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SMWARY

Analytic equations were determined for the force and moment ceeffi-

dients and stability derivatives of various shapes in Newtonian flow. These

results follow from an application of the general method presented in the "i'rst

Quarterly Technical eport".

Equations for all the important damping derivatives of the cone at

zero sideslip and roll have been determined as a function of angle of attack.

The constants in these simple equations can be determined numerically for any

C.G. location and any cone angle. For slender cones, with certain restrictions

on the C.G. location, the constants in the stability derivative equations have

also been determined analytically. Similar results have been obtained for the

delta planform with diamond shape cross-section perpendicular to the longitudinal

axis. A preliminary investigation has also been conducted on the elliptic cone,

and equations have been established for the longitudinal force coefficients.

A preliminary investigation has been made of the effects of bluntness

on the constants in the stability equations. These results have been applied

to the determination of analytic equations for the longitudinal force coeffi-

cients of the blunt cone,

An initial investigation has been undertaken into other hypersonic

theories, besides Newtonian, for predicting surface pressures. This investi-

gation is continuing. Based on these preliminary results, a method has been

outlined for determining the variations of the hypersonic stability derivatives

with Mach number. The method will be checked against experimental results

during the next quarter.
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TABLE OF SYMBOLS

All symbols not shown here are defined in the "First Quarterly Technical Report".

AB  Base area of the bottom half of a spherical cap segment.

C Pressure coefficient
p
e Ratio of horizontal to vertical axes of a cone of elliptic cross-section

fB Bluntness factor defined in Eq. (5.4)

K Pressure coefficient constant

H Mach number

R Radius of spherical cap

RB Radius of the base of a spherical cap segment

R Radius of the base of a coneC

SB  Planform area of a spherical cap segment

S Planform area of a truncated cone
c

(3 =~iU

Also angle of sideslip

7 Gas constant

Angle between the free stream flovw- and the plane tangent to the surface
at a point. Also compression angle

ae Expansion angle

A Leading edge sweep angle

Subscripts

B Refers to the bottom half of a body
Also the blunted portion of a body

C Refers to the cone portion of a body

W kefers to a bmtxed icont body

Refys to the- top half of a body



R-63 -011-109

1.0 Introduction

Much of the basic groundwork for the application of simple Newtonian

theory to the determination of the forces and moments, and stability derivatives

of various wing and body shapes is presented in the "First Quarterly Technical

Report". It has been demonstrated there that reasonably simple analytic equations

are possible for all the important aerodynamic stability derivatives as a function

of angle of attack.

In the "First Quarterly Technical Report", the methods developed were

applied to the cone. Only the static forces and moments, and the static

derivatives were determined during the first quarter. During this second quarter,

the methods have been applied to the determination of the important damping deri-

vatives of the cone, and the results are included in this report.

Several other shapes have been looked at in the same detail. Analytic

expressions have been derived for the force and moment coefficients and stability

derivatives (both static and dynamic) of the delta planform with diamond shape

cross-section. Similar results have been obtained for the segment of a spherical

cap. One of the objectives has been to apply the spherical cap results to the

determination of the stability derivatives of a blunt cone. Some work has also

been done on the determination of static forces and moments and their derivatives

for the delta planform with elliptic cross-section.

Several methods are outlined for the determination of analytic equations

for the longitudinal force coefficients of blunted surfaces. These methods have

been applied to the blunt cone. The use of blunt bodies in the hypersonic

region is often mandatory, and the stability derivatives of such surfaces are

therefore of special interest.

Pressure distributions computed using simple Xewtonian theory are

generally applicable only for a limited class of aerod,)namic shapes and limit ed

Mach nmber and surface angles of attack (4t >4.0). A beginning has been made

into an investigation of other h-personic theories for computing surface pres-

sures. The purpose is to extend the methods developed for computing Newtonian

,tability derivatives to lovwer Mach numbers And angles of attack.
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Throu-ghout this report reference will be made to equations, sections,

and figures in the "Firt Quartetly Technical Report". An equation, section

or figure number followed by the letter F refers to the equation., section, or

figure in the "First Quarterly Technical Report".

2.0AnlyicjEqgations - The Circular Cone

2.1 General Discussion

The general methods developed for determining analytic equations for

the stability derivatives were applied to the cone in the "First Quarterly

Technical Report". During the first quarter, only the static coefficients and

static derivatives had been determined. The damping derivatives have since been

evaluated and are presented in this report.

At the outset, it should be statad that the stability derivatives are

computed under the special conditions of zeru 11 (0 = 0) and zero sideslip

(t3 0) of the body. The analytic equalionE dt rived f.)r th, Yning derivatives

are therefore a function of only angle of - ttack for a gien I' -,.ipe. For the

present. the derivatives are computed assuming simple ei m th(-ry. .' prelim-

inary consideration of Mach number effects its discussed in 0ct on 6,0,

For each damping derivative, t he 0amping of a half body with fl-At side up

at positive angles of attack is ft-st determined Tnese results are then ,cNet'-

alized to apply to full bodies ;I all angles of dtt.ck.

2.2 Damping in Pitch - Cm

q
As qhoun in Sc'ctiun 6, IF, tht, equation of a cone in retangular Co-

ordinates can be expressed as

The system used, and the positivo dirvtion or forces moments, and angular

rotations are iud icoted on Figur. (IOF)



R- 63 -011-109

As shown in Section 5.2F, the damping in pitch of any body can be

expressed in one of two ways

= (K~), e~~O( ±(km~)~eS.',?o~(5.17F)

C in, Sit)(5.18F)

The constants (K-) and (K ) are determined from Eqs. (5.15F) and (5.16F)
mq mq 2

by integrating over the body surface. The partial derivatives appearing in

these equations are determined from the equation of the surface, Eq. (6.1F).

The constants m and em- in Eq. (5.18F) are defined by Eqs. (5.19F) and (5.20F),
q mq

and are repeated here for convenience.

+ KM + (5.19F)

4tar-_.,_n/ (Kin ) I (5 2OF)

The constants (KMq) 1 ,ind (K q), have been determinod for a half

circular cone ith flat side up under the assumption that the angle of attack

is positive so that the complete bottom always "see.s the flow.

= -[ in

- x(a)t& n 'O-

7rtanjO sin
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2 (2.2)

in these expressions, & is the cone half angle, and x, and z are the horizontal
0 0

and vertical C.G. location along and perpendicular to the cone axis respectively.

The damping in pitch (Cmq ) of the half cone is based on the planform area of the

cone and the cone length (c). The symbols used here are the same as those in the

"First Quarterly Technicl Report", and one can refer to this report for definitions

of terms.

For any given cone angle ( 0 ) and C.G. location (x0 , z ) it is possible

to evaluate (K Mq) and (K mq). numerically. The damping in pitch as a function

of angle of attack can then be determined from Eq. (5.17F). A more useful ex-

pression for the damping in pitch is given by Eq. (5. 18F). The constants mq
and E can be evaluated numerically from (K ) and (K q),. It thus becomes
evident that as long as all or thie conical surface "sees" the flow, it is possible

to derive a simple analytic ekpression for the damping- in pitch. It is interesting

te note that based on Xetonian theory, All shapes can be cast in the same analytw¢

foir, and their relative damping qualities compared.

It would be very usoful if mq and 0 mq in Eq. (S,18F) could Iw evalukmled

apdyti 'xly" in leimAs of the geometric parwieter ot" the surface ( 0 ), and the

C. G,.Ilwcation (x.,!) Examination of Vqs,. (.)and (*2.2) siabstitutod, in

Fqs. G.l.F) and (5. 20F indicates thal the analytic expressions will he 'ery in-

voled and therefore of little prai-tiial use, Consideriblxe simplification i.

possible if" one limits the discssion to cones of smnll lngle. It i. then

necessary to retoin only tOe first tems in the expesions for q). zAnd (GMI).

