UNCLASSIFIED AD 4 4 8 9 0 7

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

-,1

If there is no requirement for this report, return it to:

Commanding General U. S. Army Engineer Research and Development Laboratories Fort Belvoir, Virginia

U. S. ARMY ENGINEER RESEARCH AND DEVELOPMENT LABORATORIES CORPS OF ENGINEERS

(4) Rept. no. Rosen R.R.

Walland Barris

WORLD-WIDE FEASIBILITY OF A PASSIVE MAGNETIC METHOD

OF DETECTING BURIED NONMETALLIC LAND MINES

D Projes 8F07 111 001 II) 31 Jul, 1961,

Distributed by

The Director U. S. Army Engineer Research and Development Laboratories Corps of Engineers

Prepar Stanley L. Carts, Jr and Philip K. Webb . Army Engineer Research and Development Lab · Va. Fort Belvoir, Vim

PREFACE

The authority for conducting the investigations covered in this report is contained in Project 8F07-11-001, "Mine Warfare Research." The work was done under Task 8F07-11-001-01. A copy of the project card appears as Appendix A to this report.

The period covered by this report was from May 1960 through November 1960.

Investigations were conducted by Stanley L. Carts, Jr, Senior Project Scientist, with geological and mineralogical studies by Philip K. Webb.

CONTENTS

Section	Title	Page
	PREFACE	111
	SUMMARY	vii
I	INTRODUCTION	,
	1. Subject 2. Background	1
II '	INVESTIGATION	
	3. Procedure 4. Results	- 2 4
III	DISCUSSION	
	 5. Evaluation of Results 6. Theory 7. Detection Limits 8. Parent Material Susceptibility 9. Soil Susceptibility 10. Anomalous Signals 	12 13 13 14 15 18
IV	CONCLUSIONS	
	ll. Conclusions	24
	BIBLIOGRAPHY	25
	APPENDICES	27

SUMMARY

The investigation was made to determine the world-wide feasibility of a passive magnetic method for detection of nonmetallic land mines. The investigation included a determination of the natural restrictions imposed upon a passive magnetic detection system by the magnetic properties of soil containing buried mines.

The report concludes that: (a) Use of a passive magnetic mine detection system as a sole means of detection is not feasible because the detection principle is not practicable in 74 percent of the world's land surface: In 12 percent because of insufficient mine-soil susceptibility contrast alone; in 40 percent because of excessive magnetic anomalous (false) signal effects alone; and in 22 percent because of both insufficient contrast and excessive anomalies. (b) More sensitive instrumentation will not improve the world-wide feasibility of passive magnetic mine detection systems because severe restrictions are imposed on the use of passive magnetic phenomenon by natural magnetic soil properties and not by inadequate instrument sensitivity.

vii

WORLD-WIDE FEASIBILITY OF A PASSIVE MAGNETIC METHOD

1

OF DETECTING BURIED NONMETALLIC LAND MINES

I. INTRODUCTION

1. <u>Subject</u>. An investigation was made to determine the world-wide feasibility of a passive magnetic method (earth's field) for detection of buried nonmetallic land mines. This investigation included a determination of the natural restrictions imposed on a passive magnetic detection system by the magnetic properties of soil containing buried mines.

2. <u>Background</u>. The passive magnetic system has long been considered as a possible method for detecting nonmetallic mines. Unlike most other detection methods, a magnetic system is not affected by soil-moisture variations. Theoretical studies (1, 2, 3)have shown that both metallic and nonmetallic mines should be capable of detection by a passive detection system. Investigators recognized early that information on pertinent characteristics of soils in situ and on the characteristics of anomalous (false) signals was needed in order to evaluate the feasibility of a magnetic detection system. Most researchers, some as early as 1945 (4), have recognized that soil properties and natural soil inclusions can drastically inhibit the operation of magnetic detectors (1, 3, 4, 5, 6, 7, 8), but no quantitative studies relating to their character were attempted.

Some susceptibility data were collected at the time the invasion of Japan was contemplated during World War II. By then, it had become apparent that the effectiveness of mutual-inductionbridge-type mine detectors was seriously affected by the magnetic susceptibility of the soil over which they were used (4, 5, 6, 7). These data pertained to the SCR-625 mine detector (an active system).

Members present at the Third Consultants' Meeting on Magnetic Mine Detection of Land Mines on 24 January 1947 emphasized that the main problem in passive magnetic detection was no longer one of instrument sensitivity but rather of restrictions imposed by the soil, for example, the prevalence of many areas with unfavorable magnetic soil conditions.

These conditions depend on many factors, some of which are not ordinarily classified by geologists and agronomists. The simplest definitive test is the measurement of the performance of the passive magnetic detection system under various field conditions and determination of the relation of these conditions to broader existing classifications. Early in 1958, the first detailed study of magnetic properties and anomalies of soils and their significance to passive magnetic mine detection was made by USAERDL. This work covered the soils of Virginia and West Virginia (9). Later, in the same year, studies were extended to cover representative soil regions of the Continental United States under Contract DA-44-009 Eng-3646 with the Southwest Research Institute of San Antonio, Texas (10).

These studies established relationships between geology and the weathering processes involved in the soil formation and the magnetic properties of the soil. Different relationships prevail where the weathering processes differ significantly from those in the United States. For this reason, in 1959, studies were extended by these Laboratories to typical tropical soils in the Panama Canal Zone (11).

The current report summarizes results of past investigations of performance of passive magnetic mine detection systems under field conditions, discusses significant soil factors that determine whether broad areas of the earth's surface are favorable or unfavorable for passive magnetic mine detection, and relates these factors to geologic and pedologic conditions.

II. INVESTIGATION

3. <u>Procedure</u>. A literature search was made for all previous work concerning magnetic detection devices and magnetic properties of soil material and mine material. The literature was examined to determine what factors had been found to be restrictive to performance of passive magnetic mine detection and to correlate these restrictions with geologic and pedologic features. The data and views presented by the different investigators were compared and combined to present a more complete picture of the natural restrictions on passive magnetic mine detection. The combined data were analyzed as a whole to determine general trends and information which were not apparent from the data considered as small separate units. All reports from which information was taken are listed in the Bibliography.

After the available data had been combined and analyzed, a method was developed to predict passive magnetic mine detection feasibility on a world-wide basis. This involved determining how often: (a) soil-mine susceptibility contrast was sufficient to produce detectable mine signals (2 gamma* or greater); and (b) false signals** seriously interfere with mine detection. An area which

^{* 1} gamma is 10^{-5} oersted.

^{**}A false signal is defined as any signal other than the true mine signal which is equal to or greater than the maximum signal from a 50-cubic-inch nonmetallic mine buried in the same soil flush with the surface.

exhibits more than two false signals per 10 feet is considered un-favorable from a detection viewpoint.

Susceptibilities of soils developed from different materials were compared with latitude zones. These four soil parent material groups were selected on the bases of magnetic properties and consideration of normal geologic rock classification: (a) sedimentary and metasedimentary rocks; (b) basic rocks; (c) acid rocks; and (d) unconsolidated sediments. Latitude zones were used to reflect climatic influences on soil formation.

The breakdown into four latitude zones was based roughly on climate: (a) Frigid Zone, between 60° and 90° ; (b) Upper Temperate Zone, 40° to 60° ; (c) Lower Temperate Zone, 25° to 40° ; and (d) Torrid Zone, 0° to 25° , in both Northern and Southern Hemispheres. The susceptibility of Frigid Zone soils was assumed to be extremely close to that of the parent rock because of slow chemical weathering. Little data were available on Frigid Zone soil susceptibility; therefore, the parent material value was considered also to be the soil value.

Average soil susceptibility for each parent material group was plotted against latitude zone, and the resulting curves were used to predict soil susceptibility in untested areas. A calculation of mine-soil susceptibility contrast for the different latitude zones was made, using the theory presented in Appendix B. Soil susceptibility had to be sufficient to produce a 2 gamma or greater signal for a region to be considered potentially feasible for mine detection by a passive magnetic method.

The prediction of false signal prevalence was based on soil stoniness; field studies showed that approximately 90 percent of the serious false signals were caused by stones in the soil matrix. This approach was supported by comparing stoniness of soils (percentage by counties) based on U.S. Department of Agriculture (USDA) soil surveys with average false signal frequencies by counties as determined in USAERDL field studies for Virginia and West Virginia (9). The comparison between stoniness and observed false signal frequency was also used to develop the criterion that when the average stony soils (as defined by USDA) exceed 5 percent in an area, the number of false signals will exceed the acceptable limit for detection of 50-cubic-inch, nonmetallic mines by a passive magnetic method. To develop criteria for predicting stoniness on a world-wide basis, USDA-published soil surveys for the mid-Appalachian region were also consulted to establish relationships between stoniness and elevation. Accordingly, a map was prepared to show the percentage of stoniness in zones of elevation in the mid-Appalachian region. From this map a correlation was established between the average stoniness and the mean elevation of each elevation band.

The relationship thus established between stoniness and elevation in the mid-Appalachian region was used to predict average soil stoniness on the basis of elevation in areas of the earth where direct information on stoniness was unavailable.

1

Soil susceptibility data and stoniness data were then combined as bases for prediction of world-wide feasibility of a passive method of nonmetallic mine detection.

4. <u>Results</u>. The analyses of data from previous investigations have shown that the following factors in Table I produced major restrictions on the passive magnetic method of detecting nonmetallic mines.

Table I. Soil Factors and Their Influences Upon a Passive Magnetic Method of Nonmetallic Mine Detection

Factor	Influence
Low Soil Susceptibility	Inadequate magnetic contrast between mine and soil.
Soil Inclusions (rocks and roots)	Anomalous mine signals.
a. Igneous rock	Large polarized signal even from small pebbles.
b. Sedimentary rock	Usually negative, unpolarized signal, size of which depends upon size of rock and depth.
c. Metamorphic rock	If basic, influence is like igneous rock; if acid, influence is like sedimentary rock.
d. Nonmetallic material	Negative signal, magnitude of which de- pends upon size, burial depth, and soil susceptibility.
Mineral Concentrations	Anomalous signals.
Soil Matrix Variations(a)	Frequent changes in background level which limit usable instrument sensitivity.
Surface Microrelief	Anomalous signals.
a. Mound or bump	Positive signal, size of which depends upon size of bump and soil susceptibility.
b. Depression	Negative signal, size of which depends upon size of hole and soil susceptibility.

⁽a) If it were not for this restriction, instrument sensitivity could be increased to provide sufficient mine-soil contrast for detection even in extremely low-susceptibility soils. This effect is probably caused by magnetic mineral variations.

The importance of soil susceptibility is given in Fig. 1 which shows the relationship between soil susceptibility and theoretical mine signal at a height of 6 inches above a 50-cubic-inch nonmetallic mine for four latitude zones. One observes that in the $\pm 60^{\circ}$ to $\pm 90^{\circ}$ zone (curve D) a soil susceptibility of at least 70-µcgs units is required to produce a 2 gamma signal, the minimum acceptable for reliable detection; in the $\pm 40^{\circ}$ to $\pm 60^{\circ}$ zone (curve C) a susceptibility of 80-µcgs units is needed; in the $\pm 25^{\circ}$ to $\pm 40^{\circ}$ zone (curve B) a susceptibility of 125-µcgs units is needed; and in the 0° to $\pm 25^{\circ}$ zone (curve A) a susceptibility of 300-µcgs units is needed.

Fig. 1. Effects of soil susceptibility on nonmetallic mine signals.

爨

A detailed summary of susceptibility of soil groups on a latitude basis is given in Table II. Little information is available on the thin soils of the 60° to 90° zone, and the soils are assumed to have the susceptibility of the parent materials because of extremely low chemical weathering. Data from Table II which are presented in Fig. 2 show that the susceptibility of soils developed from most types of parent material tends to decrease from the Frigid Zone toward the mid-latitudes (40° to 60°). However, still further toward the Torrid Zone a pronounced increase in soil susceptibility is noted for soils from all types of parent material. These trends are weakest for the soils developed from parent material with low magnetic mineral content (sedimentary, metasedimentary, and acid rocks) and become stronger as parent material magnetic mineral content increases (basic rocks and unconsolidated sediments).

Figure 3 illustrates the relationship between USDA-reported stoniness in Virginia and West Virginia and USAERDL-observed false signal frequencies in the field. This figure indicates that false signals exceed the feasibility limit of two per 10 feet when the average stoniness exceeds 5 percent in an area.

Figure 4 shows that in the Appalachian region of eastern United States land areas with elevation zones above 200 meters exhibit stoniness greater than 5 percent. Data extracted from Fig. 4 result in Fig. 5, which shows the relationship between elevation and stoniness.

Soil susceptibility data from Fig. 2 and stoniness data from Fig. 5 are combined and result in Table III. This table shows world-wide feasibility of a passive magnetic method of nonmetallic mine detection by parent material groups and latitude zones. This table predicts that approximately 74 percent of the land area of the world is unfavorable for a passive magnetic method of detecting 50cubic-inch nonmetallic mines: 12 percent because of insufficient soil-mine contrast alone; 40 percent because of excessive stoniness alone; and 22 percent because of both lack of mine-soil contrast and excessive stoniness.

Detailed data from 441 field test sites are compiled in Appendix C.

(q
t Material ⁽
y Paren
þ
Classified
а;)
С С
Ä
Susceptibility
Soil
of
Sumary
Table II.

,

.

د۔

۴

.

.

٠

.

Soil and Group No.	Parent Materials (group units)	<u>60° to 90</u> ° No. Semples	60 ⁰ to 90 ⁰ Latitude No. Average Samples K	140° to 60° No. Samples	to 60 ⁰ Latitude No. Average mples K	25° to 40° Latitude No. Average Samples K	Latitude Average K	0 ⁰ to 25 ⁰ No. Semples	Latitude Average K
Bedimentary and Metasedimentary Rocks (50% of World's land Areas) (Group I)	Limestone	85 85 85 85 85	21385 <u>7</u> 8	๚๛๛๛๛๛	107 35 124 123 92	163 9 2+ 3 3 66	91 818 818 19 10 10	400004	275 275 100 310 310
Basic Rocks (12% of World's Land Areas) (Group II)	Basic Ash Diorite Serpentine and Greenstone Labase Basalt Basic Igneous (undifferentiated). Basic Igneous (undifferentiated). Cabbro Dacite Magiomerate Macite Macine Cabbro Dacite Cabbro Dacite Cabbro Dacite Macine Maci	4084857198	346 1351 2595 2662 2865 2866 2866 2866 2866 2866 286	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	600 11440 11400 11400 11400 11400 11400 11400 11400 11400 11400 11400 1140 11400 1100000000	៰៷៹៷៷៷៷៰៰៴៰៰៰	1¥32×842411×21	๛๛๛๛๚๛๚๛๚๙ๅ๛	210 5120 5120 517 517 1120 1000 1000 1001 1001
Acid Rocks (13% of World's Land Areas) (Group III)	Gneiss	32 77 32 77 8 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	145 100 2 145 145	0 N M 0 0 M	174 155 155 155	27 ° ° ° <u>7</u> ° °	138 39 148	0 H N H 0 +	3 <u>3</u> 1 525
Unconsolidated Sedimentary Rocka (25% of World's Land Arrea) (Group IV)	Young Alluvium and Glacial Deposits 01d Alluvium and Coastal Flain Deposits Unconsolidated Sediments (undifferentiated Beach Sands			22000 1 # F	289 108 154	123 123 123	19 112 112	<u>кчойо</u> р	250 58 2239 849

(a) Susceptibility (K) is in wegs units.
 (b) Inferred from average parent material susceptibility.

T.

4

SEDIMENTARY AND METASEDIMENTARY - -- UNCONSOLIDATED SEDIMENTS SOIL PARENT MATERIAL GROUPS BASIC ROCKS -- ACID ROCKS i ł

8

, ¹¹

9

Fig. 3. Relationship between stony soils and magnetic anomaly frequency as noted during field studies in Virginia and West Virginia. Anomaly values have been adjusted to reflect residual soils only. Note that as stoniness (top) increases from coastal plain to mountains in west, frequency of anomaly occurrence (bottom) also increases.

Fig. 5. Relationship between stony soils and elevation. Horizontal lines represent elevation zones. Note that elevation zones above 200 meters exhibit average stoniness values greater than 5 percent.

- 11

Parent Material		Latitude Zor	a),(b)	
Groups	0° to 25°	25° to 40°	40° to 60°	<u>60° to 90⁸</u>
Group I Group II Group III Group IV World Area by Zone (%) Zone Above 200M (%)	19 (11) 5 (3) 5 (3)(c) 9 (6) 38 (23) 60	$\begin{array}{ccc} 11 & (7) \\ 3 & (2) \\ 3 & (2) (c) \\ 5 & (3) (c) \\ 22 & (14) \\ 61 \end{array}$	10 (6) 3 (2) 3 (2) 5 (3) 21 (13) 64	10 (7) ^{(e} 2 (1) 2 (1) 5 (3) 19 (12) 66

Table III. World-Wide Feasibility of Passive Magnetic Method of Detecting Nonmetallic Mines

(a) Numbers without parentheses indicate percentage of the world's land area within each group-zone.

(b) Numbers in parentheses indicate percentage of the world's land area within each group-zone having excessive stoniness.

(c) These values indicate group-zones which are not expected to have sufficient soil-mine contrast for reliable detection.

III. DISCUSSION

5. Evaluation of Results. Approximately three-fourths of the world's land areas are shown to be not feasible for a passive magnetic method of detection. The worst single restriction to this method is the prevalence of areas which exhibit excessive numbers of anomalous signals as a result of stones in the soil matrix. A predicted total 62 percent of the world consists of such areas. Furthermore, in these same areas, 22 percent of the world's land area exhibits not only excessive anomalies but also insufficient soil susceptibility needed for a detectable mine signal. In addition to the 62 percent having excessive stoniness, 12 percent of the land surface is free of anomalies but has insufficient mine-soil contrast.

Little hope of differentiating between mine and anomalous signals exists because of the similarity of the materials producing the signals and the ambiguity of magnetic signal interpretation; that is, more than one set of conditions which can produce any given magnetic signal always exists. Greater instrument sensitivity will not solve the mine-soil contrast problem in low-susceptibility areas because of the proportionally greater significance of soil matrix noise. In soils where instrument sensitivities greater than 1 gamma are needed, this background noise is equal to or greater than the mine signal. Areas in the world where passive magnetic methods would work satisfactorily do exist, but they are not sufficiently extensive to make the method practicable on a world-wide basis. Although feasibility was based on the detectability of the 50-cubic-inch mine, a large antipersonnel mine (antipersonnel mines of less than 5 cubic inches are presently in use), the feasibility of detecting only large antitank mines is not materially changed anywhere except in undetermined parts of the 12 percent of the world where low soil susceptibility is the limiting restriction. Under these conditions, more than 60 percent of the world would still not be feasible for a passive magnetic method of mine detection because of stoniness alone. More detailed discussion of the various factors influencing passive magnetic detection feasibility is presented in the following paragraphs.

