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SLLECTION OF A DiLAY LINk MODEL
by
Rufus Oldenburgerl
and
Lawrence L. Hoberock?

Purdue Unlversity

A mathematical model of a linear system can be derived using an
approxination of the cddvolution integral. This paper selects the
model such that responsss of the model to commonly occurring inputs
are closest to corresponding responses of the system, The tranafer
function of the model is the product of the system transfer funetion by
a linear combination of two delay terms divided by an infinite product,
If the quel delay time is small the infinite product may bs replaced
by 1, and thus may be dropped., The delay tine and the number of delay
elaments are selected such that the responses of the simplified
model are closest to corresponding responses of the system, The
validity of the simplification is investigated for various inputs
by comparing the responses of the simplified model with those of the
axact model. It is found for sewveral types of commonly occurring

inputs that the number of delay elements should be chosen as large
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Engineering

2 Research Assistant, School of Mechanical Engineering
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as physically possible., The results show that the wvalue of the
delay time should be selected as a function of the mumber of delay
elements and of the system bandwidth, It is further shown that
this function is the same for each of the inputs.



INTRODUCTICN

To design a controller for a physical plant, the system muat be
identified by some method., An analytical representation of the system
ich may be used to find the ocutput of the system from its input is
often desired, Truxall presents techniques for evsluating the differ-
ential equation, the frequency respense and the impulse response of
linear, time-invariant systems,
In 1957 Goodman and Reswick2 presented an application of the theory

3, Izwish and others as a means of identification for

developed by Tustin
linear, time-invariant systems. A mathematical model of thé system is
derived by approximating the convolution integral with a weighted time
series having a delay interval T. The smsller the value of T and the

la rger the number of elements retained in the time series, the better is
the approximation. Given a system with unknown characteristics the ime-
pulse response may be approximated from the time series as closely as
desired.

The delay line synthesizer of Goodman and Reswick® (See Figure 1.)
constitutes a physical model which uses only a finite number of elements
in the time series, The weighting factors are determined by adjusting
the synthesizer settings until an optimum fit is obtained between the

5

model and system responses to normal operating inputs., Chang” continued

the work in applying the delay line synthesizer,



In this paper the weighted time series is used to derive a mathe-
matical model by keeping only a physically realizable number of elements
in the series. The key to this study is the use of an infinite product
employed by R, Oldenburger and E. E, Goodson6 for transcendental func-
tions arising in the analysis of fluid flow through pipés. The Laplace
transform of the terms in the series 1s taken and a transfer function
obtsined by writing the transformation in closed form, By choosing a
small value of delay time the infinite product in the transfer function
may be neglected and a simplified model representetion obtzined, This
approximate model representation is used to compare system and model
responses to various inputs, From this comparison the number of delay
elements in the model and the value of the delay time are selected such
that the responses of the model are closest to corresponding responses
of the system. The exact model responses are compared with the approxi-
mate responses to show that the simplification is justified.

In what follows t denotes time.
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a linear system. The response c(t) of the system to an input r(t) may

be determined by the convolution integral7 as in

c(t) = [s(c)r(t-o-)da,tgo (1)
vhere
{t-¢) » 0, t <& . (2)
Lat, cl(t) be defined by

e(t) = [a(1) rt - 1) ¢ gl r(t - 2) + . ..
(3)
+ gnD)r(t -n 'r)]'r

vwhere T is an increment of the variasble o and n is a positive integer.

If T is small and n is large enocugh we may write

4
1. DERIVATION OF THE DELAY LINE MODEL
Let g(t) represent the impulse response, or weighting function, of
’ c(t) = cy(t) (4)

where # means "is approximately equal to." We designate cl(t) as the
response of the delay line model (DIM) of the system. The Laplace
transform of & function of time f(t), that is I [f(t)] , is denoted

by F(s), vherc s is the Laplace variable, From Equation (1) it may be

shown that 8




¢{s) = R(s) G(s) . (5)
Since r is defined by Equation (2) we have®
L[t -nm] = RGs) e : 6)
Thus, taking the Laplace transform of the terms in Equation (3) ylelds
¢ () = R(s) Gy(s) 7)
vhere
G(e) = [e(m) e ¢ g(em) ™4 | | 4 gn 1) e ]r . (o)

Let Gl(s) be defined as the DIM transfer function. Suppose that a linear
system has an unknown transfer function G(s), If thas impulse response
g(t) is measured at times T, 2T, . . ., nT, then Gl(a) is determined.

The smaller the delay time T and the larger the number of delay elements
n, the better is the approximation in Relation (3), or the better does
Gl(s) approximate G(s),

There must exist a lower limit for T and an upper bound for n if
the DIM 1s to be physically realizable. Knowledge of how the difference
between system and model responses depends on n and T is desired. These
parameters are to be selected such that the model fulfills nominal

engineering requirements,



2, FIRST OKDER SYSTEM

Consider the system described by the transfer function

a
G(s) = = + & .

(9)

Employing the inverse laplace transform we obtain the weighting function

g(t) = ae~tt .