Mamping dfiativs Por small con, ang. es will be discussed shortl.

It becomes evidni fron ,Xamiining Pqs. (;2Z1) and that the da npin:
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in pitch is a rather involved function of C.G. location. No simple, relationships

can be established for transferring the damping in pitch from one C.G. to another,

as is the case for the static derivatives of the surface.

The pitch damping constants in Eqs. (5.18F) for a half cone ate plotted

as a function of cone half angle and C.G. location, both vertical and horizontal,

in Figs. 1, 2, and 3. It becomes evident from the figures that the damping in

pitch is an especiallyr strong function of horizontal t. G. The figures indicate

that the damping is large about the nose and small about a point 2/3 of the cone

length aft of the nose. As long as the C. (.. remains in the cone, the damping

is not a strong function of vertical C. G,. location except at large cone angles

and horizontal C. G.'s aft of the 2/3 point. The . "tical C. G.'s chosen

are rather extreme and represent the limit the C. G. can move verticalliy and still

remain within the envelope of the cone.

It is instructive to look at the O.Rmping of a half cone under the

assumption that the cone angle is small, and the vertical C.G. location (z /c)

is also small. This will be true if the C.G. is located inside the cone en-

velope. so that Iz /XI <tan 9. Retaining up to first order terms of small

quantities, Eqs. (21) and (2 .) reduce to

Substituting in Eqs. t9 W and (,2OF) and retaining up to fi-st ordt - terms

in 0 rvsults in the" folloving"

Z A
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Thus for a half cone of small semi-angle ( 0 ), the damping in pitch equation,

Eq. (5.18F), is

it is interesting to note that the damping in pitch of a slender cone is only

a function of longitudinal C. G. Iocation. Eqs. (2.5) and (2.6) should be com-

pared to the exact results of Figs. 1, 2, and 3. Eq. (2.7) will give reasonably

good results up to cone angles of about 8 degrees. it is possible to derive m q

and e with higher order terms in small quantities. This will increase themq
range of validity of the pitch damping equation and also show the effects of

vertical C. G. location.

Fq. (2.7) uhc.tes the strong effect of longitudinal C. G. location

on the damping in pitdi of a cone. Eqs. (2.3), (2.4), (2.5), and (2.6) are

plotted as a function of longitudinal C. G. position in Fig. 4. It becomes

obvious that the damping varies widely with C. G., and is a maximum for the

C. G. at the nose aind a minimum for the C. G. at 2f3 of the cone length aft of

the nose.

Up Io no.v he disicus.ion has been oinc'rned with the damping in

itol of a half, Con k it flat side up at positive anles of attack. The de-

rv ,tijn of'~y e '~in for the damping in pitch of 'A exmplete conk. A

kl arg~t, 'f vi --k 1* diIslsso in Same detail.

Ino 1' io -thk duPing in Pitch of -the tep halt oV th'e

'o -Abx lo 1CW ih - ns 1-O 40niN fv iovix tho irmtegation Proc-dui Outluxned

~ ~' Mho, 11w,~ sAme ow. uaseA for the. ottonm. ionalv

~ a~' ~'r~'nt.These-v vzostats Vill W valid ot ngtv

~~li A' aaC aovth ft idou Folil ing tbis"po ~uv
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kin$ C 2,

- ',aZ8 i. e(2.8)

+ { + tnG sin (2.9)

These constants are identical to those for the bottom half of

the cone, except for some important differences in signs of the various terms.

Inspection shows that (K ) for the top can be obtained from (K ) for theiuq I mq 1
bottom by substitution -z for x . The second constant, (K ),, of the top can

4.) a mq
be obtained from (K. ),2 of the bottom by first substituting -z° for z , and

then changing the sign of every term.

The con tnts m and 0 for the top are obtained by substituting
q mq

t); and (K q),, in Fqs. (1F) and (5. F). As long as the top and botton

of the cone completel" see the flow, the damping in pitch of the full cone

can he written as

kcr~e -(CO, #
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The subscripts B and T refer to the bottom and top of the cone

respectively.

The efmqB and &q shown in Eq. (2.10) are not in general

acute angles as determined from Eq. (5.20F). Methods of obtaining the acute

angle form are discussed in some detail in Section 5.2F. In general, for the

bottom half of the cone, (K ) and (K ) are both negative. For the top
mq I mq2

half of the cone, it follows from the previous discussion that in general

(Kmq) 1 is negative and (Kmq)2 is positive. Under these conditions it be-

comes apparent that OmqB  is in the third quadrant, and 40mqT

is in the fourth quadrant. In terms of acute angles, the angles for the

bottom and top can then be written as

8/69 = ?r + 7

where the primed valucs are acute angles. By substituting in Eq. (2.10). the

damping in pitch of the full cone becomes

it should be tf interest to note that Fqs. (2.10) and (2.11) will

aiplly vhether or not th%' top and boittm surface are of the same shape. It is
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only necessary that the constants for the top shape and bottom shape be computed

separately..

If the C.Go is located in the horizontal plane of symmetry of the cone

(z - 0), then the damping of the complete cone assumes an especially simple form

since

Eq. (2.11) now becomes

=- M sin (Oe + +~ s 0" -X (2,12)

This equation could have been arrived at from simple physical reasoning since it

says that the pitch damping of the top of the cone at negative angles of attack

is no different than the damping of the bottom at positive angles of attack if the

C.G. is in the horizontal plane of sumetry.

The first and second terms of Eq. (2.12) apply to lower and upper sur-

face respectively. The maximum positive and negative angle of attack for which

this equation is exactly true is determined as the minimum positive and negative

angles of attack for which the normal component of free stream is always inward

at any point on the complete cone surface. For the damping in pitch, this can

be determined from Eq. (5.12F) for the condition (7. ) > 0. But this con-

dition is n4 diflferont than that for the static forces and moments and their

derivatives is deterniued ron Eq. (t12F). hen Eq. (3.12F) is applietd to the

complete cone, the an1le of o ttack ran)ge fol" h-hich Eq. (2.1:) is I, xactly valid

is

1 1 i 11 now prove ins ructive to cx-mine iq. 12.12) In terms of a

Ai



specific example and determine the relative magnitude of the two terms at angles

of attack. if one selects as an example a 5 degree cone, Eq. (2.12) is exactly

valid for the angle of attack range -50 d_ S . Also for a 50 cone it is

sufficiently accurate to use the small cone angle form of the pitch damping-

constants, Eq. (2.5) and (2.6). Eq. (2.12) now becomes

Cm?= -~- -6 27L ] llSin(-3r *-X9 + SM> (.3

At plus 50 angle of attack Eq. (2M13) is still valid for a 50 semi-angle cone,

and the relative magnitude of the contribution of the top and bottom to the

damping can be determined from the following ratio.

5- 4S- S.9 - 0 .. 8 5
Si (8&g X) Sin (S.90° 5 °  Sin(16).900)

Thus at 50 angle of attack the contribution of the top of the cone is only about

8 percent of the bottom. At 50 negative angle of attack just the reverse is

true, the bottom is only 8 percent of the top.

Obviously only a maximum of 8 percent error is introducted if the

contribution of the top is neglected after 5 degrees angle of attack and the

bottom is neglected after angles of attack less than -50. The error will be

considerably less if the top and bottom terms are retain, d until the angles of

attack are equal to the absolute value of the "effective" surface angle )

For the 50 cone this effective angle is 5.90 degrees. These same arguments hold

for even larger cone angles and a wider variety of shapes than the simple cone.

