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ABSTRACT 

Measured drag coefficients for cylinders, normal strips and spheres 

in nearly free-molecular flow at M = 6, 8 and 10 are correlated with a 

collision-rate parameter suggested by the modified Krook model, and com- 

pared with theoretical estimates based on a variety of kinetic models 

and methods of analysis. 

The comparison of theory and experiment and the comparative effec- 

tiveness of various rarefaction parameters are discussed, and suggestions 

for further experimentation are made. 
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1.0  INTRODUCTION 

The principal piece of infor.rution which is currently needed to complete 

a description of the various regimes of rarefied gas dynamics, for purposes 

both of understanding and engineering prediction, concerns the behavior of 

typical flow patterns at their first departures from their free-molecular 

flow limits.  Given this, together with the well-established thee :y of free- 

molecular flow and the theories and copious experimental data covering the 

slip flow regime, we can interpolate to describe the remaining transition 

flow regime with fair confidence. 

Theoretical treatments of nearly free-molecular flows have run consider- 

ably ahead of experimental studies because of the difficulty of producing 

laboratory flows of known and suitably uniform condition with sufficiently 

large mean free paths.  This latter difficulty is currently being overcome 

in a number of laboratories, by use of shock tunnels, or cryopumped steady- 

flow tunnels with cooled nozzles and boundary layer suction.  At Berkeley, 

we are exploring new ranges of high Mach number, large-mean-free-path flow 

by use of the free jet testing technique. 

Experimental and theoretical investigations of the free-jet flow field 

(Ashkenas and Sherman, 1964), and drag data for cylinders and strips 

(Maslach, et.al., 1964) have been presented earlier this year, at the 

Fourth International Symposium on Rarefied Gas Dynamics  held at Toronto. 

For the present paper we have made a critical review of this drag data, 

re-reducing it in terms of a rarefaction parameter a .  which is both 
O' 

more theoretically pertinent and more accurately measurable than the free 

stream Knudsen number. The sphere drag data of Kinslow and Potter (^öZ) 

are similarly re-expressed, The theories tested by comparison with these 

data are all those kr hors (except those of a semi-empirical 

nature), and include some hitherto unpublished results. 



2.0  RESUME' OF THEORIES OF NEARLY FREE-MOLECULAR FLOW 

We limit our discussion to those methods used to predict the drag of 

typical aerodynamic bodies placed in an infinite gaseous medium.  (The same 

methods can often be applied to predict the heat transfer characteristics 

as well.)  The semi-empirical methods of Rott and Whittenbury (1961), Brooks 

and Reis (1963), and Kinslow and Potter (1962), in which a free parameter 

in the theory is adjusted to give best agreement with experimental data, 

will not be discussed here. While they provide simple formulas for inter- 

polation in the transition regime, they do not give a priori extimates 

independent of experiment. 

The complexity of the general Maxwel1-Boltzmann collision operator is 

so great that all results to date have been obtained by either assuming hard 

sphere molecules and calculating approximately the effect of collisions 

involving molecules emitted from the body ("first-collision" methods), or by 

replacing the collision operator by a relaxation type term and obtaining an 

approximate solution to the kinetic equation by iteration starting from the 

free molecular solution (iterative methods). 

The first-collision methods have been restricted to the case where the 

molecules emitted from the body have an average speed very much less than 

the hypersonic free stream speed.  The natural small parameter is 

2 
ß = dn a S,  where d is a typical dimension of the body,  n  the 

a>b °o 

number density in the free stream,  0 the diameter of the hard sphere 

2      2 
molecule, and S,  = m u /2kT, -  Assuming that the molecules are emitted 

from the body with a Maxwellian distribution specified by T, -  the results 

for the drag coefficient are of the form 

'fm 
ß j 4n(ß/Sb) G1(Sb) + ß G2(Sb) + 0(ß2  in 6) (1) 



3. 

where 

j = 0 for a three-dimensional body 

j = 1 for a two-dimensional body 

and G,  and G„ are of order unity for S > 1. 

The possible relationships between    and the physical variables 

measured (or inferred) in the experiment are discussed in the next section. 

