equations for the simple unbalanced rotor with viscous damping are

Equations 3.10. Combining these using r - x + iy give the shaft center equation:

mr + bi + kr = maw 2ei• (5.4)

The solution to this equation is:

b2 b.
r A exp t exp [iwV7c2 t +

B exp (5.5)[-..~- ~ expj -i I - . + (l-2)
4m 22+c1W 2

c

The whirl radius is stable if it possesses no positive-real time exponents to

cause either the transients or the steady-state solution to grow with the passage

of time. The exponents are reviewed in the following table.
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Stabilicy
Term Exponent Properties CoSment

First Transient - (•-) Negative, Stable, Amplitude2mreal decays with time.

Independent of
speed.

First Transient * (i-02 )2+(-. c-) 2  Positive, Stable. HarmonicS2 Imagiuary variation of ampli-
0 tude with time.

Varies with speed.

Se.ond - b Negative, Stable. AmplitudeSecond Zý_NeaieStbe Amlud

Transient 2m real decays with time.
Independent of
speed.

Second2 -i(~ 2 cm 2
)e+(--) Negative, Stable. Harmonic

Transient m0 Imaginary variation of ampli-
tude with time.
Varies with speed.

Steady-State iuW Positive, Stable. Harmonic
Imaginary variation of ampli-

tude with time.
Varies with speed.

Thus, the transients both decay with time, while the steady-state whirl remains

constant in amplitude for any given speed. If the speed is varied, the ampli-

tude also varies, passing through a zone of finite maximum amplitude at the

system bending critical speed.

influence of Internal Friction on Rotor Stability

The rotor dynamic aspects of internal friction have been discussed in Section 3.

This part of Section 5 concerns the stability of a simple, balanced rotor in

rigid bearing and indicates in greater detail the mechanism by which the whirl-

inducing tangential force, F, occurs. The stability of a simple rotor with

internal friction damping is then examined from the solution to the equations

of motion.

The presence of a tangential force arising from elastic hysteresis of the

material during motion may be demonstrated by considering a simple balanced

vertical rotor in rigid bearings, Figure 5.03a. For an elastic shaft of spring
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constant a, a dioplacement, r, from the equilibrium position corresponds to a

displacing force, F C, acting on the disk such that:

r - a F (5.6)

Due to Fc, the shaft 13 bent and the convex surface ABC is in tension while the

concave surface CDA is in compression. The neutral axis is AC. If the shaft is

now rotated with speed co about E; while the plane of bending containing Z does

not rotate, the shaft material will be subjected ticyclically varying stresses

due to its rotation in the displaced condition. As the material is not perfectly

elastic, the distribution of bending stresses over ths shaft cross section is

not independent of the rotation, but is influenced by the hysteretic lag in

strain between the loading and unloading portions of the hysteresis cycle,

shown in Figure 3.12. As a surface element rotates from A to C, its flexural

stresses change from tension to compression, along the lower portion of the

ABC. As the cycle is completed, the stress re,terses along the upper portion of

the loop CDA. Due to material hysteresis, the tensile stress falls to zero

where positive strain still acts at B'. The half-cycle is completed to full

compressive stress at C. A similar condition occurs during the remaining half-

cycle as the compressive stress falls to zero with a negative strain acting at

D'. This has the effect of shifting the angular position of the neutral axis

from-BD to B'D'. Observe that the same effect would be prceJced with a per-

fectly elastic shaft if a small force, Q, acted ti the shafL. at point B as

shown - together with the deflecting force, P. To evaluate Q note that the

work done by this force per whirl revolution of the shaft is:

W 2Trr.Q (5.7)

This is equal to the energy loss, E, per cycle due to hysteresis. Recalling that

this loss is proportional to the square of the limiting cyclic amplitude and

independent of frequency gives

2
E = 21Dr (5.8)

where D is a constant which depends on the hysteresis characteristic of the

shaft material. Equating W and E gives
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Dr (5.9)

This is the value of the tangential force required to prevent whirling of the

shaft about 0. It is proportional to the radial displacement and depends on

the properties of the shaft material in the case of elastic hysteresis and on

the stick-slip Coulomb friction characteristics of the joints in the case of a

built-up rotor. If this restraining force is removed, the rotor is free to

whirl about the undeflected shaft axis.

Consider the case where the rotor is whirling freely about 0 with angular

velocity, v, where v <a a- the shaft rotational speed. The whirl configuration

is shown in Figure 5.03b. The coordinates of 9, coincident with G in a balanced

rotor, are

x - r cos 0

y - r sin 0 (5.10)

The equation of motion for the disk in stationary coordinates are

mO - -kx - Q sin

my - -ky + Q coso (5.11)

From the previous Q = Dr, substituting gives

n&+kx+Dy - 0

mý + ky - Dx 0 (5.12)

These equations are coupled and may be solved simultaneously by taking a

solution of the form

iAt
x = x e

0

y= yo ei (5.13)

This leads to the characteristic equation

4 2 2 2
A - 2kA + (k +D) = 0 (5.14)
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This is 'a quartic in A, the roots of which are complex and may be written

S+ i(X

Thus -k V/T 2 ++D2
S" ++

2m

" + k 2_ + Da,2m

The solution to Equation 5. 12 ir, therefore:

Ae.t -eXt
x - Ae Cos (O1 t + 1 ) - e coo (alt + * 2 )

hty - Ae sin (C12t+ 0) + et sin(ct+* 2 ) (5.15)

where A,B, *1 and $2 are constants to be determined. Observing that force Q is
Dalways small compared with P, it follows that (j) must also be small. This

leads to the approximations:

0C m C

The second expression shows that the internal friction whirl takes place at F

constant speed which coincides with the critical speed of the rotor. As the

speed of rotation, co, must be greater than the whirl speed, v (-D ), for the
c

force Q to drive the shaft around the whirl orbit, this means that the shaft

will tend to whirl at speeds above the rotor critical speed. Also, the exponent

A,, in the first exponential is positive, indicating growth of the whirl ampli-

tude with time.

The results of the above indicate that a perfectly balanced rotor will not whirl

at speeds below the critical sinL thL damping force is constant and acts in

opposition to the whirl motion. Above the critical speed, the rotor whirls with

increasing amplitude, unless restrained by some other effect such as viscous
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friction. The whirl frequency is independent of speed of rotation and rl.curs

at the bending critical speed of the rotor.

Internal friction whirl has been particularly troublesome in the case of built-

up rotors with inadequate interference fits between disks and shaft. It has

also occurred in electrical machinery with laminated cores. This whirl motion

can be minimized by providing tight contact between the mating surfaces, the

length of which should be kept to a minitumm(see Figure 5.04). Kimball and

Lovell (Ref. 23) and Newkirk (Ref. 54) have discussed this problem in detail.

In a given machine, internal damping is rarely the only source of damping, al-

though it may be the largest source for small amplitude motions. Both bearing

friction and viscous drag of the surrounding fluid are also present. Both these

effects are dissipative and uni-directional and depend on speed. Eventually,

an equilibrium whirl configuration may form between all system forces at a finite

radius.

Whirling of a Shaft with Unsyvmnetrical Stiffness

Wlilie the majority of rotors have anlal symnetry ir their stiffne~q. -rnperties,

there are certain important types such as two-pole turbogenerator rotors where

the stiffness properties of the cross section are not symmetrical. This asym-

ma.' y affects the rotor whirl motion and gives rise to two critical speeds

corresponding to the individual stiffnesses, between which the motion is unstable

unless the system possesses sufficient viscosity. This effect has been studied by

Stodola (Ref. 18), Robertson (Ref. 28), Taylor (Ref. 76), Foote, Poritsky and

Slade (Ref. 77) and others. These authors have observed the following character-

istic features in the rotor motion:

1. The rotor has two critical speeds corresponding to the two principal

stiffness values of the cross section. Where the rotor mass is dis-

tributed throughout its length, two critical speeds occur in the

vicinity of the symmetrical rotor criticals.

2. Between the two critical speeds the motion is unstable, and whirl

amplitude tends to increase with time.

3. Rotor whirl stability between the critical speeds does not depend on

the degree of rotor unbalance, and stability c'qnnot be conferred on the

system by more refined balancing.
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4. Whirl amplitode below the first critical and aoave the second critical

depends on the level of rotor unbalance.

5. The whirl frequency is constant between the two critical speeds.

6. Viscous friction damping reduces the whirl amplitude, and where

sufficient, viscous friction is present, the whirl motion between the

critical speeds becomes stable. Coulomb friction has the reverse

effect, and tends to promote instability.

7. Sub-harmonic critical speeds occur at (Dl and.'M2 . For moderate
2 2

stiffness inequality, the proximity of these sub-harmonics, particular-

ly when influenced by friction, gives rise to a single sub-harmonic

critical amplitude peak.

The motions of a damped, unbalanced, single-disk rotor with dissimilar lateral

stiffnesnes have been considered in Section- 3 and expressions for amplitude

response and phase angle have been obtained. The following stability analysis

considers the undamped, perfectly balanced, single-disk rotor in rigid bearins,

to determine the conditions of inherent instability, Desigrnitc the shaft

natural frequencies a) and w2 corresponding to vibrtiLrs it" " tw

principle directions, such that

kk2 k1 2 k2
1 -m ' 2 m

Let the rotating axis be •, r, and let these directions correspond with the planes

of maximum and minimum stiffness, as shown in Figure 5.05. Writing the rotor

whirl radius as

r = i + Ij (5.16)

where i, j are unit vectors in the •, r directions, gives the radial acceleration

of the disk c.g. as

""" 2 g + + 2iý*i 2n
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The equations of motion, Figure 5.0* for a simple undamped rotor become, o

substituting the above,

These equations have constant coefficients, but the variables t are not

separable. Selecting a solution of the form:

6At -At (&8- 9o , 0 - A0oe (5,l8)

leads to the characteristic equation:

- 2 + [ -O + + 24 2  0 (5.19)

This is a quadratic in A2. The motion of the disk will be stable when both

roots are negative. Writing Equation 5.19 as

A4 + 2bA2 + c 0 0 (5.20)

where 2 22 1• °
b w+ 2

c (2 2 ) 2  2

gives the roots as

A2 " -b + Vb2 -c (5.21)

Substituting leads to the conclusion that the radicand is always > o, and so

the roots are always real. If c is positive, then both roots are negative; if

c is negative, some roots of Equation 5.20 will also be positive, giving

unstable motions. This occurs when

2 2 2
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This result leads to the conclusion that the speed range between the •-o

critical speeds corresponding to the maximum and minimum transverse stiffnesses

is unstable for an undamped rotor. In this range, the rotor whirl amplitude

will grow steadily with time unless otherwise restrained. This instability has

been shown to be independent of the residual unbalance of the rotor; but, as L
this unbalance may promote synchronous rotor whirl amplitude growth rt all speeds

below the upper critical, c) , the greater residual rotor unbalance, the more

rapidly will the unstable rotor amplitude grow. As in tt i case of a simple

rotor at its critical speed, the whirl amplitude growth path within the unstable

range is an increasing spiral, Figure 3.06. At speeds below the first critical,

the rotor motion is a stable synchronous whirl; and at speeds above the second

critical, the rotor is again stable with the c.g. between the whirl axis and

the elastic center.

These conditions apply to the undamped rotor. The presence of viscous frictiont

in the system tends to stabilize these motions and to limit the whirl amplitude

between the two critical speeds. If the rotor also has hysteretic damping, this K
tends to promote instability above the critical speec as noted previously. The

combined effect of viscous and hysteretic damping on the motions of such a rotorr

within the unstable range depends on the extent of each damping present.
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Hydrodynamic Instability

Rotors which operate in fluid-film bearings are susceptible to a particu. .r form

of instability in which the journals of the rotor whirl within the bearing

clearance. The severity of this whirl may range from a mild increase in rotor

amplitude to a vigorous and growing oscillation which is capable of destroying

the bearing if allowed to persist. In this latter case, further increase in

machine sneed is impossible, and so the speed at which this hydrodynamic whirl

sets in represents an upper limit for machine operation. This whirl is a pro-
perty of the rotor-bearing system alone, and occurs independently of the state

of balance of the rotor.

The hydrodynamic stability of a rotor in its bearings at a given speed depends

on the operating eccentricity and the type of bearing used. In general, high

operating eccentricity ratics are conducive to stable operation; whereas low

eccentricities, as in a vertical rotor, are not. High speeds decrease the

operating eccentricity of hydrodynamic bearings, and so a speed exists, known

as the threshold of instability, beyond which the rotor begins to whirl with a

frequency v which is usually somewhat less than half its speed of rotation. It

is common for the threshold of instability to occur around twice the first

critical speed of the rotor-bearing system.

Hydrodynamic instability is a known operating hazard with both hydrodynamic and

hybrid gas bearings, although external pressurization considerably extends the

speed range over which 3table op. ration is possible., As the rotor is usually very

rigid compared with the gas film, it is the film stiffness which determines the

whirl threshold speed. Gas bearing hydrodynamic instability is commonly referred

to as 'half-frequency' whirl for hydrodynamic bearings, and 'fractional-frequency

whirl' for hybrid bearings.

Liquid-film hydrodynamic bearings may also become unstable, particularly where

the lubricant viscosity is low, as in the case of water and mercury. Hydrostatic

liquid bearings are stable throughout the operating range of all present-day

rotating machinery. For liquid-lubricated bearings, hydrodynamic instability is

usually referred to as resonant whipping, although other titles such as oil whip,

resonant fluid-film whipping, are sometimes used.
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Circular cylindrical bearings have inherently poor hydrodynamic stability pro- I
perties. Tilting-pad bearings have the beat stability properties of all bear- U
ing types, as the pad tilting allows the bearing to 'follow' the rotor

oscillations, and so preserve the rotor force: film force equilibrium re-

quired for stability. This type of bearing loses its stability when the pad

'flutters' and fails to follow, at extremely high speeds. Elliptical bear-

ings, offset bearings, two and three-lobe bearings are other types with good

stability properties.

Mechanics of Hydrodynamic Instabilit,; I

In order to clarify the physical phenomena which underlie the problem of hydro-

dynamic stability, the forces which give rise to the motion will first be con-

sidered.

Vertical rigid rotor

First consider the rigid rotor shown in Figure 5.06 whibh operates in

vertical, plain cylindrical bearings with the clearance space filled with

lubricant. Hydrodynamic action confers both stiffness and damping

properties on the bearings, and so the rotor is capable of two types of

whirl motion, translatory and conical, as shown in Figure 4.01. For

simplicity, the following remarks are confined to the translatory mode.

If a constant load, W, is applied to the rotor, it will adopt a steady-

state equilibrium position as shown in Figure 5.06a in which the rotor is

displaced a small distance OG from the bearing center. Hydrodynamic action

within the convergent portion of the fluid-film gives rise to a pressure

distribution. The force component F of this pressure distribution acts

through G and is sufficient to support the applied load, W, without the

journal touching the bearing surface. The angle between the line of

centers and the load balance is 0, the attitude angle. Consider now the

case wheru the vertical shaft is not loaded, but is displaced an identical

distance OG, for example, by a blow. Hydrodynamic action again generates V +
the force component F through G. But no steady-state equilibrium may result

in this case, and so force F tends to drive the rotor into an orbit around

the bearing center. As long as 0 and G are rot coincident with the rotor
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motionless, a driving force will continue to be generated by the relative

displacement, as shown in Figure 5.06b and the whirl will continue. Since

both the hydrodynamic action and the whirl motion generate friction forces

which oppose motion, bearing stability and whirl radius, both depend on the

damping characteristics of the system.

Horizontal rigid rotor

A situation similar to the vertical rotor case exists except that the static

equilibrium condition is as shown in Figure 5.07a. Here, the rotor is

displaced a distance OG from the bearing center and the fluid-film pressures

support the rotor weight, W, through the domponent F. If now the rotor

center is given a second displacement to G', the fluid-film force F'

corresponding to the new film shape will no. longer exactly balance W.

The face balance may be thought of as shown in Figure 5.07b where Ft -

F + F" and F - W as before. The component F" which cuts through 9 is

therefore, free to promote whirling of the rotor about G. The nature of

the motion which follows is again determined by the damping properties of

the fluid film.

Rigid Rotor in Fluid-Film Bearings

The influence of bearing stiffness and damping properties on the rot- motions

is most significant where the rotor is rigid, as then these properties alone

determine the rotor amplitude and stability during operation. The possibility

of instability due to the fluid-film was recognized by Stodola (Ref. 18 ) and

was investigated by his co-worker Hummel (Ref. 98). Thir analysis is based

on the assumption that the eccentricity locus is a semi-circle. By examining

the nature of the geometry of an arbitrary displacement from the equilibrium

operating position expressions for the x,y coordinate stiffnesses of the fluid-

film were obtained. Substituting in the equations of motion then led to a

stability equation which was examined for real root, corresponding to unstable

(amplitude-increasing) operating conditions.
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The results indicated that for any operating eccentricity ratio e > 0.65, two fj
frequencies existed for which the motion would be unstable. For eccentricities (1
below 0.65, Hummel found the motion inherently unstable, and therefore did not ii
consider this region further. This region has since been investigated by

Cameron (Ref. 9! who found a single threshold frequency for instability rather L
than the inherently unstable domain inferred by Hummel. Cameron and Solomon

(Ref.lW) experimentally confirmed the existence of the predicted low- j
eccentricity instability threshold for e-values down to 0.18. The correlation

of this theory with half-frequency whirl is a deduction from practice and not

a consequence of the analysis which sheds little light on the mechanics of

fluid-film whirl. Further extension of this approach to cover flexible rotors

has been made by Parzewski and Cameron (Ref. 101). [i
This method is simple and direct and the results have been formulated as a

stability threshold chart. Experimental correlation is quite good as far as

it goes. At both high and low eccentricities, grave inaccuracies are to be

anticipated due to the omission of damping from the analysis. At low

eccentricities the results predict a high (or infinite) stability threshold

frequency whereas it is well knowntthat in this condition most bearing types

have serious instability problems. This condition is important in predicting the

performance of vertical machines. At high eccentricities, the complex inter-

action between bearing stiffness and damping caninot be neglected, and the

damping term alone may become very large. Most large horizontal rotors

operate with eccentricities within the Hummel limits 0.65 < e < 1.00 where this

shortcoming is manifest. The upper frequency threshold predicted by the theory

is of no practical significance. Once whirling has been initiated, operation

at higher speeds is rarely possible as the resulting large-amplitude motions

violate the assumptions upon which all linear analyses rest, and further

analysis must therefore include the neglected non-linearizing terms. In

practice, only in rare instances has it been possible to pass thrPugh the range

of resonant whipping with liquid hearings, and never with gas bearings. The

approach used in these papers has since been superceded by more accurate and more

general methods, and their value lies in providing rapid approximate answers

within the range 0.2< e < 0.8, in cases where the cavuitation status of the

bearing is known and where the eccentricity locus is known to be approximately

semi-circular.
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Newkirk and Taylor (Ref.55) describe the first recorded practical encounter

with whirling which is significantly influenced by the bearing fluid-film

properties. In a series of experiments it was shown that the rotor whirled

within its bearings with a frequency somewhat less than half the speed of ro-

tation, and that the whirl became resonant above twice the system critical

speed. This latter is the resonant whipping condition, and most subsequent

experimental investigations with liquid-film bearings have been concerned with

bearing developments which would suppress it, or extend the range of stable

operation. These developments are discussed later under investigations of
the resonant whipping condition. Newkirk and Taylor detected the rigid-body

whirl motions, which they called oil-film resonance. These motions received

no further attention at that time as their amplitudes were small, due to

damping, compared with the resonant whip amplitudes.