Hence Gl(s) in Equation (8) becomes
Gy(s) = aT [e'ﬂa*s) s o=T(ave) e-n'l‘(a.*s)]
Using the transformation
z = T(a +s)

we write Equation (11) in the closed form

a-28Ty | aT[e'iz-e'(n‘%)z}

Gl( T e%z _ e"‘%z

(10)

. (11)

(12)

. (13)

It is desired to expand the denominator of the term on the right of

equation (13) as an infinite product. Let a function Z(z) have simple

zeros at the points 23, 25, 23, + + «, where

11;1-’:09 || = <=




these being the only zeros of Z(z) and %, * 0. If 2(z) is analytic

for all values of 2z, it may be shown that9
z'(0
2(z) - 2(0) kllxl [G-£) ex (%;)]} exp[ £ 0L 1 (1)

where exp [ ] denotes raising the base "e" to the power indicated in

the brackets. The zeros of the denominator above are given by
zk-ZkTrj,k"O,.tl,:,z,... (15)

where j = V=1, Hence the conditions for expansioh of the denominator

of Equation (13) by Equstion (14) are not satisfied due to the root

2, = 0. This problem is solved by writing
éz - "%B

eéz - e-éz - g e_——e.._...

= (16)

The bracketed expression now satisfies the conditions for expansion, the

2Eros, %, being given by
2 = 2rTy, v = 21,22,... . 7

Thus by Equations (14) snd (16)

R I L z[l*'h—"zi:'] [I*If-z.l—.{g] B ¢ 0-)

Substituting the expression for z in Equation (13) yields

Gl(S) - [

] ['ﬂ;] H(s) : (19)




where

T, - jﬁ{[ rz(m, ] } (202

ATTZ 2

H(s) = [o-28T o3Ts _ o-a(ned)r o=(n4)Te] 1)
and the index m is a non-negative integer.

Figure 2 presents a block
diagram of Gy(s) in Equation (19).

3+
Let a new function C;(s) be given by

() = Rls) [—2—] T = (22)
8

Then from Equations (7) and (19) it follows that

cy(s) = Cy(s) K(s) . (23)

Substituting the expression for H(s) and employing the inverse Laplace
transfomm gives

ey(t) = e T [e o 31] uw [e- 1]

e-a(n*ﬁ)T c; [t. - (n+3) T] u [t - (n+%) T]

(24)

where ¢;(t) is the inverse Laplace of C;(s) and the function u is deflned
by

ty
ut - t’l) =

t)

v

0 . (25)

v A

1, t 24y
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3. APPROXTMATION OF THE DIM TRANSFER FUNCTION

Let T be small enough such that the product aT is much less than
one (aT << 1), Then a reasonable approximation of Gy(s) results when
the infinite product [, 1s neglected, From Equation (22)

Cl(s) s C(s) , aT<<1 . (26)
We introduce Cu(s), vhere
Cials) = C(s) H(s) . (27)
Hence from Equation (23)
Cile) m Cpps) , aT<<1 . (28)

Let the approximate model response be denoted by ¢js(t), which is the
inverse Laplace transform of C1a(s), Substituting the expression for
H(s) in Equation (21) and employing the inverse Laplace transform we
obtain

cpp(t) = o-3aT c[t - ;r] u[t - é‘r]
(9)
o-a(ned)T c[t «(n+ &)‘I‘] u [t ~(n ¢+ Q)T] .
To differentiate from the approximate model response we henceforth refer

to cl(t) as the exact model response. The problem of selecting n and T



1

is simplified using Relation (28). In the following study we select the
model parameters and show that employing this relation 1s reasonable for

five comaonly occurring inputs to the systenm.
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be STEP INFUT

Consider a step input to the model and the system given by
r(t) = u(t) . (30)

Using the Laplace transform, from Equation (5) we obtain the system

response as
e(t) = [1-et] ule) . (31)

From Equation (29) the approximate model response becomes
e (t) =0 , 08¢t < (32a)
epa(t) = o 3T _ gmat , TSt <(nedl  (32)
ealt) = BT [1oem] Lt (el . (32)

Selection of Model Parameters
By Relations (32) the approximate model response varies with time

only for 3T £ t < (n * 3). For t outside these limits the response
of the model fails to follow that of the system. Figures 3 through 5
show the system and model responses to a step input of magnitude K with
unity bandwidth (a = 1) and various values of T and n. The responses are
normalized by dividing each term by K. The model response is more satis~

factory for large n and small T, as for example, n = 300 and T = 0,01 in
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Figure 3, However, a delay line model with such parameters would be
unpractical. Goodman and Reswick use n = 20 in the delay line synthe-
sizer?, e see from the response plots mentioned above that for any n
the fimal value of cu(t) has a maximum which is dependent on T. We
designate T, as that value of T for which the maximum final value oceurs,
As T =+ T, from values less than Ty, the final value of eu(t) increases,
but the model follows the system less closely for the range

AT St < (n+ &), For finite non-zero values of n and T the model
output is always less than that of the system. We choose to select n
and T to mximize the final value of ¢j5(t). Since for any T the best n
to accomplish this is infinitely large, we first select n as large as
reassonably possible for applications., The time T is then chosen to
maximize the final value, V, of the approximate model response, where
from Equation (32¢)

v . T [2 - o=nT] . (33)

Let n, be the value of n selected for the model. The maximum value of V

occurs when T = T,, where

T, = -—————-I"(f:: * 1) . (3)

The maximum final value, VM, of eja(t) is obtained by replacing T in
Equation (33) by the expression for To, giving

o= (2o ¢ DB (2 ¢ 1) ] . (35)

If ng = 20, the value used by Goodman and Reswick, and a = 1, for
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simplicity, Equations (34) and (35) yleld

T, = 0.1857 , Vy = 0.8891 .