On the basis of these and similar results it is possible to write reasonably ac-

curate results for the damping in pitch throughout the angle of attack range

from Eq. (2.12) by dropping appropriate terms. I1e can thus urite,

40
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o(!
fsl+ (2.15)

CM /7, ln -- ,X(2.16)

For any full cone, the constants in Eqs. (2.14), (2.15), and (2.16) tan be determined

numerically as discussed previously. For a slender cone the analytic forms of the

constants are especially simple and the damping of a full slender cone throughout

the angle of attack range can be written as follows:

the damping in ,pitch at zero angle of attack for a slender cone becomes
from Eq. (2.18),

E-2{- + (2.20))

if thk7 C.G, is n+t ioted in thC horizontal plne f snOtry (.1 / 0)

C,,
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then the constants for the top and bottom of the cone are aiot identical and the

,more general form of the damping in pitch equation of the complete cone,, Eq (2.11),

must be used. The constants for the top and bottom must then be evaluated separate

ly. From Eq. (2.11), ;good approximate expressions for the damping in pitch through-

out the angle of attack range can be derived using the same Procedure that was

used, for the slender cone. Fromf Eq. (2.11), these equations become

-

CM h± - --(./) ? o( - ) 2.

O?<OC - 0r9, q7

= -(n) a sin(9,B+ -) (m$)r sn(6't-(x) (2.22)

CM, -(m 7 )8  in ( + 0() (2.23)

Although the discussion here has been concerned with the full cone, the

form of the results will be the same for any shape surface in Newtonian flow. In

fact, the upper and lower surface need not be the same shape for Eqs. (2.21), (2.22),

and (2.23) to be applicable. It is only necessary that the constants in these

equations be determined separately for the top and bottom shape. Similar results

for the damping in pitch have been determined for other shapes and these will be

presented in subsequent sections.

The other damping derivatives can be determined following essentially

the same procedure, and these will be discussed in the sections that follow.

I -
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2.3 Damping jin. Tw Gnr

It is demonstrated in Section 5.3F that the damping in yaw of an aero-

dynamic shape can be expressed as

C,. (Kn.), Co' * (Kn,,)z s'nt (5,28P),

CnI.- -O)ne Sn (6nr + )' (5.31F)

where

rOz ;(Knr), - (Knr)' (5.32F)

On tan-/ LISn 1 (nrnri (5.33F)
(-"(nr)t V/(Knr)f + (Knr).

The constants (Knr ) and ( Knr )2 are determined from Eqs. (5.29F), and

(5.30F) using the equation of the surface, Eq. (6.1F).

For a half cone with flat side up at positive angles of attack, the

folloving expressions for the constants have been evaluated.

-4 ~ .)+ (eL] - 14 P- 2 +6 ({. -t] -

ta-1 Sond

al 0O't''W nil't (9') anst C 10ttn~ (x ) it !,,&s d~bkt to
eXlaen~e'cl. Knr ).Iand K 111' ),j and M-so th'e Cut ant,,nrl 'Ana

'an, mTd (i.l3l) i then ,zivo the d'imping i yaw ;A-s a rulwt i,. A

,ng'b of attof ck tor Positiv' 'ALNs of, att At.
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The damping, in yaw is, a function of both longitudinal and lateral C,.G.

location. No simple C.G. transfer relationships can be derived as they were

for the statio derivatives,

The yaw damping constants in Eq. (5.31F), with the acute angle form for

nr , are plotted for a half cone as a function of cone angle and C.G. location

in Figs. 5, 6, and 7. The yaw damping is an especially strong function of lonhgi-

tudinal C. G. position and varies little with lateral C. G. location for moderate

cone angles, 0 < 150. The damping is large about the nose and small about a

point 2/3 of the cone length from the nose. Only lateral C. G. locations that

lie within the cone envelope have been considered in these figures, IYo/Xo0 <

tan 0 .

It is interesting to look at the damping in yaw under the assumption

that the cone half angle is small, and the lateral C. G. location is small,

lyo/x 0 1 < tan 0 . Retaining only up to first order terms in small quantities,

the constants can be written as

(K,,A, 1 4~ sr + z (2,26)

(,o,) , - -( 4] (-2.2

* (2.27)

For ,ufficientl, v, 1 cone angles, Eq. (5,ilF) thus becoms

I-Rd 7 Tht-s c I wparimns i tthat Eq. [1-,4( 1 girc, rsnsknbl) good
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results for cone semi-angles less than about 10 degrees. The strong effect of

longitudinal C. G location on the damping in yaw i. indicated by the plot of

Eqs. (2.26) through (2.29) in Fig 8. The figure indicates that the damping in

yaw is a minimum for the C.G. located at 2/3 of the cone length from the hose.

The damping in yw of the full cone is, now fairiy easy to evaluate for

all angles of attack. If the constants (Knr ) and ( K ) for the top halfnrlI nr 2
of the full cone are determined, it will be found that the ( K ) of the top

and bottom half are the same, and the ( Knr )2 of the top is opposite in sign to
the ( Knr )2 of the bottom. This same relationship existed for the ( Kmq )i

and ( Kmq )2 of the top and bottom with the C.G. in the horizontal plane of sym-

metry. It therefore follows that the damping in yaw for the complete cone is

analogous to Eq. (2.12) and can be written as

Cn -- -mosin (0A *-ox) + sin (Enr :-)] (2.31)

The damping in yaw throughout the angle of attack range can now be determined

by simple analogy to the damping in pitch equations.

+ (2.33)



if the upper and lower surface are not of the same shape, then the

constants for the upper and lower surface must be determined separately as

indicated in Section 2.2 when discussing the damping in pitch, in such a case,

the yaw dampiig equations will be analogous to the pitch damping Eqs. (2,2l),

(2.22), and (2.23), and they tan be written as followsi

Chr I-nr Uin(04-0, ) (2.35)

-x. co(

C ,,, - , . , sn(e ,. t oc) - m ,. si , . (2.36)

C',,,. -rn 8 smi7(GA, + .C) (2.37)

The subscripts T and B refer to the constants for the top and bottom suiiace

shape respectively.