The first attempt to investigate the motion of a rigid journal within a-

bearing using hydrodynamic theory was made by Harrison (Ref.lOZ, who de-

rived expressions for the radial and tangential components of the fluid-film

force due to the journal displacement. These expressions are based on the

Reynolds' assumptions, and apply to an infinitely-long, full (no cavitation)

bearing using an incompressible lubricant, as follows:

F M 12tag 1 3de (5.22) - )

r 3 2)3/2' dt

where a is the journal radius, c is the radial clearance, e is the radial

displacement of the journal center, and c is the eccentricity ratio (e/c).

For a stationary journal center F reduces to zero while:r
3F0 12A ýL a

F 2 W (5.23)
c (2+ ) (+- e)

This constitutes a force on the journal which is perpendicular to the dis-

placement of the center, urging it to whirl in the direction of rotation. In

practice, both radial and tangential force components have been shown to exist

simultaneously. The discrepancy arises from the Sommerfeld assum::ptions which

neglect the influence of cavitation. In the case of a full cylindrical verti-

cal bearing, the theoretical conditions are all present and the prediction of
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whirl instability from zero speed upwards is realizel in this cane, see

Boeoar and Sternlicht (Ref .A3). lobertuon (1sf . !4 reconsidered Harrison's case,

and Indicated the omission o0 radial mtion effects on trhi tangentLia co•ponent

of surface velocity. This is considered negligibld by ftriteky (lpf. 10W.).

Robertson deduced that the ýournal has an inherent tendency to whirl with a

frequency equal to half the spued of rotation. This work also contains the

shortcomings associated with infinitely-long full cylindrical bearing theory,

and so only applies to verticAl bearings operating; at small eccentricities.

Hagg (Ref.71) collated the then-existing knowledge of the problem, and pointed K
out several important features requiring irncoxporation into the quest for a

meaningful stability criterion which would reconAile the a hpqesrntally observed

effects with the available simple theory and its unacceptable prediction of in-

herent instability. Ccynsidering the continuity conditions for a journal whirling i :
with a full film, the amount of fluid patsing soma point A, Figure 5.08, must

equal the volum passing point B plus the volume required to fill the void left L
by the receding journal. For zero side leakage it follows that

S2a - a) + 2(5.2')

and hence W --2
This establishes that the whirl speed is related to the speed of rotation As

shown correlating the result obtained by Robartson (Ref.52). liagg further dis-

cussed the stability of a rigid rotor in fluid-film bearings, considering the

f.ystem equations of motion,

mx + cA + k x - D = 0 k D * x direction (5.25)

my + cY + k2 y + D2 x 0 0 k2D y direction
where c is the hearing dasrpi.ng constant, and k,, k', D,, and D2 are the fluid-

filmo stiffness properties. Applying Routh's stability criterion this leads to

the result that the system will be stable when

(k,- k2 )2 + 2c2 ( 2 +-L2 ) > 4D D2  (5.26)

2 2
where 1 (kI/m) -2 = (k21M)'

This expression defines the whirl threshold speed in terms of the operating

eccentricity ratio e 9 This value corresponds to a particular Scnmerfeld Number

for the parti._,.ar bearing geometry. An experimental program verified the con-

clusion L - fl/2, but was not extended to cover the stability criterion at that.

stage, although it had been corroborated with field observatiuos on actual rotors,
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1Hag& gave a simple avaluation of the d--ping capacity of a tilting, pad

bearin•, and later, HLa"S (Ref 1O) , Save curves for s.winj and dmiping con-

rstnts for 120 degree partial-arc bacrings, together with a simple stability

chart, Later work by Hagg and eankay (Rsf.73 and 106) Save more complete

[ data an spring and damping conastanta for partial-are and tilting-ped boarings

for small-amplitude whirl, determined experimentally. At both low and higb

Somerfeld numbers theme curves are in error, as in these somee they havv been

obtained by extrapolation, AccuratA values for the cylindrical bearing have

[I been obtained by Sternlicht (K1f.74), for the 150 degree partial bearing by

Warner (Ref.34), and for the tilting-pad bearing by Lund (Ref,81). Eich of

these analyses applies to incompressible lubricants, and may be applied to

compressible lubricants at low (,Q < 1.0) compressibility numbers. Hajg and

Warner (Ief.72) extended the earlier work on the stability threshold spledi

"using an electric analog to study the-4tability limit. This work gava good

qualitative correlation with both teat results and with data obtained from

an industrial turbine set, but the absolute values were often Qonsiderably

different to the test results, The criterion given above, Equation 5,09,

was extended to cover rotor flaeibility more coMPlLtEly than in Ref. 71. This

is (k1 - 22 k22 k2 1 > (

2

where k is the rotor spring constant 2 , W is the rgid-be•ring rotor

critical rad/sec, and cl and c2 &re the bearing damping coefficients in the
22

x and y directions respectively. Plotting (CN /g) versus So~mmrfeld Ntunber
2

S with parameter (cN2/g) where C is the radial clearance of the bearin , N

is the journal r;=, and N is the rotor rigid-bearing critical speed rpm

allows the analog stability results to be presentec in chart form for laO-

degree partial-arc bearings, for Lit - 1,0 and U.67, Lower L/D ratios in-

crease the stsble operating region, and the effectiveness of a central cir-

oumferential groove in-raisLng the stability threshold is explained on this
basis. Three bearing types were tested (a) full cylindrical bearing,

(b) fjll bearing with circumferential groove, and (c) 160 degree partLal bear-

1. ing. The speeds at which resonant whipping developed and at which it dis-

appeared differed by in average of ten percent, Typical oscillograms ob-

ts-ned are shown in Figure 5.10, with the rotor whirl frequency W - 0.430.

The upper curve shows a well developed whirl; the lower curve shows transi-

tion from whirl to staole running, with decreasing speed. At the stability
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threshold the frequency of the resonant whipping corresponds to a natural

fi frequency of the system. Hagg and Warner concluded that this uiey be either the

system bending critical frequency, involving mnotion of tho rotor, bearings andl

aupporting structure, or it may be a rigid-body motion of the rotor on the

mllastic oil films; or it may correspond to the rigid-bearing rotor criticoal

speed, The frequency in all cases wva less than O.5fl, i.e. half rotational

frequency. They also concluded that the final questioi• of stability depends

on all elements of the system that are involved in the motion, and that 11
factors such as machine alignment, oil supply pressure, oil-film extent, oil- .

film temperature, and loading may alter the theoretical conditions. It was [I
observed that unbalance vibration usually inhibits resonant whipping. This is

i equivalent to an increase in bearing operating eccentricity, but may lead to

elf-excited subhormonic elastic whirling at exactly 1/2, 1/3, 1/4, and so on,

of running speed. Friction in non-rotating parts may act to give a stable H
system, whereas friction in rotating parts tends to promote instability. These

latter observations endorse the comments on friction and stability Mada earlier

in the present section ind in Section 3, Shortco=ings in using the simple

criterion developed in this work are (a) incomplete formulation as the croes-

damping terms are reflected, (b) the -ritdrion is approximate, being based. on

experimental data. Inaccuracies in its general application are to be expected,

and these are evident in the correlation shown.

The basic concepts of the theory of hydrodynamic whirl were given by Poritsky

(Ref.ID4) who showed that the discrepancy between observed results and those

predicted by the Somterfeld-Harrison infinitely-long full-bearing theory of

hydrodynamic lubrication arose from neglec:ing the cavitated region in the

bearing film. Poritsky showed :hat when a radial force component was included

in the equations of motor for a rigid journal, stability was predicted at speeds

below the rotor critical speed, while at speeds above twice the oritical speed

the rotor becomes unstable and whirls at the rotor critical frequency in

acccrdince with obseerved ;erfCrmrnce. This lea tc tie stability criterion

2 1 1 2- (5.28)
,k k

where k and k are the shift stLffness and 'Dearing stiffness respectively, Re-a

calling that the criticil speed w a of an eliati- rotor on elastic bearings is

given by
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L it is evident that the rotor whirl frequency is given hy (cu/ax) < 2, as

; 1van 1y Hags (Raf. 71), The results are also in agrmlnt irith th plaeti-

cal observation that the whirl proceeds in the direction of rotor rotation.

Yucitaky's analysis neglected the influence of fluid-film dsmpiV4, and no

attempt was made to determine the value of the fluid-film stiffness.e, except

to postulate that these would be linear with displacement for emall amplitude

motions. Later investigations into the elzetic and damping properties of the

csvitatcL fluid-film by Boeker and Sternlicht (Ref.103 and by Sternlicht
-' (ef.74) verified the existence of the radial force component, and also pro-

L videl valies for ll four *pring and dampinlg-coofficients. When domin il•-

incluted, the predicted whirl frequenci is always less than 050, in a -ree-

mant with practical observatirsn. !t is important to note at this stage that

the linearization of the Waring forces is valid only where the rotor whirl

amplitudas are smasll within the bearing clearance, This assumption ia justi-

fied on tht grounds that the' rotor oparatsG at a stable eccentricity bolow

V the whirl threshold speed, and chat at the .nitiation of instability the rotor

motions will indeed be small. Large-amplitude non-linear modes have been con-

uidered by Huggins (Ref.1"0 . Poritsky aslo conaidered briefly the influence

of gravity, and displacements due to pvricdic forces.

Translatory fluid-film whirl of a vertical rigid rotor was investigated ex-
rperimntally by Boeker and Sternlicht (ReflO9 to define the occurrence of the

whirl threshold speed, Correlation cf the results with Poritaky's theory was

also attempted. Two types of bearing ware tested (a) plain cylindrical and

(b) grooved shaft in plain cylindrical. Both air and water were used as lubri-

cents, In air, the plain bearing whirled at all speeds, ia,, the whirl

threshold speed was zero for this case. 7he ratio of whirl frequency to shaft

rotational frequency ranged froni 0.41 to 0.50, 'ohen cperating wich water

as the lubricant, the whirl threshold was at 130 rn- with one shaft, and at

220 rpm with another more flexible s.-,aft, With the grooved-shaft plain-bear-

Ing combination, whirl cotmenced at 2700 rpm, and disappeared at 2400 rpm with

water as the luLricent. This 'lag' was also observed by Hogg and Warner, as

mentioned above. Using the experinental eccentricity loc;,s, (Fig. 5.11),
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the stablizing radial component in the fluid film was observed to be zero for the

plain bearing at zero eccentricity This 4s the So=mrfeld-Harrison full bearing p
• ,,L l woI o U D. . o a rh .oretic o. zero apeec w nirl thLe .,old and continued

whirling at all speeds beyond. This €ondlution is therefore confired, and so

the plain cylindrical bearing, operated vertically is an inherently unstable

bearinh. With the modified bearing locus, Figure 5.12, the radial force component

at *erQ eccentricity has a finite value, imd hence the rotor motion is stable

at sero speed and beyond, up to the whirl threshold, The theoretical analysis

given agrees with Porlitky's result, and predicts a whirl threshold speed

" 2  -m V

for the rigid rotor, the numerical value of which ranged from 2260 rpm to 2910

rpm, and was between 2400 rpm and 2600 rpm from the slope of the eccentricity

locus at the origin.. Eperimantal whirl threshold speed was 2700 rpm. Whirl

frequency was slightly less than 1/2 2. These experiments confirmed the

Poritaky hypothesis that a stabilizing radial force existed in the fluid film,

and i dicated that wh4rt this was absent, or vanished, the rotor became un-

stable and whirled at approximately half rotational speed.

The need for data on the dynamic properties of bearings was met by Hagg and 4d

Sankey as noted previously, and by Sternlicht (Ref.74) who applied the digiial

computer to the calculation of the spring and damping coefficients kXX k XY

incompressible lubricant, recognizing that the motion of the journal center was
ky ky , cx ex cy Cy of a plain cylindrical bearing for the case of on

governed by the equations:

m - kyx + k + y + Cyy + G con (Wt + 0)

my - kyx x + c + k y +c y + Gsin(wt+*) (5.29)

where G is a rotating force applied to the rigid rotor. In previous analyses

the cross-coupled damping terms had been neglected. Sternlicht solved the

Reynolds' equation using a finite-difference procedure, for a flnite-length

bearing, and gave curves showing the variation of the dynamic coefficienta as

functions of eccentricity e and L/D ratio, Both stlffneas and damping increase

with increase in eccentricity and L/D, The direct damping coefficients were

chown to be of magnitude comparable to the bearing elastic forues, while the

cross-coupling camping terms were small,

The application of the computer to prublems of rotor-bearitig dynamics has since
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1made possible the solution of many other cases of incompreasible and compressi-

ble lubrication which are insoluble in closed form. It hsG also led to the

development of several sophisticated analytical apoaches such as the al•erkin

and linearized ph methods which are capable of solvin~g the stability problem

at high eacentricity ratios which wcild involve an impractial aaounat of cion-

puting time by standard finite-difference procedures. The incompressible

L• dyinemic properties of the cylindrical, 4-axial-groove, elliptical and three-

lobe bearings have been computed by Stsrnlicht (Ief.74); the 150 degree partial

L arc bearing has been computed by Warner; and the tilting pad bearing has been

analyzed and calculated by Lund (Ref.81), Properties of the cylindrical bearing

"V and the tilting pad bearing in the turbulent range have been obtained by Orcutc,

Ng 4an Arwas (lef. 15 and 16).

In the esaa period as the above development took place, a number of other

experimental studies were carried out in an attempt to clarify knowledge on

hydrodynazmi whirling of rigid and *laitlc rotors. The non-whirling bearing

Sdeveloped by Newkirk and Grobel (Ref. 56) suppressed rotor vibrations by

inducing pressure build-up within thecavitated zone of th& bearing, thus

preloading the journal and forcing it to run at a higher eccentricity within

the bearing. This work provided a cure for a specific application, but

revealed little new information about the nature of the problem. A more

complete study of the pramterers involved in rotor whirling was undertaken

by Newkirk and Lewis (Ref.108). With three ro:ors and five bearings tests

were run with oil at various viscosities to determine conditions defining

a range of stable operation with cylindrical bearings at speeds above twice

L - critical. It was concluded that short bearings, rather large clearance

ratios and moderate unit bearing loads favor a wide range of stabla opera-

tion. In certain instances, this may extend up to more than five times

critical speed, Slight misalignment resulted in a remarkable increase in

the stable range. The stable range was never clearly defined with the

1. rotcrb and test conditions considered, since a jar would cause the severe

disturbance to build up at a lower speed in most instances. Irn a subsequent

paper, Newkirk (Ref. 109) reviewed results obtained ea.rlier with a flexible

rotor carrying a heavy central disk midway between its bearings, with a unit

bearing load of 42,5 psi, arid a lowest critical speed (presumably for the

system) of 121C RM. Within the speed range 2300 to 5000 RPM the rotor whirl

with a frequency arcund 1250 RM. The severity of the whirl increased with
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increasing speed. This result was c mdred with results obtained w.ith a veryU

stiff rotor for which there was no discevnible (bending) critical speed up to

30,000 RPM. The unit bearing load was about 4 psi. This shaft whirled at low

speeds with a frequency slightly lose than one-half the running speed. It was

also noted that the whirl died out et higher speeds, verying frM 7000 !.'M to

18,000 1IM. Lo viscosity oil gave the higher limit, Newkirk concluded

* correctly that rotor flexibility was the key factor in explaining why tho per-

formsnce of theme two machines was so different. He observed that the first [j
rotor whirling was a resonant condition, This was true resonant whipping.

However, the conclusion that the motion of the stiffer rotur is 'non-resonant' j
is not precise. The low unit loading corresponds to a lo eccentricity ratio

which would induce a rigid body whirl within the bearings at low speed. This

is the rigid body instability corre"onding to resonant whipping and ia induced

by the rotor speed exceeding twice the critical speed of the rigid rotor in
elastic bearings. It may, therefore, be compared with the investigation madeU
by Sternlicht (Ref.103) for a vertical rotor.

Pinicus (Refs.11 and112) conducted an experimental study of two rotors having

relatively light bearinl loads (23,4 psi and 8 psi respectively) and reasonably

high critical speeds (4000 and 6100 RYM respectively). The objective was to

compare the relative stability of several bearings and included plain

cylindrical bearings, axial groove bearings, elliptical bearings, 'pressure' U.
bearings, three-lobe bearings, tilting pad bearings, and hydraulically loaded

bearings. He observed that the cylindrical berirtgs were least stable and the

hydraulically loaded beerings were most stable and that with sufficiently high

hydraulic pressure, all whipping can be suppressed. Amplitude-speed results

obtained in this investigation are shown in Figure 3,13. With the more flexible

shaft, tho initial amplitude peek corresponds to the rotor unbalance whirl.

Resonant whipping sets in at approximately 1.6 times the mystem bending critical

speed, persists with a whirl frequency equal to the critical speed, and tends to

disappear around 3.5 tiroes critical speed. The large amplitude build-up in that

zone is th1 second system bending critical speed. The stiffer shaft shc•• s an

unbalance whirl peak followed by a steady build-up to full whipping Amplit.de

around three times the system bending crltical speed, with no tendency for the V
whirl to diminish in this case, up rn tour times the bending critical. The shaft

resonmnt whipping freluency was the syst,= bending critical speed throughlo. c
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I
Any sub-critical whirling is due to rotor unbalance, occurring at synchronous

speed. In this investigation the rotor flexibility is the predominant factor in

UU=LCLiilWl[I 1.I11 iLtSuui f anf PUWiL, iun L e Lf LmeganL whipping. No ri.5i4 DOuly

7 modes were detected, probably because the bearing stiffness was high compared

with rotor stiffness. Thus, the bearings contribute little to determining the

r losLtion of the whirl threshold speed, but the type of bearing used determinest

whether" whipping will appear or not.. Pinkus also noted that higher viscosity

oils tended to eliminate whipping. Other investigators (notably Newkirk and

Lewis), found the reverse. It seems that both results could be correct as the

Sommerfeld Number and the spring and damping properties are the real parameters

* "to be considered. It was confirmed that reduced oil flow eliminates whipping.

SThis induces long operating viscosity, ts does a higher clearance bearing which

also diminishes the tendency to whirl. Lewis and Fulton (3ef.112) considered

flexible rotors and confirmed the higher damping of a more viscous oil in this

case, but not the disappearance of whipping at 3.6 times critical speed.

Instability always occurred at approximately twice critical speed.- This is
I |probably due to near-constant bearing stiffness properties in this instance. M

F Newkirk (Ref. 58) surveyed the available information on journal bearing in-

L_ stability at that time, and compared the Pinkus and Lewis-Fulton results. The

conclusions drawn by him are valid, except that half-frequency whirl and resonant

whipping are both instability phenomena of which resonant whipping is sustained

at the system bending critical speed with flexible rotors because of the inherent

tendency for the system to whirl at this speed. The doubtful suggestion regarding

F half-frequency whirl being damped, and resonant whipping being stimulated by

higher oil viscosity is opposed to Pinkus' result. Further investigation would

[ be needed to clarify the situation regarding the effect of oil temperature on

rotor bearing stability.

The need for accurate data to predict the performance of higher speed gas bear-

U" ings led to a large number of investigations on the stability of rotors on con-

pressible fluid films. In this case, the lubricant film is continuous (no

II cavitation), but the compressible Reynolds' equation is non-linear. Static

rroperties for the cylindrical bearing were obtained by Ausman (Refs.lla3ndll4)

[ first by a perturbation technique applicable to small eccentricities, and sec-

ondly by the 'linearized ph' method which allowed larger eccentricities to be

considered. Elrod and Burgdorfer (Ref.115) refined the perturbation method by

[ 187

F



I

using an end-flow factor. lairoadi and Boyd (tef.li6) and Sternlicht (te1.1l7)

used a numerical finite differenra ,eiod and obtained an iterative solution.

, S. .*~am *uU £55 nfl (1) cr1. iterations can be continued to give

results Qf any desired accuracy, and (2) the iterative prosram is directly appli-

cable to bearing geometries other than plain cylindrical. On the other hand, the

computing time required to do this is considerable. Each of these methods has

given results for load capacity, eccentricity, attitude angle, and friction

force.

