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ABSTRACY

An smalysis of creep rupture of ductile wmterizls subjected to
strain herdening creep is presented. The analysin 1s similar to an
earlier one by Hoff, but {3 based on a different generalization of
the primary cnvep rate relaticn. Both approaches sre then sxtendsd
to tine hardening crecp. Simple approximate formulae for critical
times are presented und the results of taoth approschas 7er the two
trpes of creep are compared. Correlation with experimertal data for
some aluminum-copper, aiuainux-magnesiue and aluminum-zinc ailoys
shows Tairly gocd ugraoment of rupture timezs for these very ductile
materials. Bowsver, uttempted correlation with data for other
materials vhich do not exhibit such prowinent ductility indicates
that the basic assumption of the analysis, chat creep rupture is

caused primarily by a process of reduction of ares, holde only for

very ductile matervicls,
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NOTATTON

initiul cross sectionul arca of spesimen

(1-p)/p

constant in primary creep law, Eq.{1), called sometimes
"primary creep index"

constant in primary creep law, Eg.(1)

1 +¢ , defined by Eq.(9)

P-1
mp

time
rupture time

rupture time predicted for strain hardening creep
with Eoff's generalization

rupture time predicted for strair Hardening creep with
the alternative generalization proposed here

rupture time predicted for time bardening creep with
Hoff'c generalization

rupture time predicted for tfime hrrdening creep with
the alternative generslization

rupsure tim> from tests

v/t

‘rat EnG

1"l'li.e t/t"m.c

na ENG

t  /t
€ at Tﬂ.em

n t

engineering strain

ratural strain = éa(l+¢€)

t /\',
€ TH.EEN

ENG G
constant in primary creep law, Eq.(1)




NOTATION (Cont’d.)
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true stress
initie> applied stress

ultimste streses of the maverial at test temperatire
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INTRODUTTION
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The creep rupture of a tengile bar of ductiie mmterisl, ungergoing
creep deformaticns which are governed elmost entirely by a steady state
creep law, vas amalyzed by Eoff (R=f.1). A very simple approximste
formils wag obtained for the criticel time, which agrced vell with
experimental data for pure sluminam and some alumimry alloys. Fowever,
mAry creep curves, espezially at higher stresses and texperatures, do
not exhibit the usual steady phase, but have a longer primsry phase
vhich trarsforms directly int. s tertiary ptase (see for example, Fig.l,
meplotted from Ref.2).

The vrimary phase is ususily concidered tc ve governed by a creoep
Isw Of the form v

€ = {a/a)" /P (1)

where € is the engineering s.rain, ¢ the applied stress, t the time

eni =m,\. and p are constante. For varicble stross, Eq.{(1) hes to be '
co;sidered as dofiring impiicitly the strein rate as a fuanction of the t
stress and the strain, or a: a “unciion cf the stress and tle time

(Ref.3). Than, for strain bardening creep b:havior, one obtains

BRI

Cqun

.
IR BRSO

¢ = (1/p) )T 1P (2)

etk e M

A Pt
I

¥

vaich s essentially the reiation prcoposed mich earlf.-r by Kedail {Bef. k).

4

For tize hardening bebavicor, which iz sometimes obdserved vhen
tive of exposure has & wore pronounced effect than the amount Of creep

) -T”ﬂ e

siralin, & parallsl relation for the prissry creep rate rezults

I N S LA

¢ = (1/p) Sk (2PMP )

S P




RUPTURE TIME FOR STRAIN HARDENING CREEP

For strain hardening creep, Hnff (Ref.5) obtained the creep rupture
time by assuming thut Eq.(2) csn bz generalised to hold for large
deformations

g, = (/D) (/W™ €2 )

vhere ¢ 1s the true stress and €at is the natural etrain defined by

et = on(1+€) (5)

o= rQ(1+€) (6)

9 being the initial appli~d stress

o

c_ = P/A0 (1)

Hoff obtalned a very simplec approximate formula slso for strain harden-
ing creep, which becomes, when p is an integer,

t, = [p /(m)PI0/o )" (8)

Hoff 's generalization of the primary creep law, Eq.(4), means that
the seme relation between strain rate, stress and strain is assumed to
hold for the entire strain range from primary creep to rupture, provided
the relation is exprcesed in natural strain and strain rate and true
stress, Tn the small strain region, the naturel strain practically
equals the engineering strains and Eq.(4) reduces to Eq.(2). Hence thke
ascumption implies identical constants in both equatiore.