The iterative methods fall into two classes.  In the first class 

(Knudsen and integral iteration) the kinetic, equation is rewritten as an 

integral equation and one iteration is performed starting from the free 

molecular solution (Willis, 1959).  The collision term is represented by 

the "modified Krook" expression which was specifically designed for non- 

equilibrium situations (Maslach, et.al,  1964).  The natural small parameter 

for this method is given by 

a -  Sn (d/2)(m/2kT, ) l 
oo • D 

!l 

where  8  is a constant appearing in the collision model  such that the total 

1   2 
number of collisions in :he free stream i~- ~Sn   per unit tJtne and volume. 

t.     oo 

The calculations were restricted to supersonic Mach numbers  bur  T,  was 
o 

allowed to vary in the range between 'roughly)  T  a^d T ■ 

Typical drag results from this method are of the form 

c   -  c   = a j in(a/s.) H.<s.s ) + a &,(s. s ) + 0(a in a) DD, blb<»      2b» 
fm 

(2) 

where j  is defined as above and H.  and W      are functions of S,  and 

S  which are of order unity for S,  and S  both greater than one-  For 
oo b 00° 

the two-dimensional geometries studied (cylinder and strip) only the H. 

term has been evaluated to date,,  Results using the simple Krook model 

(Bhatnagar, Gross and Krook, 1954) have also been obtained from the integral 

iteration method 



The second class of iterative methods uses a linearized form of the 

simple Krook model for the collision term and performs an iteration after 

taking a Fourier transform of the kinetic equation with respect to the 

spatial coordinate (Rose, 1964).  The results for the drag of a finite 

length cylinder and for a sphere are of the same form as would be given 

by the integral iteration method. 

It should be noted that only the terms of order a    for the three- 

dimensional and order a in a for the two-dimensional problems can be 

obtained by iterating on the formal free-molecular solution.  To calculate 

higher order terms it would be necessary to take proper account of the 

non-uniform validity of the free-molecular solution far from the bodies 

(Pao, 1964). 

3.0  INTERPRETATION OF COLLISION-RATE PARAMETERS 

Wind tunnel drag measurements have conventionally been reported as 

functions of free stream Mach number, Reynolds number; and the ratio of 

the body temperature to free stream temperature  T /T ,  Often a Knudsen 

number is deduced from the formula 

Kn 1/2 Kjd    =     (7«/2) ' HjRe (3) 

and results presented in terms of this parameter.  For a comparison between 

theory and experiment we have to postulate a value for T,  (in all cases 

to date it has been set equal to T ) and relate  ß and a to the experi- 
w 

mental parameters.  One suggestion for obtaining a relation is to equate 

the actual viscosity of the gas, at some appropriate reference temperature, 

to the Chapman-Enskog viscosity corresponding to the collision model. 

However, other formulas have also been used.  A return to presenting 

results in terms of Re/M might prevent possible confusion. 



/ 

This choice is motivated by the fact that u  is, except for very low tem- 

peratures, a known function of temperature and that like the drag perturba- 

tion it is an evidence of the transfer of momentum due to inter-molecular 

collisions.  In previous work (Maslach, et.al., 1964) T  was used as the 

reference temperature.  This choice has the advantage of reducing the 

theoretical formulas naturally to a convenient form in terms of Kn . 

Based on this choice it was shown there that the first-collision results 

using hard sphere molecules are in serious disagreement with experiment, 

while fair to good agreement is given by the integral iteration results. 

There are, however, two points in favor of a different choice of the 

reference temperature.  In the first place, for the higher Mach numbers used 

in the unheated experiments at Berkeley, T  is so low that the viscosity is 

not well known and has to be estimated.  In the second place, intuitive 

arguments suggest that the important collisions are those between molecules 

emitted from the body and free stream molecules.  Typical relative kinetic 

energies involved in such collisions correspond to temperatures in an 

equilibrium gas (for which the Chapman-Enskog results are valid) of the 

order of the stagnation temperature (in fact, it can be as much as 1.6 T 

for an insulated body). As the stagnation temperature is a well-determined 

quantity for wind tunnel tests, we will consider the effect of using it as 

the reference temperature. 

