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ABSTRACT 

The linearized angular motion of a symmetric missile is developed in some 

detail with some consideration of the rolling motion, drag, aerodynamic jump 

and the effect of varying coefficients.  The tricyclic motion of a missile 

with misaligned control surfaces is briefly considered. This linear theory is, 

then, applied to the analysis of ballistic range data. 

Next, simple cubic nonlinearities in static moment and Magnus moment are 

treated by a quasi-linear analysis and these cubic coefficients obtained from 

ballistic range flight data.  More generalized relations for arbitrary symmetric 

nonlinear terms are derived and their use in the construction of "amplitude" 

planes indicated.  These amplitude planes have proven to be quite useful for the 

prediction of missile flight performance. Finally, the influence of strongly 

nonlinear static moments is determined by a perturbation method which makes use 

of two quasi-constants of the motion -- total energy and angular momentum. 



PREFACE 

The material of this report was prepared in the form of five chapters of 

a book, The Theory and Application of Ballistic Ranges, which is being written 

under the joint authorship of G. V. Bull and C. H. Murphy for publication by 

Prentice-Hall. These chapters were written by C. H. Murphy and form a complete 

treatment of the angular motion of symmetric missiles acted on by both linear 

and nonlinear forces and moments with an emphasis on the analysis of ballistic 

range data. Although most of the results have appeared in various BRL 

publications, this unified form is felt to be sufficiently useful for separate 

publication as a BRL Report. 

Each section is numbered by a decimal which indicates its chapter and 

position in that chapter.  Thus section 6.2 is the second section of Chapter 

VI. Each equation could then be identified by its section and position in 

that section. Equation (6.2.U) is the fourth equation in section 6.2. For 

simplicity, however, the number identifying the chapter has been omitted from 

all equation numbers except when a reference is made to an equatior IT)   T T) 
>ii   -L.J.A 
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CHAPTER V 

5.1 Introduction 

Historically, the first interest of the ballistician was the drag force 

exerted on his projectile by the air.  Thus, the first measurements made on 

ballistic ranges were drag measurements. These measurements also have the 

attractive characteristic of being direct and conceptually very simple.  Since 

the rolling motion has a similar data analysis, it will also be considered in 

this chapter. 

5.2 The Drag Equation 

The drag force, D, is usually expressed in terms of a drag coefficient by 

iiietuiü   ui     one   1 UJ.1UW1115   udiiuiiiuu, 

2 
D = (l/2)pV 3CD (2.1) 

where p is air density 

V is velocity 

Q T_G reference sires, and. 

C is the drag coefficient 

rninö    irol r\r>-i +■ v    r^-P     +Via     tm" eo^  la     mne+     + Vic»n      efifl C^Sf    +V10     omm+.T r»n 

rav = - ^x/c;pv ou V^-^; 

In most ballistic range work, distance is a more convenient independent 

variable than time. For pitching and yawing motion, it also introduces an 

important simplification in the equations of motion (see Chapter VI).  If I 

is used to denote a characteristic length, a dimensionless arelength may be 

defined by the relation 

t 

s = -.       I     V dt                                      (2.*>) 
I     J       ■   -  ' 

J. 
L 
O 

In most cases, the reference area is taken to be the maximum body cross 

sectional area and the reference length the maximum body diameter. 

new variable, Equation (2.2) transforms to 

9 



where prime denotes derivative with respect to s, 

The factor, ^- , will appear a number of times in later chapters.  Since 

the volume of the missile usually varies from (2/3)Si for a sphere to lOSi for 

a missile with high fineness ratio, the inverse of this factor is a measure of 

the model mean density relative to that of air.  The relative density of plastic 

is 10 and that of steel is 8 x 10 . Thus this relative density factor has a 

maximum of 10  for a plastic sphere and is usually of the order of 10  . 

For constant C„. Eauation (2.k)  has a solution nf 

V = VQe 
u (2.5) 

Integrating Equation (2.5), a distance-time relation results 

aft-  D  = 1\ 
t = t + -^     t    -I (2.6) 

o D 

* 
,JC_v 

*„♦  (f) ■* W)     >< 

It is important to note that in any data analysis the origin for s must be 

selected as the midpoint of the timing stations so that the linear and the 

quadratic coefficients are related to well determined velocities and retardations. 

There are two approaches to the data analysis problem.  One is that of the 
5-3 5-1 engineer   and the other is that of the mathematician  . Fortunately, the 

results of the two methods are practically identical.  In the first method, the 

engineer makes use of his love for plotting data and exercising his personal o- 

pinion as to the best fit. This is done by use of Equation (2.k).     He plots the 

logarithm of the average velocity between a pair of timing points versus the 

location of the midpoint of the interval. He then draws a straight line through 

the points and computes the drag coefficient from its slope. 

10 



The mathematician displays his characteristic fear of plotted data and 

human decision making.  He fits his time-position data by a cubic least squares 

process. For the usual flat trajectories, s can be well approximated by x-.fi 

where x-, is distance .leasured downrange. 

1  = *o  + Vl + a2Xl + a3Xl (2'7) 

where 

a, = V _1 

a2 " SrnÄT °D o 

P  - f !B\    ( *z\ 

The  cubic  coefficient absorbs  any Mach number variation in C^ as well as  errors 
u 

in the expansion of the exponential in Equation (2.6).  In those cases where the 

cubic fits well, the resulting C differs very little from that obtained from the 

first approach. 

The accuracy of a measured drag coefficient may be estimated statistically 

when a least squares reduction has been performed or determined by the physical 

size of the drag "disturbance".  Since the velocity is so much better determined 

than the deceleration, the error in C^ is directly proportional to the error in 

a2 alone.  This error may be estimated from the corresponding diagonal term of 

the inverse matrix formed from the least squares normal equations. 

(2.9) 

rr-72 
wnere e = / 2(At) 

V n - 4 

11 



At   =   t   ,     - t calc. measured 

r,       _  rtürnVi number OJ. measurements and 

A,., is the diagonal element corresponding to 

a_ of the inverse matrix of the normal equations. 

The use of the size of the measurable effect of drag introduces physical 

insight into this error analysis which is sadly lacking in the above cold 

statistical formula.  If drag were not present, the missile would travel at 

constant velocity indefinitely.  The drag changes the time of passage of the 

model at the various observation points. The maximum drag-induced time 

decrement with respect to constant velocity flight at the average velocity, 

V , occurs at the ends of the range.  If V is measured at the midpoint of the 

range* and the range length is £L,  the endpoints are located at s = — (L/2). 

Maximum time decrement may then be computed for Equation (2.6) 

dt = 

* 
CrsS 

lU D    - 
~"        9 

v C- o D 

1 ^ la 

v~ 
' 0 

* 2 

2V o 

= 
MO*             „ 
T6mV          U 

O 

(2.10) 

The engineer can now make the reasonable assumption that the percentage 

error in C_ is given by the ratio of measurement error to the maximum time 

decrement, e/d+.  Usually, the time measurements are less accurate than 

distance measurements and maximum estimated error in time can be used.  Should 

the range survey be the limiting factor, the distance error can be converted 

to an equivalent time error by division by V and the result compared with d. . 
o t 

The presence of length squared in the time decrement shows the value of 

long flight paths.  Exploitation of this property is limited, however, by the 

presence of Mach number dependence in the drag coefficient.  It is also 

The midpoint is not the point at which the actual velocity is exactly equal 
to the average velocity. A small correction can be employed to eliminate this 

minor difficulty^"''. 
12 



interesting to note that higher velocity tends to degrade drag accuracy.  In 

any event, it is the common experience that ballistic ranges with lengths of 

one thousand calibers can attain better than l/2 nercent accnra^v in r.    at 

high supersonic velocities. 

The question of in optimum distribution of timing stations for a given 

length can be easily answered.  Since the drag appears in the quadratic terra 

of a parabola, it is determined by the curvature of the time-distance curve 

with respect to the midrange point. Thus, one half of the observations should 

be at the center and one half at the ends.  It can be shown theoretically' 

that this distribution of l/k  - l/2 - l/k  will yield 15 - 20 percent less error 

in C^ than a symmetric distribution.  Such a small improvement is of little 

interest for most drag measurements. .   <-*£=]       lIlV-LiUUl   ^UlWllUO   • 

5-3 Effect of Pitching and Yawing Motion 

If the angular motion is not small, variations in the drag coefficient 

are observed.  Usually this functional dependence on angle is well represented 

by a quadratic function. 

2 
CD = CD +CDE2

5 (3.1) 
o    5 

where 

6 = a + ß 

a = ang±e or attacK. 

R  = Rite-! p riT   si d^sl In 

2 
As will be shown in the next chapter, the variation of 6 for a symmetric 

missile is described by the equation 

82 = K^ + K^ + 2K1K2cos % (3.2) 

wiicrc j\,   = iv, e j 
J    J — 

$ .  = tf, + (tf.s 
■ J   ■ J0   ■ J 

0 -*! - 4 
■ 

and X^ and 01 are constants. 

JO 



For a quadratic drag coefficient, Equation \2.k)  can be integrated once 
±   „ m. . J    —   T   J 

S 
V / nSA I V       2 \ 

m   r    =        ■ " 

o \  ""  /        \ "o "8    0 
#)     lcn = +V   /   »**) (5.3) 

\ / \       0 8      V / 

This  can be expressed in exponential form,  expanded in a power series,  and 

integrated again 

t   =   t      + f-     8   +   ( ,„■       °   )       S^   + ^.      & I(B)    + 
O 

\      -+v  w    / dv_m 

(3-M S       q 

where l(s) /       /    5    dr dq 

o      o 

The distance over which drag deceleration is measured is at least several times 
2 

longer than the period of 8 amd. hence, the influence of the periodic part of 
2 

5 on l(s) can be neglected.  If the effects of damping are also neglected, 

l(s) assumes the simple form 

■W'r   <4o + 4>> 

i ■.     \      / a_ \ 

- (SMSJ'w^-'k 

(3.5) 

(3-6) 

At first glance, it seems that Equation (3-6) could have been directly 

derived by replacing the constant C^ in Equation (2,8) by the average value of 

C_, I.e., 

"2" 
D average   D    DR2 

1/2 (3-7) 
~2"  i r   2 where 6  = j      / 6 ds. 

" -L/2 

14 



It poems intuit LveLy obvious that fitting a cubic to the time-distance data 

should have this effect of "averaging" the drag coefficient in this way.  It 

is clear that for the case of no damping this is correct.  As we shall see, 

it is not correct for large damping. 

The least squares process includes in ap the "best" quadratic approximation 

of l(s).  Thus an average 6 is defined by the requirement that 

L/2        -    ? 
r 

1 
■L/2 

s2 ~2n 
ds is a minimum. 

A relation for 5 may be obtained by differentiating the above with respect to 

5 , setting the result equal to zero, and solving for 8 . 

52= -I 
L/2 

i     J     s2 I(s) ds L 
MO5  ,_L/2 

t-r     Q \ 

_ „2   „2  ,51 ,,2„2    2,2 v . 
" "10  "20 T HIT ^1*10  A'2A20; 

The mean squared angle defined after Equation (3-7) has the expansion 

2 ~2* 
Thus, the proper average value of 6 is not the same as 8 and the more precise 

form of Equation (j>. 6) is 

pl (af) -=    CD     =°D +CD,2? (3'10) \ 1 /     reuige    o    o 

According to Equation (3.10), the drag coefficient obtained from the range 

data reduction is a linear function of 5 . Thus, if C_     is plotted versus 
mngp 

2 2 2 
8 = KT + ICQ for different model tests at the same Mach number, the points 

15 



should fall on a straight line.  This technique hag been used for a number of 

years to determine C^ and C^ n  for a large variety of symmetric configuration;. 
o 

with complete success. 
o      B 

in figure p.x, tne aata ror a large angle of attack program' ' is plotted 

as an illustration of this technique.  In this program, a 20mm bullet was 

tested at angles up to 25 and a good linear correlation of C and 5 was 

obtained. C „ was determined from the slope of the line to be 4.o3. This 

value agreed very well with a wind tunnel measurement of 4.71« 

As can be seen from a comparison of Equations (3.8) and (3-9),  the 
2 

distinction in the proper average 6 is rather minor. The determination of 

the proper average & is much more important for other angle dependent 

aerodynamic coefficients.  It is for this reason that the concept of 5 was 

introduced here. 

5.1* Experimental Results 

The first systematic ballistic range drag measurements were of spheres. 

Charters and Thomas   tested 9/l6" spheres at Mach numbers varying from 0.3 

to k.O  in the BRL Aerodynamics Range. By tests in the NOL Pressurized 
5-7 Ballistics Range, May and Witt" ■ were able to vary the Reynolds number by 

more than a hundred for a fixed Mach number. The results of this program are 

shown in Figure 5-2, which is a contour plot of C on the Mach number - Reynolds 

number nlane. 

The presence of a saddle point in the vicinity of M = 2.0 and R = 50.000 
e 

is clearly shown in this figure.  In passing along the line R = 30,000 a 

maximum is found near this point, while a minimum is encountered on the line 

M = 2.0. 

The influence of wall temperature on the skin friction has been studied in 

a quite elegant manner by Sommer and Short^*0.  The test vehicles were spin- 

stabilized hollow cylinders with fineness ratios of either l,k  or 1.8. The 

nose contours were either a double wedge or a double circular arc.  (See 

Figures 5-3 and 5.U)  Similar cylinders with a fineness ratio of O.k  were used 

16 



as tare- models.  The difference in drag coefficients of the test models and 

the tare models is, except for small corrections, a measure of the average 

skin friction drag of the added length of the test model.  Boundary layer 

trips were used to ensure the presence of turbulent boundary layers. 

The tests were made in the Ames Free Flight Wind Tunnel at Mach number 

of 2.8 and 3-9 in still air and 7-2 in a Mach number 2 air stream.  Since 

the model flight time was less than .02 sec, its wall-temperature heat rise 

was less tnan 4^ p.     xnus, tne ratio or waxx-xemperaxure zo  Dounaary-xayer-eage 

temperature, T /T , was determined by the local temperature in the tunnel, 

i.e., 1.05 for still air and 1.3 or 1.7 for air flow.  Since calculated recovery 

temperatures were two and a half to six times greater than the estimated wall 

temperatures, considerable heat transfer was in process.  In Figure 5-5, the 

results of the program are plotted and compared with a curve based on zero heat 

T4-      />«*-»     VVö     Q ^ A*"»     +■ Vi Q+     +■ Vi o     -mv»« con^D     r\-f*     VI^Q-T-      -r-vor-ic-PoY» 

can increase the skin friction by over 30 percent. 

By a somewhat similar approach, base pressures have been extracted from 
_ "5-q       

ballistic range drag data.  Charters and Turetsky' ' determined the base pressure 

for 20° cones and cone cylinders by computing head drag and skin friction drag 

and subtracting the results from the total drag.  The base pressure may also 

be determined by a measurement of the wake angle from a spark photograph.  The 

pressure outside the wake is computed by characteristics and assumed to be the 

same as at the base of the model.  A comparison of ratio of base pressure to 
/■n 

LB'rl' 
««    ^v+r,-: *>^A   -p^s + T.f/-»     mö + Viz-N/^c free   strcSill   JJI'SSSUPCJ    r_/r. ^    EIS   ODT8.XÜGC1   11* Oul   uhcSG    OäW   ait UüUUü , 

Table   I. 

LO        gX  V  CTJ.I        111 

TABLE  I 

P_/P,  for M = 1.84 
&   X 

Fineness Total Drag Wake Angle 
Model Ratio Method Method 

C1 r\ir\^ O Q 

Cone-cylinder 3.2 O.53 0.50 

Cone-cylinder 5.0 0.6l 0.59 

17 



A final example of ballistic range drag data is shown in Figures 5.6 and 

5.7-  It can be seen that the separated flow over the nose spike of this fin- 

stabilized round can assume two different configurations. The model with the 

larger separated flow has one-third less drag than the identical shape with the 

smaller separated region! This low drag flow occurs when the initial launch 

angle is less than two or three degrees. For larger angles, the high drag flow 
5-10 is established and persists 

5.5 The Roll Equation 

The aerodynamicist usually writes the roll moment due to control deflection 

and aerodynamic damping in the form 

"X " (1/2)PV
2b [s5C 6f + BtCJ   §    1 (5.1) 

■=5       P 

where b is span 

Sfi is profile area of deflected fins 

5f fin deflection angle for pair of 
differentially canted fins 

n = —SL     -rnTT. ■nn+.o 
' ~ dt   

Equation (5-1) has two reference areas and two reference lengths, b and b/2. 

If the test missile possesses surfaces with two different spans, the decision 

as to which is the reference length becomes quite difficult.  In ballistic 

range work, it is quite convenient to use one reference area, S, and one 

reference length, i. With this in mind, we can redefine the roll moment as 

M^. = U/^;pv üb 
pi 

o p- 
(5.2) 

Conversion relations for the aerodynamic coefficients may be obtained by a 

comparison of Equation (5.1) and (5-2). All ballistic range data should contain 

a specification of the reference area and reference length which were used. 



The equation for rolling motion is 

T d     _ t 1   M\ -ir^ 
Jf"ir 

i  

V 
o„CJ„  + Lf.    C (5.5) 

If drag can not be neglected. Eauation (5.^ is lirp^ «i+.v, ^v^v.i,, 

 _„w„.  ,. ^ „ ^"^anu urcig coemcienr,, transforming the independent 

variable from time to distance will provide us with a linear equation with 

constant coefficients.  Sin-e distance is the natural variable *•«,. KCII,V+^ 

raneref;. this tvansfrirmH+i™ ic   /q^,,vo,, „4-J x--    rT. ,, 
u__,       .^.,„„iUi: i£J uuuux^ a^iauuve,  we "cnererore introduce 

the variable s, which was defined by Equation (2.3). 

rid Ark     A A 
0" =^2i = ÜEüi_*ri 

ds  dt ds ~ V (5.U 

j'    d£(?i   /*\2  r 

as   \ / 2m~   « 0 + ^ 4 c^ 'ir (5.5) 

Substituting Equation (5-4 - 5-5) in Equation (5-3), we have the roll equati on 
iu one I'orm 

0    + K/ - Kg (5.6) 

where K 
2m~ 

k"2C,  + CL a    I D 
P 

is., 
psi- 

6„U 5-2Ix -f-i 

'a V mi2 
-^  axial radius of gyration 

The solution to Equation (5.6) is 

1      _K s 

0 = 0O + 0ss + A(e 
P - 1) (5.7) 

19 



t  K, 
where 0_ = ^- is the steady state roll. 

Li     IV 
P 

.-2 A = (01 - 01) Kl"" = (Kc - 0>_) K 
a    v        y u    u ±J   p 

0_> 0. are the conditions at the middle of 
the observed flight. 

If K s is small enough, the exponential in Equation (5.7) can be expanded 

8..S a cubic 

n     / 2  KLs3 \ 
0. 0o + 0;3 + (AKJ) (r--V) ^-8) 

Equation (5-8) can be fitted by the same least squares reduction that was used 

j. ui    u!ic   u.j.a.£,   cv±ua.o.Lun   ^ rji±uc* o J. un   \c f ;;.       un-i. ui ouna.oex.y ,    in   u.rucl"   ou   bcparuofc: 

K and K_, the cubic coefficient in Equation (5-8) must be well determined.  In 
P     ° 

other words, K s can not be too small? At the Ames Free Flight Wind Tunnel, 
P 

which has a test section of 15 feet, this determination has been found to be 
5-2 

quite difficult^  . 

This difficulty can be avoided by attempting to measure these quantities 

separately.  K can be determined fairly well from the quadratic term when 

K_ = 0, i.e., for spinning bodies of revolution or missiles with uncanted fins. 

Next, the influence of K can be eliminated from the auadratic term bv causing p w      w 
4-VIA      H.AA A 1        4- /-\      -v *-.ns% n       rv A-V.A      -v»rO   T   4 ^ rr     nr A T   A A -C 4- -. r      MAA-H      4-U/S       n AW4- ~* W      ~ 4>      4- V. ~       _!... «._. 3       .£» T   J    .1.1 i/i:c    uiuui;x    uu   i COLH   ICIU   lulling    vciuu^j    ncai     one    tcui/Ci    ui     one   uusci'VCU   1 Xiglll. 

path. 

^p ~ "B ^'*' 

This can be done by properly prespinning the model in a direction opposite to 

steady state spin through the use of a rifled gun. 

If Ks is large, the exponential character of Equation \5'7) is manifested 

and both K^ and Kg can be determined. The usual least squares fitting process is 

handicapped by the fact that the parameter K^ appears in a nonlinear fashion. An 
P "" " 

^    i'OT'Ot'lve      ■Plf.+^nrr      nVrtflaOH       4   a 4- V» AMA<PAIIA V» BA^n *-t n vnr 
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A set of initial values of 0 , 0 , A and K are required for this process 
o  c       p 

To obtain these values, we differentiate Equation (5-7) arid combin" the result 

with Equation (5.7) to eliminate the exponential term. 

0 + K 0 • (K 0 )s + (K A - K 0  - 0 ) = 0 (5.10) pr   v prs'    v p    p'o  's 

,t 

0 can be computed by first differences and Equation (5.10) fitted by least 
... S .* 

squares since it is linear in the parameters K , K 0 , and K A - K 0  - 0 
p  p s      p    p o   0 

Values of these parameters plus the measured value of 0_ provide the required 

set of initial ntimbers • 

These values for 0 , 0 , A, and K_ may be placed in Equation (5.7) and 0" 

computed for each measurement point. The difference between these numbers and 

the actual measurements will be denoted by A0 -  0      ., - 0 ,      .If the 
^  ^measured   observed 

data is reasonably good, these residuals of fit, A0's, should be less than ten 

degrees (0.2 rad,). Assuming that they are due to small errors in 0 , 0 , A, 
o  s 

and K , we differentiate Equation (5*7) with the result: 

M  = Nh     + sAd     + /'P  
p _ lW _ ASP P Ajr ("R ii) 

Equation (5.11/, for measured 0 and s, are linear in the unknowns tw   , 
,1 ° 

A0 , AA, and AK. These equations may be solved by least squares and new 

parameters computed from the old by adding the corresponding changes, i.e., 

A0 , A0 . etc.  If the corresponding residuals are smaller, the process is 

successful and may be repeated until no further improvement is obtained. 

Probable errors in fit of less than 0.5 are common. 

5-6 Experimental Results 

For a spinning body of revolution, Charters and Kent5"1'*' have derived a 

simple relation between the roll damping moment C .    and the skin friction drag 
p 

coefficient C^ .  For a basically cylindrical body and a reference length 
"sf 

which is the cylinder diameter, the relation is 

n — lin //• , . 

ST     ri 
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The derivation may be summarized by the following steps: 

yl.    For a spinning body of revolution, the local velocity of the 

surface relative to free stream is 

"r " v V " x l2V^ (t^> 

where d is bodv diameter 

(2) The local skin friction force has the direction of V and r V therefore is inclined at an angle of arccos — to the axis of rotation. 
r 

(3) The skin friction drag coefficient and the roll damping moment 

may be written in terms of the integrals 

/_* __2_-     /, /.-x  f __2 /V \ 
l±/*JPV sc  = U/* 

sf 
;  / pVr f rj Cf(*d)dx (6.3) 

n      \ r/ 

I  . „2 /pd\ 

(l/2)pV2SiCi  fe) = (1/2) jT !!!l f |_ j Cf(Ird)dx   (6.4) 
P o       \ r, 

where G_ is the local skin friction coefficient. 

(4) For constant d = i, Equation (6.1) follows directly from 
TTn iiQ-l--i r*\-r\ a      fh  ^ _  A li l 

The roll damping moment has been measured for shell and other bodies 
2r 

a "i of revolution. For these cases, k C. is negative but one-third the size of 

the drag coefficient. Thus, for these shapes the roll per distance actually 

increases, (K < 0).  C  can be measured to an accuracy of better than 10 percent 
P        P 

and relation (6.1) has been verified by a number of investigators   ' -)~     , 

The rolling motion of finned missiles was first studied on a ballistic range 
5-11+ by Bolz and Nicolaides   .  The test vehicle was a cone cylinder of fineness 

ratio ten with square=plane form cruciform fins. The fin chord to body diameter 



was one. As can be seen from Figures 5.8 and 5-9» "the experimental result 

verify the prediction of the linearized theory.  In this program, C . and 
P 

C, were determined to an accuracy of better than 2 percent.  (Reference 
6 nd2 

area was "body cross sectional area, —j—- and reference length was body 

diameter, d.) 
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LINEARIZED THEORY OF MOTION OF SYMMETRIC MISSILES 

6.1 Introduction 

All the early stability tests on ballistic ranges involved spinning bodies 

of revolution which might be used as shell.  In 19^7, 57mm models of the General 

Electric Dragonfly missile were fired at the Ballistic Research Laboratories " . 

Since that time the number of nonspinning missiles tested has increased. 

Although static stability was initially obtained by the use of fins, in recent 

times staticallv stable bodies of revolution which could be used as ICEM nose 

cones have dominated this area of ballistic range testing. Traditionally, all 

stability tests have implied the assumption of linear moments, but this 

limitation also has been lifted in certain cases s 

In this chapter we will reverse the historical development and consider 

the theoretically simpler case of a nonspinning missile. Next, nonzero spin 

and the associated gyroscopic and Magnus moments will be introduced. This 

work will not be linearized until very late in the development so that the 

results can be used in Chapter VIII on the analysis of nonlinear data. 

6.2 SmaJLl Amplitude Pitching Motion of a Nonspinning Missile 

For an airplane, the pitching motion is the angular motion of the airplane's 

thrust line in the vertical plane of symmetry. The yawing motion is then the 

motion of the thrust line perpendicular to this plane of symmetry. When a 

missile in free flight is considered these definitions have to be altered. 
j it Dxnce moST, miseij.es nave ro"oa"&iona-Lj.y symmetric Doaies, zne  tnrust line can 

be replaced by the axis of symmetry. Unfortunately, a missile can possess a 

number of planes of symmetry and none of them may be vertical.  In this case, 

UliC     OCitv, UJ.UU     Ul       l>ac     |JJ.auc     ^".L      pj. ÜUUXÜ^     iUUb "Ml      ID     it.r   I I i   i.inr-j. 

We leave the definition of pitching motion for a missile without a plane 

of sjriiiiiiSory to the enginesr who designed such an unusual configuration. If a 

basically symmetric missile is either accidentally deformed in some minor way 

or has intentional asymmetries due to control surfaces at a small angle of 

deflection, its pitching motion can, however, be defined in terms of its original 

symmetric shape. The influence of the asymmetries is incorporated into the total 

aerodynamic force and moment by the introduction of small constant force and 
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Before concentrating on the simple problem of pure pitching motion we mu:;t 

first consider two coordinate systems:  a missile-fixed system and an earth- 

fixed system.  The missile-fixed coordinate axes, X, Y, and Z, are defined in the 

following way  *:  x - centerline of symmetrical body, positive forward; Y - 

perpendicular to plane o1 symmetry, positive to the right when looking forward*; 

7,  -  perpendicular to both the X and Y axes and directed according to the right 

hand rule, i.e., downward.  In a similar manner, earth-fixed axes may be defined: 

X - perpendicular to the gravity vector; Y - perpendicular to X axis and the 

gravity vector, positive to the right when looking in the positive X direction; 

Z along tne gravity vector, positive downward. 

These two axis-systems are shown in Figure 6.1.  The relative position of 

the axes can be described by the Eulerian angles V,  9, 0.  The velocity vector, 

V, is al^o shown in this figure.  Its coordinates in the missile-fixed system 

are u, v, w and its orientation determined by the angle of attack, a, and the 

angle of sideslip, ß.  Notice that positive a  and ß are measured opposite to the 

positive directions of the Z and Y axes respectively. 

The aerodynamic force acting on a missile in flight is usually expressed in 

the missile-fixed system with coordinates F„, F„, F„. From these force comnonent.s 
A"   I'  L *   '" 

i    udü uc uuuamcu 

O 
Fx =  (1/2)  pSv  Cx (2.1) 

Fy =   (1/2)   pSV*Cy (2.2) 

Fz  =  (1/2)   pSV Cz (2.3) 

Tne  aerodynamic moment has components NL., My., VL.  To distinguish the corresponding 

coefficients the subscripts I,  m, n are used.  In conflict with aircraft design 

practice but in accordance with our remarks of Section 5.5 we will use only one 

reference length. 

* 
If the plane of symmetry is not exactly vertical, it is possible to place 
yourself on the axis of symmetry in a forward facing position in the plane 
of symmetry so that your head is above your feet.  Once this is done the 
selection of the positive direction of the Y axis is easy.  If the missile 
is rolling, this selection must be made at some instant in time and the 
direction fixed with respect to the missile thereafter. 



M„ = (1/2) pV2SiC. (2 = 14) 

p 

'T   v~'"' f" m ^,JI 

rJZ " ^x/^ uv °*°n (^''J) 

These quantities are shown in Figure 6.2. The angular velocity, which is not 

shown there, has components p, q, r with positive senses which are the same as 

those shown for C „, C , and C , respectively. I      m     n 

For a nonspinning missile undergoing pure pitching motion, the functional 

dependence of Cx, C^,  and C^  must bs stated. For small angles, C is essentially 

the negative of C_.  It is not unreasonable to expect the lateral force and 

pitch moment to depend on the actual motion in addition to the flow parameters, 

Mach number and Reynold's number. Although the motion can be described 

completely by a, q, and all their time derivatives at some given time, we will 

only consider a, q, and &. For small amplitude motion, a further assumption of 

linear dependence can be made and the explicit relatinns fnr r.    ard C follow 
Z     m 

/ a £ \        / A,» \ 

*-\*\a*\[r) +%(^j ^ 
c   = c     + C    ( 

m         m m 
0 a 

\,^.u) 

where C„    and C  are due to asymmetries. Z      m o      o 

The various important angles are shown in Figure 6.3. The equations of 

motion are the drag Equation (5.2.2), the force equation* along the inertial 

axis Z and the moment equation about the Y axis. 

mV = - D ~ F (O.Q\ 

mz = F„ cos e - F„ sin 9 + mg (2.10) 
e   L> A ' 

This force equation neglects a small uoriolis force term due to the earth's 
rotation, This term will be introduced in the more complete analysis of 
Section 6.9. 