The limiting factor in the use of gas bearings in high speed applications is half-

frequenuy whirl stability of the journal with the bearing. In most applications

the whirl threshold speed represents an upper limit for speed at which the rotor

may be operated, as half-frequency whirl, once established, rapidly leads to

failure of the bearing by seizure. In order to predict the whirl threshold

speed, data on the dynamic bearing propeaties is required. This data is needed

to prepare specific bearing designs, and to compare the suitability of one bearin

typt with another, for a given application. Stertlicht (Ref.117) analysed the

cylindrical bearing using a "quasi-static" method of solution which wa3 an exten-

mion of the numerical fini,e-difference method employed in Ref. (117). The U
compressible Reynolds equation for dynamic loading and isothermal conditions is:

~ [p ~ ph 3 )u6? 4(3  'I 4j+ 2Vp +2h~

The last term on the right-hand side of this equation cowes from the continuity

equation and represents the non-steady flow term. Sternlicht's analysis neglects

this term on the grounds that it exerts little effect on the phase angle between

r2storing force and displacement, end its inclusion greatly complicates the

analysis by introducing another parameter for evaluation. The fluid-film force

is a function of five parameters: C, e', L/D, Aand C', where E' is the time-

derivative of eccentricity, and CX' is the dimensionless tangential velocity

(Q/w). Results were obtained for the dimensionless force derivatives

(6fr/3e), (6ft/Ic), (Ofr/ýe') and (aft/Be') with respect to displacement and

velocity for ranges of e, L/Dand A.
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The time-dependent term (ýp/It) requires that the rotor dynamic motion be con-

sidered in any rigorouu solution to this equation. Sternlicht's quasi-static

analysis neglects .this term thus uncoupling the lubrication equation from the

rotor equations. A method for uncoupling these equations without ignoring the

time-dependent effects has been given by Pan (Ref. 119 by assuming that the time-

dependence of p originates from the rotor motion. By supposing that the steady

state Reynolds' equation has already been solved such that for each L/D and

steady-state film thickness H :

r = P (0 , o, •,Ak) '" , 9: dimensionless rotating coordinates0 0

The time-dependent effects may be considered by a linear perturbation upon P 0
and HOP thus:

P (•, 9, ') = P (0 , 9) + P' (•, 9, T) T: dimensionless time

H , = 9) + H' 9, r)

This formulation expresses the dynamic fluid-film pressure as a linear expansion

with respect to the radial squeeze-film velocity and the angular whirl accelera-

tion and their time derivatives. Charts of these forces vs AV accompany this

work suitable for calculation of dynamic bearing performance and rotor dynamic

analysis.

The general problem of stability of rotors in bearings was investigated by

Sternlicht, Poritsky and Arwas (Ref.120). Starting from the assumption that the

hydrodynamic bearing forces are functions of the position and velocity vectors

of the shaft center, and by treating these forces as constant during a small

displacement, these authors obtained staLility criteria in terms of the force

derivatives with respect to displacement and velocity for small amplitude

motions about an equilibrium operation position. The method developed applies

to both compressible and incompressible lubricants for any bearing type for

which the force derivatives are available. Both rigid and flexible rotors

were considered. For small motions, the radial and tangential forces and their

derivatives were obtained as functions of e, c' and L/D. The determinantal

equation of motion was obtained and examined for conditions under which the
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complex frequency v is a pure imaginary number. Ths indicates a change from

a negative (stable) exponent to positive (unstable) exponent in the rotor

amplitude, e . This analysis is eiven in the follovine seet4on em Atah4140-
of Small Motions. Equating the real part end the imaginary part of the stability

determinant in turn to zero allowo the threshold speed ratio S - c/•€ to be jI
obtained, where wc is the critical speed of the simple-supported rotor. Tabu- t
lated data for the incompressible case in terms of eccentricity ratio, plain
bearings and whirl speed ratio is given. This is shown in Table 5.01 . The
whirl speed ratio is shownalsoin Ible 5.01 , A procedure for examining the shaft
center locus for large displacement motions of a massless rotor is also included,

together with experimental verification of the small motion stability theory.

Rantzepis and Sternlicht (Ref...,) investigated the conditions under which the
center of a rigid rotor will remain undisplaced from the equilibriu- pouition,

during shaft rotation. To determine the stability bounds, the variational

equations of motion were used. Thesueequations are obtained by substituting

for the dependent variables radial displacement u and angular position 0 of the
shaft center the terms (Q + >) and (0o + 54), to obtain the variational

equation of motion. If the motion of the shaft center in rotating coordinates
is governed by .

i0 [( - ~j2) + i(2ji + ) }e' (5.30)

where

The variational equations of motion are:

mtu-to 5U- (0 u+ mC 0.5, -(4 + 2j;0)4

+ (0 + w cos 4 )5 = Z b (5.31)

(2moo - 0 ni ý + (mli 0 )Snu) + M0o5ý + (2mto - o,) 5

- (0t + w sin *o)50 0- 5 (5.32)
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I These equations are linear, and using data from the known "equilibrium" case,

the equations may be solved for the variational displacements 5u and &0. The

stability regions bounded by families of load-carrying capacity and operating

eccentricity curves, as shown in Figure 5.14 , were obtained using the

Routh criterion for the quasi-static equilibrium case of a gas-'lubricated

cylindrical bearing. They show that a minimum zone exists in the stability

curves corresponding amongst otherthings to the worst clearance ratio, at

which the stability is a minimum. This conclusion is supported by experimental

evidence; see Sternlicht and Winn (Ref J-22).

I Castelli and Elrod (Ref.123) performed an analysis in which the equation of

motion for the rigid rotor and the cimpressible Reynolds' equation including

time-dependent effects were simultaneously integrated on a digital computer to

determine the rotor orbital path. The stability or instability of particular

cases were established from the growth, stabilization or decay of the.orbit.

With assumed initial conditions for both the rotor mction and the fluid-film

pressure, the influence of incremental displacements on the rotor equations and

then on the fluid-film properties were calculated to provide data for the next

incremental change. The bearing considered was an infinitely long plain

cylindrical bearing, and the Elrod-Bergdorfer (Ref. 1.15) data was used fcr the

equilibrium position about which the perturbatfons were initiated. This analy-

sis is the most complete solution yet attempted. It provides a basis against

which the efficacy of other methods may be evaluated, but for the infinite

I bearing only. The monumental computational labor involved makes it unsuited

for general use. Comparison of this method with other theoretical results and

with experimental. data is given by Pan and Sternlicht (Ref.124); see later.

Cheng and Trumpler (Ref.125 employed Galerkin's method to solve the non-linear

Reynolds' equation with time-dependent effects included. This method reduces

the partial differential equation in [ph] to a set of first-order ordinary

differential equations which may be used quite readily with the dynamical

I equations of rotor motion to examine the stability of the system. This was

done on an analog computer for the infinitely-long plain cylindrical bearing.

The results gave the threshold speed for instability for each equilibrium opera-

tion position, and are presented in the form of a stability chart, Figure 5.15.

1
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In addition, approximate particular solutions for the non-linear dynamical

equations were obtained as trajectories of the journal center when it is

displaced arbitrarily from the equilibrium position. A significant advantage

of this technique lies in the generality of the results for the equilibrium

position which are formulated as a series with variable coefficients, particular

values of which may be obtained in many cases. By comparison, numerical results

give data for one case and set of conditions only in each calculation. This

technique was extended by Cheng and Pan (Ref. 126) to the case of finite plain

cylindrical bearings, but as indicated by Ng (Ref.127) the accuracy of approxi-

mation diminishes for certain combinations oi A and L/D. Other bearing configura-

tions may also be investigated, for which a representative [ph] function can be

deduced. A stability chart'is given in Figure 5.16 and comparison with the

results of other theories is given in Figure 5.17.

Ausman (Ref.128) again used the linearized [ph] method to investigate the

stability of a rigid rotor in infinitely long plain cylindrical bearings. This

method has the advantage of simplicity without overlooking the ti-.-clependent

effects of the fluid-film pressure, and so may also be used to, study other bearing

types, and more complex bearing-rotor systems. The analysis leads to a six

degree stability polynomial which may be solved for the complex eigenfrequency

a. The coupled linearized [ph] method was further applied by Ng (Ref.727) for

finite-length plain cylindzical bearings. Due to the lengthwise pressure varia-

tion, the characteristic equation is transcendental in the eigenfrequency, and

the Routh-Hurwitzmethod may no longer be applied to determine the stability

threshold. The problem is to determine the whirl frequency ratio such that a

single mass parameter will satisfy both the real and imaginary parts of the

characteristic polynomial, for a given combination of compressibility number,

L/D ratio, and eccentricity ratio. An initial guess is made, and the approxima-

tion leads to a residual. The residual is then minimized. The results given

contain data on the stability threshold. Comparison with other analysis is

given in Figure 5.18, and with experimental results in Figure 5.19. A paper

devoted to comparison amongst analyses, and with experimental results was given

by Pan and Sternlicht (Ref.124).

An excellent set of experimental results for plain cylindrical bearings are

given in Sternlicht and Winn (Ref.122). These results confirmed the conclusion
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that a clearance exists for each bearing design which gives a minimum whirl

threshold speed as predicted by Rentzepis and Sternlicht (Ref.121), and also j
indicated that threshold speed increases with increase in rotor mass, and

almost linearly with applied load. Another experimental investigation was mac.l

by Sternlicht and Winn (Ref.122) concernip-e the influence of bearing geometry

.1 half-frequency whirl threshold and on load capacity and attitude angle.

Bearing types tested were: plain cylindrical with central orifice; axial groove

bearings; axial groove bearing with orifices. It is shown that both the nature

and angular position of the geometry change have a significant effect on the

whirl threshold. The paper mentions that the pressure of an orifice or groove

(correctly positioned) will raise the whirl threshold. This effect is then the

same as the non-whirling bearing of Newkirk and Grobel (Ref. 56). No comparison

between whirl threshold for plain bearings and for modified bearings is given.

Grooved bearings were also studied experimentally by Fisher, Cherubim and Fuller

(Ref.130) as part of a development for highly stable bearing types for turbo-

machinery systems. Static performance data, unbalance effects on rigid rotors,

whirl instability, bearing viscous damping, and pneumatic hammer, and orifice

effects were investigated for hydrostatic and hydrodynamic operation. Other

studies on grooved plain bearings by Whitley and Betts (Ref.131) also indicated

that whirl stability is improved by the pressures of a groove, and that the

groove does not affect the load capacity. The effect of variation in transverse

inertia, L/D ratio, clearance and gas viscosity on conical whirl threshold was

determined experimentally. A basic experimental study of the whirling of a

plain unloaded cylindrical journal within the clearance of a vertical oil bearing

has been made by Bowman, Collingwood and Midgely (Refs.132 and 134). Curves of

whirl threshold and growth are given in the first report, and in the second the

stability characteristics of a full bearing which operates with Taylor vortex

flow were studied. It is claimed that the whirl threshold speed in the majority

of cases was many times the natural frequency of the shaft journal assembly.

In Ref. 132, this was determined experimentally, in air. Neglecting the contri-

bution of the fluid-film stiffness and damping at operating speed would readily

account for this difference. A considerable decrease in stability threshold

speed was found for operation with Taylor vortex flow. Static and dynamic

characteristics of plain cylindrical bearings in the turbulent range were

investigated by Arwas, Sternlicht and Wernick (Ref. 12). Load capacity,

attitude angle and fluid-film stiffness results are presented for the infinite
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bearing, corrected for end leakage. Data on damping capacity are required

for accurate dynamic analyses of turbulent bearing systems. Ic was noted that

load-carrying capacity, radial stiffness, and power loss wcre higher with

turbulent flow than with laminar flow.

Synchronous Whirl

The unbalance response of a rigid rotor in gas bearings has received relatively

little attention. This problem is less important than the half-frequency whirl

problem as in most cases it can be eliminated by good balancing practice.

However, .'n applications such as certain centrifuges where machine.. operation

involves frequent reassembly after cleansing, good balance is difficult to

maintain, and synchronous whirling of the rotor in its bearings may then con-

stitute a problem. Sternlicht and Pan (Ref.134) considered the translatory

whirl of a vertical rotor in plain cylindrical bearings. Using the steady whirl

approximation and removing the time-dependence effect by coordinate transforma-

tion, the form of Reynolds' equation for this case is then identicaliwith the

static Reynolds' equation, when the compressibility member A is replaced by

I* = A (1 - 2__•

where & is the angular speed of the whirl. Steady whirl analysis is then used

to detern~ine the synchronous whirl motion. Both quasi-static and first-order

perturbation analyses lead to incorrect results in this appiication. For the

bearing geometry shown in Figure 5.20, the equations of dynamical equilibrium

are

Fr = -m w2 cos(-a-) + b sin (f-a) + e'- e (&)2

Ft = m [ W sin(ý-a) - cb cos (P-a) 4 ea + 2ý& (5.33)

The fluid film forces in the radial and tangential directions are given by

L/2 21T

Fr = -f dz J Rp cos 9 d9

-L/2 o
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L/2 2n

f fJ
-L/2 0

where p is determined by the generalized Reynolds' equation. Results indicating

the variation of attitude angle between fluid-film force and maximum film thickness

with Aare given and are currelated with experimeatal results. The results

also show that the radial film force decreases to zero when the whirl frequency

is half-ictational speed, even for a well balanced rotor. Half-frequency whirl,

being thus independent of rotor balance, may not be eliminated by good balancing

practice. This analysis neglects the damping properties of the gas film, and

so whirl orbit amplitude is not considered. This has been done by Sterniicht

and Elwell (Ref.135). Steady whirl analysis is again employed, solving for the

case of dim.cnsionless whirl velocity a' = (&c/) 1.0 by a numerical iterative

procedure, with Reynolds' equation expressed in finite difference form. Using

the curves of Figure 5.21 the amplitude 4nd phase angle of a given rotating

unbalance may be calculated. A comparison between theoretical and experimental

results is given in Figure 5.22. The results confirm that plain cylindrical

bearings with good alignment are able to carry significant dynamic loads, and

that unbalance in a rotor leading to synchronous whirl tends to suppress half-

frequency whirl.

Hydrostatic Bearings

Rotating shafts are frequently supported in hydrostatic gas journal bearings

and where high speeds arc involved, the contribution of the hydrodynamic

pressures thus generated must be evaluated where bearing stability is important.

The static properties of hydrostatic bearings have been studied by Heinrich

(Ref.136), while Lund (Ref. 7 ), has considered both static and dynamic

performance of a hybrid bearing. The bearing considered is shown in Figure 2.13.

Additional load-carrying capacity is generated by harmonic vibrations of the

journal, i.e., by the squeeze-film effect. This is important in determining

the dynamic stiffness for use in critical-speed and unbalance response calcula-

tions, and also for resonant frequency analyses of stationary machines. The

vibratory motions considered are around the concentric journal position, and is

either a pure translation or a pure rotation around the transverse axis. The
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Reynolds' equation is linearized by a first-order perturbation around E = o, I
and the resulting equations are solved numerically. Values of dimensionless

load WD/Pa(L + L1 ) Df and dimensionless moment MD/Pa(L + L1 )D 2(R!C)a are given

from which the correspording dynamic translatory and rotational stiffness may be

obtained. Sample curves are given in Figure 5.23 and 5.24.

Larson and Richardson (Ref. 13') presented experimental data for the threshold

of whirl stability for a short unloaded rigid rotor in hydrostatic compensated

gas bearings. The effect of supply pressure and radial clearance on stability

were examined. An analysis of rotor motions is given which leads to simple

stability criterion for the type of bearing studied. Whirl instability was

observed where the frequency of rotation of the shaft lay between two and six

times the lowest natural frequency of the rotor-bearing system. Gross (Ref.138)

examined whirl in externally pressurized bearings, and gave some experimental

data for dynamic characteristic3 such as film stiffness and damping. Rotor

amplitude speed response up to the stability threshold are given. The form of

these curves differs from that obtained by Larson and Richardson (Ref.137), as

here no critical speed ;oak is apparent. This may be due to better balancing

or to the onset of whirl occurring below the rotor-bearing critical speed,

A simple analysis for stability threshold speed is presented, and correlated

quite well with the experimentally-obtained threshold data. It was found that

the whirl path was usually stable, but the whirl amplitude increased rapidly

with speed. The threshold for any given supply pressure occurred at about twice

the lowest critical speed of the non-rotating system, for film stiffness i - o.

Factors which raised the threshold speed were increased pressurization, reduced

rotor mass, and to some extent, rotor unbalance. This latter effect has been [
noted with hydrodynamic bearings, by Sternlichr (Ref.)134).

An extensive analytical and experimental study of hydrostatic gas bearing

stability has been made by Licht and Elrod (Ref. 140). Pressure variation with I
time during the motion is assumed on a "continuous" rather than a "lumped'

basis in 2n attempt to evaluate the squeeze-film effect arising from vibration

more accurately. Attention is giver, to the bearing proportions which should be

optimized as follows for stability: .
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Minimize: Pocket depth; difference between supply and recess pressure

Effective mass of bearing.

Maximize: Supply nozzle diameter; length of annulus; area ratio of

annular and pocket regions.

These results are in agreement with those of the analysis given in Section 8.

Other studies of stability in both rotating and non-rotating bearings hae been

given by Roudebush (Ref.140), Licht, Fuller and Sternlicht (Ref.142), and on

pneumatic hammer by Licht (Ref.142) and by Fisher, Cherubim and Fuller (Ref.130).

Whirling of a Flexible Rotor'in Fluid-Film Bearings

Much of the work described in the previous section contains commentary on

whirling of flexible rotors in fluid-film bearings, particularly where the

results are directed towards the condition known as resonant-whipping. 'n

general, flexible rotors become unstable by resonant whipping above twice the

system critical speed in bending, whereas rigid rotors in flexible bearings

become unstable in half-frequency whirl. 'The whirl frequency in resonant

whipping is constant and occurs at the system bending critical speed, whereas

half-frequency whirl occurs at somewhat less than half the rotational speed.

This may be observed in the experimental results given by Pinkus (Ref.lll)

and by Newkirk (Ref.109).

Hagg (Ref. 71) extended his simple criterion of rigid rotor whirl motions to

cover the influence of rotor flexibility. The analog results of Hagg and Warner

(Ref. 72) refer to the stability of flexible rotors. Poritsky (Ref.104) con-

sidered the rotor flexibility in deriving his criterion for whirl threshold

speed

w < 2w 1 + k/K l(c) (5.35)
o 1 + k/K (W)

where k is the shaft stiffness (constant) and K(•c) is the bearing radial

stiffness (speed dependent). Pinkus (Ref.lll) considered two rotors in which

shaft flexibility significantly influenced rotor motions, and Newkirk (Ref. 109)

concluded that rotor flexibility was the key factor in determining whether a

rotor would become unstable by resonant whipping or by half-frequency whirl.
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These papers have been discussed in detail in the previous section.

In gas bearings the rotor is customarily so rigid that the bearing stiffness

associated with the operating eccentricity determines the whirl threshold speed,

and leads to some type of fractional frequency whirl, depending on whether the

bearing is hydrostatic or hydrodynamic. In this instability, the amplitude Ii
readily becomes dangerously large and safe operation beyond this threshold

speed is usually impossible. With liquid bearings half-frequency whirl may be

encounterpd in lightly loaded bearings even where the shaft flexibility is

comparable to the bearing flexibility. This effect was observed by Newkirk [3
(Ref.109). It does not necessarily constitute a limiting condition for rotor

operation although failures of rotors in liquid film bearings due to half- U
frequency whirl are not uncommon. The resonant whipping condition sets in at

speeds around twice the rotor critical speed. In certain instances speed [1
effects stiffen the bearings between critical speed and twice critical speed.

The resonant whip threshold speed will then be higher than twice critical speed.