Figure 6 indicates system and approximate model normalized responses for
a step input of magnitude K, with a = 1 and T =T, at no = 20. It is
easily verified from Equations (28) and (29) that

L : (36)
,Ifo'f,,, W= 1 ) (37)

Thus better model response, using values of T,, is obtained by increasing

Ne

Comparison of the Approximate Model with the FExact Model
We have selected the model parameters using an approximation which

neglects the infinite product -"-s in the expression for Gy(s). To
determine the effects of using this approximation we replace R(s) in
Equation (22) by the Laplace transform of the step input to obtain

c3(s) = [-l-] [—’—] T . (38)

8 s +a

»*
Expanding this expression for Cl(s) in partisl fractions and employing

the inverse laplace transform, we have

cI(t) - ."-'r - o2t {1 + m}:; Ay sin[zﬂm t - €m” (39)

T
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where
T o
= 2
T e a L ’
7l o]
sl 4 )
T
- B
A g s
Gm = Tan-l ﬁm ’
a 4L -”-2 m
m = 1 F]
al 1
aT
A s Tm s

T . "ﬁ'ﬁ[__l T

_ 1 ]
m
1= 11 - 6%}02] {em*] [ 1- G{L)Q
Hence from Equation (24)

egt) = 0 , 0 £t <4

m=1

19

(40)

(1)

(42)

(43)

(u)

(45)

(L6n)

ci(t) = [—ﬂ;] o-2aT o8t {1 + Z Am[!in 2 ;f‘rm t- 6 - MTI—]})

3T £t < (n+in

(46v%)
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c1(t) = []I—T] [l - e-anT] e-éa'l‘ , t 2 (n+ad . (46c)

Comparison of Equations (46) with Equations (37) indicetes that both
e1(t) and ¢15(t) are zero for 0 £ t < 3T. For the second range,
3T £ t < (n * )T, the effect of the approximation is to omit the
attemating infinite product -"_‘1‘ in the first term and the infinite
simisoidal series in the second term of the exact model response. For
t 2 (n+ $)T the approximation omits -”_'r in the exact model final
value. We note that -n.T -+ 1 as T - 0. Purther, -"-m = (w2,
For small aT we have ap = %T{E )y Op = “;11 = 0, Taking 6, = O,
an = %-IITE‘- the summation in Equation (39) 1813 between zero and
-ig- depending on the value of t. The same is true for the summation in
Euation (46b), These results and mumerical studies indicate that if
aT < % one can neglect the summation and hence the product -";.

To evaluate graphicslly the effects of the approximation we employ
Equation (3) for the exact model reéponse. Let the inverse Laplace

transform £(t) of a function F(s) be dencted by o('l [F‘(s)]. Since®
-1
£ [® @™ = we-nm , G
Equations (3) and (10) are used to give

e(t) = aT [e'aT wlt - T) v o8 o)+, ..
(18)
+ enal y(y nT)] .

Figure 7 shows the system and exact model normslized responses for a
step inmut of magnitude K, witha = 1, T = T, andn, = 20. Comparing
these plots with those in Figures 3 through 6 indicates that the most sig-

nificant effect of the approximation is the smoothing of the "staircase"
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response of the exact model, A further effect of the approximation is
to decrease the time at which the time-variant model cutput begins from
T to 4T, The time at which it ends is increased fromn T to (n + #)T.
This as well as the smoothing is attributed to omitting the sinusoidal
series in the approximate model response.

We wish to determine whether the results in selecting the approxi-
mate model are applicable to the exact model. It is recalled that n was
chosen as large as reasonably possible for applications. The delay time
T was then selected such that the final value of the approximate model
response given by Equation (33) was maximized, From Equation (4ée) the

exact model final value,.Vy, is given by

7, - [TT;] [1 - .-anf] T (49)

An attempt to maximize this expreasion for 'l by differentiating with
respect to T would be fruitless, We choose to select n and T for the
exact model the same as for the approximate model provided that the
value of TI-T is approximately unity. This means that the product a T
mst be small, It is desired to know how small., In his discussion of
the paper by Goodman and Reswick?, C. M. Chang notes that if the delay
time T is greater than %, where a is the system bandwidth, the fre-
quency response, particularly in the high frequency region, obtained on

the delay line synthesigzer is questionable, This is derived from the

fundamental theorem of samplinglo vhich states that a signal is completely

determined by values of the signal (samples) taken at a series of in-
stants separated by Ty = 3a, where T, is the sampling period. From these

considerations, for the remainder of this work it will be assumed that
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0&aT <} . (50)

Let new quantities !. and W be defined by

a? 72
LN e ’ (51)
K = ;; tnf1¢ 1] . (52)

Then for the denominator of the expression for “-T in Equation (40) we

have

1 = wﬂ ] (53)
T hen] -
But it is seen that
&<Z;[!..] A . sh)
m-
Hence from the relationll
:L_:, ) Z (55)
we may write
vqn<—'l’— 0 <a212 < % . (56)
2, '’
This gives
L 5 0.9900 (57)




and we conclude from Equation (40) that

0.990 <y <1 . (s8)

Consequently it is safe to assume that the results in selecting the

approximate model are reascnably appliceble to the exact model.
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5e RAMP INPUT

‘The ramp signal given by
r(t) = t u(t) (59)

is the second input to be considered, Using transform techniques we

cbtain from Equation (5)
et = [e-2 ¢l ] ur) . (s0)

To derive the approximate model response we substitute this expression

for c(t) in Equation (29), giving

e (L) = o, 0t <t (61a)

epp(t) = omaT f.-é’.t‘---l e 2ot s
[ A )
Lt <(nvdk

°n('°) - [e-ﬁal‘ - e-a(n*é)‘[‘] t

~4aT 3re oo [(neayr e 171,
’ { s [n . ]} (61c)
t 2+ .