However, since primary creep curves are usually given only for
small strains, another approach 18 possible. Instead of the generali-
zation propoced by Hoff, the observed relation betwecn engineering
strain rate and strain and stress, Eq.(2), is assumed to hold only for
engincering strain rate and strain, but to be valid z2ls> in the region

-2 -
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of large strains. The natural strain rate involved in the calculation
of rupture time has then to be related appropriately to the engineering
strain rate which appears in Eq.(2). It is felt thai such an approach
gives one more confidence in the use of the primery creep consliants
vhich are obtained from experiments at small strains,

In other words, the two approaches are two different extrapolations
of Eq. {2) to the region of large strains. The actual applied stress
varies, due to the reduction in erea, in the same manner in both
approacbs. and is represented by Eq.(6). The extrapolations differ,
however, with respect to strain and strain rate.

The analysis is an extensior of Hoff's work., As in Refs. 1 amd 5,
a constant load tensile test is considered, and the waterial is assumed
to be incompressible. The syabol R 1is also introduced agein,

R=1+¢€ (9)
Hence
€t = R (10)
and
c=oR (11)

For strain hardening creep the sirain rate is governed by Eq.(2),
€ ‘veing the cre:u sirain (the total strain less the initial elastic
and plastic strain). Rupture occurs st large strains, and hence the
natural ctrain rate is required for calculation of the time to rupture.
Now, Eq.(5) may be rewritten, on account of Eg.(9),

‘nat
e =1+e=R (12)

c=e t‘1=-R~1 (13)
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By differentiating Eq.(5) with respect to time, cnc obtains

¢ = [L/(1+ e)]é (an)

nat

Substitution of & from Eq.(2), € fromEq.(13) and ¢ from Eq.(11)
into Eq.(14) yields

. m: l"
de . dt = (1/pi(o R/N) - [(R-l) p/R] {15)
For convenience let

q=p-1 i
(16)
and g = mp

Separation of variables of Eq. (15) and integration yield the critical
time

(o,/0,)
op ™ p(k/'ao)8 f [(R - 1)“/38] 4R (17)
1

where 9 1s the ultimate stress of the material at the test tempersture.

For most materisls, p mey be approximeted by 2 or 3. For these
values the critical tinme is given by

bor 2“/%’&{' [1’ ‘2""’] [" - <ao/vu>“'2} ' [lm_sv] [1 ¥ (oo/ou)“'l}}

(28)
for q=1 (p=2)

£, = s(>./oo)°f- [3./(3-5)][1 - (oo/au)s's:l + [2/(2-5)][1_ (,c/au)s-a]

- E./U -s)] 1- (oo/au)s-l]} (29)

for q=2(p=3) .
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For other values of q Eq.(17} can be integrated in s similar manner
to yield similar expressions fcr tc + Now, since s is generally
fairly large, (c_ /c )e" 3 amd the corresponding higher powers of
(oo/cu) in Eqs.(lB) and (19) may be neglected in compariccn to unity,

even vhen o 1s not far from o, . Eqs.(18) and (19) may therefore
be gimplified to

tp ™ (k/a“)s "2/(3 -2)(s -1)] for p=2 (20)

and

tp ()./oo)' ~6/(s—3)(s-2)(s-1)] for pu=3 (21)
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RUPTURE TIME FOk TIME HARDENING CREEP