Poritsky's work emphasized the need for *data on the dynamic fluid-film forces "

instability calculations. This data was first obtained for the plain

cylindrical bearing and then for other bearing types, as discussed previously.

With this data, and with the concurrent developments in computer applications

to rotor and bearing problems plus increased understanding of the overall U
problem, it became possible to investigate the stability of much more complex

rotor-bearing systems. The stability analysis of Sternlicht, Poritsky and

Arwae (Ref.120) applies to flexible-rotor, flexible-bearing systems, but for

a simple single-mass rotor. Tha results obtained are reproduced in Table 5.0i. [3
No stability charts accompany this paper; Moreover, the formulation of the

stability equation in terms of force derivatives of velQcity and displacement (I
is inconvenient for direct application to engineering calculatioh7S----Ucognizing

this, Lund (Ref. 35 ) elegantly reformulated the basic stability equations for

a two-mass rotor following the analysis of Warner and Thoman (Ref. 33 ), in

terms of the bearing spring and damping coefficients. Later, Lund (Ref. 75 )
extended the two-mass rotor analysis to include the effect of pedestal mass,

stiffness, and damping. An extensive range of results and stability charts [3
are included with this work for gas bearing applications, although the analysis

itself is perfectly general and applies to both liquid and gas bearing systems.

198



!p

The analyses given in the ,:parts of this section which follow are derived

from the above four papers.

Warner and Thoman (Ref.33 ) included a stability chart with their analysis

of the rotor dynamic properties of a two-mass rotor in partial-arc bearings.

This was obtained by direct application of the Routh-Hurwitz criterion to the

basic equations of motion. This approach is equally applicable in any of the

other cases quoted above, but becomes extremely complex when the number of

variables in ihe system is large, or when the characteristic equation resulting

from the solution to the equations of motion, is of high order. In such

instances, it is usually more convenient to apply Poritsky's approach of

examining the nature of the time-exponent in the. solution to the equations of

motion. The application of this technique has been further discussed in the

section on Whirling of a Rigid Rotor, and is given in detail in the following

section.

The above analyses have led to a solution of the stability program in flexible

rotors which is direct and readily applied. The limitations of this solution

are that it applies to small amplitude motions about an equilibrium position,

and not to large amplitude motions where the velocity and damping coefficients

are no longer constant and the motions are non-linear. In additiohs, although

the analysis indicates when rotor whirl may be anticipated and the frequency

at which it will take place as yet it is not possible to determine whether the

whirl orbit of a rotor operating its stability threshold is either stable or

unstable. It is well known that rotors in liquid film bearings can be operated

at many times the system bending critical speed, under resonant whip conditions,

without failing the bearings. But at present, it is not possible to design

for safe operation in this condition, because data on the stability of the

whirl orbit is lacking. Castelli and Elrod (Ref. 123) studied the conditions

surrounding the growth or decay of a whirl orbit for a rigid rotor in gas

bearings, by a point-by-point amplitude solution for the coupled rotor and

bearing equations. As noted, the labor involved was enormous, and this method

is unsuited to general design practice. The equations of motion for large

amplitude whirl have been formulated by several investigators, Poritsky (Ref. 104)

Stiarnlicht, Poritsky and Arwas (Ref. 120 and others. More recently, the

stability of a..balanced flexible shaft in cylindrical journal bearings was
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studied by Someys (Ref.143) in which the non-linear terms were retained in theL

equations of motion. The equations were then integrated numerically by the

Runge-Kutta method, for rotor amplitude whirl. The rotor was given an initial

displacement and the subsequent orbital motion of both rotor and journal were

obtained. The results showed that at speeds above twice critical some form of
'external' damping (assumed proportional to the velocity of the rotor center,

squared) must exist. The practical source of this damping is not stated.

Results are given for the amplitude-speed growth of the whirl orbit below and

above the threshold of resonant whipping for a number of cases. The non-linear U
calculation indicated that instability could exist above twice critical speed

even though the linear analysis predicted stable operation. The results

obtained by Huggins (Ref.107) for a rigid rotor in short bearings also included
the non-linear influences of the fluid-film. This analysis follows the work

of Jennings and Ocvirk (Ref.144) who employed an analog computer to study the [

transient and steady-state whirl paths. This work revealed that where (a) a /

stable whirl path was achieved the orbit ultimately obtained was independent of

the initial disturbance, (b) orbit size is not determined by the static

equilibrium positior, and (c) orbit size is significantly greater as the mass

of the rigid rotor is increased. Reddi and Trumpler (Ref. 145) also studied the [I
conditions surrounding orbit formation and growth using a digital computer to

solve the equations. The Routh-Hurwitz criterion was used to investigate ¶1
stability.

[2
C

\ [
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Goenral Theory of Stabiltyt of Small Alitude Kotiou

I When a simple elastic rotor consisting of a single balanced disk mounted cm a

shaft is operated in elastic, damped, fluid-film bearings, the rotor whiri

Smotions are small until the threshold of stability of the rotor-bearing systf

is exceeded. Let the rotor be operatin initially with a journal tecentricity

Sratio, o, under a steady external load, such as gravity. This condition is

shown in Figure 3.07. For the steady load, the radtal and tangential fluid-

film forces on the journal are:

F r ".ofr (Coto)

Ft )M t (t ro

I ~ ~~where - ~ (~,)(.4

SNow let the journal be displaced a sall distance de, da. The additional forces

£ which result from this displacement are dipr and dit *Since M is emst.ant,

FF 1 2dl-i d~~~r = V •r • de + 1-r7 ,'

Sx " 1 2df + (W - de + U di') ,37

where ~~di](.7
K r t r t~' ' '0.

are evaluated at t - to), U

In the xy coordinates, X and Y are the additional forces resulting from the

displacement. These forces are made up of the above force components in the

radial and tangential directions together with contributions from the directional

I changes da, given by

I
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r r

F dAa -* tr do

The fr ft are again evaluated at c , o for the emall displacment, Rf*ooF

X -[2ff d~f + u(.da +-4ds'

¥ t da + 2 f r 2- dý (ý-; d• + y d') (5.38) L
Writin the coponents of the small displacement in the x, y directions as 4,
rl, and measuring a from the y-axis, for smail l, r there results

0

ow Co

TMe coordinate force expressions may therefore be witten:

u 2f bf f 1tj
00

+ 2f (5.39)

The equations of motion for the rotor-bearing system about the stable equilibrium

position may nov be formed. Free Figure 5.25 these are

M- -ky Fi
kx - -2X L
ky a -2Y (5.40)

vbere k is the shaft stiffness and m is the mass of the disk. The functions f, r
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Ii

ft and their derivatives, with respect to t and c', are all evaluated At

Mhe equilibrium eccentricity ratio, to, in keeping with the small oscillation

theory considered. The stability of any rotor-bearing system may be deter-

IL mined from a knowledge of the steady-state opersting eccentricity as follows:

[ Equations 5.40 are linear in the variables x, y, 4, ', For harmonic motio•s

the solution is of the form:

yrr
e

in which V is a complex, and T %-mt; c c l is the critical speed of

the rotor in rigid, undamped bearings. From the first tvo equations

11 2+2

SSubstituting these values into the second pair of equations and introducing

the dimensionless ratio S - (w/%•€), where 0o is the rotor angular velocity st

the threshold of instability, lead# to the stability determinant
Sf + 2v eS6t + fti

' [Sr + •t + roe - V J

: : 6f 6f 0 (5.42)
-Sf t + 2Vfr] S 37 + V3-E +

S~ in which

t A - a.,,ir AV

As m c 0 o for practical systems, this may now be divided out of Equation 5.42.

If the system is to be stable, the real part of V must be negative; con-14
versally, for dynamic instability, the real part of q is positive. Thus, the

threshold of stability occurs where V is a pure imaginary number. Taking

the imaginary part of Equation 5.42, since V # o, we have
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+ ]+ t t4 + 2S t0f

During the trivial c ution S oa, for S A o this gives:

2 [f.r - ~ft ] Iir6A + B
af L

7t+ e&4]

Similarly, taking the real part of Equation 5.42 and considering non-trivial

solutions for S yields L

2 - [ r (5.44)

But from Equation 5.43

CV 2 -AV 2  + C

Thus, for S o, U ;
8- s 4(S ) + 0 (5.45)

The threshold of instability is defined through this quadratic since tt SU)c'

In order to calculate w for any given system, the steady-state operating

eccentricity ratio 6 is first obtained from static bearing design consideration,

and then the radial and tangential force components and their derivatives corres-

ponding to this eccentricity are determined for the particular bearing type

used. The curves given in Table 2.01 and Ref.. (32) may be used for the cylin-

drical journal bearing. Data for the incompressible, partial-arc bearing has

been determined by Warner (Ref. 34). Tilting-pad journal bearing values have L
been given by Hag& and Sankey (Ref. 73) (incompressible) and Lund (Ref. 81),

while the elliptical and four axial groove bearing coefficients have been ob- VL
tamned by Lund and Sternlicht (Ref.32 ). Substitution of the appropriate

coefficients into Equation 5.45 then allows the instability threshold ratio, , L
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1 to be determined.

I! The influence of fluid-film bearing stiffness on the critical speed of the

simpl. roror-bearing eyears consuoarsi 4oave may now 6o aecermaso. A%

bearing stiffness is a function of eccentricity ratio, it is therefore also

I speed-dependent for any given arrangement. The fluid-film stiffness' K2 is

given by

K ui~ OW L_3df)
K2  d- c a da

"SI1  df

where KI is the shaft stiffness. Recallin$ that for a flexible rotor in

flexible bearings

2 2*

where cu0is the rigid-bearing critical speed [K1'm)
and K is the shaft. Bearing stiffness ratio

U Substitution leads to the expression

2 2 (5.46)

or

U ~dfd

df Subscript r: radial stiffness

I The dLmensionless system number A is a function of bearing geometry, shaft

stiffness and fluid viscosity. Stability properties have b"Da examined for

rotor-bearing systems with values of A within the range 0.1 to 100"at operating
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eccentricities between 0.1 and 0.8, for cylindrical. bearing ratios 0.5

and 1.0. The results are given in Table 5.01. The results 4- indicate that
c10

for low eccentricities instability sate in at approximately twice the critical

speed, but that the threshold of instability occurs at higher values for higher

eccentricity ratios. This conclusion is "upated by date obtained on eetuel

machines and by experiments, and discussed in the literature review of the r
previous section. The whirl frequency ratio (•) is also listed in Table 5.01.

This is the frequency with which the rotor whirls about the static equilibrium [1
position at the threshold of instability, expressed as a fraction of the thres-

hold speed, ratio:S, which i- related to the rigid bearing critical speed w .Wc o0L
This value is always below 0.5, and is independent of A. The ratio - system

critical speed:. ri4id being critical speed has also been "laulated for the

above cases, illustrating the significance of bearing flexibility in system

motions.

When the instability threshold has been passed, the whirl amplitudes of the.

rotor increase rapidly until the whirl frequency coincides with the naturl

frequency of the system. This resonance usually gives rise to whirl AplttudS --

which are of such violence that continued operation at or beyond this resonant

speed is impossible without damaing the bearings, or even the rotor itaelf.

With liquid-bearing machines, this condition is referred to as rejonmt whippirg

and the rotor flexibility contributes to the overall motion. In the case of

Sas-bearings, the term critical half-frequency whirl is used although the whirl

frequency is more frequently some fraction less than one-half the specd of ro- ,

tation.

The equations developed above to determine the threshold of stability no longer r
apply when the amplitude of motion becomes large. The analysis of motions which L -

are not restricted to small displacements from the steady-state equilibrium F-
position has been discussed for the simple balanced flexible rotor by Poritaky

(Ref. 104), Sternlicht, Poritsky and Arwas (Ref.120), Hunine (Ref.107), Someya [
(Ref.143), and others. -.
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I Stability of a TNo-Myea Rotor with V~Iatglaco

I The influence of unbalance on the atabilltv threshold is a ouastion of considerable
practical importance, as all practical rotors operate vith s dogree of un-

balance, and all are subjectad to trenaient-LLLnat&d displacme.•.ke *wady froa

their operating equilibrium positions. Also, where the norml operatin spead
is beyond the first system critical speed, some knowledge of the influxee ofSIihigher harmonic motions on the stability threshold is desirable.

Both questions may be examined by considering the flexible, unbalanced two-mass
rotor shoawn in Figure 3.29, which operates in damped, elastic fluid-film bearings

wLth masses a distance 4L apart as shown. In this investigat ionI the buiriVI
properties are represented by eight spring and damping doefftoimets, dart'id in a

similar manner to the bearoig properties of the previous section such that.

S-x "Kx~x XKXyY Cx " Cxy4--.

5 -1 -~x -I~- C C52

Values of the coefficients are liven in Table 2.01 for the

cylindrical bearing, elliptical bearing, and four-axial groove bearing.

Curves for tilting-pad bearings have been given by Be&& and Uankey (is f.7 3)
and by Lund (Ref. 81 ). The displacemnt geometry diagram for this systun,
which makes use of this formulation is shown in Figure 3.29. The following

analysis is general and applies to both liquid and gas bearings. Ths Utqationa

of motion are:

M ll m 1+ x 1 "- 2 7 1 mm' 2 #in (it

+x 2 xyY2 + x 2 2 a 1 - 4X2 1

11 1 +yl -42 " ' Cos Wt

I X~x 2 + y +C 2 C,,jy 2 . [y.y 2  (5.47)
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In these equations the shaft: influence coefficient. are wry-Ltn:

I * *as +( aa ab) lot mode {
(a -a b) 2nd mods (5.48) U

where aas is the deflection at a due to a unit force at a, for simple supports and

cab is the deflection at a due to a unit force at b, for simple supports. Also,

1 l lit mode L
2nd mode

Let x1 , x 2 , y1 and Y2 be complex displactmenti. From the general solution to

Uquations 5.47(b) and 5.47(b):

e c
0 2 .

¥ 2

•- "c (.5.49)

where
2 1

c WO

Substitute these ewMrasions into Equations 5.47(b) and 5.47(d) to make X and Y2

the unknown variables. Make the resulting equations dimensionless by intro-L J
ducing the parameter groupings:

K u xx WC W-• -
x W x W

x W x W

y W
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ti.• 4 Zi 4- _2--./ ••...-- I - •••' ;• .~~M1..• I -- ' " " . -,I - : -

2 CD

I ~Thus :

K• Kx E + i DCxa

- ----.... ___

SThal solution a"• corresponds to small harmonic motiou• o~f the rotor vb~rG- ".

2 -f (5.50

22

is the cotplax eiignvalue amn iT Mct, C€ . , Subsittuting aY
wvriting

K 11 l+(sy)2

where 7 = (ViO). and a - (co/w ) leads to the followLng stability determinant.

iC
1 0 (5.53)

[KY+ )tC] [Ky + 7+ wCy]

As in the case of the simple rotor, the motion is stable when the rootd of

the determinant are negative, and unstable for positive roots. The thres--

hold of stability is defined where the roots, V, are puroly imaginry. This
Sleaves K real. For non-trivial solutions, equating both the real parts tnd

the imaginelry parts to zero yields

" K w [K C + Y , C - 1 C-•= . x Y y x __ x (5.54)
O)C + Oc
x y
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Substituttig 5. 54 into 5.55 gives 7, thus defim±in ths e q'Iecy V, as a

fraction of the rotor speed. Introducing 7 and; into Uquation 5.52 then gi•es

a, the rotor speed at the onset of stabilit, expressed as a frasctio of the figid

body critical speed.

Warner and Thomsaa (Ref. 33 ) Sive a curve whereby the stability threshold may be

deterained from the operating eccentricity ratio, and the rotor stiffness para-

meter [n] , 'where 1 = 1 (fundaimntl mode).

Lund (Ref. 75 ) has further at•ended the above analysis by invrestiuatig stability

of an elastic rotor carried in dopwd, elastic, massive pedestals. The stability

of a rotor in gas bearisqa has bean exsamined in detail.
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Highly stable unbalance Stable with decaying Rotation. Stable whirling
whirl transient arising-from with sustained transient.

blow.. Unbalance.whirl Gyroscopic whirl with
or stable bearing.." friction.

Unstable whirl with Stable orbit, small Unstable orbit with
growing radius, whirl radius. Unstable growing radius and
Coulomb friction whirl, large radius, steady backward whirl.
whirl a > aC. Horizontal journal Gyroscopic whirl with

bearing, unbalance at a =cu

Fig. 5.01 Stable and Unstable Rotor Whirl Orbits
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(a) Forces on a vertical rotor undergoing hysteretic whirl

Dr- r

(b) Rotating. shaft with tangential whirl-suppressing force

II

Figure 5.03
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a) Non-uniform contact pressure along length
of joint leads to slip at ends. Sharp
rise in contact pressure at edge promotes
fretting corrosion and fatigue cracking.

~7~ (b) Short contact areas give uniform mounting [
- _pressure. Fretting corrosion and fatigue

still significant; contact pressures may
_be higher than Case (a).

(c) Short contact areas and decreased edge
stress concentration. Minimum coulomb

-slippage and fatigue hazard.

Fig. 5.04 Methods of Mounting Rotor Components and Associated Problems I
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•2 2 12

x

(a) Shaft Cross Section With Differing Principal Moments of Inertia

Ii I

12

r

0

(b) Geometry of Shaft Displacement in I, T Rotating Axes

Fig. 5.05 Section of Rotor with Unsymmetrical Stiffness
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/Whir

(a) Rbtating unloaded vertical (b) Rotating unloaded vertical shaft
shaft in undisplaced position in displaced position with whir-- L

inducing force

[
Fig. 5.06 Forces Acting on Vertical Rotor

in Hydrodynamic Whirl

$ [I
W W

F+FI

(a) Rotating loaded horizontal .(b) Rotating loaded horizontal
shaft. Equalibriur position. shaft in displaced position

with additional force com-
ponents.

Fig. 5.07 Force on Horizontal Rotor
in Hydrodynamic Whirl
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Fig. 5.08 Whirling Journal in Full Bearing Flow
Continuity Condition
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4 SEVERE- OIL'WHIP' (a

RUNNING SPEED SIGNALi<>
ITIM

-. 01 SECOND
I~ooI

OIL WHIPUNBALANCE VIBRATION(b
OI I PVb

ýAVVV\ ^V%ý WAVWVV
A RUNNING SPEED SIGNAL~

'Fig. 5.10 Whirl Oscillogram Showing (a) Well-Developed.,Whirl. and
(b) Tranaition from Whirl to Stable Running with De-
creasing Speed

Reprinted from OIL WIDTH OF FLEXIBLE ROTOR.S, Figure 4,
by A.C. Haag and P.C. Wairner fdr the ASME, Vol. 75,
October 1953, pp. 1339-1344.

219



r -~-S - _______________O

- -- ~ -4W

Ge 10 P.40
Fig 5.11 odfie Berig FrceEccnticiy Crv

Repinedfrm NVSTGAIO O TANIAOR FUI WIL
IN ERICL ACINE, igre12 byG.. oeeran
Stenlch fr he SM, ol 7, o. , anar 156

220l



~~ 7' 7

IN VETIA MAHNS Fiur 14fyit.Beerad-
B.~~~~~~~~~~~~ Stenlch foL.ASE Vl 8 o aur 96

i t . - l i l



cisS

I-6

.41

.4- 
04

C4 0

tOIXIJ! NOILVUSIA .4o 3nnw u3NlVGA4 O~os

Inad

4.48U

C6 w

q~J. §

0j -0 0

- - .- -- ___a 5 d

CIO..'A 4.

E -

o U'-c"a M H -

w a.

I o
W LL

00

La c

E X u! 'NOIIVU1SIA 40 3CY)rLLIdViV WdO'NOI.LVUgA -40 AON3flOmJ

222



? p l l

*C.

Sol(b

Deeme 1962

00-3

T -



ggo

/ '•

.0i /.. . . . . .- • , I -a- -;

"0 [3

2244

I.0 LI
2 2 •o ,;, .