IT 
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I 9 = H 
y  * (2.11. 

vhQVQ   T  is t.h'i   mompnt. nf 1 npr+.l n nhnnf -t-.Vip Y wvl g . 
~y ~  ~'~  

V sin (9 - a) (2.12; 

^hlS       together   With   the   PQQiimTit^Qn    n"P   o    gfftfa I 1    antyl_Q   Qf   °tt°C^C   ond   3.   ^*lst 

trajectory (9 < < 1), allows us to revise Equation (2.10). 

ra V(9 - a) + Vf9 - a) = F_ - F-9 + me 
Z  "X"   ~ 

(2.15, 

Equations (2.7, 9) and the relation 9 = q can now be used to simplify 

Equation (2.13). 

1 + C, V 1 - c„ cc£ 
V (C* + C*) a - C* - gW"2  (2.11+) 

a o 

„hprp c*   = ££i r. 

4-V^    Jnn>4^<f    -P«,-,4-~-v.    PO*    4~     1«"«    + ViGr!     in"^        P sn.J    P r»n>-i    -n-^.-iViaV-.l-..-    V.a 

'Z.       2m    ~Z4 l i 

_  .   ."> „-. J   n  „  OU11.C    one    uciioxojf    j_a.v_m_ix    A is    icos    uucui   j.v       ,    o—       cuiu.   o_       tail   piuu&uxy    ue 
n rt 
i >-» 

neglected in comparison with unity and Equation (2.14) can be written in an 

even simpler form. 

M = g£. (C; + o a - c; -g« -d 
(2.15) 

a 

From tnis form we see that a good first approximation for q is a. The remaining 

terms in Equation (2.15) c^n have a measurable effect and so should be retained. 

Equation (2.15) is now used to eliminate 9 = q and q from Equation (2.11) with 

..   A ,    A      A     A 
a + H,a - K,a = A, + G (2.16. 
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uVip>» 0 - 
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= 
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r        J. *         -2   /  *           *   v 

D        y        m          rn.' J                n               rt   J 

A. 
M      = 
"1    - 

Ir -2  P* 
/ *           *\   ,  -2    * -If         J.   n    \    fir         n 

Z           D        y      m 
a                            a 

.  n*\' 

V7/ 

~    k"2  P*    ft^ 

A 
A 

-2    * k        f! 
y    ~m 

*    , -2    * *> f! fir        P 4-  r   ^ 
-Z0   -y    -mQ   '     D'. 

(l\2 

, -2    * ~ k      C rsv 
y    m- V l) 

A 
G K2c!  -c!)(Vi 

■x  is radius of gyration about the Y-axis. 

The starred aerodynamic coefficients contain the density factor and, hence, 

are quite small.  Products of starred coefficients are omitted in comparison 

with a starred coefficient*. 

j.c WCHJ.LXCUUÖ.  ail-La variation Equation (2,l6) is linear but with variabi 

in the coefficients can be removed by replacing time by distance as the 

independent variable. 

•        ' / V \ .. a   + EjC* - Ma = A, + G [ ~ J 
-2 

(2.17) 
% \j  i 

* The products of starred coefficients are Important for the angular motion 
of lighter than air ships, submarines and topedoes» For these vehicles, 
M.. can be negative when C  is positive!  See Reference 6-10. 

ma 
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where H-, 
* *   -2 , *    * \ 

C„    + 2C„  + k  (C  + C  ) 
Z     D   y  ■ m    m. 

M, = k  C 
-i- .7       "I a 

k~" c 
V      TT1 

G = - (k-2 C* - C*) (gJV"c) v  m    Do 

The solution to this equation for a statically stable missile (C  < 0) is 

a = a a 
/v V2 -(l/2)HlS 

e        cos (<x>s   + $  ) 
o 

(2.15) 

m 
wnere a, 

m a 

a 

2 
rC  - k CL-i 

m
q     y  

D 

g m a -J  o 

2 
ü) = M, a. 

^ psi- 
21 m a 

a and 0 are determined "by initial conditions.  By definition the influence of o     o 
this initial disturbance will damp out if the missile is dynamically stable 

(H-, > 0). For such a missile the angle of attack will eventually reach an 

equilibrium angle a    + a .    The aerodynamic part of this angle, a ,  can easily 

be interpreted as satisfying the requirement that the aerodynamic moment 

coefficient must vanish for equilibrium, i.e.. C a    +  C  = 0.  A similar -        '     'mam a o 
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interpretation for a    is possible when it is noted from Equation (2.15) that 
-2 g 

g*V  is the cuxv'ature of the trajectory due to gravity. This angular velocity 
_o 

has a moment whose magnitude is determined by Cm g^V~^.  In addition to this 

there is a change in the curvature due to decrease in velocity. This angular 

acceleration due to drag gives rise to the quantity k C„gW  . For equilibrium 
y v 

the sum of these two terms must, be TnA+.cbpd bv +".h(= mranpnt. r>n(=fficient C      a • 
m  g 

-2 -5 a 

For models as big as 6 inches, g^V  is always less than 6 x 10  and, hence, 

this gravity-induced, steady-state angle of attack is not directly measurable. 

The aerodynamic induced angle, a , can be quite large and is measurable. 

The vertical motion of the missile can now be obtained from Equation (2.10). 

The usual change of independent variable is made to absorb the velocity variation, 

and small angles are assumed. 

Zo   *    . *    *      *       / r, t\ *        t       p/v \ "^ 

n   0 t 

According to Equation (2.I5), ^ can be replaced by a    in Equation (2.19) since 

the remaining terms of Equation (2.15) yield products of starred coefficients 

r = a
z 

+ V + [cz + (cz  + CD> ae 
L  n       rv 

2 s 

s  sr>   /TT /o\„ 

+ (Cz + CJJ) aQ  J   J      e        cos (WB1 + $o)  dSlds, 

+ l\ + \]   J aäSl 
B

       *2 2C_s. 

**~o    +  (°Za 
+ CD) agJ j   j    e D X dslds2      (2'2°) 
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The first two integrals in Equation (2.20) yield linear functions plus damped 

cosines.  The cosines do, however, differ in phase.  The third integral can Le 

approximated by s^ . Thus, the vertical motion is essentially a parabola in a 

plus damped cosines which arise from the pitching motion. 

Equation (2.20) indicates a measurable influence of a .  During firing- 

table tests of finned bombs during World War II, it was found that times of 
6-3 

flight were higher than expected  .  In fact, negative drag coefficients were 

required to fit the observations by a theory in which only the drag force is 

considered.  The definition of a    shows that it is positive for C  negative and, 
g mq 

hence, the missile will fly in an equilibrium position with its nose slightly 

above its flight path.  For almost all missiles the aerodynamic force is in the 

direction of the angle of attack and, therefore, C_  is negative.  Thus 
Li 

* •*. & 
(Cr,  + C_) a    opposes gravity and increases the flight time. For short flights 

in a ballistic range this effect is too small to measure. Gravity-induced 

equilibrium angles do, however, cause measurable effects for missiles with 

high spin rates. These effects are described in Section 7-2. 

6.3 Combined Pitching and Yawing Motion of a Nonspinning Missile 

Except for the absence of gravity the analysis for the yawing motion is 

almost identical to that for the pitching motion: 

my = Fv cos t + F sin t (3.1) 
Ox A 

z    z, 

y  = V sin (V + ß) 

cY . % ♦ «^ „ ♦ %  (£i) +c^(fi) 

C  = C   + C  ß + C   (¥)j + G   (P\ (3.5) no   nß     nr VV 1 nß VV ) 

In Figure 6.k,  the positive senses of ^ and ß are indicated and the correctness 

of Equations (3.1-3) directly verified. Note that the definition of ß is 

consistent with that of a in that it is positive when the missile's nose is 

(3.2) 

(3.3) 

OA) 



away from the positive direction of the corresponding transverse axis. 

Normally, C  is negative like C . The sense of ♦ is such that y has a 

positive direction in accordance with the right hand mile. Thus for pure 

yawing motion, V — r. 

The relation between r and B is Quite similar to Equation (2.15) 

r£ ßi, /, 
VS V p + uy 

From this, an equation for yawing motion similar to Equation (2.17) can be 

~1|     *■» o 
P" + &^>      -   J^p = A2 0.7; 

where Hp = - 

«2 
= . -2  _* 

-  X       C 
z      n 

A2 
= -2    * 

- k      C z      n 
< 

"T 
z 

i 

k z 
m 7 

„_*  . -2 ,_*   _* v 
+ dc   + K (c     - c ; 

n 
P 

is radius of gyration about Z-axis. 

It follows immediately from the right-hand rule that for a positive C , a 
nß 

positive ß induces a rotation in the negative ß direction. Thus yawing motion 

is statically stable when C  is positive. 
P 

With the exception of Chapter X, we will consider throughout this book 

basically symmetric bodies. This symmetry must apply to mass distribution 

as well as exterior shape, i.e., I = I . With the present restriction to 

zero spin and neglect of the small asymmetry terms (C_ = Cv    = C  = C  =0) 
L i m    n 
o    o    o    o 

it should not be possible to distinguish pitching or yawing motion. This 

slightly metaphysical argument will be replaced by a more explicit algebraic 

one in Section 6.5. For either approach, relations between various coefficients 

can be obtained. 
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N~   z~   YQ    M   m   n a    a    ß      q    q    r 
/ -. r , \ 

13.y; 

c„ B c c   c. = c 
a   a     ß   & a ß 

The new symbols introduced above are used to indicate the coefficients of a 

symmetric body.  Equations (2.17) and (3-7) can now be combined by the simple 

device of multiplying the first bv i and addin0, to the seconds 

I" + Hi' - Ml = 1A + IG f ST- I 
\vo/ 

(3.9) 

where S = ß + ia 

H - TT     = 
"1 

TT 
"2 

11 = ™i = *2 

A = ,.-2 
Kt m 

+ 
* 
n 

k, = k = k  is transverse radius of gyration, 
t  z  y 

Thp   snl nt.i nn   t.n  tbls   simnle   eauation  in  the   eonrolex variable   £   is -x      — ■»- 

i0n i0o 10, 
1 = 1^«    " + K^e    "  + K^e    -~ + it (3.10) 

where K.  = K.^e .1 .10 
V j  = 1,2 

"j  " "JO   '  ''j3 

Xn   = \0 = -   (1/2)H 

*!•-*: M 
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K»e 
r^0        o u 

3     "      GM 
a 

i(CM - *2  C Jgi/V2 
1*1 o   iJ 

g CM 
a 

0„ and K^ for .1 = 1.2 are determined by the initial angles and angular 

velocities. 

The various terms in Equation (3.10) can represent two dimensional vectors 

in the Op plane,  s, then, is the sum of these vectors (Figure 6.5). A sample 

motion, which is shown in Figure 6.6,  is a damped elliptical motion; the 

semi-major axis of the ellipse is K, + K„, its semi-minor axis is jK^ - K_|, 

and its center is located atK,e^30+| : Equation (2.17) for the pitching motion 

can be obtained from the imaginary part of Equation (3«9)= This use of the 

complex variable, which introduces a minor elegance in the problem of a 

nonspinning missile, forms an essential feature of the analysis of the motion 

of a spinning missile. 

6.4 Exact Equations of Motion for a Spinning Missile 

The motion of a rigid body may be described by a pair of vector equations 

mv*=F+mg (4.1) 

where y** is velocity of center of mass 

F^ is aerodynamic force 

g is acceleration due to gravity 

H* is angular momentum 

Mis aerodynamic moment. 

The components of the vector derivatives in Equations (4.1-2) may be calculated 

by the well-known relation 

(uv u2, u3)' = (ür u2, u5) + 3c (v±l u2, u?) (4.3) 
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where 
TT TT TT ->-*•»      4- V, ,-.      A »».-«,-.».»« 4. ~<       „-C      0-V,-.     , - ~ «.-i- ^ «      TT      -,~,3 
U-. ,    uo >    UX   ctl'c    011tJ   vjuiiLpuiicnub   ui     uiit;    veLuur   u   tuiu 

ü) is the angular velocity vector of the coordinate system 

with respect to an inertia system. 

For tile missile—fixed axes ^reviousl^ defined, the vectors in the above 

equations may be given in component form 

Mi   tr   i.M 
\">      ">      "I 

F = (Fx, FY, Fz) 

~g =   (g sin 6,   g cos 9  sin 0,   g cos 9 cos 0) 

H =  (   I p + I    q ■*■ I    r,   Iq + Ip+I    i x xy xz        y xy^        yz 

/i, i, \ 

(4.5) 

(4.6) 

r z T 
T         ,, 

xz 
i      T 
T     -L 0(4.7) 

M =   (M^,  My,  M^) 

5?=  (P,  1, r) (4.9) 

where I.I, and I  are products of inertia, xy  xz'     yz 

If we assume that the plane of aerodynamic symmetry (the XZ plane) is also a 

P-i.ane Oi mass symmetry, owo o±   one pro^ucos of inertia vanish.  il  = T  =0) 
xy   yz   ; 

and H reduces to the form applicable to an airplane (i p + I r, I q, I r + I p). 

For an aircraft the X-axis can be defined as the thrust line or the zero lift 

line. A third choice could be that direction for which I  vanishes (principal XZ \r r 

axis of inertia).  If this is done and mass rotational symmetry assumed (i = I ), 
y   z 

the angular momentum vector has the simple component form (I p, I q, I r). x  y  y 

If the aerodynamic force and moment can be defined in terms of u, v, w, p, 

q, and r, and the effect of gravity neglected, Equations   (4.1-2) yield a 

complete set of six first order differential equations in these six dependent 

variables.  In those cases where gravity has a measurable effect, relations 

between the Eulerian angle defining the orientation of the missile-fixed axes 

and earth-fixed axes* and the components of angular velocity are 

In ballistic range work, the influence of the earth's rotation can normally 
be neglected and the distinction between earth-fixed axes and inertia axes 
thereby vanishes.  One exception to this is the deflection of subsonic models 
due to Coriolis force. This effect is discussed in Section 6.9« 
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p = $ - If  sin 9 (4.10) 

q = 9 cos 0 + ty  cos 9 sin 0 (4.11) 

r = -  9 sin 0 + i cos 9 cos 0 (4.12) 

Equations (4.10-12) now increase our set of differential equations to nine 

first order equations in nine dependent variables. Finally, if the location 

of the missile (x , y , z ), which is indirectly present in the aerodynamic 

force and moment through air density, air temperature and wind structure, varies 

enough to cause measurable effects, then the velocities must be integrated and 

our set of equations becomes twelfth order. 

Fortunately, in ballistic range tests, 0 < < 1 so that Equations (4.10-12) 

can be linearized and absorbed into Equations (4.1-2) without increase in order. 

The axial angular velocity component of the roll equations can be solved 

independently of the other component equations and the rotational symmetry 

assumption reduces the system to a quite simple fourth order system. This 

simplicity is exploited through the use of a nonrolling coordinate system and 

complex variables. 

For this nonrolling coordinate system, the missile's velocity vector is 

(u, v, w) and its angular velocity vector is (p, q, *r) while the angular 

velocity of the coordinate system is co = (0, "Sf, 7) where 

q = q cos 0 — r sin (3; v = v cos 0 — w sin 0 (4.13) 

r =  q sin 0 + r cos 0; w =  v sin $ + w cos % (k.lk) 

t 

? = J   p dt (4.15) 
o 

The angular momentum vector has the simple form (I p, I q, I r); its 
x   y   y 

transverse components transform in the same way as those of the velocity 

and angular velocity (Equations (4.13-14)) 

Hy = (Iyq) cos $ - (Iyr) sin # = I 3 (4.16) 

H~ =  (Iyq) sin^ + (Iyr) cos $ = Iy? (4.17) 
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Ln  the nonrolling coordinates, the angular momentum for a missile with mass 

jyiruuei/ry re cams ios simpj_o form Wni±6 derivative's of vectors computed by 

Equation (4.3) are much simpler.  For example, the angular momentum vector 

and its derivative are 

ff^ (IYP, Ij,   I?) (h.l) 

rt=  (lxl>, Iyt + IXP?, Iyr - Ixpq) (4.19) 

The simplicity Oi Equation \4-.-L-yj  anu. one corresponding equation for the 

velocity vector makes the nonrolling system a very attractive one. 

The four transverse component equations derived from Equations ^4.1-2j 

reduce to 

^ + U~ = (ir)  CY + gy ^-2°) 

~  ,~ _ /pSV^ \ nm ay " \~2T J    ^Z T *G ^'^ 

/ t   ~ .-, \ 

q + \~ )  pr =-2T~ Um ^^ 
~ f _x\j>>      pSV i 

[ 
y 

/ I \     _r2 . 
r - ( — ) pq = *W— c^ (^-23) 

y '     y 

where tilde superscripts denote components in the nonrolling 

coordinates. 

If the second equation of each pair is multiplied by i sind added to the 

first, the independent variable changed to distance, and dimensionless variables 

introduced, Equations (4.20-23) assume the simple form 

?'- C*T - i7~ = C~ + iC~ + (g^ + igJi/V
2 (4.24) u Y    Z    y    z 

t -  Cjp - iFC = ((£ + iC*) k"2 (4.25) 
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P-  ^  (IT) 

The complex variable i locates the plane which contains the velocity 

vector and the missile's axis»  Its magnitude is the sine of the angle between 

the velocity vector and the missile's axis and this angle will be called the 

resultant angle of attack, a  .  From this it is clear that y  is cos a .  Since 

Pp. is the gyroscopic moment, P is a measure of the gyroscopic effects.  When 

the force and moment are specified in terms of 5, u and their derivatives, u 

can be eliminated between Equations (k.24-25) and a second order equation in 

I results. 

6.5 Linear Force and Moment Expansion 

The proper linear terms will first be derived in the more natural missile- 

fixed coordinates and then transformed to nonrolling coordinates.  The variable 

I = (v + iw) V  is quite similar to the angles of attack and sideslip.  Indeed, 

for small angles £ = ß + ia.  Coefficients of this variable will have the 

subscript a for this reason. 
i   i 

Our object is the most general linear expression in i, u, I , u for the 

force and moment acting on a symmetric missile.  In components form, Y-force 

expansion would be 

CY = VV//V") + e2^'w/<V) + e5^iA) + e^fri/V) + e^fv/v)' 

+ e6(w/v)' + e7(qi/V)' + e8(ri/V)' (5.1) 

A similar expansion would apply for G_.  Since v/v = (5 + T)/2 and w/v = (I - I)/2i 

and similar relations exist for the other quantities in Equation (5.1), the force 

coefficient expansion can be written in terms of complex quantities, 

Cy + iCz = A1I + Agu + A?£ + Aun' + Bj  + B2H  + B^' + B^' (5-2) 
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If we now consider a new missile system which differs in roll angle, $, 

from our original svetcro and identify Quantities in this system by a circumflex 

superscript, it is clear that 

A A i'k A - Ai .f A A At *i       0föj 
Cy  + i'Cz  =   (Cy +  iCz)e^  = Aj  + A2u  + A,S     + A^     +  (BJ   + ^i + V \     + E,^   )</ L^ 

A 

We now select 0 to be an angle of rotational symmetry.  In other words, when 
A. 

the missile is rotated throueh the anele 0 its relative appearance to a fixed 
-^- — — w uDserver is uncnangea. ixs rorce expansion xnen snouia De unarrectea. But the 

coefficients of the conjugate variables are multiplied by e^^. We, therefore, 

have the important result that if a missile has an angle of rotational symmetry 

of 120 or less, the coefficients of the conjugate variables must be zero. In 

other words, the linear force expansion of a symmetric three-fin missile is the 

same as a body of revolution and terras which express their different nature 

must be second order or higher! The reasoning is identical for the moment. 

For a rotationally symmetric missile 

Cv + iC^ = A, I + A0u + A^l' + A,,n! (5.U) 
j.       t-t _i_       c_       _>        -r 

t I 
Cm + iCn = C1l + C2u + C^s + C^u (5.5) 

The coefficients in Equations (5.^-5) are complex quantities.  The character 

of their real and imaginary parts can be determined by a consideration of their 

dependence on roll for a missile with a plane of mirror symmetry.  If the 

XY-plane is taken to be the plane of symmetry and the coordinate system is 
/A       . 

transformed by a reversal of the Z=axis (Z = - Z), a missile with mirror symmetry 

would be unaffected and so would be the form of its aerodynamic force and moment 

expansion.  Under such a transformation the velocity and force vectors reverse 

their Z components but the angular velocity and moment vectors reverse their 

X and Y components. This is due to the fact that the sign of a component of 

angular velocity or moment is directly related to the right- or left-handedness 

of the coordinate system through their definitions as cross products= For 

example, a positive p rotation rotates the Y-axis toward the Z-axis, a positive 

q rotation rotates the Z-axis toward the X-axis and a positive r rotation rotates 

the X-axis toward the Y-axis. A reversal of the Z-axis then has the stated 

effect of changing the sign of p and q. The results of this transformation can 
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A 
V = V, 

A 
P (5-^) 

A    — 

I   = I "  H (5-'0 

A A 

°Y + iCZ 
= C. icz ■ V1 — A    — A I 

A2H + A3I Al. JA (5.9) 

Sm + iSn = " C
m 

+ iCn = " CJ + C2^ " S*' + V (5.IO) 

Since mirror symmetry requires that it be impossible to distinguish a 

change in the aerodynamic force and moment from this transformation, the 

coefficients in Equations (5.9-IO) mußt equal those in Equations (5.^-5).  If 

the coefficients are constants, this means that the imaginary parts of A,, A,, 

C9, and CL and the real parts of A0, Ak,  C-, and C* must be zero.  The presence 
— • fc-     -r     A. J 

of non-zero roll should affect the force and moment, and so we make the assumption 

that the coefficients are functions of p.  With this assumption the quantities 

which previously had to vanish must now change sign with p.  This means that 

they are odd functions of p.  (A power series expansion in p would contain only 

odd powers.) The remaining real and imaginary parts do not change sign and, 

therefore, are even functions of p. When p is zero, the odd functions are zero. 

In order to make this explicit, we will write these odd functions as products of 

D and even functions of p. 

°Y + lCZ " i + * {¥) \)'+ [{¥) \ * < 

a, + i 
3 W b

?]5'+ [(¥) \+ <*] >' 
(5.11) 

m 
4 r*        _ 
lb        ■" n 

>PA , ... 1.  r   ../pi\, l 
\~J Ql T1ClJ  5  +LC2 + Hv-;d2j " 

+   (f1) d, + ic, \     + ft.   +l(U\l, 

Ri • * 



he b, and dä coefficient:
-, are called M&gnun coefficient:; and denote 

:ts between spin and cross-flow induced by one of the four 

complex quantities.  Simple examples of a Magnus effect are the curving of a 
6-5 

baseball and the hooking or slicing of a golf ball 

Equations (5.11-12) are  not in the proper form for use in the equation:; 

of motion.  We need to convert to the nonrolling coordinates by multiplication 

by exp 10. This will transform the transverse force and moment variables t 
1     t 

and (i properly but not <; and \i  . 

•vi 
P b-iy) 

10 '   ~«   . /pi\ ~ e *V  = u  - x ^-J u (5.14) 

This follows from the fact that derivatives of vectors in rotating systems 

do not transform in the same way as the vectors themselves. A second 

complication, which follows from this, is that a spinning missile flying at 

a constant angle of attack in the nonspinning system (I =0) has a non-zero 
1 ! 

5 .  The non-Magnus coefficients of I are usually taken to be non-steady 

For a body of revolution damping force and moment coefficients - C,. and Cw N.      M. a    a 
flying with constant i,   it is very hard to see why a damping force or moment 

should be present   and it is difficult to explain such a force and moment 

for a symmetric finned missile. For this reason we will rearrange the terms 

in Equations ^5-11"12) so that the variables are \,  \±,   and their derivatives 

in the nonrolling coordinates.  The coefficients are then identified so that 

they reduce to the quantities as defined in Sections 6.2 and 6.5 for the case 

of zero roll and small angles. 

Cv + iCr C„ + Ü a a \V / n pa VV J  ~N 
pq 

'N 

(5.15) 
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C    + iC    = 
m n 

(2l\ JM 
^r. 

VDC \. 
E   + 

'M 
-   ifU\    C 

Vv / "M 
PQ. 

VV   / ~M 
- in 

■0& 
"M 

ÖJ 

'M. \V  / M 
pqj 

v + i^ u" 
\v /   ■ 

(<3.l6) 

One last task remains before returning to the equations of motion.  This 

is the determination of the variation-of the coefficients defined above with 

ucnuci    ui    graviy    iutauiuu.        J.U   u.u    UIIXD    »C    ain   uuiufciaic    one   luitc   ouu.   luuiucuo 

for two models with identical motion but different center of mass locations. 

The difference in e.g. location will be denoted a__  = (x__ - x__)i  where 
^fc ^6 ^6 

the circumflex superscript identifies quantities associated with th_ .„  

with the second e.g. location. Under our assumption that corresponding 

points have the same motion, the angular velocity is unchanged but the linear 

velocitv. which is defined to be the velocitv of the center of ^ravitv. is 

affected. 

5 = I IS   LI u = u (5-17) 

At       I 
5   =  5 is u 

eg 

A»      » 
H  = |i (5.18) 

In a similar fashion the force is unaffected but the moment, which is defined 

with respect to the e.g. location, does change.  If we assume that the change 

.-.-      --«v     uuuux     v \- J.\J** j. ujr ,      v,     xiivaixaubj      one     iCiaoiULlö 

for force and moment coefficients are the same as for the force and moment 

themselves. This means that the resulting e.g. relations are good for small 

angular velocities. 

cY + ic7 = cv + iC7 (5.19) 

A       A 
U   T iU   - U   T XU 
m    n   m    n 

J_   In 

cgx Y 
jn   \ 

(5.20; 

Equations (5.15-18) are substituted in Equations ^5*19-20^ and the soiicTht=for 

e.g. transformations are found. -These are listed in Table 6-1. 

53 



L 1H.AMU 

This table reveals a number of interesting factc.  Note that if C  and 

"M are n°'" zerci> then C  and C  must be non-zero for most e.g. positions. 
et q      4 

Thus the omission of these coefficients in previous articles would yield 

"plete expansion under e.g. transformations.  C  and 0  have no meas'jratje 
N.     M. 

q q 
reason".  ±n a similar way 

?,..      and C„  are needed for consistent e.g. transformation for non-zero C N_      M_ Tl 
pq     pq. "pa 

and C        but have no measurable effect on motion. The Magnus coefficients 
M 

involving a  and 4 also have no measurable effect, do not appear in e.g. relation 

for other coefficients, and, therefore, can be completely dropped at this time**. 

The final form of the linear force and moment expansion in nonrolling coordinates 

Ls, therefore, 

cY + icz = - CN    + 

~ f 

-  CN,  ' a 

c    +ic   ~-\(f)   c m           n       1 V V   /       V 

~ 1 

1CM      6 

lt"JCN 
paJ 

1 '   iCN * 

(5.21) 

I   - iCM 1  l + CM ^ 
pa    a J      q 

(5-22) 

Lö  UU b Equations (5.21-22) contain considerable information which U 

immediately obvious due to the unfamiliar complex number notation.  It should 

be noted that | = ß + ±a  has components whose algebraic sign is the reverse of 

the corresponding forces and moments.  This can be seen from Figures 6=3 and 6.4, 

¥ ;  
In wind tunnel measurements of damping in pitch derivatives by means of 
forced-oscillations the coefficient C  can have a measurable effect quite 

4 
similar to the static moment coefficient C 

M 
#* a 

The various statements about certain coefficients having no measurable effect 
may be verified by retaining these quantities in the analysis of the next 
section,  it would then develop that through the small size of the density 

factor  ^jp  these coefficients would have little effect on the pitching 

and yawing motion or the e.g. transformation of coefficients which do influence 
that motion. 
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Thus, the normal force, - C  ?, is a force proportional to the sine of the 
a 

angle of attack and acting in the same direction as the angle of attack when 

H iS    DOSltive.        (With    t.hp    PYPPntl nr\    nf   irprv    lnu    flnprpcc    va + i <-,    mnfifriifiitinn 

a 
C^ is always positive.) 
a 

The Magnus force for a spinning body of revolution is at right angles 

to the normal force and proportional in size to the product P |||.  Its 

usual direction can be inferred by consideration of the Magnus force which 

causes a baseball or golf ball to "hook" or "slip".  (Figure 6.7) From the 

figure we can see that the circulation induced in the flow field about the 

ball bv the spin and viscositv causes an asymmetric pressure distribution. 

This pressure distribution then gives rise to a side force.  The same 

theoretical model may be used for a spinning body of revolution. For this 

purpose we assume that Figure 6,7  is a cross sectional view of the flow field. 

The cross flow is induced by the angle of attack and has a magnitude V  ill • 

This simple picture predicts a Magnus force with direction obtained by a 90° 

rotation from the normal force against the spin.  Since multiplication by ip 

ir-i  al i^c      a      Ol^ >»/-\4-ci"+-■{<*•»>"(      nn      "♦" Vi 0     /^-i-v»^*-»'+--t/-iri      /-i+*      c^^-fm fViö      IIOIIQT        r;-*^*"1      +*A w     f* -t^ j ± <.. xu.       a,    y\j        nj^a^i-uii     in     ^u<-     ai 1. *- \^ <*> ±un    I^I-L     D^ILIJ      uj.it;     uouai    oi^U    -LUX     *-■,, J-^ 

pa 
negative. 

The interpretation of the damping force coefficients CM and C  is 
q.     a 

somewhat more difficult.  This is not unexpected since the coefficient C 
N_ 

<i 
is a linear function of e.g. location.  Indeed since both coefficients have 

not been directly measured and have only importance for their effect on the 

dependence of their moment coefficients on e.g. location, we will interpret 

them in terms of the e.g. transformation of the moment coefficients and move 

The form of the moment expansion was obtained by multiplying the force 

nnpf f i fi pnt.q   Viv   ^    nnri    T'pnl ar>i na   flip   W   c n'h a r.yW i->+ e   Viir   win rm,-; ^    -i ~     i..-*- _• *•* _ J — w _—.*.— •— —^ -. —*-**.        A    wj^^.w.^^.&AQ WMW        Al W  SAW ^J.   J_£/ Ut> Wjr 1-1       O. llllO J.Ö JUÜljiiieU 

by the convention the orientation of a moment is the axis about which it tends 

to cause rotation and this axis is perpendicular to the corresponding moment. 