The analysis con readily be extended to time hardening creep defined
by tbe creep law of Fq.(3), by toth approaches. First, generalization
of Eq.(3) in the manner proposed by Hoff for strain hardening creep

yiclds for the natural strain ratc

& ot = (1/D)(a/N)™ L(1-p)/p

With the quaatities defined by Egs.(9), (10), (11) and (16) and denoling

(1-p)/p=1
one can rewrite Eq.(22) as
anr/es = (1/p) (o R/ tP
Separation of variables and integration yields
- [(b ‘1 /m]w%)n[l (s, /ou)n]}l/(bu)
- W/alP(r/o,)¥1- (oo/au)‘]p

since

b+1=1/p

v >>
Now, 1if o, %

[l - (Oo/au)m]p ~ ] p(qo/au)n x ]

provided m 1is sufficlently large. As p can be tnken 2 or 3 for most
materials and m 1s usually larger toan 3, the approximation of Eg.(27)

does, in genernl, not invoiv: large errore. With this approximation

Eg.(25) becomec

1 8
top = (1/a") (/o)

-6 -
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(26)

(21)

(28)
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Hcwever, it should be noted that the approximetion here is inferior to
that employed in the case of strain hardening creep. There, at most
(oo/cu)m's vas neglected in comparison with unity, whereas in Eq.(27)
p(ao/au)“x is neglected in comparison with unity. EHEence the error
implied by Eq.(28) is p(ou/uo)np B3 times as large as that introduced
by the approximation lesding to Eqs.(8) or (20) and (21).

In the second appreach, Eq.(3; is again assume@ to hold for the
engineering strain rate for both small and large strains. With the
quantities delfined by Egs.(9), (10), (11), (16) and (23) and with
Eqs.(3) and (ik), the natural strain rate can be rewritten as

ac,../at = (1/pR) (o, B/N)™ t° (29)

Separation of variubles and integration yields then, on account of
Eq.(26),

t, = [1/ (m ~1)]p(k/o°)s[l - (90/%)“’1]? (30)

For o u >> g o » A0 approximate expression can again be obtained for
the critical time provided w» 1is sufficiently large,

£, = [1/(.. -1)"] (Voo)‘ (31)

The accuracy of this approximation is, however, even lower than that of
Eq.(28), since here p(uo/a “)"1 is neglected in comperison with unity.
The error introduced by Eq.{31l) relative to .}q.{30) is therefcre

(au/co) times that introduced in Eq.(28).
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COMPARISON OF RUPTURE TIMES

It 18 of interest to compare the rupture times cbtained by the
various approaches. If one compares the approximate formuise for the
eritical times, very simple relations are obtained. However, as the
epproximations in these formulae sre different, the more exact formulae
for the rupture time have to be employed in the comparison for the low
values of m , when the initial. applied stress approaches the ultimate
stress and the approximations lose their validity. Only the simple
approximate relations are given below, bul the resulls of computations
with the more exact relations ar: also shown in Figs. 2 and 3.

If f denoctes the relation of the rupture time for strain harden-
ing obtained by Hoff to that obtained by the alternative generalization
proposed in this paper,

B= (s °1)(8-2)/82 for p=2 (32)

and
B = (5-1){(c-2)(s-3)/s° for p=3 (23)

if the approximate formulae, Eqs.(8) and (20), (21) are compared.

FPig. 2 shows a plot of £ versus the primary creep index m . For
two typical initial applied stress to ultimate stress ratios, (o o/"u)
= 0.5 and (oo/cu) = 0.9 , the values of B as obtained from a com-
paricon of the more exact Eq.[59] of Ref.5 and Eqs.(18) and 19) are
»180 shown.