For a full Alender cone Eqs. (2.32), (2.33), and (2.34) assume an

especially simple form.

~~~#
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At zero angle of attack, the damping in yaw of a slender cone can be derived from,

Eq. (2.39). The result is identical to the damping in pitch at zero angle of

attack.

2.4 Damping in Roll - Cp

From Section 15..F the damping in roll of a surface assuming Rewtonian
flow can be expressed as

C S1 c + .i..V3F)

3:C

r ( T i

attack.
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Ujsing the equation of the 4urface, the constants (K -) and (K ca be

determined as indicated in Section 5.4'F. For a half cone with flat side up,

at positive angles of attackj these constats become

-27jru + I) Sf (2.42)

(K ( [-I-)+ (+Y) Cos 0 (2.43)

For any cone angle (0) and C.G. location (yo z.), the constants

can be evaluated numerically, and the damping in roll of a half cone can be

determined as a function of angle of attack from Eq. (5.44F). It is interest-

ing to note, that with the C.G. on the cone axis (y = z = 0), the damping in

roll is always zero, as one would expect.

For those cases where the lateral displacement of C.G. is zero,

. 0ec = 0, the constants assume an especially simple form

=. eI (2.44)

1 (.LA A () + ~ (2.45)

If the farther assumptin is nade thal t, c kM 44lj is &Wdl1 and only up to

i'rst order teras in 4 arx, rvtail,-} then the cvntants aZsst. the folvoiing

w us
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(K = ( -2-; , (2.46),

%= (C2..48)

/?..where (2.49)

The roll damping constants determined using Eqs. (2.44) and (2.45)

are plotted as a function of cone angle in Fig. 9. These results compare quite

well for 0 < 100 to the small angle expressions. Eqs. (2.48) and (2.49).

For a slender half cone, the damping in roll as a function of angle of

attack and vertical C.G. position thus becomes

C ~ '-) Sor ( i4* (2.50)

The danping in roll of the full cne is eas- to determine once the

constants, k ) =ud tK fr 1r ~j of iWcon are tvzd~atcxx7.

AnalNsis shows that these constants ean te deriveid from those for the bottom

half by first substitutilng - fr and then hxnving the sign of all the

terms in (p ) , It vil! be r ebered th. the s.mr? procedure applied to

the danping in pitch nstiats. i oQ7 to Eqs. k2.-i), (2.22), and (2.23),

the danping in roll ecuation. becone
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, < <

The subscripts I and B refer again to the constants for the top and
bottom surface, and these constants are generally - different because of lack of

syetry" of the upper and lower surface with respect to a C.G. outside the hori-
zontal plane of sietry. Of course these same equations will apply" if the upper
and lower part of the body are different in shape provided the constants are

evaluated ifor each sh ape. In the ease ot the cone, the danping in rll constants

happen to be an even function of the vertical and lateral position uf the C.G.,
see Eqs. (2.42) and (2.43), and therefore the constants will be identical for the

top and bottom.

For the slender cone usng the results of Eqs. (2.48) and (2.49), the

dampin in roll of the full cone ssu s an especial simple analytic form

througrpout the angle of attack ra nve.

evlutefr ac sae.Inte as o hecoete amig n ol ontat

hape to be an eve fucto of th vetia an laea postio I I If th I I I I I
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C (2. 54)
Jil

The damping in roll for a slender cone at zero angle of attack, with

no lateral C.G. displacement, can be obtained from Eq. (2.55)

. - 4.,- (2.57)

2.5 ipindwh in VIw Avhe to Rolling -; nP

'he eneral anaNi-tic form of the danping in Nnav duo to rolling is

presented in Section 6.51' and rel-oated here for convenience.
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where

* (K,,, ( (5.576P)

The constants have been determined for a half cone with flat side

up at positive angles of attack as explained in Section 5.5F. The results are

(K--r), -- -, t)an,9 + (---) s,,, -

-2r(-)(+) tan 01n'8 (2.58)

.( )( Sc sine 4,9 2(.,+ )2 t a ,n n'L9 (2.59)

For any cone angle ( B ) and C.G. location (x0, y0, zo), the constants

can be evaluated numerically. The Cn  as a function of angle of attack will then

be defined by Eq. (5.54F) or (5.55F). p

For a slender cone, assuming y/c 0 0, and retaining only up to first

order terms in the cone angle, considerable simplification is possible.

I i 1 1 1I I I I 1 " I
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A ' (2.60)

(2..62)

9,1 ?r+where (.3

Thus for slender half cone at positive angle of attack, Eq. (5.55F)

becomes

The constants for Cnp have been computed as a function of cone angle

(9 ), for fixed longitudinal C.G. locations (xo/c), and zero lateral C.G. dis-

placements (Yo/c = 0). The constants map and enp are plotted as Figs. 10, 11,

and 12. The results show that Cnp is a linear function of vertical C.G. position,

and varies widely with longitudinal C.G. position. The damping is a minimum for

the longitudinal C.G. located 2/3 of the cone length from the nose, and it will

even change sign depending on the C.G. location. The results also 4emonstrate

that Eq. (2.64) will give good results for half cone angles less than about 10

degrees.

The Cnp of the complete cone can be found once the constants (Kp)l

and (Knp)2 of the upper half are determined. These were evaluated following

the procedure in Section 5.5F. It was established that the (Yp)l of the top

can be obtained from (Knp)l of the bottom by first substituting -zo for zn,

23
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and then changing the sign of all the terms . The (Kn ) 2 of the top is obtained

from the bottom value by simply substituting -z 0 for Zo*, The procedure to be

followed in obtaining the Cnp throughout the angle of attack range is similar to

that used for the other derivatives.

2.6 Damping in Roil Due to Yawing .- C' r

The damping in roll due to yawing (CIr) for the cone is the same as

the Cnp since the constants are identical.

(Kjer)

It is also true that (K r ) and (K r) 2  for the top half of the cone bear

the same relationships to the constants for the bottom half as that shown for

(K ) and (K ). The alternate form of the Cr constants, (m r) and (0.'t),npl 1np 2*'rIrr
are also presented in Figs. 10, 11, and 12.

3.0 Analytic Equations - Delta Planform with Diamond Shape Cross-Section

3.. General Discussion

Another aerodynamic shape that has been studied in some detail is the

delta planform with diamond shaped cross-section in planes perpendicular to the

longitudinal axis. All the surfaces of such a shape are flat planes. The im-

portant stability derivatives, both static and dynamic, have been determined for

this shape. In the next quarter, the shape will be studied in some detail with

controls added for purposes of trim at angle of attack. Stability derivatives

will then be determined under trim condition, a primary goal in this whole study.

Results are presented for only a half body with the flat side up

at positive angles of attack so that only the bottom surfaces "see" the flow.

No discussion of analytic results are included here for the complete surface,

top and bottom, at all angles of attack as was done for the cone. The procedure

to be followed to obtain the derivatives of the whole body is essentially that

discussed for the cone, and the cone results may be referred to for these

details.

24
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In the derivation of all the stability derivatives, the, partial deri,

vatives of the equation or equations of the surface are required. The body

orientation and general shape,, as well as the surface equations, will be shown

here for convenient refetende.

Surface (2)

x
Surface (1)

surface (1)

F(%,1,J) -".(tA +(, n.)s +(cota=o (3.1)

Surface (2)

,c~z,, ) - - &) +..A) (cot 0); : 0 (3.2)

3.2 Longitudinal Force and Moment Equations

The forms of the longitudinal force and moment coefficient equations as

derived in Section 3.OF are repeated below. The analytic equation for each co-

efficient can be written in either of the two basic forms.

25
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'A4( 4- +(kA)Z 11 .2,C'Ko, -(< 4 )6 sC a (3. 18F)

KA, L C",), k 4Sfo + #,cI r -S , co., '(3.31FP)

CA" no + n, sn,9n, + ) (3.35F)

Cm (.,,co), ,SO + (K ),es ,n*VC (K,,,)s.n. cosa( (3.40F)

C,, " -n ,,M,/ s,,2"(R *,, ,) (3.44.F)

The integral relationships and equations for evaluating these con-

stants are presented in Section 3.OF. These integral relationships are used

in conjunction with the equations of the surface, Eqs. (3.1) and (3.2).

For the half body at positive angles of attack, the constants have

been evaluated and are shown below.

(R A ) I = , , u ,, a* ti. - .* .