As each coefficient is discussed its influence on stability will be explored. 

55 



The most important moment coefficient is that associated with the normal 

force, i.e.. the Rt.Rt.1r> mnmpnt nnofff^i^t  n 
M 

cc 
about an axis at right angles to the angle of attack.  Since a negative 

coefficient corresponds to a moment opposing the angle of attack, a negative 

coefficient is stabilizing. 

The Magnus moment coefficient, C„  , has an axis of rotation in the plane 
M_^ 

of the angle of attack and, therefore« causes the missile's nose to rotate 

around the trajectory. For a positive C'   this motion is in the direction 
M 
pa 

of the spin.  Its influence of stability depends on the interaction of this 

moment coefficient with the others and will be examined later. 

The damping moment coefficients C., and C„ cause rotation about the 
MM, 

a ry 

same axes as the corresponding angular velocities u and | .  Their moments 

both oppose their angular velocities whan they are negative and, hence, 

negative values of these coefficients are stabilizing. 

vj • \.j      i i uuung   Cfriiu.    lowing   nu ^iuu   u-i    ujruuitcoi xu   ruooncö 

With linear expansion of the force and moment defined, the derivation 

and solution of the equations for pitching and yawing motion can proceed. 

Equations (5=21-22) are substituted into Equations {h.2h=2s)   and C 's 

neglected in comparison with one. 

I i7U= -(C 
a 

c! + i (m c! ) r + JJ     \v /  -  • - 
pa 

K— + iß^, 
-y    -z 

£V (6,1) 

iPu = k^ 
_ \ pa a- 

+ < V CM + V ~ " ikt~ CM. 6 
<1 ""Of 

(6.2) 

The expression, C  - C , has a special significance which we can derive here. 
a 

Figure 6.8 shows the model at a fixed resultant angle of attack, a_, and the 
x •" 

resolution of the aerodynamic force into axial and normal components, F and 
A 

FN, as well as drag and lift components. 



D = - cos arFx + sin arFN (6.3) 

L. = sin a rv + cos a F„ 
r X     r N (6Ä) 

where cos a    =  v 
r 

sin ar = III = 8 

The definitions of the corresponding aerodynamic coefficients can be 

inserted and common factors cancelled 

UD = " yuX + ° UN (6.5) 

CL = 'CN + CX (6.6) 

C„ can be eliminated from equation ^6.5) by the use of Equation (6.6) 

a   a 
(6.7) 

Thus, this combination, C  - CL, is essentially the well known lift 
CÜ 

coefficient. Equation (6.5) also expresses the usual relations for induced 

**.*. w.b . x   v^o.       owuuuiiuü     w„    uau     \^„ blllo     J1CJ.UD     O. 
/ . y « \ 

N 
a X2 = CN    + (l/2)  CX =  CL     *Wd>  CD o a a 

Equations  (6.1-2)  can be combined to eliminate ~ and u'■ 

I" + (H - Z- -  iP) T'   -   (M + iPT) T = G (6.8) 

_*_      ▼▼ .2   ,_* 
wnereH=  7u^ - ü]3 - ^     «:„_  + yC^, 

a 

-2    * *  . i \i -.1-      *-      s* / — \ 

i-   ^ iXij     *  x / pa 

(gy + ig^')^ 

~*-T2  
. -2    * * 
V CMq 

+ CD + iP 
(fey + ig^)i 
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Equation (o.9) is exact and has no linear approximations other than those 

which are implicit in the definition of the force and moment expansions. The 

retention of derivatives of the lift coefficient and the Magnus force 

coefficient allows these coefficients to be variables and, therefore, could 

represent a nonlinear forces  Since the moment coefficients were not 

differentiated in the derivation their derivatives do not appear.  They are 

not necessarily constants and can represent a nonlinear moment.  This equation 

can and will be used in the chapter dealing with nonlinear forces and moments. 

In this chapter, however, Equation (6.8) will be linearized by the approximations 

7 = 1, 7 
t     t 

CL =CN 
a   pa 

= 0 

g~ + ig~ = ig (flat trajectory) 

G = 
/ -2 * i(k. r. 

-*~t "M C*) D' O-" 

(6.9) 

(6.10) 

For high spin rates P can be as large as .05. The imaginary part of G is the 

same as that given in Section 6.2 for no spin. Since it was found there that 

this term has no effect on the motion which can be measured during the 

relatively short flight in a ballistic range, it will be neglected and G 
-2 

approximated by PgiV 

I"   +  (H -  iP)T    -   (M + iFT)T = G (f,.i?\ 

where H = (^\ 
a. 

k"2 (r. X~M + C     ) 
d - 

M pSi" 
21 X a 

/ oSi \ -2 

u 
X. pu. 

G  =  PgiV"2  =  Pg/V"2 

Co 



Although Equation (6.8) is a fourth order system in the variables v and 

w it is written as a simple second order system in the complex variable 

This svmmetrv allows us to exDress the solution as a constant DIUS two comDlex 

exponentials. 

10-,     i0^ 
(6.13) 

-p 
M + iPT 

-2 

K. 
J 

K, e 
jo 

\f 

0< = 0^ + 0"s 

Xj + 10J 
„  ._ + 177.727 ■a. + ±t — V4M + h F + 2iP(2T - H) 

The actual size of £  is barely measurable but its influence on the trajectory 
8 

can be measured for subsonic tests in ballistic ranges. Since M usually is 

IOVI    1 QT(TO>»   -t-Vin-h    TXP   an^    i 
.   J.        bUtU ^O AUJ-<1-   I 

g 
"To     o     a mo "IT     na rro4- iiro     >*^a 1      m TmV./-i-»^ 
J_U        *-J.       UtlMXJ.       llk^^UUX V  ^        lUOJ.        1  1 1 Jin 1  it—  f     # 

this equilibrium angle due to gravity curvature of trajectory causes the 

missile to point to the right of its flight path. The lift force associated 

with this ancle causes a drift to the rieht. This right deflection is 
_ J T T    _1 1 ^ wiaraci,eriai.ic lur an tir^ix-Lery snen.  For most supersonic "cests, 5  W11.L 

be neglected in any consideration of Equation (6.13) but its associated drift 

will be computed when the swerving motion of the e.g. is discussed. 

The other terms in Equation (6.13) describe the missile's response to 

initial conditions.  The amplitudes of the disturbances due to initial 

x"jo' 
cnanges ax  constant rates (p.). The resulting motion is known as a damped 

epicycle. As has been shown previously a nonspinning statically stable 

missile (P = 0. M < 0) has a damped elliptical T>it-ehinc and vawin0, motion 
~_J ~.~ when H is positive, ana an Unaampea elliptical motion when it is negative. The 

damping rates are equal and the frequencies are negatives of each other, 

the same missile is spun slowly, the frequencies shift a little and the 

If 

ft]] 1 rrM r*al     mrvM on     «+07*+a     + n     TYrx*r»jaoc! 
— HIP ^    —   —   — — — *«WWd.V*Jb kJ     WWJ.       Wk# W 2^     *—  V"  *~" 0   ö     • 
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higher spin rates the damping exponents change as well as the frequencies and 

more complicated motion with nodes is produced as shown in Figure (6.9h). Note 

that maximum angles occur when the modal vectors add (it. + ¥L)  and minimum 

angles occur when they subtract (|K., - K-, |). 
-L      d ' ' 

For a statically unstable missile such as a rifle bullet the motion is 

quite different.  If the missile is not spun, the modal frequencies are zero, 

one modal amplitude is strongly damped X-, 
r 

H - VUM + rf /2 where the 

other amplitude is strongly undamped \0  = 

is quite unstable. 

- H + -AM + if 12..     This motion 

r or a spinning missij_e as WCü as a nont>piiining missile the predominant 

aerodynamic effect is the static moment coefficient.  If the other aerodynamic 

coefficients are neglected, the frequencies and damping exponents become 

Xi   + 1PJ a/2) + r~ 
iP -V4M (6.1k) 

The presence of spin in the square root indicates the possibility of 

stabilizing a statically unstable missile by spin. When spin is large 

enough, the right side of Equation ^u.l4y is a pure imaginary number. xne 

damping exponents become zero, and the envelope of the motion will net grow. 

The necessary condition on the spin rate is the inequality 

UM - P < 0 \ " • — s / 

For a statically unstable missile, M is positive and Inequality (6.15) 

mav be written in the form 

> 1 (6.16) 

The ballistician has for many years made use of a gyroscopic stability factor 

s which is proportional to the ratio of squared OVTQSCOTLC spin to the static 
6 ^ 

moment coefficient and is precisely r /4M. Thus s must be greater than unity 

for a statically unstable missile to perform periodic motion and not quickly 

tumble.  This is the condition for a sleeDinc ton. 



Since the sign of M is not essential for Inequality (6.15), we will 

define a missile to be gyroscopically stable when that inequality is satisfied 

or equivalently 

I < 1 (6.17) 
g 

Thus a statically stable missile (M < 0) is always gyroscopically stable. 

According to Equations (6.13, 6.II4-) the pitching and yawing motion of a 

gyroscopically stable missile with only a linear static moment acting, may be 

represented by the sum of two complex numbers with constant magnitude and 

rotating with constant angular velocity. 

0*  = 1/2 rp±Vp2 - 
J 

kM (6.18) 

We will call these numbers modal vectors.  If C  is positive, they rotate in 
"a 

the same direction as the spin and the usual epicyclic motion associated with 

the motion of the axis of a top results.  If CM is negative, the square roots 
"a 

dominate in Equation ^o.lj) and these modal vectors rotate in opposite directions. 

Gyroscopic stability like static stability is sufficient for oscillatory 

motion but does not guarantee that initial conditions will not grow. This 

requirement of dynamic stability which reduces to a need for positive H for a 

nonspinning missile is satisfied when the exponential coefficients are both 

negative. The pitching and yawing motion for a dynamically stable, gyroscopically 

stable, but statically unstable missile is shown in Figure 6.10.  For a 

statically stable missile the frequencies differ in algebraic sign and the 

nodes are on the outside. For this case the frequencies have the same sign 

and the nodes are on the inside. 

The initial orientation and amplitude of the modal vectors are functions 

of initial conditions. Equation (6.13) and its derivatives may be evaluated 

at s = 0 to yield I and I " in terms of these quantities. 

10,„     ±4on 
ro = ho*   iU  + ^O6 C6.19) 

Tn =  (Xn + i^V,^10 + (y.  + io(V 
2'iV20= (b.20) 

OJ. 



These relations determine I and § in terms oi 
o    o 

ballistic range tests.  In design studies it is sometimes important to compute 

initial values of the modal vectors from specified values of in  and t^.     Thi.r; 

can be done by inverting Equations (6,19-20) 
O 

Kioe 
c    £•  o 

X  - \     + i(0^ - 0p) 
(6.21) 

Ve 
id 
"r20 

««i^ 7 \,^2  -r  J-jp../  b 

:0 \n  - X, + i(0o 

o (6.22) 

The amplitude of these disturbances due to initial conditions will grow 

exponentially for a dynamically unstable missile (X > 0 and/or Xp > 0). 

The relations for X. + i0. are convenient for computing the frequencies 
J    J 

and exponential coefficients when the aerodynamic coefficients are known.  In 

L.allistic range work X . + i0 • is known from the data analysis and the aerodynamic 

coefficients are unknown.  The necessary equations can be easily derived from 

the fact that in Equation (6.12) the coefficient of s is the negative SUIT, of 

the roots of the characteristic equation (x . + i0.) and the coefficient of i 

is their product. 

'. P = 01 +  0 (6.23) 

M 

X, + x2 

0! 0g - Va 

IT = 02X1 + 0XX2 

(6.24) 

(6.26) 

b.7 Dynamic Stability Criteria 

Cue of the primary uses of range data is the determination of proper 

dynamic stability for a proposed configuration. The usual dynamic stability 

requirement is that the damping exponents are nonpositive throughout the flight 
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of the missile. We will first consider a generalized version of this stringent 

requirement. Then the more moderate conditions of a realistic designer that 

the angular motion does not become excessively large will be analyzed. As we 

shall see, then, und< .- this criterion the damping exponents may become positive 

J. \JX DJ1U1   o jJVJJ.   kjXUIiü     Ul       Llje     JwJ.XgIlI/ . 

Equations (6.2U) and (6,26) may be solved explicitly for the d? 

(7,1) 

s 

X,   = 

- 0!H -   FT 
■ X 

- 0-'H -   PT 

0; - 02         20; . P 

} 

- d   TT   _    PT = 

02 " 01       20* - P 

The indicated divisions in Equations (7.1=2) may now be performed 

/ i\ 

"   (IJ H 
nforn  _   n\ 
LXzt  ~  iU 
2(Z)1 - P 

I?) H 
01-0- 

(7.3) 

X^ = (i) H P12T - H) 

20; - P 
H + P(2T - H) (7.k) 

According to Equations (7.3-M the damping exponents for a nonspinning missile 

iT is not zero, one of the damping exponents will be less -L.4-   IX 

than H/2 and the other greater than H/2. From Equation ('6.18) which is a good 

lido   a. uieigiiitude approximation* for the frequencies we see that P 0 - 0 

which is less than one for  statically stable missiles and greater than one 

/ y  _ /-* \ 

A-Lxnougn liquation ^b.iö) is exactly correct for H = T = 0, it is an excellent 
approximation when aerodynamic damping is present. Use of this equation is 
equivalent to the assumption that the product of the frequencies is much 
greater than the product of the damping exponents in Equation (6.25). 
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for statically unstable missiles. Thus, the H/2 in the second term of 

Equation (l.h)  dominates the first term for a statically unstable missile 

and one damping exponent must be positive if the Magnus and lift coupling 

term T is zero. 

We will now obtain precise stability conditions on T as a function of 

spin.  The usual dynamic stability requirement is that the exponential 

restrictive than necessary for a missile designer.  His primary concern 

is that the initial conditions do not have an adverse effect during the 

flight. What constitutes an adverse effect depends on the mission and 

trajectory of the given missile.  In some cases we would want initial angles 

to damp to half their values in 1,000 ft; in other cases if they doubled in 

-j-w j yJ\s\s      J.   *-> •   f        um_      [;<-i i ui uiwiv-v.      wvi.<J.u      k/v«      uuiuix^^u^u« 1U      J_l.li LOLU.C       UJ.1-LC2      1 XCÄlUXt! 

criteria in our analysis, we will introduce a level of damping, X,  which is 

set by the designer and require that the damping exponents be less than this 

va] iJR.  The* roRiil t.i nff ffpnpral 1 zpd C'i't'.prifl -rpnYir'P' +"Q t-Vi«» conventional nne whpn 

/ X  ,f\l 
A. = u.  ±i "one rrequencies are approximated Dy equation (ö.löj, this requirement 

of generalized dynamic stability assumes the form 

A. . - A. 
J 

-1 < ^ = u 
•/ F2 - UM 

Inequalities (7-5) are equivalent to the following inequalities 

(TO) 

> 

H + 2X > P(2T - H) 

VP
2
 - kU 

The second inequality in (7.6) can be squared, solved for spin squared, and 

reduced to a simple form by the introduction of a generalized dynamic stability 
f fl rv + AV«   g 

4M   ±      < f , 
-? = — =  s^(2 - sj f7.7l 

2jT j- X) 
where s, =  -„ 7_Hi- 

u    n + ^A. 
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The relation between the spin and the various types of stability are 

summarized in Figure 6.11.  To these relations must be added the single 

inequality H + 2\ = 0.  Three comments of great importance may be derived 

from an inspection of this figure. 

(1) A dynamically stable missile must be gyroscopicaliy stable. 

(2) If s lies in the interval ^0,2) , a statically unstable 

missile may be stabilized by sufficiently high spin and a statically stable 

missile is always dynamically stable. 

f-z \ \5)     Ir s, .Lies outside this interval, a statically unstable missile 

cannot be spin-stabilized and statically stable missile may be made dynamically 

unstable by a sufficiently high spin. 

Experimental values of the various eoefficients for a variety of configurations 

will be given in the next chapter.  From these data it can be shown that most 

of the ways a symmetric missile can theoretically become unstable have been 

The use of Figure 6.11 to determine lower bounds on spin for a statically 

'unstable nussij.e and upper bounds for statically stable missiles is based on 

the assumption that s, is not a function of spin. The bounds on s  indicated 
°- g 

in the figure may then be converted into bounds on spin. 

Frequently the spin variation of the Magnus moment can not be ignored. 

When this is the case sA  is a function of spin and Figure 6.11 can not be 

used to determine spin boundaries for dynamic stability for a given missile. 

Inequality (7-7)* however, is still valid. The equality sign in (7-7) yields 

an equation in spin whose roots are endpoints of intervals of spin for which 

the missile is either dynamically stable or dynamically unstable.  If the spin 

in a given interval satisfies Inequality (7.7) "the missile will be dynamically 

stable for spin in that interval and conversely. 

The requirement that the exponential coefficients be negative throughout 

the flight is much stronger than necessary in a number of applications. This 

can be seen by the following example. Consider the case of a specific shell 

whose exponential coefficients are strongly negative for M = 2.0 except for the 



Mach number interval (0.9, l.l) where both exponents arc positive.  Exact 

numerical integration showed that an initial maximum angle of attack of four 

de*Tces for the launch Mach number of two will decay to a tenth of a degree 

before the Mach number decreases to 1.1.  The dynamic instability associated 

with the transonic velocities then will cause the maximum angle to grow to 

örinroxini.citclv one decree and then decrease a second time when subsonic stability 

is established. Thus the "dynamically unstable" shell has maintained a small 

angle of attack over the entire trajectory*. 

The effect of slowly varying coefficients can be treated by means of the 

WKB methodJ . The exact algebra, however, will make considerable use of the 

epicyclic solution associated with constant coefficients. We will assume the 

solution for varying coefficients can be written in the form 

I - K1e 
10-L     i02 

V (7.8) 

where the 0. are not necessarily constants and the K. are not necessarily 

exponential functions.  Differentiating Equation (7.8) twice, we have 

X   =   (\x + i-0[)\e  "1 +  (X2 4 itf^K^e    2 
(7-9) 

•   2   ,.».2   ._,"       .      ,'. 
xi + xi " (?>ij   + i((Z)i + 2XA} Kxe 

^ 

Xg + \\  -   (0g)2 + i(02 + 2X_0*)J K^2 ,1K. 
10. 

(i .ic>\ 

where \ infK./K. ) 
'   J' jo' 

•  K. 

K 
j 

Equations (7.8-10) are now substituted in the homogeneous form of Equation (6.12) 

and the result grouped as to mode 

Precisely this behavior occurred during the development of an important shell. 
As a result of ballistic range tests the shell design was stated to be 
unsatisfactory by the experts. Fortunately, the project engineer who had not 
studied the mathematical theory of this chapter was able to get approval for 
full range firings.  The shell gave one of the best dispersion patterns ever 
observed and the "experts" learned from bitter experience. 
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|(0')2  -   P0*   + M -  \   (\    + H)   -  X*   -  i  I (20*   -   P)Xn   + 0"   + H0*   -   FT I}- 
l. - * * ■■■ L ^ J. J. -L |J 

{ (02)2  -  P02  + M -  >^X2  + H)   "  X2 

-il (20*   -  P)v    + 0    + H0*   -  PT }    CKg/K^e-^ (7.11) 

» ."U ~ v. .^      rt /Tl /*» 

If X and 0 vary slowly in a period of 0, Equation (7.11) can only be satisfied 
«J tj 

by both expressions in braces vanishing.  Since the X. terms in the real part of 

each of these expressions is usually much smaller than (0.) , the frequency 

equations for varying coefficients are essentially the same as those for constant 

coefficients. 

i - M (7.12) 

i.i 1   1__ ISJ 1   in.   .—li— 1— 11   1  r 1 ■ 1 [ 1 The logarithmic derivatives. \,.  are somewhat different as can oe  seen rrom 
u 

11 1 11*   111 in J-^ [ 1 1 rT_i  v   1 J*-I_ 1 1 . j-i   ill    1 r 1 he imaginary parts of the expressions in braces. 

X. 
J 

= X 

wb. - FT + d. 

20'   -   P 
o 

<J d^ 

#; 
(7.13) 

wherp  9S     =  rf     - — 
"j       ''j       2 

TT/T( 

^ 
J 

ry: 

2d' 

For constant frequencies and spin-to velocity ratio, X, reduces to X* 
J j 

The definition of X, can be used to yield a tired 

the modal amplitudes for slowly varying coefficients. 

The definition of X, can be used to yield a prediction on the size of 
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s 

K./K, 
J  JO 

O 

P2 - UM(s) 

f' /. *   P 

10 iA      ./   (\i ~  7F } d£ 

J
 (7.14) 

Since the major concern of a designer is the growth of initial disturbance;;, 

this can be controlled by a restriction on the ratios K./K. .  The actual 
J jo 

value of these ratios may be computed throughout flight and compared with the 

restriction.  Clearly strict dynamic stability will satisfy this, but these 

considerations allow a certain amount of dynamic instability over part of the 

flight.  Thus a much weaker type of stability has been formulated.  This 

stability includes the necessity of gyroscopic stability throughout the flight. 

An interesting application of these equations is that of a missile with 

constant aerodynamic coefficients and spin which is entering or leaving an 

exponential atmosphere* 

P = poe"
az (7.15) 

If ^(s) is the angle the flight path makes with respect to the vertical, z can 

be related to our independent variable s by the equation 

s 
r 

z = -  / I  cos t (s1)ds1 (7-lc) 

~e U < T < yO —> entering tne atmospnere 

90 < ^ < 180 —> leaving the atmosphere 

t 

— = at  cos f = o (7-17) 

For this case it is easy to show that 

\j Kj      U(l - s ) "'~' 

P2 

For the earth a good value for a is    i 
m 
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As can bo ccen from Equation y'J.ißj  an entering statically stable iriicciic 

(s  < 0) is stabilized by the density gradient while an entering statically 

unstable missile which is gyroscopically stable (s > l) is destabilized by 

These predictions are only good at altitudes for which 

the changes in the coefficients are small in a period of 0, the nutational 

frequency. 

6.8 Angular Motion of a Slightly Unsymmetric Missile 

Since no actual missile is exactly symmetric, the study of the effect 

of slight asymmetries is very important for a missile designer.  It is also 

quite possible that lifting surfaces may be slightly deflected so that they 

may induce a trim angle of attack.  These aerodynamic asymmetries which may 

be either intentional or unintentional have the effect of introducing constant 

nonzero lift and moment when the angle of attack with respect to the basic 

symmetric missile's axis of symmetry is zero.  This introduces a constant 

+ l ?„  into Eauation (5.1^ and a constant C  + iC  into Eauation (c)  ]61 Z. *        *'--*,    — m    -~n   
u^uuuiU" w-uw,, 

The corresponding linear differential equation for the pitching and 

yawing motion is 

6  + (H - iP)T - (M + iPT)l = iAe1^ (8.1) 

pSl 
2m 

s 
n ,.J    i 

't 

'ds 

(c     * ic   ) /? (JL). l) 

and 

+ 1UZ > 
u 

For constant spin rate the aerodynamic asymmetry introduces an exponential 

forcing function. A particular solution to this inhomogeneous equation can 

be obtained by assuming a solution of the same form 

I  = K  e -  "3- \o.-d.) 
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This particular solution can easily be found by direct substitution and the 

result added to the epicyclic solution to yield the general solution of 

Equation (8.1) 

10,     i(ZL     iöL 
X =  Kne 

x  + i^e * + Kze '5 f^.',) 
<- j >  - - 

where K e 3° = —,-» ,-1-iÄ 5  
(0 ) - P0 + M - i(0 H - FT) 

.  . -   ^n 
The denominator of K~e ^  is usually dominated by the real part.  This real 

part is the quadratic expression for the epicyclic frequencies.  Therefore it 

will become zero when the spin rate equals one of these frequencie o • UJ 

> I ,t 
aeiim-cion -cne magnixuae or tne slow rate is less than (I /I )|0 j and, hence, 

for most missiles this resonance phenomena occurs when the spin rate equals the 

fast rate. The usual value of I /i is less than a tenth and, thus, the F0    term 
12   x' y 

is much smaller than ^ ;  and the spin rate may be directly compared with the 

zero-spin pitch frequency, s/- M, to determine whether concern about resonance 

is reasonable. 

In most ballistic range tests for which asymmetries are present, the spin 

rate is usually not constant.  If it is not near resonance Equation (8,3) is a 

good approximation but for roll rapidly varying through resonance it is 

definitely a very poor approximation.  This special case can be handled by 

the method of variation of parameters. 

If varying spin is assumed, Equation (8.1) is a linear equation with 

varying coefficients with a specified forcing function.  Although the particular 

solution for this forcing function is quite sensitive to roll rates near 

resonance, the complimentary solution for the homogeneous equation is relatively 

insensitive.  Indeed, for roll rates near resonance P is usually quite small. 

This means that we can either neglect P on the left side of Equation (8.1) or 

replace it by a constant average value.  The problem is now to find the solution 

of an inhomogeneous linear equation with constant coefficients. 

The basic approach of the method of variation of parameters is to assume 

the constants K. , 0.  in Equation (6.ij) to be functions of s.  For convenience, 

the quantities A. -  K. e JO are introduced 
J   jo 



(Xn + 10; )s     (xo +  10JS 
^A = Axe -    -  + A2e -    fc (8.1*) 

where A. are complex functions of s and 
J 

I. is the particular solution due to asymmetry for 

zero initial conditions. (£A  = ih     =0) 
o    o 

Equation Q.k  is now differentiated. 

6. = (V + id U P -1   -1-  * ^ * irf U e JA  x"l  ---i'"i- \~2  *»'2/ 2 

, (x, + i0Js   , (X? + 10p)s 
+ A1e + ^e (8.5) 

If the last two tenns are set equal to zero 

, (X1  + 10 )s   , (X2 + i02)s 
A1e + Age -       = 0 (8.6) 

and , t 

~i   ,     ..   Ui + ^i)s .   (Xp + i0p)s 
^A = (X1 + i01)A1e      -1  + (X2 + i02)A2e 

d d (8.7) 

Differentiating again we obtain the following: 

~"   .     .1 ?   (XT + 10-, )s , o   (x0 + i0o)s 
iA = (Xx f 10x)- A e -    *  + (X2 + i0p)" A?e 

c 

,  , (X + i0^)s , (X + i02)s 
+ (X1 + i01)A1e 

x    x        + (X. + i02)A2e 
d    2 

(8.8) 

If Equations (8.4, 8.7-8) are substituted in Equation (8.1) and it is recalled 

that terms without A. come from the solution of the homogeneous equation and 

must cancel, the following equation can be obtained. 

(X1 + i01)A1e      
X  + (x2 + i02)A2e 

2    2  = iAe1*      (8.9) 
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Substituting Equation (8.6) in Equation (8.9) 

-(x1 + id  )s + i0 

Ai = U 6   7 7" (8-10) \±  = X2 + i(0x - 02) 

,(X2 + i02)s + 10 
A2 = **£ ? ^ (8=n) 

X2 - \1 + i(02 - 0X) 

Equations (8.10-11) may now be integrated, the integrals substituted in 

Equation (d.k).  and the general solution for arbitrary rolling motion 0(s) 

10     i0p 
T = K±e + K^e + ~A (8.12) 

where 

1A 

f (\   + i0x) (s - Sl)   (X2+ i02)(s - SjL) 
e - e i0(sx) e   1 ds 

-L 

X1 - \? + i(0n' - 0^) 

As was noted in the definition of |A, its initial values are zero and. hence, 

the relations between the initial values of the modal vectors and the angle 

and angular velocity are precisely those of Equations (6.21-22). Since the 

tricycle mode (K-,e >) in Equation (8.3) does not have this property, the 

initial values of the modal vectors in this equation do not have the same 

relationship with the initial angles and angular velocity. The correct 

relations, however, may be quickly derived if necessary. 