If one compares the results of the two approaches for time harden-
ing creep, the approximate formulae Egqs.(28) and (31) are related by

y = [(-: -1)/-:]” (s4)

‘Inis ratio is plotted in Fig. 3 for p=2 and p= 3 . The relation
of the more exact formulae Eqs.(25) and (30) is also included for
(°o/°u) = 0.5 and (co/uu; 2 0.9,

-8 -
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Figures 2 and 3 show that as the primary creep index m increases,
the difference tetween the two approaches diminishes both for strain
hardening and time hurdening creep. For low appliecd stresses, ssey,

% £0.5¢ n ? the noticeable difference btween the two approaches,
Predicted by the approximate relations, f{s verified by the results
obtained by the more exact relations. When the applied stress approaches
the ultimate stress, for example, when « o= 0.9 o, » the difference
practically disappears. This would be expected since the strains at
rupture tend to be small when the applied stress approaches the ultimate.

Similar simple relations can be obtained by comparison of the
approximate rupture time for strain hardening creep with that for time
hardening creep by one of the approaches. For the first approach,
vhich assumes that the primary crcep relations hold for the entire
strain range if expressed in natural strain rates and strains, the
rupture time for strain haruening creep divided by that for time harden-
ing creep yields

5= pt/p° (35)

For the second approach, which assumes the primary creep reiations to
hold only for engineering straia rates and strains, but to be valid also
in regions of large strains, the rupture time for strain hardening creep
divided by that for time hardening creep yields

1= (m-1)/(2m -1) for p= 2 (%6)
and

n = 2(m-1)°/(3m-2)(3m-1) for px 3 (37)

However, these relations, Bqs.(35), (36) and (37), are again valid only
within the accuracy of the approximations, on account of the considerable
aiffercnce in the error included in the approximate formulae,

The comparison shows that the second approach yislds longer crit-
ical times than the first one, in both tygcs of creep deformation. Alsgo
tim> hardening creep will yield longer rupture times than strain

-9 -
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However, since the anaiysis is

hardening creep by botn approaches.
basically a generalization of empirical primery creep laws, only

correlation with experimental data can determine the relative uszelul-
ness of the proposed formulae. ‘'his is attempted in the next section.

- 10 -
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CORRELATION WITH EXPERIMENTAL TATA AND DISCUSSION

The results of tests carried ocut by Robinscn, Tietz and Corn
{Ref.2) were compured with the theoretical predictions by the two
approaches ror strain hardening and %4ime hardening creep. Tne test
moterinls were a series of high rurity binary alpha solid solul.iops
in sluminum. Tkree groups of aluminum alloys were compared: copper-
sluminum e2lloys, magnesiug-etuminum alloys =nd zinc-aluminum allcys.
Zach greup inciudes four alloys with different percentages of alloyirg
element, and all lests werz gt 300°F. In Tableg 1, 2 and 3 the pre-
dicted and experimental values of tie rupture times are given for dif-
ferent applied siresses. The data for the magnesium-aluminua alloys
ar2 also vlotted in Fig.s.

To obiain & theoretical rupture time, the primary creep consants
p, & and A have first to b: found from the creep curves of Ref.2.
The left hand portions of the creep curves {for relatively short tiwes)
have to be used to find these comstarnts, since for longer times the
curves include the effects of the reducticn ip arca. The time index
p 18 tound from Eq.(1) witk ¢ and A constant. For the alloys of
Figs. 4-6 of Ref.2, the nearest integer for p is 2 . Now, from
short time stress-stirsin curves at 360°P, Figs.15-i7 of Ref.2, the
initial strains are found for thc =cainal applied stresses. The total
strein less the initisl ctrain is the creep strain. The creep ctrains
at particular times are plotted versus the corrected applied stress
on a log-log scale yielding straight lines whose glope iz = . The
integer nearest to the average value of = obtained from ebout S or
6 of such isochroncus lines is taken as the sppropriate value. A is
then found from Eq,{1) with these p and = from about 10 points and

averaged.
In Taties 1, 2 and 3, the rupture tine for strain hardening creep
with Hoff's generalizaticn is dencted te , and that obtained with

nat
the altermtive gererulization of this paper t"-rm . The rupture
tizes for time hardening creep are sisilerly denoted trH.c and Ly c
‘“nat ‘“ENG

~11 -
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respectively. The more exact formulae, Egs.(18), (25) and (30), and an
expression vhich is equivaient to Eq.(59) of Ref.5 , have been used in
the calculation of the rupture times.