_ _ _ [-I

~.N .* C



10

II
I I - ,-I

II' ___' "

II 1 177

20 06
20

01 02 05 1.0 2.0 5.0 10 20 50 100

Fig. 5.16 Stability Chart for Finite Length (L/D - 1.0)
Cylindrical Gas Bearing

Reprinted from STABILITY ANALYSIS OF G.S-LUBLICAIL.,
SELI-ACTING, PLAIN, CYLIN" CAL, JOURNAL aLAMI NGS
OF FINITZ LENGTH, USING GALKXN'S METHOD, Figure 7,
by H.S. Cheng and C.H.T. Pan, ASH. Paper No. 64-LubS-5.
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-o--NON-LINEAR GALERKIN F - 0.2

- LINEARIZED PH-UASI STATIC THEORY x 02

0 DATA AFTER STERNLICHT - WINN F u.,673

. DATA AFTER WHT.'LEY -,BOWLL - vw-- . 0.2

4.02

3.0 [

2.C2

I~"LO -
Sof Ob --.3

0.67A: _ t-o ' f ,,o ___LL, -0, IV-. W-
0.5 1.0 __ .0 . . .

0.31

O.2 0.3 0.4 0.5Q6 0.8 1.0 2.0 -. 0-

LENGTH EFFECTS z : 0.2
p0D2

Fig. 5.1.7 Comparison Between flheoretical and E\erimental lesults.
Finite Bearing.

Reprinted from STABILITY ANALYSIS OF GAS-IUBRICATED,
SELF-ACTING, PLAIN, CYLINDRICAL, JOURXAL BEARINGS
OF FINITE LENGTH, USING GALERKIN'S KMT1OD, Figure 12,
by H.S. Cheng and C.H.T. Pan, ASME Paper No. 64-LubS-5.
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SFig. 5.18 Comparison of Linearized PH Re•ults vith Other Theories.
Finite Bearing.

Reprinted from LINEARIZZD PH STABIITY THEORY P FINITE
LEiGTH, SELF-ACTING, GAS-LUBRICAT•D, P•AIN JOULNAL..
No. 64-LubS-28.
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Fig. 5.20 Bearing Geometry for Synchronous Whirling of
a Gas-Lubricated Bearing
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Fig. 5.25 Simple Rotor. Small Displacement from Equilibrium at A°
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I
3 Table 5.01 Threshold of InqtebIlti for IM trt$W

lotor Supportd U 1•thu Jourml bs.

LID A v/s a (Odr/0 M(%),

S 0.5 0.2 0.1 0.3756 2.6096 0.952 2.6UM

0.5 0.1 0,3538 2.810, o.974 2.6177

S0.8 0.1 0.2354 4.2438 0.9"98 4.2446

0.5' 0.2 100.0 0.3756 0.06678 0.02910 2.2948

0.5 100.0 0.3538 0.2533 0.1315 1.9262

0.8 100.0 0.235.4 1.9267 0.7751 2.4857

S11.0 0.2 0.1 0.37 2.6763 0.9%8 2.6903

0.3 0.1 0.37 2.7224 0.9971 2.7303

0.7 0.1 0,29 3.4179 0.9998 3.4196

0.8 0.1 0.22 4.5169 0. 99 4.5173

I 1.0 0.2 100.0 0.37 0.1951 0.0834 2.3420

0.3 100.0 0.37 0.3198 0.1390 2.300

0.7 100.0 0.29 1.6553 0.7000 2.3647

0.8 100.0 0.22 3.1199 0.8998 3.4675

Notation: Beating eccentricity
3 3

A Rotor parameter (X1C /24..R C%)

V Whirl frequency

Whirl threshold speed

W 0 Rigid bearing critical speed [k/mI 1/2

uý • Rotor-bearing critical speed

Sa Resonant whip speed ratio, rigid bearings W/Wo

2
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Introduction . .

It is common for modern high-speed machines to operate beyond their fundamental

flexu.ral critical speed. Frequently, the operating speed reve cmntbais seretl

critical speeds, each of which must be passed through on run-up and run-dam

The increased rotor amplitude and transmitted bearing force assoc¢ated with

each critical speed raise the question: What are the conditions which make it

safe for a rotor to pass through the critical speeds?

IthAs been shown in Section 3 that the motion which follows start-up in a simple [

rotor-bearing system consists of a steady-state, synchronous, unbaLance whirl

together with two transient whirls whose value depends on the initial Conditions

of the motion. In practical systems these transients are damped out by the

rotor friction within relatively few cycles. In Section 3, the important fea-

tures of the steady whirl motion are discussed. This chapter considers the

state of motion which develops when the rotor speed is not constant, but is

accelerating. In this condition, the transient whirls are sustained by the

changing speed, and so form part of the solution which has practical interest.

Of primary concern is how the rotor performance is influenced by the interaction

between the accelerated motion, the sustained transient whirls, and the critical

speed amplitude buildup.

Flexible Undamped Rotor in RMaid Bearints

For simplicity, the simple, single-disk rotor without damping, mounted in rigid

bearings, will be considered initially to dctermine the basic properties of the

motion. The rotor whirl configuration is shown in Figure 6.01. The angle

swept out by the rotor as its speed changes is given by

* - W t + Cit 2  (6.01)
0 -

where is the initial angular velocl.ty, and 2ci is the angular acceleration,

assuzed constant. Differentiating gives the instantaneous angular velocity

* - ~+ 2at
0~

2O' 6



ConsiderinS the motion of the disk, the coordinate e•atiosa for t1 c"B. we

3 G = x+aco ,.- +.a cos [o t +Mt2]

y C "-y+"a sin $-Y+" sin '+ Cit 2 ) (6,03)

The equations of m0tion for the accelerated systm are therefore:

[ + +k co' [%t± +a]

2M ++ka I Xsin (Wot _+ at) -y cos (W0 t±+ J 2 -T (6..0)

The solution to these equations is influenced by the initial conditions which

exist prior to the application of the accelerating torque. The first two aqua-

U tiona my be solved separately as the rotational motion of the disk il specified),

and the third equation gives the acceleration torque once the coordinate values

E are known..

E For the case where the disk is whirling steadily at constant angular velocity,

cu, prior to the application of accelerating torque at time t 0 0, the initial

E conditions are:

For t < O,

[a a sin}Z

S~For t - 0

G G(O) 0 YG(O)m=I1oo (6.04)
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With these initial conditions, the Wsrcl solution to 3qua:Sti (6.05) MA. the

form

x = w t.#inC (t-T) coo CW ce + 2 )d ) ± + cla Mot

(6.05)

f sin ° (t-T) sin (Wr + o )j.dr -+# szinot

Equations (6.05) may be integrated to give the amplitudes xG, YG of the e.g. as [
the rotor responds to the acoelimating torque, T. However, for stress calcula-

tions it is convenient to obtain the solution directly in terms of ecordinates

tG' 1j which rotate along with the shaft at speed .The trsnformation fOLlULse

are:

4G a X GCos5 + YG sin L

l'XG sin * + y cos * (6.06)

Substituting Equations (6.05) into (6.06) simplifying, and integrating gives

the following expressions for •' •G' after considerable manipulation:
L-.d

4G 0 d sin z [C(Z) - C(o] 0 Cos z [(z) - 5(z)]

+ sin o1 [CC: ) - C( 1 ),] o I [( z S -) }
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I 2 t-oo % .t *,sin (Cut ca + 2  +-a- si omat Cos (gt, ý)J

2 0 2 o1

1 2 2

Orr •+ 2aý jr '= -.+ ng..."+
1 2- ac r 2 - I 2

I 2 .a 1 0 i
and

dOC(s) - C(S - C22 L . rSo C a aM195

S(,) - S(z 0 f:' o JJ';;"'i-0 0 U rz

(6.09)

are the Freunel integral* of the above variable groups which arise in the

Sderivation of the expressions for tG and rIG'

Equations (6.09) allow the deflections of single-disk rotor in rigid bearings

to be calculated during any stage of its motion: with velocity below, at, or
I ~above the critical speed, wc ; and either accelerating or dtelerating. The

Saxis is in the plane of the unbalance; but even though the system is

frictionless, the whirl radius is no longer a straight line due to the

acceleration. Its maximum value may be found from the coordinates of G:

r G 4G[2G+ %2] 4 G 2 +Y.2 ] j (6.10)

For a specified acceleration, a, it is thus possible to examine the

characteristics of the amplitude build-up, and to determine the value of

the maximum amplitude, rG, and the speed ratio, •L at which it occurs. A

minimum a, corresponding to a maximum permissible amplitude build-up and

associated bending stress, may then be specified for rotor operation.
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An examle of this calculation is gIven in Figure 6.02. The rotor has a
critical speed, Rc of 1000 5Th, ii.., 2%w - 105 rod/sec. The acceleration

to 20 rdild/ae. 1... C1 M In rAAIOM.- 2 A A4..4,,,s,,a#-4u.. b1,..-..a..,. i n.

from thbe motion.

Influance of External Friction ou Rotor 4ootion

When external fr-iction forces act on the rotor during its accelerated motlou,=

energy is dissipatsd and the mplitude build-up becomes less severe than for 1
the frictionless rotor considered previously. In this css, the equations of

motion for the c.g. of the single-disk rotor in rigid bearinge are

of~ + c, i + kx - ka coos[Lot + t 2 ]

Eva + C + ky. ksin[0t+ a 21

2a 1 + ka Is sin (wt + O 2 - y cos (=t + CO#2 ) = (6,11)

Again, considering the case where the rotor is in a state of steady unbalance

whirl prior to the application of T at t - o, the genei'al formulae for the x, y L
displacement are

X * ft e t -[ T- ](t " in sin t (t-T) CO" (U7 + t 2)dT + 2 -- 2 co- t

0

y aw ft exp- C (t-T) g in W± (t-T) sin (w~t + at 2)dT + W2a m ~

When these expressions are transformed into rotating coordinates, • and • and the {
expressions

0)+ t 0) 0*F TC1• j 2-- a a 2a a " 2a'

are substituted for the time-arguments, the expressions for the rotor dis-

p•acements become

- ~0 'exp g-j~t{ in z exp C~vK
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c ooo' £ 0 do

[3 _)2  coWtcos (Ut+at 2 ) + - sainWt i (Wt +C2)

0

LL do a'

mi+ 4 xj2 sin a' +

00

Co -( ) LX c % c 1M

"Te tb ex pb2m 2a

bu h e f th-e. oIdex ol sl dthein ala se n ' alear a ro-x i--yb +.o

d for e e g sin th pre u seion +con i tat +he (6ic-

.00

SThe integrals in the above expressions cannot be found directly from table-;

but ais the value of the exponential index is reasonably small, the integrals

may be obtained approximately by a combination of known functions. In this

case, a linear approximation may be uted for the exponenttl index, and thoeequations may be solved for a number of separate time-periodot. This has besen

done for the example given in the previous section considering that the fric-

tion coefficient (c/2m) - 1.00. The results are shown in Figure 6.03. COM-

S~paring Figures 6.02 and 6.03, the influence of external friction on the same

rotor with the same rate of acceleration may be seen. Friction% reduces the

L maximum amplitude build-up from 34.0 to 21.0. The transmitted bearing force

is reduced in the same proportion. The speed at which this maximum amplitude

occurs is virtually identical in both cases.
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Amwlitude Buildup

awPI4ua a&#... .f . .A.*............ V - k. - L.,

Lewis (Ref. 78) for the case of a simple rotor in rigid bearings in both U
undausped and dexped motion. ConsIdering ,undaaped rotor notions, the in-

fluence of several different rates of acceleration q on a rotor are showen

in Figure 6.04. Curve B shows the individual cyclic oscillations, and the

other curves show the envelopes of the amplitude maxim- values. Low q U-
values denote rapid acceleration; high values correspond to slower rates.

The periodic force variation for q - 10 is given in Curve A starting at V
t - 0. AlLowing the rotor to start from a steady whirl condition as in the

previous section, the resultant motion builds up as shown in Curve B, for

q - 10, and in the remaining curves for the higher q values indicated. The U
full curves correspond to accelerations; whereas the dotted curves apply to

decelerations. These results clearly indicate how any machine may be driven i
through its critical speed even where the rotor-bearing system has little

friction damping. The maximum amplitude which develops iý seen to be a

function of the applied acceleration, and a finite time is required for the u
build-up of large amplitude whirl motions. The faster the acceleration rate,

the later the maximum amplitude occurs after the citical speed. The ampli-

tude build-up occurs in the same speed location for the deceleration

characteristics, being slightly larger in each case. This indicates also

the advantage of keeping those rotor critical speeds, which must occur

within the speed range, well below the machine operating speed. A.C.

torque characteristics depend on the amount of electrical slip present.

As this is nearly zero at rated speed, the drive torque and, hence,

acceleration are smaller than at lower speeds; hence, the time taken to

pass through the critical speed is greater. This results in the build-up

of larger amp'itudes as indicated in Figure 6.04.

After the maximum amplitude has been passed, the undamped system continues

to oscillate with an amplitude close to the maximum attained. Thia is little

diminished by the higher exciting frequency which, though this superposes a

further vibration with a stronger force, it does so at frequencies to which

the system has less inherent susceptibility, and so the vibration is sustained.
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The influence of friction on amplitude build-up is shown in Fni e 6.05t for

Ufour values of dimensionless d&mping 7, wdith both accelerstod in 4.AluIted

rmotion. The genral nature of rotor response is the s as in the undmper

U. case, with the difference that amplitudes are reduced by tue preence o0

friction. This reduction is most significant in the cAHs of slower accalera-

tion. The Breater the value of 7, the greater is the overall alitu4e re-

duction. This applies to both the steady-sti-e notion, and to the trensiente

[ in the motion which tend to die out more rapidly, as indicated by the isooth

amplitude envelopes for higher y.

When the damping is small, the envelope curves are oscillating in character

U-L wnen the maxi-um has been passed; but eventually they become asymptoticto the

resonance curves for constant frequency.

Effect of Flexible Bearinas on Traneltr on Phenomena

Support flexibility may arise from either the bearing or the pedestal, or

both, as discussed in Chapter 3. The inclusion of support flexibility greatly

complicates the already lengthy analysis, end so this section contains but an

L. indication of theiprocedure. Referring to Figure 6.06, the equations of motion

for the undamped single-disk, flexible rotor shown are

F + k+ (x - x) = ka coso

my+ k (y - y) = ka sin 0

"2kx x ( - x) - -ka cos 0

2k 2 Yo - k (y - y0 ) -ka sin 0

2al + ka (x - xo) sinO - ka (y - y.) coso T (6.13)

where k is the shaft stiffness, kI nd k2 are the vertical and horisontal

elastic stiffnesses of the supports respectively, and again

0 Wt + at2]

243



On writing

2kk I1 k
1~ 2k 14* K2 2k*

The equations of motion becom:

mi+ IX K1 aCos I wt+ at2

u+ 2 Y - K2 a min [cut + at]

c -c
2II + aK1 x sin P - aK y cos * + a2 -l sin 2 0 - T (6.14)

-2 y o 2 a

As in the case of a shaft on rigid supports, the coordinate displacmsats are

obtained fromr

x - u sin w (t-T) cos (uxr + att2) dr + .Cos U)X

WC

in Mt1&c It sin wy (t--r) sin (aw-+ czt 2) d'r + -sin WU
in which

After performing the above integrations, the displacement formulae resemble

Equations (6.12) taking into account the differing stiffness effects. As an

example, consider the case k - 2, K2 - 0.89 K, [k/m] k - 105 rad/sec., and LI
a - 10 rad/sec.2 The response curves are shown in Figure 6.07. These indi-

cate the differing response in the coordinate directions. The whirl crbit is

elliptical in the early stages of the motion, but the ellipse changes in size

and proportion as the speed increases because the stiffness difference makes (]
the dynamic response different in the x and y directions. The rotor response

in rotating coordinates 4 and I is also given. These results show the same Li
phase difference between maximum coordinate responses. Also, the trinsient

motion is more strikingly depicted by allowing the coordinates to rotate, and

so emphasizes transient translatory motions. In addition to the above effects,
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Ud

it can be seen from the third of Equation '(6.14) that a component vttb twice

rotational frequency exists in the motion. This tend* to create a sub-barmonic

£1 ppeak at approximately one-half the major response peaks shown in Figure 6. 07 .

Ixoerimnutal Observation of Transition PheoMena

2IL The simple flexible rotor discussed previously with w€ ' 105 rad/sec. 2 was

driven through its critical speed using a 3 KW, D.C. motor, over a speed range

0 < w < 125 red/sec. Shaft stresses were recorded using resistance strain

gages mounted near the disk. These stresses rotated with the shaft, and hence

allowed the calculated stress and displacement values in the J, n direction to

be checked for a shaft with friction. These results are showr in Figure 6,08.

I These coordinates show reasonably good qualitative agreement with the curves of

Figure 6.02.

The Shaftmotions discussed in this chapter apply in all cases to a simple,

V single-disk, flexible-shaft rotor. This simplifies the resulting analysis and

makes identification of the major rotor dynamic features more straightforward.

The same features apply to the rotors of all machines which operate at speeds

beyond their first system critical and, therefore, may be used 6s design guides.

It will be noted that no mention has been mada of rotors which are mounted in

fluid-film gas bearings. Where no fluid-film instabilities exist, the rotor

performance would be similar to the flexible bearing case. No design informa-

tion is at present available on the transition of a rotor through a critical

speed when the rotor experiences a fluid-film whirl at a speed below its

critical speed. Data is also lacking on the transition of rotors in gas

bearings through critical speeds.

f
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VII

MIA~~t 9 ROTATING MACHINIRY f
Need for Balancint

No rotor is capable of smooth operation without adequate balance. The most F1
sophisticated rotor And bearing design efforts cannot assure good balance,

although the unbalance remaining after construction may be minimized by

assigning meaningful working tolerances to each rotor component and by effective

inspection procedures. All high-speed rotors must be machine balanced after L
manufacture, and the more refined the balancing technique, the less residual

unbalance will ultimately r-main. A well-balanced rotor will give rise to nominal

transmitted forces, structural vibration, noise, and long-term rotordynamic

problems. But, no amount of balancing can eliminate resonant whipping or L
half-frequency whirl, or dissimilar stiffness instability. These disturbinces

require adequate system design and damping to minimize their effects.

Rotor unbalance varies in magnitude, position and angle along the length of

the rotor. During operation, the unbalance causes centrifugal forces and

couples which bend the rotor causing it to whirl around its static equilibrium L
position. Excessive unbalance may endanger the safe operation of the machine.

Rotor balancing consists of determining the magnitude and location of the

residual unbalance followed by the insertion of correction weights in the

selected balancing planes to nullify the unbalance effects. Actual rotors

are never perfectly balanced since this would require a large number of

measurements to determine the quite random 14,stribution of unbalance along the

rotor length, followed by the application of correction weights wherever

needed, Both requirements are improctical, and so it becomes necessary to

select a level of unbalance which, in a given application, will assure

minimum whirl amplitudes throughout the operating speed-range..
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Concept of Unbalance

Rotor unbalance is usually specified in ounce-inches (oz.in) since unbalance is

conceived as the product of the unbalance weight times its distance from the

rotor geometric axis in khe unbalance plane. The centrifugal force generated

by the unbalance is then

Centrifugual Force, lb = Constant, (16) ( 3 86 .4 ýJ LUnbalance(oz.i'n)

[ ISpeed (r.p.s.)]1 2

Unbalance may also be designated by considering the rotor weight to be concen-

trated at its c.g., and eccentric from the geometric axis by a certain distance,

a inches. The centrifugal force is then related to this distance by

Centrifugal Force, lb. = onstant, (386.4) Rotor weight, lb

ICo (386.)2 f

Eccentricity of c.g., in. • Speed(rps)]

These concepts of unbalance are valid in the case of rigid rotors such as a

wheel mounted on a short shaft between rigid bearings or in a longer rotor at

slow speeds. It fails, however, to describe the general unbalance condition of

a flexible high-speed rotor.