6. <u>Theory</u>. The earth's field is essentially uniform where the soil surface is level and the soil is perfectly homogeneous magnetically. A surface irregularity or a region within the soil which differs in magnetic susceptibility from the surrounding soil causes a local distortion in the earth's field. The magnitude and the geometric distribution of the anomalous effect is dependent upon the size of the anomaly, the relative susceptibilities of the soil and of the anomalous material, and the strength of the earth's magnetic field. The susceptibility of a mine generally differs from that of the soil; hence, a nonmetallic mine should produce a signal that is detectable in a magnetically homogeneous soil.

An analytical derivation of the signal effects on the earth's field of a spherical object buried in soil of high homogeneity is given in Appendix B.

7. Detection Limits. The passive magnetic method of mine detection depends upon the ability to recognize small differences created by the mine in the earth's magnetic field. Local variations in the magnetic susceptibility of the soil also produce changes in the local magnetic field and some of these changes are similar to mine signals. Field measurements over various soil types indicate that two conditions are necessary for reliable detection: (a) Sufficient contrast must exist between the magnetic susceptibility of the mine and of the soil to produce a measurable local distortion in the earth's field; and (b) the soil must be relatively homogeneous magnetically so that signals resulting from soil susceptibility variations do not obscure mine signals.

A threshold susceptibility exists in each latitude zone below which detection of nonmetallic mines is not feasible because of a lack of susceptibility contrast. The effects of variation in soil matrix produce a background noise such that mine signals must be larger than 1 gamma to appear above this noise. Soil matrix

noise is discussed in paragraph 10. Computations indicate that changes in detector height of 1 inch in a $40-\mu$ cgs soil produce a signal change of 2 gamma. Thus, signals from nonmetallic mines can easily be obscured by slight variations of detector height during a sweep operation. Experiences in the field substantiate this deduction. Distance above the soil was a critical factor in all field operations. Because of these factors a signal greater than 2 gamma will probably be necessary in practice to make detection and identification feasible. The significance of soil factors affecting detection capabilities is discussed in the following paragraphs.

Parent Material Susceptibility. To discuss the magnetic 8. susceptibilities of soils and the factors which govern their values, one must necessarily start with a consideration of the magnetic susceptibilities of the soil parent material. Parent material distribution is a geographically independent variable; that is, theoretically any rock type may occur in any latitude. The susceptibility of the parent rock depends on the amount and type of magnetic mineral present. Three elements ordinarily are considered ferromagnetic: Iron, cobalt, and nickel, of which only iron is common in soils and rocks. However, all rock and soil minerals which contain iron do not necessarily have a high susceptibility, because susceptibility depends on the coordination of the iron in the crystal structure. In order of decreasing susceptibility the most important magnetic minerals are magnetite, maghemite, ilmenite, pyrrhotite (franklinite locally), and siderite. Usually, however, the magnetic susceptibility of rocks is largely a result of disseminated magnetite grains which commonly increase in abundance in the following order: (1) sedimentary rocks; (2) gneisses, schists, and slates; (3) granitic rocks; (4) basic intrusives; and (5) basic extrusives.

The percentage of magnetic minerals in any given parent rock may be highly variable. Igneous rocks constitute a group of solid melts which have formed from molten material that solidified on cooling and are most likely the least variable in the concentrations of magnetic minerals present in any given rock type. These rocks are generally considered to be of primary origin and are classified with their mineral content as a major consideration; hence, by classification into rock type, variability in expected mineral content is reduced. Granites, for example, usually contain only a small percentage of magnetic mineral material by volume and, therefore, generally have a relatively low susceptibility. Basalts, however, have much magnetic material and have high susceptibilities. A gradual change takes place in mineral type from basalts on the one hand to granites on the other. For this reason, most geologists divide igneous rocks into two categories: Acid or silica igneous rocks (granites and granodiorites); and basic igneous rocks (basalts, gabbros, and diorites).

Sedimentary rocks may be more variable by rock type than igneous rocks. Sedimentary rocks are generally classified by grain size or structure, genesis and mineral content. Sandstone, shale, and limestone are the three main groups of sedimentary rocks and all three characteristically have low susceptibility although sandstones have been found with susceptibilities as high as $1,800-\mu$ cgs units. Most sandstones, however, have susceptibilities close to $50\ \mu$ cgs or lower. The reason for this variability of amount of magnetic material in sandstone lies in the fact that sandstones are secondary rocks; that is, they are derived from source material made up of igneous, sedimentary, and metamorphic rocks.

The last group of rocks to be discussed, and those which possibly manifest the greatest variability in susceptibility, are the metamorphics. Metamorphic rocks are classified on the basis of mineral composition, structure, and grain size. They are secondary rocks and result from the transformation of other primary or secondary rocks by means of changes in heat or pressure on the minerals present in the rocks before metamorphism.

9. Soil Susceptibility. The susceptibility of the soil derived from a given parent material depends upon the amount of magnetic material originally present in the parent rock and upon the effects which weathering and erosion have in the chemical reduction or physical concentration of the magnetic grains.

Magnetite, because of its prevalence and its high susceptibility, is generally the principal factor in the susceptibility of soils and rocks. Upon weathering, magnetite may change into iron oxides such as hematite and limonite which have lower susceptibilities. The chief control over weathering and erosion is climate. Topography and geographical position affect the local climate as well.

Climate controls hydrolysis, hydration, carbonation, and oxidation. The weathered materials are decomposed forming new compounds in the soil. In deserts and cold climates mechanical disintegration predominates over decomposition. In humid-temperate and humid-tropical climates, decomposition is rapid and usually the soil layer is deep.

In desert, dry temperate, and cold regions, chemical breakdown is slow, and the iron-bearing minerals may be relatively unchanged in the soil. As the mineralogy is but little changed, the susceptibility of the soil is similar to the susceptibility of the parent material.

In some humid-temperate and humid-tropical areas, iron is leached from the soil; but in others, the iron is concentrated. In the mid-latitudes, iron and alumina are leached from the upper soil

profile, leaving silica. In the tropics, the reverse is true. The principal soil regions in which iron is concentrated are the Reddishand Yellowish-Brown Lateritic and the Red and Yellow Podzolic Soils. A study of the iron oxides which form when iron is concentrated has shown that in addition to the limonitic oxides, two varieties of hematite are formed. In contrast to common hematite, gamma-hematite (maghemite) is highly magnetic. Maghemite appears to be formed from iron-bearing silicates, sulfides, carbonates, oxides, and hydroxides. It is believed that minerals containing ferrous iron are more likely to yield maghemite on weathering than minerals containing ferric iron.

The presence of organic material seems to be a necessary but not sufficient condition for the formation of magnetic hematite (14), because soils at the bottoms of slopes and in marshes are always much lower in susceptibility than those on the neighboring slopes.

The effects of vegetation and age on the soil profile are superimposed on the climatic effects and locally modify the type of soil (and, therefore, the amount of magnetic material) present. The effects of weathering become more pronounced as the parent rock breaks down into finer particles. Topography plays an important role by influencing the amount of water runoff or accumulation in some areas. On flat to gently sloping areas in humid lands, the soils are, for the most part, more deeply weathered than in wet lowlands where carbonaceous materials predominate.

In preparing the summary and plot of soil susceptibility versus latitude (Fig. 1 and Table III), it was assumed that the average parent material susceptibility value for each rock type was also the soil susceptibility in the Frigid Zone. The Torrid Zone values are derived from susceptibilities of soils measured in Luzon and Panama, and most of the values representing temperate soils are from U. S. test sites.

In the several sources of information tapped for Table II, it was found that authors used different classifications of parent material; therefore, the grouping of the units used in this report includes overlapping parent material types. The present authors have attempted to form classifications of soil parent material which closely reflect magnetic properties, yet maintain harmony with the common geologic groupings. As stated previously, the four parent material group classifications selected by the authors are: (1) sedimentary and metasedimentary rocks; (2) basic rocks; (3) acid rocks; and (4) unconsolidated sediments.

The soil parent materials which make up each major soil group shown in Table II includes gneiss with the acid rocks, because gneiss is normally akin to granite. Slate and schist are grouped with metasediments although it is understood that schists can be derived from fine-grained igneous rocks as well. The average susceptibilities of soils in the parent material groups given on Table II were used to plot Fig. 2, and the similarity in the shape of the curves is striking.

Because weathering effects are strongly influenced by climate, soil susceptibility of different parent materials might be shown according to climate. However, even though the general meaning of climate is clear, authorities use different combinations of variables to define various climates and available climate maps are often of such local detail that they are difficult to use on a large scale. For this reason, the present authors have used latitude zones, which generally reflect climate to show average weathering effects.

Group I (sedimentary and metasedimentary rocks) derived soils originate from limestone, shale, sandstone, quartzite, slate, and schist. Although these rocks are of low susceptibility, they generally produce soils of susceptibility higher than themselves. The soils average about 55- μ cgs units in the \pm 60° to \pm 90° latitude zone, 92 μ cgs in the \pm 40° to \pm 60° latitude zone, 97 μ cgs in the $\pm 25^{\circ}$ to $\pm 40^{\circ}$ zone, and 310 µcgs in the 0° to $\pm 25^{\circ}$ zone. This increase in soil susceptibility as one approaches the Equator is primarily a result of the increase in chemical weathering in warmer latitude zones. The large increase in soil susceptibility in the tropics may be caused by the formation of gamma hematite, the highly magnetic compound mentioned previously as being formed under conditions of rapid chemical weathering and humus formation (14). The only members of Group I derived soils which do not exhibit the general increase in soil susceptibility moving towards the Equator are the soils derived from schists. The present authors can offer only a general possible explanation. Whereas oxides are mainly responsible for the susceptibilities in the other sedimentary and metasedimentary rocks, magnetic minerals in schists can be more complex silicates. Either the silica leaching in the tropics removes the whole complex because of stronger inter-atom bonding or LeBorne's process (14) of gamma hematite formation does not work with this group of minerals. Perhaps the complexes go to low-magnetic hematite.

The susceptibility curves of Fig. 2 for Group II (basic rocks), Group III (acid rocks), and Group IV (unconsolidated sedimentary rocks) derived soils exhibit a decrease in soil susceptibility from the Frigid Zone through the mid-latitude zone. This decrease in susceptibility is probably the result of a decrease in surface magnetic minerals resulting from an increased rate of chemical decomposition accompanied by iron leaching and iron concentration in lower layers.

. 1

In every group except Group II the soil susceptibility is higher than the average rock value in the Torrid Zone for a given rock grouping. This effect can be the result of the formation of new magnetic material by organic acids (14). Although Group II soils show the same trend, the large decreases in magnetic material brought about by rapid weathering in the Torrid Zone apparently accounts for a general decrease in susceptibility relative to the parent material susceptibility. An increase in susceptibility relative to the Temperate Zone is clearly illustrated.

If this information is to be used for susceptibility predictions on a smaller geographic scale, more attention must be given to the individual parent material units rather than the group, especially those in Group IV. For example, young alluvium and glacial deposit soils usually are appreciably higher in susceptibility than soils from older alluvium and coastal plain deposits.

It is estimated that about 50 percent of the world's land areas are covered by soils derived from the rocks of Group I; 12 percent, by the soils of rocks of Group II; 13 percent, by the soils of Group III; and 25 percent, by the soils derived from unconsolidated sediments.

10. Anomalous Signals.

a. <u>Definition and Types</u>. The presence of excessive numbers of anomalous magnetic signals is the most widespread and most limiting soil magnetic property encountered. Three sources of anomalous responses have been identified:

(1) Soil inclusive materials (rocks and roots) with magnetic susceptibilities different from the soil matrix.

(2) Changes of magnetic mineral concentration within the soil.

(3) Irregular soil surface relief.

b. <u>Soil Inclusive Material</u>. The most common anomalies found in field studies were those consisting of pieces of soil parent rock distributed throughout the soil. Probably as much as 90 percent of the anomalies affecting a passive magnetic detector can be attributed to stones in the soil matrix. These rock pieces may have either a higher or lower susceptibility than the soils developed from them. Whether they are higher or lower depends on the original mineralogy of the parent material and the soil-forming processes involved. Field studies indicated a conspicuous absence of anomalies resulting from inclusions in soils developed from transported unconsolidated sediments. This held true for both marine and alluvial unconsolidated sediments, such as comprise most of the Atlantic Coastal Plain. Tests made in this province on both the Atlantic and Gulf coasts produced similar anomaly-free results (9, 10). Alluvial soils in stream valleys are usually free of rock-caused anomalies except in areas where cobbles and boulders are mixed with the soil. Usually, the sorting action of streams is apparent, and except for the present stream bed, the material is separated according to size.

いたいであっていたので、ないないで、ないで、ないないで、ないないで、ないないで、

Beach sands are extremely variable in rock content. Where the beach is closely associated with mountainous terrain, rockcaused anomalies are likely to be present on the beach. In areas such as the Atlantic Coastal Plain where the beach is preceded by gradual slopes of rock-free soils, the beaches are usually free from this type of false response.

Stoniness values are erratic and dependent on the type of source area of glacial deposits in glaciated areas. New England glacial deposits exhibit extremely high values of stoniness, whereas the stoniness values in Minnesota are low.

In contrast to the transported soils, residual soils usually contain rock-caused anomalies. Soils developed from consolidated sediments usually have a higher susceptibility than the parent material. When pieces of such parent rock are present in the soil, they produce magnetic field distortions similar to nonmetallic mine signals. This situation is illustrated in Fig. 6. Such conditions are quite prevalent in limestone, sandstone, and shale soils. These conditions are of particular concern in mine detection because they can produce a negative anomaly of the same order of magnitude as a nonmetallic mine.

In residual soils developed from basic igneous and metamorphic rock, pieces of parent rock present even more complex effects. Such rocks are usually of high susceptibility and pieces of them exhibit magnetic polarization. This material produces spectacular anomalies often in the order of thousands of gamma. These anomalous effects can be in the form of negative peaks, positive peaks, or both, depending upon the orientation of the source rock. Anomalies of this type are illustrated in Fig. 7.

The effects of pieces of parent rock in residual soils derived from acid rocks are extremely variable and difficult to predict. In general, the effects are intermediate between the effects observed in soils from consolidated sediments and those from basic igneous and metamorphic rocks.

It was noted that as the soil depth decreased, the number of fragments of parent rock distributed within the soil increased. As a result, anomalies in the earth's magnetic field just above the soil surface were more prevalent in mountainous terrain where soils are usually shallow than in level areas where soils are usually deeper. It was also obvious that the frequency of such anomalies appeared to be much higher in the soils developed from the high-susceptibility basic rocks than the lower susceptibility rock soils. This is true because although even a very small pebble of high-susceptibility rock can cause a large anomalous signal, a rock of low susceptibility must be at least the same general size as a mine to produce a troublesome false signal.

For lack of better information during development of stoniness prediction methods, soil stoniness was plotted against elevation (Fig. 5) from values available in eastern United States. A more accurate prediction could be developed if stoniness were plotted against relief (or gradient of elevation). At the time of writing, accurate world relief values were not available to the authors. In general, elevation is a good index of relief; therefore, Fig. 5 represents a reasonable approximation for stoniness predictions.

c. <u>Mineral Concentration</u>. Local variations of magnetic mineral content produce magnetic field distortions which interfere with mine detection. Such a condition was observed in the beach sands of Little Island, Virginia. The sand contained a small fraction of ilmenite, which was normally well mixed with other components. However, in some areas where the wind had formed ripples, sorting had occurred, and the heavy ilmenite was concentrated in the dips and on windward slopes. This mechanism produced anomalous signals of 2 to 40 gammas, depending upon the efficiency of sorting.

The effect of variation in mineral concentration becomes more serious as the magnetic mineral content increases. In areas where beach sands are derived principally from volcanic rocks, the magnetic mineral content is usually high and areas of nearly pure magnetite are not uncommon. Wave and wind action sort the heavier magnetic minerals from the lighter quartz and shell grains, and alternate layers of magnetite and quartz or shell grains result. The effect is strikingly illustrated in Fig. 8. Similar conditions are reported for the Philippine Islands, areas of Japan, and volcanic islands in the Pacific. In such areas, the effect on detection of buried mines is detrimental, as extreme susceptibility variations occur within a few inches of lateral displacement. The Panama beach shown in Fig. 8 has variations of susceptibility from 50 to 300,000- μ cgs units within a lateral distance of a few inches.

G4568

Although magnetite is the magnetic mineral most frequently found in such areas, maghemite, ilmenite, and olivine also occur as concentrations on beaches. Concentrations have not been found of magnetic materials in soils other than beach sands, possibly because most other soils are not so susceptible to sorting by wind and wave action.

.....

Þ,

16

ことのあるななないというないないないないないです。

d. Surface Microrelief. Measurements made over highsusceptibility soils showed that surface relief irregularities could cause anomalous signals greater than nonmetallic mine signals. Theoretically, when the upper horizon of the soil is considered an infinite horizontal homogeneous layer, the earth's field is highly uniform. This field will be distorted, however, in the neighborhood of discontinuities in the layer of soil. A positive correlation of position and amplitude between geomagnetic anomalies and microtopography has been generally noted in field studies by all investigators. Surface relief variations often produce anomalous signals similar to the signals from buried nonmetallic mines when the volume and form of the irregularity are similar to a mine. This condition is expected because a nonmetallic mine has extremely low susceptibility, essentially that of air. Therefore, signals of similar nature would be produced by a mine buried flush with the surface and by a minesized depression in the soil surface. If the mine is buried below the surface, the mine signal is smaller than the signal from a minesized depression. Although this effect is most easily observed in high-susceptibility soils, it holds true for soils of any susceptibility.

In some areas, visual inspection of the soil surface. will disclose anomalous responses obviously caused by surface irregularities. In general, however, visual inspection cannot effectively alleviate this problem because (a) the mine may be buried on a rise or in a depression (under such conditions the mine signal will be mixed with the signal produced by surface effects); and (b) small bumps and dips of antipersonnel mine size are often obscured by vegetation coverage.

There appears to be no way to relate surface relief to any specific soil or geologic classifications; however, surface relief is reflected to some extent in land use. In most areas, irregularities the same size as antipersonnel mines are prevalent. Large animals, such as cattle or horses, leave tracks of nearly the same volume displacement as a mine. Livestock tracks are particularly troublesome in pasture and grazing lands.

In areas free of anomalies from other causes, microrelief-produced anomalies may be a serious problem; however, in most areas, microrelief effects are usually much smaller than other anomalous effects and are generally of only secondary importance.