Fairly good sgreement i{s found for mcsi of the tests. Thc rupture
times for time-hardenirg cocep, with tne generalizatfion of the primary
cresp lav prorosed in this paper,appear to be closest to the experi-
mental resuits. Better agreement is found for the aagnesium-aluminium
and copper-alumimum alloys (except the 0.101% Cu alioy for which the
predictions are noticesbly to> lopg)than for the zinc-aluminum alloys.
It is 1.%eresting to note that the rupture times computsd with the
assumption of strain-hardening creep are ruther conservative for 211
the test results (except those for two tests of 0.101% Cu Al alloy).

It miglt be added, that il the rlastic strain component is taken into
account (Fef.6) the predicted rupture time is further shortened. Since
this effect would be mogt roticeable at the high appiied stresses, where
the rredictionc based on time-hardening creep often exceed the experi-
mental rupture times, it would tend to improve the ~verall agreewent of
the time-hardening theory. It appears, tanerefore, thiat for the matsriale
coapared here, 2 time-hardening creep law provides a realistic descrip-
tica of the rurture behavicr.

An extensive literature servch for additional experisentsl data of
primary creep and runture for ductile meterisls revealed a remarkable
scarcity of cuch dsta. Most Investigantors report either details of
primary creep behavior or ruptwre times, but very meldom both. Since
oniy creep curves vhich do not exhibit & signisicani stesdy phase are
tuitable for comperison with the preseul theory, ro additionai data was
found. However, through the courtesy of the Resesr~h Diviricn of High
Duty Alloys itd., Slough, England, creep curves for RR 59 and RR 257
aiuminium alloys (which are used in the Angio-French supersonic transport)
verc obtained with records of rupture times and corresponding total
strains (Ref.7). Some of these curves had no significant secondsry
phase. Correlation was attempted with some of these curves, but the
predicted rupture times gremtly exceeded the evperimentel values {«
computed values were SO 10 30,000 times the experimental ones). As a

- 12 -
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check on the order cf magnitude of the predicticn, the rupture times
were computed by the steady creep analysis of Ref.l (the steady creep
constants were obtained from approximate tangents to the central portion
of the creep curves). However, again the predictions were many times
too large, though to a lesser extent (6 to 60 times).

Durirg the literature search scme creep curves of suitable form
were enccuntered, for which rupture times vere also reported. However,
they represented materials which exhibited only small amounts of perma-
nent deformetion prior to fracture, and hence cannot be adequately des-
cribed by the present theory. For compariscn, correlation was attempted
ror a typical case of thiz group, & 5% molybdenum steel at 1020°F
(Rer.8). The predicted rupture times greatly exceaded the experimental
values {by 4CO to 500,000 times), cnd a steady creep analysis produced
similar discrepancies (70C %o 3000 times).

it say be pointed out v.at "ductile theory”, which assumes rupture
by raduction of area, disagrees noticeably with experinerts also for
creep with a predominant gecondary phase in the case ¢f age-haordening
aluminiun alloys. For example, for 7075 TC at 375°F (Ref.%) rupture
times 10 to 20 times the experimental cnes are predicted.

Hence it is mpperent that theoriea which are based on Lthe premise
that rupture is caused primarily .y a nezking process are applicable
to very ductile meterials only {iike thoss tested in Ref.2 or the 2003
and 5052 aluminium alloys tested in Ref.9). For other materials one has
te turn no other theories which try to account for brittle or rartly
brittle behavior at rupture (see, for exanple, Refs.10, 11 or 12}.

It may be observed, tiat the difference between the rupture times
obtained from four different creep laws, is insignificant compared to
the difference between predicted and experimentzl vslues, except for the
very ductile materials of Ref.2. Hence, the marked disagreement between
theory and experiment for thz more commonly used alloys cannot be
attributed to Inadequacies ' the creep laws, but rather to the character

of the rupture process.

-13 -
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