.
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Selection of Model Parameters

Comparison of the approximate model response with the aystem res-
ponse indicates that for small T the response of the model follows that
of the system reasonably well for the second range, 4T £ t < (n * &)1,
For the first pericd, O § t < 3T, the approximate model output is
zero, 88 in the step input case, while for the last rangs,

t 2 (n * 4)1, a lag in slope as well as position appears in the response
of the model. Figures 8 and 9 show the system and approximate model
normalized responses for a ramp input of magnitude K with various values
of T and n and unity bandwidth, Again, large n and smell T give more
satisfuctory model response, however these values are limited in practi-
cal applications., For small T the approximate model response follows
that of the system satisfactorily during the second periocd. For

t 2 (nve #)T the approximate model response exhibits a constant final
slope, S, where from Equation (6.c)

5§ = o-3al [l - e"nT] . (62)

The system response, however, has a constantly increasing slope approach-
ing unity as t ¥ o, The expression for S in Equation (62) is identical
with that for V in Bquation (33). Hence S has a maximum value occurring
at T = To. As T * T, from values less than T,, the slope S increases;
however, the response cy,(t) follows the system response c(t) less close-
ly for 4T £ t < (n ¢ 3)T. Again, selecting the model parameters pre-
sents a conflict between maximizing 3 and improving the model response
for the second range of t. We choose to select n and T to maximize the
finsl slope of the spproximate model response, Thus n and T are selected

the same as in the step input case,
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Comparison of the Approximate Model with the Exact Model

It 13 desired to determine the effects of the approximation in
which -ﬂ; in the expression for Gy(s) in Equation (19) was omitted,

Replacing R(s) in Emation (22) by the Laplace transform of the ramp in-
put yields

o [{f=lm - @

g *a

By expanding this expression for CI(:) in partial fractions and employ-

ing the inverse laplace transform we obtain
e*(t) - -"— t - 2,8t
1 T a

o (64)
{302 nle 20 o]

m=) T

where TI;- s Ays and @ are given in Equations (40), (41), and (42)
respectively. From Equations (24) and (64) it follows that

¢y(t) = 0, 05t <41 (65a)
e1(t) -[TTT][(*‘T (t - iT)] - %_ o~3aT

+ e"t{% i ‘\n sin[z.}l:rnl ¢+ ’m - mTlﬂ s (650)

m=1

AT St < (n+3)




30
s <[] o ],

6
Q-%a'l‘ [-”:r] [QT - o=anT (n + %)T] ..__1-_ [1 - e-an’l‘] ’(450)

t 2 (n+3)r .

Comparison of Ecquations (65) with Equations (61) indicates again that the

effect of the approximation is the absence of the attemating product

-”.'r from the & proximate model response, Alego miasing is the infinite

sine series which causes the discontimiities in the exact model response,
To 11lustrate graphically the effects of the approximation, the

expressions for r(t) and g(t) in Equations (59) and (10) are used in

Equation (3), giving

e1(t) = at [,-a'r (t - T)ult = T) + e=28T (¢ - 21) u(t - 27)
(66)
*...’e-"aT(t-nT)u(t-nT)] .

Figures 10 and 11 show the system and exact model normalized responses
for a ramp input of magnitude K with a = 1 and several values of n and
T. It is recalled that the approximstion for the step input resulted in
the smoothing of the ‘'staircase" exact model response, For the ramp in-
put, however, comparison of, for example, the responses in Figure 8 with
those in Figure 10, shows a smoothing of the "staircase slope" of the
exact model response, A further effect of the approximation is to de~
crease the time at which the model response begins from T to iT. Also,

the time at which the constant-slope portion of the meodel response
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begins is increased from ny to (n + 4). This and the smoothing are
again attributed to the absence of the infinite sine seriles in the ap-
proximte model response.

In Figures 10 and 11 the staircase nature of the slope for the exact
model reaponse is indicated by dashes. These dashes are straight line
segments and are connected. The connections are left out to make the
changes in slope clear to the reader. Thus in Figure 10 each dash lasts
O.l unit of time, One dash runs fromt = 0.1 to t = 0.2, a second from
t = 0.2 to t =0.3, etc. In the case of the n = 20 curve, which starts
at t = 0,1, the slope changes every 0,1 unit of time until t = 2,0, After
t = 2,0 the n = 20 curve has a constant slope.

As in the step input study the concern is whether the results in
select ing the approximate model are applicable to the exact model, We
chose to first select n as large as possible for practical applications,
The time T was then selected to maximize the final slope S of the ap~
proximate model response, This gave the same result for Tp as in the
step input study, From Equations (65¢) and (62) the final slope, Sy,

of the exact model response is given by
§ = ['H'T] s (67)

Hence by Relation (58) we conclude that maximizing § rather than S; is
a reasonable method for selscting the value of the delay time.



34

IMPULSE INPUT

‘me third input to be considered is given by
r(t) = §(t) (¢é8)

where the unit impulse, § (t), is defined by

€+t (69)
Bt ~ty)dt = 1, € >0 J,
-Cﬁ-t.