The appropriate formulas relating the viscosity to the collisional 

parameters are, for hard sphere molecuj.es 

a2    =  (m kT/K)1/,2/[K u(T)] (4) 

and for the simple Krook model 

kT/u(T) (5) 



For the modified Krook model there are some questions as to the meaning of 

the viscosity, but we propose to use the same formula as for the simple 

Krook model. 

Using the above formulas we find that 

Ö7k)=(^)ci     . <*> 

where 

C.  =  (T  ,/T )1'2   [|i(T )/n(T  -.)] 1 ref »       oo ' ^s  ref 

C- =  (T  ,/T )  [u(T )/u(T  ,)] 2 v ref <»      oo"^v ref 

When T r is taken as T ,  both C,  and C„ are unity.  The effect of 
ref oo'        1       2        J 

taking T f = T ,  the stagnation temperature, is shown below for typical 

conditions in the Berkeley and A.EDC (Kinslow and Potter, 1962) facilities. 

M 
oo 

T0(°K) Cl C2 

6 290 0.42 1.15 

10 290 0.26 1.40 

10 3350 0.53 2.40 

It can be seen that there will be a marked effect of the choice of T r, ref 

particularly for the hard sphere molecules.  (Indicative of the fact that 

1/2 
[n(T)/T ' j  is by no means constant for appreciable ranges of temperature.) 

If we decide to use T  as the reference temperature it is in fact more 

convenient to work directly with a  or ß  which are related to the physi- 
oo r  * 

cal  parameters by 
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where 

and 

ßo    =    Re*(To/Tb)l/2/[«(2n)l/2] 

%    =    Re*(T0/V
l/2/4 So 

Re* = P u d/n(T ) 

S 2 = m u /2kT 
O oo '    c 

(8) 

As S  is of order unity for hypersonic conditions [approaching  (7/7-1) ' 

for infinite free stream Mach number] the two parameters are seen to have 

essentially the same meaning.  Re  is a convenient parameter depending only 

upon |i(T ) which is well known, and p ,  the free stream density, which 

is relatively easy to infer from experimental measurements. 

4.0 RESUME' OF EXPERIMENTAL RESULTS 

4.1 Cylinder and Strip Dra^ 

The basic references for these data are the reports of Maslach 

(1963), Tang (1964), and Ko (1964), which explain in detail the microbalance 

techniques, the procedures used to convert drag data from the radially 

diverging free jet flows into drag coefficients for uniform flow, and a 

number of special tests performed to verify the independence of the final 

results from the flow property gradients of the free jets. 

Aside from probable random errors of 1 to 2 percent in the force 

readings and in the model diameters, the principal uncertainty in the com- 

puted quantities C  and a  comes from residual non-uniformities of 2 

to 3 percent in density and dynamic pressure in the model vicinity in the 

case of Maslach1s tests, which employed a set of well-designed but not quite 

perfect converging-diverging nozzles.  In the free jet tests, a possibility 

of systematic error in density and dynamic pressure arises when we use the 

inviscid-flow theory to predict these quantities as a function of position, 
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given the stagnation chamber pressure and temperature.  It seems natural to 

assume that viscous boundary-layer growth in the converging nozzle may de- 

crease the effective nozzle diameter and correspondingly compress the scale 

of the entire jet flow pattern, but a definitive determination of this effect 

over the present range of nozzle Reynolds numbers  (2350 < P^u^D/n^ < 25600) 

has not yet been made.  In our re-reduction of the data of Tang and Ko we 

have chosen to ignore an" such effect, using the formulas 

q/p  = 0.309 (x/D - 0.13)"2 

and L  x > 3D    (9) 

p/p  = 0.0887 (x/D - 0.40)"2 

which are accurate fits to theoretical data for air, obtained by the method 

of characteristics. 

The principal experimental results for cylinder and strip drag are 

the following: 

1) For M = 6. 8. and 10, and for 0.004 < a < 0.285,  the measured 

drag coefficients varied linearly with 0! in a ,  with 76 percent of the 

cylinder drag coefficients and 94 percent of the strip drag coefficients 

falling within ±2 percent of a "best fit" straight line, 

2) Extrapolation of these straight lines to a = 0 gave free-molec- 

ular drag coefficients which were within 1 percent of values computed with 

an assumption of fully diffuse and accommodated molecular reemission from 

the model surface. 