Rigid Rotor Balancing

It is well known that a rigid rotor may be brought into a state of balance by

the appropriate addition of correction weights in any two normal planes along

the rotor length. The complete rotor motion may be described through the dis-

placement of the c.g. and by the rotor inclination. The rigid rotor is effectively

a particle, and all forces and moments which determine its motion, including

unbalance, may be concentrated into a single force and a single moment acting

at the rotor c.g. It follows that by reducing the distributed unbalance to

such an equivalent force and equivalent moment located at Lhe c.g., it is

possible to specify the total unbalance by two quantities known as static unbalance
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and dynamic unbalance respectively. Static unbalance may be detected and

corrected, without rotation, by placing the rotor on knife edges and allowing

it to find its equilibrium position with the heavy side downwards (Figure 7.01). ¶7
The rotor may then be statically balanced by the addition of a correction

weight or weights, the total effect of which balances the resultant static

unbalance of the rotor, without regsrd to the axial position of the weights.

Dynamic balance, however, may only be detected by running the rotor, and in this

case the axial distribution of the added correction weights is important, as the

unbalance couple must also be balanced. It is clear from the above that the

addition of a maximum of two correctly sized and positioned balance weights will

completely compensate for the initial unbalance of a rigid rotor. Furthermore,

the size, position and angular orientation of the two correctionweights is

completely optional as long as their equivalent force and moment cancels the

rotor unbalance force and moment.

Flexible Rotor Balancing

The flexible rotor poses a more difficult problem because the distribution and [
variation of the unbalance causes the rotor to deflect in accordance with the

resulting centrifugal force. This deflection profile may be a complicated

shape. In any case, it is not possible to reproduce or annul the same shape by

applying a single force and a single moment at the center of gravity as in

the case of a rigid rotor. Hence, if a flexible rotor is balanced as if it were

rigid, and correction weights have been added in two planes which cancel the

unbalance static and dynamic effects, the rotor will nevertheless bend locally.

When the speed is sufficiently high, the centrifugal forces resulting from these

local deformations may generate large rotor amplitudes capable of making the

original balance meaningless. In addition, when the rotor approaches one of

its critical speeds, it tends to assume the mode shape of that critical speed in

proportion to the residual unbalance. Rotor amplitudes may be minimized by an

optimum selection of damping planes. At higher ;:otor speeds, more balancing

planes are required to distribute the balance weights more uniformly throughout

the rotor to attain the same minimum amplitude level . If the rotor is

sufficiently flexiblc, and if the speed is sufficiently high, two balancing
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planes alone are not enough. Theoretically it is necessary to have, as a minimum,

as many balance planes as the number of the next bending critical speed beyond

the operating speed range. Figure 7.02 shows the relationship between balancing

planes and critical speed for a uniform rotor in rigid bearings. A flexible

rotor in flexible bearings should be balanced as a rigid body for low-speed

operation, selecting the balance planes and their disposition so that the low-

speed balance is also effective at high speeds. Figure 7.03 illustrates this

principle. This will be discussed in further detail later in this section..

Practical Rotor Balancing

In practice, two basic approaches exist: (1) machine balancing in the shop

following rotor assembly, and (2) field balancing following installation at the

site. All conventional balancing machines operate through the addition of correction

weights in two balancing planes. In view of the previous comments, it is clear

that, strictly speaking, balancing machines are only of use with rotors which

behave as if they were rigid throughout their operating speed range. Balancing

machine speeds are low, and the rotor is supported in bearings and pedestals

which are not the same as those it, the actual machine arrangement. The machine

rotor-beating system is never machine-balanced. Since the rotor motion and the

rotor amplitude are greatly influenced by the actual bearing stiffness and the

actual pedestal stiffness, it is usually not possible to achieve a sufficiently

fine level of balance using the balancing machine alone. The resonances governed

by the pedestals aad the bearings in the actual machine tend to amplify the effect

of the rotor unbalance above the level achieved in the balancing machine. It

is, therefore, almst always necessary to refine the rotor balance by further

operation on the rotor in its own bearings and pedestals. Such an operation is

known as field balancing.

Field Balancing

Instrumentation is provided with uhich the whirl amplitude of the rotor may be

measured to a high degree of accuracy, eapecially in high-speed applications.

The meas;urement may normally be taken using distance-measuring probes such as

capacitaince probes, inductance probes, or photo-cells which are located within

or Just outsidke the be.-ing. It is common to provide such probes to monitor tne
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whirl orbit of the journal in any case. In this manner, the rotor amplitude is

measured at the bearings and, if required, at other points along the length of

the rotor. The rotor is brought up to speed, and as the amplitude grows, a

speed is ultimately reached beyond which the amplitude is too large to safely

permit any further increase in speed. At this point, it is necessary to deter-

mine what additional correction weights should be added in the balancing planes

to restore the original balance. Known correction weights are added, one at a

time, in known locations, and the individual effect on the rotor amplitude is

measured. From these measuremencs, a calculation procedure is used to evaluate

the effective unbalance of the rotor. This allows the required correction weight

details to be established.

Balancing Machines

A number of balancing techniques are described by Stodola (Ref.18). Of these,

the method due to Akimoff (Ref.146) is of importance since it forms the basis

of modern balancing machines. Akimoff's machine is shown diagrammatically in

Figure 7.04 • On this machine, the rotor may be blanced without changing the

supports. The actual values and angular positions of the balance weights may

be determined by trial and error, by graphical construction, or by using a

balancing head, such as that due to Thearle, as described by Den Hartog (Ref. 17 ).

Methods for doing this are described in the following sections. The machine

consists of frame A, supported in bearings B1 and B2 which allow the machine

to rock in the vertical plane. The rotor is supportedinarigid bearing D and

in a bearing D2 which is guided to move vertically between the supporting

springs, S. When bearing D2 is clamped and the rotor is driven through a

flexible coupling, the effect of the moment of the rotor centrifugal unbalance

force is neutralized by the fixed axis, B1 B2 . The rotor may then be

statically balanced by adding trial weights, Gll, in the balance plane, I,

until the rocking motion about axis B B has reached a minimum. Then frame
1 2

A is clamped to the base, B, and bearing D2 is freed. During subsequent

rotation, the resultant unbalance moment which arises from rotor unbalance and

the added static balance weight, G1 , acts on the rotor. Dynamic halance is
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then obtained by the addition of 4 second balance weight, ,G, in balance plant I,

adjusted in magnitude and position until the rotor vibration is minimized.

Final balance is then obtained by applying G2 in the balance plane close to

D (as shown dotted) with the same unbalance radius and size as G but 180
1 2

degrees out-of-phase with G This gives an applied balancing couple, +G, -G
2' 2 02

and allows the rotor to operate without the restraint previously provided by

thne rigid bearing D1 . The static balancing portion of this operation may be

carried out on horizontal knife-edges if desired. Variants of the above machine

exist in which the axis Bl, B2 is replaced by springs, and the rotor is

supported in rigid bearings and pedestals on a rigid table. In this arrangement,

the taoi, is provided with frictionless pivots at P1 and P2, which may be

locked when necessary during balancing as shown in Figure 7.05 The balancing

technique is the same as for the Akimoff machine.

Determination of Required Correction Weights

Alltough the angular position of the unbalance may be found directly by marking

the run-out side of the rotor as it rotates, this method lacks the refinement

necessary for sensitive balancing of high-speed rotors. Where a balancing

machine or bearing is fitted wiLh electrical displacement probes capable of

detec.ing spring-supported rigid bearing displacements or journal displacements

during field balancing, the required correction weights may be found by the

following technique. The rotor is operated: (1) unbalanced; (2) with a trial

balznce weight in a selected position; (3) with the same balance weight pl~ced

diametrically opposite the position used in (2). With displacement readings

from these three conditions, the required balance weight and it angular positions

may be determined for both static and dynamic balance. The graphical construction

for doing '' snown -n kigue /.b (j ncs LU:

1. L-t OA represent, to scale, the original unbalance of the rotor. Let

is also represent, to a different scale, the vibrational amplitude

observed as a result of this unbalance weasured at the balancing speed

during Test 1.

2. Let OB be the unbalance vector of the rotor measured in Test 2, after

the trial unbalan:e haE been added in the first hole. By the laws of
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vector addition

03 - OA + AS

where AB is the displacement due to the added trail unbalance

3. Similarly OC represents the total unbalance displacement determined

during Test 3. As in (2) above, OC - OA + AC ana as the unbalance

in this case is 180 degrees out-of-phase with the unbalance position

in Test 2, it follows that AC is equal and opposite to AB as shown in

the figure.

The amplitude measurements provide information on the relative lengths of the

unbalance forces OA, OB and OC; but their absolute magnitudes and phase

relationships remain unknown. These facts may be obtained geometrically.

Noting that OA is the median of the triangle OBC, of which the two relative

lengths OB, OC are known, and the magnitude of BC (- 2:x unbalance) is double

the length of OA to form OD. Then in the triangle ODC, the side DC is equal to

OB. Thus, in ODC all three sides are known. Thus, the relative lengths of AB

and GA are known, and since AB represents a known unbalance weight artificially

introduced, the magnitude of the original unbalance CA may be deduced. In

addition, through the construction the angular location (0), of the original

unbalance GA with respect to the known angular location AB is determined.

However, an ambiguity exists with the above construction. In finding the ori-

ginal triangle, OCD, from the unbalance ioctors, the triangle OC'D might have S
been obtained instead by construction. This would have led to obtaining the

direction C'B' instead of direction CB for the unbalance weights. This ambiguity

may be overcome by a fourth run.

This method assumes only that the displ3ceme-nt response of the rotor is pro-

portional to the unbalance mass. This has been found to be a reliable premise

in practice. The above steps may be repeated until the desired degree of

balance is attained.
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A method attributed to Ribary (Ref.1477 :nd Hopkirk (Ref.iAS) mkes as* of ar

original ujnbalance test plus three trial unbalance measurrlnts situateO 120

degrees apart. A similar procedure to that descrir)ed above is needed to

determine the magnitude of the original rotor unbalance. A Pl•mple graphical

construction for doing this has been proposed by Somervoille (Ref.149). This

2. method has been applied to checkin3 the accuracy of balancing mrchines of the

Akimoff type by Mclnante (Ref.150).

A balancing head is a device consisting of a well-balanced, disk-like container

which is attached concentrically to the rotor and within which there are two

weights on rotatable arms. The arms may be clamped or free, as required. A

self-balancng type of diagram due to Thearle operates by replacing the arms

with balls which are free to roll and to assume any preferred circumferential

postion when released. Initially, the balls are clamped 180 degrees apart, so

that the balancing head is in perfect balance. The only unbalance in the rotor-

- head system is, therefore, that due to the machine. The rotor is then rotated

above its critical speed and the balls are released. The balls then assume an

* angular position which tends to provide the optimum balance for the rotor due

to the self-balancing action of an eccentric mass at speeds above the critical.

All vibration then ceases. The balls are then clamped once more, in the optimum

.- balance position. This principle, attributed to Leblanc, is discussed by

Stodola (Ref.18) using mercury instead of two balls as the self-balancing medium.

Den Hartog (Ref.17) has questioned the validity of this device. Two devices of

this t~pe situated in the balancing planes must be installed to obtain complete

static and dynamic balance of a rigid rotor. A disadvantage is that the rotor

- must be run above its critical zpeed for this method to be used. Not all

-uQors -re designed to •erate at auch speedj - !.hi~h may ciuse cvcrstressing

or even bursting. As remarked earlier, two-plane balancing is inadequate for

-. the delicate balance required in high-speed rotors operating beyond their funda-

mental critical speed and in these cases, the influence coefficient method

-• described in the following section must be used.
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Influence Ccefficient Msthk'

This weth!d is based on the assumption that the rotor-bearing system has

a linear response in that the rot-or whirl amplitude is directly proportional

to rotor unbalance. In built-up rotors, frictional and hysteretic effects

occur due to the deflected whirling shape of the rotor at a given speed.

This introduces a degree of non-linearity into the system, but the effect

is usually small, and the influence coefficient method is capable of providing

a high degree of balance in practice. This method may be applied at any

speed and is not dependent on the critical speeds of thu rotor. The rotor

may be balanced to any desired level, if an adequate number of planes

are provided.

Assume that the rotor displacements are to be measured witL d displacement

probe at each bearing, and let rotor amplitudes at these probes be x and x 2

respectively. Also, let there be flur balancing planes in Lhe rotor, and

let the total rotor unbalance be represented by four discrete unbalances, Ul,

u 2 , u 3, and u4 , located at tha balancing planes. Then at a particular speed,

the rotor amplitudes may be expressed by the linear equations

a1 1 U 1 u + 1 2 u2 + a1 3 u 3 +Q 1 4 u4

2 2 1 U1 + 222 u 2 + 2 3 u3 + a 4

The a-terms are tie influence coefficients, the numerical value of which

depends an the speed of rotation. They are complex in nature, with components

in the x- and y- directions, to account for both the magnitude of the displace-

ment and the local phase angle. Similarly, both x and u are complex.

With four balancing planes arid only two probes, it is necessary to perform

ten separate tests at two different speeds. The procedure is as follows:

1. Select a suitable rotor speed at which the balancing may be performed.
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r 2. Select an angular reference plane in the rotor from which the ongular

position of the unbalances may be measured. This reference plane

£ definas the real axis for the com;1e uabalau.e.

3. Measure the magnitude of the two amplitudes and the phase angle with

the uncorrected rotor running at the selected test speed and denote

the resulting values x10 and x 20.

1 4. Insert a trial weight, T, on the reference line in balancing plane I,

and again bring the rotor up to test speed.

5. Measure the two amplitudes as in (3). Denote these values x11 and: x2 11 6. Calculate the values of the influence coefficients from
Xll 10O
x 111 1

a cc 21 .20
21 T

7. Proceed in this manner, inserting trial weights in the remaining
A, three balance planes until the full set of eight influence coeffi-

cients is obtained.

8. Select a second balancing speed.

1 9. Repeat the above test sequence, steps (3) through (7), and obtain

-. a second set of eight coefficients. The total number of coefficients

is now 16.

10. Using the four amplitude measuremenLs for the uncorrected rotor,

obtain a set of four equations with the four unbalance components as

"follows:

X10  a 1 1 i 1 + a12 u2 + a13 u3 + a14 u4

X =a- + a u + a u +a 09u
20 ,2 Ul 22 2 23 3 24 4

x16 ' a31U 1 +32 u2 + a33 u3 + c34 u4

X 26 = a41 U I 42 u2 + a43 u3 + l34 u4

I
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The unbalances ul, u , u3 , and u4 may be calculated from the above. These

calculations are quite extensive, and are most conveniently performed 3n a 1.
computer.

A numerical example will illustrate the higher accuracy of the influence

coefficient method over the rigid rotor methods. For this purpose, a gas-

bearing-supported rotor is considered which is dynamically rigid on passing

through its two lowest critical speeds. These criticals oc .ur at: 13,500 RPM and

at 17,000 RPM. The third critical speed occurs at 83,000 RPM. The rotor has

an overhung turbine wheel at one end end an overhung thrust collar at the

other end. During machine operation, there is access to only two balance

planes - one at each end. On the test stand, however, there is also access I
to two balance planes located between the bearings called the midplanes in

contrast to the two endplanes. I
The comparison between the two balancing methods is based st iccly on computer

calculations - no actual tests have been performed. First,;the rotor is given

a random distribution of unbalance and the corresponding rotir amplitude is

shown by the curve labelled "Uncorrected Rotor" in Figure 7.107 . This figure

shows the amplitude at one bearing only, the amplitude at t e ocher bearing is I
completely anaiegous. Note that only LOe second critical spled appears, whereas

the other bearing shows only the first critical speed. Thi4 is due to the I
particular geometry of the system. Next, let the rotor be ;balanced as if itI
was rigid and insert the correction weights in either the Iwo endplanes or in

the two midplanes. The two corresponding amplitude curves'show that although

the rotor balance is improved, local deflections of the rotor prevent the

balance from being perfect. Also, note that it is advanta,eous to apply the

correction wcighta in the mn -i-es cios- -,' the center o[. gravity tI,.a in

the endplanes. Then, balance the rotor by the influence cioefficient method.

First, use only the two endplanes and balance at 40,000 RPY1. The resulting

amplitude curve shows improvement in the rotor balance; but overall the

improvement is not quite as good as the results attained by the rigid rotor

method. Secondly, use all four balance planes simultaneously and balance at
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r '0,000 RPM and at 50,000 RPM. The rotor it now perfectly balanced for all

practical purposes. It is evident that the higher the number of balance

planes, the closer it is possible to mauch the residual unbalance in the rotor

and the better the rotor balance will be. On the other hand, a large number

-of balance planes do require a large number of measurmnts and it does not

seem too practical to go beyond 4 or 5 balance planes. However, since moat

-, rotors operate below their third critical speed 3 or 4 planes are completely

adequate.

Accept b[' 'ývcl. of Unbalance

j The deg , residual unbalance which will allow a machine to give, safe,

efficient, ana trouble-free operation over a sustained period of time is

difficult to specify because of the many factors and criteria involved. A

machine may operate safely and yet its noise level may be irritating to human

- being. Unbalance, which is feasible for a rotor at m speed, may be both

unnecessary and beyond the range of capability of conventional balancing

Smachinery at higher speeds. Two-plane, field balancing may be the only practical

possibility due to constructional inconvenience; but mltiplane balancing may

be needed to attain the balance level required by government specification.

A number of unbalance force formulae are shown in Figure 7. 08 , together with
2the basic formula(. Formula 1, v - 5630(W/N ) is effective up to around

3600 RPM, but beyond this, it is too severe and its requirements are beyond the

capability of conventional balancing machines at high speeds. To overcome this,
Formula 2, v - 5630(W/N,) [I + 65 10 N was developed. Rotors may readily

be balanced to this specification at all speeds. Both formulae are based on

. ~ý rmittirg a certain r -centage of the rotor weight (one percent below 3600 RPM,

to 7.5 percent at 10,000 RPM) to be the maximum transmitted force on a rigid

bearing, simply-supported rotor. At speeds above 1000 RPM, Formula 2 approximates

Formula 3, v - 4(W/N),the simple criterion used by some turbine manufacturers. These

I formulae give safe transmitted force values by prescribing realistic residual

unbalance levels.
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UnfortunatelT, specification of a safe level of transmitted iorce does not also t.
mean that the rotor whirl amplitude will be acceptable. Many experi"nters

such as Yates (Ref.151), Rathbone (Ref.152), and Reiher & Meister (Ref.153)

have given results for various qualitative evaluations of the vibration from

residual unbalance based on amplitude measurements. Figure 7.09 is a composite

of several investigations covering a wide variety of machinery. Figure 7.10

is a chart of human perception of vibration level - again drawn from several

investigators.

Table 7.01 is due to Federn (Ref.154) in which many types of rotating machinery

have been classified into types. The eccentricity of the c.g. has been taken

as the unbalance variable, as discussed previously under "Concept of Unbalance."

R3nges of eccentricity which give safe operation and small rotor amplitude for

each type of machine are specified. Feldman (Ref.155) has assigned the speed

ranges listed for the machinery groups. These data agree quite hell with the

results given by the formulae listed previously,givitg the overall vibration

levelsbelow the results obtained using Formula 1.

The above results were, in general, obtained using relatively small machinery

mt".2h of which would have been dynamically rigid during operation. Although

perfectly valid for these cases, the application of this data ro large, flexible,

high-speed machinery diould be considered more in the mtk.:l•g o i guide to suitable

balance levels rather than as a specification in view of t . diffe-en.es

between rigid and flexible rotors discussed previously.
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Table 7.01 Guide to toe Pe uired Quality of Bolar., (dr)

Quality Group Operating Speed RPM Rotor Type Displacement of c.g. 10 3in

A 7000 - 40000 Small hgh speed de- + 0.008 to 0.039S! vices. Gyros, grinders.