6.9 Swerving Motion 

Once the pitching and yawing motion is known and the linear aerodynamic 

force is determined, the motion of the center of mass may be computed. A 

first approximation to the actual trajectory is the so called particle 

trajectory. This is the trajectory determined by gravity and zero-lift drag 

and is followed by a missile which maintains zero angle of attack.  The motion 

of the center of mass of a missile perpendicular to this trajectory is called 

the swerving motion. This motion is quite important in ballistic range work 

since direct determination of the aerodynamic force is possible from measurement: 

of this motion. 
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For most, ballistic range tests, the observed trajector 

approxiinax.ea oy a norizontai straight line.  Thus the swerving motion i.-j 

primarily the projection of the three-dimensional motion on a plane perpendicular 

to this line.  If the X axis of the earth fixed coordinate is directed alonf 

this line, the variation of the Y and Z coordinates of the center of motion 
e     e 

provide us with the swerving motion.  The differential equation controlling 

these quantities is 

m(y + iz ) = F.. + iF„  + img + ma e    e    Y     7.     ^    c 
e    "e 

(9.1) 

a^, the transverse component of the Coriolis acceleration induced by the 

earth's rotation, can be specified in terms of the latitude of the range, 9., 

and the azimuth of the line of fire*, 9m, a 
W 

O  A 
a = —j- a c   /   c 

W 
ill 

(sin 9. + i cos 9. sin 9 ) (9.2) 

where n =  2rr radians per day 

= 7-3 x 10 rad/sec 

 r T t-i_ The force components along the Y and Z axes are given Dy Equations (y.lOj 

and (3.1). For small angles these equations may be combined with Equations 

(2.12) and (3-3) to yield: 

F  +iF  =F+iF-F   16- 
Y   "Z    Y  "z   X  \5 

e     e \ 

v + iz \ 
"e    e \ 

(9-3) 

For a slightly unsymmetric missile with a linear aerodynamic force, then, 

The BRL Aerodynamics Range, for example, is located at Aberdeen Proving 
Ground, Maryland and fires due East. For this range 9 . = 39° 26' and 
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F„ - - (l/2UoV^)S C_ tc\    I, \ 

*Y + **Z 
,.,_.    2    fr 
{1/2}   pV-S  ■■ 

/„ *\ 

(9.',) 

+ iCM Tf + CM !' - (C„ + iC„ )e^ 1 
"A o     o    J 

/ \.    r*.' * 
Equation (4.24) may be used to eliminate fl in Equation (9.5) with the usual 

neglect of squared density terms. The derivatives with respect to time may 

be replaced by derivatives with respect to arclength by the relation 

it     ii / ^2 / vA 
ye 

+ -e = (ye + i»e) (T)   - ty. + i*J (^ J c    > V   ' 

fv  +19 1 fi> + /"-.% <4 N (*\ 1    \V)      "" ^'e T iJV Vv ; UD 

These equations may now be used to write Equation (9.1) in a much more 

convenient form 

y + iz 
e    e 

CL +i 
x  '  "pa 

(C; + c*)~. + (C; +iC; )e^ 
q    a       o     o 

.  .   Ri      A      O + 1 ? +a= r 

(9.7) 
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^-T-^ = Bo + B1S  " CT.    h -  i     —      CN      X2 
a \ "o   /     "pa 

_     f[~! +   P \    T       -I-    /> 

a a o 
if \    T. 

o 

+ i (si\ 

I-       * 

e    u      . ?n 3 -  1 

U A' 

(2CD) 

A + a 

V 

7Z^ (9.8) 

where 
s       s,. 

n   -     /       / I,   =    /       /        HSl  ds„ 
u      o -      - 
o      o 

-1      s      sr 

i.-^    r r ^ ~2    \voy j     j 
o       o 

vv; - -i -- 

s 
r ~ 

r    r2    IM 
Cu =    /       /        e ^ dSl ds2 

o      o 

B , B- are complex constants and 

2 
s 2 
2~ is a good approximation for the coefficients of g/V- 

and a„. c 

Note that if the spin to velocity ratio is a constant, I_ reduces to I,. 
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For low spin the integrals provide the same frequencies that are present 

in f,.  Thus the lateral motion of a symmetric missile with cpicyclic angular 

motion is represented by a parabola plus an epieyclic motion.  The relative 

amplitude and phase of the two motions are determined by n  and C.      + " ,    . 
L      N    N, o;     q   a 

A slightly asymmetric missile has a tricyclic angular motion and its lateral 

motion is also a parabola plus a tricyclic motion.  The relation between t'n<: 

two three-mode motions is determined by the relative magnitude and phase of 

the asymmetric force and moment terms as well as the values of CT  and G  + 0 
L      N    H. a      q    a 

For high spin the lateral motion is much simpler. This is due to the fact thai. 

the magnitude of an integral of a circular constant frequency motion is the 

magnitude of the motion divided by its frequency.  Thus the integrations in 

I., I_, and I, have the effect of reducing or eliminating the influence of 

high frequency terms like 0. and 0 and retaining only the slow mode 0„.  Thus 

the lateral motion of a missile with high spin is essentially a parabola plus 

a spiral with the slow mode frequency.  The relative magnitude and phase is 

determined by CT and Cw 

a pa 

u.10 Aerodynamic Jump 

The study of the center of mass motion is quite important for ballistic 

range measurements of aerodynamic force coefficients. An even more important 

application of this study is present in the requirement that the flight path 

be sufficiently controlled so that the range instrumentation does not suffer 

damage.  A simple calculation shows that the periodic part of the motion does 

not have sufficient amplitude to cause difficulty.  Indeed this motion is 

seldom greater in linear extent than a model diameter. 

We are, therefore, interested in the average direction of the flight path. 

The parabolic deflections due to gravity and Coriolis acceleration are easily 

predicted and, thus, we are primarily concerned with the average effect of the 

aerodynamic forces. 

It should be noted that there are other causes of dispersion of models, i.e., 

muzzle whip, blast effects.  These are usually small with the exception of effect 

of gun blast on finned missiles. For the short time during which the muzzle gases 
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are flowing forward over the rear fin surfaces, they can impart a large 

destabilizing angular momentum to the model and a much smaller linear momentum. 

This initial angular velocity can generate an angular motion which will give 

rise to a large displacement.  This displacement is precisely the quantity we 

want to study in general.  It is of great importance that the lift of fins in 

this reverse flow be kept as small as possible. 

We will now study in detail this average effect of the aerodynamic force. 

This effect will, of course, be related to the initial angles and angular 

velocities present at launch.  These initial conditions may be caused by bore 

clearances, sabot separation, or by blast effects. This average deflection is 

U&_L_LGU.     Öd ^U.jfllCLUL-L'-      J Uilip     CU.1U.     UJGbJT       UC      UCi 1UCU      UJ       U11C      C^LLCl 11UU 

   ,..__   ,,„   1 f üeru. jump = j_j.ni - — ■< ./p/U* 
xi+ ^ 

(n* 

r.     I 

In order to take the indicated averages of I, and I2 we can solve Equation (8.1) 
r J " fnr E. 

T" +  (H -  IP)!'   -  lAe^ 
M + iPT 

= 
r           l-i r_.    -.     - 

M + iPT        -j T - To - T' s  + 

-   iAT.   1 
™ 4j 

H - IP 

(10.2) 

 s 

u n  _. 
I ds. i s o 

fin   *\ 

"Rn+    fnr    a    A\mami r>a 1 1 lr    p + o^lo    YW. _- _- 4 "I A     t    r.v.,3    -* 4-_-    -J %_ 4-«__.___*_ n     £. — -.    . _.a_    T ^ - ._ .__.-»«     ±Ji      —     iijuiMu.n.iij      a uouxt     lua.ODJ.J-t      _,     OliU     -LUD     XUOCglOj.    IUC      UU Ul      IJUUIltieQ. 

lim - I. 
s—»»s     1 

-l-i     rr . 
M + iPTj ||T£ + (H - IP)    To 

+ 1A lim ± ij (10.4) 
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No direct measurements of C„ + C  have been made in ballistic ran(;e U :;t,r,. 
q    ÖL 

It is quite reasonable, therefore, to omit this term in our consideration of 

aerodynamic jump. 

aero, jump = 
v  '   pa a 

M + iFT 
-1 

(H - ip)  i (10.',) 

+ JA  $ 

where J. Cy + iC 
oJ 

+ i IC* + i (*£)   c* 
a V v /   IN 

1-1 
M + iFT 

*     *     * 
cY + icz + icL 

o    o   ~a CCJ   L 
C   + iC 
s    n o     o- 

lim — s 
s->» 

Equation (10.5) shows the sensitivity of the aerodynamic jump to initial 

conditions.  Usually I  is small and a good approximation to the symmetric 

part of the jump is 
1  ~. 

kt CL 
a /\JT° The asymmetric part depends very 

much on the roll history. ü'or constant roll, 

? 
(10.6) 

If the roll is varying in accordance with Equation (5.5«6), $ can be computed 
6-9 

as a function of two parameters '. One special case of some importance is 

that where the spin producing moment is large in comparison with the spin 

damping moment over the one or two periods of the pitching motion and the 

initial roll rate is zero. Since the aerodynamic jump is an average over this 

periodic motion, the roll equation for use in * assumes the very special form 

rrO 
t<-> 



2 
0 =  KB |- (10.7) 

For this constant roll acceleration, 

4     " - - hn.Q) * e JC  > 0 o 

o 

7t    . 

6 o 

It is interesting to note that the aerodynamic Jump is at right angles to JA 

for constant spin and a 1+5 angle for constant acceleration from zero spin. 

Note that neither (10.5) or (10.8) show any special effect of a resonant roll 

rate. This is due to the fact that although the resonance angular motion 

amplitude can be quite large, its average influence on the trajectory is not 

exceptionally large. The increased induced drag can, however, affect the 

gravity drop along the Z - axis. 

6.11 Spin Lock-in and Catastrophic Yaw 

Although spin-pitch resonance can yield large trim angles, the probabil- 

ity of a steady-state spin rate exactly that of the pitching rate is quite 

small.  Moreover, aerodynamic damping usually keeps the trim angle to be a 

reasonably small multiple of asymmetry angle.  By the introduction of roll 

orientation dependent moments, J. D. Nicolaides     has demonstrated the 

possibility of spin pitch lock-in and large multiplying factors for the asym- 

metry angle. In this section, we will outline the work which has very suc- 

cessfully explained the rather high incidence of resonance and the large 

trim angles associated with it. 

The complex angle of attack in missile fixed coordinates, §, can be 

described by an amplitude, 5, and an orientation, S» 9  is the angle between 

the plane of the angle of attack and a fixed plane on the missile such as one 

containing a fin. Nicolaides' model then was that there is both a roll moment 

and a side moment depending on angle of attack and 9. The revised form of 

Equation (5.5.2) is 
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.\ cM = bct    +Vvy  c1   + BC1   (e,6) (ii.i) 
* ~B "p        "a 

If the missile has an angle of rotational symmetry, 6 , then C„ is periodic 
S XJ a 

With    Deriod   f>    •       NOW   the    nrPfiPnfP   nf   d"i ffprpnt-.l «1    r-BTlt.       Pi Pirr'lndf4^    +.K*»    m<5S-f_ 
"s ""   *"" ~~ * f 

biltty of a plane of mirror symmetry.  If the missile with no differential 

cant (6 = 0), has a plane of mirror symmetry, the roll moment due to orienta- 

tion must be zero when the plane of the angle of attack lies in the plane 

of symmetry.  This is clear from the fact that if we measure 0 from a plane 

of mirror symmetry and transform coordinates by a mirror reflection, the 

missile maps into itself, roll moments are reversed but otherwise unchanged. 

•'. Cg  (S, 8) = - Q       (-©, 6) (11.2) 
a a 

A rotationally symmetric missile with n similar fins has a symmetry angle 

of 2-n/n  and is an odd periodic function of 2«/n. This means that it can usually 

he represented by a Fourier sine series 
00 

a 
V 

sin nke 

k  =  1 

a      *  *.      (&} 

(11.3) 

The simplest form of C, for an n fin missile is, therefore, 
a 

C. = a sin no (il.^) 

6-k 
Maple and Synge   assume that all forces and moments are analytic func- 

tions of the transverse velocities in missile fixed coordinates (v,w). This 

means that these forces and moments must be at worst infinite power series ir 

i  and i. 

But 

, .  enk  Ink ,,. „v 
sin nice = s  - s   . (-L-l-O) 

2i6nk 

In order for &C to be analytic in v and w. then. a. 8sin nkfl must be a DOIV- x, - K * 
a 

nomial or a convergent infinite series in i  and T. 
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ak6sin nk0 « (a/ " *) (j^) (£** - £nk) (ll.6) 

The last term in Eq. (11.6) is a polynomial in £ and I and, hence, 
1 - nie P   P\l/p 

is a function of 5 = (v + w ) ' /V and would satisfy 
p 

the Maple-Synge requirement if it were represented by a power series in 8 . 

x n v ajiu. w # 8. «_> 

90 

/ = 0 

and 

a (8) -V  b ,62i +«* ■ 1 (H.8) 
k    /_,   k-t 

i - o 

Thus, the simplest expression for an n fin missile under the Maple-Synge 

analyticity assumption is 

1 
ci = bio5 " sln n9 (n-9) a 

For the general roll moment, (ll.l), the roll equation of the last 

chapter (5.5.6) assumes the form 

0" + K^ - K8 - KQ (2 - 0, 6)  =0 (11.10) 

where K = £M gC 
"a  21  ~/ x   a 

0 = Q +  0 is orientatio m  <-v-P -r\To>-iÄ f-*^  «««l*  -~-{ 

a fixed plane, 

al resonance, { 
Al 

at constant frequency 0 . For a missile in circular constant f 

During conventional resonance, a missile performs a circular yawing motion 
Al 

Equation (11.10) predicts a constant rolling motion when 0 - A  = 0 , a con 

stant, and 
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*.  ,.  K5 + 
Kg (Q*>  5> 

0-=JO"=  g    . U-L.i-U 
p 

When tliis occurs, the roll motion is "locked" to the circular pitching mo- 

tion and the missile performs a lunar motion . This can occur whenever there 

exists a e    which satisfies Equation (11.11; and this equilibrium value of 

6    is a stable value. 

1   [   a i -> U v x j.. j.ri j 
K \5e~y    „ 
P        * 

0 = 6 

Thus, for many pitching motions which are near circular, lock-in can occur 

and a resonance situation can exist. The dccurence of lock-in depends on 

the roll frequency and the pitch frequency being close to each other at some 

point of the flight since widely different frequencies will make C, vary 
a 

rapidly with a zero average and, hence, it will have no influence on the 

motion. 

If we now consider the possibility of a side moment dependent on orienta- 

tion, a Magnus like moment could exist for very small roll rate. If this 

term and an asymmetric moment term are added to Equation (5.22), we have 

C + iC  = (C  + iC  )ei(° +  CaM + (%£)   CM  - iC„ m    n    m_    n_ SM_.  vV J      M      M 
o     o a       > '        pa    OJ 

+ CMd - 1CMI- (11.15) 
"q.   "& A 

where C„M is a function of ö - 0 and S, and has the same symmetry 

nrnriprtlpq HH t.Vinnf» n-P C . . 
"-*   1 a 

*  This motion is so named since it is quite similar to the moon's rotating 
about the earth in such a way that it presents the same face to our view. 
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Our differential equation  (O.l) becomes 

i     t  \n  -  ir;i     —   |_jyi -t- i(trx  + m  ;js   = 3-ae 

where Mfl  -7^    *t    CSM 
v— /       -       ~ a. 

For circular motion which is "lock-in" with the rolling motion: 

(0 )- - P0  + M = 0 (11.15) 

i  = K e ^5 (11.16) 

where 0 = 0 s + 0,„ 
3       ' ^ 

id 
luT* _        A 

0 0'H - FT - M (0*. K_) s  -  3- 

If we have an unfortunate value of M which makes the denominator of the s 
expression for K„ quite small,  a very large amulification factor is nossible -,   - . 
giving rise   w & Biuuauuu wun.u  xo  uoneu    cttiaBux-upiixt;     yaw  uy lucoiaiaes. 

83 



TABI£ 6-1 
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c     = c 
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a 
C„    = C„ 

a a 

N eg    N 
q a 
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M M eg     N 
a a a 
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M. 
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"q 
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c 
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a 
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FIG. 6.1 MISSILE FIXED AND EARTH-FIXED COORDINATES 
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FIG.6.2    MISSILE AXES SHOWING DIRECTION AND SENSE OF 
FORCES AND MOMENTS 
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FIG. 6.3  MISSILE IN PITCHING MOTION 
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FiG. 6.5 GEOMETRICAL CONSTRUCTION OF PiTCHiNG AND YAWING MOTiON 
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l\7. 6.6 AND YAWING MOTiON 
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FIG. 6.7   PHYSICAL MODEL OF MAGNUS FORCE 
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FIG.6.9 ROLLING STATICALLY STABLE SYMMETRIC MISSILE 
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FIG. 6.10   ROLLING STATICALLY   UNSTABLE   SYMMETRIC MISSILE 
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CHAPTER VII 

RANGE MEASUREMENT OF LINEAR COEFFICIENTS 

7.1 Geometrical Considerations 

The basic information acquired from a ballistic range test is the 

location of the missile's center of gravity (x,, x0, x,) and the direction 

cosines of its axis of symmetry.  These measurements are taken in the range 

coordinate system for which the X-, axis points downrange along the intersection 

of the horizontal plane and the vertical plane containing the gun, the x0 axis 

lies in the horizontal plane pointing to the left and the x7 axis points up. 

The theory of the preceding chapter made use of an earth-fixed system, a 

missile-fixed system rotating with the missile, and a missile-fixed system 

with zero roll rate.  The range system is essentially the same as the earth- 

fixed system after a rotation of l80" about the x, axis 

.-.  Xe = Xl f1-1* 

ye - - x2 (I-2) 

ze - - x5 (1.3) 

In order to relate the direction cosines to the angles of attack and 

sideslip in the non-rotating frame of reference yet another coordinate system 

must be introduced.  (y1, yp, y^) This coordinate system is so defined that 

the y, axis is along the missile's axis, the v_ axis is in the horizontal plane 
- ± ~ ' "d ' 

pointing to the right and the y, axis points down.  Since the y? axis is 

constrained to lie in a plane, these coordinates are called fixed plane 

coordinates.  They are approximately the same as the missile-fixed non-rolling 

coordinates but are much simpler to use. To verify this statement we will first 

compute the roll rate of these coordinates. 

This can be done through the introduction of unit vectors. e* . e* . e* 

along the fixed-plane axes. Since the y axis lies along the missile»s axis, 

its components in the range axis system are precisely the direction cosines 

of the missile's axis: 

e*_ = (n^  n2, n,) (1.1+) 

95 



The requirement that eQ be in the horizontal plane forces its third component 

to vanish. Since it is a unit vector, perpendicular to e1 and points to the 

right, its remaining components are completely determined. 

nQ - n -> 2 1 

4  nl + n2     V nl + n2 

'! 5) 

According to the right hand rule, 

—> _ —>   —> 
e_, - e  x e^ 

n, n,        nonx r-K 5- \ 

I    . _   _  '  . .   _ y—2 5-    1—2 g- 
\s/ nn + n^    V n, + n 

>/n? + n^ \ (1.6) 

/ 

The angular velocity vector (co., o>p, üX,) for the fixed plane axes is 

defined by the relations 

<°1  = fc • % =  - ?2 ' % (1'7) 

u^ = e . e = - e, . e. (l.oj 
C J _L _J J- 

"5 = el • e2 = " el • e2 (x^; 

Equation (1.7) can be reduced to the following relation 

1     1 
avi   n (n,n - n n ) 
^- . I    I  2  2

2 J- (1.10) 
1 - n, 

Thus the fixed plane coordinates do have a non-zero roll rate. For small 

pitch and yaw angles and small pitch and yaw angular velocities, 
1  t  1 

n?, n,, n,, n„, n, are first order quantities and n.. is essentially unity. 

Therefore, o)n i/v is a second order quantity and for small amplitude motion 

the fixed plane coordinates are equivalent to the missile fixed non-rolling 

system. 



The components of the velocity vector in the non-rolling system may 

h<=>   fnmnu+prl   hv  thp   rplftMnns 

I*   i"7* ft   ■> T s 

v = u2 = ?2 . V (1.12) 

w = u5 = ?5 . V (1.13) 

—* 
where un, u?, u^ are the components of V in the fixed plane system and 

V is the velocity vector for the missile's center of gravity. 

If (x, , Xp, x,) are the coordinates of the missile's center of gravity, its 

velocity vector in range coordinates is (x,. x_. x~) 
' ±' -d'     y 

.  U2     n2*l - nl*2  
" v~ =  ,         - (1-l^J 

N/ n^ +n? J  (*,)* + (inf  + (*,)* 

2   2 u^  n,n„i, + n0n,x0 - (n, + n^) i, 
^ * x f' - H g,    '    ;- (i.i5) 

s/ n. + n_  >/ i. + X- + x_ 
"1   'd 1   2   3 

For small amplitude motion V = x , n = 1, and n n 

T - v + iw 5 " v 

- dx     *'*" \ 
/. = n  + 1n^ - i^~  + i ^1  J (1.16^ 

"2   —3   ^^     ^y v     ' 

The slope of the trajectory in the x,x„ and x,x, plane can be easily computed 

from measurements and I obtained by use of Equation (I.I6). For large 

amplitude the exact Equations (l.lU-15) must be used. 
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Equation (l.l6) may seem obvious to the reader as a small angle 

approximation and he may wonder about the introduction of the fixed plane 

coordinates and the lengthy vector analysis.  In answer we can only say that 

a careful engineer should always be suspicious of an "obvious" result.  As 

we shall see in the next chapter although this "obvious" result is correct, 

a similar Intuitive feeling that the fixed plane coordinate oscillates about 

the non-rolling coordinates (i.e., (ox )  = 0) is not true. 

7.2 Analysis of Motion of Symmetric Missiles 

According to the theory of Chapter VI, the pitching and yawing motion of 

a symmetric missile acted on by linear coefficients is described by the equation: 

i$.     irf- 
i  = 5g + K±e + K^ c (2.1) 

_-2 rsj 

where 5  = - P/M giV 
g o 

X.s 
K. =K,e J 

"J   Jo 

1 

0 . = 0,  + 0.s 

I is measurable for missiles with high spin rates and low velocities. 

Gravity-induced curvature of the trajectory usually places a lower bound of 

500 ft/sec on range tests although special tests have been made at lower 

velocities over a fraction of the total range length.  With this velocity 

bound, a statically stable missile would have to have an unusually high spin 

rate so that I    could be measured in a ballistic range test. These spin rates 
S 

are, however, required for stabilization of bullets and shell.  Since P/M may 

be expressed as ks  /P, we need only consider this ratio to determine the effect 
8 " ~ 

of model shape, mass distribution, and spin on i . For most spin stabilized 
7-1 g 

1.1 < S  < k 
g 

I 
1/30 < -£ < l/lO (2.2) 

.25 <£i< .65 

where I  is maximum missile diameter* 
nfl 
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inertia ratio and spin rate and conversely.  Thus the test maximum estimate 

of P/M may be found by combining the low values of the above inequalities. 

• IT I s i.rm   taKi     's (o  x\ 

According to Inequality (2.3) a spinning missile with a diameter 10  ft and 

a velocity of 500 ft/sec could have a £CT of six milliradians.  This angle of a 

third of a degree can be measured but decreases very rapidly with increased 

velocity. A transonic test of the same missile would produce one-fourth this 

value of [ . A larger missile would, of course, have a proportionately larger 

i   .  In anv event £ is auite small and can be neclpcted in the anaiwin r>r  t.hp 
~g_/ _I.   . "S    *.       ]     ., 7//.""" >r angular motiun of supersonic missiles.  If it is necessary to consider 5 . it 

can be estimated and .subtracted from the measured |'s so that the motion to 

be fitted is a simple epicycle 

i - i = Kje ^  + K,e    - (2.4) 

«.J. u6r un6 j. requ8ncj.es OJ. un6 epj.cyc_L.e nave ueen determined. a better value of 

I may be computed "by use of Equations {6.6.2-3,25) 

„      - (0^ +^)(güv-2) 
£
g 

=       ~ ,* ^ j  (2.5) 

If the estimate was quite poor, the better value of %    may be subtracted 

from the measurements and the epicycle fit repeated« At most, one such 

■i + OTof T r\r\    T.rr\n1rl     Vie»     nönaoeöwr 

Turning now to consider the epicycle of Equation (2,k)  we see that there 

are in general eight unknown parameters. Four of these are the initial 

amplitudes and orientations of the modal vectors and four are the modal 

frequencies and damping exponents which are related to the aerodynamic 

Pfipffioi pnt   -hVi-rmicrVi   Knim + lnTio     f£   £   0"** = 0&\ T-P   -t-Vij»    "■»>■! r!    "! o    VSSTTI       -f-Vie   anHsl 

frequencies and damping exponents are essentially the same and there are only 
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six unknowns.  For this case the angles of attack and sideslip are uncoupled 

and each are described by damped sine waves which differ only in amplitude and 

phase. The analysis of this special motion is quite simple and will not be 

discussed here.  The more general eight unknown data reduction will, of course, 

handle this case and presence of zero spin only introduces two consistency 

checks on the derived frequencies and damping exponents. 

The data reduction is a combined graphical-analytic method which can be 

divided into two parts: 

(1) No damping reduction of short sections of the observed trajectory. 

Initial determination of frequencies and damping exponents from plots of phase 

and amplitude at these sections versus position of the section. 

(2) Refinement of these initial estimates by an iterative least 

squares technique which can be done by a digital computer. 

Over a short flight path, the damping may be neglected and the frequencies 

determined from estimates of the spin and static moment coefficient- The 

approximate slow rate may then be used to reduce the epicyclic motion to a 

much simpler circular motion by the transformation 

~  ~   " ^2a^S " V     ^1     ±V>? 

where 0. = 0;_ + 0o„s_ + (0, - 0^,_) s  and 

s  is the coordinate of the center of the interval 
o 

under analysis. 

If the annroximate rf_  is close to 0- . 0_ is a constant and t.hp  mnt.inn I'Q " r^a -- r2,     r2        -     ~ --          

li020 confined to a circle with radius K. and center at K_e    (Figure 7.1). Since 

this transformation is the rotation of each measured complex angle of attack 
■ 

through the angle - 0o(s - s ), it can be easily done by use of a compass and 

better values of 0> determined by trial and error« Note that 0  can be found 
10 
r £ 

0n from the angular location of the other transformed angles. The frequencies 

irom tne angular location on the circle of the complex angle for s = s and 
t o 
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are, however, much better determined from a comparison of phases at consecutive 

najc^uui ji    oc\_i>a.uno   wiu.i;ii   arc   üumc   uitjocuiut:   apax o.      r xiitu_i-,y ,    one   muuttj. 

amplitudes at the midpoint of each section are plotted versus position on 

semi log paper and the slopes used to determine the X.'s. 
J 

If these graphical values are felt to be too inaccurate, they may be 

inrnroved bv a least sauares techniaue. A direct least squares is not possible —c. 

due to the fact that Equation (2.U) is nonlinear in the <p .  and X.'s.  The 
J     J 

relations of the differentials of these quantities is, of course, linear 

~. r \,s . i   id 
d| = e X    dKin + sK,d\n + iK,(d0nA + sd0,") e 

X^s 
e c    dK^A + sK^dX0 + iKo(d0on + sd0J 

iCL 
e ' (2.7) 

The differentials of i  are selected to be the residuals of the fit of 

Equation (2 . U) to the experimental data 

iVrf 

observed   computed ' 

Thus we have n equations of the form of Equation (2.7) for the differentials of 

the unknown parameters where n is the number of observations.  This set of n 

linear equations in eight unknowns can then be solved by the usual least squares 

process and the resulting differentials adding to their corresponding first 

estimates.  If the new residuals for the improved set of parameters are smaller 

the process has converged and may be repeated until the residuals reach a 

minimum. Usually no more than two or three iterations are required. 

For some tests - the frequencies are observed to vary between successive 

sections of flight path. This change in frequency is usually due to varying 

P for a spin-stabilized missile although a strong Mach number variation of the 

static moment coefficient sometimes is the culprit. The frequencies do vary in 

at worst a linear fashion so that this phenomena say be handled by the 

introduction of quadratic expressions for the phase angle 

0, = 01rt + 0'^s + (1/2) 0
1; s2 (2.9) 

O O^ <J>-' J 

and the use of a ten unknowns least squares routine. 
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When it is necessary to use Equation (2.9),  the relations between the 

frequencies, damping exponents and aerodynamic coefficients must be revised 

in accordance with the results of Section 6.7. According to that section, 

the frequency relations are unchanged and apply for the local values of P and M. 

Experimentally, the frequencies are best determined at the midrange point 

(s = 0) and hence values of P and M and their derivatives can be obtained for 

flight conditions at this point. 

P = <0+<*20 (2.10) 

M - *W*20 " X1X2 (2-11) 

P' = $1  + 0£ (2.12) 

The expressions for the damping exponents, however, are changed. 

According to Equation (6.7.13) 

0" 
\    = \* J  (2.11*) 

J J  20 - P 
J 

H0' - FT 
where X . = - —-— - 

J    20. - P 
J 

* 
The X. . at the midrange point can easily be computed from the range measurements 

J -x- 
of frequencies and damping exponents and H and T obtained from the \.'s by the 

J 
usual relations. 

H = - (\* + X*) (2.15) 

- (02oxi + (C*?) T =  £°-i J2-2- (2.16) 
^10  + ^20 
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Frequently, the rf"'s are Txjorl'"' determined«  If it is felt that variations 
j 

in P and/or M are large enough to affect the damping exponents, their derivatives 

often can be independently measured or estimated and used in Equations (2.12-1J) 

to obtain sufficiently accurate (£" 's for u^e in Equation (2*11+)»  This approach 

naturally depends on the judgement of the program engineer. 

Although the angular motion can be analyzed to obtain directly the static 

moment coefficient, it does not yield values of the damping and Magnus moments 

but only combinations of these coefficients with the drag and lift coefficients, 

i.e., H and T. The drag and lift coefficients must, then, be measured or 

estimated so that the damping and Magnus moments may be obtained. The drag 

coefficient may be easily obtained while the lift coefficient may be measured 

in two ways:  (l) indirectly from the static moment coefficients of two models 

at the same Mach number but with different centers of gravity (Table 6-1 and 

Equation (6.6.7) ); and (2) directly from the swerving motion (Equation (6.9.8) ). 

The analysis of the swerving motion of a symmetric missile is quite simple 

because Equation (6.9.8) is linear in its two complex unknowns, B and B^ , and its 

three real unknowns, CT , C„ , and C„ + C„ .  Since the coefficient of 
JJ   a IM    a, 
a  pa     q   a 

C.T + C.T is a single integral and the coefficients of CT  and C„  are double I\l    JN. L      N 
q   a a    pa 

integrals, C  + C  has a much smaller effect on the swerving motion which has 
n      Ä 
1      <■* 

not as yet been observed.  Thus the swerving motion of a spinning missile is 

linear in essentially six unknowns and the measured values of y and z may be 
e     e 

fitted by a direct use of the least squares method. If the missile has small 

or zero spin, the Magnus force has no measurable effect and the problem reduces 

to five unknowns. 

For a nonspinning missile the components of the swerving motion are 

essentially damped sine waves about a line. The amplitude of the wave is 

proportional to the lift coefficient and could be obtained graphically.  If 

spin is non-zero, the integrals and least squares solution are much more 

suitable for calculation by digital machine than by an individual engineer. 
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7.3 Analysis of Motion of Slightly Asymmetric Missiles 

For a rolling motion with a constant or "nearly" constant roll rate, 

the angular motion of a slightly asymmetric missile is described by the 

equation: 
id id     id 

I = K,e   + K-e        + K,e J (yj.l) 
x 2 t> 

where K, is constant and 

h •*» + / (¥) *i • 
o 

When K^ is large enough to affect the measured angular motion. Equation (j.l) 

must be fitted. 