Several times anomalous signals were suspected as originating from the lower surface of a shallow soil in contact with uneven bedrock having an appreciable susceptibility contrast. Where this effect was observed, relatively high-susceptibility, shallowdepth laterite soils were developed over low-susceptibility limestone. The anomalous responses caused by this condition are usually broad gentle irregularities which do not appreciably change as detector height is varied.

e. <u>Soil Matrix Noise</u>. In addition to the sources of localized anomalous signals discussed previously, variations of magnetic susceptibility exist within the soil matrix, itself. These variations are usually, but not always, gradual changes of soil susceptibility from place to place throughout the soil mass. Tests conducted by D. E. Wiegand of Armour Research Foundation (1) show changes in samples taken every foot over test sites in the vicinity of Fort Belvoir, Virginia. His tests indicated a definite trend toward greater variability of soil susceptibility with lower susceptibility soils. These variations become such a problem in the lower susceptibility soils that instrument sensitivities greater than 1 gamma were unusable. Field tests by other investigators (9, 11) have substantiated this observation.

IV. CONCLUSIONS

11. Conclusions. It is concluded that:

a. Use of a passive magnetic mine detection system as a sole means of detection is not feasible because the detection principle is not practicable in 74 percent of the world's land surface:

(1) In 12 percent because of insufficient mine-soil susceptibility contrast alone.

(2) In 40 percent because of excessive magnetic anomalous (false) signal effects alone.

(3) In 22 percent because of both insufficient contrast and excessive anomalies.

b. More sensitive instrumentation will not improve the world-wide feasibility of passive magnetic mine detection systems because severe restrictions are imposed on the use of passive magnetic phenomenon by natural magnetic soil properties and not by inadequate instrument sensitivity.

BIBLIOGRAPHY

. . .

いいけれんであたいたいでもないので、「「「ないないない」」というないでいた。

¥.

いたろうのことになるとないないであるというないないであるという

- WIEGAND, D. E., <u>Detection of Buried Explosives by Magnetic</u> <u>Means</u>, Armour Research Foundation, Contract DA-44-009 Eng-487, 18 November 1949.
- SPIES, OTTO R., <u>Anomaly of the Earth's Magnetic Field Due to a</u> <u>Spherical Inclusion in the Ground</u>, Franklin Institute, Contract DA-44-009 Eng-2125, 6 January 1955.
- 3. Final Report, Contract DA-44-009 Eng-407 (as amended), Electro-Mechanical Research, Inc., 20 May 1948.
- 4. <u>Tests on Performance of SCR-625 Mine Detector As Related to</u> <u>Soils in the Vicinity of Washington, D. C.</u>, U. S. Geological Survey for Chief of Engineers, U. S. Army, 16 June 1945.
- 5. <u>Report on Use of SCR-625-C Mine Detector and Data to Serve As</u> <u>Basis for Prediction of Performance</u>, Military Geology Unit, U. S. Geological Survey.
- THARP, JAMES, Field Study of Magnetic Susceptibility of Some Soils of Luzon, As Measured by Mine Detector SCR-625-C, 26 August 1945.
- ROBERTS, RALPH J.; SAMPSON, EDWARD; STRIKER, M. M.; and STEWART, THOMAS E., Performance of the SCR-625 Mine Detector over Different Rocks and Soils, USAERDL, Fort Belvoir, Virginia, 1949.
- BLOOM, ARNOLD L., <u>Mine Detection Studies</u>, Varian Associates, Contract DA-44-009 Eng-2568, 1 June 1955-15 January 1957, Final Technical Report.
- CARTS, STANLEY L. and DUEY, HERBERT H.; <u>Magnetic Properties</u> and Anomalies in Soils of Virginia and West Virginia and Significance to Land Mine Detection, USAERDL Report 1592-TR, 9 September 1959.
- 10. COOK, JOHN, Soil Magnetism Studies, Southwest Research Institute, Contract DA-44-009 Eng-3646, January 1960.
- 11. CARTS, STANLEY L.; ORR, DONALD G.; and MACCORMAC, JACK R.; The Effects of Soil Magnetic Properties and Natural Magnetic Micro-Anomalies of Typical Tropical Soils on Passive Magnetic Land Mine Detection Methods, USAERDL Report 1665, 19 May 1960.
- 12. Soils and Men Yearbook of Agriculture 1938, Washington, D. C., Dept of Agriculture, 1938.

- ROSENBLUM, SAM, "Magnetic Susceptibilities of Minerals in the Frantz Isodynamic Separator," <u>The American Mineralogist</u>, Vol. 43, Nos. 1 and 2 (1958), pp. 170-173.
- 14. LEBORGNE, E., "Abnormal Magnetic Susceptibility of Surface Soil," Annales de Geophysique, Vol. 11, No. 4, 1955, pp. 1-21.
- 15. PUZICHA, KURT, The Magnetism of Rocks As a Function of Their Magnetite Content, Clausthal-Zellerfeld I., Burgstadter Str. 301.
- 16. GRENET, GASTON, "Sur Les Proprietes Magnetiques Des Roches," Annales De Physique, Tome 13, 1930, pp. 263-348.

26

APPENDICES

二日間になるない

というちょうかい、たちないあい、これにもれたというなものものである

Appendix	Item	Page
A	AUTHORITY	29
В	MAGNETIC SIGNAL PRODUCED BY A SPHEROID BURIED IN HOMOGENEOUS SOIL	31
C	FIELD TEST SITE DATA	35

APPENDIX A

1 1

AUTHORITY

	-					2870	-
	TYPE-OF REPOR	<u>,</u>				31	
R & D PROJECT CARD	Rewrit			CSCR		NTROL S	YMBOL
MINE WARFARE RESEARCH			2. SECURITY OF PL Unclassif			0JECT NO. 7-11-0	
			4. INDEX NUMBER			PORT DATE	
						Apr:1	1960
. BASIC FIELD OR SUBJECT		R SUBJECT SUB GR	OUP			ECH. OBJ.	
Mines & Obstacles	Researc	:h			LC	-/	
. COGNIZANT AGENCY	12. CONTRACTO	R AND/OR LABORA	TORY	CONTRA	CT/W. 0	: . NO.	
Corps of Engineers			& Dev. Labs				
D. DIRECTING AGENCY	Ft. Belvo	or, va.					
Res. & Dev. Div., OCE							
O. REQUESTING AGENCY				ĺ			
Office, Chief of Engineers							
1. PARTICIPATION AND/OR COORDINATION	13. RELATED PR	OJECTS		17. CST	COMPL	ETION DAT	28
	ł			RES.	Cont	•	
				DEV.	Cont	•	
				TEST	Cont	•	
				OP. EVA	r Co	nt.	
				10, FY.	Pit	SCAL ESTI	ATES
	14. DATE APPRO	UVED		60	9	183 M	
				61	1	199M	
	15. PRIORITY	16. HAJOR CATES	ORY	62	1	200M	
	1-A						
IN. REPLACED PROJECT CARD AND PROJECT STATUS This project supersedes Projec	t No. 8-07-1	1-000, 31					
1959. RO. REQUIREMENT AND/OR JUSTIFICATION THE CO				Est.	Rate	P/A	1200
ment and improved equipment fo includes specific materiel req based on the current state-of- objectives. There is an urgent base development of new items acteristics.	uirements fo the-art is l need for fu	or new and Imited in Indamental	improved de effectivene scientific	vice: ss to data	i. De mee upon	velopn t the: whic!	nent se n to
 Brief: (i) Objective: The object directed toward new principles ment of new and improved mine 	and technic	ues which	can be util	t of ized	rese In t	arch he dev	velo
(2) Military Characterist							_
(3) Security Classificati tasks of this project will be	on: The sec in accordance	urity clas e with the	sification ir content.	of ti	ne⊸in	divi di	lei
23. CASO (R # D) SN. [CN.					Я.	I.	с.
DD 140 50 613 Neplaces de form 413.				PAG		er 2	PAG
item	No.	28 70					
------	-----	--------------					
****	MA	4916					

DINTINUATION SHEET		<u>CETC Htg #315</u>	
1. PROJECT TITLE	2. SECURITY OF PROJECT	1. PROJECT NO.	
HINE WARFARE RESEARCH	Unclassified	8F07-11-001	
	4	S. REPORT DATE	
		19 April 1960	
b Approach. The approach to each task is set for	orth in the Task C	ards as listed	

b. Approach: The approach to each task is set forth in the Task Cards as fisted in paragraph 21c below.

c. Tasks: This project is composed of the tasks as listed herein. The completion of tasks and the establishment of new tasks will be recorded by the revision of this paragraph.

(1) Item No. 2147, Task No. 8F07-11-001-01, Mine Detection Research.

(2) Item No. 1037, Task No. 8F07-11-001-02, Special Mine Clearing Means.

(3) Item No. 2938, Task No. 8F07-11-001-03, Mine Clearing and Emplacement Research.

d. Other information:

(1) Scientific Research: Scientific research tasks and contracts are performed under this project and will be reported under the applicable tasks listed in 21c above.

(2) References: None

(3) In the conduct of this project, full consideration will be given to any work being done in the field under ABC and NATO Standardization Programs, or Mutual Weapons Development Program.

DD ; 700 ac 613-1 Window co rates co-1. 1 mm co. MBE 2 0 2

DO PROJECT CARD

APPENDIX B

MAGNETIC SIGNAL PRODUCED BY A SPHEROID

BURIED IN HOMOGENEOUS SOIL

The earth's magnetic field is essentially uniform over a region in which the ground surface is smooth and the soil is perfectly homogeneous. If the soil is not perfectly homogeneous, a distortion in the earth's magnetic field will result. The inhomogeneity can be caused by a buried mine or some other anomalous object having sufficient magnetic susceptibility contrast with the normal soil matrix. If one assumes that the disturbing object is completely surrounded by homogeneous and isotropic soil and that the material and shape of the object are such that it can be replaced by a spheroid of homogeneous isotropic material, the anomalous field (vector difference between undisturbed field and field with anomaly in place) is given in vector form by:

$$\underline{\mathbf{H}} = \frac{3(\underline{\mathbf{M}'} \cdot \underline{\mathbf{r}})\underline{\mathbf{r}}}{\underline{\mathbf{r}}^{5}} - \frac{\underline{\mathbf{M}'}}{\underline{\mathbf{r}}^{3}}$$
(1)

where:

16

M' is the magnetic moment of the equivalent spheroid,

r is the vector distance from the center of the object to the point at which H is determined, and

r is the scalar length of r.

H is the anomalous field,

If <u>M</u>' is expressed in cgs units and <u>r</u> in cm, <u>H</u> will be given in oersteds, and M' is given by:

$$\underline{\mathbf{M}}^{*} = \frac{\mathbf{V} \left(\mathbf{\epsilon}_{\mathbf{B}} - \mathbf{\epsilon}_{\mathbf{m}} \right) \underline{\mathbf{H}}_{\mathbf{O}}}{1 + 4\pi \mathbf{\epsilon}_{\mathbf{m}} + \left(\mathbf{\epsilon}_{\mathbf{n}} - \mathbf{\epsilon}_{\mathbf{m}} \right) \mathbf{N}_{\mathbf{O}}}$$
(2)

where:

: V is the volume of the spheroid,

 s_m is the magnetic susceptibility of the medium (soil),

s, is the magnetic susceptibility of the anomalous object,

Ho is the earth's field, and

 N_0 is the demagnetizing coefficient of the equivalent spheroid in the direction of the earth's field.

If V is expressed in cubic centimeters, ϵ_{g} and ϵ_{m} in cgs units, and H_{O} in cersteds, <u>M</u>' will be given in cgs units. Equation (2) can be greatly simplified if the terms ϵ_{m} and ϵ_{g} in the denominator are omitted. Frevious studies show that under nearly all conditions, this approximation can be made with negligible error.

Combining the simplified form of equation (2) with equation (1) and expanding the result, the X, Y, and Z components of \underline{H} , \underline{H}_1 , \underline{H}_2 , and \underline{H}_3 , respectively, in terms of the coordinates and angles in Fig. 9 become:

$$H_{1} = \frac{\nabla \left(a_{g} - a_{m}\right) H_{0}}{s^{3}} F_{1}$$
(3)

$$H_2 = \frac{\nabla \left(\epsilon_g - \epsilon_m\right) H_0}{\pi^3} P_2 \qquad (4)$$

$$\mathbb{H}_{3} = \frac{\mathbb{V}\left(\mathbf{e}_{g} - \mathbf{e}_{m}\right) \mathbb{H}_{0}}{x^{3}} \mathbb{F}_{3}$$
(5)

where:

$$\mathbf{F}_{1} = \frac{1}{\left[\left(\frac{\rho}{2}\right)^{2}+1\right]^{3/2}} \left\{ \frac{3\left(\frac{\rho}{2}\right)^{2}\cos^{2}\alpha\cos\delta + \frac{\rho}{2}\cos\alpha\sin\delta}{\left(\frac{\rho}{2}\right)^{2}+1} - \cos\delta \right\}$$
(6)

$$\mathbf{F}_{2} = \frac{3 \frac{\rho}{z} \sin \alpha}{\left[\left(\frac{\rho}{z}\right)^{2} + 1\right]^{5/2}} \begin{bmatrix} \frac{\rho}{z} \cos \alpha \cos \delta + \sin \delta \end{bmatrix}$$
(7)

$$\mathbf{F}_{3} = \frac{1}{\left[\left(\frac{p}{\pi}\right)^{2}+1\right]^{3/2}} \left\{ \frac{3\left[\frac{p}{\pi}\cos\alpha\cos\delta+\sin\delta\right]}{\left(\frac{p}{\pi}\right)^{2}+1} - \sin\delta \right\}$$
(8)

Equations (6), (7), and (8) can be used to plot normalized contour maps which, with the aid of equations (3), (4), and (5), allow the convenient determination of the magnitude of components of <u>H</u> at any desired point with reference to the anomalous object. For example, a contour map is shown in Fig. 10 for F₃ at the magnetic North Pole or at $\delta = 90^{\circ}$. It is easy to see that the maximum value will occur over the center of the object where F₃ equals -2.0. The maximum point is displaced from the center of the object for locations

Fig. 9. Directions of anomalous field components and coordinate system for locating point of measurement.

other than the magnetic poles. In the Northern Hemisphere it is moved to the south and in the Southern Hemisphere it is moved to the north. The greatest displacement occurs at the Equator where there is a double maximum of F_3 at $\frac{\rho}{s} = 0.5$ North and 0.5 South. Table IV shows the results of such contour maps.

Tab.	le I	.V.	Maxi	mum	Fγ	Values
------	------	-----	------	-----	----	--------

H _o , Total Earth's Field (oersted)	δ, Dip Angle, North or South (^O)	F ₃ , Maximum Value
0.33	0 (magnetic Equator)	± 0.86
0.34	22.5	- 1.28
0.43	45.0	- 1.65
0.56	67.5	- 1.90
0.60	90.0 (magnetic North Pole	e) - 2.00

.

بہ

29	Granville Loam	Gry Brn PDZLC	Fairfax Co.,	Va	Sandstone, conglomerate, and shale	-	60
30	Conowingo Silt Loam	11	11 11	11	Serpentine, dark colored; igneous rock	-	220
31	Chester Loam	"	Chester, Pa		Gneiss, schist, and granite	-	90
32	Conowingo Clay	**	11 11		Serpentine (greenstone)	2000	1500
22	Appling Fine Sandy Loam	Red &	Mecklenburg,	Va	Granite	-	20
33	_	Yellow Soils		11	Granite and gneiss	-	10
34	Cecil Fine Sandy Loam	11	**	11	Greenstone, schist, and slate	-	35
35	Orange Silt Loam		11	19	•		
36	Georgeville Silt Loam	99	n	"	Slate and schist	-	250
37	Mecklenburg Loam	"	n	11	Basic igneous rocks	750	200
38	Worsham Fine Sandy Loam	* #	*1	11	Colluvial (granite, gneiss, and slate)	-	1
39	Orange Silt Loam	"	**	**	Slate, greenstone, and schist	-	200
40	Herndon Silt Loam	91	11	11	Slate and schist	-	120
41	Congaree Silt Loam	n	Halifax Co.,	Va	Alluvial materials	-	30
42	Iredell Losm	**	# 7 11	π	Mafic rock	-	100
43	Appling Fine Sandy Loam	**	Pittsylvanis	.Co., Va	Gneiss and some granite	1620	7
կկ	Louiss Fine Sandy Loam	97	"		Micaceous gneiss and schist	-	10
45	Lehigh Stony Silt Loam	11	Ħ	21 17	Metamorphosed sandstone, shale, and mudstone	15	300
46	Iredell Sandy Loam		"	** **	Diorite rock	-	60
47	Davidson Clay Loam	Gry Brn PDZLC	n	71 17	Dark colored igneous and metamorphic rock	900	300
48	Cecil Gravelly Fine Sandy Loam	"	n	99 9 7	Granite and gneiss	1700	175
49	Watt Silt Loam		Fauquier Co.	., Va	Black graphite slate	1	70
50	Porter Loam	ŧt	Grayson Co.	, Va	Granite and gneiss	1	60 [,]
51	Muskingum Loam		11 11	n	Sandstone and slate	-	20
52	Ashe Coarse Sandy Loam	n	11 11	n	Granite and gneiss	-	80
	-	"	11 11	17	Schist	-	200
53 51	Talladega Loam	11	11 PI	n	Schist	12	7
54	Chandler Silt Loam	"		n .	Slate	275	60
55	Ranger Silt Loam	··			JAN VG	-17	

A

fax Co.,	, Va	Sandstone, conglomerate, and shale	-	60	2	No data	6	None
• 11	11	Serpentine, dark colored; igneous rock	-	220	5		6	Contains highly magnetic inclusives occasionally
ter, Pa		Gneiss, schist, and granite	-	90	2		No data	None
"		Serpentine (greenstone)	2000	1500	36		8	Many pieces of greenstone, some lodestone
lenburg,	Va	Granite	-	20	(0)		0	None
n	н	Granite and gneiss	-	10	(0)		0	Numerous small quartz pieces
п	**	Greenstone, schist, and slate	-	35	(1)		No data	None
9	Ħ	Slate and schist	-	250	6		6	Sample.contained pea-sized parent rock
•	17	Basic igneous rocks	750	200	5		6	Some dark mineral concretions, boulders of parent material on surface
•	"	Colluvial (granite, gneiss, and slate)	-	1	(0)		0	None observed
•	n	Slate, greenstone, and schist	-	200	5		8	None
•	H.	Slate and schist	-	120	3		8	Sample contained pieces of parent rock
ax Co.,	Va	Alluvial materials	-	30	(1)		0	None
u	n	Mafic rock	-	100	3		10	Iron concretions and dark colored rocks scattered over surface
ylvania	Co., Va	Gneiss and some granite	1620	7	(0)		4	Contained many stones on surface
11	11 11	Micaceous gneiss and schist	-	10	(0)		No data	Some quartz, schist, and gneiss pieces
17	11 11	Metamorphosed sandstone, shale, and mudstone	15	300	8		10	Contains numerous stones
"	" "	Diorite rock	-	60	2		No data	Iron concretions in some places
n	87 87	Dark colored igneous and metamorphic rock	900	300	8		6	Boulders of parent rock scattered on surface
н	11 <u>11</u>	Granite and gneiss	1700	175	5		16	Gravel and pebbles on surface
ier Co.,	, Va.	Black graphite slate	1	70	2		8	Abundant slate chips
on Co.,	Va	Granite and gneiss	1	60	2		No data	A few rock fragments
	n	Sandstone and slate	-	20	(0)		6	Many rock fragments in soil
	"	Granite and gneiss	-	80	2		4	None
	11	Schist	-	200	5		4	A few rock fragments
	11	Schist	12	7	(0)		0	None
n	**	Slate	275	60	2		No data	Very stony

APPENDIX C

TABLE V. FIELD TEST SITE DATA.