B 700 - 40000 Very high speed motors, + 0.020 to 0.073
small gas turbines,
gas turbines, blowers,

}i grinders.

1 1000 - 7000 Rigid, small motor + 0.078 to 0.390

armatures, turbo-
generators, superchargers

D 1000 - 7000 Commercial electric + 0.197 t6 0.985
motors, fans, gears,
crankshafts.

E 200 - 1000 Propeller shafts, + 0.780 to 3.900
reciprocating engines,
slow speed rotating
machinery.
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Knife Edges

Fig. 7.01 Static Balance of a Rigid Rotor, on Knife Edges

First Critical

Second Critical

________.__ • ,,Third Critical

Fig. 7.02 Location of Balancing Planes Relative to Critical Modes
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"Baalance Plane 1

E Balance Plane 2 ••

L •Unbalance

SFig. 7.03 Location of Balance Planes in Typical Rotor

Balance Balance

Plane 1 Plane 2

Rotor R '2G

BearingD
RtorR

• klrng D1 "---Fr8• 
Bea•ring D2

Base B

r2

I Fig. 7.04 Akimoff-Type Balancing Machine

I
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F1  F 2

Fig. 7.05 Spring-Supported Balancing Machine

1

aC

B
11"I

Fig. 7.06 Graphical Construction for Determining Angular
Position of Required Balance Weight
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Fig. 7.08 Unbalance Tolerance Curves

Reprinted from General Electric Report No. 58GL122, "Proceedings
Balancing Seminar, Vol. IV: "Unbalance Tolerances and Criteria"
by S. Feldima (BuShips, USN), April 17, 1958, Figure 1.
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ii VIII

3 TORSIOMML AND AXIAL EFFECTS

SNature of Influence on System

In addition to the lateral rotor motions discussed previously, most rotors

SI are subjected to both torsional and axial effects. These may take the form

of a constant-valued applied torque or force which influences other motions

without determining them, or they may be time-dependent, and capable of

generating motions in their own plane of action. A combination of both

j types is also possible.

Drive torque will not influence the rotor motions unless it is a significant

proportion of the rotor buckling torque cr unless the rotor is very flexible

j and the working deflections are large. Axial thrust acting on the rotor

from unbalanced gas or liquid pressure in a pump, compressor, or turbine

[ affects the motions similarly. However, in any machine where either torque

or force are applied during operation, the effects are rarely static even

though the harmonic component may be very small in proportion. Thus the

possibility exists for heavy vibrations to occur at the torsional and axial

critical speeds of the machine, in addition to the bending-torsional-axial

critical speed. This latter mode may therefore be excited by a cydlic

component associated with any one of its steady-state components.

t The present chapter discusses the sources of torsional and axial vibration,

the calculations of torsional and axial systems, and methods used in practice

to limit the motions within acceptable limits. The basic properties of

bending-torsion-axial interaction are then presented, together with several

[ resuits obtained. An important distinction to note is that bending effects

excited by synchronous unbalance promote whirling of the deflected rotor

[ shape about the static deflection line, whereas torsional and axial harmonic

excitations promote vibrations of the rotor in those directions. Where

I these effects influence bending of the rotor, the result is again whirling,

and not vibration.

2
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Sources of Torsional Excitation

Torsional vibrations arise directly from all sources listed in Table 8.01.

These may be classified into primary sources such as internal combustion

engines and propellers, and secondary sources such as machine misalignment,

unbalance. impulsive loads and so on. Any machine which is driven by a L.
reciprocating prime mover is a potential torsional vibration hazard.

Power conversion from reciprocating motion to rotary motion introduces a range

of harmonic components of which only the lowest orders can be balanced out

with crankshaft weights, a flywheel, and by the number and arrangment of

cylinders. Higher harmonics and the angular non-uniformity of the crank-

effort diagram cause drive torque fluctuations in the most sophisticated

engine output. Reciprocating pumps and compressors require similiar attention

to engine design. Propellers are a strong source of torsional ercitation

in propulsion systems. An aircraft propeller, or a turbine or compressor

blade frequently vibrates while it is operating in a turbulent wake or slip- L
stream of varying velocity. Ship propellers are influenced by cavitation.

Both high- and low-frequency oscillations may occur in the power transmission

system, which may be long and massive. This may give rise to system vibratioCns,

and so to gearbox noise and wear. A combination of a reciprocating-engine

driving a propeller or fan is a particularly dangerous arrangement.

Fans, pumps, and turbines are each capable of exciting troublesome moderate- .
to-high frequency oscillations in a system. In a fan or turbine, these may

be associated with incorrect setting of the diffuser or vane angles. Pump

system troubles may begin with cavitation in the vane passages, causing

rotating unbalance and also drive speed fluctuations.

A non-constant drive resulting from eccentric meshing of the teeth of a gear

pair may arise through radially-eccentric mounting of the gears, or by

angular misalignment of the meshing. In both cases, this leads to a synchronous

disturbance as the tooth contact point varies in radius throughout each cycle,

giving rise to a small cyclic torque component in the drive. A similiar

condition may result from indexing errors in relative tooth uniformity,
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F.
caused during manufacture. Here, the frequency of the error depends upon the

L• original gear-cutting machine, and on the number of teeth on the cut gear.

Gear tooth contact effects can be minimized in high-speed gearboxes by

providing helical teeth rather than spur, or spiral-bevel rather than straight

bevel.

Rotating unbalance from a gear or shaft can give rise to torsional oscillations

which are synchronous with operating speed by rocking a gear in and out of mesh

once per revolution, in the manner described above, especially if the gear

mebh £5 at the end of overhung shafts. Good shaft balancing, short spans,

and rigid bearings can do much to minimize these oscillations. Couplings

can give rise to a cyclic disturbance at some multiple of running speed if

either the radial or angular misalignment is sufficiently in error. Misaligned

universal joints create a twice-per-cycle disturbance. This problem has been

[ overcome with the con-vel joint in which uniform torque is transmitted by the

constant rolling action of arolling element surface.F
"- Electrical utibalance ý esults from non-uniformities in the magnetic field of

"the machine, or due to worn bearings which allow a gravity deflection of

the rotor.

1Shock loads and stairting transients give rise to vibrations which decay rapidly,

but may be of such severity while they last that permanent damage is done to

V a gear mesh, a key way, or to a shaft. Abrupt accelerations and decelerations

fi fall into this category. In systems operating with substantial torsional

fatigue hazard, the shock loading may be sufficient to precipitate final

component failure.

Critical Speeds of Torsional Systems

Torsional critical speeds depend on the inertia-stiffnessproperties of the

F machine system, and on its size. Commonly, at least one torsional critical

speed will lie within4the operating speed range. Torsional systems are usually

.[ readily represented by a number of inertias connected by flexible shafts,
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Figure 8.01. The frequency equations for a number of standard discrete-

mass cases are given in Table 8.02. In each case, the shaft is considered

perfectly elastic, massless, and without damping. The speed change across

the gear mesh results in a higher effective ibertia on the high-speed side

of the mesh. The frequency of the four-inertia system, case 8, is expressed in

determinant form due to the growing size of the frequency equation, for I

convenience.

Practical systems frequently require 10 or 20 inertias to represent them with

sufficient accuracy. The laboriousness of obtaining the roots of the frequency

equation in these cases is readily apparent. Frequently the first or second

torsional critidal speeds alone are required. These results may be conveniently

obtained using the Holzer tabular method, described in Der. Hartog (Ref.17)-

and Nestorides (Ref. 4 ), although any of the iterative methods for taking the

roots of a matrix described 'in Chapter 4 would be as effective. The Holzer

table is well suited to the digital computer, and this combination allows

any machine to be accurately represented in terms of stiffness and inertia,

and so calculated with excellent accuracy (Rieger, Ref.156). In many applications,

the only torsional damping available is shaft hysteretic damping and any

residual Coulomb slippage. Both sources are very small, and so even the

secondary sources of torsional excitation are capable of producing considerable

vibration amplitudes in the -icinity of a system critical speed. This fact a

has been demonstrated in the failure of gears and shafts many times.

Methods of Suppressing Torsional Vibrations

In con•mon with other motions, torsional vibrations are most effectively reduced

by eliminating the source of torsional excitation. Without stimulus there

can be no vibration. Table 8.01 indicates a number of remedies which have

been shown to be effective in dealing with torsional vibrations. Effectiveness

in each case arises from modifying the source of vibration in some manner.

Where possible, the source is eliminated entirely, for example, by using
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accurately-cut gears and by mounting them concentrically on shafts and in

bearings which have sufficient radial stiffness. In other cases, considerable

improvement can be made by reducing the size of the torsional excitation.

In an internal combustion engine, this may be done by proper design of cylinder

firing order, and by selection of suitable crank angles for the number of cylinders

required. Furthermore, the design and fitting of the most effective balance

weights to minimize or eliminate completely the primary and secondary unbalance

forces and couples on the crankshaft makes a significant contribution to the

smoothness of the crankshaft drive torque produced.

All rotating components in a power transmission system should be statically

and dynamically balanced for flexural motions, as rotating unbalance frequently

leads to the generation of torsional oscillations through the flexibility of

the system, the gearing and the degree to which there is coupling between the

bending and torsional defo,-mations of the system.

In certain instances, it is possible to Ae-tune the system, using a vibration

absorber as shown in Figure 8.02, which has its natural frequency tuned to the

operating speed of the machine. Hence, during operation, the tuner vibrates

heavily, leaving the machine substantially vibration-tree. These devices

are difficult to tune precisely, as the resonant peak of maximum effectiveness

is very sharp and requires constant speed. Several detuners may be used together,

or the detunt•r may be damped. Additional damping increases the range of effecr

tiveness, but decreases the maximum effectiveness at resonance.

By far the most common vibration suppression device is the torsional vibration

damper with which the troublesome oscillations are minimized by attenuation,

and through dissipation of the vibrational energy. Many types of tor ional

vibrai•i,.-C d&pera are available comnercially. The Coulomb friction

damper Figure 8.03, operates by dissipating energy at the friction interface

through relative slippage between the inertia ring and the oscillating hub.

Frequent adjustment of the interface contact pressure may be required due to

wear. The viscous friction damper (Figure 8.04) consists of an inertia ring

and an oscillating housing which are unattached mechanically. Between these
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components in a thin fluid film, usually of a highly viscous motdrial, such

as a silicone oil. Slip between the components during operation shears the fluid

film and dissipates the energy. Pumping chamber dampers (Figure 8.05) also

use an inertia ring. Relative motions of the hub tend to pump the working

fluid through small orifices and through confined spaces, to :issipate energy.

Torsional dampers may be designed to give very effective vibration suppression

over wide ranges of operating conditions. However, the design must be based

on the dynamical characteristics of the entire system to achieve maximum

effectiveness in operation.

Sources of Axial Vibration

Pressure fluctuations in process fluid machinery often contain a cyclic

component generated by some rotating mechanical asym•uetry. The forces

involved can be quite large, and so operation in the vicinity of an axial

critical speed has been known to give rise to sizeable vibrations in that

direction. Other systems which drive propellers or fans are well-known to

be susceptible to axial modes due to the aerodynamic forces involved in the

motion. Vertical rotating machinery supported on a lightly-loaded thrust

bearing may experience vertical vibrations of the rotor if the machine operating

speed lies near the axial natural frequency of the rotor-thrust bearing

combination. Motions of this type have been discussed by Den Hartog (Ref 17)

with regard to self-excited oscillations in steam turbines, and in vertical
Francis water turbines. These motions may occur with both rolling-element

thrust bearings, and with fluid-film thrust bearings. Sizeable vibrations are

less likely to occur with liquid-film thrust bearings because of the squeeze-

film damping present; but with gas-bearing machinery, the hydrodynamic film

stiffness and damping are considerably smaller, apd the possibility of

dangerous vibrations is much greater, particularly as the operating film thick-

ness is smaller, and a touch at the high operating speed usually employed could

be catastrophic. Where a hydrostatic thrust bearing is used, the film stiffness

is larger, but damping is still small, and this leads to similiar motions as

in the case of hydrodynamic bearings, but at higher operational speeds. It is
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3 timportant to note that the stiffness of fluid-film thrust bearings is

highly non-linear with displacement, and so the calculated natural frequency3 based on a specified operating film thickness is only valid for amall

amplitude motions. An example of such a calculation is given in the following

[I section. Alternatively, where the bearing is supported by a thin diaphragm

as in certain totally enclosed process gas systems, axial vibrations of the

I bearing shell and rotor may occur due to the diaphragm flexibility as a plate.

The vibrations in this case are linear up to quite large mplitudes.

The above comments apply to axial systems, in which the rotor moves as a rigid

body against the f:exibility of a bearing or pedestal. Where long connecting

drive shafts are used, or with systems having heavy end masses and relatively

j small diameter connepting -hafts, elastic axial vibiations of the rotor itself

may occur. However, 1- .lative stiffness in this direction generally causes

[ these vibrations to occur at fairly high frequencies.

[ Critical Speeds of Axial Vibration

The speed at which an axial system becomes resonant is identical with its

natural axial vibration frequency. The system •ay respond to any of the stimuli

discussed above, either at rotational speed for a syqnucroxs excitation, or to

a higher or lower frequency, depending on the non-synchronaus source; or it

may experience self-excited oscillations at its natural frequency, at any speed

[ including zero rpm. Natural frequencies of several simple axial systems are

given in Table 8.03. The system flexibility may be the bearing, Cases 1 and

2; or the rotor ahaft, Case 3 and 4, 6 and 7; or either shaft and bearing, or

bea-ýing and pedestal or'diaphragm, Case 5. The mass in all cases consists of

the rotor, the end disks, or the bearing shell, or a combination of these

masses. Case 2 shows the damped natural frequency which may differ from the

undamped natural frequency for cases where the bearing fluid-film damping

r is considerable.
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Suppression of I.x • J Vibrations

Axial vibrations tause trouble luss frequently than either bending or torsional

vihrations and sG ILes specific information is available on their suppression.

However, the e..tablished principles of vibration suppression my be applied as

follows in any troublesome case:

1. Remove the axial natural frequency from the troublesome frequency range,

preferably by stiffening the bearing, or by reducing the weight of

the rotor. Both effects raise the critical speed. Where this is not

effective, decrease the bearing stiffness by using a greater film

thickness, or by using a floating ring bearing, and operate the ma-

chine beyond the axial critical, providing good bearing damping capa-

city to limit motions on passing through the critical speed.

2. Change the lubricant to increase the fluid-film damping available.

Adequately designed squeeze-film damping is amongst the most effective

damping available, and thrust bearings provide a conveniently available

source.

3. Design a simple pendulum detuner for the rotor to absorb the critical

vibrations.

4. Design a Coulomb damper to absorb the energy of the axial vibration,

Figure 8.03.

Axial Vibrations of a Hydrostatic Thrust Bearing

Thrust bearings are often the most flexible components in an axial system, and

so the possibility of vibrations due to this source is considerable. With

rolling element bearings the stiffness is usually fairly large, and so the

axial natural frequency is likely to be high in, or beyond, the operating speed

range. Liquid-lubricated bearings may have lower stiffnesses, particularly

hydrodynamic thrust bearings but the damping due to squeeze-film action is high,

and so failure by surface touching is uncommon in a bearing whose static load-

carrying capacity is adequately designed. In a hydrostatic liquid thrust

bearing, the stiffness is determined by the bearing inlet pressure and the
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3 operating film thickness. Large squeese-fil d40100 if again available,

Annular and spherical hydrostatic thrust bearings have been investigated by

Sternlicht (Ref. 157), Raimondi (Ref. 158) and Rieger (Ref. 159).

3 The operating stiffness of ahydrodynamic thrust bearing is usually extremely

low, and this combined with the small inherent damping makes this bearing type

ia potential hazard in most machines. However, the hydrostatic gas bearing

combines practical load-carrying capacity with low friction, thus overcoming the

above problem. Although the overall stiffness increase between the two bearing

types may not be great (due to a considerable increase in the designed gas film

thickness for the same applied thrust load), the amplitude-of-motion tolerance is

much larger due to the thickened film, non-linear stiffening of the film accom-

panies the smaller thicknesses and the damping capacity is larger. These

bearings are susceptible to a self-excited instability known as 'pneumatic hammer',

as are all hydrostatic bearings, in which the large-amplitude oscillations which

develop may cause bearing failure.

The bearing considered in this section is shown in Figure 8.06, and consists of

two circular plates. The upper load-carrying plate has a circular recess, the

depth of which can be varied. The pressurized gas enters through the restrictor

f in the lower plate, and flows through the recess radially out to atmosphere.

The pressure distribution between the plates is shown in Figure 8.06 , and

is known to be in the form of a frustum of height (po-Pa), where p is the

recess pressure and p a is the external pressure. The operating film thickness

is H • Any small incremental change h in film thickness corresponds to a

pressure increment p. Linear relationships are assumed to exist throughout,

based on small deviations from equilibrium values. Changes in gas density p

are due to pressure variations, and so the basic gas law p/p -RT may be

used, where the symbols have their usual meanings.

2
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The pressure at any point in the annulus, between radii R and R is given by

P -P - (P -P) rI
a r r a a) (8-R)

In practice, good load capacity with low gas leakage is achieved with R r 1/3 R.

Adopting these proportions, and writing the equation of motion for the system

mass m gives:

"r R
nab a ZXn pr dr - f KKr drj

223 + 3 )_ r i2[M Pit R3 (R - R )d

[
"M pAe (8-2)

where

Ae e 2R3 + R 3 _ 3R2R

2 FR2 3(R +r-3R)r

r

For a given supply pressure, gas flow into the bearing depends on recess

pressure only, as this determines the orifice flow. Bearing outflow is a

function of recess pressure and the film thickness in the annular clearance. f
For small deviations from the equilibrium point shown in Figure 8.07 (p and h)

there are corresponding variations in inflow and outflow which may be repre- {
sented approximately by:

/ dwl
Inflow w, i I p n - p

\dP

2tl ) h Op+Oh (8-3)
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3 The time rats of change 'of the bearing gas msac a tet to then:

Ii v - v
1 

-2 -V( +)p- b (8-4)

I i where a, •, and 9 are all positive coefficients. The bearing gas mass is then:

(A + 2 (r r r dr + f 0 a r dr

r

Using Equations 8.01 and 8.02 this reduce* to:

. I PP 2 - A)] (8-3)

The time rate of change nf the bearing gas constant (A) is equivalent to the

[1 difference between the inflow and the outflow (w), and corresponds to the

time-rates of small deviations from the equilibrium point (• and h), i.e.,

Iw- a -() + (I) hi - qj + sryk (8-6)

where, by partial differentiation of Equation 8.05

i ~AeHo + •R

[ ° o
q ( I - tOa nR~p2

q (Mo Ae(P "

[ s(P - 2f. .

0 0

Combining Equations 8. 05 and 8.06 to eliminate w gives

[q• + sA + (a+ ) p + Qh -0 (8-7)
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As p - (r/Ae)h, and • - (m/A.) ¶', substituting leads to the following basic

differential equation of the system:

SAO A6 L+" a + ÷ + + !0 h -0 (8-7)

The inherent stabilite of the system for axial motions may now be examined

by applying the Routh criterion to this expression, which has the form:

+ c2H + cfi + coh - 0
2 1 0

whdre co, c 1  and c 2 are all positive coefficients.