(, )e~ ~m it , , A Ae.,,

(KAV = ,,.'e S;7 9.,.-

2 6

'1 II
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S= 2.49A

Am I\ = --= M + o nm where 09

The more useful form of the analytic expressions for the longitudinal

force and moment coefficients are expressed by Eqs. (3.19F), (3.35F), and

(3.44F). In ter of the evaluated coefficients these equations become,

C(A : -s1 n s O+,) (3.3)

12 , - (X -) (3 .4 )

2 7

(Kim)iI ' I I ' I 0
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Eq. (3:.5) is evaluated for a C. G. located 2/3 of the body length aft of the

nose on the longitudinal x axis.,

it is interesting to note that in all cases the 1reffective" body
angles (6a n,en- 91,) are equal to the geometric angle 9. When these exptessions.

are used in determining the forces and moments of the full body throughout the

angIe of attack range, the resulting equations are exact since complete masking

or unmasking 6f the bottom and top occurs precisely at angles of attack - 9 and

4 0 respectively. The complete surface results can be obtained in a manner

identical to that shown for the full cone in Section 6.1F.

3.3 Lateral-Directional Static Stability Derivatives

The static lateral-directional stability derivatives for a surface

can be defined analytically in the following forms as demonstrated in Section

4.3F.

'= (Kyr3), COS c + (kyp)z sii.( (4.28F)

c% = yO s1n(%g.4+o) (4.32F)

s y + o0(4.32F)

C = ( ,K,(G~a.o) (4.38F)

Is +(,, ( )4.3F)

The integral relationships and equations for evaluating these con-

stants are shown in Section 4.3F. The equations of the surface that must be

used are Eqs. (3.1) and (3.2). For the half body, the following values of

the constants were obtained.
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(Ky4 -.- _ __ _ _ _

(Ky. fr# where 6'

- *~sin'f,- nganjt& [tani 0 ~'4:1]

-K 3^ sOCosa'{~ tan 0ta~n'Je [tsa +* 3(~

17 w~ihere 9 9

I u 4 {/~t.~4/~i(~+

/rq*ttt
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The more useful form of the lateral-ditectional static stability

derivatives are those expressed by Eqs. (4.32F), (4.38F), and (4.46F). For the

moment center located at (to/c) - ) and (Xo/c) - 2/3, these equations become

especially simple in terms of the evaluated constants.

-* * ;,(ean) (3.6)

C ~~Sin (19+0()(37

The effective body angles kW 0 and a are again equal

to the geamtric angle 9. The ister,.-4irectionai static stability derivatives

for the cplete surfacei c n be obtained in tht, manner indicated for the full

cnet in settion 8.2F,

IIIin an Vitch - C I
The %*erivtton of~ the &miag in pitioh oquatiows are shoin in Section

~.~. The 4Amping in pittl can heb n n of I W vays,

cos 0 +~y ) (K (513
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The miethod for evaluating the constants in these equations is also shown in

Section 5.62F.

For the half diamond shape body at positive angles of attack, the

constants assume the following fortm:

1 ta 49n= ea. f 49 sa e.=

IO [S ,- ('L A SION"] &.,,, .,,,

s * ,-" *-5.S

42 Ve')t

1~* S.0 A- nA

-it4* it~s a'

+ ),tn o -W- P ,e&,I* im
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+z[(4y~~~~~~+ A'(!) (As) A H() ift ~S~6

+ f C~

27 + where

The pitch damping constants are rather involved functions of the

longitudinal and verticalC. G. location. These constants can of course be

evaluated numerically for any C. G. location and values of the angles 8
and.A. . In the case of small O's, if tan A is of the order of one or less,

7o
and the vertical C. G. is located within the body ( I.o I < tan 9 ), considerable

simplification is possible. Retaining only up to first order terms in 0 and
zo/c, Eq. (5.18F) becomes

Equation (3.9) should be compared to Eq. (2.7) for the half cone. In the limit,

as t9 approaches zero, Eq. (3.9) becomes the damping of a flat plat- delta

surface at angle of attack.

3.5 Lateral-Directional Damins berivlativs - Ci1, C42 C1) , C<A,,

The form of the latoral-direct ioi l damping derivativeF' tre determined
in Sections 5.3F, 5.F, 3,F, nd . F. .he interal relatiolships and equations

for evaluating the constants in the dAmping dorivative oquations are also pre-

sented in these sections. For conveience, the two t'oComs of tach damping de-
rivative equation are shown again below.
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cne =(K, r), Ccs + ( -,,, S'"a, (5,28F)

, -,. sin (e4r.6(,) (5,31F)

C~(~,CoSoc +rna< (5.e48F)

Cs (*vr +,f) (5.44F)

C,, (K,,), c o-s + ( +',, sIn , (S. 64F)

C n n,,e, 'Sin (87p + () (5.55F)

, Cosa + (A),2 s a,,( (5.64F)

In , I z ~ (S. 65F)

The constants in these equations for the half body at positive angles

of attack have been evaluated. It was discovered early in the integration pro-

cess for determining the constants that some simplification was possible. For

the shape under consideration, the following relations hold:

(K,,.), -- , e(,,,, ,,.- - se e(s ,.), G,,,.- ,',;,

where 0 r

i$here 6

) d 2c 1 (z

t 6t



R463-011-409

An exasination, of the damping in pitch, and the lawteral-directional

static stability derivatives discussed, in Sections 3.4 and, 3.3 shows that

similar relationships hold, for these derivatives. Listed below, are only the
values of (K) 2'ann(

n2' )'(K )p )d ( ,sin ce fjrom these the other con-
stants can be 'easily determinied.

~~ {[cot-& t+6+-]

2 C

+ f cat.~. +~ -f &

- ~C''(~) (~a)(-tgm. )+ 3 t*Ant+ fcol eaws*-

It is of intk~recst to that tht. diIepn~4ri'v~tivv's, C n

,jr vi1l bO idvti% Al sM~o % ) m 1)~~~ q4

Com-advii.blk, jtifi, pionlt i~~oTh u thwti.s for tv~iuxtin1ft

t1* tA-nts if ono3 ~W thxt 1h' C.(". lieos on(% t~ AN xj (ak' ,
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Under this assumption the constants become

(Kj~ ~ cotA.. +[ #cota~.. o to-n s ta-n' 4sP7'-t}

(A~fA?: K1,.)~ ~ {[,-*(4~+ -2 cot St] t-nO -

-~i(-~~eat'-&)+ &r)-i&+ 11ct~t] an* ,n'g}

If the further assumption is made that 0is a small angle, and tan -& is of
the order of I or less, then further simplififcation is possible in the constants.

Retaining only4 the lowest order term in 9 for eatch constant we have

+ -4e cot Al to

Vith thes -Th vwi m

idvti 4k t O
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Now, for the half diamond shape body at positive angles of attack, the

lateral-diretional daMping derivatives assume the foll ing simplified form,.

c~±i{, ~]+~,-4 (~5ta~t~4-ot~t~Sinh(6401) (3. 10)

C)~~~~~~ -ioASf(~ ( (311)-f,

In the limiting case of t = 0, Eqs. (3.10), (3.11), and (3.12) become

the damping derivatives of a flat plate delta surface with sweepback .A . For

this case

C :- CotA sino( (3.13)

C,,= C : C, = o (3.14)

It is possible to look at other limiting forms of the surface with

diamond shape Irss-section. If one assumes that cot A - tan 8 , then the

shape is one that can be inseribed in a cone. One can then make interesting

comparisons betwen the derivatives of this shape and those of a cone.

4.0 Anabytic Equations - The Flliptie Cone

4.1 General Dias:ussion

An aeroadnamiQ shape of some interest upon which some initial in-vesti-

gations have been made is the eitip i Coue. Only analytie equations for axial

and noml force %coeffieient-s have been determined up to now and the results are

presented here, lhe moment-4 and the lattwal-directional slability, derivatives

I6
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Will be determined in the next quarter.

The results for only a half body with flat side up at positive angles

of attack are presented. The equations for the complete surface at all angles

of attack can be easily obtained using the procedure discussed for the cone in

Section 6AlF.

A sketch of the half elliptic cone body and the equation of the surface

required in the analysis is shown below.

z

<VA

- surface

Equation of the surface:

4.12 LongitudhnWl Force Equations

The general. form of tho longitudiijal forte oquations tire derived



in Section 30F and presented in Section,3.2, The integral relationships and

equations required to determine the constants in these equations are shown

in Section 3.OF. For the half elliptic cone body the constants become

(k, rcoasA t-,a n O

(A)Z COdLSh6cs
Coas A + sw, 6

(K) _________ ' /_-[(CO--.A .s,n# <
's 5 cJ-AcosA. I a

(k4,__)3_ s_ L - i g 0 -Z COSA

72osJ I COSA

(s, ~~ti Gat. U"d

-mG _V __ _ ,_ _ . cot.A. W1

si~tn tinG9

B,.r U 0 " "j

, 38,o-[ , [ .
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2 eT

(K11I) 2=29 -- f 2± i
S11(cot-CO - TatA 2s''n 2TC~t -tlns ~ IrC t2 - tan-I

tanG1

3 Ir Cos-.(KN) 0 + s ec. J

For any values of the angles A and 0 , numerical evaluation of

the constants in Eqs. (3.18F), (3.19F), (3.31F), and (3.35F) become obvious

following the procedure outlined in Section 3.OF.

It should be of interest to examine slender elliptic cones of

various fixed ratios of the two axes of the ellipse, From the previous sketch,