Figure 7-2 shows a tricyclic angular motion for which K, is 20 milliradians. 

Analysis of this quite complex motion is almost impossible without knowledge of 

the roll orientation.  In some range tests K, is intentionally induced through 

control surface deflections in order to measure control effectiveness but in 

most tests it appears through the presence of slight manufacturing errors. Thus 

it is good policy to determine the rolling motion of all finned missiles 

undergoing ballistic range tests so that the effect of manufacturing error may 

be eliminated and the desired static and damping moment coefficient may be 

obtained. 

The roll history can, then, be used to transform the motion to missile 

fixed coordinates by rotation of each angle through its corresponding roll 

orientation.  (Figure 7>3) 

~ -id   ^i - 0)   ^p - 0)   ^n 
se -'- = Kne  "     + Kge  -     + K e ^ (3-2) 

The result should be an et>icvclic motion about the point K,e   .  K, and GJ,- 
" 3       3    30 

are easy to determine since they are the polar coordinates of the center of this 

epicyclic motion. The origin may be moved to this point and the epicyclic 

graphical reduction described in Section 7= 2 performed. The point could be 

rotated back through the angle 0 about the new origin and a somewhat simpler 

epicycle obtained (Figure J.k). 
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The least squares iteration may be performed for the different xa_L;j 01 

ns. 

I" X,s ,  I    10, 
d5  =    e x dK1Q  + sKjd^  + i\(d0lo  + sd01) I e 

e " dKgQ  + sKgdX2 + IK^djtfgQ + sd02)J e 

+   (dK.  + iK^dtf^)  e    D (3,5) 

Equation (3.3) can be simplified by the fact that the trim amplitude decays 

rapidly with increased spin rate and at low spin rates the sum of the frequencies 

is almost zero. For moderate Magnus moment coefficients, the difference of the 

damping exponents is also quite small for low spin.  If the graphical analysis 

indicates that both of these quantities are small, the differential corrections 

can be reduced to an eight unknown problem by requiring them to be exactly zero. 

dl = (e * dK1Q + iKxd0lo) e x 

X s 10 
+ (e x  dKgQ + iK2d02o) e 

+ (dKj + IKjdJZ)^) e J 

+ s(K,e   + ICe "") dX.1 

(Kj_e * - Kge ~) d01 (3.U) 

The assumption of constant or "almost" constant spin rate is a grave 

limitation to all of the tricyclic reductions discussed up to this point. 
7_0 

In 195^ an entirely new approach to the reduction process was investigated' "~. 

In this approach the actual differential equation for I (Equation 6.8.1) with 

T = 0 was programmed for an analog computer. The four initial conditions and 

four real parameters contained in H, M and A could be varied by changing 

potentiometer settings. Experimental values of a and ß were plotted versus 
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s and a scries of solution curves for different values of the eicht parameters 

calculated. A trial and error process could then be developed to obtain quite 

good fits of the data (Figure 7.5)« An experienced operator could obtain good 

results in three or four hours. 

After our only experienced operator was lost due to the intervention of 

the stork, the possibility of a completely mechanized reduction was re-examined. 

In Section 6.8, a closed form solution was derived under the minor approximation 

that the variation of P in the £ of Equation (6.8.1) could be neglected. 

^1     ^2  ~ 
s = ^e   + V   + sA 

(Xx + i^)s f.     -{X1  + i0'|)Sl + i0(Sl) 
where i,   -  B 

A / 
ds. 

(3.5; 

Ü2 + i^2)s p    -(X2 + i^2)s1 + i0(s1) 

/ 
ds. 

B = iA X1 - \2 +  i(01 - 02) 

The corresponding equation for the differential corrections is 

Xns 
d! = (e X dK_ + iK,d0,Je '■h 

-LU ± ■ ±v 

X2s 10, 
+ (e ~ di^0 + iKpdp^e 

+ re./B'idB 

iiZil  ÖIA 
+ <sKie   + oöT > dXl 

"1 

' v""2~     BX^ ' ~"2 

X /'S oV Q 
1J0,   OS 

(isK^e - + —T ) d02 
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, t 
The initial values of the K. and 0. s may be obtained from estimates of 

jo    *jo 
initial angles and angular velocities by use of Equations (6.6.21-22).     The 

damping exponents can be initially taken to be zero and the frequencies 

calculated from the spin and estimated static moment coefficient. For each 

guessed value of B a sequence of iterations may be, then, computed by a 

digital computer, and convergence sought.  Usually not more than three guesses 

of the complex number B are necessary to obtain successful convergence. A 

comparison of these two methods showed better fits (one milliradian standard 

error instead of two milliradians) but essentially the same values of M, H and 

A. The differential corrections method has the principal advantage of eliminating 

the need for a highly trained machine operator. 

The swerving motion can be handled in a fashion quite similar to that for 

a symmetric missile. Two more unknowns must be considered in Equation (6.9.8), 

C  and Cz and the integrals I, computed.  Either Equation (3.2) or Equation (3-5) 

may be used for i  and indicated integrations taken.  These integrations and the 

least squares solution are extremely laborious for hand computation but can 

easily be programmed for a digital computing machine. 

7.^ Criteria for Quality of Results 

The various aerodynamic parameters, M, H, and T, are related to the 

frequencies and damping exponents of the angular motion. These in turn may 

be assigned statistical weights through the least squares differential 

corrections process.  If A. 's are elements of the inverse matrix obtained 

from the least squares normal equation, the error in a function of two 

variables z = f(x., x.) may be computed by the statistical formula 

o 
€ 

d. 
e I-SH   A,, +2£-  £- A„+  £-1   A 

2 
(i+.l) 

where e" = t=i- 

A I 

n - k 

k is the number of unknowns in the reduction. 
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nrof11 n & Although Equation fk.T.^ has the attractive feature of giving a 

standard error for the aerodynamic parameters, it is a relatively blind 

calculation based on statistical assumptions which are hard to verify. In 

the drag analvsis an alternate a^inroach was used which considered the size 

of measurable effect of the drag force in comparison with the experimental 

accuracy. A similar bui, much more approximate criteria may be derived for 

the angular and swerving motion. 

Since the static moment coefficient may be obtained from the frequency 

of one modal vector when the spin rate is known, essentially circular motion 

with amplitude at least three times the measurement error is sufficient. 

When the spin rate is not known both modal amplitudes must exceed three times 

the measurement error.  These criteria assume that at least two revolutions 

of the given modal vector are observed and at least ten individual angles 

have been measured.  Good values of the static moment coefficient may need less 

data but the amplitude requirements must be made larger. These amplitude 

requirements must be upped for reasonable determination of the damping 

exponents.  With the amount of data specified above, both modal amplitudes 

should exceed five times the experimental accuracy in i  for good measurements 

of the damning rates. 

The swerving motion of a symmetric missile is usually a spiral motion 

The asymmetric lift with amplitude determined by C  and phase by ~-  C 
a pa 

term adds another spiral with amplitude proportional to 
~o    _o 

average amplitude of these terms may be defined by the equations 

iC, The 

RL " CL Fll 
a I  I average 

i.„=^V. I: R 

R. 

n  I«! 

CY +iCZ o     o 

average 

I, 
average 

0*.2) 

(h.^\ 

(k.k) 

If the average radius exceeds three times the distance error, the corresponding 

force coefficient should be reasonably well determined. 
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7.'; Experimental Results 

Since the 19^7 firings of the G. E. Dragonfly, a wide variety of 

configurations have been tested. These extend from simple geometrical shapes 

of spheres, cones and cone cylinders to precision scaled models of missiles 

such as the Nike Zeus, from 20mm bullets to models of the Jupiter and Atlas 

nose cones and from the Bolz =Nicolaides finned cone-cylinders to five inch 

models of a delta wing jet fighter.  From this wealth of experimental work 

we will select four programs which not only illustrate the capabilities of 

ballistic range stability measurements but also contain results of intrinsic 

aerodynamic importance. 

(1)  Static Stability of Ring Airfoils. 

Since the static moment and normal force are usually easily measured 

by wind tunnel tests, few ballistic range programs are initiated with the static 

stability as the primary objective.  Of course, when the Reynolds number and/or 

the Mach number can be better simulated by a ballistic range test, exceptions to 

this rule are made.  In addition to this, some shapes are difficult to mount 

properly in a wind tunnel and, therefore, may require range tests. A recent 

test of a series of ring airfoils was made for this reason. 

These airfoils had a simple double wedge cross section and the wedge 

Q w rr cm." gle was varied from 20 to 35 (Figure f.6).    For all models the center of 

gravity was located at the midchord point and the maximum diameter, ^, was 

4.75 in.  The other dimensions were 

9 deg.   c in.   t/c 

20 T      T7 
J-.J-I w. 1U 

25 1.81 0.23 

35 1.70 0.35 

These models were tested at supersonic Mach numbers up to 3-7 and were found 

to be statically stable for Mach numbers in excess of 1.7«  Below this Mach 

number, the internal flow choked and the rings tumbled. 
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The linearized supersonic theory for thin ring airfoils is quite 

similar to that for thin two-dimensional airfoils and was developed by 

H. Mirels   in 19^B.  According to this theory, the center of pressure is 

located at the midchord point and the lift coefficient, CT , is 2/ß where 

rs—- UQ 

ß = VM - 1 and the reference area is one half the wetted area.  Thus the 

theory predicts that the models actually tested should be neutrally stable. 

This discrepancy from the thin airfoil theory may be due to the 

finite thickness of the models.  The static moment coefficient is, therefore, 

plotted versus thickness ratio for M = 3-1. As can be seen from Figure 7.7, 

the moment coefficient is a linear function of t/c.  These values of C 
"a 

actually imply a very large static margin.  If CT  is estimated to be yj  percent 

o    a 
greater than its thin airfoil value, the 35 vedge would possess a static margin 

of almost 30 percent.  ^Reference length was the chord of the airfoil.) 

(2)  Dynamic Stability of Cone Cylinders. 

With the current emphasis on the glamorous hypersonic speeds, the 

appearance of severe subsonic or transonic problems is especially unpleasant 

for the aerodynamic engineer.  Unfortunately, a manned re-entry vehicle must 

fly at these pedestrian velocities and the blunt ICBM nose cones have subsonic 

impact velocities.  Ballistic range tests of a variety of low fineness ratio 

bodies of revolution similar to shapes used for re-entry have revealed an 

important subsonic dynamic stability problem.  The linear damping moment 

coefficients have been positive at high subsonic velocities for certain center 

of gravity locations. 

This interesting result was first obtained for cone cylinders with 

fineness ratio of five' ',      (Figure 7.8)  The actual dependence of the damping 

moment coefficients on e.g. location was given in Table 6-1. 

A       A 
cM + cM = cM + C  - S 
M    M.   M    M.   ce 
q   a   q   a 

(CN + CN,} " CM 
1   o 

cc  N 
'q  "a   "aj   °  a 

" C cM       (5.1) 

A       A 
C__ + C__ = C„ + C„ + s  c„ (5.2) 
N     N.    N     N.    cc  W \y>      1 
1    a   "q   "ä. °      a 
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According to Equation (5.1), the sum of the damping moment coefficients is a 

quadratic function of e.g. location. This equation may be simplified for 

ballistic range use by the introduction of a modified damping moment coefficient 

A                    AH 
c„   + c„ = &,.   + c„ M           M. M          M. 

q           aj q        a 

A 
S     C™ eg M (5.5) 

a 

This quantity is directly computable from the directly measured quantities 

C  + C   and C_,  and the distance to the e.g. from some reference e.g. 
MM.      M q    a a 
location.  For this modified damping coefficient sum the e.g. dependence i£ 

linear and the damping force coefficient sum at the reference point is the slope 

of a line fitting experimental points in a 
A        A 
CM +CM. 

L q   aJ 
versus s  plot, eg 

A       A 
CM +CM. 

. q    aJ = \+ \ 
s  (C„ + C„ ) 
eg  Nq   N&

; (5-M 

Three e.g. locations were used in the tests of the cone cylinder model. 

These were the centroid, 0.40 caliber forward of the centroid and 0.^5 caliber 

rear of the centroid. The centroid was taken as the reference point and 

modified damping moment coefficients were plotted against e.g. location for 

two Mach numbers (Figure 7«9)- 

At M = 1.26 the scatter of data is rather poor but the subsonic points 

have very little scatter and are definitely linear with e.g. location.  Since 

the modified damping moment coefficients at the centroid reduce to the unmodified 

coefficients, we see that Cw + Cw  is definitely positive at the centroid for 
M    M. 
q  cc 

M = .8. Indeed the further information that Cw at the rear e.g. is 3.7 can be 
M a 

used to show this sum to be positive at the rear e.g. as well. 

These values of C„ + Cw are sufficient to make H negative and the 
q.   a 

missile with the middle or rear e.g. location must, therefore, be dynamically 

unstable. To add insult to injury, it was found that spinning cone cylinders 

at M = .8 were dynamically unstable for all e.g. locations. This state of 

affairs is caused by the Magnus moment. In Figure 7.ID,  the Magnus moment 
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ooeiliciont IG plotter versus e.g. location. As can be seen from this figure, 

the center of pressure of the Magnus moment changes radically with Mach number 

while the Magnus force coefficient which is the slope of the linej in this plot 

is relatively unaffected. The large negative values of C   make T negative 
TYV 
±~-* 

and. thus, the dvnamic stabilitv factor, s.. will be negative when H is noc.itivo- 
' d'        "w 

According to the stability analysis of the preceding chapter, dynamic instability 

will therefore occur for any spin rate.  This simple configuration displays two 

of the three ways in which a statically unstable missile can not be made 

dynamically stable by spin. The fourth illustrative program will include the 

third way (s, > 2), 

(3) Magnus Characteristics of Finned Missiles. 

A symmetric finned missile with a reasonable stability margin does 

not require spin for stability and. therefore, a toiowledge of its Magnus 

characteristics is unnecessary. Unfortunately, perfectly symmetric missiles 

are impossible to manufacture and the aerodynamic asymmetries possible with 

usual manufacturing tolerances are sufficient to cause undesirable dispersion 

when the spin rate is zero. Usually this spin rate required to reduce dispersion 

due to asymmetries is not large enough to encounter Magnus instability although 

care is required to avoid resonance.  It is important to know what are the spin 

bounds for Magnus instability if any so that too high a spin rate is not induced. 

One case where high spin rates may not be avoided is that of a finned 

rocket with short burning time with respect to the pitching period.  In order 

to avoid dispersion due to rocket jet misalignment, several revolutions during 

burning should be induced and quite large spin rates are possible. A knowledge 

of the Magnus characteristics of a proposed rocket shape of this type would be 

essential to prove the feasibility of its satisfactory design. 

A brief examination of the theory of Section 6.7 shows that Magnus 

instability is impossible if the dynamic stability factor is between zero and 

two. This bright possibility of no spin upper bound is considerably dimmed by 

the fact that s- for every finned missile whose Magnus characteristics have 
 J   T_ - ueeu meetsLLTBU nas  Deen iouna -co De ouxsiae tms mtervax.    Tnus,  an upper bound 

on spin for dynamic stability is always present. 
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A study of the ^ro^erties of two finned missiles is sufficient to 

obtain characteristic values of the coefficients and a feeling for the effect 

of these coefficients on the spin bounds. These missiles — the Basic 

Finner  '    and the 127/60mm Anti-Aircraft Missile   -- are shown in 

Figures 7«H and 7«12 and some of their physical properties are listed below. 

T&BIE 
I. T       l-r 

I  = d   L/D   e.g.*   *y     x' y 

Basic Finner      .70"   10    3.90    2,k        .Q2U 

127/oOmm Missile  2.36"   17   8.25   3.9   .Oil 

The Basic Finner has a ten caliber Ions cone-cvlinder bodv with 20° 

total cone angle. Its four simple wedge fins are square in planeform with 

chord equal to the body diameter, d, and have a thickness ratio of .06.  This 

missile has been tested with various e.g. locations and at various Mach 
7-9 numbers both with and without fins  . 

The 127/60mm missile was the longest finned missile tested in a 
** 

ballistic range. Its 127mm span fins are mounted at the end of a 39 inch long 

body whose maximum body diameter is bOmm. This missile is fired from a 

smoothbore 127mm gun by use of a center ring sabot. 

The various aerodynamic coefficients for these missiles are plotted 

versus Mach number in Figures 7.13-15»  Since several e.g. locations were used 

in the flight tests of the Basic Finner, the normal force coefficient could 

be measured both directly from the swerving motion as well as indirectly from 

the static moment coefficient for different e.g. locations. Cw for the 
a 

127/ 60mm missile could only be obtained from the swerving motion. The normal 

force is essentially the same for both missiles. The greater effective area 

of the Basic Finner fins does provide slightly more lift. These fins actually 

deliver four times the lift of the body as can be seen from the body only curve. 

* 
From base in body diameters. 

** Recently the U5-5 inch long five inch high altitude gun probe was tested in 

the Transonic Ranee and established «• "»*» i*»n»+.h ».«.^wi '"^-3 
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The danvninrr moment and. MQCTT
IUG moment data for the 12Y/60rnrn missile 

arc much poorer than those of the Basic Firmer.  The i27/60mrri fine were usually 

at least slightly damaged by sabot fragments.  This damage introduced 

aerodvnamic aRvrnmet.rv.  sinpo t.hp <n-iiri uac nnt mpn^u^^d du^i^f this uroßram« 

a tricycle reduction could not be employed.  The epicycle reductions which were 

used had average to poor fits and corresponding poorer determination of the 

damping and Magnus coefficients. 

The much larger Cw 4 Cw for the 127/60mm is due to the fact that 
q   a 

its fins have twice the lever arm that those of the Basic Finner have and, 

therefore, the same angular velocity will induce twice as large a cross velocity. 

ilij-o    yy^iij.ia   j.ca.i_t    ua    w    CA.JJCI_O   U.CUUJJJ.11^,   muuieiiuü    1UUI'    oxiueb    lttl'gei'   anu    unxs 

expectation is surprisingly well verified by Figure 7.14. 

The Magnus moment coefficient behavior for these two missiles is 

completely unexpected.  The moments are even opposite in algebraic sign! A 

simple physical model can be constructed to explain the positive Magnus moment 

The 127/60ram missile increases its spin rate throughout its flight 

through the range. Thus, each fin has a associated force in the direction of 

rotation.  Normally, these forces cancel each other and provide no yaw moment 

but only a roll moment.  The fins, however, are partly in the boundary layer 

separated flow of the body and it is not unreasonable to expect the lee side 

fin of a missile at angle of attack to have less effective area and hence less 

lift force than that of the windward side fin.   This unbalanced force will cause 

the missile's nose to rotate in a direction of the spin and, thereby generate a 

positive Magnus moment coefficient. 

Since the Basic Finner does not have its fins in a separated flow and 

has its spin rate at the steady state rate for most of its flight, it is not 

surprising that its Magnus moment is quite different. An explanation for its 

negative coefficient is not possible at this time- 

These radically different Magnus moments provide essentially different 

dynamic stability factors. s_ for the Basic Finner is negative while for the 

127/uOnni it is positive and greater than two. The dynamic stability factors 

and their associated upper bounds for spin are plotted in Figure 7.16. 
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Immediately after World War II, the linearized theory of projectile 

motion was reasonably well-understood but few actual values of the damping 

and Magnus coefficients were available. A joint Army-Navy program was 

initiated to fill this void.  Since at that time these measurements could 

only be made by a ballistic range and the only available range was the BRL 

Aerodynamics Range, the Army agreed to construct, measure, and launch the 

models while the Navy provided its data analysis facilities at MIT.  The 

bodies tested were secant ogive cylinders with two caliber heads and three 

different cylinder lengths. The radius of the secant ogive was twice that of 

a tangent ogive and was so selected for minimum drag.  The total lengths of 

these models were five, seven, and nine diameters. Three center of gravity 

locations were used for each body length and tests were made of each 

configuration at three different supersonic Mach numbers.  Thus, twenty-seven 

sets of linear coefficients were obtained from this ambitious program  . 

From this mass of data we will extract several interesting results. 

In Figure 7-17 the Magnus moment coefficient for the various total 

lengths and center of gravity locations is plotted for a Mach number of 1.8. 

The scatter of the data is clearly small enough to allow a good determination 

of the Magnus force coefficient and its center of pressure. 

A rather simple model for the Magnus force on a cylinder has been 

obtained by J. C. Martin'""LW.  According to this theory the boundary layer 

thickness on a cylinder at angle of attack grows as one moves from the 

windward side to the lee side.  If the cylinder is spinning, the spin will 

cause the plane of symmetry of this boundary layer configurations to rotate 

to a position out of the plane of the angle of attack. The pressure distribution 

for the resulting effective shape can, then, be found by the usual slender body 

approximations and integrated to yield a force component normal to the plane 

of the angle of attack. For a laminar boundary layer Martin shows that the 

MaenUK ■Pm-i-» r-no-P-fM o-ion-h hoe the fOTTü 
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C.       = ALfi (v.>) 
pa 

A 

where L is the cylinder length in calibers 

5 is the boundary layer displacement thickness in diameters 

and A is a parameter which is independent of length. 

The actual boundary layer, however, was partly turbulent and the actual shape 

was not a cylinder. The displacement for either a laminar or turbulent boundary 

layer can usually be expressed as a power of the length whose exponent is 1/2 

for laminar flow and approximately 1/5 for turbulent flow.  If we assume a nth 

L   dC 

na o    dL 

U - n/ - 
(s.M 

9 _ 
where 3/5 < **  < 9/1^ for 1/2 > n > 1/5. 

The presence of the nose may be incorporated in the theory by 

replacing the total model lenecth. L. bv an sffpntivp r-viinHpr- iono+h T, - T 

where L is the same for all models at the same Mach number. Equation (5.6) 

assumes the form 

C-P'M=(f^) <L-LJ (5-7) 

The possible range of the coefficient in Equation k.J  is between .600 and .6^3 

and, hence, this C.P,  dependence on type of boundary layer is quite small. 

The C.P.M is plotted against length in Figure 7.18 and lines fitted with slope 

.6k.     The accuracy of this predicted dependence of C.P. M on length is much better 
1*1 

than our approximations deserve. 

In Figure 7-19, the modified damping coefficients are plotted versus e.g. 

location.  This figure also shows that the fnrc.p nnpffiripnt. «+■ -t-Vio centroiri 

and damping moment coefficient of the centroid are reasonably well determined. 
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7-11 
Slender body values of these coefficients have been computed   .  For bodier; of 

revolution whose reference length is base diameter and reference area is the 

base area then these slender body values reduce to simple expressions 

= 2 v (',J>A C.     =   d  X 
-N    -  eg \ - 

a 

r - -   o   C2 j. 9.   fv\tt t   \                                                                                        (r    irs\ 
M        eg  « ( M eg c x    ' 

UM. _ " n v,/VAcg " Ac' ^•J"L' 

is the distance fi-om the base to the center of gravity 
eg 

in diameters 

A 

V   is body volume in cubed diameters 

and x   is distance from the base to the cent mid in diame+<=-rc C ------ _ 

According to these relations C  + C  at the centroid is a complicated function 
q   d 

of added cylinder length, but C„ + C  at the centroid has an exceptionally 
q   a 

simple form» 

(C„ + CM )„ = - 2 x? (5.12) 
q   a 

A2 
In Figure (7.20), the ratio of (CM + C ) to x is plotted for the three body 

q   Ma c    c 

lengths and three Mach numbers and compared with the predicted value of -2. The 
- J ■» -s4* ^iA      A f preuici,ea dependence on j.engm is gooa out the coefficient should be decreased 

from -2 to -3.5. 

A study of the dynamic stability of the nine caliber long models shows 

that the third possible form of linear instability is actually physically 

realizable (s^ > 2). At a Mach number of 1.8 the forward center of gravity 

models have a s^ of 2.5. Thus, all three combinations of aerodynamic 

coefficients for which a body of revolution can not be made dynamically stable 

by spin (sd < 0, B^  > 2, H > 0) have been observed. 
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The aerodynamic coefficients of these references differ from those of this 
book in two ways: (l) The force coefficients (CN's) have the opposite signs; 

Al 

(2)  the coefficients of angular velocities (r. .  r.       4- r   , r    , r       + p 

are twice those of this book due to the use of //2 instead of £  in reducing the 
angular velocities to dimensionless quantities. 
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ANGULAR MOTION OF ASYMMETRIC MISSILE WITH VARYING ROLL 
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DYNAMIC STABILITY CHARACTERISTICS 
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RANGE MEASUREMENT OF CUBIC COEFFICIENTS 

8.1 Introduction 

In Section 5«3« we considered the effect of a drag coefficient which was 

a linear function of the squared angle of attack.  In that cane, it was found 

that the usual drag analysis yielded a "range" value of the drag coefficient 

which corresponded to an "average" 6 , i.e. *?r. 

The analysis of the pitching and swerving motion up to this point has been 

limited to linear forces and moments.  Thus, the corresponding coefficients were 

assumed to be independent of angle. The large angle of attack program involving 

the 20mm bullet which was mentioned in Section 5-3 included complete reductions 

of the pitching and swerving motion. Although angles up to twenty-five degrees 

were used and these angles were outside the linearity range for the forces and 

moments, reasonably good fits of the observed motion were obtained.  The 

derived values of the various coefficients did vary with the amplitude of the 

pitching motion.  Thus, it should be possible to correlate these "range" values 
^■P 4- V,^     *-»^~-P-P-i* rt ■? ^«4- « * .-; 4-V  4-U ~ . .~ ~J>J> L -• T  
VJJ.    i/iic   1-ucj.i.iticiii/b   mua   one   y±uyci'   Klieüüive   ttngJ.es. 

In this chapter, the angular motion of missiles acted on by a cubic static 

moment will be analyzed in detail. This will be done first by neglecting the 

influence of geometric nonlinearities (7 = 0, 7 = 1). Then moderately large 

geometric angles, a cubic Magnus moment and linear lift force, and damping 

moments will be inserted and "relations between the "ranee" value«; and thp nrnnsr 

average angles derived. Finally, a similar analysis will be developed for 

swerving motion with cubic lift and Magnus forces.  The utility of these relations 

will be demonstrated by comparison with certain exact solutions, and application 

to actual range flight tests. 

8.2 Cubic Static Moment; Quasi-Linear Solution 

The simplest possible nonlinearity in the aerodynamic moment is a cubic 

static moment. The usual symmetry consideration requires that it assume the 

following form 

C + iC = - iC„ I m    n     M a 

= - ifc  + c.R2U (2 1) 



The   il.-l'inil ion   of   i' in   Rnnal. i on    ('S. 1 \    i :-.   r>n.",enh i ul I v   il i I'l'i n nf.   from   t.h.'il,   n::i:<J 
* "   M  "" ~"i       v --/ — 

a. 
by most aei'odynumu'.ist;;.  i!„  is defined here as the coei'L'ie i ent of the angJe >f 

JVJ   

u 
attack in an expans ion of the static moment, not the derivative of the static 

moment.  This .1 L.;t Lue tion vanishes for a linear moment but is important 

The aüsumpt ion that only a cubic static moment i.u acting reduces 

Equation (< .<  .12) to a very simple form 

T" - iP?' - (M + b^b")! =  0 ('s.?) 

ßSÜ , -2 
o  2m  t  o 

Mo = 75=- k+  c- 

If H-, vanishes, the solution to equation (.2.2; would be 

i  = K_e   + K.e fp. -^ 

where H  = (7) 
2    s/\2/   "o 

Our objective is to find an approximate solution to the nonlinear Equation (2. 

which has a form similar to that of Equation (2.3).  This solution would then 

simnlv relations hptuppn t.hp   nhsprvprl ffpnupn^ipc  + hi= nliopnrofl rtamnl ■...-, 

exponents, the static moment coefficients, c , c and the modal amplitudes, 

The teennxque used will be an extension of the Kryloff-Bogoliuboff 
P _ "i i 

equivalent linearisation method"  ' .  This method is a generalization of the 

method used in Section 6-7 for variable coefficients and can be used for 

nonlinear u.amping as well.  Somewhat more accurate analyses of the cubic 

static moment motion are possible from a consideration of the exact elliptic 

integral solutions but these analyses lead to essentially the same relations 

wiicu   apjj-i-xcu.    i/u   uttxiibi.it   ituigc   uaw .       we   win 

solution to determine the error implicit in our approximations. 

lt^ 



Wo  üiiüiuiio  tliat  the  K.  and 0.':J  oi'  Equation   (2,.'j)   net:   l'unction:;  oT  :,   und 

aii'ieivntiate tnat  equation twice. 

^ tfr 

i     =   (K±  +  i01K1)e     -1"  +   (JC,  + 10^)0    r 

?■ - |"K; - (0^)2 K2 +1(20>^+ 0J KX) 

K^  -   (0^)2  IC,  + i(20^C,  + 0^  K0) 

(».'») 

-      10, 
C 

10. 
■ ^ 

(2.>) 

Equations   (2.3-2.5)  may now be substituted in Equation   (2.2)  and the  result 
id 
X1"l 

rlivir1<=»ri   bv   X   i*  „    „2_ 

KÜ 
(0;)2- P0; +Mn-^-1 (20; - P)i + ^ 

"1 L "1 

K, 

O &o „ft 

(2.6) 

t (02r - p02 + MO 

1 -, A 
K2-K^-i|_(202-P)K2+r^JiK-J-e-^ 

6^11 

K
2
.^.  

"1      "2      "1"2    L" 
K- x      L1' 0  . o-i0 

(2.7) 

V^    A.    V*^    J.   OTT   V       n^r,    rk 

_ _i *   /* /i( ^ 
^ 

For a linear static moment, the left and right sides of Equation (2.6) 

are quite similar in form with the exception of the presence of factor K~ e"1 . 