Since the input is an impulse, the weighting function in Equation (10)

is used to give the system response

e(t) = aetu(t) . (70)

Hence by Equation (29)
e (t) = 0 0 gt <41 (71a)
epa(t) = ae® | I gt <(nedd (71b)

epp(t) = 0, t 2 (ned (71c)
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Selection of Model Parameters

For the period 4 § t < (n + )T, the approxinate model response
is identical with the response of the sy=tem., Figure 12 indicttes the
system and approximate model normalized respenses for an impulse of
strength K with a = 1 and various values of n. Only one value of T is

used due to the simplicity of the response plots. Good model response
L
2
the upper limit (n *+ )T is large. That 1s, the smaller the value of T

results when the lower limit of time t in Equation (71b) is small and
and the larger the value of n, the better is the model response, Prac-
tical values of these parameters cause conflicts in model selection, For
any T the best n is as large as possible in physical applications, On
the other hand, the problem of selecting the best T for any n is that if

T is chosen too small the interval

(n+3)T-43T = n7T

of good model response is too small, If T 1s selected toco large, the
starting time tg = 4T of the mdel output is too great. Hence the dif-
ficulty in selecting T for the impulse study differs from that in the
previous two cases, The criterion for selection is time interval and
starting time of model response, or grephical abscissa, rather than
values of model output or graphical ordinate., We choose T to maximize
the area under the approximate model response curve as a reasonable
solution to the problem. The area Ay under this curve, found by inte-

gration, is given by

Ay = e-3al [l - e-an‘l‘] (72)
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This expression is identical with that for V and S of the previous two
cases, Hence the value T, of the delay time T tc give maximum Ay is

glven by Equation (34). The expression for maximun area ig the same as
that for V, in Equation (35). From Equations (36) and (37), increasing

nolowers To and increases the maximum area as before.

Comparison of the Approximate Model with the Exact Model
To determine whether using the approximation is a reasonable method
of selecting n and T, the exact model response must be determined. Since

R(s) = 1 for the impulse input, Equation (22) becomes
e = [35][T] L

Using partial fraction expansion and the inverse Laplace transform we

obtain from Equation (73)

c;(t) = e"“‘{n* Z Amsin[zlrmt + 9m]} . (7%)

m=]

Thus by Equation (24)

cy(t) = 0, 0 gt < 3T (75a)

mel

e (t) = e"at’{a* ZAmsin [zgmt + am-mTr]} ,
_ (75b)
3T &t < (n+ &)

c1t) = 0 , t 2 (n+4)X . (75¢)

v
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Unlike the responses in the step and ramp input studies, the infinite
product -"-T does ndt. appear in the expression for cl(t) for the im=-
pulse input. Hence the effect of omitting Tl—s from Gy (s) in the
simplification technique is the absence of only the infinite sine
series from Equations (75).

To facilitate plotting ¢;(t) versus t, Equation (3) is used to give
for the immlse input

ca(t) = a7 [e8T (¢t - 1)+ o"T g(¢ - 2m)
(78)
*...*e'm"r S(t-nT)] .

The system and exact model normalized responses for an impulse input of
welght K are shown in Figure 13, witha = 1, T = 0,1, and various
values of n. The exact model response is a series of impulses corres-
ponding to a sampling of the system response. Hence the effect of the
approximation shown in Figure 12 is that of an ideal holding device
over a limited time interval. Omitting the infinite sine series in the
approximate model response not only changes the limits of model response
from T to 4T and nT to (n + 4T)T but also removes the discontimities
of the exact model response,

Since the ordinates of the response cl(t) represent strengths of im-
pulses, there is no area under the response curve to maximize in selecting
T. The problem of selection, however, is similar to that in the appro-
ximation, The interval nT - T is desired large, which for constant
n means increasing T, Conversely, the starting time of model response
and interval between the impulses is desired small. The exact model

response is a pure sampling of the system response for the time interval
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of Equation (75b). Thus a technique for selecting the delay time is to
maximize the area under the system response curve between limits deter-
mined by the exact model response, namely 3T £ t < (n + 4)I. But this
area is exactly that given in Equation (72). Thus unlike the previous
two input cases, selection of the delay time could have been effected

without using the approximation.



T PULSE INFUT

The last transient input to be considered is the pulse shown in
Flgure l4a. For K = 1, where K is the height of the pulse, the input is

given by
r(t) = u(t) ~ult - 7) (77)

where 7 1is the duration of the pulse. It iz easily shown that the sys-

tem response to this input is given by
et) = [1- e-at]u(t.)-[z - e-alt- "-')] ult - z) . (78)

From Equation (29) it follows that

cpalt) = 0, 0§t <iT (79a)
o (t) = BT gt I gt < (7o aT) (790
Z2<nT7
ety = 0T et piany (b < (ne ) (190)
—éa’!‘ -at
1’;nT{clA(t) = g -0 , AT £t < (n+ )T (79d)

epult) = o-2aT [1 _ e-an’l‘] _ [,-éa'r - emalt- ‘r)] u(t - 741,

(n+ddr £t <7+ (n+ i)
(79e)
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clalt) = 0 , t gz T+ (ns )T, (791)

Selection of Mode)l Parameters
Comparing Equations (79) with Equation (78) reveals again that the

smeller the value of T and the larger the value of n, the better 1z the
approximate response. Figure 1.b shows system and approximate model
normalized response for a pulse input of magnitude K with & = 1 and
values of T, n, and ¥ as shown. The output of the model is equsl to
that of the system for (AT + T ) g t £ (n ¢ 3)T, For t outside these
limits the value of ¢ ,(t) s always less than cl(t). For any T the
best n iz as large as practical in physical applications. If, on the
other hand, n is held gonstant and T is reduced to improve the response
of the approximate model for 4T § t < T+ 4T, the respcnse for

t 2 (n- é)’I‘ is less desirable. If T is increased the reverse is true,
As a reasonable compromise to the conflict in selecting the best delay
time, pick n as large as possible. Then choose T to maximize the area
under the approximate model response curve. By integrating it may be
shown from Equations (79) that this area, Ay, is given by

Ap = 1 [1 - 9-anT] e-haT . (g0)

With the exception of the pulse duration T, the expression for Ap is
the same as that for V, 5, and Ay encountered earlier, Hence the delay

time to give maximum area, Ay, is given by Equation (34) and

Ay = Ty (81)

pm

where V, is given in Equation (35).
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T=0.1857, n =20, 7=2.0
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Figure lia - Pulse Input

Figure 14b - System and Approximate Model Responses to Pulse Input



Comparison of the A te Model with the Exact Model
Substituting the expression for the impulse input and the system
weighting function in Equation (3) we obtain

ey(t) = a T{e"a'r[u(t -T)eu(t -T- ’Z“)] ult - T)
o 8T [yt - 20) - ult - 21 - T)] u(t - 21)  (&2)
# . ..+ gmal [u(t-n‘r)-u(t-n'r-’2‘)]u(t-n‘l‘)}.