the ratio of horizontal to vertical axes ef the ellipse (e ) is obviously

ta-n 0

If the assumption is now made that the angle 0 is small, and e is of the

order of one, it is possible to obtain quite simple analytic expressions for

the constants in terms of e and the angle 0 . If the value of e is fixed,

then the constants become onlyr a function of 0 , For small 4 's, the con-

stants are listed belot for three ellipse6.
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-:0 2,0, 1e 1/2

a. 1.8642 9 3  ,595193 .47564'3

a1  2.09440 1.57080 1, 04729

1.45,20 1.2732,9 1. 15479

n .39440 2 1488 0 2 .04925 2

n. 1.6528 1.3333 .9455

en 1.26710 1.17840 i.!0750

The constants for e = 1.0 (the circular cone) are taken from Section

6.1F. These results will be studied in more detail to determine the range of

's over which they are reasonably valid. The pitching moments and some of

the damping derivatives for the elliptic cone will also be evaluated.

5.0 Analytic Equations for the Stabilia Derivatives Considering Bluntness

5.1 Introduction

All the body shapes that have been analyzed up to this point have

had surfaces whose shape can be expressed by a single equation. It has also

been stated elsewhere in this report that the methods are still applicable if

the top and bottom of the body can each be expressed by different equations,

since the top and bottom of the body are analyzed separately. These general

relationships also hold for bodies whose surfaces are composites of two or

more shapes, such as a spherical cap and a cone, The only details to be studied

are how the results for the diffe rent shapes are to be combined to obtain the

aerodynamic characteristics of the complet- " body.

Surfaces of special inttAest at hyTersonic speeds are those with

blunted noses and leading edges. Some preliminary investigations have been

made of the application of the general methods shown in the "First Quarterly

Technical Report" to a blunted ,one, alid the-se results are presented in this

section.
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5.2 Analytic Equations -- The Spherical Cap

In order to analyze the aerodynamic characteristics and stability

derivatives of a spherically blunted cone, it is necessary first to determine

the properties of the spherical cap. Analytic equations for the force and

moment coefficients, and the stability derivatives of a spherical cap can be

determined in the same manner as that used for the cone or any other surface.

The basic methods are presented in Sections 3.0F, 4.OF, and 5.OF, The basic

equations will not be repeated, only the values of the constants in these

equations are tabulated below for the bottom half of a cap at positive angles

of attack.

z

RBX

Equation of the Spherical Cap Segment

i (9 - v

I ongituadin-al Force and 'loment Cioff-,ioran ~n~u fo r C and4 Cm



R-11-10a

e oslo22 (- 9

Cos"O 20L9

0 60e) [ -Tip" I
Cos slrW(/-

(KN)3 = COS 9O

RMl= (Km) 2 z (Km) 3  0

Lateral-Directional Static Stabi]. itN- Cons tants~ fou C C n and C4

(Kyg), Co

Coate
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Longitudinal Damping Constants forC

grI+atan 9)1"

+. R

Lateral-Drectiona D pigC tant or + nr C j9 tand C

4- 2 
-14) 8(2k) .:

tan 9*.z dw .0 - 9 ft31o

+J
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=~~tn -Y2 29--~ Ain}

(K,~) 2e~e(-~+(-~-)r Or .ezO 2~a2

(Kr) =K,)- -,~jO Ir I

IrI



All the static moment jonstants are 2-ro since the center of moments

is taken at the center of radius of the spherical cap,. The simple C.G. trans-

for relatie ' ips of Section 3.2F and 4.2F cA-n be used to obtain moments and

1moment derivatives about any other C.Gi location. The force and moment coef-

ficient constants are, based on the ba-se area ( Ag) and base radius (RB) of the

bottom half of the spherical cap segment.

it is interesting to note that for a C¢G. located at the center of

radius of the spherical cap (xo = R, z° 
= 0) all the damping constants are

zero as they should be. Since simple C.G. transfer relationships do not exist

in general for the damping derivatives, the constants must be expressed in

terms of the C.G. position.

For the case of a half sphere (0 0), the static force coefficient

constants assume an especially simple form

( = (K), = -

= l= -,

From these constantN. it is posi.ible to write an equation for CA,

CN I and Cy of the bottom of the halt sph.-'ricai cap at positivo ang.les of

attack.

- v" A 8'd",K

M ,2
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%--.3)

From these equations it :is easy to show that at oC = o , CN a

not unexpected result.

5.3 Longitudinal Force Coefficients of a Blunt Cone

For the present, only equations for the longitudinal force coeffi-

cients of a blunt cone have been derived. The moments and damping derivatives,

both longitudinal and lateral-direction, will be treated in the next quarter.

In many respects the procedure is basically that which will be shown below.

The primary additional complication is that static moments and damping deriva-

tives of various parts of a composite configuration are a function of arm

lengths or distance from the center of moments (C.G.) of the total configuration.

In order to derive the longitudinal force coefficients of a blunt

cone, certain area relationships are required. These relationships are presented

and explained with an appropriate diagram below.

111

Diahram f Blur (rcutAr 11alf iCiv
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The bluntness factor (B ) of the cone will be defined in terms of
the base radius of the cone ( R ) and the base radius of the spherical cap

se gment (I

#(5.4)

The total planform area of the blunt cone ( S ) is composed of the truncated

cone planform area (S ) and the planform area of the spherical cap ( SB )

S = 5 C  5 (5.5)

The cap force coefficients are based on the cap base area ( AB ). The truncated

cone force coefficients are based on the truncated cone planform area ( SC ).

If the blunt cone force coefficients are based on the total area ( S ), then

the important area ratios, expressed in terms of the bluntness factor and the

cone angle, are found to be the following:

= Sec- -A(J

SC_

Based on total plinform area, the ixi.l force coefficient (CA)nd

normal force coefficient (C ) of the blunt cone ca n be vritten as

AS
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The subscripts B and C refer to the, sphercal cap and truncated cone respect-

ively. In terms of the constants derived for the cone and the cap these

equations become

CA,= [(KA),8 eo' 4e- (KA)28  dn< + ("4)8 'n c ) +

+{jKA CoC6S + (KA)ZC Sin + (kA)3C S-n CoS ]( S)

CN± t[(X),a B os CO K~t S/P + (Kv) sno V)8 Sin~ (COS 0k] (A-

4 '[KNC COS +- (1<N)2C Sl"' + (kl)3CS/dcs ( C

One may define the composite or blunt cone constants as follows:

(KA)/,M: (K),,(. +4(0<A)Ic(C (5.8)

,A)-c -.A)Z.- A ) (5.9)
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(KN,)3 8$c & (,,,3 N) (5.13)

The GA and CN equations now become,

CA .(KA),gBC C-DSO4-(A) BC i'o #(Kl)"a + (5.v ( ex14)

CN = (AKA4C CO-y'-r4+(Kv)ec sIfl x + (KNV)_3,c sie'c (.5

These equations for the blunt cone obvior .v take the same form as the

equations for the sharp cone, or any other aerodyna-c shape. The only differ-

ence is in the values of the constants. Eqs. (5.14) and (5.15) can also be ex-

pressed in the alternate and more useful form discussed An Section 3.3F.

C, = (,o)sc * (n,)ec s,, [(9n),c +oc] (5.17)

where

(*1 = [(Ir,sc, ,,] -j =1,

a(K# 14 (A) +, ( c L (a ()c
(k)8 (K 6T' r-

( A4C--18C1LC9)ICI 4
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/,)Bc -~I*~i~c-(A,)s t (KN)rec

1~'ngc~ a5- /,o -
(K ii) c- (K , 9- [(K AW)

It can easily be shown that the truncated cone constants based on

planform area are the same as the constants for the sharp cone and can be ob-

tained from Section 6.1F. The constants for the spherical cap are those shown

in Section 5.2. Obviously it is possible with the procedure outlined to deter-

mine equations for CA and CN with numerical constants for any blunt half cone

at positive angles of attack since the complete cone surface will "see" the

flow. The procedure to be followed for the blunt full cone at all angles of

attack is the same as that for sharp cones as discussed in Section 6.I,.

It is possible to obtain reasonably simple analytic expressions for

the constants in Eqs. (5.16) and (5.17) if it is assumed that the half cone

angle ( 9 ) is small, and the bluntness factor ( fB ) is also small. Re-

taining only up to third order terms in Of., and their products we have

, 
(1
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jf + o[.t - )o*> , .o +f , ; - (5.20)

= .13C + 30 (5.21)

(o) = 4-[,.(- )o 1 -% ,o[r-e ] (5.22)