If 0, and K, vary slowly in a period of $, the linearized Equation (2.6) could 
• - —•*•■* --3  V.-:?  -Ä-,, -J ^J ,= =  4=U~^ Ll_    _ 3 only be saxisriea oy requiring tnat both sides vanish. Another way of saying 

this would be that the periodic term on the right of the linearized Equation (2.6) 

has no effect on the almost constant terms on the left side.  Indeed, the average 

of this term over a period of 0 is essentially zero. The influence of the 

fluctuating nonlinear term will, therefore, be obtained by computing its average 

over a period of 0. 



K 

M ̂62(1 + £ e"1*! 
K, 

M 
3     /" ,2n +^P-L0VI^ 

U.V. 

*  / 
J 
o 

o- 10 
x c: 

^ A *2, *2 „-i{l , „2„-2i$f" 
v^l ' "2' K7 C   T ^2C uy) 

= M^ + 2K|) (2.') 

Equation (2.6) may now be averaged with the aid of Equation (2.8), the small 

damping term in the real part may be neglected in comparison with the squared 

frequency, and a pair of real equations formed from the real and imaginary pare: 

(&l)d  -   Pf?S! + M + M,fi2. = O 
" J."    'X   o   ^"el 

fo  n\ 
\<-'7 ) 

t 

K, 
l 

0, 

x  20^ - P 
(2^r\\ 

V       'J       'J 
where 8^ = K^ + 2K£ 

Similar relations for the other mode may be obtained by multiplying Equation (2.uj 

by (K- /Kpje r  and averaging the result. 

(0g)2 - P02 + Mo + M^ = 0 (2.11) 

"2 , .  ^2 

^  20; - p 
//-k 1 /^ \ 

where S_ = 2K7 + K2 
e^   "1  "2 
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According to Equations (-.10) and (2.1?), damping of l.he modal arnplitud' :; can 

be caused by frequency changes.  The no changes may be t:uu;;od by Mach nu/mV.r 

dependence of the coefficient, change in air density euch a:; occur:; for an 

exiting or entering missile or changes in the spin to velocity ratio, P.  The 

relations for these variations are exactly the same as those derived in Section 

6.7« The nonlinear frequency equations, Equations (2.9) and (2.11), chow a 

fourth cause of a frequency change.  This would be caused by a change in nodal 

amplitude and would entail a coupling between the frequency and damping equations 

For constant coefficients and no aerodynamic damping- the modal amplitudes and 

frequencies are constant and this complication is not present. Whenever linear 

aerodynamic damping is considered, this coupling effect must be considered. 

For the analysis of range data acquired from missiles with cubic static 

moments, the frequency equations with the average or mid-range values of the 
2 

proper equivalent squared amplitude. 5 . need onlv be considered.  Modified _  _    _        .      .     '  ej       * - --- 
T.£l~]o+-1,-*r-»^        -f*/-\V.       4-Vlö        rillW       Qn^        -ri-vl/"v*3ll/%4-ri        rt-P       41\n       -P -b* ~ s* * -. ~ ~ ~ -J    -v -. - -       P~1T T        _£» .? -L ICiiiUiUlli:     J. Wi      1/JiC     QUU    OI1U    £M.AJU.Llv-UO     Ul      one    1 i C^UCIIUICÜ     I1UW     1 UÜUW     Uy    I lröL 

eliminating M between Equations (2.9) and (2.11) and then eliminating P 

between these equations. 

,t ■    • I A- 4\ 0,   + 0Q = P + K,[ -4 % (2.15) 

c2  
rl"e2 " ^"el 

where 5 = - 
e     ■'   -• ^   -  0. £ 

= 4 + 4 
According to Equation (2.14), the product of the measured frequencies should 

p 
be plotted versus the effective squared angle, 8 and a line fitted. The 

intercept of the line is proportional to the linear term in the static moment 

while its slope is proportional to the cubic term. 

-ii.c; 
-LTV 



;;. ; Cubic Static Moment; Exact Solution 

In order to obtain the exact solution of Equation (2.2), it in necer.cary to 

eliminate the coupling term iPl ,    For the case of no aerodynamic damping and a 

constant roll to velocity ratio, this can be done by transforming coordinates to 

a coordinate system which is rolling with roll rate p/2 

T.fe^1/2^ (3.1) 

.'. I"  - M (1 + rv82)i = 0 (J.2) 

where M = M - ¥~/k 0 o    ' 

"g ■ vAo 

Equation (3.2) has a very nice property of possessing an exact solution. 

This property is not shared by the other nonlinear equations to be studied in 

this chapter. Since a comparison of the exact solution with the approximate 

solution of Section 8.2 will establish confidence in this approximate method, 

we will now derive this solution. 

First we write the conjugate of Equation(3.2) 

I - (M0 + M^
2)'! = 0 (3.3) 

Multiplying Equation (3.2) by § , Equation (3.3) by I , and adding, we have 

A "AT    Ä^Al      ,A P. yA  AT    Ä Al t 
II +11 = (M0 * Mv^Kl I + I I ) = C1 =  0 (3A) 

A,AT   A 2 *2bk  x 
where C, = I I ■ H 5 + -£— ) 1 o     2 

C, is twice the sum of the kinetic and potential energies and is constant for 

the conservative cubic moment. A second first integral may be obtained by 

eliminating the static moment between Equations (3.2) and (3.3). 

A"~   Ä^A     t 
5 S - a ü - J.^2  ~ v (3«5) 

,ATA   A t7\ 
where Cg = i(l 6 - £ 6) 

llf6 



In order to interpret this constant of the motion polar coordinates are 

introduced. 

A 

I = 6e18 {'j.C) 

M 5 
.   C, = (&)2   +   (M)2   - (M fi2 + J—) (*,.7) \s • \ I 

C2 = 26
2ö' (3.6) 

Thus Cp is twice the flight path component of angular momentum.  These equations 

may be combined to yield simple relations for 8 and 9 

(S2)' =- J-  C2 + kC^b2  + küy  + 2^ (3.9) 

9* = (1/2) C26
=2 (3.10) 

The solution to Equation (3-9) is an elliptic function of the first kind  . 
A 

Of the four possible combinations of signs for M and H~,  three correspond to 

periodic motions.  These three are illustrated in Figure 8.1 and may be identified 

by the following types: 

(a) Stable at small angles; more stable at larger angles 

(Mo < 0, Mg < 0). 

(b) Stable at small angles; less stable at larger angles 

(Mo < 0, H^ > 0). 

\Cj     Unstable at small angles; stable at larger angles 

(Mo > 0, Mg < 0). 

These periodic solutions may be written in terms of the sine amplitude 

function. 

type (a) moment 

&~  -  &2 '   (62  "   bV  sn2^>  k) (3.11) 

type   (b)  moment 

52 = 62 + (S
2 -  52)  sn2(ofe,  k) (3.12) 

2 
cb   > 0 
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lypo   (c)   moment 

,-> ry p n o 

8"   -   hn  -   (o0  -   &.)  sn  (as,  k) 

\      / 

where 8-, is minimum value of 8 

6Q is maximum value of 8 

2    *   M2 ,.2    P, 
CD       =    -    M ?~ (Bj + 28g) 

M        _ *     /OE2     J.     R2,l l'o U) -      1-1_      -     p—      ^O,       T     Op,/ 

2 2 
2 *V'52  "   &1^ 

Ir        - 

^ 

2        2 
M^Bp -   B1) 

2S2 

types   (a)  and  ^c) 

The inequalities associated with Equations (3.12-13) are quite important 

in themselves.  Three interesting observations may be made: 

1. For type (a) static moment, periodic motion of any amplitude is 

possible. 

2. For type (b) static moment, symmetric planar periodic motions 

(P = 0,   8 = 0) are possible for all amplitudes for which the moment does not 

change sign; circular motion (8, = 8?), however, is possible only when the 

nonlinear part of the moment is not greater than two-thirds of the linear part. 

3. For type (c) static moment, possible periodic motions are those 
2 

for which the median value of & yields a stable moment. The variables &-, and 

& may be approximately related to the modal amplitudes K., and IC, by the 

equations 

61 = (K1 " V2 (5*lU) 

62 = (Kx + Kp)
2 (3.15) 

1U8 



The period of the elliptic sine function in Equations (3.11-12) corresponds to 
A . 

half the period of '0 in Equation (2. 7) since that equation can be put in the 

form 

o2 =  h\ -   (&2 -  h\)  sin2$/2) 

(3.16) 

= o2 +  (62 -  62)  sin2$ + rt)/2 

A, t 

P   = 0X - 02 
= KHH" types ^a) and (c) 

(3.17) 

= K(kT type (b) 

where K(k) is the complete elliptic integral of the first kind. 

(The period of sn(üis, k) is ^K/co.) 

0 may be computed from the quasi-linear frequencies of Equations (2.9) 
2   2 

and (2.11) for two special motions; circular (5-, = Bp; K,Kp = 0) or planar* 

(62 =0; K^ = Kg). 

For circular motion 

' (3.18) 

(3.19) 

*1 - ^2 = sW1 + m> +   / Mo(l + 2m) 

and for planar motion 

^  =  ^=2    /  V'1  + (3A)m) 

*2       M262 where  m = nuSp  = —— 

o 

m is the ratio of the cubic part of the static moment to the linear part. 

Equations (3.18) and(3.19) are compared with the corresponding exact equations 

for different moment types in Figures 8.2 and 8.3. These figures show 

amazingly good agreement of the approximate curve and the exact one. 

* 
This motion is called planar although except for zero spin it is not planar 
in range coordinates.  In other words, planar epicyclic motion is motion which 
includes zero total angle of attack. 

T l,r> 
J.1ry 



:-Ji  Ei't'oot of Larr.e Angler, on Epicyclic Frequencies 

When livrgc anf'lec* are considered, two quite different effects be corn' 

important.  First the simple geometric relations of Section 7-1 between the 

direction cosines and the angles of attack and sideslip must be re-examined 

and then the derivative of t.hp noslnp of t.hp t.nt.sl anslp of atta<-l<-  -*• . »mii-t- 

be retained in the equations of pitching and yawing motion. 

ft 1   f 1I.-\II.TV-      TTnuo-t- i  r\nc?        I7      1        1 )l _ 1  «O      mi i c +      Vm      ,,oo^      + ^      n r, ~\  n, ,1  „+ ,-,      4-U ,-      +■ ■_ „ ..„ — ,-. 

components of the velocity vector in the fixed plane coordinates, the exact 

transformation between these coordinates and the non-rolling coordinates seems 

to   V\p    nm'tp    formidable.        flnr    crpnmp+.-rlpfll     intin' + inn    mnv   -rtY»™M ^o    c?r\mo    Vipl n Thp 

motion of the 2 and 3 axes of the fixed plane system is directly related to the 

missile's periodic pitching and yawing motion and, therefore, the average roll 

rate of the fixed plane system should be zero and frequencies measured in the 

fixed-plane coordinates the same as those measured in non-rolling coordinates. 

To verify this conjecture for our cubic analysis we must, therefore, show that 

at least the second order annroximation in averaee ancular veloeit.v of t.hp 

fixed plane axes is zero. 

Since o>- £/V  as given by Equation (7 = 1=10) is at most second order we can 

use the first order approximations for n„ and n, (Equations (7.1.16)) 

/ 
~    V 
v  "2 

n„ = ?r + — (k.±) 
d. v    x, \    •-/ 

1 
~  x. w 

n3 = V + t (4.2) 

'//hen the higher order terms in Equation (7.1.10) are omitted, it reduces to 

'     '. 

77^" 

^no C*.3) > 

Angles are usually thought to be large when the approximations 
G = sin © = tan 8, cos 0=1 are not very well satisfied.  A glance at a 
table of trigometric functions shows that angles in excess of fifteen 
degrees cause these relations to be in error by more than %  and could be 
considered to be large. 



Equations." ('i.!-') may now be combined. 

1 
"*V" 

x . v + x;; w  x,x; 

2 "W (h.k) 

The trajectory terms in Equations v^.l, 2,4; arise from the lift force and 

are much smaller than the first terms in each of those equations and, therefore, 

will be neglected.  A good approximation for the transverse velocities is our 

familiar e^ic^cle 

,T = K,cos 0, + IC,cos 0, (k.<-\\ 

W 
77 -  K, sin 0, + K~sin d„ 
v    x ■ X d ' d 

(h. £\ 

(X\£ 
(K^sin $1 +  Kg sin 02)(K10^ sin 0± +  K^ sin 0 ) 

1 
5 4< + 4*,; 

, r _ 
+ | K^ cos 20x + K^2 

cos 202 

(0" + 0^) K,K^ sin 0, sin 0„ 
-L   ^  x ^     x    ■ c: \ • ■ i / 

According to Equation (4.7) co, i/V has a non-zero average! This set back 

to our geometrical intuition may be overcome by the realization that Equation (h.l) 

allows us to state the relation between frequencies in the range's fixed plane 

coordinates, 0jr, and frequencies in the theory's non-rolling coordinates, 0s. 

Since the measured frequencies are actually averages 

T ■ X 'XT        \    V  / 
av 

~) 

/"], ON 
VM-.u; 

< ■ 4 ♦( av 

.'. 0, = flJ. 
-±  "ir 

02 = 02i 

1 
2 "l^l " "2r2J 

o . •   o .» 
KJ0X + K£02 

(*-9) 

/I.   1/^\ V+.xu; 

(4.11) 
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The differential equation for a cubic static moment and large geometrical 

angles can be obtained from Eauation C6.6.8} 

I"  -I 2_ + iP)  |i - Ml = 0 

..u— w  .. PS£  ,.-2 „ wnere w = 7 *r— K   u., 
2m  t   M 

u 

(4.12) 

M  + O +V 

M =g^k72c 
0  2m  t  0 and 

H2 = 2m  t 

/ 1 \ 
CP - I I ) 

Lnition 01 Mg diliers from that following Equation (2.2). 

difference arises from the retention of the cosine in the definition of M. 

the numerical effect of this difference is large, this means that the non- 

linearity in M is primarily a geometrical nonlinearity rather than an 

aerodynamic nonlinearity. 

2 1/2      • 
Since 7 = (l - S )  , the 7 term can be quickly computed 

I o t 

1— = -  LQ 
y     2     2 

•mis 

If 

1  r*V 
2 7^2 

x - o 
(^.15) 

1 .2^ 
= - 5 16 ; 

From Equations (2.7) and (k.13) we see that if damping is neglected in comparison 

with frequency 

i    V 
2W 

id   -1(8 
e - - e 

r 
A,« 

K^SZ» sin 0 (4.1A) 

These equations may now be substituted in Equation (4.12), solved for the 

damping and frequency of the first mode, and averaged over a cycle of the 

difference frequency. The resulting equation for damping is the same as 

before but the freauencv pnua+ion fnr -hhe first mode become«? 
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(0;r - p0; + M„ + ^s^ + tM\ - 0;) = 0 (4.15) 

Similarly, the frequency equation for the second mode become: 

(^)2 - F^ + Mo + ^    + if (02 - <) gi  =0 (4.16) 

Equations (4.15-4.16) differ from Equations (2.9) and (2.11) by the presence 

of the last terms» Equations similar to Equations (2.15-14") may now be derived 
__ Jl   _L 1_ _ . by first eliminating M between Equations (,4.15-16) and. then eliminating P. 

W1  + V2  + 5 

..2.1»  .^» 
^1 + *2>°2 

= r + 

.2   _2 v 

\ >"1 " >"2 / 
"217 

/i. -..-. \ 

A* A* 
*2 

1 
2 

„2MS2 , „2M\2 
^1^1;  T K2vyü2; o   c! e 

Thus the y (y  term does have a noticeable effect on the equations for sum 

and product of the frequencies in the non-rolling coordinates. What is 

measured, however, are the frequencies in range coordinates.  If Equations 

(4.10-11) are used to eliminate the non-rolling frequencies and fourth powers 

of K-'s omitted- we have the following 

^ +  02r \  <■& &> 

/ v2  „2 
I   "l " "2 

a. 
(4.19) 

c:r / 

<,-4M*) <*A^- M + M25, (4.20) 

The second term in Equation (4.18) comes from the cosine of the total angle 

of attack and could be quite large in comparison with $     .   0^  si-nce it involves 

the snuare of the higher freouency and this frequency could be much larger than 

the lower frequency. The modification of Equation (2.l4) due to range 

frequencies and the cosine terms is Equation (4.20) and it can be seen that 

this modification is auite small.  The two effects mentioned at the beginning 

«/■»V-*    /-v+ V* av>     ov s Vii^i i "1 /^    "K^ f+Viör»     >^/->+Vi Oi    uiiiS   S6C L/Iuil.    unGi**3x OI*»3 f   a» LBIOS <J   CELTIC B_L   c«*JXi   u uiit.1"   äLiiu.   0ii.wuUi.Ui   *J\~   »-J. 

retained or both omitted from the relation for the product of the frequencies. 
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The left side of Equation (4.20) contains an additional effect of the 

cosine of the total angle of attack through the definition of M^. 

psr 
Mo + »z\  -  21 co(l - (1/2) i)   + c2of 

If Equation (4.20) is multiplied by 

- J. 

(4.21) 

pSi" (1  +   fl/2} F. )  and fourth rovers of N ' '  e' 

the modal amplitudes neglected, the following very convenient form results. 

M 
a 

lr ' *2r 

/A' 

x + (1/2) (^ - y* 
lr 2r  / 

= c + c^8 o   2 e 

Thus the range value of the static moment coefficient, 
a 

(4.22) 

, is essentially 

the product of the range measured frequencies and a set of 

'M a 
' s for the same Mach number and a cubic static moment should yield a 

straight line where plotted versus 6 . The intercept is c , the zero amplitude 

static moment derivative, and the slope is cD, the cubic coefficient in an 

expansion Ox   une static moment. 

6.5 Cubic Magnus Moment 

As could be seen in Section u.4, the effect of large geometric angles is 

rather small and will be neglected in the remainder of this chapter.  Equation (4.20) 

is quite simple to apply and will be used in the data analysis.  It now remains 

to include the aerodynamic damping terms. The only damping nonlinearity which 

has been measured in a ballistic range has been a cubic Magnus moment and we 

will restrict our study to this nonlinearity.  It is a simple exercise for the 

reader to incorporate any other type of nonlinearity he may prefer. The exact 

expressions for arbitrary nonlinearities will be derived in the next chapter. 

154 



For cubic static and Magnus moments Equation (6.6.12) assumes the form 

I  + (H - iP)g M + NL6^ + iP(T + T^) 
O    d • O    d 

1 = 0 h.D 

where C..      =  c  + c»6 
M     o   d 
pa 

oSi 
ST 

. -2» 
CT  + k c' L    a o . a 

*2  2m "a ~2 

The quasi=linear analysis of previous section results in the same frequency 

equations [Equations (2.9-11)] but different damping equations 

rl 

jt        P - JP
2 - 4(M„ + H^) 

^2 2 (5.3) 

t 

x 
- K 

cL - 
• X 

0, H - PCT  + T.fi , ) 
' X"  "' o   2 ex' 

*i 
d.k) 

t 

It,  ^ 

ii 

^2 r2T      's'o      *2~e2' 

2d„ - p 
' d 

(5.5) 

One unfortunate feature of Equations (5.2-5) is the way they are coupled. 

The damping equations are affected by the derivatives of the frequencies but 

these derivatives in turn involve the damping.  If Equation (5-2) is differentiated, 

'""'o  "2 el' 

2M2(K^X1 + 2K^X2) 

(20, _ p^ 
x - * / 

(5.6) 
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Equation (fub) and a similar equation for 0? may be used to eliminate the 

derivatives of the frequencies from Equations (5-^-5) 

"2 

K^X1 + 2K^X2 

(20! - /    -J 

- A.10 + X126el (5.7) 

-2M2 

"" 2^ + K;V 

X 
2~2 

L (202 -Pj- j 
= X20 + ^22

8e2 (5-8) 

where Xirv = 

Vn 

5,H - FT x     o 

201 - P 

*2H " ^c 

20o " P 

PT, 

"12 

"22 

2^ - P 

^2 

202 - P 

Mp can he obtained from the measured frequencies and the left sides of above 

equation can then be computed for each test. In most cases, however, the NU 

term is quite small and will, therefore, be omitted in the remainder of this 

discussion. Equations (5.7=6) show that for a series of tests of the same 

configuration at the same Mach number the measured damping exponents should 
2 

be plotted versus 6 . .  If the points fall on lines whose slopes are negatives 

of each other, the Magnus moment is cubic with cubic coefficient determined by 

the slope» 

In most range tests, this plot is not made but the linear formulas 

(Equations 6,6=23-26) are used to compute range values of the damping in 

pitch and Magnus moment coefficients.  If these formulas are applied to 

Equations (5-7-8), and the static moment is assumed to be linear, the 

following relations result 
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'M 
pa; 

A A y 
c  + c_6 
o   2 e (5.9) 

K + G    1 _ c     + c„ + c^A 
M M& 

M M. 2 
L     1 Y» 1 a 

where 
i. 

A =   -  -Z f! ) (Y? 
I rf' - fll' / 

\ ri r2 / 

(5.10) 

It is interesting to note the reappearance of 6 This should not be too 

surprising since the Magnus moment is the imaginary coefficient of %  while the 

static moment is the real part of the same coefficient.  Equation (5'9) contains 

a warning that a dependence of the range-measured damping moments coefficient on 

amplitude of motion does not necessarily imply a nonlinear damping moment. A 

nonlinear Magnus moment can have this effect. 

8.6 Cubic Lift and Magnus Forces 

The swerving motion for linear aerodynamic forces has been discussed in 

some detail in Section 6.9« For simplicity, we will neglect damping force, 

the asymmetry force, gravity and Coriolis acceleration. These quantities may 

be easily incorporated in the nonlinear analysis as additive terms.  In range 

coordinates then, Equation (6.9.7) reduces to 

x2 + ix5 
t 
b (b.l) 

where f = C, + iPc 
a pa 

If the lift and Magnus forces are cubic in 6. f has the form f + f.8 . 
- '      X.     o   2 

ie excej_Len"C approximation a = -*—  , we nave*' 

x0   +   IX, 
s s, 
r   r-1 

- = Bo + V + / /  (fo + f28^ 1 ds2dsl (6.2) 

o o 

Note that B, of this equation are the negatives of E. of Equation (6.9.8), 
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If f were linear, this reduces to the form 

x2 + IX, 
= B - + B, ,s + f L ol        11 o i (6.3) 

where I, =  /  /  | ds^ds., 
-<-   J J 2 1 

o o 

Now motion caused by nonlinear forces has been well fitted by Equation (6.3) 

and provided a range value of f. 

f = r + f08"~ r   o   2 es (6.1*) 

2 2 
where 6  is an effective value of 5 for the swerving motion. 

T+ 

that i is well approximated by an epicycle without damping. 

. I-, = C „ + C, .s  + I . 
1   ol        1£ £ (6.5) 

where I 
£ 

i0, 
Kie   * 

i0ol 

and 

x„ + ix_ 

-= r—^ = B . + B-, .s + f I. £ ol 11 o  £ (6.6) 

where B. . = B, „ + f C. , 
xl        11        o i£ 

But 
s  s. 

j J o s us^as. o   1    c (6.7) 
o  o 

where 

1 = c 

10. 
K?Kn< 

i(2tf, - d~l 
.Ä K,lCe 

i(202 - 01)
1 

(20; - 0g)2 (20p - 0!)2 
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Therefore the equation for the cubic forces becomes 

x_ + ix_ 
— -.—2 = B +B.8 + f I. + fJ (6.8) 

X, O     1      O X, d.   c 

A 
where B. = B. + f C.. + f_C. 

1    1   o  XI d  1 

In order to reduce Equation (6.8) to the form of (6.6), the effective 6 would 

have to satisfy the equation 

BesXJ " Xc = ° <6-9> 

Except for certain special cases, I is not proportional to I, and, hence, a P c * 
constant 5  will not satisfy Equation (6*9)« Our experience in data analysis 

es 2 implies that it should be possible to select a constant value of 6 . The key 
es 

to the solution lies in the fact that the data analysis is based on a least 
2 

squares technique.  We will, therefore, define B  to be that number which es 
makes the integral over the observed trajectory of the squared magnitude of the 

left side of Equation (6.9) & minimum.  This approach is quite similar to that 

used for a quadratic drag coefficient in Section 5.3. 

2 
8  is, therefore, defined by the requirement that 

L/2 

I -L/2 

2 2     — 
(B I, - I )(B T, - I ) ds is a minimum es t        c/v es £   c' 

2 We differentiate the above, set the result equal to zero and solve for 8  . 
L/2 es 

1/L   [   ^l  + XcXi>dS 

°es       L/5 
r 

2/L  /    II ds 

-L/2 

j-?y 



For large L the numerator is the average value of I I + 1^1, and the 
Q        C ju G XJ 

denominator is twice the average of T.I..  6  can be quickly computed and 
l i        es      * 

reduced to the form 

• ö„„ =  r i. * 1 r w  (o.ll) 

i— a. JL     C 

For the special case of a spin stabilized missile 0? < < 0, and the 
2 

effective 6 reduces to the simple form 

82 = 82„                                            (6.12^ es   e2  ' 

This is one of the special cases which directly satisfies Equation (6.9). A 
1     1 

second important case is that of a nonspinning missile (0 = - 0p). For this 

condition 

IA . I.v2v2 , > 
2   21 T ^1*2 / "2 ,, SM =  -g ~2  (6.13) 
es 

In any event the range values of C_ and C„  should be plotted versus 5  ana 
L     N  es a     pa 

the existence of a cubic force dependence on 8 determined. 

8.7 Experimental Results 

As can be seen from the preceding analysis, the cubic coefficients can 

only be obtained from a set of tests of the same configuration at the same 

Mach number but flying at different effective angles of attack. These 

considerations lead to a need for at least three and preferably five tests in 

each set.  Although the analysis has been applied to the data obtained from 

finned missiles these programs were not large enough to allow cross checks of 

the results and no good wind tunnel data was available. 

The ogive-cylinder program   of Section 7-^- V*)  included tests of 

identical models with three different center of gravity locations at the same 

Mach number. This redundancy of data can and will be used to determine the 

validity of the cubic analysis. In a second program   the large angle 

behavior of a 20mm shell was specifically studied.  Some of the results of 

this program can be used to increase further our confidence in the cubic 

analysis. 



Wind tunnel measurements of the Magnus force and moment for the seven 
8-8 8-9 

are available and will be compared with the results of the nonlinear reduction 

at the same Mach numbers with different center of gravity locations.  In 

T?n mivo     M     ]| +Vio     T«ünrrö    VQIIIö     rt-P    P i p     Til r\-¥ +■ orl     Troyanc     + Vi o     offon+ivö     r-nilQTTiH 

M a 
angle of attack for the nine caliber long models at Mach number of 1.8.  As 

can be seen from this figure, the points for each center of gravity location 

fall on lines with well determined slopes. 

OJ- tue twenty-seven possiuxe combinations oi xen&on, Macn nuinuers, and 

center of gravity location, the data was sufficiently good to determine sixteen 

values of the cubic coefficient, c0.  (Table 8-1) For some of the Mach numbers 

and length, wind tunnel measurements of the static moment were available. These 

were fitted by cubics and the cubic coefficients are listed in Table o- 1.  At 

all seven points of comparison the agreement is good. 

Since models with three different center of mass locations were tested, 

a second check is possible.  If the normal force is expanded as a cubic section 

of S, the usual center of gravity relation (Table 6-1) provided that 

c   (s     )   = c    -  s    a (7.1) 
o    ce' o cc o v'      ' 

r»    i «a        1    =   r»      —    en /' -7   r*j\ 
~2^cg'       ~2       "cg"2 ^<"-> 

whsrp   r.        =   a     +  A   R     nnrl   r>   (a      ) 
N   ~o  _2~     1 v"cg' 
a 

are the moment coefficients for a center of mass located s  calibers forward 
eg 

of that for the c   »s. 

rPV.Tr.     nu^onp     4-V.o-*-     4-V.ä     rt      1«     -P,-.-w»     A 4 -P-P A.»A*t-l-      j**«i4».»%«     ~.P     «-« 1 XJ -.      -\   •  luia IU^UHS unaü unc \..   a  iui uxiicicuu ucui/cx ux mn.ua xuutiuxuiiö are  linear 

functions of location.  In Figure 8.5, the slopes and intercepts of Figure 8.1+ 

are plotted versus center of gravity location. The fact that the cubic 

coefficients as well as the linear coefficients fall on a straight line is 

another point in the favor of the cubic analysis. The slopes of these lines 

are ag and aQ respectively.  The e.g. intercept of the cn line is the location 
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of the center of pressure and the e.g. intercept uf thu a» line is the e.y. 

location for which the cubic coefficient is zero and the moment is exactly 

linear. This point is rear of the rear center of gravity tested. 

For a total of seven of the nine combinations of length and Mach number 

it was possible to determine a,- from the variation of c0 with eg* location. 

The wind tunnel measurements of normal force may be analyzed to yield cubic 

coefficients as well as linear coefficients.  These are tabulated in Table 8-2 

and the agreement with the range values is seen to be reasonably good. 

If the lift force is cubic in angle of attack, it can be written in the 

form 

CL = aL0 + ai2&2 (7.3) 
a 

From the relation connecting the lift, drag, and normal forces ^Equation (6.6.7))> 

the coefficients of the normal and lift forces satisfy the following equations. 

ao = alß + CD ^'^ 

a2 = al2 " C1/2) V + CD 2 (7-5) 
S 

In Section 8.6, it is shown that the range value of the lift coefficient of a 
p 

spinning missile should be plotted versus 6o5 and the cubic coefficient can be 

obtained from the slope of a line through the data. This technique is 

•illustrated in Figure 8.6. Values of aQ and a2 could be computed for eight 

combinations of length and Mach number and these are compared with values obtained 

a. i r 

Finally, in the 20mm shell program it was possible to study the influence 

of quite large angles.  In Figure 8.7, the range static moment coefficient is 

plotted versus effective squared angle of attack and we see that the data is 

essentially bilinear. Each line corresponds to a cubic segment in the moment 

plane. If the parameters of each cubic are calculated from the slope and 

intercept of its corresponding line in Figure 8.7, they can be pieced together 
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to form a smooth moment plot.  (Figure 0.8), An examination of the spark shadow- 

graphs reveals that flow separation occurs at about 21 and this explains the 

sudden change in the moment curve at this point. In Figure 8.9, 
"a 

versus &~    and the corresponding lift force is shown in Figure 8.10 

C   I  is plotted 
Li 

r 

Since wind tunnel measurements were available, a further verification is 

possible.  The data were divided into that for angles less than 21 and that 

for angles greater than 21 and pairs of cubics fitted. The resulting 

coefficients are given in Table 8.3-  The agreement for such different 

experimental conditions is quite good*. 