By inspection, the area A under the curve given by a plot of c3(t) is
given by

Ay = Tt [edT e e e emal] | (a3)

But the product of the bracketed quantities in this expression is easily
seen to be the final value of cl(t) in Equation (48), From Equation
(49) it follows that

Ao - T[-”:r] [1 - e‘"‘T] o287 . (&)

By Relation (58) it is concluded that choosing T to maximige A, in

Equation (80) rather than Ay is a reasonable technique for selecting
the delay time,
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8. SINUSULDAL INFUT

Consider lastly the sinusoidal input given by

r(t) = sin (wt) u(t) (85)

where @ 1is the signal frequency. Let the quantities @, Qp, and ¢

be defined by
4 =T , (e
% = e , (e
¢ « tan”! (-‘:—) . (88)

Then for the approximation study we follow procedures similar to those

in the previous four cases to obtain

ea(t) = 0, 05t <47 (89a)

- -at "&51‘ i Wt - -5«)'1']

epa(t) Qe™a% + e sin @ ,

' [ (89p)
IT £t <(n+ i




L6

cu(t) = Qze"%a"r [sin (Wt = ¢ =37,
e=8nT sin(wt-¢ ~2wT- a)n'l‘)] s (89¢)

té(ﬂ‘&)‘r .

Selection of Model Parameters
The response of the system to the sinusoidal input is given by

e(t) = {Qle-at *+ Q sin [u)t - «p]} u(t) . (90)

From Equation (89b) decreasing the value of T improves the model response
during the specified interval by increasing the value of e_éaT toward
one and decreasing the value of the phase lag 3 @ T toward zero. On the
other hand, from Equations (89b) and (89¢), too small a value for T gives
poor over-all model response., For eny T the number n should be chosen
as large as possible. Again some compromise is needed in selecting T.

We compare cq,(t) with ¢3(t) for t 2 (n *+ 3)T. Assume that the quantity
(n + )T is large enough such that the exponential in Equstion (90) may

be neglected, giving
c(t) = Q2 sin [wt - w] . t»-}- . (91)

The first sine term of Equation (89c) contains a phase lag of 4 W T

radians from the sine term of the system response. The second sinusoid

lags the first by wn T radians. However, assuming that

‘-ﬁaT » e-a(n*é)‘!‘ (92)

the effect on c15(t) of the second sinusoid of Equation (89c) will be
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negligible regardless of phase shift &n T. Conversely, if the secord
sine term with its attemating exponential is neglected completely the
parameter n will be absent from the remeining terms. No method for

selecting T would then be available, Hence as a compromise we write

cyalt) = Qqe=al [1 - e"“T] sin [u)t - ¢ - éa)'rl ,
(93)
tal s (edr» I nTar

in which the effect of the phase shift wn T is neglected. Comparisen
of Relation (93) with Relation (91) indicates thst T should be chosen to
minimize the shift AWT and maximize the quantity o-2aT [_1 - e'*‘“'r].
However, since the system is linear, the delay time should not be a
function of the signal freguency «. Hence, we select T only to max~
imize the attenuating expression avove, The input frequency must be
kept small in order that the model response phase lag be small., Thus
the model parameters n and T are selected as in the previcus four cases,
the delay time T, being given by Equation (34). Figure 15 shows the
system and spproximate model normalized responses as given by Relations
(91) and (93) for a sinusoidal input of magnitude K. The values of the

parameters used are a = 1, =1, n =20, and T = T_.

Comparison of the Approximate Model with the Exact Model

To determine the exact model response we replace R(s) in Equatien

(22) by the Laplace transform of the sinusoidal input to obtain

c*(s) '[52 ‘f’w?_][ 5 ][1@] . (o)
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let the quantity IBnl be the absolute value of By, where

-4

1
Bm = " oajw ;H; ’TZ(B. + ju))z (95)
LT T2 w2 ]

and j = V-1 as before. We define the quantityéh_ to be the arec-
tangent of the quotient obtained by dividing the imaginary pert of By
by the real part. Deriving the expression for cI(t) by the inverse
Laplace transform, we have from Equation (24)

cy(t) = 0, 0 gt <4 (96a)

ey(t) = e-at Q]_*Z &nsin[zlrmt* em-mﬂ']

m=]

+ IBml e-2aT ain [u)t *ém_ -i“’T] ’ (96b)

3T 4t ¢(n+ )

cyt) = IBmle-éaT{sin [u)t 'ém. -3 w'r]
- e=anT g [u)t *A_ -3W T~ Wn ‘1‘]} ’ (96c)

t 2 (n+ )7 .