Test Site	Soil	Great Soil Group	Location	Parent Material	Suscepti in µcgs Parent	
	Data are taken from Carts and Du	uey, <u>Magnetic I</u>	Properties and Anomalies 1	n Soils of Virginia and West Vir	rginia and	Sig
1	Iredell Stony Silt Loam	Gry Brn	Fauquier Co., Va	Diabase	-	120
2	Penn Silt Loam	PDZLC	et el 11	Red shale	20	12
3	Goldvein Gritty Silt Loam	11	19 11 ST	Quartz-monzonite	l	5
4	Montalto Silt Loam	" .	Prince William Co., Va	Fine-grained diabase	770	50
5	Elbert Silt Loam	**	Fauguier Co., Va	Diabase	210	18
6	Fauquier Silt Loam	"	11 11 11	Greenstone sediments	2200	75
7	Sassafrass Loam	и	Fairfax Co., Va	Unconsolidated sediments	-	55
8	Coastal Beach Sand (Atlantic)	Red &	Princess Anne Co., Va	Marine sands	l	5
9	Sassafrass Fine Sandy Loam	Yellow Soils	3 19 19 19 19 17	Sandy marine deposits	-	35
10	Bayboro Silt Loam		11 11 11 11	Sands, clays, and silts	-	30
11	Hyde Silty Clay Loam	*1	3F 97 TI TI	Organic rock		1
12	Bladen Silt Loam		et 11 11 11	Fine-grained marine deposits	-	1
13	Norfolk Fine Sandy Loam	*1	Nansemond Co., Va	Clays and sands	-	2
14	Onslow Fine Sandy Loam	**	11 11 11	Clays and sands	-	7
15	Lenoir Fine Sandy Loam	11	. 11 11 11	Sands and clays	-	1
16	Norfolk Fine Sandy Loam	19	Southampton Co., Va	Sands and clays	-	5
17	Moycock Fine Sandy Loam	н	81 ET 87	Sands	-	ş
18	Lenoir Very Fine Sandy Loam	**	ES 30 87	Sands and clays	-	1
19	Congaree Silty Clay Loam	**	Fairfax Co., Va	Clays (alluvial)	-	15
20	Susquehanna Loam	Gry Brn	et 11 11	Heavier coastal deposits	-	75
21	Chester Loam	PDZLC	n 11 H	Gneiss, schist, and granite	-	20
22	Bucks Silt Loam	"	Fauquier Co., Va	Red shales and sandstone	20	40
23	Dyke Silt Loam	11	n n <u>n</u>	Greenstone	-	23
24	Elioak Silt Loam	. N	tt 11 II	Mica schist and gneiss	-	90
25	Chewacla Silt Loam	11	11 17 95	Recent alluvial	-	20
26	Manor Loam	, . N	Fairfax Co., Va	Mica schist and gneiss	-	31
27	Congaree Silt Loam	11	n n n .	Recent alluvial	-	35
28	Louiss Loam	н		Schist, gneiss and granite	1600	90

ŝ

医外叶的 白色 医臀

Å

APPENDIX C

TABLE V. FIELD TEST SITE DATA.

.

-

Location	Parent Material	Suscepti in µcgs Parent	units (a) Soil	Magnetic Gammas (10- Small Box	Effect in 5 oersteds) Large Box	Anomalies per 10 Ft Small Box	Inclusive Material
Properties and Anomalies i	n Soils of Virginia and West Vir						······································
Fauquier Co., Va	Diabase	-	120	3	No data	No data	None
11 17 17	Red shale	20	120	3	1	2	Some shale fragments
11 II II	Quartz-monzonite	1	5	(0) ^(c)	j	0	Quartz, grit to cobbles
Prince William Co., Va	Fine-grained diabase	770	500	12.5		10	Numerous pieces of diabase
Fauguier Co., Va	Diabase	210	1800	45		6	Some weathered diabase
et 11 11	Greenstone sediments	2200	750	19		14	Greenstone up to cobble size
Fairfax Co., Va	Unconsolidated sediments	-	55	1		0	Some quartz gravel
Princess Anne Co., Va	Marine sands	1	5	(o)		0	None
ils """"	Sandy marine deposits	-	35	(1)	ł	0	None
	Sands, clays, and silts	• .	30	(1)		o	None
11 II II II	Organic rock	•.	l	(0)		0	Organic material
47 38 47 97	Fine-grained marine deposits	-	1	(0)		0	Small pebbles at times
Nansemond Co., Va	Clays and sands	-	2	(0)		0	None
89 80 , 18	Clays and sands	-	7	(0)		0	Has hardpan in some areas
91 11 11	Sands and clays	•	1	(0)	· • [0	None
Southampton Co., Va	Sands and clays	•	5	(0)	ļ	0	None
H H H	Sands	-	ş	(0)		0	None
11 H H	Sands and clays	-	1	(0)	l	0	None
Fairfax Co., Va	Clays (alluvial)	•	15	(0)		0	None
1) IF II	Heavier coastal deposits	-	75	(2)		No data	May contain quartz gravel
PN 89 99	Gneiss, schist, and granite	-	20	(0)		0	None
Fauquier Co., Va	Red shales and sandstone	20	40	1		0	None
96 99 <u>9</u> 7	Greenstone	-	2300	55		10	Contains small greenstone pieces
11 H H	Mica schist and gneiss	-	900	22		2	Occasional small quartz and schist
17 17 17	Recent alluvial	-	200	5		0	None
Fairfax Co., Va	Mica schist and gneiss	-	310	8		6	A few pieces of quartz and schist
97 99 99	Recent alluvial	-	350	9			None
11 19 IF	Schist, gneiss and granite	1600	900	22			A few small schist and quartz pieces

4

56	Montevallo Shaly Silt Loam	Gry Brn PDZLC	Smyth Co., Va	Shale and sandstone	10	70
57	Dunmore Stony Silt Loam	".	M H H	Limestone	1	30
58	Carbo Silty Clay Loam	n	11 H H	Mixed limestone and shale	-	200
59	Lodi Loam	"	11 II II	Limestone and sandstone	-	35
60	Holston Loam	ر ۱۱ :	st 11 11	Alluvial (sandstone and shale)	-	80
61	Masada Loam	11	н н п	Alluvial (limestone, sand- stone and shale)	-	100
62	Tusquitee Stony Loam	"	11 17 17	Mainly igneous fragments	-	15
63	Ramsey Stony Loam	"	и и и	Slate, shale, and quartzite	10	120
64	Clarksville Cherty Silt Loam	"	st ti ti	Cherty limestone	1	70
65	Muskingum Stony Fine Sandy Loam	Ħ	PE 17 11	Sandstone	5	20
66	Lehew Very Fine Sandy Loam		Tazewell Co., Va	Sandstone	10	25
67	Hayter Stony Fine Sandy Loam	11	87 BT 88	Sandstone	40	150
68	Pisgah Stony Silt Loam	"	17 19 19	Limestone	-	70
69	Frederick Cherty Silt Loam	н [97 11 11	Cherty limestone	-	80
70	Muskingum Stony Very Fine Sandy Lo	am".	11 11 11	Sandstone	38	70
71	Bolton Loam	n .	11 11 II	Sandstone and Limestone	42 15	85 -
.72	Upshur Stony Clay Loam	*1	McDowell Co., W. Va	Red shale and sandstone	5	65
73	Holston Fine Sandy Loam	81	Wyoming Co., W. Va	Alluvial (sandstone)	-	15
74	Dekalb Stony Silt Loam	17	11 11 11 11	Sandstone and shale	1 25	175 -
75	Huntington Fine Sandy Loam	и	Logan Co., W. Va	Alluvial (limestone, sandstone, and shale)	-	5
76	Dekalb Stony Silt Loam	H .	11 11 11 11	Sandstone and shale	14	55
77	Holston Silt Loam	# ; ,	Boone Co., W. Va	Alluvial (Dekalb material)	-	1
78	Holston Silt Loam	n	Lincoln Co., W. Va	11 13 11	-	20
79	Not available					
80	Upshur Silty Clay Loam	11 -	Braxton Co., W. Va	Red shales	40	37
81	Moshannon Silt Loam	11	81 HT 18 HT	Alluvial (Dekalb and Upshur)	-	34
82	Роре		Webster Co., W. Va	Alluvial		10
83	Frederick Gravelly Fine Sandy Loam		Pendleton Co., W. Va	Limestone and sandstone	4	35
84	Huntington Fine Sandy Loam	"	, 10 H TI H	Recent alluvial	-	55

82 Pope 83 Frede 84 Hunti

•

. -

1						
Smyth Co., Va	Shale and sandstone	10	70	2	No data No data	Very stony, full of shale and sandstone
11 H H	Limestone	1	30	(1)		Very stony (limestone)
N N N	Mixed limestone and shale	-	200	5	0	None
11 (F (F (Limestone and sandstone	-	35	(1)	2	None
91 11 11	Alluvial (sandstone and shale)	-	80	2	14	In some places quartzite and sandstone gravel from ½-in. to 2-in. diameter
11 11 11	Alluvial (limestone, sand- stone and shale)	-	100	3	6	Some sandstone and quartzite fragments
11 18 11	Mainly igneous fragments	-	15	(0.)	10	Many stones everywhere
ย ยัน	Slate, shale, and quartzite	10	120	3	6	Many stones
и и и	Cherty limestone	1	70	2	10	Much chert and limestone
17 11 11	Sandstone	5	20	(0)	0	Very stony
Tazewell Co., Va	Sandstone	10	25	(0)	o	A few sandstone fragments
99 tt 95	Sandstone	40	150	· 4	6	Numerous sandstone pieces
17 th 91	Limestone	-	70	2	o	Limestone outcrops and pieces
11 H 1 1	Cherty limestone	-	80	2		Many chert pieces on surface
11 11 11	Sandstone	38	70	2	. 8	Very stony everywhere
H H U	Sandstone and limestone	42 15	85 -	2 -	6	Contains small black concre- tions, also sandstone and chert pieces
McDowell Co., W. Va	Red shale and sandstone	5	65	2	6	Sandstone pieces are numerous
Wyoming Co., W. Va	Alluvial (sandstone)	-	15	(0)	No data	None
н н ю _. н	Sandstone and shale	1 25	175 -	5	6	Many pieces of sandstone
Logan Co., W. Va	Alluvial (limestone, sandstone, and shale)	-	5	(0)	o	Some gravel in places
11 11 11 11	Sandstone and shale	14	55	1	6	Contains numerous rocks
Boone Co., W. Va	Alluvial (Dekalb material)	-	1	(0)	0	Gravel and boulders may be present
Lincoln Co., W. Va	11 II II	-	20	(0)	0	Some peobles and small boulders
Braxton Co., W. Va	Red shales	40	37	(1)	3	Very stony, mixed sandstone, and shale
, ¹⁷ ¹⁹ 19 19	Alluvial (Dekalb and Upshur)	-	34	(1)	°	A few 2-in. rocks widely scattered.
Webster Co., W. Va	Alluvial		10	(0)		None
Pendleton Co., W. Va	Limestone and sandstone	4	35	(1)	2	Contains rocks in surface
17 17 17 18	Recent alluvial	-	55	1		Contains gravel and stones Dear streams

.

I

.

85	Hagerstown Stony Silty Clay Loam (Jry Brn PDZLC	Pendl	eton	Co.	, W. Va	Shaly limestone	-	72	
8 6	Dekalb Shaly Silt Loam	"	11		н	17 17	Sandstone and shale	8	300	1
87	Monongahelia Silt Loam	81	Hardy	Co.,	W.	Va	Alluvial (sands and clay)	-	150	
8 8	Westmoreland Silt Loam	11	11	n	11	"	Calcareous shales and impure liméstones	-	40	
89	Meigs	11	11	11	H	"	Red sandstönes and shales	-	15	
9 0	Not available						1			
91	Lindside Silt Loam	11	11	11	"	11	Alluvial '	-	20	
92	Berks Silt Loam	11	11	n	11	u	Shales	10	35	
9 3 .	Moshannon Gravelly Fine Sandy Loam	11	"	11	"	".	Alluvial	-	25	
94	Not available	n	Culpe	pper	Co.,	, Va	Schist and greenstone	-	30	
95	Cecil Fine Sandy Loam	11	11		"	11	Granite and gneiss	-	50	

Data are taken from Carts, Orr, and MacCormac, The Effects of Soil Magnetic Properties and Natural Magnetic Micro-anomalies o Passive Magnetic Land Mine Detection Methods.

P-1	Arraijan Clay	RHLTSL	Canal Zo	ne		Agglomerate	2800,900	1050
P-2	Arraijan Clay	RHLTSL	11 II	r		11	3100	790
P-3	Paraiso Clay	RBHLTSL	11 1 7	,		Limestone and tuff	3, 130	585
P-4	Arraijan Clay	RHLTSL	11 11	r		Basalt	2200	2000
P- 5	Ancon Stony Clay	YELBRNLTSL.	11 11	r		Dasite	2400	1000
P-6	Beach Sand	SAND	Republic	of	Panama	Basic igneous	-	4500
P-7	Beach Sand	n	11	н	н	Igneous, acid, and basic	265, 2850	460
P-8	Shell Beach Sand	**	Canal Zo	ne		Sand	-	50
P-9	Beach Sand (light, dark)	n	Republic	of	Panama.	Basic igneous	1200	50,000
P-10	Beach Sand	H	11	11	**	Sand	-	216
P-11	Alhajuela Clay	BRNHLTSL	H	۳		Limestone	10	425
P-12	Gatuncillo Clay	REDERNHLTSL	**	Ħ	"	11	-	280
P-13	Gatuncillo Loam Clay	"	**	"	."	Shale	-	280
P-14	Gatuncillo Loam Clay	"	Ħ	rt	**	•	-	720
P-15	Frijoles Clay	REDHLTSL	11	Ħ	**	Basic igneous	1100	750
P-16	Catival Clay	REDBRNHLTSL	Canal Zo	ne		Limestone	-	375
P-17	Olivine Beach Sand	SAND	Republic	of	Panama	Basic igneous	Fg. na C	10500
P-17A	Beach Sand (chips)	n	11	"	11	Sand		1850
P-18	Gatun Clay	REDHLTSL	Canal Zo	ne		Sandstone, siltstone		200
P-19	Gatun Clay	*	11 11)		Sandstone		350

_ _

.

- ---

.

- 1

38

Ļ

1

.

ileton Co., W. Va	Shaly limestone	-	72	2	No data	6	Very stony
u 11 11 11	Sandstone and shale	8	300	8	1	8	Very shaly and stony
ly Co., W. Va	Alluvial (sands and clay)	-	150	4	יי	lo data	
11 17 11	Calcareous shales and impure limestones	-	40	l		0	
H 11 II	Red sandstones and shales	-	15	(0)		0	Very stony.
	1						
17 11 11	Alluvial '	-	20	-	1	io data	
99 80 80	Shales	10	35	(1)		4	
si 11 11	Alluvial	-	25	(0)		0	
xepper Co., Va	Schist and greenstone	-	30	(1.)		6	Small stones on surface and in soil
11 11 IF	Granite and gneiss	-	50	1	ł	4	
•							
Effects of Soil Magnetic Land Min	etic Properties and Natural M an Detection Methods.	agnetic Micro	-anomalies o	f Typical	Tropical Soils	on	
.l Zone	Agglomerate	2800,900	1050	11	No data	10	
11	**	3100	790	8		10	
11	Limestone and tuff	3, 130	585	6		3	
11	Basalt	2200	2000	20		10	
11	Dasite	2400	1000	10		10	
blic of Panama	Basic igneous	-	4500	45		7	
	Igneous, acid, and basic	265, 2850	460	5		10	
1 Zone	Sand	-	50	(0)	1	3	
blic of Panama	Basic igneous	1200	50,000			5	Also location with soil K of 150,000 (dark)
11 11	Sand	-	216	2		10	
н и	Limestone	10	425	4		2	
	H	-	280	3		5	
n .n	Shale	-	280	3		2	
17 H	N .	-	720	7		2	
11 11	Basic igneous	1100	750	7		7	
L Zone	Limestone	-	375	4		5	
blic of Panama	Basic igneçus	-	10 500	120		1	
11 11	Sand	-	1850	20		2	9
L Zone	Sandstone, siltstone	-	200	2	1	3	
n	Sandstone	-	350	4	. ↓	5	

.

- - - - -

.

٠

ſ

į

•

: : .

: . I.

• i Т ł . . ļ . 1 1

.

P-20	Beach Sand Coral, Wet	SAND	Canal Zone	Sand .	-	5000
P-20A	Beach Sand Coral, Dry	",	tt 11 ,	11	-	275
P-21	Beach Sand	"	TI 18	**	-	1500
P-22	Green Beach Sand	н	Republic of Panama	11	-	6400
P-22A	Beach Sand (light)	11	11 11 11 .	n	-	5750
P-23	r raijan Clay	REDHLTSL	Canal Zone	Basalt	4750	400
P-24	Paraiso Clay	REDBRNHLTSL	11 11	Acidic tuff	-	3

Data are taken from "Field Tests on Performance of SCR Mine Detector As Related to Varieties of Bed Rock and Soils," U.

1	Clayey Soil	Trop. Brn. Luzon	Alluvium	No data	260
2	11 tr	Trop. Blk. "	Andesitic tuff		38
3	17 17	17 II	11 11		50 [¶]
4	11 11	Trop. Brn. "	n n		500
5	17 51	11 11	n n		75
6	11 11	Rd Brn Lat "	Andesitic tuff basalt and diabase		350
7	Loam, Silt Loam	Trop Brn Lat "	Andesițic tuff		420
8	11 11	11 ⁻ 11 S	Very recent alluvium		425
9	98 91 98		Alluvium		180
10	11 H H II .	¥1 ¥1	H .		45
ш	Beach Sand	No data "	-		2000
12	97 93	17 11 1 1	··· - ,	ŧ	350 +

Data are taken from "Report on Use of SCR-625-C Mine Detector and Data to Serve as Basis for Prediction of Performance," Survey for Chief of Engineers, 1945.