In view of this success with cubic static moments, our interest turns 

quite naturally to cubic Magnus moments. According to Equations (5.9-10) the 

range values of damping in pitch and Magnus moment coefficients are both affected 

by the presence of a cubic Magnus moment.  Thus values of this cubic coefficient 

may be computed from a plot of C
M 
pa 

and CM + c. 
■I. a 

2 
versus 5 and A 

e 

respectively.  (See Figures 8.11-12)  Eight cubic Magnus coefficients were 

determined for the ogive cylinder and these results appear in Table b-k.     In 

and 1our cases A naa a wide enough range to determine cU from CM +CM. 
q   ""a 

the pairs of values of c^ are all within their combined probable errors. 

Unfortunately, with the exception of the one value for the nine caliber long 

models these probable errors are quite large.  Thus, the measurements of cubic 

Magnus moments are quite delicate. 

The swerving motions of the ogive cylinder were examined to determine any 

influence of a cubic Magnus force. In only two out of the six combinations of 

length and Mach number was this effect large enough to measure and these two 

cases are shown in Figure 8.13. The cubic Magnus moment coefficients given in 

Table 8-k for different center of gravity locations could be analyzed to yield 

four indirect values of the cubic Magnus coefficient, ä?. The agreement of these 

coefficients is reasonably good. 

* 
Additional examples of the analysis of cubic static moments are supplied 
by References 8-10 and 8-11. 
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TABLE {VI 

CUBIC STATIC M3MENT COEFFICIENT, c , FOR OGIVE CYLINDERS 

S =*d2A; i = d 

Mach       Forward e.g. Middle e.g. Rear e.g. 
Number    Range»   Wind Tunnel    Range  Wind Tunnel    Range    Wind Tunnel 

1 *2 

L/d = 5 

r- +   . 
JL.P 5        - O — £ U cL.~)  — p o 

l.S - 36 - 18 8-2        0 

L/d =  7 

1      "*, lfi    +   c 

1.8 
_.  + _ 

-51 - 3 - 28 -    8 0-8 8 

2.5 -71^3 - 66 - 28 

L/d = 9 

1.8    -76 - 10 -1+1 - 3 

2.5 -76^5 

0. ■ 3 
+ 

.0 

9. • 5 
+ 

.8 

2. .5 
+ 

1 • 5 



TABLE 8-2 

LINEAR AND CUBIC NORMAL FORCE COEFFICIENTS FOR OGIVE CYLINDERS 

a 
"2 l'JCH-11 

[umber 
a 

o 
e.g. Swerve Wind Tunnel 

JJI/U   =   ^ 

1.5 2.50 2.52 2.5^ 
-i     n 
X.O 

r\    no ^    an 
d..OO 

^        Oy-S. 
£.OU 

1         ^ o 7n o no 
— . 1 — 

1.8 2.90 5.15 

2.5 5-55 5.06 

e.g.   Swerve  Wind Tunnel 

17   15-0.5     12 

T   /^      _     V 
JJ/U.     =      | 

1-5 2.60 2.50 - 51 25-5 - 

1.8 2.88 2.88 2.7I+ 51 25 - 10 25 

2.5 5.08 5.06 5.08 k6 69 - 10 KG 

L/d = 9 

U5  U5 i 5 

56 1 1  58-5 

87   76 - 5 
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TABLE 8-3 

BI-CUBIC STATIC MOMENT AND LIFT COEFFICIENT FOR 20mm SHEI 

0 
C2 JJJ 

aTO 

Wind Tunnel 2.10 -2.8 2.57 10.: 

Range 2.11 -2.5 2.52 9.: 

10.2 ^  before separation 

J  6 = sin 21° 

Wind Tunnel 1.86 0.0 3.69 0.0 1 after separation 

1^ 

Range 1.Ö5* 0.3 3.64* 1.0 ■> 6 = sin 21" 

* _  :—~—: .. _ n 
tvaxuatea ox  separation angle of 21 . The 20mm shell flying at an angle of 
25 vith separated flow is shown in Figure 8.14. 
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TABLE 8-1+ 

CUBIC MA.GNUS FORCE AND MOMENT COEFFICIENT FOR OGIVE CYLINDERS 

T./H   -   7 

A 

°2 
A 
C2 

A 

°2 
A 
&2 

A 
a2 

Mach No. f.e.g. m.c.g. r.c.g. e.g. swerve 

q a 

1+0-13       13-3 

50 ± 36 

36        - 42 1 5 

1.8 
M 
pa 

90-1+0 0-3 56 

"q "A 
65- 36 

2'5     TCM   ' 
L    5°. 

90-13 15-8 1+8 

l\  + \ 70 - 10 

L/d = 9 

1.8 c„ M 
pa 

"■          -• r 

C„    + C. M               M 
q          a 

7U- 5 

66-8 

13 i. 5 - 31 ._* 

->   T 

ft_    for   Mftfh   niimVip-r    1-^   uno    alvon    1«   TiM mii>n    A    1 * CLO      —       -1-^    1- 
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CHAPTER IX 

PREDICTION OF NONLINEAR MOTION 

9.1 Introduction 

In the last chapter, we considered the measurement of certain nonlinear 

forces and moments by analyzing the motion Induced by these quantities an J 

observed on a ballistic range.  In this chapter, we consider the invorse 

problem of predicting the motion caused by known nonlinear forces and moments. 

The actual expression for this force and moment may be either measured 

experimentally in a ballistic range or wind tunnel or computed from a 

theoretical model. 

The problem will first be attacked by a generalization of the quasi-linear 

method of Section 8.2.  This method provides effective values of frequenciec 

and damping exponents in terms of "averages" of the linear and nonlinear 

aerodynamic terms but is limited by the assumption that the motion for ai   least 

a number of nutations is epicyclic. The behavior for a large number of cyc.es 

is determined by the consideration of the modal amplitudes alone and the use 

O.L an amplitude plane . Finally, the limitation to epicyclic motion is 

removed for the special caBe of a strongly nonlinear cubic static moment.  In 

this case, the trigonometric functions of the epicycle are replaced by elliptic 

functions and use is made of "quasi-constants" of the motion. 

9.2 The Quasi-Linear Analysis 

Quasi-linear analyses such as that of Kryloff and Bogoliuboff usually 

become extremely complex when applied to general real fourth order differential 

systems. We have already seen that the linearized motion of a rotationally 

symmetric missile can be described by a very simple fourth order system -- one 

that can be written in the form of a second order equation in one complex 

variable. 

The nonlinear analysis will, therefore, be limited so that this symmetry 

Is preserved. This is the reason symmetric direction cosines (u/V, v/v, w/V) 

and not nonsymmetric Eulerian angles were used to locate the velocity vector 

with respect to the missile axis system.  In this chapter, the aerodynamic 

187 



coefficients are assumed to be functions of the complex i,  and its derivative, 

£', which are independent of roll orientation. Clearly, the magnitude of these 

two two-dimensional vectors and the orientation angle between them possess this 

property.  Now the angular velocity can be resolved into a radial component 

along the complex angle of attack and circumferential one perpendicular to the 

complex angle of attack, and one of these plus the magnitude of the angular 

velocity is sufficient to determine this orientation angle.  With these remarks 

in mind, we will introduce the rotationally invarient quantities 

= V V,  and 62   = I f = S T , u» i 

(52)' = 266«   =  (Si»   +  S'T) 

and assume that aerodynamic coefficients are at most functions of these 

quantities. 

The actual quasi-linear analysis initially parallels that of Section 6.7 

for varying coefficients.  (Equation (6.7-8-10) ).  As in that section we assume 

that the solution can be written in the form of an epicycle whose frequencies are 

not necessarily constants and whose amplitudes are not necessarily exponentially 

varying. 

(2.1) 

Differentiating Equation (2.1) twice we have 

~ .10 f   i0 
?• = (X, + i0,')K,e r±  + (\    + i0_)lCe 

/N> 
i0              i0 

t       _ 
b    — IV,=                    T    ApC 

(2.2) 

?' = I A." + X? - (0!)2 + 1(0? + 2X 0!) 
I   J.        -L. X X XX 

\2  + X2 - (02 f  + i(02 + 2X2^) 

1 

where X . = ^~- 

lAA 

id 
~rl K.e 

j. 

*2 

(2.5) 



Since Equation (2.1) is the solution to th<; homogeneous linearized 
. .■ t  n  _ _ — -;    4, i equation of pitching and yawing motion, we wi±± apply this quasi-linear uv ',.►. -d 

to the homogeneous exact equation; 

~» 
I  + (H - t- - IP) I - (M + iPT) 5 = 0 a>.k) 

where H, M, and T may be functions of 

^> u •i2     . P » 

Inclusion of the small inhoraogeneous gravity term, G, in Equation (<?.'<) inpocer 

great difficulties on the nonlinear analysis and, hence, will not be done. 

Equations (2.1-3) are now substituted in Equation (2.4) and the result 

rearranged. 

(0*)C -  P0*   + M„ - X-,   (X,   + H J  - X* 

i [(20;. P) x± + 0; + KX - PTc 

H 
- '    j   U * "- fc      *H    c 

- [(M - M0)  + iP(T - To)J [l +^e"^ 

-|L(02^-  ^2 +Mo " MX2 + V  " \ 

(2.*>\ 

r, .1 
i Lv2y2 - i-V ^2 x nor2  - rio + jPg r>> TT A' ■   4. 1  «2 -iS 

J Ki e 

where 0 = 0 - 0O 

For the linear equation, the right side of equation (2.5) is fluctuating 

with an average very close to zero and the left side is at most slowly varying. 

In Section 6.7, the frequency and damping exponent for the one-mode were 
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obtained by setting the left side of Equation (2.5) equal to zero.  In 

Section '".2, the quasi-linear solution for no damping, small geometrical 

nni'lps and ibic static moment was derived by averaging the right side of 

Equation (2.5) with T=H=? =T = H =0.  In order to incorporate these 

previously excluded terms, we will take the average of all the terms on the 

right under the quasi-linear assumption that these averages are good approximation; 

of the effect of "small" nonlinearities. The small terms involving X.  in the real 

part of Equation (2.5) will be omitted in comparison with M_. 

(0*f - P0*   + Hn -  i !"(*• - P)  X-,   + H_0,   -   FT,   + 0, 

<fjt 

-k f <« H    - Zl) 
0 

2n 
1 
iff 

r 
j 

(M - H )  + iPCT - T  ) 
O' ' o' 

i   + —    p    r _   . _       ^ 

r2.6i 

It was shown in Section 8.h  that y jy  is well approximated by an odd function 

of 0 and, hence, only affects the frequency.  With this In mind, we separate 

Equation (2.6) into real and imaginary parts. 

(0n r - p0; 
2n 

o 

(H FT 
/ KL \ 

sin 0 

- M 
Kg 

1  + TT- COS  d 
Kl JJ 

dS 

(2.7) 

*  - 
12.Ö) 

j.yu 



eilt 

wnere \ = 
o ^ I r^ri 

r r„ % 

2 K, 

K' 
A /d 

Similar expressions apply for the other mode except the algebraic sign in front 

of   -I->IP>   Qi'no   (A   +.<=>T*m   In   1       is   re*-\re>-rfzpri   Hnf»   +.o   +.hp>   orlHrn^sR   of   "the   Sine   fuT.Ctjüi'n 

Equation (2.7) can be solved for 0, and differentiated to obtain <j/>   . 
t ." 

Since 0 depends on amplitude when nonlinearities are present 0    will contain 

X.'s. Thus, Equation (2.8) is not solved for X-, since 0., also has X-, as veil 
j - x      • ± ± 

as Xp in it.  An important simple relation for frequency is that derived in 

Section 8.2 for cubic static moment, small geometrical angles, and no 

aerodynamic damping.  The same relation may be obtained from Equation (2.7) if 

the no aerodynamic damping condition were replaced by the requirement that the 
A 

average of ^H - FT; sin <p  is zero.  This would occur, fc 
o 

were only functions of 8"".  Under these conditions then 

A 

FT) sin y>  is zero.  This would occur, for example, if H and T 
o 

•J 
2.   2 

1 + mg^K^ + Kg) 

(2.9) 

(2.10) 

Equation  (2.9)   can be differentiated and substituted in Equation  (2.8) 

1 + 

= X, 

2.                      -1 

+ x2    - 
2 

■1       ~"2' 
U4g 

2    1 + mgOq + 2Kj)j 

*         •   JX
              *     / M    -  P    a             M m  ff 

"0       *      rl            ~2TZy- 

_      2 
2mgKg 

I 1 + mgdq + 2KJJ 

r _ -1 

I 1 + m^CK^  + 2K|)J 

fp.nl 
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A similar equation can be derived for the other mode. 

"'"2*1 

.- 2 2.1 
1  + rrigiai^  + K^j | 

+     Xr 1  + 
? P. 

1  + m^jq  + Kj) 

M 

liM 

,„.2      ,2s 

Equations (2.11-12) may be solved simultaneously for Xn and \c 

T2.121 

X. = a 
jl 

M o 
+ a ,12 

M 

i A 
4M 

.n 
M r 

M 

Mo 

■"2 

> 

r jo. 

A 
M 

(2.15) 

she a,, !s are defined in Table 9.1» 

One important occasion for which M and H-, are variable is that of 

missile entering or leaving the earth's atmosphere. (See Section 6.7). 

this missile's static moment coefficients are constants. 

If 

t 
M 

0 

t 
M 
"2 

Kg 

> 
P_ 

P 

a 

1 
If 
I»l 

0 
A 
M 
"'0 

M   /M 
O'     O 

-     1  -   s 
g 

= 
a 

1 - s a 
O 

Wiiere u »— ,1/ 
=   *o   tub   y) a 

1 
00 nnn -r-t- 

(p.IM 
\- ■ — ■ / 

/<-»  -1 rr \ 

V is the angle the trajectory makes with a downward pointing 

vertical. 
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X..   = a 
11 

xi ~ m - s v + a .«    U, - 

+ a 
J3 

s a 
g 

1 - s + a 

«r , - L 

v    M       / o 

tf 
? " F7T 

V- 

(2.16) 

TABLE 9.1 

/ 2^ 
2 + ^(J+K^ + 3K^) 

(5) c   c 1 + nu(2K? + £) 
f.-    x        d' 

'13 
/M    L_   ,„2   .  ~.2x 2,._J» 2 2       .   k." 
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y>J 111C     |UllpJ.ll-UUC      iTXCUlC 

Two distinctive properties of a nonlinear homogeneous system are the 

dependence of the type of motion on initial conditions and the existence of 

~l   i   «4   4- W1S-. 4-  4   /-.V^ A 1-tMJt«t-M ~nAf*,3 ^-M^A*. /%A_«.1    «*, ***...4-   »«M -P^-M »-UAL-nl    n lf<    11 UfHfA iiiiin/   luuijiuiiü.       jn   iiiicai     ac^uuu   uiuci   gum^icA   Bjav,ciiij    lui   CAOJllpiu,    win   imvc 

essentially the same motion for any initial condition since any solution is a 

linear combination of two linearly independent solutions and the only possible 

limit motion is the trivial one of the zero amplitude motion for dynamically 

stable systems. 

rur   a   btruuuu.   uiuci'   aytsLeui  wiuii   uueii xuieuua   wi1i.cn  tire   xnuepenuexix-   01   Lne 

independent variable, the phase plane is the best method for studying these 

properties.  In a phase plane, the dependent variable is plotted versus its 

^QX-llfQ'f   TITO OVll-^ <?«/-\lll+-$/-\V»0 Cl -TVT-i£kQ T» Cl  C» +--W"0     4ö*-»+J-*^»»-lÄir» +Vl-»«rt11 (-»Vl AQftU ^Vf^-I   w + li?"*   +■ 1-s +■ Vv--» 
uciiyuuiy-     CJJ.J.VJ.     oijj.uiJi.wiiD     t*^^/*~-c* A      no     biajgv^UJ. J-CJ     UIU uu^ii    cai-u    jJOxil u • niUl     L»li,C 

exception of singular points, every point has only one curve through it.  The 

initial values of the variable and its derivative locate the particular 

trajectory which is the solution for those initial values. Thus, a look at 

the phase plane immediately reveals the relationship between initial conditions 

and the various possible motions and yields boundaries on these conditions for 

^articular motions. The existence- size- and shBT^e of limit motions are also 

revealed by this two dimensional phase space. 

A fourth order system has, in general, a four dimensional phase space. 

One selection of these four coordinates would be the magnitudes and orientation 

angles of the initial complex angle of attack and initial complex angular 

velocity. Since rotationallv svmraetric missiles should have a rotationallv 

ojiuiucom; yiitaac ö^M-LIC, uueii- piuxBti  space is essentia-Liy "tnree dimensional..  ixs 

coordinates could be the magnitudes of the initial angle of attack and the 

initial angular velocity and the angular orientation of one with respect to the 

W Ulibl • 

A three dimensional phase space is, however, quite difficult to use. 

A n>-       VJWMU J- — J.111V.L**.        UM*iiyJLi. 1^,      WVJ L4» U4VUD 

f 

^   =   X4 ;  J    =   1,2 (3.1) 
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indicate a possible two dimensional space which might he used.  This simpJ/':ity 

in dimensionality is paid for by the assumption that the actual nonlinear 

motion can be described by epicycles whose frequencies and amplitudes vary 

throughout the missile's flight.  Since the general behavior of the raotio" and 

the existence of limit motions are revealed by Equations (3.1), the frequency 

equations may be neglected and only the two equations for the modal amplitudes 

Jon^idered. 

As wus  previously noted, phase planes are used for equations which dc no1 

contain functions of the independent variable other than the dependent "ar.iab.j- 

appearing in the phase plane.  For this reason, we require that the X '~ x>e 
i    t    i«J 

functions on only the modal amplitudes themselves, i.e., M = NU ~  P =0, etc. 

Froir basic symmetry, we see that the squares of amplitudes should appear in the 

X.'s. We, therefore, rewrite Equation (3.1) in the form 
J 

(K^V = 2K^X1 (K^, K§) (3,a; 

(K^)' = 2K^X2 (K^, K|) C3.3) 

The independent variable, s, may now be eliminated by dividing Equation (3«3) 

by Equation (3.2) 

dK^    1^ (K^, K^) 

Equation (i.k)  describes the angular motion by means of a point moving in the 

KT - KT plane which we will call the amplitude plane. For any point in this 

plane, the quasi-linear frequencies and damping exponents may be computed from 

Equations (2.7-8) for the one-mode and similar equations for the two-mode and 

except for the phase angles, $.  , the motion i6 completely determined. 

Although Equation (3.*0 is a nonlinear equation, it is first order and, 

therefore, much simpler than the fourth order Equation (2.k).    The amplitude 

plane could be generated by numerically integrating Equation (3-M for a 

variety of initial modal amplitudes. Equations of this form, however, have 

* A rigorous justification for the quasi-linear treatment of limit motions is 
given in Reference 9-1J. 
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9-2 
boon extensively studied by H. Poineare   who showed that the basic behavior 

of the amplitude plane trajectories is fixed by the location and type of 

Equation (j.h)  singularities.  (Singularities are points for which both the 

numerator and denominator of the right side of Equation (3.k)  vanish.) A 

consideration of Equations (3A) indicates the existence of three categories 

of possible singularities: 

(1) the origin (K^ = K? = 0) 

(2) the KT intercepts of the one-mode zero damping curve (YZ  = 0, \    -  0) 

(3) the IC intercepts of the two-mode zero damping curves (le = 0, X? = 0) 

(!+) the intersection of the zero damping curves (A,, = 0, X? = 0) . 

According to Poinearefs classification, there are four possible types of 

first order singularities: nodes, saddles, spirals, and centers. In Figure 9-2, 

a node and a saddle are shown while a spiral appears in Figure 9-3c and a 

center in Figure 9-3d. The particular curve along which the actual motion 

moves is determined by the initial modal amplitudes as specified by initial 

conditions. If the coordinates are translated so that the singularity is at 

the origin, Equation (^>.h)  has the form 

dy_ m  ax + by + P(x,y) . 
dx  ex + dy + Q(x,y) w-Jl 

where* ad - be ^ 0 and P and Q vanish to at least the second order at the 

origin. The criteria for the type of singularity may now be stated in terms of 

the coefficients a, b, c, d and their discriminant D=(b-c) + k  ad.  (See 

page hk  of reference 9-3«): 

(1) The singularity is a node if (a) D > 0 and ad - be < 0 or (b) D = 0. 

(Note that if ad = 0, it is a node if be > 0.) 

(2) The singularity is a eaddle if D > 0 and ad - be > 0. 

(3) The singularity is a spiral if D < 0 and b + c / 0. 

* 
If ad - be = 0 and the origin is a singularity, a«b*c=d=0 and the 
singularity is at least second order. 
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(V) The singularity may be a center if [, < 0 and b i c =•■ 0; othcrwi ;;-.•, 

it is a spiral*. 

i 

For the linear case, the X.  are constant:; and the origin ic the only 
J 

singular point.  If the spin is zero, X, = X.0, and all the trajectories {' J 

either toward or away from the origin which is a node.  (Gee Figure lj-.Ux) 

Thj particular curve which describes a given motion is specified by initia 

values of K. and the direction of motion along the curve by the sign of the 
t        J       i 

\.u.    For positive X.s,  the motion undamps away from the origin.  When :>pin 

is not zero, the damping exponents are not necessarily equal and may even u ! T',J 

in sign.  The origin can, therefore, be either a node (Figure 9-2a) or a saddle 

(Figure 9-2b). All these figures display an important characteristic of linear 

systems -- i.e., the type of motion is independent of initial conditions. 

Amplitude planes will now be constructed for two simple nonlineariU .s 

and one fairly general nonlinearity.  In the first example, the effect oi 

quadratic dependence in 8 of C„ + Cw on the motion of a nonspinning missile 
q    6c 

will be considered while in the second the effect of a cubic Magnus moment on 

the motion of a spinning missile will be described.  In both of these exump-,..., 
t 

small geometrical angles (7 = 1, 7 =0) and a linear static moment will be 

assumed.  In the third example, the effect of a cubic static moment and a very 

general nonlinear aerodynamic damping moment on a nonspinning missile will be 

studied in detail. 

9-11 
yoa zero Spin - Quadratic C„ + C, ' 

Mq   MA 

For this case, the damping in pitch coefficients have the form 

CM +CM. = do +d252' O.*0 
q   a 

tl ^ 

and     I + (Hn + Br.b^W  - Ml = 0 (;;,v) 

If P = Q = 0, the singularity is a center.  In reference 9-h,  the conditions 
for a center are given when P and Q are quadratic functions of x and y. 
Since equalities seldom occur in practice -- only inequalities, the distinction 
between a center and a very slow spiral is purely academic. 
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where H = £§L* 
o  dm 

n_ - r.   -  k A 
"L   "D  "t ~o a 

   w _ 
t  2 «2 = " S= ^ d 

From Equation (2.8) and the corresponding equation for the two-mode, 

/1\ 
no "'■fl2Al (5.8) 

\2; ' "2"2 
/ -7        n \ 

The amplitude plane for the interesting case where the damping changes 

sign (HQH2 < 0) is shown in Figure 9-lb. The zero damping curves are vertical 5*»Ä **«—4- *  /■» — i 

Sad horizontal straight lines with / ^^ /- intercepts (-H^/Hg, 0) and (0, - HQ/H ).  The 

tests of this section show that both of these singularities are saddle points. 

These lines intercept at a planar singularity point (-H /HU> -H /iLj which is a 

If H_ is positive, the origin is a stable node and Figure 9-lb shows a 

characteristic nonlinear dependence of the type of motion on initial conditions. 

For initial modal amplitudes which are inside the square formed by the axes and 

the zero damping lines, the motion will damp to zero amplitude; for modal 

amplitudes outside this square, the motion will grow into an undamped spiral 

If HQ is negative, the origin becomes an unstable node and the planar node 

becomes a stable node. For any initial conditions, the motion will become a 

planar motion with maximum amplitude K. + Kp = 2JH /E |i/c. This limit motion 

is another property of nonlinear systems. It is interesting to note that had 

we restricted ourselves to planar motion \  = 5eiöo, the corresponding differential 

equations would be that for the van der R>1 oscillator. 

V   ft \    ft  _ M«i _ r\ 
   - i'»U — \J 

(■a     J.  t „ . _ v"o ' "2" ; u 

IQfl 



This planar singularity is precisely the limit cycle predicted by the one-'i ;gr'j' 

of-freedom theory. This example is, therefore, a generalized van der Pol 

equation. 

9.3b Cubic Magnus Moment.^'11 

For this example, spin is constant but non-zero, damping in pitch ant. 

static moments are linear, and the Magnus moment is cubic in 5. 

pa 

's»" <*_. 

i + (H - iP)6 M + iP(T + T05
2) o   2  ' I  = 0 (3.12) 

Equation (3 = ll) is precisely Equation (8.5.1) with NL = 0. The quasi-l.uv.ar 

expressions for the damping exponents are those given in Section (8.5). 

X, = X,. + X.-CK2 + sic) /.. ,^ 
±  ""JÜ   lid' l    ^' V>.J-^; 

X„ = X_ + \.__ C2IC + JO) (■   ■>.: > d dO dd   x "1   "2' ^ >•■*■-, ■ 

= - 
CS.H -   FT rJ"            o 

20; - p 

\ 
DTI Xi2 

\j2 20 
i 
.   -   P 

('   \     .. _ •» \ 
v "-12 - - A>22; 

The zero damping curves in the amplitude plane are, therefore, straight lines 
T,-I'-4-V,  „1 „«.,.-      I   /<"»       <-> "im ö-LU^/Cö - -L/C, — d. 

When spin is not zero, the origin is either a node (\    K2    > 0) or a 

saddle (X-^A^O < °) •  ^"es© two possibilities are shown in Figures 9-2a and 

9-2b for a linear Magnus moment. For a cubic Magnus moment, the intercepts and 

intersection of the zero damping lines must be studied. 

X10 + X-^Oq + 2K|) = 0 (3.15) 

X20 " X12(2K1 + A)  = ° (5.16) 
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Singularities exist at the intercepts, (- X-,^/x,10, 0) and(0, XnA/\1?), and at 

\,~  + 2A, 
the point of intersection 

/ *in 
{-% 

?n 

1U'  X£ 

2X.-,« + X, 

12 

in  ^Po \ 
The type of 

singularity at the intercept (- X-.f./X-.p, 0) can now be found by substituting 

Equations (3.13-1*0 in Equation (3-^) and translating the origin to this circular 

singularity. 

%L - 
liX. 

2X,„ + \nn  - \,„ (2x + y) 
xu    <;u    xc: ' 

T;        \ f—:—JCTt (3.17) 
"12 "10' 

where x K.., + ^  

D =  (b - c)  + k  ad 

(3x10 + x20)
2 > o (3.18) 

aH - hn  = ,v10x-'v10   v20' 

For these relations and the conditions given after Equation (3.5), we see that 

we will have a 1 - mode circular singularity in the first quadrant if X--X-,-  < 0, 

TVii =; =1 ncrula'i""' +■■■«■ "1 <= s saddlp if 1  ^2V  + >  ) ~> 0 and "L^ a nrsrlp nt.h*»i*u1 RP 

Similarly, a 2 - mode circular singularity exists if X^^^ ~  X20X12 <  °- This 

singularity is a saddle if Xori(X,,,. + 2\OA) > 0 and is a node otherwise. 

The character of singularity at the point of intersection (a mixed mode 

singularity) can be found by transferring the origin to that point. 

AY 

(2X1A  + X0J(2x + y)   -  3X10(2x + y)y 

7T 
"10 

"3T v20 
Wv  x M T\—n 

'"12v 
(3.20) 
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.*.  D = 33X?„ + 78x_X_ + 33xL 
XU XU   cLKJ d.\J 

33 

"20 

*10 

"pn 

.    T    On 
T     1,U1£ 

X10 

^20 

17.    QT\ 

ad -  be  =  3(Xin  + 2Xon)(2Xln  + Xon) (3.22) 

The existence and type of singularity can now be determined in the usual way 

T» _i_ yj J.J.       uii\,  -i- v/.i., i , w nxitg  J- v- o V4.-1- U a , 

(l) A mixed mode singularity exists if X,0 has the opposite sign to 

< - -5. X      and - 2 <    x 

"do 

\ <—  / ■!■ J-i-l- U        L» -l-*.*^' 4... 1.1 4.4.   J. Ujr J.4J        t*      UUU&        J_-L 

2 <   J£    ^ - 1.812    or 
^20 

■ 552    ^   ^    < - -5 

(3) This singularity is a spiral singularity if 

i flic 10 10 

^"20 

(h)    This singularity is a center* if 

Ü2 
^20 

To prove that it must be a center, the relations of Reference 9-h  are 
required. 
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Most of the Dossible amplitude planes are shown in Fiff 

Figure 9-3&, the curve terminating at the singular point is called the 

separatrix and for a missile with stable small amplitude motion it divides 

all initial conditions into two families: those which yield a motion tending 

to zero amplitudes and those which yield motion which grows without bound. 

Figures 9-3b and 9-3c demonstrate the existence of circular limit motion and 

epicyclic limit motion respectively while Figure 9-3d shows the very special 

case of epicyclic motion with periodic variation of the amplitudes. The 

predictions of the separatrix, the limit circular motion and the limit epicyclic 

motion have been tested by numerical integration of the exact differential 
9-5 equations with great success  . This success reinforces our confidence in 

the quasi-linear theory. 

9-12 9-3c Cubic Static Moment - Nonlinear Damping - Zero Spin.' 