Neglecting the infinite series in Equation (96b), we obtain Equations
(89) from Equations (96) by replacing ]Bm‘ andA with Q; and ~ ¢
respectively. Since the model parameters were selected using Relation

(93), we must determine whether the approximations
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L ég_ (97)

Q ~ [By (98)

are reasonable,

Introduce o, where

© 2

2 «T
T ™ Z tan‘l[

mo1 4T2n? » 12(a% . 2)

. (99)

For the approximation of Relation (97) it may be easily shown from
Equation (95) that

Ay = - - oy (100)

where ¢ is given in Equatioﬁ (88), ILet ky be a non-negative number
such that

W = ky a . (101)

Then it is shown in Appendix A that

0 S op < A ’ Ko $ 1 (102)
L8
0 goy < T R ko > 1 . (103)

Consequently, if the value of w is greater than the bamiwidth of the
system, it is necessary to establish a maximum for ky in order that |

the approximation of Relation (97) be reasonable. By reasoning similar

to that preceding Relation (93) we have from Equation (96c)
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e (t) w |Bm|e'%“ [1-3"’“1.] sin [a)t, +\_/_€m -éw‘l‘] ,
(104)
t 2+l (n*é)‘l‘»%; nT » 4T .

Let a new cuantity Y[, be designated the exact model rhase lag, where
from Relations (91) and (104)

2 ._.,-[é _;w-r] . (105)
Substituting the expression for ¢ and A yields
Y o= jwr o . (106)

By the restrictions on the product a T in Relation (50) we obtain from
Relations (102) and (103)

o s ¥ < 1;8121“" , ky & 1 (107)
og%<1“f2*'ﬂ', Ky > 1 . (208)

Hence for @ £ a we are assured that % can he no larger than 0,271
radians, or approximately 15 degrees. By Relation (108) this constraint
on the exact model phase lag increases for @ > a, We intuitively sssume
that a phase lag greater than 15 degrees would not meet nominal engineer-
ing requirements, Thus & is restricted to values less than or equal to
the system bandwidth. The approximation °fA by -¢ is then reason-
able from Relations (100) and (102),

To justify Relation (98) introduce -ﬂ—q, , where




-
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=f 2,2 2142 2,213
. T<(a - w) 2aw?
.n-w m-]Tll{ [1 S = B LT2 m2] } . (109)
From Equation (95) it follows that

!Bml = O [T—t] . (110)

Let 2 new tertm 7 be defined by

2 W2
a~ T (
.- 2T, . 111)
> X
Then by Relation (50)
Y =k (112)
16T )

It is shown in Appendix B that

ey [ [H] )

exp —_
96 1 2 é
w o U - 5 (112)
0% ky< [a »}%] .
By Relation (112)
L1k
[1 7] > & . (114)

Since k,) has already been restricted to values less than or equal to one,

we have from Relation (113)
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0.979 s & g Lo, 0 gky g1

. (115)
I 2 PR

From Equation (110) we conclude that the approximation in Relation (98)

is reasonable.
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9. SECOND ORIER SYSTEM

To note some of the difficulties in selecting the delay line model
for more complex systems, consider the tranefer function of a second
order sysitem

W) = wTIrGT c bR (126)

where b and ¢ are either both real non-zero numbers or are non-zero
complex conjugates. Following a procedure similar to that for Equations
(9) through (19) we obtain

6, (=) { c } BT, AT | gn(n+d)bT, ~(n*3)Ts
[

- B (b .)Tf[ -1-2-.,.,2]

(117)
e"édr -é'fi: g"(n*é )CTQ'(n’é )18

- Tz(c03)2
(c +s) Tj [1+ i o2

Let the guantities gg [t] and g:[t] be given by

g:[t.] = mb—_-s-gy [1 - G_bt ] (]-18)
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er ft] - -;—(—c-b—_"b—) [1 - e-bt] . (119)

By omitting the infinite products in Equation (117) it may be shown that
the approximate model response to a unit step input becomes

e g [¢ - 1] it - 1)

cu(t)

- o= BT Tt e a] b - (ns i)
(120)
- e'écT g: [t. - #T] u(t - 37)

v o-(athler o» [t -t an] ufp - (n+ 1] .
The final value, V, of the approximate model response is given by

e 2% [2 -der ~bnT] _ 1 -dcT =cnT
v c_b{be-é 1-e ]-:ei [1- ] . (121)
The problem of selecting T to maximize V is more complicated than for the
first order system., Taking the derivative of the expression for V with

respect to T, eguating the result to zero, and rearranging, we obtain

‘-ﬁb'r . 1-(m+1) e-cnT

e-he? 1~ (2n+1) e=tnT J (122)

An explicit expression for T, in terms of n, ¢, and b caﬁnot in general
be found from Equation (122)., If the input to the system is a ramp, the
final slope S of the approximate model response is also given by the ex-
pression for V, Further study is therefore necessary to find a method

for selecting the model parameters.
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10, SUMMARY AND CONCLUSIONS

A delay line model of a linear system is selected such that the
responses of the model to commonly oceurring inputs are closgest to
corresponding responses of the system. It is found for each input that
the number n of model delay elements should be chosen as lsrge as proc-
tical for applications, The selected value, T, of the delay time, T,
is then given by .