13	Neshaminy	No data	Ma	Hornblende-plag. rock No data	400
14	n		• N	97 91 W	530
15	Conowingo		**	Serpentine	450
16	Manor		11	Granite	42
17	Chester		11	Schist and granite	34
18	Loam		n	Old alluvium	36
19	Hagerstown	N	Va	Dolomite limestone	1000
20	11		11	n <u>n</u>	400
21	n		**	11 19	870
22	Loan		*1	Shale	37
23	Meyersville		n	Greenstone	540
24	"		•	n.	2200
25	Necklenberg	+	Va	Diabase	400

-

Canal Zone	Sand	-	5000	50 No	data 4
17 17	11	-	275	3	4
11 II	Ħ	-	1500	15	1
Republic of Panama	"	-	6400	65	3
11 11 ¹ 11	17	-	5750	58	3
Canal Zone	Basalt	4750	400	4	10
3L " "	Acidic tuff	-	3	o	No data

ance of SCR Mine Detector As Related to Varieties of Bed Rock and Soils," U. S. Geological Survey for Chief of Engineers, U. S. Army.

	Luzon	Alluvium	No	data	260	3	No	data	No	data
	11	Andesitic tuff		ļ	38	0		ļ		
	11	11 TT		·	50	0				
	n	şı 11			500	5				
	n	71 E			7 5	ļ				
,		Andesitic tuff basalt and diabase			350	4				1
at	11	Andesitic tuff			420	4				ļ
	17	Very recent alluvium			425 .	4				
·	n	Alluvium			180	2				
	11 •	H z			45	0		ł		
	11	-		[2000	20		· ·		
	н.	-		ŧ	350	4		↓ .		•

5-C Mine Detector and Data to Serve as Basis for Prediction of Performance," by Military Geology Unit, U. S. Geological incers, 1945.

Md Hornblende-plag, rock No data 400 10 No data No	data
" " " 530 13	
" Serpentine 450 11	
" Granite 42 1	
" Schist.and granite 34 1	
"Old alluvium 36 l	
Va. Dolomite limestone 1000 25	
""400 10	
" " 870 21	
" Shale 37 1	
" Greenstone 540 13	
" " 2200 52 .	
Va. Diabase 400 10	

i

1	Silt	No data	Choking Chine		
- la		NO GALLA	Chekiang, China McIntosh, Ga	Silt No d	ata <10
 1b	Waverly Silt Loam		Prane, Ark.	Fine sandy loam	<10
10	Kalmia Fine Sandy Loam		Lincoln, La	Silt	10
2	Myatt Silt Loam		-	Stream terrace	12
- 3	Crowley Silt Loam		Dallas, Tex.	Terrace	10
5 4	Not available		Beauregard, La Md	Silt	10
5	Wickham Sandy Loam			Alluvium (old)	18
6	Ochlockonee Silt Loam		Gainesville, Ga	Terrace	45
7	Not available		Dallas, Tex.	Flood plain	80
8	Cahaba Fine Sandy Loam		Upper Amazon, Peru	Flood plain	80
9	Orangeburg Fine Sandy Loam		Lincoln, La	Flood plain	86
10	Ruston Loamy Fine Sand	·	10 H	Sand and clay	15
10a	Harris Clay			Sand and clay	25
102	- -		Victoria, Tex.	Clay	10
100	Lake Charles Clay Blakely Loam			Clay	10
11			Peach, Ga	Heavy sandy clay	218
128	Susquehanna Fine Sandy Loam		Lincoln, Ga	Heavy clay	280
			Va	Shale	24
13	Not available	ł	H .	Red shale	295
14	Summerville Stony Loam		Cheboygan, Mich.	Limestone and dolomite	37
15	Duffield Silt Loam		Jefferson, W. Va	57 FF e1	40
16	Strasburg		York, Pa	••••, ••	50
17	Hagerstown Silt Loam		97 99	и и , и	75
18	Duffield Silt Loam		Washington, Md	11 11 11 	75
19	Hagerstown Silt Loam		Franklin, Pa	9 11 H	80
20	Posen Stony Loam		Menominee, Mich.	77 11 11	85
21	Hagerstown Silt Loam		Washington, Md	11 N N	105
22	Frederick		11 11	Shaly limestone and dolomite	115
23	Dummore Silt Loam		Smyth, Va	Limestone and dolomite	136
24	Not available		Va	Dolomite limestone	145
25	Hagerstown Silt Loam		Hardin, Tenn.	Limestone and dolomite	155
26	Devey Loan		Franklin, Ala.		165
27	Fullerton Cherty Silt Loan	Ĩ	Cranger, Tenn.	Cherty limestone and dolomite	170
28	Dewey Silt Loam		Jefferson, Tenn.	Limestone and dolomite	170
29	Lancaster, Pa		11 PT	17 17 18	210
30	Decatur Clay Loam	Ļ	Floyd, Ga		245
	,				

. .

·

No da I	ta Chekiang, China	Silt	No data <10	0	No data	No data
ady Loam	McIntosh, Ga	Fine sandy loam	<10	0		
em	Prane, Ark.	Silt	10	0		
ly Loam	Lincoln, La	Stream terrace	12	0		
•	Dallas, Tex.	Terrace	[`] 10	o		
un .	Beauregard, La	Silt	10	0		
	Md.	Alluvium (old)	18	0		
am	Gainesville, Ga	Terrace	45	1		
; Loam	Dallas, Tex.	Flood plain	80	1		
	Upper Amazon, Peru	Flood plain	80	1		
iy Loam	Lincoln, La	Flood plain	86	1		
Sandy Loam	T1 87	Sand and clay	15	0		
ne Sand	17 11	Sand and clay	25	0		
	Victoria, Tex.	Clay	10	0		
у	11 II	Clay	10	0	}	
	Peach, Ga	Heavy sandy clay	218	4	1	
Sandy Loam	Lincoln, Ga	Heavy clay	280	5		
	Va	Shale	24	o		
	n	Red shale	295	7		
y Loam	Cheboygan, Mich.	Limestone and dolomite	37	1		
an	Jefferson, W. Va	17 11 11	. 40	1		
	York, Pa	11 11 11	50	1		
Loam	n n	11 11 1	75	2		
am	Washington, Mi	n n	75	2		
Loam	Franklin, Pa	11 11 11	80	2		
	Menominee, Mich.	H 11 11	85	2	ļ	
loan	Washington, Ma	17 11 19	105	3		
	11 II	Shaly limestone and dolomite	115	3		
m. i	Smyth, Va	Limestone and dolomite	136	3		
	Va	Dolomite limestone	145	4		
Loan	Hardin, Tenn.	Limestone and dolomite	155	4		
	Franklin, Ala.	17 1 7 17	165	4		
Silt Loam	Granger, Tenn.	Cherty limestone and dolomite	170	4		T
	Jefferson, Tenn.	Limestone and dolomite	170	4		
	11 11	n n n	210	5		
• l	Floyd, Ga	10 10 10	245	L.	↓ I	↓ ■

31	Hagerstown Loam	No data	Lehigh, Pa	"""No dat	t a 285
32	Hagerstown Silt Clay Loam	1:	Washington, Md	11 11 11	290
33	Not available		Va	Dolomite limestone	300
34	Dewey Loam		Bartow, Ga	Limestone and Dolomite	300
35	Dewey Silty Loam		Colbert, Ala.	Limestone and Dolomite sandstone	395
36	Benevola Silty Clay		Washington, Md	Calcareous sand and sandy limestone	440
37	Decatur Clay Loan		Colbert, Ala.	Limestone and Dolomite	480
38	Not available		Va		500
39	Not available		Va	Dolomite limestone	545
40	Decatur Silty Loam		Washington, Md	Limestone and Dolomite	1660
41	Not available		Upper Amazon, Peru	Mica schist	20
- 42	Not available		Near Clarksville, Md	Injection schist	48
43	Not available		Va	Sericite schist	65
44	Madison Clay Loam		Warren, Ga	Quartz-mica schist	85
45	Glenelg Silt Loam		Lancaster, Pa	Mica schist	95
46	Manor Loam	:	17 11	Schist	185
47	Durham Sandy Loam	·	Clarke, Ga	· Granite gneiss	10
48	Appling Sandy Loam		Warren, Ga	Granite, gneiss, and schist	10
49			Ma	Granite	45
49 A	Loam		Hollandia, New Guinea	Granitic arkose .	150
49 B	Butte Gravelly Sand	· ·	Clear Lake Area, Cal.	Andesitic, rhyolite tuffs	50
, 4 9 0	Butte Stony Loam		Napa Area, Cal.	Andesitic, rhyolite tuffs	75
50	Luzena Stony Loam		Hidalgo, N. M.	Rhyolite	580
51	Tijara Clay		Tijara, Costa Rica	Trachyandesite	720
52	Not available	·	Turrialba, Costa Rica	Volcanic (basic)	820
53	Luzena Sandy Loan		Gila Bend, Ariz.	Rhyolite	1400
54	Montalto		Va	Diabase	210
55	Montalto		Bucks, Pa		1440
56	Not available		, Mà	Gebbro .	195
57	Neshaminy Silt Loam		Newark, Del.	Mafic metamorphic rocks	235
58	Chester Loam	1	Lancaster, Pa	Mafic metamorphic rocks	240
59	Montalto Silt Loam		Near Newark, Del.	n n m	360
60	Not available		MA	11 11 11	365
61	Bliosk Silt Losm	. ↓	Lancaster, Pa	n n n	
			······································		390

.

•

ı

>

ş

--

. **n**

	No data	Lehigh, Pa	11 H H	No data	285	7	No data	No data
Clay Loam	1 :	Washington, Md	11 ti bi		290	7	.]	I
		Va	Dolomite limestone		300	7		
		Bartow, Ga	Limestone and Dolomite		300	5		
L		Colbert, Ala.	Limestone and Dolomite sandstone		395	6		
lay '	· · ·	Washington, Md	Calcareous sand and sandy limestone		440	11	:	
m :		Colbert, Ala.	Limestone and Dolomite		480	8		
		Va	11 11 11		500	12 ·		
		Va	Dolomite limestone		545	14		
m		Washington, Md	Limestone and Dolomite		1660	43		
		Upper Amazon, Peru	Mica schist		20	0 ·	· ·	
		Near Clarksville, Md	Injection schist	· .	48	l		
		Va	Sericite schist		65	2		
		Warren, Ga	Quartz-mica schist		85	l		
		Lancaster, Pa	Mica schist	ĺ	95	2	l l	
1		17 TF	Schist		185	5		
		Clarke, Ga	Granite gneiss		10	0		
n '		Warren, Ga	Granite, gneiss, and schist		10	0	:	
		Md.	Granite		45	1		
		Hollandia, New Guinea	Granitic arkose		150	1		
að.		Clear Lake Area, Cal.	Andesitic, rhyolite tuffs		50	1		
:		Napa Area, Cal.	Andesitic, rhyolite tuffs		7 5	1		· · ·
÷		Hidalgo, N. M.	Rhyolite		580	9		
		Tijara, Costa Rica	Trachyandesite		720	8		
		Turrialba, Costa Rica	Volcanic (basic)		820	9		
		Gila Bend, Ariz.	Rhyolite		1400	23		· · · · · · · · · · · · · · · · · · ·
		Va	Diabase		210	5		
		Bucks, Pa	"		1440	36		
		Ma	Gabbro		195	5	1	
m	ł .	Newark, Del.	Mafic metamorphic rocks		235	6		
		Lancaster, Pa	Mafic metamorphic rocks		240	6		
D		Near Newark, Del.	11 11		360	·· 9		2
		Ma	45 17 1 7		365	9		
	+	Lancaster, Pa	11 II II	1	390	10	L L	

•

.

5

62	Conowingo	No data	Baltimore, Md	Serpentine rock	No data	400
63	Not available		Bethesda, Md	Metagabbro	1	440
64	Davidson Clay Loam		Warren, Ga	Gabbro		1170
65	Not available		Bethesda, Md	11		2150
66	Guayama Clay		Bumancao, Puerto Rico	Mafic metamorphic		125
67	Not,available		Va	Metabasalt	c .	210
67 a	tt t)		Paricutin, Mex.	Basaltic ash		260
68	пн		Va	Metabasalt		950
69	Aiken		Lake, Cal.	Basic igneous rocks		1490
70	Not available		Ma	Serpentine rock		250
71	Conowingo Barrens		Chester, Pa	11 11		950
72	Conowingo Silt Loam		Lancaster, Pa	91 U		1000
73	Not available	1	Webster, N. C.	Dunite		2000
74	Conowingo		Chester, Pa	Serpentine rock		2900
75 -	Rosales		Rosales, Puerto Rico	11 11		3500
76	Nipe Clay		Mayaguez, Puerto Rico	11 șt		3600
77 '	Silt Loam		Hollandia, New Guinea	*† 95		7000
78	Collington Fine Sandy Loam		Blackwood, N. J.	Glauconite		15
79	Collington Fine Sandy Loam		Prince George, Md	Glauconitic sand		40
80	Red Bay Fine Sandy Loam		Sumpter, Ala.			90
81	Red Bay Fine Sandy Loam		Hale, Ala.	11 11		105
82 _:	Orangeburg Very Fine Sandy Loam		Ruston, La	Sand and sandy clay		460
83	Nacogdoches Fine Sandy Loam		Garland, Tex.	Glauconitic clay		1530
84	Nacogdoches Fine Sandy Loam		11 11	" "		1800
85	Red Bay, Fine, Sandy Loam, Gravelly		Ruston, La	Glauconite	Ļ	3400
	SUSCEPTIBILITY OF ROCKS FROM JAPAN					
,	Web	1				

2	"	**	
3	"		
4	Not a	vailable	

Not available

- 5 " " 6 " "
- 7 "

1

8 " "

Fugi, Suruga	Basalt	1100 No data
R. Gordsi	Quartz-bearing tuff	57
Tsubaki, Ugo, K. Niui	Tuff	24
Sado Mine	Quartz-bearing tuff	225
Kamo, Izu	Tuff breccia	370
Shimonosiki, Nagato	Metamorphosed tuff	195
Sheobara or Mitachi	Tuff shale	25
Hodozawa, Musashi	11 11	42

o data	Baltimore, Md	Serpentine rock	No data	400	10	No data	No data
	Bethesda, Md	Metagabbro		440	11	1	
	Warren, Ga	Gabbro		1170	19		
	Bethesda, Md	и		2150	54		
	Bumancao, Puerto Rico	Mafic metamorphic		125	l		
	Va	Metabasalt		210	5		
	Paricutin, Mex.	Basaltic ash		260	3		
	Va	Metabasalt		950	24	2	
	Lake, Cal.	Basic igneous rocks		1490	25		
	Ma	Serpentine rock		250	6		
	Chester, Pa	11 11		950	24		
1	Lancaster, Pa	n 11		1000	25		
	Webster, N. C.	Dunite		2000	40		
	Chester, Pa	Serpentine rock		2900	7 0		
	Rosales, Puerto Rico	n n		3500	35		
	Mayaguez, Puerto Rico	11 11		3600	35		
1	Hollandia, New Guinea	п н		7000	46		
	Blackwood, N. J.	Glauconite		15	0		
	Prince George, Md	Glauconitic sand		40	l		
	Sumpter, Ala.	FT 91		90	1		
1	Hale, Ala.	97 9 6		105	2		
	·Ruston, La	Sand and sandy clay		460	8		
	Garland, Tex.	Glauconitic clay		1530	26		
	ti 11	11 H		1800	29		
	Ruston, La	Glauconite	ł	3400	54		
	Fugi, Suruga	Basalt	1100	No data	No data		
	R. Gordsi	Quartz-bearing tuff	57	1			
	Tsubaki, Ugo, K. Miui	Tuff	24		1		
1	Sado Mine	Quartz-bearing tuff	225	ł			
	Kamo, Izu	Tuff breccia	370			1	
	Shimonosiki, Nagato	Metamorphosed tuff	195				
	Sheobara or Mitachi	Tuff shale	25				
	Hodozawa, Musashi			1	1	1	

. . .

۳. .

Loam e Sandy ndy Loam ndy Loam r Loam,

dy Loam dy Loam Loam

CKS FROM JAPAN

10111 10 mail

- ---

Data are taken from "Performance of the SCR-625 Mine Detector over Different Rocks and Soils," by R. J. Roberts, E. Sampson, M. M. Striker, U. S. Geological Survey, and T. E. Stewart, USAERDL, 1949.

1	Posen	No data	Menc linee, Mich.	Limestone	No data	100
2	Frederick	[Morgan, Ind.	n .	ſ	102
3	Fairmount		Brown, Ohio	Sandstone		50
4	Duffield		Limestone, Pa	Limestone		40
۰ ₁	Hagerstown		Lancaster, Pa	"		210
6	Frederick		Washington, Md	n		140
7	Hagerstown .		Bedford, Tenn.	11		200
8	Dewey		Roane, Tenn.	11		280
9	Dewey		Jefferson, Tenn.	· 11	j	50
10	Decatur		Hamblen, Tenn.	11		220
11	Dewey		Bartow, Ga	"		260
12	Blakely	t t	Peach, Ga	"		200
13	Decatur		Colbert, Ala.	. "		400
14	Chester		Bernardsville, N. J.	Mica schist		90
15	Chester		Baltimore, Md	P3 T1		140
16	Manor		Fairfax, Va	Sericite schist		· 50
17	Chester		Stoke, N. C.	Mica schist		4
18	Granitic Arkose Soil		Hollandia, New Guinea	Granitic arkose		150
19	Soil from Mica Schist		Upper Amazon, Peru	Mica schist		15
20	Soil from Mica Schist		Upper Amazon, Peru	19 11	Ĩ	12
. 21	Conowingo		Chester, Pa	Greenstone		740
22	Lloyd		Fairfax, Va	Greenstone	•	680
23	Not available		Lake, Calif.	Serpentine rocks	1400	2500
24	Rosales		Rosales, Puerto Rico	ni n	710	3500
25	Not available		Hollandia, New Guinea	Altered serpentines	2000	8000
26	""		Lake, Cal.	Quartzose volcanic	280	340
27	н н		11	Volcanics		480
28	Fresh Volcanic Ash		Paricutin, Mex.	Volcanic ash	260	
29	Not available		Turrialba, Costa Rica	Weathered volcanics	2300	830
30	17 17		Luzon, P. I.	Andesite tuff	340	75
31	11 11		11 - 11 11	Volcanic tuff	480	210
32	11 11		39 35 99	Volcanics		170
33	Iredell		Fairfax, Va	Diabase	1000	210
34	Mecklenburg		Leesburg, Va	π	400	400
35	Davidson	. 🕈	Bethesda, Md	Gabbro	2000	800

. . .