The initial terms, involving only the angle 9 , are the values of the
constants for the sharp cone. The terms containing f B are the contributions of

bluntness. These equations for the constants can be compared to the exact values

computed numerically using Eq. (5.8) through Eq. (5.13). The exact values are

plotted as a function of the cone half angle ( 0 ) in Figs. 13 and 14. The ap-

proximate expressions for the constants will give good results for fB < .16 and
e< 120 .

It should be possible to develop similar expressions for the moments

and damping derivatives of the blunt cone. This will be discussed in some de-

tail in a future report.

6.0 Hypersonic Pressure Relationships - Deviations from Newtonian

6.1 General Discussion

All of the work that has been done on stability derivatives up to

this point has been based on the simple Newtonian pressure coefficient rela-

tionship at a point C : 2 sin2- , where S is the angle between the freeP
stream flow and the plane tangent to the surface at the point. Under the as-

sumptions of Newtonian flow, this equation applies only as long as 6 > 0 .

51
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For negative 6's the pressure coefficient is assumed to be zero. In the

strictest sense, the Newtonian pressure relationship applies only as 14 -66

and the gas constant Y is assumed to be one. In a practical sense, the New-

tonian relationship appears generally to give reasonable results for the total

forces as long as 1 > 4,0, and the body is highly three-dimensional, such as

a cone. For the negative pressure region of the body : $, 1 > 4.0, the negative

pressures are less than 5 percent of the Newtonian positive pressures, and

therefore can be safely neglected.

An alternative to the NPwtonian constant 2 has been suggested Which

gives better results for the pressures on blunt noses. The relationship is of

the form

Cp = K sin',6 (6.1)

Ihere the constant K is taken as the stagnation pressure coefficient behind a

normal shock.

Any pressure relationship of this form, that can be assumed to apply

for the entire body at all values of M 8, leads to no special problems. All of

that which has been done on the stability derivatives assuming the Newtonian

constant 2, is equally valid for any other value of K. The only requirement is

that the equations for force and moment coefficients and stability derivatives

must be multiplied by the ratio K/2.

It has been established that the pressure coefficients of similar

bodies can be related to one another at hypersonic speeds through the similarity

parameter II . But for different body shapes. no such simple relationship
exists. In a strict sense, the constant K in Eq. (6.1) that is applicable at

any point on the body is not only a function of the local value of 1 8, but is

also a more complicated function of the general body geometry. The pressures

behind a blunt nose, for example, are a function of the bluntness as well as

the local value of 'I& A flat plate delta wing at angle of attack with con-

stant free stream M has a pressure coefficient which in general varies

a2 ong the span.

5:2
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Obviously the problem of computing pressures at hypersonic speeds on
surfaces, and integrating the results to obtain the stability derlvatives, is

an extremely complex one, A first approach to this problem is to consider those

configurations which obviously have uniform pressures everywhere, and try to es-

tablish the proper pressure relations as a function of only the hypersonic ssmi-

larity parameter (1 &). One such configuration is the circular cone at zero

angle of attack, another is the two-dimensional flat plate at angle of attack.

For the present, only those conditions with nose and leading edge shocks attached

will be considered. The Newtonian pressure coefficient relationship, Eq. (6.l),

and the combined hypersonic-supersonic similarity law suggest that the form the

pressure coefficient might take is

P = (3,,,, (6.2)

where

5 angle between the surface and free stream

For sufficiently high Mach numbers and small & 's, Eq. (6.2) will reduce to the

form

= (Ma) (6.3)

Obviously the assumptions of Neutonian flow, 1 1.0 and j --a o , are such that

g(,sin () -2.

Eq. (6,2) has some interesting implications in the light of the force

and moment coefficient and stability derivative equations that have been derived

assuming New¢tonian floiw. All of these results have shoun that the force anid mo-

nmet coeffic i-nts are a fun-ion of a palame ter of the form sin ( & oQ, and

the derivatives art, a function o " sin ( L ),o The angle & can be considered
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to be an avetage integrated surface angle, or the "effective:" surface angle

which varies with the surface shape and the force coefficient or derivative

being evaluated. In the light of Eq. (6.2), it may be possible to consider

that for the entire surface being analyzed, the average 6 is 4 +.0). If

this is possible, then the surface average pressure law that is applicable is

obtained by simple substitution in Eq (6.2)

........ + 0 ... (6.4)
sinin(6 kCK)

If evaluation of Eq. (6.4) results in a number different than the Newtonian 2,

the implication is that the computed Newtonian results for the force and moment

coefficients and stability derivatives at ( Ox- oc ) should be multiplied by the

following ratio t

f-s in (9-y+-o]

Of course this procedure is all predicated on the fact that Eq. (6.2) is appli-

cable on the average to the shape under consideration.

- t some yp$personic speeds and angles of attack, negative pressures on

a body are far from negligible. If an applicable equation, similar to Eq. (6.2)

can be derived for expansion angles ( 4 e ). then it may be possible to account

for the negative pressures that are neglected in the simple Newtonian theory.

For negative pressures Eq. (6.2) becomes

Cp
PeS =?( s' Se) 6s

It has been established that within Iimit., tht function g' ( sin 8 e ) can

certainly be evaluated for Prani .,-Myer t'xpansion on a tiwo-diaensional flat

plate at hypersonic ve1ocities. ',hcther similar relationships are possible on

other shapes has not ay yet been dt~ttvxrmined.
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Eq. (6.5) also has interesting impli.ations in light of what has been

done, in, Newtonian flow. When the angle 9( , C< ) for the bottom surface or the

angle ( 6X -o) for the top surfaces becomes rLegative, the procedure has been to

drop the negative angle term completely in determining force and moment coeffici-

ents and stability derivatives. Eq. (6.5) establishes a possible method for con-

sidering such negative pressures following a procedure identical to that used for

positive pressures. Thus the possibility exists that the Newtonian results can

be corrected, at least approximately, to account for negative pressures on the

basis of the "effective" negative angle (i±)() of the surface, where

Se =(0 + a) for the bottom when o( < -

S- ) for the top when >

The procedures suggested above for correcting the Newtonian stability

derivatives is by no means a rigorous one. It will of course be checked by com-

paring results with actual experimental data. For this procedure to be fruitful,

appropriate relationships of the form of Eq. (6.2) and (6.5) must be found. This

approach is only a beginning, and as the program progresses other methods will

also be investigated.

6.2 Pressure Lars at Hpersonic Velocities

The present discussion will be concerned with methods available for

establishing the f.i!ctional relationships indicated by Eq. (6.2) and Eq. (6.5)

at hypersonic velocities.

For the two dimensional case. oblique shock andPxamdtl -Meyer expansion,

the functional relationships of Eqs. (6.2) and (6-5), with certain restrictions,

have been established and appear in the literature in various analytic forms.

17nder the assumption that the shock angle and redge angle (& ) are

small, say 8 < lt. and N >4.5, it i- possible to establish a very simple

expression for the pressure coefficient of the wedge: which takes the form
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M (6.6)

Assuming Y to be constant, the only variable on the right hand side of the

equation is the hypersonic similarity parameter, !4 8o Eq. (6.6) can be ex-

panded in various power series that give good results for particular ranges of

]-1 .I These expressions are shovn below.

= -- ,- + ( + (6.7)

1.0 < A416, < 2. 60

C = + I (6.8)

M8 >2.0

LE , + (6.9)

All of these equations give results rith less than about 2 percent error in the

ranges specified, and can be checked by comparison wiith the plot of Eq. (6.6) on

Fig. 15. It is obvious from this plot that ti.o-dimensional pressures are much