. In (2ng + 1)
[+) ang

where a is the system bandwidth and n, the selected n. For the periodic
input studied the esignal frequency is limited to values equal to or less
than the system bandwidth in order that the model be acceptable,

The expression for T, is obtained by a technique using infinite
products previously employed successfully by Oldenburger and Goodson6
in distributed parameter studies. By assuming a small value of the
model delay time the infinite product appearing in the model transfer
function is neglected and a simplified model representation cbtained.
It is shown that thlis approximetion is reasonable for the transient
inputs 1f al < 4. The same is true for the periodic input if in ad-
diticn the input frequency is leas than or equal to the system band-

width. Although the approximation method is quite useful in the first-
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order system study, new difficulties noted at the conclusion of the
investigation arise for more complex systems. Since T, is a function of
the system parameters as well as the selected number of delay elements,

the difficulty in model selection increases zs the number of system

parameters increasss,
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APPENDIX A

ESTABLISHMENT OF CONSTRAINTS ON op

Let the quantity xy be given by

2a OT?
- . 123)
*n KT 2 m2 ¢ T2(a? - ?) (223

Then from Equation (99)

om " m; tan™t (xy) . (124)

From Equation (95) it is easily shown that
0 S o <1, w 2 0 (125)

for finite @, Hereafter we consider only finite, non-negative values

of &, By Eqation (123) it follows that

-1 5 % S 0, 15m5—T-[m?’-z):ma.a'4’]é (126)
2T

- 1 22 sew - a9 F _‘1‘_%)2_ 2]5
S X < 1,211_[;) 2aw a]<m§21r 5(127)

1 < Xp < o, __2'!_‘“_'[‘02_32]5 < m < %[wz*zaw-az]é
(128)
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0 s x5 1, mgf%[wz*zaca-:a2]§ . (129)

We recall that m in the above equations is a positive integer. Let m
be the first positive integer (FPI) less than or equal to, depending on
the value of «, the upper limit on m in Relation (126). From Relation
(127) let my be the FPI greater than this expression. The term my is
the FPI less than or equal to the upper limit on m in Relation (128),
and so on with the next two relations through m¢. With the series

representations

tan“lx = -"-‘x-%XB ’—%-*5-- ¢ oy x2 s l

(130)
3 -1 s
= t ELR
4 & tan T x ¢ .
-1 1l l 1
tan X = %in- -"x—‘-B—x’gﬁ—s;S'* ¢« s ey x2 e h
(131)
T -1 kil
’ T < tan "~ x < T
tan=1 14,15 2
an x = x-—3'x ’—5—x - s o sy X é 1
(132)
-% < tan~1 <-T£-

we keep only part of each series to give from Equations (126) through

(129)



-
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0 < om < il\ [W‘&'%*i]*mi [%TF-&]

m* mTmp

Bl B

(133)

If w 5 a, thenm is defined only for m 3 mg. For instance, in Relation
(129) let w = ky) 8, vhere 0 € kyy £ 1. Then since aT < 3

Hence from Relation (133)

o;cm<‘;6[xm] , wsa . (134)
Let cuantities P and Q be given by
P = 2a W Ta (135)
2T 2
12(a2 - w?2)
Q = . (136)
LT?
Then from Equation (123)
1l
Xn = P[m'] . (137)

It follows that



1l
M‘P;?s ]

By Equation (55) we obtain

. 1 awTt?
P
:/-.;6 [?] § 3

Therefore from Relation (50)

l
o;a‘m(E N

and Relation (102) is established.
For «@ > a we have by Relation (125)

¢m<-"—’

This establishee Relation (103).

< a .
W £ a .
w g a
kg > 1
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(138)

(139)

(140)

(1)
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APFENDIX B

ESTABLISHMENT OF CONSTRAINTS ON .n-w

Employing Equations (101) and (111) we obtain from Equation (109)

T- Llferesfwmeh) . wo

m=).

It follows that

T, 4 [|1 ‘7(1—;}54 ’ |27§gl|] : (w3)

=1

g8

Let kl be defined by

ky = [—Z-;—l] 2 . (L44)

Then for the cuantity in the first pair of vertical bars in Relation
(13),

[1*79—;7255)-]>0, 0 g kp < Ky . (145)

For the remainder of this work the limits on k, in Equation (145) are
agsuned.



Introduce Q,, where
) A
W - K- 20-1]
Whence, by Relation (145),

Tsl

m=)

From Equation (146) and Relation (112),

1

for any m. Let the cuantity up be given by

uy " g:i Ln[l-Om]

Then

T [2-t] = o

m=1

[1 - ]

The following established relationships are noted:l2

In(1L+x) £ x,

T Sy 5 -y

14

0

v

£

y <1

.
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(146)

(147)

(.8)

(149)

(150}

(151)

(152)
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Thus from Equation (149)

- . ) (153)
Uy 5 ; %

Substituting the expression for Qp in this relation and employing
Equation (55) gives

un £ 5 . (15u)
Hence

2 4 +
-"; S  exp l:i‘%kﬂ_l] . 0 § kw < ky (155)

In order to establish a lower constant for Tl—u) s introduce R,

where

By = =3 (G- 1) : (156)

From Equation (142) it follows that

T, = T [1 - Ry) . (157)
= m=l
From Relation (112) the limits on Ry are given by

S A By <2 : (158)

Let v, be defined by




Vg " 2§; In [1 - Ry

Hence

.]T [l-Rm] = e'm

m=)

Define the cuantity R by

R = 7|k5 -1
Thus
Byl
Ful -1~ F-oZ

Since from Relation (112)
‘}’Ik%- 1| < m

for all m, we have

R R ] 1
R - me z[n-lET

We note thatlz

Lo (1* |Ra|) 2 1n (1- [Ry|) 2

Al
[Fn| =2

0 5 |Ry] <1
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(159)

(160)

(161)

(162)

(163)

(164)

(165)

-




éa
Thus from Bquation (159) and Relations (164) and (165),

w o i) &[] R

We substitute the expression for R in Relation (166) and employ Eecuation
(55). Then by Equation (160)

-":oé exp{[%%] —Tf- y 0 5 ke <k (167)

Relatione (155) and (167) establish Relation (113).