3) A plot of C   - C_ versus - a in a  collapsed all data for 
D,    D o    o 
fm 

each model geometry onto a single straight line independent of Mach number. 

The slope of this line is 2.6 ±0.1 for the strips, and 1.8 ±0.1 for the 

cylinders.  (See Fig. 1.) 
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4.2 Sphere Drag 

These data were taken directly from the paper of Kinslow and Potter 

(1962), which contains all information necessary for the calculation of Q£ . 

All of Kinslow and Potter's data for which a < 2.5 are shown in Fig. 2, 

which has been prepared with the theoretical value of C    for fully 
fm 

diffuse and accommodated reemission. 

Unfortunately for our present aims, these data do not extend to 

values of a  much below 0.5, and do not suffice either to define directly 
o ' 

the slope of an initially linear dependence of C  upon CC ,     or to permit 

extrapolation to a = 0 to provide a check on the assumption of diffuse 

reemission. We note, however, that 

1) In a correlation of C  - C  versus Ct ,  the data show no 
fm 

systematic dependence upon S,  in the range 0.5 < Ct    < 2.5, 

4.5 < S, < 6.3. 
— b — 

2) Three-fourths of the measured values of C  are predicted to 

±2 percent accuracy or better by the simple formula 

c„ - 0.50 a + 0.09 a 
D,.        o        o 
fm 

(10) 

5.0  SUMMARY OF THEORETICAL RESULTS AND COMPARISON WITH EXPERIMENT 

A summary of the theoretical formulas for drag are given in Tables 

I - III.  For uniformity of comparison all results are expressed in terms 

of a      (using Eq. 8 to convert the hard sphere results), and restricted 

to the case S -» <*>.  The only parameter now entering the expressions is 

S, ,  and it is further assumed that this dependence can be represented by 
b 

a power series in l/S, •  Some of the expressions represent asymptotic 

expansions in l/S,  (i.e., "cold wall" analyses); others represent best 

fits to numerical data. 
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5.1 Cylinder and Strip Drag 

For the same collision model the differences between the cylinder 

and strij- results are quite modest, and are in the direction suggested by 

intuition and confirmed by experiment.  There are marked differences between 

the results predicted from the different collision models. 

For Berkeley experiments S, s 1,68,  and only the integral itera- 

tion results are applicable.  From Fig. 1 we can judge that the theories are 

qualitatively very successful when a    is interpreted as 0! .  For both 

cylinders and strips the modified Krook model underestimates the measured 

C   - C  in the approximate ratio 2:3,  the simple Krook model over- 
i fm 

estimates in the ratios  2.3:1  for cylinders,  2.1;1  for strips. A much 

better comparison could be given if the theoretical contribution of order 

a  were also calculated.  (This is by no means a simple matter, unfortu- 

nately.)  The presently available data are too scattered to provide any 

experimental estimate of the coefficient of a term of order OC  .,  except 

to suggest from the effectiveness of a simple linear fit of C   - C 
fm 

versus a in a ,  that this coefficient cannot be much larger than unity, 
o    o 

5.2 Sphere Drag 

Results are shown in Table III and Fig. 2. When we interpret the 

theories in terms of a ,  the most successful appears to be that based on 
o r 

the simple Krook model, analyzed by the Fourier transform method (Rose, 1964) 

This successfully predicts the observed lack of marked dependence upon S, 

and overestimates the apparent initial slope (inferred from the fitting 

formula 10) by a ratio of  1.4:1.  The modified-Krook model appears next 

best, predicting a much larger effect of S,  (but one which might still 

well be masked by the scatter of the data), and overestimating the apparent 

initial slope by ratios of  1.61 (Sb = 6,3) to 1.9:1 (Sb = 4.5).  The 

results for a rigid sphere collision model seem worst off, showing about 
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the same S, -dependence as the modified Krook model, but overestimating the 
b 

apparent initial slope about twice as badly. 

6.0 CONCLUSIONS AND SUGGESTED FURTHER WORK 

1. The present study indicates that analyses of nearly free molecular 

flow, based on either the simple Krook model or the modified Krook model, 

are qualitatively successful in predicting the drag perturbation  (C   - C ) 
fm 

for two- and three-dimensional bodies, and that quantitative discrepancies 

are modest (not exceeding a factor of 2 in the present range of investigation) 

when the collision rate parameter is evaluated at stagnation temperature. 