higher than those predicted by the simple Xewtonian equation at the lower values

of 11 C.

Similar t.xpressions can be established for Pradtl -]eyer expaIsion at

hypersonic speeds, For exansion from flee stream MaIch \umber (M) through a

negative angle 30 ; the pressure t*cjefficient in twxo-dimensional flow can be

expr ssed as



R-63 -011-109

[z , L~(~~) (6. 10)

The only important assumption required for Eq. (6.10) to be valid is that the

free stream Mach Number be reasonably large, say M > 4.5. Various simplified

expressionis can be derived from Eq (6.10) that are valid over limited ranges

of the expansion similarity parameter (H 4e ) . These expressions are listed

below.

IMSJ I< .5 5

al~ + +' se (6.11)

.40 < JM8eI < 2.2

f5 47 + /4 7 + .885+ .6#0 (418e) (6.12)

e ('4f e)? Ale

IM-e l >2.0

C2 -(6.13)

It is interesting to note that Eq. (6.11) differs only slightly from

Eq. (6.7). The constant in the last term is about 10 percent larger for a Y
of 1.4. Eq. (6,10) is plotted as Fig. 16, and the accuracies of Eqs. (6.11),

(ti.12), and (6.13) can be determined by direct comparison.

Comparison of Figs. 15 and 16 indicates that at small values of ;4

z 1 = ] 1 .10, expansion and compression effects are equally as important

in detormining forces and moments on a body, At U e 11.8"I 1.0, compression

ofrects are approximately three limes as great. At 'I ,, U 5.0, the

o7
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expansion effects are negligible.

The relationships discussed so far ate hto-dimensional, and most

shapes of interest in hypersonic flow are in general quite three-dimensional.

A three~dimensional shape that has bee.i analyzed in some detail at zero angle

of attack is the cone. Cone pressure coefficients computed by the Taylor!,accoll

theory have been tabulated by Kopal (Ref. 1). This data, for cone semi-angles

of less than 100 is plotted as a function of the similarity parameter /'3 in

Fig. 15.

Several explicit analytic solutions for the pressures on a cone have

been determined and exist in the literattre. A simple solution for a slender

cone in supersonic flow is

This has only very limited applicability. A comparison of Eq. (6.14) with the

results of Fig, 15 show that it is applicable only for (3& < 0.1. A second

order approximation for the pressure on a cone at zero angle of attack was de-

termined by Broderick (Ref. 2).

C= - + Z3 In + 3(M-?)&[1 ]5

For small angle cones ( < 1 a), and ,I larger than 2, the above equation can

be simplified wnd made a function of onl3y the similarity parameter (f3$).

+ s(S) .

Js8
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This equation can be compared to the Kopal results of Fig. 15. The comparison

is good for -38 <.50.

Cole's hypersonic slender body theory makes it possible to determine

second order approximations to the surface pressures on slender bodies. The

second order approximation is essentially a correction to the first order approxi-

mation, which consists of simple Newtonian plus centrifugal forces. The Second

order hypersonic solution for the pressure on the cone at zero angle of attack is

Eq. (6.17) checks quite well with the Kopal results shown in Fig. 15 for

133> 1. 5.

It becomes obvious from the two-dimensional and cone results presented,

that geometry has an especially strong influence on the magnitude of the pressures

experienced by a body in hypersonic flow at low values of the similarity parameter.

At /96 or M a of 0.1, the pressure on a slender cone is only 1/4 of the two-

dimensional value. At higher values of M 5 , say 1M ! 6= 5.0, the cone pres-

sures is only 13 percent less than the two-dimensional result. It is also true

that under these conditions both cone and two-dimensional pressures do not differ

greatly from simple Newtonian.

The cone pressure results shown here will be used to determine Mach

Number corrections to force and moment coefficients and stability derivatives

for the cone that have been determined assuming simple Newtonian theory. By

comparing these results to experimental data, the degree of validity of the ap-

proach suggested in Section 6.1 will be established.

An investigation of other body shapes is obviously required in order

to bridge the gap between the pressures on a two-dimensional wedge and a three-

dimensional cone, But second order solutions on other than bodies of revolution

at zero angle of attack are difficult to obtain, A second order solution has

been obtained on a delta planform with diamond shape cross-section (Ref. 3),

Ond these results will ho investigated further.
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The discussion up to, this point has been Concerned with corrections

to the Newtonian results for small angles of attack with attached shocks. A
similar problem exists at larger angles of attack where the Shock may actualy

be detached. The investigation of this problem will also be undertaken.

7.0 ProjoeccedL Work - Third Quarer

During the next quarter, many of the results shown in this report for

the force and moment coefficients and stability derivative equations in Newtonian

flow will be extended. Specifically the investigation into the stability deriva-

tives of the sharp elliptic cone will be Continued. The Work on the stability

derivatives of the blunt cone will also be extended. As explained in the "First

Quarterly Technical Report", the purpose in these investigations is to show the

application of the general methods derived rather than a detailed investigation

of specific families of shapes.

A beginning has been made in this report on the application of other

hypersonic theories to the prediction of stability derivatives. This investi-

gation will continue. In Section 6.1 a tentative procedure has been outlined for

extending the Newtonian results to lower h'personic Mach numbers. This procedure

will be applied to the cone, and possibly other shapes, and the results compared

to existing experimental data.

During the next quarter, a concentrated effort will be made to develop

methods for computing the stability derivatives under trim conditions, a primary

goal in this whole hypersonic stability investigation. The basic methods and

procedures presented in this and the previous quarterly report lay the ground-

work for this investigation. The first shape to be investigated under trim con-

ditions will be the delta-planform with diamond-shape cross-section, since this

will be easiest to treat. The controls to be used for trim will probably be a

trailing edge deflected flap. Tb the degree possible, stability derivatives

with trim will also be investigated on the circular and elliptic cone.
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The discussion -up tO this point has been concerned with corrections

to the Newtonian results for small angles of attack with attached shocks. A

similar problem exists at larger angles of attack where the shock may actually

be detached, The investigation of this problem will also be undertaken

7.0 Proiecte4 Iprk - Third Quater

During the next quarter, many of the results shown in this report for

the force and moment coefficients and stability derivative equations in Newtonian
flow will be extended. Specifically the investigation into the stability deriva-

tives of the sharp elliptic cone will be continued. The work on the stability

derivatives of the blunt cone will also be extended. As explained in the "First

Quarterly Technical Report", the purpose in these investigations is to show the

application of the general methods derived rather than a detailed investigation

of specific families of shapes.

A beginning has been made in this report on the application of other
hypersonic theories to the prediction of stability derivatives. This investi-

gation will continue. In Section 6.1 a tentative procedure has been outlined for

extending the Newtonian results to lower hypersonic Mach numbers. This procedure

will be P')plied to the cone, and possibly other shapes, and the results compared
to exis. Lng experimental data.

During the next quarter, a concentrated effort will be made to develop

methods for computing the stability derivatives under trim conditions, a primary

goal in this whole hypersonic stability investigation. The basic methods and

procedures presented in this and the previous quarterly report lay the ground-

work for this investigation. the first shape to be investigated under trim con-

ditions will be the delta.-plnfor with diamond-shape cross-section, since this

will be edsiest to treat, The controls to be used for trim will probably be a

trailing edge deflected flap. Th the deogree possibiLt, stability derivatives

with trim will also be investigated on the circular and elliptic cone.
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