No	data	Menc tinee, Mich.	Limestone	No	data	100	3	No da	ta	No data
		Morgan, Ind.			1	102	2			
		Brown, Ohio	Sandstone			50	1	ĺ		
1		Limestone, Pa	Limestone			40	1			
		Lancaster, Pa	n			210	5	1		
	·	Washington, Md	tt			140	3	i i		
	1	Bedford, Tenn.	n			200	5			
		Roane, Tenn.	11			280	7			
		Jefferson, Tenn.	· 11			50	1			
		Hamblen, Tenn.	11			220	· 5			
	ľ	Bartow, Ga	n			260	4			
		Peach, Ga	11		•	200	3			
		Colbert, Ala.	, "			400	6			
		Bernardsville, N. J.	Mica schist			90	3			
		Baltimore, Md	11 11			140	3			
	1	Fairfax, Va	Sericite schist			50	1			
		Stoke, N. C.	Mica schist			4	0			
1		Hollandia, New Guinea	Granitic arkose			150	l			
st		Upper Amazon, Peru	Mica schist			15	0			
st		Upper Amazon, Peru	H 11			12	0			
,		Chester, Pa	Greenstone			740	18			
		Fairfax, Va	Greenstone	1	7	680	16			1
		Lake, Calif.	Serpentine rocks	14	100	2500	32			
		Rosales, Puerto Rico	ni n	1 7	LO	3500	35		•	
		Hollandia, New Guinea	Altered serpentines	20	000	8000	54			
:		Lake, Cal.	Quartzose volcanic	28	30	340	5			
		11 11	Volcanics			480	8			
·	1	Paricutin, Mex.	Volcanic ash	26	ś0					
		Turrialba, Costa Rica	Weathered volcanics	23	300	830	8			l
	:	Luzon, P. I.	Andesite tuff	34	ю	75	1			
•		17 · 17 in	Volcanic tuff	48	ю	210	2			
:		11 11 11	Volcanics			170	2			
		Fairfax, Va	Diabase	10	00	210	5			
	1	Leesburg, Va	Ħ	i+o	0	400	10			
	V	Bethesda, Må	Gabbro	20	00	800	20			

- - -

om "Performance of the SCR-625 Mine Detector over Different Rocks and Soils," by R. J. Roberts, E. Sampson, M. M. Striker, U. S. Geological Survey, and T. E. Stewart, USAERDL, 1949.

36	Davidson	No data	Chatham, N. C.	Mafic igneous	No data	540
37	n	1	Abbender, S. C.	11 11		400
38	n		Lee, Ala.	99 HZ		290
39	Soil over Glacial Till	Į	Madison, Wis.	Glacial till		50
40	Soil over Igneous Terrace, Gravelly		Luzon, P. I.	Igneous gravel, terrace		340
41	Waverly		Prane, Ark.	Old alluvium		10
42	Bladen		McIntosh, Ga	11 11		10
43	Myatt		Dallas, Tex.	11 11		10
44	Red Bay	.	Hale, Ala.	88 B		95
45	Ruston		Lincoln, La	11 II		95
46	Crowley		Beauregard, La	97 H		10
47	Kalmia		Lincoln, La	11 19		12
48	Collington		Blackwood, N. J.	Glauconitic material		12
49	Orangeburg		Rustin, La	n n		450
50	Nagadoches		Garland, Tex.	11 H		1530
51	Alluvium from Glacial Till		Cross Plains, Wis.	Poorly drained alluvium from glacial \$ill		50
52	Poorly Drained Alluvium		Clarksville, Mi	Mixed rock		36
53	Ocklocknee (alluvium)		Dallas, Tex.	Alluvium from coastal plain		60
54	Harris	Ì	Victoria, Tex.	Alluvium from coastal plain		10
55	Slowly Drained Alluvium		Marin, Cal.	Sedimentary and igneous		14
56	Gray Clayey Alluvium	·	n n	Serpentine and sediments	1	340
57	Gray Clayey Alluvium		n n	Quartz-bearing igneous		26
58	Cahaba (alluvium)		Beauregard, La	Coastal plain		18
59	Well-Drained Alluvium		Tingo Maria, Peru	Mixed rock		58
60	Alluvium		Chekiang Province, China			30
61	Fresh, Well-Drained Alluvium		Luzon, P. I.	Recent volcanics	· 1	340
62	Gravel and Sand in River		Luzon, P. I.	Diabase and andesite		800
63	Low, Well-Drained Levees		en 11 en	Mixed rock	l l	710
64	High Levee, Intermediate Drained	1	FT ET ET	77 17		170
65	High Leves, Poorly Drained		89 89 89	11 11		36
66	Wave Washed Fresh Beach Sand		97 P1 H1	No data		800
67	Well-Drained Loem Above Beach Sand					340
68	Poorly Drained Clay in Adjacent Shale					75

	No data	Chatham, N. C.	Mafic igneous	No dat	a 540	12		
		Abbender, S. C.	M 11	E E		13	No data	No data
		-	9 H	ſ	400	7		1
Lacial Till		Lee, Ala. Madison, Wis.			290	5		
meous Terrace,			Glacial till		50	1		
peous renace,		Luzon, P. I.	Igneous gravel, terrace		340	3		
		Prane, Ark.	Old alluvium		10	0		
		McIntosh, Ge	11 II		10	0		
		Dallas, Tex.	11 11		10	0		
		Hale, Ala.	11 11		95	2		
		Lincoln, La	n n		95	No data		
		Beauregard, La	11 11		10	t		
		Lincoln, La	11 11		12			
		Blackwood, N. J.	Glauconitic material		12			
		Rustin, La	11 H		450			
		Garland, Tex.	11 9F		1530			
n Glacial Till		Cross Plains, Wis.	Poorly drained alluvium from glacial \$111		50			
ed Alluvium		Clarksville, Mi	Mixed rock		36			
alluvium)		Dallas, Tex.	Alluvium from coastal plain		60			
		Victoria, Tex.	Alluvium from coastal plain		10			
d Alluvium		Marin, Cal.	Sedimentary and igneous		14	1		
lluvium		n n	Serpentine and sediments		340			
lluvium		** **	Quartz-bearing igneous		26			
rium)		Beauregard, La	Coastal plain		18			
Alluvium		Tingo Maria, Peru	Mixed rock		58			
		Chekiang Province, Chi	28.		30			
rained Alluvium	ł	Luzon, P. I.	Recent volcanics	- I	340	ļ		1
nd in River		Luzon, P. I.	Diabase and andesite		800			
ined Levees		97 11 11	Mixed rock	ŀ	710			
ntermediate Drained	1	PT 11 21	47 FF		170			
oorly Drained			11 H		36			
resh Beach Sand		** **	No data		800			
Loam Above	1	** ** **	1		340			
d Clay in					5.0			2
•	Y	** ** **	1	•	75	ŧ	↓	

r Gla

r I**gn**e

n g 8

from

ained

e (al:

ained ey All ey All

lluviu

ned Al

11-Dra 1 Sand

-Drain

e, Int

e, Poo

od Fre

ned Lo 1

ined.

69	Tide-Washed Fresh Beach Sediments	No data	Luzon, P. Í.	No data		3280
	Data are taken from "Final Techni	cal Report or	a SOIL MAGNETISM STUDIES," 1	by John C. Cook, Southwest Rese	arch Inst	itute, (
1	Monteola Gravelly Loam	edza	Bexar, Tex.	Limestone	0	-
2	San Saba Clay	n	11 24	n	0	10
3	Crawford Clay	RDSH PRIE	N N	n	0	
4	Frio Silty Clay	RDSHCHSNT	* *	Quartzite	0	19
5	Uvalde Silty Clay Loam	н .п	71 FF	Limestone	0	30
6	Crawford Clay	" PRIE	11 W	*	0	115
7	Zapata Gravelly Loam	N 11		n	ο	78
8	San Antonio Clay Ioam	" CHENT	77 F	Sand		51
9	Louisville Silty Loam	RDZA	n n	Limestone	0	- (
10	Austin Silty Clay Loan	RDZA			5	79
11	Louisville Silty Clay Loss	RDSH PRIM			0	69
12	Arelia Clay Loam	PRIE		Limestone and flint	0	40
13	Duval Loamy Sand	RDSH CHSNT		Sendstone	0	5
14	Goliad Fine Sandy Loam	n n		•		210
15	Monteola Clay	RDZNA	* *	Limestone and flint	0	23
16	Medio Loamy Fine Sand	*	97 M	Limestone and sandstone	0	30
17	Brackett Stony Clay Loan	RDSH BRN	Kinney, Tex.	Limestone and iron ore	0,110	55
18	Laredo Loamy Very Fine Sand		Maverick, Tex.	Marl and chalk	0	184
19	Reagan Gravelly Loam		11 II	Limestone and felsites	0,430	87
20	Maverick Clay Loam		91 T	Limestone and chert	0	35
21	Reagan Gravelly Loam		-	Limestone and flint	0	165
22	Crystal Fine Sand		Dimmit, Tex.	Sandstone	< 10	10
23	Uvalde Silty Clay Loam		97 97	Limestone	0	30
24	Frio Clay Ioan	RDGE CEBUT	Uvalde, Tex.	-	0	35
25	Wabash Clay	RDSE CREWT	Wilson, Tex.	Unconsolidated sediments		25
26	Orelia Fine Sandy Loam	RZNA	Bee, Tex.	* *		10
27	Trinity Clay	ALUY	Victoria, Tex.		o	10
28	Lake Charles Clay	SIDCIDOG		Marine clay	\$ 5	5
29	Miller Clay	-	Matagordo, Tex.	Limestone	0	5
30	Crocket Fine Sandy Loss	YEL POLIC	Washington, Tex.	Sandstone	L 10	10
31	Lufkin Fine Sandy Loss		• •	9	L 15	15
32	Denton Stony Clay	RZNA	Williamson, Tex.	Limistone	0	340

i(

ħ,

7

U

(

No data	Luzon, F	· I.	No data		3280	No data	No data	No data	
l Report o	on SOIL MAG	NETISM STUDIES,"	by John C. Cook, Southwest 1	Research In	stitute, Cont	ract No. DA-41	+-009-ENG-3646.	1960.	
DZA	Bexar, T		Limestone	0	-	0	1	(?)	
	**	87	ŧT.	0	10	(1)	1	0	
DSH PRIE	"	π	97	0				-	
DSHCHSNT	**	11	Quartzite	0	19	0	1,-1/2	(?)	
n 'u	n	Ħ	Limestone	0	30	0	3	3	
"PRIB	Ħ	**	n	0	115	3	7	1	
n n	**	•		0	78	3	9	3	
" CHSNT			Sand		51	1	6	(3)	
DZA	"	•	Limestone	0	-	-	-	2	
DZA				5	79	2	8	-	
DSH PRIB		n	n	o	69	5	19	2	
RI B		n	Limestone and flint	0	40	(1)	71/2	4	•
osh chant		n	Sardstone	0	5	0		(4)	
n n		•	-		210	2	(19)	3	Sandstone, well rounded,
DZNA.		•	Limestone and flint	0	23	(1)		2	K is 1,800.
11	н н	•	Limestone and sandstone	0	30	(3)		(4)	
ose brn	Kinney, 1	lex.	Limestone and iron ore	0,110	55	3		3	
• •	Maverick,	Tex.	Marl and chalk	0	184	jt.		3	
• •	n	-	Limestone and felsites	0,430	87	1		(?)	
		10	Limestone and chert	o	35	0		2	
		-	Limestone and flint	ο	165	4	_	3	
	Dimmit, T	ex.	Sandstone	< 10	10	0		(2)	
	"		Limestone	ο	30	(1)		2	
SH CHENT	Uvalde, T	ex.		0	35	2		1	
se cleart	Wilson, T	ex.	Unconsolidated sediments		25	1			Iron pellets, susceptibility of 54,000
NA.	Bee, Tex.				10	(1)	3 :		Steel, susceptibility of
UV	Victoria,	Tex.	n n	0	10	0	4- 5	3	460,000
MIBOG	n	-	Marine clay	4 5	5	· 0		L	
=	Matagordo	, Tex.	Limestone	0	5	0	(0) 2		
L PDZIC	Washington	a, Tex.	Sandstone	< 10	10	0	(1)		
	H	-	-	4 15	15	0	(2) 2		
KA.	Villiameou	a, Tex.	Limestone	0	340	5	45 4		9

No data

· ۳ ...

33	E. Beach Sand	SAND	Galveston, Tex.	Marine sand	0	0
34	Tidal Marsh	MARSH	tr 🚥	= 11	- 0	0
35	Galveston Fine Sand	SAND		• •	· ·	10
36	Harris Fine Sand	-	11 m	• •		5
37	W. Beach Sand	•	" "	10 ar 1 ¹	07	5
38	Acadia Clay	SECIBOC	n n	Marine clay	0?	5
39	Lake Charles Very Fine Sandy Loam	•	* •		07	5
40	Reagan Gravelly Loam	RDSH BRM	Brewster, Tex.	. Chert and shale	11	82
41	Verhalen Gravelly Loan		**	• • •	approx	80
42	Ector Story Loan				10 (?)	
43	Brevster Stony Loan	RED DES	11 m	Rhyolite	220,200,175	105
 44	•	RDSH BRW	17 ya	•	200,200,234	330
45	Rough Stony Land	LTRSL.	** *	•	350	320
45 46	Verhalen Clay Loan	RDSH BRN	17 PT	•	350	340
	Toyah Undifferentiated	• •	** #	Diorite	1410	520
47	Reagan Silty		H H .	Rhyolite	220	384
48	Rough Stony	RED DES	M 44	Diorite	820,900,960	356
49	Reagan Silty Clay Loan	RDSH HRM	Jeff Davis, Tex.	Rhyolite	250	180
50	Verhalen Clay			-	420,380,175	250
51	Reeves Fine Sandy Loss	RED DES	Culbertson, Tex.	Metemorphics	60,75,40	115
52	Reeves Gravelly Loss		Hudspeth, Tex.	Felsites		88
53	Reeves Silty Clay Loss		** **	Limestone	5	100
54	Gila Silt Loom	ALUV	El Paso, Tex.	Alluvium		88
55	Anthony Clay Loss	RED DES		•		175
56	Reeves Fine Sand	SAND	El Paso, Tex.	Wind-blown sand		200
57	Cypsum; Playa	SUTZ	Hudspeth, Tex.	Gypsun	∢ 10	15
58	Peat	BOG	Chaves, N. Mex.	Peat	<10 <10	15
59	Reeves Chalk	DESERT		Сурган		
60	Springer Loan	RID DES	Lea, N. Nex.	Limestone	0	115 20
61	Scab Loan	LTESI.	T _11 T			
62	Windhorst Gravelly Loan	TEL POZIC	Brown, Tex.	Sandstone	, v	50 42
63	Valera Silty Clay	RDEN PRIE		Limestone	o	
64	Risrod Fine Sand	THL PDEIC		Sandstone		115
					(10)	16

.

•							-	
SAND	Galveston, Tex.	Marine sand	0	ο	0	(0)	0	
MARSH	** **	n 1	0	0	0	(0)	(?)	
SAND	77 71	ts n		10	1/2	(1)	4	
	17 TH	• •		5	0	(0)	(1)	
-	87 89	10 11 1 ¹	0?	5	ο	(0)	(2)	
SENTBOG	PT 80	Marine clay	0?	5	0	(0)	(1)	
-	77 ¥	• •	0?	5	0	(0)	(1)	
RDSH BRN	Brewster, Tex.	, Chert and shale	ц	82	17	21	l	
* *	41 an		approx 10 (?)	80	8	. 9 _.	1	
rind des	11 [°] 11	Rhyolite	220,200,175	105	(5)	20	3	
rdsh brn	77 77		20 0,200,234	330	50	60	2	
LTHEL	11 IN		350	320	(50)	600	4	
rdsh Brn	11 ⁷ W	•	350	340	(30)	(30)	14	
	77 F T	Diorite	1410	520	50	100	1	
	** **	Rhyolite	220	384	70	80	1	Basic melts, 1,200
and dies	п п	Diorite	820,900,960	356	(60)	(100)	5	Another piece showed K of 1
den Bru	Jeff Davis, Tex.	Revolite	250	180	18	33	l	
	77 FT 98	•	420,380,175	250	18	35	4	
und dies	Culbertson, Tex.	Metamorphics	60,75,40	115	5	17	2	
* *	Hudspeth, Tex.	Felsites		88	8	25	3	
•••	1 82	Limestone	5	100	7	15	3	
TOA	El Paso, Tex.	Alluvium		88	5	15	6	Basalt K of 1 K of 220 and 1
ind dies	* * *	-		175	7	15	4	Phosphate rock basic igneous
DIA	El Paso, Tex.	Wind-blown sand		200	6	13	1	3,300.
1	Hudspeth, Tex.	Gypsun	<10	15	1	4	2	
OG	Chaves, N. Mex.	Pest	< 10	15	1	3	1	
TERT	* * *	Gypsum		115	17	20	1	
ind des	Lea, N. Mex.	Linestone	0	20	3	9	2	
THSL.	* * *	-	0	50	lų.	8	4	T
EL PDZIC	Brown, Tex.	Sandstone		42	(10)	(10)	5	
Dee Prie	* *	Limstone	0	115	8	(25)	3	
EL POEIC	9 1 1 1	- Sunistone	(10)	16	2	5	3	

Basic melts, K of 2,000 and 1,200

Another piece of diorite showed K of 1,950

Basalt K of 14,000; diorite K of 220 and 410

Phosphate rock K of 760; basic igneous K of 3,200 and 3,300.