2. Analyses based upon rigid sphere collision models appear, at the 

present stage of their development, to be less successful than those based 

on the Krook models. 

3. The modified-Krook model, which has been worked out for all the 

body geometries under discussion, underestimates the leading term of the 

drag perturbation in the two-dimensional case, and overestimates it for 

the sphere, when a  ■ 0! . 
o 

4. Experimental data are needed, to extend the range of S,  for two- 

dimensional bodies, and to get closer to free-molecular conditions, for wide 

ranges of S  and S, ,  for three-dimensional bodies.  To be of any use in 

guiding theoretical developments, these data must not contain random or 

systematic errors exceeding ±2 percent of C ,  and if the data are to pro- 

vide any estimates of the coefficients of higher-order terms in the theoret- 

ical perturbation expansions, the restriction on error becomes about ±1/2 

percent. 

5. Most of the data correlations we have shown in terms of a  look 
o 

just about as good in terms of a ,  but in two-dimensional flow the theories 
00 

fit the data better when a  is used.  For the sphere data, the Krook models 

look about equally good with either a  or a , (X       leadine to an over- 
o       oo'   o 
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estimate of initial slope, and a  to an approximately equal underestimate. 

The rigid sphere theory for sphere drag looks much better in terms of a 

than a .  The intuitive attractiveness of a  and the fact that use of it 
oo O 

bypasses the nasty question of evaluating viscosities or collision cross 

sections at very low temperatures also contribute to our commendation of 

it as a most useful rarefaction parameter for the nearly-free molecular 

flow regime. 
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TABLE  I.     CYLINDER DRAG    S    -» ~ 

CD - V  =  (" "o in Qo) F<V 
fra 

F(Sb) = dQ + d^l/Sj,) + d2(l/sb)' 

14. 

Collision 
Model 

Method d3     F(1.68) 

Modified 
Krook 

Integral 
Iteration -0.21 ■1.7 -1.15 

Simple 
Krook 

Integral 
Iteration -0,59 -3.9 -3.1 -0.6 -4.1 

Simple 
Krook 

Transform 
(Rose) -0.56 

BEST FIT EXPERIMENTAL DATA -1.8 ±0.1 

Assuming that Rose's expression which is given as CX in (aspect ratio)  goes 

over to  - a in G  as the aspect ratio of the cylinder becomes very much 
o    o r J J 

larger than the Knudsen number. 
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TABLE  II.     NORMAL STRIP DRAG    S    -* °° 

CD  " V      =     "   (ao in ao>  F<V fm 

F(Sb)    =    dQ + dl(l/Sb> + d2(l/Sn>' 

Collision 
Model 

Method d3    F(1.6S) 

Modified 
Krook 

Simple 
Krook 

Hard 
Spheres 

Integral 
Iteration 

Integral 
Iteration 

First 
Collision 
(Lunc & 
Lubonski) 

-0.27 

-0.75 

-0.56 

•1.86 

-4.7 -4.7 •1.0 

-1.66 

•5.4 

BEST FIT EXPERIMENTAL DATA -2.6 ±0.1 

Lunc and Lubonski's formula is given in te-ms of a mean speed £  for 

- 1/2 
molecules leaving the strip. We have taken %    = (9nkT, /8) '   which 

gives the same free molecular drag as a Maxwellian emission at temper- 

ature T,. 



TABLE III.     SPHERE DRAG    S    -» " 
00 

CD - V  - " ao[do + dl<1/Sb> + V^V + • • • 3 

fm 

16. 

Collision 
Model 

Method 

Modified 
Krook 

Integral 
Iteration 

Simple 
Krook 

Transform 
(Rose) 

Hard 
Spheres 

First 
Collision 
(Baker & 
Charwat) 

-0.37 

-0.75 

-1.0 

-3.32 

+0.26 

-4.36 

+2.57 

BEST FIT EXPERIMENTAL DATA,  C  - C 
fm 

0.50 a + 0.09 a 
o       o 

As in Table II, assuming an expression for the average speed of the 

molecules leaving the sphere which gives the same free molecular drag 

as Maxwellian emission at temperature T, . 
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