The system is stable where the inequality c 1 , c2 > c is satisfied. In terms

of the system parameters this requires L
a 13 > (8-8)

B S

for stable operations of the system. Considering Figure 8.07 , large values LI
of the ratio a, + j3correspond to large values of recess pressure p and

small values of annulus height H . The ratio • is large where the maxim•u

load is supported with the minimum possible HO. However this also leads to

""u11 @ values. The value is proportional to the recess depth A, the

annulus hetght Ho. and inversely as the recess p-essure p. Thus p and H

have an opposite effect on the magnitudes of the ratios forming the two

sides of the above inequality. It is also clear the A should be minimum for

stability. The value of~a is also influenced by the manner in which the

pressurized gas is supplied to the bearing. Results indicate that a large

diameter nozzle gives a larynX-value than both a small diameter nozzle, and

a capillary.

The above analysis indicates that where stability considerations are important

in the design of pressurized 3as thrust bearings, the gas storage capacity

of the bearing should be minimized, requiring a small recess depth. A small

pressure difference (Ps" Pr tends to promote stable operation, and this is
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provided by having a large diameter inlet nozzle, rather than a mall nozzle
or a capillary. Choked flow or inherently-compenaated bearings promote unstable

operation. Good design requires that, where possible, the bearing annular

clearance should becoAme the flow restrictor, rather than the inlet nozzle.

[ The above theoretical results have been substantiated by experiments conducted

by Licht, Fuller and Sternlicht (Ref. 141) who, for a bearing with 3.00 in O.D.

t[ pressure,ps - 73.5 psig, nozzle diameter 0.032 - 0.078, and recess depth

0.003 - 0.500,found large amplitude self-excited oscillations in the range

25-30 cps. This work has been further extended by Licht (Ref.142).

• L Effect of Axial Force and Drive Torque on Bending Motions

In many turbomachines, the operating conditions are such that the bending

Sf motions of the rotor are influenced by the drive torque, and by the axial

thrust. These effects may alter the position of the bending critical speed in

relation to the operating speed, and so affect the dynamic performance of the

machine. The present section describes the extent of these effects on several

Scommon machine configurations.

f [The operation of turbomachines such as pumps, compressors, turbines, and

expanders involves a pressure difference to promote flow. In many instances,

L! this pressure difference is not inherently balanced in the machine layout, and

the resulting axial thrust must then be accommodated with a large thrust

L bearing. This is a common feature of axial flow machinery, includiag steam
turbines, unless a central inlet divEded-flow design is used. Centrifugal

E pumps and blowers are sometimes designed with double-acting impellers to avoid

large thrust loads. From q rotordynamic standpoint, the most undesirable condition

E occurs where a large thrust is generated near one end of a slender, high-speed

rotor, and this thrust is absorbed by a thrust bearing located near the other

end of the rotor. The rotor then acts as a slender column, and if the axial

compressive load is a significant proportion of the buckling load, the bending

I critical speed may be reduced considerably. A similar condition occurs with

long slender rotors which operate with high drive torque, either steady-state

I or during transient run-up. As the machine torque approaches the torsional

buckling load of the rotor shaft, the bending critical speed is again depressed.
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i Both axial and torsional effects may be present together in a particular

machine, and their overall affect on critical speed performance for that

configuration must then to considered.

Several cases of single-disk rotors supported in rigid bearings have been

studied in dc=ail by Gra-mel (Ref.leO). For a shaft having symmetrical lateral

stiffness subjected to an and thrust P, the relationship between the simple

natural frequency wo and the thrust-load natural frequency w is given by:

0x

where k is a numerical coefficient given in Table 8.04 by Ziegler (Ref. 20).

The value of k1 is influenced by the type of bearings (system end constraints)
used. Where the shaft is tcted on by an applied torque, T, the effect on the

natural frequency w of the system is given by:

I. 2

jD2 K (8-10)

where k2 is a numerical coefficient, given in Table 8.04, for instances where 2.

the applied torque is only a small proportion of the buckling torque. The
value of k2 is again influenced by the shaft end-support conditions. The drive

torque may be applied in a number of ways, and over any shaft length. If the
drWve torque is applied semi-tangenttally, as shown in Table 8.0, Wehrl [

(Ref.16ee has shown that a critical interval exists

3- 1E- 3 E (8-11)

C U
above and below which the motion is stable. The numerical coefficient kw

23

is given in Table 8.04and this result also applies for relatively small T

values of applied torque. In case 7, k depends on the angle n adopted by

the universal joints with respect to one another, in the unloaded state.

For e 0, the limits of the critical interval are more accurately given by:
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I

Case 7 , 0 0

®€192o -5 2)

v he~re v is Poisson's ratio for the shaft ,material.

For a quasi-tangential couple acting on the disk, as in the case of a turbine

having two diametrically-opposite sets of inlet blades, two critical angular

velocities exist. For small values of T these are given by:

+ L (8-13),
[ C

where k4 is a numerical coefficient given in Table 8.04. In cases 2 and 3( these two critical speed values coincide when T is small; For cases 6 and

8, the critical interval is again given by:

1-k < < + k (8-14)

CW
in terms of the corresponding values in the Table.

Where axial thrust and drive torque are present simultaneously in a given
system, the combined effect may be determined from the expression

PL2 2
1- k k (8-15)

C• 1II 5 ETI

C in which k and k are numerical coefficients, given in Table 8.04.
1 5

LIn the case of a uniform shaft which has its mass and elasticity uniformly

r distributed along its length, the basic differential equation of motion for
L free vibrations in the x, z plane including axial force effects is:

[
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4z •2 9 •t2

A similar expression exists for free vibrations in the y, z planse. For

harmonic motions in a natural mode , the solution for transverse displacements FI

of the rotor is:

X x(Z) cos at (8-17)

where I]
x(z) A cos a z + B sin a z + C cosh 2 z + D sinha 2 z L

al a [A i?+ 2] 1/2L2EI " •

P2 2 1l/2L
a I--+ + - 1(-82 12EI t

In the case where the uniform shaft is supported at either end in rigid bearings -

which permit shaft angular deflection but nodisplacement, the frequency

equation may be determined by substituting the end conditions of zero displace- i

ment and zero bending moment at z - 0 and z = L, and rejecting trivial solutions

to obtain:

sina aL sinh ot L 0

The frequency parameters a, and C2 are always real, positive and a 2 - na1l

The frequency equation may be solved by writing

sina l ainhr•ntL 0

and substituting trial aL values. As n approaches 1.0, a1 approaches a2
and the condition is P 0 0, i.e. a whirling uniform rotor, for which the lowest

eigenvalue is atL I2 L ig. As n varies, so the aiL solution departs from n.

Uniform rotors supported in other types of end conditions may also be analyzed

by the above method.,

290



- - - -, - - - -- --- - - - -

SIn general, the effe-t of end thrust is to lover the eignvalue and so to

depress the critical speed below that of a simple rot", aL - X.

i _ I
If the shaft in the above problem is subjected to applied torque the analysis

I becomes far more complicated, but the results are comparatively simple.

Greenhill (Ref.39) has examined the influence of both axiel torque and rotation

Son the buckling of a long uniform shaft. Formula* were obtained for maximm

shaft-lengths consistent with stability against buckling, for relatively

low-speed operation. Southwell and Cough(Ref.91) have considered the other

"aspect of the problem, i.e, where the speed is the msjor factor, and the influence

E, of moderate applied torque and end thrust on the critical speed is required.

The basic equations derived by Greenhill again apply. The applied torque gives

rise to the following bending moments in the shaft:

*-T about the y-axis
dz

T about the x-axis
dz

as shown in Figure 4. 12 . Considering motions in the x, z plane, the equation

of motion is:

zEI ý4X- T !x- + P ý + !A- 2X- 0 (8.19)az-- 4 az3 az 2 9 at 2

[ and in the y,z plane

El EI- + T 21 + 2 P + 2 - (8.20)84 a3 82 g •2.

Putting R . x + iY and combining gives

-A- + iT +P + - o (8.21)
- ,4  z 3  +Pz 2  g t2

SThe solution to this enuation is:

SR - r(z) cos wC (8.22)

2
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where

r (z) A 11a I + A2 '+ A 3 +A

where K K X and K are the roots of
1' 2' 3 4

24 3 2 yAw2
EP.k +Tý -PK - ~ 0 (8-23)

For long end bearings, the boundary conditions are:

x - y - 0; at 1 - 0 and z .L

d~x - - 0; at -0 and z L (8-24)
dz dz

Substituting gives

A + A + A + - 0
1 2 3 4

X&A +X A + A + XA - 0
1 l 2 2 3 3 4 4

A1+ a122 + a3A + 4

I1 +1 2'2A2 + a 3X 3 A3 +aXA -O (8-25)

where a, - e i The critical speed condition is obtained from the condition

where the determinant of the coefficients A. equals zero. Expanding this

lends to

Z(aia + a a - X)(N - 0
1 3 2a4)( 1  2 3 4)

Dividing through by 1822 a and noticing that

/Z34
+ V 2 cos + - -K 4 )

a aa29
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r -- -- - 777,

I

3 leads to the critical speed condition for fixed dtnetion bearings:

(5 1h )(X3-h) cos (X1+2-X3-X 4 ) • - 9 (8.26)

Similarly, for short bearings, the boundary coaditlM s we at both a - 0

and a - L

* zey-O; d

d 2 x - T -- 0;

dz2

d since moment oad dispicement b,th vanish
2 at the ends

dz 
2

These expressions lead to the critical speed equation:

:•t . £(k2-22)( 3
2 X•2 ) cos (Xl 1 k 2 -k 3 - 4 ) ]L -8(.

ECz X -% 2 o (8.27)

Southwell and Gough give two diagrams for the at- bearing conditions which

"allow the value of the critical speed parameter C to be determined directly

Cm as a function of the torque and thrust parameters, A and B, where:

TL B FL2  wAW7!4

L 2EI 4E= 16 Eli

These diagrams are reproduced as Figures 8.08 sad 1.09 in this report.

The effect of axial torque alone on bending critical spe*e has recently been

Sconsidered by Rosenberg(Ref.161), for a uniform rotor. Results up to the

sixth bending mode are given.

[

[
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SouIgc of Virti .2aaa lm dz

1. Internal Combustion Gas pressure fluctuations. Modify firing order,
hgine Inadequate engine compo- crank angles end timing

neat design. (Gasoline). maintain
electrical system. Use
larger flywheel. RI-
select balance weights.
Use fluid coupling.

2. Propellers. Pressure fluctuations Use ducted propeller.

Fans, pumps, turbines during rotation. Vibra- Increase ship-propeller
tion of blades. clearance. Eliminate

struts. Use higher in-
ternal damping material.
Increase number of blades.
Reduce cavitation effects.
Modify guild vane inlet
angle. Add flow straight-
eners on honeycomb.

3. Bevel and Spur Gearing Eccentric mounting of Remount concentrically.

Non-constant drive, gears. Oblique mounting Locate gears accurately
of gears. on shaft. Recut teeth
Index error in teeth. Mis- or replace gear. Re-
aligned assembly. Eces- align in bearings.
saive backlash. Helical tooth required.

4. Rotating Unbalance Shaft eccentricity. Reassemble concentrical-
ly or rebalance.

Shaft flexibility. Multiplane balance

through speed range.

Shaft &symmetry Balance or cut for
symmetrical stiffness in
both flexure planes.

5. Coupling Improper alignment. Realign. Increase
Universal joint with large coupling flexibility.

Reduce angle. Use con-
angle. stant velocity joint.

Use bevel gears.

6. Electrical Unbalance Drive motor Modify: magnetic design
of ooles; number, or
edges. Increase number
of poaes.

7. Starting Transient, Rapid start-tip. Load Gentler electrical
Shock Load. application. Load re- starter. Gentler clutch,

ductlon. automatic operation.
Fluid coupling. Mag-
netic coupling.
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[Fig. 8.01 Inertia-Stiffness Distribution for Torsional SymLem
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A~MYDI A FUAIIDNTALS OF HYDRODYNAMIC LUBRICATION THEORY

Th. theory of hydrodynamic lubrication is based on a particular formslation of

the Eavier-Stokes equations, knon as Reynolds' equation. The underlying

assumptions are:

1. The thickness of the fluid film y is very small compared with the

2 length x and breadth z.

N2•o variation of pressure occurs across the film thickness, ap/ay a .

3. The flow is laminar. No vortex flow and no turbulence exists within I
the film.

4. No external forces act on the fluid film. Thus, X - Y - a 0.

5. Fluid inertia is small compared with the viscous shear.

6. No slip occurs at the bearing surfaces.

7. Velocity gradients in the direction of film thickness are negligible.

With these assumptions, the generalized Reynolds' equation becomes:

dx2 +s 124- .. DVj6Q1 -S' ,4x• _V2) Ox

+ 12h (A-1)
dt

This expression applies to both compressible and incompressible lubricants. The

left-hand side describes the pressure distribution throughout the bearing. The

first right-hand term is due to the bearing velocities along the oil film. The

term l2oV is due to the bearing surfaces in. a direction normal to the oil film.

The last term accounts for trme-dependent pressure variations in the film. For [
a journal bearing, Figure A-!, rhe shaft alone rotates, U - 0, and Reynolds'o 2
equatron tor a compressible lubricant becomes; [

4x ... ( 9).,+ ) 6U + 12pV + 12h 4 (A-2)

dX ¼ 6Z a i t
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With a campressible lubricant p c constant, and for a Journal bearing ayuol4s'

eqration becoase:

SThe*se equations may contain viscosity, density, film thickness and time as

parameters. These paraeters both determine mad depend on th* temperature and

pressure fields, and on the elastic behavior of the bearing surfaces under

pressure and temperature. Thus, to obtain a complete and accurate represents-

L tion of the hydrodynamics of the lubricating film, it may be necessary to con-

iider simultaneously the Reynolds' equation, the energy equation, the elasticity

equation and the equation of state. Both energy and elasticity considerations

are discussed at length in the book by Pinkus and Sternlicht (Ref. 2). The

equation of state applies to compressible lubricants, and is

p/p -lIT

as given by the perfect gas law. In general, it is sufficiently, accurate to

ignore variations of p and • with T, and to substitute the equation of state

into Reynolds' equation. Where this approximation is impossible, the equations

must be solved simultaneously.

Incompressible Lubricants

For an incompressible fluid, the dynamic Reynolds' equation for journal

bearings of finite length may be written

I -)+=6 2- + 12o PCos 9 (A-4)

Introducing the dimensionless parameters

x = x/D; z z/L; h h/2C; e p/C

3
p = () 30
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"* I
and asoming constant viscosity, Reynolds' equation in dimusloulan fta m

wherem::

h a 1/2 (1 + c co 0) A

The resulting fluid-f~il forces in the radial and tangential directions acting

on the rotor are

F - w (1- 2%ff ;coo• dx da

- (1-2%• fl[c c'I. ]"'-- (A-6) [
r (0

where Li

-2 _1) f

For rotor-bearing dynamic analysis, thesee forces are linearized with respect to U
displacement and velocity to g•ved " k. -. I

c<''c l' ) -2(•) J

Expanding the above expre~ssion in a Taylor series above thc steady-state

!I

LI
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L ~This uitme

dl -- f I

Changing from polar to rectangular coordinates as smmwa in Figre A-I

L x C coo C y- Crasin a

- the force coordinates in the x and y directions are

1- dr ., 2 - 22f + r 2ft +1- '4 .cf {-Cosc ra+ sin a + a 5coa iJad

r Qf 2 2ft 2 2fr + ft )c*a1i~
[L- co°' + si ++ (---,co.Gsin j

1- (dx)

2ft ft 2 fr aft 1
Cos CL Si + (7- - , ,) Cos o dy

22frr 0 2a+2t ft]

d - cos- + a sin20 )+ cos a sin a d'I ru [ft o2a +f 2 ft 2 fr aft a s in(

d VcoFa -aj 2 -a nC c .sin Cldx

L ft 2 (f 2 2ft r fi . (A)

2cos a + +fr sin2C (-+ - ) cos 0 sin (dy)

This is expressed in the form of displacement and velocity coefficients, common-

ly called spring and damping coefficients for rotor dynamic analysis as follows:L
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dz. + C ~ Rd) dy + (y)
- ~ xx XY NY

dy CR d + C ON2) +K dy + C (d;) (A-8)
Y 71 Y yyy U

Numerical valuese of these spring and dampir.4 coefficients for incompressible

bearings are given in Table A-I

Compressible Lubricants Q
A rA umbr of techniques have boem used to obtain solutions for the case of a

* finite-length gas bearing such as the perturbation method, Ausuian (Ref. 113),

*the Galerkin method, clieng (Rof.126), the ph method Aujsman (Ref.128), and the[I

linearized ph method, N~g (Ref.127). Of these, the linearized ph method leads

to an improved analytical solution which largely eliminates the defects of

first-order perturbation. This method linearizes the compressible Reynolds'

equation by setting the product ph of the pressure and film thickness as the I
dependent variable. Thre steady-state pressure distribution in given by

I Ps 1 + I A -2 91 xi o A9

where 1 A i h an ~ {ifn + 2  C s } A9

g, I- A in h sin + B cooah 09 cos~

I /A +A con h a Z oo + H sin h C1sint3 l
A ' coo ~ ho~ OfJD WD sin h9Jjýp sin (LD

sin h 2C, (LID) + coo 2 (LID)

B cLasini h jxjL D)coo gj (/Dý
snh (LID) + cos (LID)

1/2 [11+
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Pý + ps 41 Cos
-" ~1 + 4 Cos

Swhere p(1) is the first-order perturbation. solution fcc pressure.

•_The radial aud tangential components of load capacity are:

) ) 2 2

where and )are the first-order perturbation sorults. The total loae

Lcapacity and attitude angle are given by

2!
-( 2) (--)(l)

2(()

,I ~Tan* - 1 -c tan*@I .

where W(1) and 0 are the first-order perturbation results. Figure A-2 shows

W(I) and * (i) as function of the bearing number A for various (L/D) ratios.

The Reynolds' equation for dynamic loading with a compressible lubricant may be

solved by a number of methods, including the fintte-difference technique, .Sternlicht

(Ref. 1 1 8 ). The force derivations with respect to diaplacement and velocity are

I 2 T WT

~ C~-) a 2 ( )

D S

where e' - a - t - nd Get
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Reprinted from 1MCHANICAL DESIGN AND SYSTEMS HANDBOOK,
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McGraw-Hill Book Company, I164.
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APPENDIX B - TRANSFORMATION FODMUIAZ FOR STATIONARY AND ROTATING COORDINATES

The required transformations for cartesian coordinates to either stationary or

rotating polar coordinates are obtained as follows:

y

O r P

r

x

Stationary: r x + iy

x r coag

y - r sing

x - rO2) cosg " (r5 + 2i) sing

- r4) sing + (ri + 2ii) cosg

Radial Acceleration: a - x cosg + • sing
r

- ( r - 2)

Tangential Acceleration: at - -* sing + j cosO

S(rQ + 2g).

y

p

r
A

S r

C 3
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Let the rotating coordinates beal, r and let the corresponding unit'vectora be

* 9, I, as shown ln Figure B-2. Let r be the modulus of OP T such that Y r.

{ The unit vectors vary in direction and so:

(df/dt) .8 (dt/dt) , -

and so

V - (dr/dt) = d/dt( r)

A

Differentiating again gives

T - (dV/dt)

S•(i -r02) + A(ri + 2i4)

More generally, by not placing the rotating coordinate • along the radius OF the

vector expression for the rotating radius is:

qI Y

p

0

where i, • are unit vectors in the 4,1 axes respectively, and

(;(d/dt) "d"/dt( oltl as before.

7 (r(dr/dt) = + 1q + 4(dT/dt) + j(dj"dt)

a~2, + +(~ 2-~ +(1 2Wa 21)
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in addition, if the radius Y relates to stationary x,y coordinates, and the radius

a relates to the rotscing coordinates 4,q, the relationship between them is

r t le [
i - + (i mi ) LQ Im

+- (+2i1 -a z) e•

To convert from rotatin3 coordinates back to stationary coordinates, the trans-

formation expressions are "

2 - e

I

!

S- •-im) e" tot

I

2 -w 2• - - r ) e- ia

3
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