For this case, we will study a very general form of the aerodynamic moment 

with the approximation u = - ii 

+  iC = n 
2 ' 

(c + c„8 + c*H + d| IT.   Ql, \ 

2 2 
where d = d(6 ) is a function of 8 and 

o. i 
c* = c*((5"") ) is a function of {€~) 

To define c uniquely, we will require that c*(o) = 0.  The presence of (8 )  in 

c* indicates that this term probably affects the damping as well as the more 
i 

conventional amplitude dependent damping term d£ . 

The simplest nonlinear form of d and c* can be obtained by assuming them 
2      2 ' 

to be linear in 8 and (8 ) respectively. 

C + i m iC = - i \ 
2   *, 2.i 

Co + C25 + C2^8 ^ 5 + dQ + d28 ']}   (, 25) 
These two nonlinear damping terms have different directions and so depend on 

the eccentricity of the quasi-linear elliptic motion. For circular motion, 
i0     * 

i -  8 e  and § is perpendicular to I. 

+ iC = 
n 

i8_e 
u 

i© 2    *        2 
c  + c^8 + i©  (d + i-S ) 
o   d.  o "  o   2 o 

(3,26) 
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For planar motion, however, £  = 6e   and £ has the same direction as £ 

C + iC_ 
Hi      ii 

ie 
16 r 

o (c_ + c„&^)6 + [d_ + (d„ + 206^]&" (5.27) 

Thus the damping moment depends on the shape of the motion.  This result casts 

some doubt on the standard wind tunnel method of measuring aerodynamic damping 

by forcing planar oscillation and determining the net energy required to maintain 

the oscillation.  If the actual damping moment has the form of Equation (j.25), 

these wind tunnel measurements could lead to quite erroneous predictions of 

actual flight behavior. 

Returning now to the more general Equation (3.2U), we derive the corresponding 

equation of pitching and yawing motion for small geometrical angles 

"     o    i   *  9 t p 

where H(6
2) = ^ CT. " Cn - \    d 

a      "  . 

* _ Psi -2 * M " 5m~ \   c 

For Equation (3»28), the quasi-linear damping exponents can be obtained 
.£1 TTI— LJ t r\       1  1 \ 

~ r 
K  =±\ 

r\       I JO. 

1 + m^K? + 2K^)  2 + nv,(lnq + 3K^) |x" 

o™ ... v2 I i J. ™ fov2 J. v2\ k 
^2"2 I """ T *u2v'~*^i T "9' ""p 

(3.29) 

X2 = | { - 21U2KJ I 1 + n^(K^ + 2K§) |X* 

I 1 + i^(2K* + K^) I [2 + n^(3K^ + UK|) |X*| 

(3.30) 



\JH*=*TT> 

d = U + lWKJ + iq)  +    n£(l2K? + 2IKJCJ +  12K£) 

+ M    —5  

Ml 

5' 

1    r 

0 

H 
3 cos  p 

2n 

. i-    r. 
0 ^2*2 

A 

COS   ^ 

K?  + K?  + 2K-IC  cos $ 

si] 
A 

*     7* 

>"1 

M 

*2*2 

sin (a ap 

A     I A 
d \. art 

= J-Hn     (1 + rn^K? + 2l£)       +   J -M„     (l + m^K?  + K?) 

Equations   (3-29-30)  are symmetric  in the modal amplitudes  and,   hence,   only 
'p   p' 

half of the amplitude plane need he studied because the line KT = 5C is a 

line of mirror symmetry.  We will, therefore, consider only the lower pie shape 

part of the amplitude plane hounded by the KT - axis and the line K^ = K^ and 

obtain the upper half by symmetry» 

It is important to note that singularities on the boundaries of this 

region represent simple types of motion;  circular and planar.  We will, 

therefore, study the implications of Equation v3-29-30; in the vicinity of 

these boundaries, i.e., for almost circular motion and for almost planar 
* 

motion.  Throughout this work we will assume H and M to be differentiable 

functions = 

With this in mind, H and M will be expanded about a circular motion 
1 

R = F>  = K   . R  = n. 
~c   "1' " 

r\r\\, 



H   -   H 
C 

4- 
'dH " 

C 

f*2 _   *2N 

# 
M    = 

r             *     -i 
dM 

wttere Hc  = H(5c; 

"dH ' 

r» 

= "dH ' 

*2       *2 ft         —     ft 

(3.52) 

and 

* _ 
dM 
 jrr 

. — \- / j 

dM 

(62)* =0 

Equations (3.31-32) may now be substituted into Equations (3.29-30) and the 

results simplified for almost circular motion (K~ < <:  K. 1. 

*■!  = " 

(1 + »c>  L 
2 + 3m„   1nc 

dH ,,.2  -2, 
1*1 " V 

-" c 

£ — — a 

13.33} 

2 + 5m + i+m c    c 
X2 =    2uTiTfnÜl    Xl 

+ ±< 
/l + m " c 

7ET irr on 

d5c 

ll+m 
dM 

L«i(6C) 
1-K2 

(3-5M 
where 

m    = nuB    = c      72: c 

M^S ü ^£~c 
M. 
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A singular point exists on the K7 axis at K, = 5 when K? 

H  = 0 

Smaller circular moti"«= (i 

motions decay when 

aiüH.j_j_"i.   uiiijüiöi   iuucions   (K,  < 6 )  grow toward K,   =  6    and larger circular 

dH 

d6^ 
> 0 (5.36) 

This singularity represents a true limit cycle if almost circular motion tends 

to become more circular near the singularity, (\0  < Q) 

r™ 1 

G?l + >♦£ 
2m 

m 

r «I" n 
ui«i 
"* J  < 0 for Kp < < K, = b      (3.37) 

Ld(8n J      *   1  c 

Inequalities (3.36-37) are precisely the conditions that the circular singularity 

be a stable node. A somewhat more convenient form of these ineaualities is 

TdH " 

LdB2j 
> u (3.36) 

r       AM      "1      It-AXS   -i _ T_ 

Jl + m 

(3.38) 

a negative 

A positive \„  would make the singularity a saddle.  If we define an unstable 

saddle as one for which trajectories on the origin side of the saddle are 

directed away from the origin, we see that the singularity is an unstable 

saddle if Inequality (3-36) and not Inequality (3.3Ö) are satisfied. Finally, 
"dH ~\ 
—Tß        has the effect of reversing the stability of the singularity. 
d5~ 

These conditions are summarized in Figure 9-U. 

The prediction of a circular limit motion when conditions (3.35-36, 38) are 

satisfied can be verified by direct numerical integration of the actual 

differential equations of pitching and yawing motion. This has been done for M* 
2 *     2 

and H linear in (6 ) and 5 respectively and motions like that of Figure 9-5 

have been obtained. 
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One very interesting result can be obtained from the Figure and the 

various inequaxities.  ir tne aamplng moments are onxy runctions or o (M -■ v)> 

every circular singularity must be a saddle.' This was shown in our first 

examples to be the case when H was quadratic in 6 and we now see that this is 
2 

true whenever H is a differentiable function of 8 and the aerodynamic moment 

is a function of only 5.  Under these conditions, a circular limit motion is 

impossible.  Since circular limit motions have been observed in ballistic range 

tests, a more complicated moment such as one containing terms like c b must ^e 

present. 

Turning now to the question of almost planar motion (K, = IC) we will 

consider motion in vicinity of the planar motion K, = Kp = K . 
—      —      i- 

. 52 = 21^(1 + cos 'h (3.59) 
P P 

«   • Ä   A m A 

(5*)' = - 2K* 0' sin jzf (3.40) 
P     P P 

where 

0p ■ vW4 + 5V 

*     14 
o 

The nature of the almost planar motion near this planar motion can be 

conveniently suuuieu vy   use ui LUC variauiea t. euiu. t^ wnxun cue aci mcu uy 

the equations: 

is., = xv ii f s,;        j = -L,C ^.ti; 

Since onlv motions near this ülanar motion are of interest, the e.'s will be —-    „ - j 

assumed to be small in comparison with unity and, hence, higher powers of the 

e.'s will be neglected in comparison with their linear powers or unity. 

2 *i      2 * 
inciciuicj     «-.lie    vaxia^iuxio    ui     u    >    )V       cwia    ^ tj    y        ocui    u/t;    v-uiupuijcu.   ao    CL    cm yv J_ _I_ 

Q        A | p     | 
perturbation of the corresponding variations in 5 , <j>    and  (6 ) 
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52 =  b2 + 2K*(l + cos ?)(€l + €2) 
P P 

A f ff t 

0"   = 0i  - 00 

(3.42) 

1 
5 V     o «p(-> * "x  + ^2

; 

V    o 

=    rf" 1     + 

7.„     t- .     -     \ 

• 2-'        , 2,' , _ . , ?M A / 8 + 9m, \ 
IB")    -  (B-)D- IT0D sin 0 ^ ir-r^ j      (e1+cp) (3.M) 

H and M can now be expanded about the planar motion. 

- A-a r> n 
H = H    + n -5 b^   - «c x- Ld6"J 

p 
* ■**J 

*    - r     dM     1 * 
M 

* 
= M    + ./Jv» ffi 

P [_U(,C 1 ; J 
(oV - CoV 

(3.1+5) 

uhi? 
2     2 ' 

re the p subscript on a function of 5 or (o ) denotes that function 
9     O .   O    \ O I 

evaluated for 6*~ = 6" or (5") = (&*") • Relations (3.^2-46) together with the 

proper expansion of 0„KV0 JC and K^/öLK, may be placed in the definition of >„ 

with the result 
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f_     (k   +2ffl
n\ 

\ = \ - h   I 1
H

PU + 3mr J - * u -    \ -    p / 
o 

U± - e2)  cos 0 

+ 2 
dH 

.d6*J 
lC(e,   + £„■)  sin    of 
p-  i        *• 

2M U(l + m_)e1 -  (U + m)e2 sin 0 

0l(^ + 3m„) 

■-      *    -. 
dM 

77757* p J 
(3A7) 

where 
1 P 

r> TTrr       / 

O 

A. .*        /   O    ~4*   /i \ 
(HB)(1 -   cos 0)   +  (ig   (  i-^fJE J 

P 

d0. 

Thp  tprms   Invnlvfncr 'dH 

L«21 
and   M     mav V>p   1 n+.<=>£rrA+.i=>ri   hv  ™rt.s   nnrl   -t-Vip 

X,   = X 
1      p 

fHl       rr i 
h(C+ VJ i L(8 + 5mp)£i + vsj 

m   p      4-   fl£>   +   11m   ^c .    x„  p/„2 

(l6   + 17m   W_   + 7m €-     r_ V- M.iifn 
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where dM 
„2 
n. 
P 

L** J 

J = 0,2 

* 

«77 
2rt 

U 
# 

dM ' 

Ü77 
cos 3    d? J = 0,2 

[H] 

üjt 

~    J      En  cos $ d0 . 
o 

„ similar relation for Xp way be obtained by interchanging e, and e in 

Equation (3.W3). 

The numerical subscript on the outside of the bracketed expressions in 

X1 identifies that term as a particular Fourier cosine coefficient.  It is 

quite surprising that the influence of H on X, is completely determined by 

its first order Fourier cosine coefficie: enx. The influence of M , however, 

is specified by the zeroth and second order Fourier cosine coefficients of 

its first derivative. These coefficients are computed for fixed modal amplitudes, 

K,, and are thus functions of these amplitudes. 
J" 

For a planar singularity X vanishes and the X. are linear in the e.. Thus, 

only planar value of the coefficients of Equations (3.29-50) are needed to 

calculate the X.'s. 

* # 
\. = a. X    + a. X 

J Ji    1 i   2 -4. — t "- 

wnere a 
2 (If + 5mD)(8 + 7mn) 

11 = a22 =    (B + 5m f(B + 5m J 
P P 

kmjk + 3mn) 
l12 * a21 '    (B ♦ V)(B + 5m_) 

P P 
|H|      [b£l 

1 L 
W + a€„ 

1 2(0 + 5m^)(ö + 9m ) 

[Hj   rMl + be, 

>2 - -ärrr^Trrpmp' 

(3.49) 

(3.51) 
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where a = - m (8 + 3m ) + (128 + 200m + 75m ) r 
r>       D D      D   O 

pv     p'  2 

p 
b = 64 + 96ra + JJm + Jm (8 + 5m ) r 

P     P    P      p  o 

+ (128 + 248m + 105m } r_ 
p    ' p' ü 

The differential equation for solution curves in the vicinity of a planar 

singularity in the amplitude plane is 

de. 
22    _    "cl I  uc2 
\,  ~ be, + ae„ 

According to the usual criteria, the singularity must be either a saddle or a 
2   2 2   2 

node. It is a node if a - b is negative and a saddle if a - b is positive, 

a2 - b2 = (a + b)(a - b) r-z   cn\ 

4(8 + 5m )(8 + 9m_) 
P      P 

2(2 + mj + (r_ + r J (8 + 5m ) 
ij     i)   <=- -     p- 

Am \ (I 

Note that if r and r0 both vanish and m is outside the interval (- 2,  -  8/9), 

a - b is negative. Thus, if the aerodynamic moment coefficients are functions 
2 2 * 

of 5 alone and not functions of ^6 ; , all planar singularities are nodes and 

almost planar motions near a planar singular motion will tend to that planar 

singular motion if neighboring planar motions tend to the planar singular 

motion. 

-X- 
Another interesting special case is that for which H and M are linear in 

2      2 * 
R  anri IK   \      r,pcT»',+ ''Velv 



H = H + H,5 

M = 1^(8 ) 

(3.51») 

(3-55) 

A simple calculation shows that 

[H], - 2nX; (3.56) 

"2 

"2 
(3.57) 

r2=0 (3.58) 

m"u«    ~ T -: a J~    _.*»    -1-1- —    ~ "l „ — _-. ■_    _.-t ~ ~,, "l _-.-_    *-._x 4 _.—    -: ,.    -e».» 3    T    j-T aji.)      - ,-.     . J.I1C   euujJXJ. i,uQc   ui     i/iie   jjj.an.Lar   öxiig,u-i_cix-   MUUXUII   xs>   x xjitru   uy    brie   COn.aXT.lon   A.      =   U   T-O 

be 

„2 TT /TT «..*\-l 
&p = "  Vn2  • ^ 

»r     TT     "1/-I ,-.__       \~1     - ~ 
nofl2     ^"   *V       >U (3o9) 

For r? = 0, a - b reduces to a simple form. A planar singularity, 

UUV.1  L.lUi t   1        Vf-L.-l_.l_       LVt.       C.      11UUC       XX 

IQ rr_  WO     fi_  \/l.     -_■_  \ /-i     -->   \ \o  + ?» M" + ym Mt +  ;mjli - £.rQ; 

U + 2m_ + r (8 + 5m_) 
L;    O        y > 0 (3.60) 

When m is excluded from the interval (- 2, - 8/9) and r is replaced by 

its actual value, this Inequality can be written in a very concise form. 

4 + 2m 
 P 
8 + 5m '    n 

"t 
<%   <2 

(3.61) 

According to Inequalities   (3.6l),   (l - 2r ) has to be positive and, hence, 
o ' 

Equation (3-59) shows us that H and H- must have opposite algebraic signs. 

A negative H causes small amplitude motion to grow and, hence, the planar 

node will be a stable node if 

HQ < 0,    Hg > 0 (3.62) 

mt_«   *-n~~-t ~,-«    -**-. — -1 v-i i -t x-i —    __. _ 
XI-C      VOi'lUliB     JAJbDlUlllUlKU     tJ-X'C     Ö 

 l___a     jr —    -raj /%    _£ 
X-JL-SCU.  in rigüre  ^-o. 
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9.U The Perturbation Method 

The work of this chapter has assumed that epicyclic motion which is 

essentially a linear combination of trigonometric functions is a good 

approximation of the actual motion. The value of this approximation should 

diminish as the static moment becomes strongly nonlinear.  In Section 8.3, 

the exact solution for a cubic static moment was derived in terms of elliptic 

functions.  In this section, we will use this solution rather than the epicyclic 

solution as our basic solution and consider the effects of both linear and 

nonlinear damping to be perturbation of this elliptic function solution*.  The 

discussion will not contain all the necessary details but will be more in the 

nature of an outline. 

i , 

For simplicity, we will neglect the geometrical terms y fy,  assume all 

coefficients to be independent of arclength**, and require constant spin. 

The approach will be to manipulate Equation (2.4) to obtain differential 

equations for the energy and angular momentum. First, we transform Equation (2,4) 

by the relation 

i(l/2}PB 
% = 1 

A" 

1  - 
A                2 
M    + Mp6 

A 

5   = 
At 

- hi    + M    + 1P(T • 

where M    = M    - 
o         o 

P2   . 
TT 

(4.1) 

(4.2) 

M = M - M - NU& 
o   d 

The conjugate of Eauation (k.2)  is 

A" 

Mo + M^5 
A At e 

b 
/I.   -T\ 

This perturbation method is an extension and modification of the work of 
Heierence ^-o ana y-7» 

The erfect of varying coefficients is considered in Reference 9-8. 
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/I  \    s * /I  \    A * 
Multiplying Equation (4.2) by I   ,  Equation (4.3) by 5 , and adding, we have 

an equation for the change of total energy. 

C     =  -  H 
A    2 4 

2C.   + 2M 6    + Mp8 + CM*) (S2) 

t 

+ P(T - §)  C2 (h.k) 

li 
i A I   i O A O ft 

where C1 =   |£   j" - M^S'-Mp    ^-        total energy 

TTi A       At 7k 
Cp=l(l6-6|) angular momentum 

The equation for the variation of angular momentum may be obtained by 
* 2 

eliminating M    + NL5    from Equations   (4.2-3). 

I HP 
^2 — ii^2 T tjrvi - 2^  u (4.5) 

When damping is zero (H = T = M = 0), the amplitude variation is given by 

Equation (8.3.9) which is repeated here 

(62)' = -J - C2 + 4Cl0
2 + 4Mo5

4 + 2M2B6 (4.6) 

The actual solutions in terms of the sine amplitude function are given in 

Section 8.3.  The requirement of rotational symmetry once again leads us to' 
p   pi 

the restriction that the aerodynamic coefficients are functions of 8~, (6^) 
. 1 ,p       P 1    .1.0 P ' 

and 11 p. But (8") and |£ J*" are functions of C,, C0 and 8 through 

Equation (4.6) and the definition of C, respectively. Thus Equations (4.4-5) 

c\  = f,(C,, C„, 82)        j = 1,2 (k,7) 

For a conservative system f , = 0, and Equation (4,6) applies. We assume 
J 

that the damping functions, f., represent small damping and, hence, C, and C0 

vary very little over a period of the nutation.  If this is the case, it is 
2 

reasonable to use the no damping solution for 6 in f and to assume that only 
2 J 

the average effect of the 8 is important. 
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(4.ÖJ 
J a 

rf* 
1     r 

_    r   -P  He nnrt - ^  

O 

* 2 
P is a period of 5". 

J2. 
Since the solutions for 6 are usually given in terras of the extreme Values 

5^ and 5^, this average function will contain b^  and 6p as well as C., and Cp. 

These two sets of variables are related by Equation (h.6)  and the fact that 

^6 ) vanishes for extremum values öf 6 . 

1*0,6*! + kfo b*  + 2R,Bb = C? 
x j    o j    Ü j   Ü 

j = 1.2 (h.9) 

Thus, either set could be eliminated in favor of the other.  In view of our 

previous work with the amplitude plane, a third set is much more convenient. 

. . ..      . .. . .  .        .      . .. _   2 
so that the sum of their square roots is the maximum amplitude, 5 , and the 

difference is the minimum amplitude.  Instead of using the previous symbols 

an    f.Vi«+. K    .    as   VRü   dnnp   in   'Rn l lftt, i nns    (P>. *i. 1 it-T S") .   vr>   will    nsp   npu   svmVinl c 

any possiDxe comusion wixn xne epicyxic moaax ampju-cuaes can be eliminated. 

.    8~ = (V xx - V x2)
_ f^.10) 

O   ^—-, * 

(U.ll) 

Accux-ding to Equations ^4.10-Uy, the x. axes ooiM-Söpönd tu constant amplitude 

circular motion in the same way as the KTT axes did in the quasi-linear method. 

. 1- J .3   J_ . Equations (4.9-11) may now be comoinea x,o  reiate xne x.'s ana u.'s. 

r.A.        .   ^ ,_ 2   ..        _ 2.' 
Cl =  " I 2VX1 + X2} +   'T  ^3X1 + 10xlx2  + 5X2} (U.12) 

C2 = 2(xx - x2)   J- Mo - M2(x1 + x2) (U.13) 
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According to Equation (4.13), the angular momentum Is zero when x^ = x? and, 

hence, this line retains the locus of planar motion*.  Equation (4.13) indicates 

a second possibility for planar motion, i.e., 

no +  ^2VX1 + x2; = U 
(4.I4J 

An inspection of the various solutions of Section 8.3 shows that this can occur 

for the type (e) moments and represents oscillations about the trim equilibrium 

angle of /    For the type (c), the line given by Equation (4.14) is also 
*o'-"2* 

the locus of planar motions. 

If Equations (4.12-13) are differentiated and solved for x,, the final 
J 

equations for the generalized amplitude plane follow. 

"V    — 

OU       J. M   (v   A.   Xy  ! 
'-"o ' "2 v 1 JA2' 

A 
W       ( CZ.mm 
l"2   ^*1 3x0) V" K -  *2 (X1 + X2)C2 
 2~2~ 
8<D & 

(4.15) 

2MQ + ^ (3x1 + x2) C, - 2M_ 
/ Ä" 

[o + "2 (5X1 + 5x2) J'  Mo " "2 (xl + X2)C2 
v2 —T^2~ 

- ÖÜJ CD 

2       A 
where to = - M_ - Hi 

~2 * 
a) = - Mo - Mg 

5X1 + 2 N/^ + 5x2 

5X1 " 2 /?i + 3X2" 

(4.16) 

and 

C's are given by fixjuation (4.0). 

As an example of this perturbation method, we will consider the special case 

of Section 9.3c 

This motion Is planar in the roofed coordinates specified by Equation (4.1). 
Only when spin is zero will the motion be planar in the eyes of a nonspinning 
observer. 
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H Ho +V (4.17) 

M = NL(6 ) (4.18) 

P = 0 . 

Equations (4.0) reduce to 

(4.19) 

C. = 
1 

Ho + (Hg - 2_M*)5
2 A   2 4 

2C, + 2M 5 + VLb 
1    o     ^ 

1 * 2 /I. 1n\ 
14 • <=U J 

H. 
2 

+ &,& 
d.  a 

Before using these equations in Equations (4.15-16), we must compute the average 

value of 8  for n = 1, 2, 3. In general, this is quite tedious since it involve 

the calculation of integrals of sn ass.    This can he done numerically, however, 

and Equations (4.15-16) may then be integrated to construct a generalized 

amplitude plane for particular values of the coefficients. To derive general 

conditions on the coefficients for the various limit motions, it is necessary 

to locate singular points and calculate the 8 's in their vicinities. For 

two special cases - circular singularities and planar singularities - the 

necessary algebra is not excessive. From this partial information about the 

complete generalized amplitude planes, it is then possible to infer the general 

form of these planes and select interesting sets of values of the coefficients 

for numerical construction of specific generalized amplitude planes.  For 
9-9 

almost circular motion (x.. > > x2), it can be shown that 

_2n V 
n    n-1   /      c   \ 

x + nx   x2  n - g - ,  ) 
\       ' c / 

Equations (4.20-22) may now be placed in Equations (4.15-16). 

1 
Kg 

x2 

2(1 + m ) „ 

(2 + 3m ) 
c 

to v — In   \ 2 Jo, 
I 

2 
^ T 9m + 6m )K v     c    c' o 

(4.22) 

(4.23) 

LBc% + 2(2 + 3mc)2 4}  Xl } 
(4.24) 



/I  o-* \ 
aqua-cion (,4.oj is exactly tne same as Equation (3.33) which was derived 

from the quasi-linear method. The symbols of that equation may be easily 

related to those of Equation (4.23) by a consideration of the coefficients 

defined by Equations t.3.31) and (4.17) respectively 

H = H 
o   c 

dH 

-d62 
(U.25) 

«2 
V4.ll 

ll?J (h.26) 

Equation ^4.24; and the corresponding quasi-linear Equation (3.34) do differ 

markedly.  The importance of this difference can be most conveniently evaluated 

by comparing the two sets of conditions for a circular singularity which is a 

node. The quasi=linear conditions may be written in the form 

62 = 
c H :o/&, > 0 (4.27) 

tu > 0 

*2 
E- 

1 + 4— 

V-T.<-^/ 

f\.    on\ 

m 

Relations (4.27-28) are the same as those derived from the perturbation method. 

The perturbation method form of Inequality (U.29) can be derived by setting 
i        t 

x± =  0 and x2 < 0, and eliminating HQ between Equations (4.23) and (4.24). 

(4.30) 

* 
M_ (1  + m ) 

' c 
2 + 3m 

For a linear static moment (m = 0), Inequalities (4.29-30) are the same. 

Their asymptotic values - (l +%/2)"X and (-l/3), however, differ by 35#.  For 

a type (b) moment, the quaai-linear expression limits in to the interval 

(- 1/2, 0) while the perturbation expression is valid for the complete range 
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in m^ for which almost circular motions are possible (- 2/3 < m < 0). These 

differences and others may be seen in Figure 9=4 where both upper 

plotted as functions of m . 

The algebra for almost planar motion* is more lengthy and will only be 

outlined here.  If the common value of x, for planar motion is identified by 

x , the maximum amplitude of the motion is 2 six.  .Our generalized definition of 
P P 

m is 
P 

4M X 
m 

M l*.3i; 

and our generalized e.'s of Equations (5.41) are defined by** 
J 

"j     "PV~  '  ""  j 
\    -    1 O 

For these variables, the average values of &  can be determined 

.2n 
A2n + 2B2nK + e2> (%)n (^•33) 

where A„ and Bp are combinations of complete elliptic integrals 

of the first and second kind which in turn are functions of m . These quantities 
f 

are explicitly derived and defined in Reference 9-10. 

The amplitude of the planar singular motion 2 s/x is fixed by the condition 
t P 

x . = 0 to be 

H A o 

" H2-2MP 

where 

A = A(m ) = ,— v p"   4 

(4.34) 

2 + m - 2Ap 

JL 
m Ai. 

(2 + mp;A2 - 2Ak  - m A6 

Only the symmetric planar motion for which x, = Xo will be considered here. 
Planar motion about trim is studied in Reference 9-10. 

** 
The 2 appears in Equation (4.32) because Xj corresponds to ¥T*  and 1 

the first 

+ «< is 

order approximation of (1 + €.)' 
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The corresponding equation for the quasi-linear method is Equation (3.59) 

* / 
characteristic of Equation (1.;t) is that for certain values of Hp/H , Mp/H„, 

and NL/M and a type (c) moment, it has two roots. The m^'s for the members 
*-  o p 

of such a pair lie in the intervals (- 2.535, - 2»l6k),  and (- 2.16U, - 2) 

respectively.  If we omit consideration of the second member of these pairs 

(m < - 2.161+, m > - 1), the conditions for a stable node may be quickly 

tated. 

HQ < 0,    Ho > 0 

1 - UA^A          M! 

O—         ■■            <          jy 

c-                                  Ho 

1 
<- c 

/ 1    -,  r-  \ 

(U.36) 

The lower bound in Ineauality (U.36) differs from that of Ineaualitv f^.61). 

xii«    isww   J_WW^A     uuuiiuo    cue   ui^iii^Ljcii cu   j.n   £ i^urc   y\j* 

Now that we have considered the implications of singularities on the 

coordinates axes and the line x. = x0, we want to show how information about 

the remainder of the generalized amplitude plane can be inferred. First, it 

is necessary to combine the various boundaries for Mp/RV, in one plot.  To do 

this.   we   tniiat   GQuVTUtp   m      In   t.prmR   nf   m   . 
—    '  -        ~-        '—    c ~ ~p- 

From Equations   (U.27,  31,  3*0 > 

m 
/ K,\    o 

o / 

M~H 
£L   O 

U   IT 
™o"2 

0*.37) 

m M w) \     o / 
X      =   - 

D 
"ov"2      -"2' 

/■),   T.P.\ 

m 

m 

*   -1 

f),    xr>\ 

By means of Equation (^.39), Figure 9-6 can be replotted in terms of m and 

suoerimuosed on Figure 9-1+.  The result is Fieure 9-7« 
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This figure has a number of interesting features.  For a Type (b) moment, 
* / -iann     4- Vi a +-      a >-•      "KM      / TJ n  P      ^ nnvoQ^Q^      o      nl r>^nl oy*     ■noHn     a mA      nl onop     < • Q rt rl   If. 

change to a circular saddle and a planar saddle which in turn change to a 

circular saddle and a planar node! This disappearance of the node from the 

x, - axis and later appearance on the line x. = x? implies its motion through 

the generalized amplitude plane and the possible existence of a limit motion varying 

between two nonzero modal amplitudes.  This conjecture was checked by the 

nnmoK-tpoi calculation of the generalized amplitude ^lane for m = - . ^ and 
* c 

M^/Hp = - 1.  (Figure 9-8).  This figure demonstrates the existence of the 

stable node.  The differential equations of pitching and yawing motion for 

these parametric values were then calculated on an analogue computer and it was 

found that the motion quickly went to a limit motion with constant maximum and 

minimum amplitudes.  (Figure 9-9&) These maximum and minimum amplitudes are 

those assigned by the location of the node in the generalized amplitude plane. 

Finally, we note that the dotted   region of Figure 9-7 appears to be 

quite interesting due to the presence of two stable limit motions.  A sample 

5UHC1QX16CU    cuiip-i—1. uuuc    p_i_c*i±^     xa     OiiuHU    i-ii   1'i.ßuic    7-1U    Oiiu    a,    p_LU u    ux      out:    CL11KU LULL' 

motion approaching the planar motion is given in Figure 9-9b-  The ability 

of the perturbation method to predict fairly unexpected motions is very 

impressive. 

rJ. /   it- M,.^J 
/"tTTA "OT Tnn     TT        mmnnv w i     r «s 
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