65	Bastrop Fine Sandy Loam	RDSH CHSNT	Taylor. Tex.	Limestone	0	30
66	Simmons Clay		, H H	Limestone and sandstone	ο	35
67	Vernon Very Fine Sandy Loam	II II	Nolan, Tex.	Sandstone		50
68	Roscoe Clay	" "	17 11	Limestone	0	45
69	Richfield Fine Sandy Loam	BRN	Midland, Tex.	Wind-blown sand		38
70	Dune Sands	SAND	Ward, Tex.	Wind-blown sand	(0)	2
71	Amarillo Fine Sandy Loam	RDSH CHSNT	Lubbock, Tex.	Sandstone		45
72	Clovis Fine Sandy Loam		Curry, N. Mex.	n		88
73	Tivoli A-P Complex	SAND	18 87 75	7 11		80
74	(Àlpine Plateau)	BRN	Jeff, Colo.	Basalt	2500	2220
75	Larimer Gravelly Loam	11	11 FI	Quartzite	21	93
76	Fort Collins Loam	**		Basalt	7200	1080
77	Greely Silty Clay Loam	**	97 91	Granite		330
78	Larimer Gravelly Loam	"	11 17	Basalt	8900	83
79	(Alpine Valley)	WENEDN	Clear Creek, Colo.	Granite	5	17
80	Dune Sand	SAND	Hayes, Neb.	Wind-blown sand		75
81	Keith Silty Loam	CHENT	19 29	Loess		126
82	Rosebud Sandy Loam	**	Hitchcock, Neb.	Sandstone		91
83	Holdredge Sandy Loam	CHINZM	Furnas, Neb.	Loess		61
84	Hall Silty Loam	"	n n	Unconsolidated Sediments		103
85	Hayes Loamy Fine Sand	".	Ford, Kan.	Loess		75
86	Renfro Silty Loan	ROSH PRIE	Kingman, Kan.	Sandstone		14
87	Norfolk Fine Sand	YEL POZLC	Van Zandt, Tex.	M	20	47
88	Nevada Silty Clay Loam	H H	Nevada, Ark.	Alluvium		4
89	Eldon Cherty Silty Loam	RDSH PRIM	Jasper, Mo.	Cherty limestone		80
90	Putnam Very Fine Sandy Loam	PLNSL	Madison, Ill.	Alluvium		5
91	Carrington Loan	PRIE	Sangamon, Ill.	Alluvium		47
<u>92</u>	Clinton Loany Clay	GB FDZIC	Peoria, Ill.	Basalt .	5000	48
93	Boone Fine Sand	PRIE	Monroe, Wis.	Sandstone		37
94	LA Crosse Sandy Loan	n	н и	#		ц
95	Clarion Loan	**	Hennepin, Minn.	Glacial unconsolidated sediments		25
96	Eayden Loan	PDZLC	11 11	Glacial unconsolidated sediments		97
97	Onemia Very Fine Sandy Loam	PDZL	Pine, Minn.	Igneous till	1300	190
9 8	Askan Fine Sandy Loan	Ħ		* *	2000	115

.

. .

-

- .

.

そんこうでん かんしょう かんしょう ちょう しょうしょう

A State of the second s

SNT	Taylor, Tex.	Limestone	0	30	(2)	9	4	•
•	tt 11	Limestone and sandstone	0	35	2	11	2	
r	Nolan, Tex.	Sandstone		50	7	10	l	
	11 11	Limestone	0	45	11	17	1	
	Midland, Tex.	Wind-blown sand		38	6	13	1	
	Ward, Tex.	Wind-blown sand	(0)	2				
NT	Lubbock, Tex.	Sandstone		45	4	27	1	
	Curry, N. Mex.	11		88	10	22	1	
	11 17 17	11		80	2	5	1	
	Jeff; Colo.	Basalt	2500	2220	(100)	(150)	2	• .
	17 17	Quartzite	21	93	7	20	6	
	17 17	Basalt	7200	1080	60	240	2	· ·
	89 99	Granite		330	6	32	2	·
	11 17	Basalt	8900	83	2	20	5	
	Clear Creek, Colo.	Granite	5	17	(1/2)	(1)	5	
	Hayes, Neb.	Wind-blown sand		75	5	20	3	
		Loess		126	7	30	3	
	Hitchcock, Neb.	Sandstone		91	8	20	1	
	Furnas, Neb.	Loess		61	5	13	3	
	H H	Unconsolidated Sediments		103	(4)	13	6	
	Ford, Kan.	Loess		75	5	12	2	
5	Kingman, Kan.	Sandstone		14	(1)	15	2	
;	Van Zandt, Tex.		20	47	(ö)	-5	5	
	Nevada, Ark.	Alluvina		 	0	o ¹	14	
:	Jasper, Mo.	Cherty limestone		80	-10	-30	5	• .
	Madison, Ill.	Alluvium		5	(-3)	(-2)	5	
	Sangamon, Ill.	Alluvium		47	-1	-13	3	
	Peoria, Ill.	Basalt	5000	48	-3	_4	4	Also K of 8000 and 1800
	Monroe, Wis.	Sandstone		37 [.]	-1	-3	3	
	FE 19	11		n	(-1/2)	-2 ·	3	
	Hennepin, Minn.	Glacial unconsolidated sediments	. *	25	-3	-7	0	
	PT 11	Glacial unconsolidated sediments		97	-8	-17	0	9
	Pine, Minn.	Igneous till	1300	190	-5	-23	2	
	** **	17 98	2000	115	-10	-55	4	

99 Hermon " St. Louis, Minn. Basic igneous 4000 350 100 Gre dust (hematite) " " " Iron ore 1300 650 101 Grenomgon Sand SAND " " " Metmorphic 1000 651 102 Hermon Rocky Sand FDEL " " " Glacial diorite 5000 650 103 Pargo Clay GRIZM Case, N. D. Orgenic setiments 500 500 104 Greenville Loamy Sand RDD FDEID Decatur, Ga Quartite 5 16 105 Barnes Loam GBIZM Case, N. D. Bendetone 2 45 106 Otero Sand BRN Yellowstone, Mont. If 12 107 Machastum Very Fine Sandy Loss " Galitin, Mont. Igneous sah 5000 300 108 Peat GRYBRIPDEL Grant, Wash. Basalt and glacial drift 340, 328, 500 111 Bybrete Sand ERN Kittitas, Wesh. Basalt and sedimente </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
100Ope and (geneticle)1006 - 50101Ontonagon SandSAND" " " Metasorphic10006 - 50102Hermon Rocky SandPDZL" " " Glacial diorite5006 - 600103Fargo ClayGENZMCase, N.D.Organic sediments10104Greenville Loamy SandRED FDZL0Decatur, GaQuartzite516105Barnes LoamCENZMCase, N.D.Sandstone24 - 5106Otero SandERNYellowstone, Mont." 1212107Manhattan Very Fine Sandy Loam" Gallitin, Mont.Igneous ash5000320108PestGRTERNFDZLBonner, IdahoPest517100Winchester SandsNOGRYDESGrent, Mash.Basalt and glacial drift300, 328, 500111Byhreta Sandy Loam" " " " Basalt and sediments1500, 440340113Swank LoamGRTERNFDZICFatias, Wash.Basalt and sediments1550, 440114LoasGRTERNFDZICFatias, Wash.Gabalt drift300, 330115LoanBRNFDZICLevis, Wash." 1400,1050330116Soch Land on Basalt FlowJTRENLisestone(100,1050330115LoanBRNFDZICCubalia, Ore." 900330116Loany SandSADClatsop, Ore." 900330117Clatsop Beach SandSADSt. Johns, FlaLisestone(99	Hermon	11	St. Louis, Minn.	Basic igneous	4000	350
101Outbragen samtSamtFirstSector for the sector for the sec	100	Ore dust (hematite)		18 M II	Iron ore	1300	630
102Hermon Houry CanaFordCases, N. D.Organic sediments100103Fargo ClayGENACases, N. D.Organic sediments10104Greenville Loamy SandRED FDZIODecatur, GaQuartzite516105Barnes LoamCHERMCases, N. D.Sandstone245106Otero SandENNYellowstone, Mont."12107Manhattan Very Fine Sandy Loan"Galitin, Mont.Igneous ash5000320108PeatGRYERNFPZLBonner, IdahoPeat45109Bonner Silty Loan"""Glacial drift5175110Winchester SandsNORGRUDESGrant, Wash.Basalt3000460111Sphrata Sandy Loan"""Basalt and glacial drift340,328, 500112Naches Fine SandBENKittitas, Wash.Basalt and sediments1500,440340113Swank LoanGRYERNFPIE""Basalt and sediments1500,440340114LoanGRYERNFPIE""Basalt and sediments1500,500360115LoanERNFDZICLewis, Wash."Basalt and sediments1650\$25114LoanGRYERNFPIEColumbia, Ore."1400,1050330115LoanERNFDZICLewis, Wash.Lasestone110116Scab Land on Basalt FlowLIFESLCo	101	Ontonagon Sand	SAND	tt 12 53	Metamorphic	1000	65
100Greenville Loamy SandREDFDZICDecostur, GaQuartzite516104Greenville Loamy SandREDFDZICDecostur, GaQuartzite516105Barnes LoamCHERMCass, N. D.Sandstone245106Otero SandBENYellowstone, Mont."12107Manhattan Very Fine Sandy Loam"Gellitin, Mont.Igneous ash5000320108PestGRYERNFDZLBonner, IdahoPeat5175100Winchester SandsNORGRUDESGrant, Wash.Basalt3000460111Ephrets Sandy Loam"""Basalt and glacial drift340, 328, 500112Naches Fine SandBENKittitas, Wash.Basalt and sediments1500,140340113Swank LoamGRYERNFPIE""Basalt and sediments1500,140340114LoamGRYERNFPIE""Basalt and sediments1500,140340115LoamGRYERNFPIEYetins, Wash.Gabbro2500,55001060115LoamGRYERNFPIEColumbia, Ore."1400,1050350116Scab Land on Basalt FlowLITHSLColumbia, Ore."900330116Scab Land on Basalt FlowSANDClateop, Ore."900330115LoamGRY DESElko, Nev.Limestone45118116Scab Land on Basalt	102	Hermon Rocky Sand	PDZL	11 11 11	Glacial diorite	5000	600
105 Barnes Loam CENEXM Cass, N. D. Sandstone 2 45 106 Otero Sand ERN Yellowstone, Mont. " 12 107 Manhattan Very Fine Sandy Loam " Gallitin, Mont. Igneous ash 5000 320 108 Peat GRYBENHPDZL Bonner, Idabo Peat 5 175 109 Bonner Silty Loam " " " Glacial drift 5 175 108 Vinchester Sands NORGRYDES Grant, Wash. Basalt and glacial drift 340,328,5 500 111 Ephrata Sandy Loam " " " Basalt and sediments 1500,440 340 113 Swenk Loam GRYBENPEZIC Takina, Wash. Basalt and sediments 1500,440 340 114 Loam GRYBENPEZIC Takina, Wash. Gasalt and sediments 1500,550 1060 115 Loam GRYBENPEZIC Takina, Wash. Gasalt drift 1400,1050 390	103	Fargo Clay	CHINZM	Cass, N. D.	Organic sediments		10
106 Otero Sand BEN Yellowstone, Mont. " 12 107 Manhattan Very Fine Sandy Loan " Gellitin, Mont. Igneous ash 5000 320 108 Peat GRYERNFDZL Bonner, Idaho Peat 5 175 109 Bonner Silty Loan " " " Olacial drift 5 175 110 Winchester Sands NGREYDES Grant, Mash. Basalt 3000 460 111 Byhrets Sandy Loan " " " Basalt and glacial drift 340, 328, 500 112 Naches Fine Sand ERN Kittitas, Mash. Basalt and glacial drift 340, 328, 500 112 Naches Fine Sand ERN Kittitas, Wash. Basalt and sediments 1500,140 340 113 Swank Loan GRYERNFDZIC Yakins, Wash. Basalt and sediments 1500,440 390 114 Loan GRYERNFDZIC Yakins, Wash. Basalt and sediments 1500,440 390 114 <td>104</td> <td>Greenville Loamy Sand</td> <td>RED PDZIC</td> <td>Decatur, Ga</td> <td>Quartzite</td> <td>5</td> <td>16</td>	104	Greenville Loamy Sand	RED PDZIC	Decatur, Ga	Quartzite	5	16
105 Overy Sam FAN Feltosside, Mult. Igneous ash 12 107 Manhattan Very Pine Sandy Loan "Gallitin, Mont. Igneous ash 5000 320 108 Peat GRYBENEPZL Bonner, Idabo Peat 5 175 109 Bonner Silty Loan """" Glacial drift 5 175 110 Winchester Sands NGRENDES Grant, Wash. Basalt 3000 460 111 Ephrata Sandy Loan """" Basalt and gelacial drift 340,328,500 500 112 Naches Fine Sand BEN Kittitas, Wash. Basalt and sediments 1500,440 340 113 Swank Loan GRYBENFRIE """ Basic rooks and glacial drift 340,328,500 360 114 Loan GRYBENFPIZIC Takims, Wash. Basalt and sediments 1500,440 340 114 Loan GRYBENFPIZIC Takims, Wash. Gabbro 2500,5500 1060 114 Loan GRYBENFPIZIC Columbia, Ore.	105	Barnes Loam	CHNZM	Cass, N. D.	Sandstone	2	45
101Mainterian (e.f.) fine banky fromGRYBRNFDZLBonner, IdahoPeat(5)108Peat(7)109Bonner Silty Loam"""Glacial drift5175110Winchester SandsNORGRYDESGrant, Wash.Baselt3000460111Sphrate Sandy Loam"""Baselt and glacial drift340, 328, 500112Maches Fine SandERNKittitas, Wash.Baselt and sedimente1500, 440340113Swank LoamGRYBRNFRIE""Baselt and sedimente1500, 440340114LoamGRYBRNFRIE""Baselt and sedimente1500, 440340115LoamGRYBRNFDZICYakina, Wash.Gabbro2500, 55001060116Soab Land on Baselt FlowLTESLColumbia, Ore.Baselt1650525117Clatsop Beach SandSANDGlatsop, Ore."900330118Loamy SandGRY DESElko, Nev.Limestone45118120Jacksonville Beach SandSAND </td <td>106</td> <td>Otero Sand</td> <td>BRN</td> <td>Yellowstone, Mont.</td> <td>u .</td> <td></td> <td>12</td>	106	Otero Sand	BRN	Yellowstone, Mont.	u .		12
109Bonner Silty Loam""Glacial drift517110Winchester SandsNORGRYDESGrant, Wash.Basalt3000460111Ephrata Sandy Loam""Basalt and glacial drift340,328,500112Naches Fine SandERNKittitas, Wash.Basalt and sediments1500,440,340113Svank LoamGRYERNFRIE""Basalt and sediments1500,440,340114LoamGRYERNFRIE""Basalt and sediments1500,440,390114LoamGRYERNFDZICYakima, Wash.Gabbro2500,550,550,550,1060115LoamGRYERNFDZICLevis, Wash."1400,105,050,050,050,050,050,050,050,050,0	107	Manhattan Very Fine Sandy Loam	17	Gallitin, Mont.	Igneous ash	5000	320
109Dollar Diffy DataNORGRYDESOrant, Wash.Basalt3000460111Sphrata Sandy Loam"""Basalt and glacial drift340,328, 500112Haches Fine SandERNKittitas, Wash.Basalt and sediments1500,440340113Swank LoamGRYERNPRIE""Basalt and sediments1500,440340114LoamGRYERNPDZICTakima, Wash.Basalt and sediments1700,3000390114LoamGRYERNPDZICTakima, Wash.Gabbro2500,55001060115LoamBRNPDZICLewis, Wash."1400,1050390116Scab Land on Basalt FlowLTESLColumbia, Ore.Basalt1650525117Clatsop Beach SandSANDClatsop, Ore."900330118Loamy SandGRY DESElko, Nev.Limestone<5	108	Peat	GRYBRNPDZL	Bonner, Idaho	Peat		∢ 5
111 Sphrata Sandy Loam " " " Basalt and glacial drift 340,328, 500 112 Naches Fine Sand ERN Kittitas, Wash. Basalt and sediments 1500,440 340 113 Swank Loam GRYERNFRIE " " Basalt and sediments 1700,300 390 114 Loam GRYERNFPIZ Yaims, Wash. Gabbro 2500,5500 1060 115 Loam GRYERNFPIZ Yaims, Wash. Gabbro 2500,5500 1060 115 Loam BRNPDZIC Lewis, Wash. " 1400,1050 390 116 Scab Land on Basalt Flow LTHEL Columbia, Ore. " 900 330 116 Loamy Sand GRY DES Elko, Nev. Limestone < 110	109	Bonner Silty Loam	n	11 11	Glacial drift	5	175
111Experts Sandy LoamBRNKittitas, Wash.Basalt and gedial drift340,320, 900112Naches Fine SandBRNKittitas, Wash.Basalt and sediments1500,440340113Swank LoamGRYERNPRIE""Basalt and sediments1500,440340114LoamGRYERNPRIE""Basic rocks and gilacial drift1700,3000390114LoamGRYERNPDZICYakima, Wash.Gabbro2500,55001060115LoamBRNPDZICLewis, Wash."1400,1050390116Scab Land on Basalt FlowLTHSLColumbia, Ore.Basalt1650525117Clatsop Beach SandSANDClatsop, Ore."900330118Loamy SandGRY DESElko, Nev.Limestone4,5118120Jacksonville Beach SandSANDSt. Johns, Fla4141121Coral Beach SandMATOSt. Johns, FlaMarine sediments4,14,1122Rockdale Stony LoamLTESOL""Coral limestone80,100,154,5123Leon Sand (dark phase)SANDCollier, FlaMaril4,34,1	110	Winchester Sands	NORGRYDES	Grant, Wash.	Basalt	3000	460
113 Swank Loam GRYERNFRIE " Basic rocks and glacial drift 1700,3000 390 114 Loam GRYERNFDZIC Yakima, Wash. Gabbro 2500,5500 1060 115 Loan BRNFDZIC Yakima, Wash. Gabbro 2500,5500 390 116 Scab Land on Basalt Flow LTHESL Lewis, Wash. " 1400,1050 390 116 Scab Land on Basalt Flow LTHESL Columbia, Ore. Basalt 1650 525 117 Clatsop Beach Sand SAND Clatsop, Ore. " 900 330 118 Loany Sand GRY DES Elko, Nev. Limestone <5	111	Ephrata Sandy Loam	**	11 11	Basalt and glacial drift	340,328,	500
113 Swank Loam GRYERNFRIE " Basic rocks and glacial drift 1700,3000 390 114 Loam GRYERNFDZIC Yakima, Wash. Gabbro 2500,5500 1060 115 Loan BRNFDZIC Yakima, Wash. Gabbro 2500,5500 390 116 Scab Land on Basalt Flow LTHESL Lewis, Wash. " 1400,1050 390 116 Scab Land on Basalt Flow LTHESL Columbia, Ore. Basalt 1650 525 117 Clatsop Beach Sand SAND Clatsop, Ore. " 900 330 118 Loany Sand GRY DES Elko, Nev. Limestone <5	110	Nachas Pina Cand	DDN	Vitting Wesh	Recelt and codiments	1500 hko	340
113Swahn HoanGRIMMARIEDescription1(0),000350114LoamGRYBRNFDZICYakima, Wash.Gabbro2500,55001060115LoamBRNFDZICLewis, Wash."1400,1050390116Scab Land on Basalt FlowLTHSLColumbia, Ore."1400,1050390116Scab Land on Basalt FlowLTHSLColumbia, Ore."900330116Loamy SandSANDClatsop, Ore."900330118Loamy SandGYBRNFDZICColumbia, Ore.Clay2110119Jordan Silty LoamGRY DESElko, Nev.Limestone<5				•			-
115LoamBRNPDZICLewis, Wash."1400,1050390116Scab Land on Basalt FlowLTHSLColumbia, Ore.Basalt1650525117Clatsop Beach SandSANDClatsop, Ore."900330118Loamy SandGRY DESCloumbia, Ore."900330119Jordan Silty LoamGRY DESElko, Nev.Clay2110120Jacksonville Beach SandSANDSt. Johns, Fla<1	113	Swank Loam	GRYBRNPRIE			1700,3000	390
119HoanHAMPDERHewis, wash.Hoo,1090390116Scab Land on Basalt FlowLTHSLColumbia, Ore.Basalt1650525117Clatsop Beach SandSANDClatsop, Ore."900330118Loamy SandGYERNPDZICColumbia, Ore.Clay2110119Jordan Silty LoamGRY DESElko, Nev.Limestone < 5 118120Jacksonville Beach SandSANDSt. Johns, Fla < 1 < 1 121Coral Beach Sand"Monroe, FlaMarine sediments < 1 < 1 122Rockdale Stony LoamLTESOL""Coral limestone $80,100,15$ < 5 123Leon Sand (dark phase)SANDCollier, FlaMarl < 3 < 1	114	Loam	GRYBRNPDZIC	Yakima, Wash.	Gabbro	2500,5500	1060
117Clatsop Beach SandSANDClatsop, Ore."900330118Loamy SandGYERNFDZICColumbia, Ore.Clay2110119Jordan Silty LoamGRY DESElko, Nev.Limestone ζ 5118120Jacksonville Beach SandSANDSt. Johns, Fla $\langle 1$ $\langle 1$ 121Coral Beach Sand"Monroe, FlaMarine sediments $\langle 1$ $\langle 1$ 122Rockdale Stony LoamL/TESOL""Coral limestone80,100,15 $\langle 5$ 123Leon Sand (dark phase)SANDCollier, FlaMarl $\langle 3$ $\langle 1$	115	Loam	BRNPDZIC	Lewis, Wash.	n .	1400,1050	390
117Clatsop Beach SandSANDClatsop, Ore."900330118Loamy SandGYERNFDZICColumbia, Ore.Clay2110119Jordan Silty LoamGRY DESElko, Nev.Limestone ζ 5118120Jacksonville Beach SandSANDSt. Johns, Fla $\langle 1$ $\langle 1$ 121Coral Beach Sand"Monroe, FlaMarine sediments $\langle 1$ $\langle 1$ 122Rockdale Stony LoamL/TESOL""Coral limestone80,100,15 $\langle 5$ 123Leon Sand (dark phase)SANDCollier, FlaMarl $\langle 3$ $\langle 1$					·		
117Classop Beach SandSANDClassop, Ole.900900900118Loamy SandGYERNFDZICColumbia, Ore.Clay2110119Jordan Silty LoanGRY DESElko, Nev.Limestone < 5 118120Jacksonville Beach SandSANDSt. Johns, Fla < 1 < 1 121Coral Beach Sand"Monroe, FlaMarine sediments < 1 < 1 122Rockdale Stony LoamL/TESOL""Coral limestone $& 0,100,15$ < 5 123Leon Sand (dark phase)SANDCollier, FlaMarl < 3 < 1	116	Scab Land on Basalt Flow	LTHSL	Columbia, Ore.	Basalt	1650	525
110 Jordan Silty Loam GRY DES Elko, Nev. Limestone <5 118 120 Jacksonville Beach Sand SAND St. Johns, Fla <1 <1 121 Coral Beach Sand " Monroe, Fla Marine sediments <1 122 Rockdale Stony Loam L/TESOL " " Coral limestone $80,100,15$ 123 Leon Sand (dark phase) SAND Collier, Fla Marl <3 <1	117	Clatsop Beach Sand	SAND	Clatsop, Ore.	, M	900	330
120 Jacksonville Beach Sand SAND St. Johns, Fla <1	118	Loamy Sand	GYBRNPDZIC	Columbia, Ore.	Clay	2	110
121 Coral Beach Sand " Monroe, Fla Marine sediments ≤ 1 ≤ 1 122 Rockdale Stony Loam LTESOL " " Coral limestone 80,100,15 ≤ 5 123 Leon Sand (dark phase) SAND Collier, Fla Marl ≤ 3 ≤ 1	119	Jordan Silty Loam	GRY DES	Elko, Nev.	Limestone	\$ 5	118
122 Rockdale Stony Loam LTESOL " Coral limestone 80,100,15 45 123 Leon Sand (dark phase) SAND Collier, Fla Marl 43 41	120	Jacksonville Beach Sand	SAND	St. Johns, Fla		< 1	< 1
123 Leon Sand (dark phase) SAND Collier, Fla Marl 43 41	121	Coral Beach Sand		Monroe, Fla	Marine sediments	£ 1	< 1
	122	Rockdale Stony Loam	LTHSOL	11 11	Coral limestone	80,100,15	4 5
	102	Toon Bond (down)		(-))/	Ma ml	43	
124 Leon Sand (light phase) "Lee, Fla " 5 <1	•	· • •		·			-
	124	Leon Sand (light phase)	n	Lee, Fla	n	>	ζ1

.

(a) Susceptibilities listed under parent rock are not always the true parent materials but sometimes are just material picked up at the test site.

(b) The magnetic effect produced by the small box is usually that value measured at the test site. However, when field data were lacking, the calculated theoretical maximum mine signal for that soil susceptibility was used. The small box volume is 50 cubic inches. The large box is approximately 600 cubic inches.

.

(c) Parentheses indicate approximations by the authors.

. is

			1.000			(
N	St. Louis, Minn.	Basic igneous	4000	350	?	(-220)	4	Also K of 3500 and 5000
	H (I (I	Iron ore	1300	630	800	1300	0	Also K of 1600 and 150
SAND	H H H	Metamorphic	1000	65	-31	-125	1	Also K of 1000 and 500
PDZL	8 11 II	Glacial diorite	5000	600	(- 25)	-22	2	Also K of 5000 and 4400
CHNZM	Cass, N. D.	Organic sediments		10	(-1)	-2	0	
RED PDZIC	Decatur, Ga	Quartzite	5	16	?	2	7	
CHNZM	Cass, N. D.	Sandstone	2	45	-2	-8	0	
BRN	Yellowstone, Mont.			12				
11	Gallitin, Mont.	Igneous ash	5000	320	10	35	4	Also K of 6000
GRYBRNPDZL	Bonner, Idaho	Peat		\$ 5	0	0	(3)	
n	19 11	Glacial drift	5	175	3	35	3	
NORGERYDES	Grant, Wash.	Basalt	3000	460	45	60	0	
**	11 11	Basalt and glacial drift	340,328,	500	50	(150)	3	Also K of 300 and 525 in parent rock
BRN	Kittitas, Wash.	Basalt and sediments	1500,440	340	(0)	80	4	Also K of 1320
GRYBRNPRIE	17 11	Basic rocks and glacial drift	1700,3000	390	25	80	2	Also K of 600
GRYBRNPDZIC	Yakima, Wash.	Gabbro	2500,5500	1060	50	225	2	Also K of 5000 in parent material
BRNPDZIC	Lewis, Wash.	11	1400,1050	390		20	ų	Also K of 920 in parent material
LTHSL	Columbia, Ore.	Basalt	1650	525		100	4	K of 390 in weathered material, 188 in shale
SAND	Clatsop, Ore.	11	900	330	20	30	0	
GYBRNPDZIC	Columbia, Ore.	Clay	2	110	3	25	2	
GRY DES	Elko, Nev.	Limestone	≼ 5	118	5	30	2	
SAND	St. Johns, Fla		< 1	< 1	0	0	7	
*	Monroe, Fla	Marine sediments	4 1	< 1	0	0	(4)	
LTHSOL	N 11	Coral limestone	80,100,15	45	(8)	(4)	5	Also 350, magnetite in coral
SAND	Collier, Fla	Marl	∢ 3	4 1	0	0	1	
π	Lee, Fla	j. * M	5	Հ 1	0	0	1	

rock are not always the true parent materials but sometimes are just

small box is usually that value measured at the test site. However, iculated theoretical maximum mine signal for that soil susceptibility D cubic inches. The large box is approximately 600 cubic inches.

by the authors.

1

i

1

ł

ŧ

the second second second second

Category 4 - Electrical Equipment

DISTRIBUTION FOR USAERDL REPORT 1683-RR

TITLE World-Wide Feasibility of a Passive Magnetic Method of Detecting Buried Nonmetallic Land Mines

DATE OF REPORT 31 July 61 PROJECT 8F07-11-001-01 CLASSIFICATION U

ADDRESSEE REPORT ABSTRACT Department of Defense Technical Library 1 l Office, Assistant Secretary of Defense Washington 25, D. C. Department of the Army Chemical Corps 1 Chemical Corps R&D Command l Fort Detrick Biological Warfare Laboratories Frederick, Maryland Attn: Director of Facilities and Services 1 U. S. Army Chemical Warfare Laboratories Technical Library Army Chemical Center, Maryland Corps of Engineers 4 Engineer Research and Development Division Office, Chief of Engineers Department of the Army Room 1406 Washington 25, D. C. 1 Chief of Engineers Department of the Army Washington 25, D. C. Attn: ENGRD-P 2 Engineer Historical Division, OCE P. 0. Box 1715 Baltimore 3, Maryland

۰,

5

とうちになるない

ADDRESSEE	EPORT	ABSTRACT
Corps of Engineers (cont'd)		
Commanding Officer Army Map Service 6500 Brooks Lane	2	-
Washington 25, D. C. Attn: Documents Library		•. •
District Engineer St. Louis District, Corps of Engineers 420 Locust Street St. Louis 2, Missouri Attn: LMLOL	1	· 1
Engineer Liaison Officer Naval Propellant Plant EODS EODTC Indian Head, Maryland	l	-
OCE Liaison Officer U. S. Army Combat Development Experimentation Cente: Fort Ord, California	l r	-
The Engineer School Library Building 270 Fort Belvoir, Virginia	1	-
Commanding Officer U. S. Army Polar R&D Center Fort Belvoir, Virginia Attn: Arctic Library	1	- ·
USAERDL Liaison Officer U. S. Army Ordnance Mission White Sands Missile Range White Sands, New Mexico	1	- '
USAERDL Liaison Officer U. S. Army Signal R&D Laboratory Fort Monmouth, N. J.	1	-
The Contract of Antonio 1997 Of Charles and the second second 1997 Contractor	•	
e ^{na} diyo Cethodo ji Maanda		

ADDRESSEE	REPORT	ABSTRACT
Corps of Engineers (cont'd)		
Director, Department of Training Publications U. S. Army Engineer School Fort Belvoir, Virginia Attn: 0&A	1	-
USAERDL Liaison Officer U. S. Army Engineer Maintenance Center 52 Starling Street Columbus, Ohio	3	-
Technical Director GIMRADA Fort Belvoir, Virginia	1	-
USAERDL		
Director	1	-
Electrical Department	1	-
Mine Detection Branch	14	-
R&D Project Case File	1	-
Technical Documents Center	2	-
Office of Counsel	1	-
Reports Section	3	-
Civ, Elec, Mech, Mil, Engr, and TS Depts (circula	ate) 1	-
British Liaison Officer	6	6
Canadian Liaison Officer	5	-
Transportation Corps Liaison Officer	2	-
USCONARC Liaison Officer	1	-
Ordnance Corps		
Commanding General Frankford Arsenal Pitman-Dunn Laboratory Group Philadelphia 37, Pennsylvania Attn: Library	2	-

.

.

۰.

ADDRESSEE	REPORT	ABSTRACT
Ordnance Corps (cont'd)		
Commander Ordnance Weapons Command Rock Island, Illinois	l	-
Overseas Commands	·	
Office of the Engineer AFFE/8A (REAR) APO 343 San Francisco, California	1	2
The Engineer Headquarters, USAREUR APO 403 New York, N. Y. Attn: I&M Branch	3	-
Engineer Section USARCARIB Fort Amador, Canal Zone	2	-
Senior Standardization Representative U. S. Army Standardization Group, UK USN 100, FPO Box 65 New York, N. Y.	1	-
Engineer Headquarters 7th Army APO 46 New York, N. Y.	1.	-
Quartermaster Corps		
Commander Headquarters, Quartermaster Research & Development Command Quartermaster Research and Development Center Natick, Massachusetts Attn: Technical Library	2	-
Commander Quartermaster Field Evaluation Agency Quartermaster Research and Engineering Command Fort Lee, Virginia	1	-

ADDRESSEE	REPORT	ABSTRACT
Signal Corps		
Commanding General Signal Corps Engineering Laboratories Fort Monmouth, N. J. Attn: Technical Documents Center	1	8
Transportation Corps		
Chief of Transportation Washington 25, D. C. Attn: TCACR-TC	1	: -
USCONARC		
Commanding General Continental Army Command Fort Monroe, Virginia Attn: Engineer Section	2	- -
President U. S. Army Artillery Board Fort Sill, Oklahoma	1	1
Headquarters U. S. Army Airborne-Electronics Board Fort Bragg, N. C.	2	
President U. S. Army Armor Board Fort Knox, Kentucky Attn: Chief, Engineer Section	、 1	- <u>-</u>
President U. S. Army Air Defense Board Fort Bliss, Texas	-	1
Combat Developments Office USA Infantry School Fort Benning, Georgia Attn: Engineer Adviser	1	-
Department of the Navy		
Material Laboratory Library Building 291 Code 912b New York Naval Shipyard Brooklyn 1, New York	l	-
		,

r	ADDRESSEE	REPORT	ABSTRACT
·	Department of the Navy - (cont'd)		
	Chief	1	_
1	Bureau of Yards and Docks		_
	Department of the Navy		
8	Washington 25, D. C.		
	Attn: Code D-400		
8	Chief	3	3
	Bureau of Ships	J	5
	Research and Development Program Planning Branch		
4	(Code 320)		
	Washington 25, D. C.		
	Chief of Naval Research	1	
5	Reports Branch (Code 530)	-	-
к.	Department of the Navy		
1	Washington 25, D. C.		
4			
,	Commandant of Marine Corps (Code AO4E)	1	-
, 1	Headquarters Marine Corps		
	Washington 25, D. C.		
	Officer in Charge (Code 200C8)	1	-
1	U. S. Naval Civil Engineering Research and	-	
94)	Evaluation Laboratories		
	Port Hueneme, California		
Ť	Commanding Officer	-	1
	U. S. Naval Construction Battalion Center		-
`.	Port Hueneme, California		
· ·			
Ŷ	Commanding Officer and Director	1	-
r	U. S. Navy Electronics Laboratories		
ŧ.	San Diego 52, California		
>	Attn: Library		
e.	Director	1	-
	Marine Corps Development Center		
ĵ.	Marine Corps Landing Force Development Center		
\$ 	Marine Corps Schools		
1	Quantico, Virginia		
5	Department of the Air Force		
	· · ·		
1	Headquarters, U. S. Air Force (AFDRT-ER)	1	-
	Washington 25, D. C.		
Į.	Headquarters, U. S. Air Force (AFOCE-T)	1	-
1	Building T-8	-	-
I	Washington 25, D. C.		
1			
)			

.

.

.

.

ADDRESSEE	REPORT	ABSTRACT
Department of the Air Force (cont'd)		
Rome Air Development Center (RCOIL-2) Griffiss Air Force Base, New York	l	-
Wright Air Development Division (WCLEO) Wright-Patterson Air Force Base, Ohio	1	-
Air Proving Ground Center (PGTRI) Eglin Air Force Base, Florida	1	-
Air Force Special Weapons Center (SWRB) Kirtland Air Force Base, New Mexico	l	-
Aeronautical Chart & Information Center (ACDEL-7) Second & Arsenal Streets St. Louis 18, Missouri	1	1
Continental Air Command (CNECE) Mitchel Air Force Base, New York	2	2
Strategic Air Command (DECE) Offutt Air Force Base, Nebraska	2	2
Air Force Ballistic Missile Division (WDSOT) Air Force Unit Post Office Los Angeles 45, California	1	1
Washington ARDC Regional Office c/o Department of the Navy Room 4549, Munitions Building Washington 25, D. C.	1	-
Other Government Agencies		
Commanding Officer Field Testing & Development Unit U. S. Coast Guard Yard Curtis Bay 26, Maryland	-	1
Prevention of Deterioration Center Library National Research Council 2101 Constitution Avenue, NW Washington 25, D. C.	-	1
Commandant (ETD) U. S. Coast Guard Headquarters 1300 E Street, NW Washington 25, D. C.	-	2 -for selver, va

•

1. MurriAssifitus 1. Murras and Owtholes - Research 2. Contract DAA 44, 009 Bag 467 Bag -015 Bag -015	1. UNCLASSIFIED 1. Rithers and Constanting 2. Constrant DA 44-009 Reg -MT Reg -DIS Reg -DIS
6. Accession but determined and becaused a but	⁴⁰ A strain and beneformed and beneformer is horeforder, fort pairwirt Writis uttra-unit statistication of a passive statistic is and anti-participate is a second and the strain and anti-participate is a second anti-participate statistic is a second anti-participate statistic is and anti-participate statistic is and the second anti-participate statistic is and the second anti-participate statistic is an anti-participate statistic is an anti-participate statistic properties of a logical participate statistic properties and anti-participate statistic properties and participate and anti-participate and anti-participate statistic properties and anti-participate statistic properties and anti-participate and anti-participate and anti-participate statistic participate and anti-participate statistic participate and anti-participate and anti-participate and anti-participate and anti-participate and anti-partipate statistic participate and anti-participate and anti-pa
1. WiritASSTFIED 1. WiritASSTFIED 1. Wither and Obstaclas - Research 2. Contrast Ja,44,009 Bag-487 Bag-407 Bag-2966 Bag-2966	1. UNLIABILITID 1. UNLIABILITID 2. Contract In Abi-org Re-107 Res -2105 Res -2105 R
C. S. Yang Baginaser Bessarch and Dessention Bo. U. S. Yang Baginaser Bessarch and Dessention Bo. Manual Structure Statistics of A backets Manueric Destruction and Statistics and Manueric Manueric Provent 10(3)-40, 14, 14 Mp. 5 tablas, 10 111as Mport 10(3)-40, -01, -01, -01 Mp. 5 tablas, 10 111as Manual Statistics and Manueric Manueric Manueric Manueric Manual Statistics and Manueric Manueric Manueric Manueric Manueric Consense angentic method for detection of nonsettability and the Manual Statistics and Manuerican Manueric Manueric Manueric Manueric Manueric Manuerican Manueric Manueric Manueric Manueric Manuerican Manuerican Manueric Manueric Manueric Manueric Manuerican Manuerican Manueric Manueric Manueric Manueric Manuerican Manuerican Manuerican Manuerican Manueric Manuerican Manuerican Manuerican Manueric Manuerican Manuerican Manuerican Manuerican Manuerican Manuerican Manuerican Manuerican Manuerican Manue	C. A. W. Mainer Beaurish and Predigment Laboratorization, Durt Murder, Varghaias - WELD-MURE FRAGED-LIFF OF A PAGETUR MAGENET. FUEL OF A PAGETUR PAGETUR PAGETUR PAGETUR PAGETUR PAGETUR OF A PAGETUR PAGENT PAGETUR PA